WorldWideScience

Sample records for science education focusing

  1. Science Education at Arts-Focused Colleges

    Science.gov (United States)

    Oswald, W. Wyatt; Ritchie, Aarika; Murray, Amy Vashlishan; Honea, Jon

    2016-01-01

    Many arts-focused colleges and universities in the United States offer their undergraduate students coursework in science. To better understand the delivery of science education at this type of institution, this article surveys the science programs of forty-one arts-oriented schools. The findings suggest that most science programs are located in…

  2. Family and Consumer Sciences Focus on the Human Dimension: The Expanded Food and Nutrition Education Program Example

    Science.gov (United States)

    Cason, Katherine L.; Chipman, Helen; Forstadt, Leslie A.; Rasco, Mattie R.; Sellers, Debra M.; Stephenson, Laura; York, De'Shoin A.

    2017-01-01

    The history of family and consumer sciences (FCS) and the Expanded Food and Nutrition Education Program (EFNEP) is discussed with an emphasis on the critical importance of the human dimension. EFNEP's focus on people, education for change, accountability, strategic partnerships, and public value are highlighted as an example and model for…

  3. Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration

    Science.gov (United States)

    Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.

    2017-12-01

    "Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of

  4. Big Data Science Education: A Case Study of a Project-Focused Introductory Course

    Science.gov (United States)

    Saltz, Jeffrey; Heckman, Robert

    2015-01-01

    This paper reports on a case study of a project-focused introduction to big data science course. The pedagogy of the course leveraged boundary theory, where students were positioned to be at the boundary between a client's desire to understand their data and the academic class. The results of the case study demonstrate that using live clients…

  5. Determination of rate of customer focus in educational programs at Isfahan University of Medical Sciences(1) based on students' viewpoints.

    Science.gov (United States)

    Shams, Assadollah; Yarmohammadian, Mohammad Hosein; Abbarik, Hadi Hayati

    2012-01-01

    Today, the challenges of quality improvement and customer focus as well as systems development are important and inevitable matters in higher education institutes. There are some highly competitive challenges among educational institutes, including accountability to social needs, increasing costs of education, diversity in educational methods and centers and their consequent increasing competition, and the need for adaptation of new information and knowledge to focus on students as the main customers. Hence, the purpose of this study was to determine the rate of costumer focus based on Isfahan University of Medical Sciences students' viewpoints and to suggest solutions to improve this rate. This was a cross-sectional study carried out in 2011. The statistical population included all the students of seven faculties of Isfahan University of Medical Sciences. According to statistical formulae, the sample size consisted of 384 subjects. Data collection tools included researcher-made questionnaire whose reliability was found to be 87% by Cronbach's alpha coefficient. Finally, using the SPSS statistical software and statistical methods of independent t-test and one-way analysis of variance (ANOVA), Likert scale based data were analyzed. The mean of overall score for customer focus (student-centered) of Isfahan University of Medical Sciences was 46.54. Finally, there was a relation between the mean of overall score for customer focus and gender, educational levels, and students' faculties. Researcher suggest more investigation between Medical University and others. It is a difference between medical sciences universities and others regarding the customer focus area, since students' gender must be considered as an effective factor in giving healthcare services quality. In order to improve the customer focus, it is essential to take facilities, field of study, faculties, and syllabus into consideration.

  6. Determination of rate of customer focus in educational programs at Isfahan University of Medical Sciences1 based on students’ viewpoints

    Science.gov (United States)

    Shams, Assadollah; Yarmohammadian, Mohammad Hosein; Abbarik, Hadi Hayati

    2012-01-01

    Background: Today, the challenges of quality improvement and customer focus as well as systems development are important and inevitable matters in higher education institutes. There are some highly competitive challenges among educational institutes, including accountability to social needs, increasing costs of education, diversity in educational methods and centers and their consequent increasing competition, and the need for adaptation of new information and knowledge to focus on students as the main customers. Hence, the purpose of this study was to determine the rate of costumer focus based on Isfahan University of Medical Sciences students’ viewpoints and to suggest solutions to improve this rate. Materials and Methods: This was a cross-sectional study carried out in 2011. The statistical population included all the students of seven faculties of Isfahan University of Medical Sciences. According to statistical formulae, the sample size consisted of 384 subjects. Data collection tools included researcher-made questionnaire whose reliability was found to be 87% by Cronbach's alpha coefficient. Finally, using the SPSS statistical software and statistical methods of independent t-test and one-way analysis of variance (ANOVA), Likert scale based data were analyzed. Results: The mean of overall score for customer focus (student-centered) of Isfahan University of Medical Sciences was 46.54. Finally, there was a relation between the mean of overall score for customer focus and gender, educational levels, and students’ faculties. Researcher suggest more investigation between Medical University and others. Conclusion: It is a difference between medical sciences universities and others regarding the customer focus area, since students’ gender must be considered as an effective factor in giving healthcare services quality. In order to improve the customer focus, it is essential to take facilities, field of study, faculties, and syllabus into consideration. PMID

  7. The process of growing in opinion for radioactive waste disposal. Focusing on science communication and education

    International Nuclear Information System (INIS)

    Amemiya, Kiyoshi; Murakami, Yoichiro

    2004-01-01

    The choice of geological disposal of high level radioactive waste is based on science. So, public understanding of science (PUS) becomes important issue in public acceptance (PA). Considering PUS, there are two problems. One is the literacy to understand scientific information and the other is the paradigm of the public on which the knowledge formed in the public depends heavily. In this research, survey of awareness and attitude to geological disposal on the postgraduate students was conducted. They have been studying civil and rock engineering, so they belong to 'the group' that acquires high education, culture and faculty. The results of questionnaires show that the awareness of danger is affected strongly by given information even in this groups, but they become thoughtful and prudent in their opinion and decision-making as increasing information. (author)

  8. The Next Generation Science Standards: A Focus on Physical Science

    Science.gov (United States)

    Krajcik, Joe

    2013-01-01

    This article describes ways to adapt U.S. science curriculum to the U.S. National Research Council (NRC) "Framework for K-12 Science Education" and "Next Generation of Science Standards" (NGSS), noting their focus on teaching the physical sciences. The overall goal of the Framework and NGSS is to help all learners develop the…

  9. Space Sciences Focus Area

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-10

    To advance our understanding of the space environment (from the Sun to the Earth and beyond) and to advance our ability to operate systems in space that protect life and society. Space Science is distinct from other field, such as astrophysics or cosmology, in that Space Science utilizes in-situ measurements from high altitude rockets, balloons and spacecraft or ground-based measurements of objects and conditions in space.

  10. STS-Astro: Astronomy in the focus of Science, Technology and Society and Case Study in Education Distance

    Science.gov (United States)

    Ferreira, O. R.

    2014-02-01

    The dissertation addresses the focus of Astronomy in Science, Technology and Society [STS}, which the author calls the STS-Astro. Observes the International Year of the Astronomy 2009 [IYA 2009] as one of the greatest experiences STS worldwide, causing unprecedented integration between science, technology and humanities, with positive impacts in many sectors of society and are still worthy of study, specially in Brazil due to the implementation of the International Year of Astronomy, Brazil 2009 [IYABrazil-2009}. Astronomy is also investigated in the area of Education, based mainly on theoretical aspects of educational socio-interacionist of Lev Semenovich Vygotsky (Vygotsky, 1991, 2008 and 2012, p. 103-117) and socio-historical cultural of Paulo Reglus Neves Freire (1979, 1982 and 1996), but when necessary and still keeping the field of constructivism, properly taking advantage of the interactionism and transdisciplinarity of Jean William Fritz Piaget (1983). Concerning Distance Education [DE], it is noted significant growth at the graduate and postgraduate courses. New challenges arise, with the establishment of an increasingly accustomed to Information and Communication Technologies [ICT] and the teaching methodologies to be used and developed, with Astronomy becoming an important instrument in the teaching-learning process associated technologies. Using the methodology of action research, we proceeded with a case study involving 26 students of the discipline of Astronomy Topics applied to Education, between November 1 and December 17, 2012, of the postgraduation courses in Distance Education at the Universidade Cruzeiro do Sul [Southern Cross University]. The results obtained permit statistical surveys therefore quantitative, but also qualitative information about the teaching-learning Astronomy by DE. Analyses of performance and progress of each student and set permit a finding interaction among those involved in the mediation of the teacher-tutor who, in turn

  11. The Bremen International Graduate School for Marine Sciences (GLOMAR) - Postgraduate education with an interdisciplinary focus

    Science.gov (United States)

    Klose, Christina

    2013-04-01

    The Bremen International Graduate School for Marine Sciences (GLOMAR) provides a dedicated research training programme for PhD students in all fields related the marine realm combined with an exceptional supervision and support programme in a stimulating research environment. The graduate school is part of MARUM - Center for Marine Environmental Sciences which is funded by the Deutsche Forschungsgemeinschaft (DFG) within the frame of the Excellence Initiative by the German federal and state governments to promote top-level research at German universities. GLOMAR hosts approx. 75 PhD students from different research institutions in Bremen and Bremerhaven. 50% of them are German, 50% have an international background. All students are a member of one of the four GLOMAR research areas: (A) Ocean & Climate, (B) Ocean & Seafloor, (C) Ocean & Life and (D) Ocean & Society. Their academic background ranges from the classical natural sciences to law, social and political sciences. The research areas are supervised by research associates who share their experience and offer advice for their younger colleagues. GLOMAR students work in an interdisciplinary and international context. They spend several months at a foreign research institution and are encouraged to actively participate in international conferences and publish their research results in international scientific journals. The services GLOMAR offers for its PhD students include team supervision by a thesis committee, a comprehensive course programme, research seminars and retreats, a family support programme, a mentoring programme for women in science, an ombudsperson and a funding system for conference trips, research residencies and publication costs. The graduate school offers different formats for interdisciplinary exchange within the PhD student community. Monthly research seminars, which are conducted by the GLOMAR research associates, provide an opportunity to discuss research results, practice oral and poster

  12. Sharing our successes II: Changing the face of science and mathematics education through teacher-focused partnerships

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    Industry Initiatives for Science and Math Education (IISME) in the San Francisco Bay Area planned and convened the second national conference for representatives of scientific work experience programs for K-12 teachers (SWEPs) at Lawrence Hall of Science, University of California at Berkeley October 13-14, 1994. The goal of this conference was to further strengthen the growing community of SWEP managers and teacher participants by providing an opportunity for sharing expertise and strategies about the following: (1) How SWEPs can complement and stimulate systemic education reform efforts; (2) Assessment strategies piloted by the ambitious multi-site evaluation project funded by the U.S. Department of Energy (DOE) as well as smaller evaluation projects piloted by other SWEPs; (3) Expanding and strengthening the base of teachers served by SWEPs; (4) Ensuring that SWEPs adequately support teachers in affecting classroom transfer and offer {open_quotes}more than just a summerjob{close_quotes}; (5) Sustaining and expanding new programs. A special teacher strand focused on leadership development supporting teachers to become effective change agents in their classrooms and schools, and developing strong teacher communities.

  13. Teachers as Producers of Data Analytics: A Case Study of a Teacher-Focused Educational Data Science Program

    Science.gov (United States)

    McCoy, Chase; Shih, Patrick C.

    2016-01-01

    Educational data science (EDS) is an emerging, interdisciplinary research domain that seeks to improve educational assessment, teaching, and student learning through data analytics. Teachers have been portrayed in the EDS literature as users of pre-constructed data dashboards in educational technologies, with little consideration given to them as…

  14. Further Democratizing Latin America: Broadening Access to Higher Education and Promoting Science Policies Focused on the Advanced Training of Human Resources

    Directory of Open Access Journals (Sweden)

    Manuel Heitor

    2014-08-01

    Full Text Available We focus this paper on the conditions to build reliable science, technology and higher education systems in Latin America, based on international comparative studies, fieldwork and interviews conducted over the last three years. The analysis shows that science can have a major role in furthering the democratization of society through public policies that foster opportunities to access knowledge and the advanced training of human resources. Broadening the social basis for higher education promotes the qualification of the labour force and contributes to social and economic development. The need to guarantee higher education diversity, strengthening scientific institutions and investing in a strong science base, is deemed as critical, but goes far beyond policies centred on innovation and industry-science relationships. It requires adequate training and attraction of skilled people, as well as the social promotion of a scientific and technological culture.

  15. Data Science Programs in U.S. Higher Education: An Exploratory Content Analysis of Program Description, Curriculum Structure, and Course Focus

    Science.gov (United States)

    Tang, Rong; Sae-Lim, Watinee

    2016-01-01

    In this study, an exploratory content analysis of 30 randomly selected Data Science (DS) programs from eight disciplines revealed significant gaps in current DS education in the United States. The analysis centers on linguistic patterns of program descriptions, curriculum requirements, and DS course focus as pertaining to key skills and domain…

  16. Joseph Priestley Across Theology, Education, and Chemistry: An Interdisciplinary Case Study in Epistemology with a Focus on the Science Education Context

    Science.gov (United States)

    de Berg, Kevin C.

    2011-07-01

    This paper discusses the findings of a search for the intellectual tools used by Joseph Priestley (1733-1804) in his chemistry, education, and theology documents. Priestley's enquiring democratic view of knowledge was applicable in all three areas and constitutes a significant part of his lifework. Current epistemological issues in science education are examined from the point of view of the nature of theory and experiment as observed in Priestley's writings and as espoused in modern philosophy of science. Science and religious faith issues in the context of science education are examined from the point of view of one's understanding of sacred texts, and the suggestion is made that a Priestleyan model of "the liberty to think for oneself" and "to hold knowledge with humility and virtue" could prove helpful in dealing with the known divergent opinions in relation to science, education, and religion.

  17. Ethiopian Journal of Education and Sciences

    African Journals Online (AJOL)

    The Ethiopian Journal of Education and Sciences focuses on publishing articles relating to education and sciences. It publishes ... The objective is to create forum for researchers in education and sciences. ... AJOL African Journals Online.

  18. Family focused nursing education

    Directory of Open Access Journals (Sweden)

    R. A. E. Thompson

    1993-03-01

    Full Text Available At the present time the majority of nurse education programmes are firmly tied to the perspectives of curative medicine within hospitals - they are disease and hospital oriented. This model, which indicates a 'sickness’ concept of nursing is entirely inappropriate if contemporary and future health care needs are to be met. The shift in education should be towards a health, family and whole person centered approach. The family is the most fundamental and dynamic unit in society with a profound influence upon its members. Besides performing a variety of other functions, the family has a central role in promoting and maintaining the health of its members. Because the family unit is the microcosm of society and accurately reflects the needs of society at large it is appropriate that this should be a key area of experience. Family attachments during training provide opportunities for close and committed contact with people in their everyday world and for learning what is really important to them.

  19. Can a Three-Day Training Focusing on the Nature of Science and Science Practices as They Relate to Mind in the Making Make a Difference in Preschool Teachers' Self-Efficacy Engaging in Science Education?

    Science.gov (United States)

    Meacham, Colleen

    As technology and our world understanding develop, we will need citizens who are able to ask and answer questions that have not been thought of yet. Currently, high school and college graduates entering the workforce demonstrate a gap in their ability to develop unique solutions and fill the current technology-driven jobs. To address this gap, science needs to be prioritized early in children's lives. The focus of this research was to analyze a science training program that would help pre-school teachers better understand Mind in the Making life skills, the nature of science, science practices, and improve their self-efficacy integrating science education into their classrooms and curriculum. Seventy-one teachers enrolled in two three-day, professional development trainings that were conducted over three, five-hour sessions approximately one month apart... During that training the teachers learned hands-on activities for young children that introduced life and physical science content. They were also given the task of developing and implementing a science-based lesson for their students and then analyzing it with other participants. The information from the lesson plans was collected for analysis. After the last training the teachers were given a pre/post retrospective survey to measure effective outcomes. The results from the lesson plans and surveys indicate that the trainings helped improve the teachers' understanding of Mind in the Making, the nature of science, and science practices. The results also show that the teachers felt more comfortable integrating science education into their classrooms and curriculum.

  20. Assessment in Science Education

    Science.gov (United States)

    Rustaman, N. Y.

    2017-09-01

    An analyses study focusing on scientific reasoning literacy was conducted to strengthen the stressing on assessment in science by combining the important of the nature of science and assessment as references, higher order thinking and scientific skills in assessing science learning as well. Having background in developing science process skills test items, inquiry in its many form, scientific and STEM literacy, it is believed that inquiry based learning should first be implemented among science educators and science learners before STEM education can successfully be developed among science teachers, prospective teachers, and students at all levels. After studying thoroughly a number of science researchers through their works, a model of scientific reasoning was proposed, and also simple rubrics and some examples of the test items were introduced in this article. As it is only the beginning, further studies will still be needed in the future with the involvement of prospective science teachers who have interests in assessment, either on authentic assessment or in test items development. In balance usage of alternative assessment rubrics, as well as valid and reliable test items (standard) will be needed in accelerating STEM education in Indonesia.

  1. Creating Learning Experiences that Promote Informal Science Education: Designing Conservation-Focused Interactive Zoo Exhibits through Action Research

    Science.gov (United States)

    Kalenda, Peter

    Research on exhibit design over the past twenty years has started to identify many different methods to increase the learning that occurs in informal education environments. This study utilized relevant research on exhibit design to create and study the effectiveness of a mobile interactive exhibit at the Seneca Park Zoo that promotes socialization, engagement in science, and conservation-related practices among guests. This study will serve as one component of a major redesign project at the Seneca Park Zoo for their Rocky Coasts exhibit. This action research study targeted the following question, "How can interactive exhibits be designed to promote socialization, engagement in science, and real-world conservation-related practices (RCPs) among zoo guests?" Specific research questions included: 1. In what ways did guests engage with the exhibit? 2. In what ways were guests impacted by the exhibit? a) What evidence exists, if any, of guests learning science content from the exhibit? b) What evidence exists, if any, of guests being emotionally affected by the exhibit? c) What evidence exists, if any, of guests changing their RCPs after visiting the exhibit? Data were collected through zoo guest surveys completed by zoo guests comparing multiple exhibits, interviews with guests before and after they used the prototype exhibit, observations and audio recordings of guests using the prototype exhibit, and follow-up phone interviews with guests who volunteered to participate. Data were analyzed collaboratively with members of the zoo's exhibit Redesign Team using grounded theory qualitative data analysis techniques to find patterns and trends among data. Initial findings from data analysis were used to develop shifts in the exhibit in order to increase visitor engagement and learning. This process continued for two full action research spirals, which resulted in three iterations of the prototype exhibit. The overall findings of this study highlight the ways in which

  2. The Specification of Science Education Programs in the Local Public Library: Focusing on the Programs In G-city

    Directory of Open Access Journals (Sweden)

    In-Ja Ahn*

    2012-06-01

    Full Text Available The city of 'G' has been made a number of achievements with its science program as a part of public library's cultural program during the last 5 years. Recently, the national science centre has been established in the same city, the debate is now needed whether the science program in the public library have reasons to be maintained or to be reduced. The aim of this research is on the operating strategies of the science program in the public library. The research methods include case studies of operational strategies in domestic and foreign science centre, the level of satisfaction of local citizen on the science program, the vision of science program in the advancement of public library in the century. In results, the research proposes that the science program in public library should be maintained, but with locally characterised programs. In addition, the study also advised on the provision of scientific information, the strengthened search functions, and the development of user-centred services for those in science fields.

  3. Technology for Education. IDRA Focus.

    Science.gov (United States)

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue includes five articles that focus on technology for education to benefit all students, including limited-English-proficient, minority, economically disadvantaged, and at-risk students. "Coca-Cola Valued Youth Program Students Meet Peers Via Video Conference" (Linda Cantu, Leticia Lopez-De La Garza) describes how at-risk…

  4. Professional Identity Development of Teacher Candidates Participating in an Informal Science Education Internship: A Focus on Drawings as Evidence

    Science.gov (United States)

    Katz, Phyllis; McGinnis, J. Randy; Hestness, Emily; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy; Pease, Rebecca

    2011-01-01

    This study investigated the professional identity development of teacher candidates participating in an informal afterschool science internship in a formal science teacher preparation programme. We used a qualitative research methodology. Data were collected from the teacher candidates, their informal internship mentors, and the researchers. The…

  5. Focused Science Delivery makes science make sense.

    Science.gov (United States)

    Rachel W. Scheuering; Jamie. Barbour

    2004-01-01

    Science does not exist in a vacuum, but reading scientific publications might make you think it does. Although the policy and management implications of their findings could often touch a much wider audience, many scientists write only for the few people in the world who share their area of expertise. In addition, most scientific publications provide information that...

  6. NASA's "Eyes" Focus on Education

    Science.gov (United States)

    Hussey, K.

    2016-12-01

    NASA's "Eyes on…" suite of products continues to grow in capability and popularity. The "Eyes on the Earth", "Eyes on the Solar System" and "Eyes on Exoplanets" real-time, 3D interactive visualization products have proven themselves as highly effective demonstration and communication tools for NASA's Earth and Space Science missions. This presentation will give a quick look at the latest updates to the "Eyes" suite plus what is being done to make them tools for STEM Education.

  7. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  8. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  9. Geography, Resources, and Environment of Latin America: An Undergraduate Science Course focused on Attracting Hispanic students to Science and on Educating Non-Hispanics about Latin America.

    Science.gov (United States)

    Pujana, I.; Stern, R. J.; Ledbetter, C. E.

    2004-12-01

    With NSF-CCLI funding, we have developed, taught, and evaluated a new lower-division science course for non-majors, entitled "Geography, Resources, and Environment of Hispanic America" (GRELA). This is an adaptation of a similar course, "Geology and Development of Modern Africa" developed by Barbara Tewksbury (Hamilton College), to attract African American students to science by highlighting cultural ties with their ancestral lands. We think that a similar approach focusing on Latin America may attract Hispanic undergraduates, at the same time that it increases awareness among non-Hispanic students about challenges facing our neighbors to the south. GRELA is an interdisciplinary exploration of how the physical and biological environment of Mexico, Central America, and South America have influenced the people who live there. The course consists of 20 lectures and requires the student to present a report partnering with correspondents in Latin American universities. GRELA begins with an overview of Latin American physical and cultural geography and geologic evolution followed by a series of modules that relate the natural resources and environment of Latin America to the history, economy, and culture of the region. This is followed by an exploration of pre-Columbian cultures. The use of metals by pre-Columbian, colonial, and modern cultures is presented next. We then discuss hydrocarbon resources, geothermal energy, and natural hazards of volcanoes and earthquakes. The last half of the course focuses on Earth System Science themes, including El Nino, glaciers, the Amazon river and rainforest, and coral reefs. The final presentation concerns population growth and water resources along the US-Mexico border. Grades are based on two midterms, one final, and a project which requires that groups of students communicate with scientists in Latin America to explore some aspect of geography, natural resources, or the environment of a Latin American region of common interest

  10. Multi-Year Professional Development Grounded in Educative Curriculum Focused on Integrating Technology with Reformed Science Teaching Principles

    Science.gov (United States)

    Longhurst, Max L.; Coster, Daniel C.; Wolf, Paul G.; Duffy, Aaron M.; Lee, Hyunju; Campbell, Todd

    2016-01-01

    Visions of science teaching and learning in the newest U.S. standards documents are dramatically different than those found in most classrooms. This research addresses these differences through closely examining one professional development (PD) project that connects teacher learning and teacher practice with student learning/achievement. This…

  11. Analysis of the Importance of Subjects to Improve the Educational Curriculum in the Radiological Science: Focused on Radiological Technologists

    International Nuclear Information System (INIS)

    Kim, Jung Hoon; Ko, Seong Jin; Kang, Se Sik; Kim, Dong Hyun; Kim, Chang Soo

    2012-01-01

    In this study a group of experts and clinical radiological technologists were surveyed to evaluate the clinical importance of current subjects in the radiological sciences. For the data collection and analysis, an open-ended questionnaire was distributed to the group of experts, and a multiple choice questionnaire was distributed to radiological technologists. Subjects were classified into 9 groups for analysis of the importance of subjects, and in regard to the questionnaire design for measurement of variables, departments and type of hospital were set up as independent variables, and the 9 groups of subjects were set up as dependent variables. As a result, clinical radiological technologists perceived Diagnostic Imaging Technology and practical courses, including general radiography, CT and MRI, as the most clinically necessary subjects, and the group of experts placed most weight on basic courses for the major. The result of this study suggests that the curriculum should be revised in a way that combines theory and practice in order to foster radiological technologists capable of adapting to the rapidly changing healthcare environment.

  12. Focus: Global histories of science. Introduction.

    Science.gov (United States)

    Sivasundaram, Sujit

    2010-03-01

    An interest in global histories of science is not new. Yet the project envisioned by this Focus section is different from that pursued by natural historians and natural philosophers in the early modern age. Instead of tracing universal patterns, there is value in attending to the connections and disconnections of science on the global stage. Instead of assuming the precision of science's boundaries, historians might consider the categories of "science" and "indigenous knowledge" to have emerged from globalization. New global histories of science will be characterized by critical reflection on the limits of generalization, as well as a creative adoption of new sources, methods, and chronologies, in an attempt to decenter the European history of science. Such a project holds the promise of opening up new conversations between historians, anthropologists, philosophers, and sociologists of science. It is of critical importance if the discipline is not to fragment into regional and national subfields or become dominated by structural frameworks such as imperialism.

  13. Science education ahead?

    Science.gov (United States)

    1999-01-01

    In spite of the achievements and successes of science education in recent years, certain problems undoubtedly remain. Firstly the content taught at secondary level has largely remained unchanged from what had been originally intended to meet the needs of those who would go on to become scientists. Secondly the curriculum is overloaded with factual content rather than emphasizing applications of scientific knowledge and skills and the connections between science and technology. Thirdly the curriculum does not relate to the needs and interests of the pupils. A recent report entitled Beyond 2000: Science Education for the Future, derived from a series of seminars funded by the Nuffield Foundation, attempts to address these issues by setting out clear aims and describing new approaches to achieve them. Joint editors of the report are Robin Millar of the University of York and Jonathan Osborne of King's College London. The recommendations are that the curriculum should contain a clear statement of its aims, with the 5 - 16 science curriculum seen as enhancing general `scientific literacy'. At key stage 4 there should be more differentiation between the literacy elements and those designed for the early stages of a specialist training in science; up to the end of key stage 3 a common curriculum is still appropriate. The curriculum should be presented clearly and simply, following on from the statement of aims, and should provide young people with an understanding of some key `ideas about science'. A wide variety of teaching methods and approaches should be encouraged, and the assessment approaches for reporting on students' performance should focus on their ability to understand and interpret information as well as their knowledge and understanding of scientific ideas. The last three recommendations in the report cover the incorporation of aspects of technology and the applications of science into the curriculum, with no substantial change overall in the short term but a

  14. Safety Education and Science.

    Science.gov (United States)

    Ralph, Richard

    1980-01-01

    Safety education in the science classroom is discussed, including the beginning of safe management, attitudes toward safety education, laboratory assistants, chemical and health regulation, safety aids, and a case study of a high school science laboratory. Suggestions for safety codes for science teachers, student behavior, and laboratory…

  15. Science in General Education

    Science.gov (United States)

    Read, Andrew F.

    2013-01-01

    General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.

  16. Science Education Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Discusses: (1) the nature of science; (2) Ausubel's learning theory and its application to introductory science; and (3) mathematics and physics instruction. Outlines a checklist approach to Certificate of Extended Education (CSE) practical assessment in biology. (JN)

  17. Careers in focus library and information science

    CERN Document Server

    2011-01-01

    Careers in Focus: Library and Information Science, Second Edition profiles 19 careers for professionals interested in this field. Job profiles include:. -Acquisitions librarians. -Book conservators. -Children's librarians. -Corporate librarians. -Film and video librarians. -Law librarians. -Library assistants. -Library media specialists. -Medical librarians. -Research assistants.

  18. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits and chall......Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...... and challenges related to AR enhancing student learning in science in lower secondary school were identified by expert science teachers, ICT designers and science education researchers from four countries in a Delphi survey. Findings were condensed in a framework to categorize educational AR designs....

  19. Games in Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2014-01-01

    , 2007). Some of these newer formats are developed in partnerships between research and education institutions and game developers and are based on learning theory as well as game design methods. Games well suited for creating narrative framework or simulations where students gain first-hand experience......This paper presents a categorisation of science game formats in relation to the educational possibilities or limitations they offer in science education. This includes discussion of new types of science game formats and gamification of science. Teaching with the use of games and simulations...... in science education dates back to the 1970s and early 80s were the potentials of games and simulations was discussed extensively as the new teaching tool ( Ellington et al. , 1981). In the early 90s the first ITC -based games for exploration of science and technical subjects was developed (Egenfeldt...

  20. Science, Worldviews, and Education

    Science.gov (United States)

    Gauch, Hugh G., Jr.

    2009-01-01

    Whether science can reach conclusions with substantial worldview import, such as whether supernatural beings exist or the universe is purposeful, is a significant but unsettled aspect of science. For instance, various scientists, philosophers, and educators have explored the implications of science for a theistic worldview, with opinions spanning…

  1. Remodeling Science Education

    Science.gov (United States)

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  2. Science Identity in Informal Education

    Science.gov (United States)

    Schon, Jennifer A.

    The national drive to increase the number of students pursuing Science Technology, Engineering, and Math (STEM) careers has brought science identity into focus for educators, with the need to determine what encourages students to pursue and persist in STEM careers. Science identity, the degree to which students think someone like them could be a scientist is a potential indicator of students pursuing and persisting in STEM related fields. Science identity, as defined by Carlone and Johnson (2007) consists of three constructs: competence, performance, and recognition. Students need to feel like they are good at science, can perform it well, and that others recognize them for these achievements in order to develop a science identity. These constructs can be bolstered by student visitation to informal education centers. Informal education centers, such as outdoor science schools, museums, and various learning centers can have a positive impact on how students view themselves as scientists by exposing them to novel and unique learning opportunities unavailable in their school. Specifically, the University of Idaho's McCall Outdoor Science School (MOSS) focuses on providing K-12 students with the opportunity to learn about science with a place-based, hands-on, inquiry-based curriculum that hopes to foster science identity development. To understand the constructs that lead to science identity formation and the impact the MOSS program has on science identity development, several questions were explored examining how students define the constructs and if the MOSS program impacted how they rate themselves within each construct. A mixed-method research approach was used consisting of focus group interviews with students and pre, post, one-month posttests for visiting students to look at change in science identity over time. Results from confirmatory factor analysis indicate that the instrument created is a good fit for examining science identity and the associated

  3. The Utopia of Science Education

    Science.gov (United States)

    Castano, Carolina

    2012-01-01

    In this forum I expand on the ideas I initially presented in "Extending the purposes of science education: addressing violence within socio-economic disadvantaged communities" by responding to the comments provided by Matthew Weinstein, Francis Broadway and Sheri Leafgren. Focusing on their notion of utopias and superheroes, I ask us to reconsider…

  4. Science education through informal education

    Science.gov (United States)

    Kim, Mijung; Dopico, Eduardo

    2016-06-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.

  5. Globalization and Science Education

    Science.gov (United States)

    Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won

    2013-06-01

    Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.

  6. Interior's Climate Science Centers: Focus or Fail

    Science.gov (United States)

    Udall, B.

    2012-12-01

    ; (5) seek institutional stability; and (6) design processes for learning. In addition, CSC outputs should help decision makers to embrace and focus on uncertainty rather than on attempts to reduce uncertainty. Model building can be a useful exercise if used as a broad intellectual exercise to understand systems instead of narrow projection-based efforts. In some cases DOI agencies may want very simple products including scientific syntheses. Social science work including but not limited to economics and policy should be considered when appropriate to decision maker needs. One method for allocating CSC resources would involve a limited number of small scoping meetings with climate sensitive regional DOI agencies. In the Southwest, for example, regional entities would include at least the Landscape Conservation Cooperatives, National Park Service, Fish and Wildlife Service, Bureau of Land Management, Reclamation and the US Forest Service, a critically important land manager with a well-funded and well-structured climate program. Given DOI's trust responsibility to the tribes, at least one project should be focused on meeting those needs in this region. The goal of these meetings would be to identify a small number of projects each with adequate funding for interdisciplinary teams of university and USGS scientists and DOI decision makers. Done correctly, the CSCs should be able to leverage resources with these DOI partners.

  7. Science Education: The New Humanity?

    Science.gov (United States)

    Douglas, John H.

    1973-01-01

    Summarizes science education trends, problems, and controversies at the elementary, secondary, and higher education levels beginning with the Physical Science Study Committee course, and discusses the present status concerning the application of the Fourth Revolution to the education system. (CC)

  8. Teaching/learning styles, performance, and students' teaching evaluation in S/T/E/S-focused science teacher education: A quasiquantitative probe of a case study

    Science.gov (United States)

    Toller, Uri

    In response to the new needs for S/T/E/S-literate science teachers, an S/T/E/S-oriented ISMMC-IEE combination model of instruction was implemented in two specially designed undergraduate courses and one graduate course within college science teacher training programs. These three courses served as case studies for class-based, quasiquantitative pilot investigation aimed at gaining a deeper insight into some of the issues involved in the implementation in college of nontraditional, open-ended, problem-solving-oriented teaching strategies which are in dissonance with the cognitive or affective styles and functional paradigms of most students. This probe into the dissonance issue revealed that prospective teachers are capable of handling the new instructional model and do gain in their higher-level cognitive learning. However, undergraduates perceive these courses to be either difficult or not in accord with their needs, and their appreciation of the instructional techniques and style employed is different from that of graduate students accordingly. The current study suggests that although the ISMMC-IEE model is useful in S/T/E/S-oriented courses in science teacher training programs, special attention to the implementation stage is required to close the gap between students' and S/T/E/S educators' functional paradigms.

  9. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  10. Science Education - Deja Vu Revised.

    Science.gov (United States)

    Walsh, John

    1982-01-01

    Summarizes views expressed and issues raised at the National Convocation on Precollege Education in Mathematics and Science and another meeting to establish a coalition of affiliates for science and mathematics education. (DC)

  11. Sensory Science Education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2018-01-01

    little note of the body-mind interactions we have with the material world. Utilizing examples from primary schools, it is argued that a sensory pedagogy in science requires a deliberate sensitization and validation of the senses’ presence and that a sensor pedagogy approach may reveal the unique ways...... in how we all experience the world. Troubling science education pedagogy is therefore also a reconceptualization of who we are and how we make sense of the world and the acceptance that the body-mind is present, imbalanced and complex....

  12. Impact of Informal Science Education on Children's Attitudes About Science

    Science.gov (United States)

    Wulf, Rosemary; Mayhew, Laurel M.; Finkelstein, Noah D.

    2010-10-01

    The JILA Physics Frontier Center Partnerships for Informal Science Education in the Community (PISEC) provides informal afterschool inquiry-based science teaching opportunities for university participants with children typically underrepresented in science. We focus on the potential for this program to help increase children's interest in science, mathematics, and engineering and their understanding of the nature of science by validating the Children's Attitude Survey, which is based on the Colorado Learning Attitudes about Science Survey [1] and designed to measure shifts in children's attitudes about science and the nature of science. We present pre- and post-semester results for several semesters of the PISEC program, and demonstrate that, unlike most introductory physics courses in college, our after-school informal science programs support and promote positive attitudes about science.

  13. Crowdfunding for Elementary Science Educators

    Science.gov (United States)

    Reese, Jessica; Miller, Kurtz

    2017-01-01

    The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…

  14. Integrating technology into radiologic science education.

    Science.gov (United States)

    Wertz, Christopher Ira; Hobbs, Dan L; Mickelsen, Wendy

    2014-01-01

    To review the existing literature pertaining to the current learning technologies available in radiologic science education and how to implement those technologies. Only articles from peer-reviewed journals and scholarly reports were used in the research for this review. The material was further restricted to those articles that emphasized using new learning technologies in education, with a focus on radiologic science education. Teaching in higher education is shifting from a traditional classroom-based lecture format to one that incorporates new technologies that allow for more varied and diverse educational models. Radiologic technology educators must adapt traditional education delivery methods to incorporate current technologies. Doing so will help engage the modern student in education in ways in which they are already familiar. As students' learning methods change, so must the methods of educational delivery. The use of new technologies has profound implications for education. If implemented properly, these technologies can be effective tools to help educators.

  15. Play with Science in Inquiry Based Science Education

    OpenAIRE

    Andrée, Maria; Lager-Nyqvist, Lotta; Wickman, Per-Olof

    2011-01-01

    In science education students sometimes engage in imaginary science-oriented play where ideas about science and scientists are put to use. Through play, children interpret their experiences, dramatize, give life to and transform what they know into a lived narrative. In this paper we build on the work of Vygotsky on imagination and creativity. Previous research on play in primary and secondary school has focused on play as a method for formal instruction rather than students’ spontaneous info...

  16. Building a Global Ocean Science Education Network

    Science.gov (United States)

    Scowcroft, G. A.; Tuddenham, P. T.; Pizziconi, R.

    2016-02-01

    It is imperative for ocean science education to be closely linked to ocean science research. This is especially important for research that addresses global concerns that cross national boundaries, including climate related issues. The results of research on these critical topics must find its way to the public, educators, and students of all ages around the globe. To facilitate this, opportunities are needed for ocean scientists and educators to convene and identify priorities and strategies for ocean science education. On June 26 and 27, 2015 the first Global Ocean Science Education (GOSE) Workshop was convened in the United States at the University of Rhode Island Graduate School of Oceanography. The workshop, sponsored by the Consortium for Ocean Science Exploration and Engagement (COSEE) and the College of Exploration, had over 75 participants representing 15 nations. The workshop addressed critical global ocean science topics, current ocean science research and education priorities, advanced communication technologies, and leveraging international ocean research technologies. In addition, panels discussed elementary, secondary, undergraduate, graduate, and public education across the ocean basins with emphasis on opportunities for international collaboration. Special presentation topics included advancements in tropical cyclone forecasting, collaborations among Pacific Islands, ocean science for coastal resiliency, and trans-Atlantic collaboration. This presentation will focus on workshop outcomes as well as activities for growing a global ocean science education network. A summary of the workshop report will also be provided. The dates and location for the 2016 GOES Workshop will be announced. See http://www.coexploration.net/gose/index.html

  17. Is Religious Education Compatible with Science Education?

    Science.gov (United States)

    Mahner, Martin; Bunge, Mario

    1996-01-01

    Addresses the problem of the compatibility of science and religion, and its bearing on science and religious education, challenges the popular view that science and religion are compatible or complementary. Discusses differences at the doctrinal, metaphysical, methodological, and attitudinal levels. Argues that religious education should be kept…

  18. Museums theme – Science vs technology in a museum’s display: changes in the Vienna Museum of Technology with a focus on permanent and temporary exhibitions and new forms of science education

    Directory of Open Access Journals (Sweden)

    Peter Donhauser

    2017-11-01

    Full Text Available This paper locates the development of a science and technology museum within the history of the predominantly object-based Vienna Museum, which was founded early in the twentieth century. It portrays interactive engagement with young people in terms of its continuity with the aim of popularising science, which had been a founding principle of the museum. At the same time, this paper examines the way in which the rise of interactivity represented a radical shift from an emphasis on technology itself towards a focus upon scientific principles, a phenomenon which in turn had an influence upon enquiry-based learning.

  19. Perceived barriers to online education by radiologic science educators.

    Science.gov (United States)

    Kowalczyk, Nina K

    2014-01-01

    Radiologic science programs continue to adopt the use of blended online education in their curricula, with an increase in the use of online courses since 2009. However, perceived barriers to the use of online education formats persist in the radiologic science education community. An electronic survey was conducted to explore the current status of online education in the radiologic sciences and to identify barriers to providing online courses. A random sample of 373 educators from radiography, radiation therapy, and nuclear medicine technology educational programs accredited by the Joint Review Committee on Education in Radiologic Technology and Joint Review Committee on Educational Programs in Nuclear Medicine Technology was chosen to participate in this study. A qualitative analysis of self-identified barriers to online teaching was conducted. Three common themes emerged: information technology (IT) training and support barriers, student-related barriers, and institutional barriers. Online education is not prevalent in the radiologic sciences, in part because of the need for the clinical application of radiologic science course content, but online course activity has increased substantially in radiologic science education, and blended or hybrid course designs can effectively provide opportunities for student-centered learning. Further development is needed to increase faculty IT self-efficacy and to educate faculty regarding pedagogical methods appropriate for online course delivery. To create an excellent online learning environment, educators must move beyond technology issues and focus on providing quality educational experiences for students.

  20. Focus: science, history, and modern India. Introduction.

    Science.gov (United States)

    Phalkey, Jahnavi

    2013-06-01

    Histories of science in India are revisitations of the colonial question. Science is ideology to be unraveled and exposed--as modernity and progress making or violence and oppression making--depending on where you stand on the interpretive spectrum. It has been seen as ideologically driven practice, as a mode of knowledge production whose history is inseparable from the social and political uses to which it is tethered. In the colonial as well as the postcolonial context, science and technology have been seen as the "ideology of empire," "tools of empire," "tentacles of progress," and "reasons of state." Yet science and technology are practices and bodies of knowledge that inhabitants of the subcontinent have engaged with enthusiasm, that they have used to invent themselves in their global, national, and individual lives. We know remarkably little about the histories of these complex engagements. A departure from current historiographical preoccupations is called for to map and explain the lives, institutions, practices, and stories of science on the subcontinent as they connect with, and where they break away from, the world at large.

  1. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  2. The Priority of the Question: Focus Questions for Sustained Reasoning in Science

    Science.gov (United States)

    Lustick, David

    2010-08-01

    Science education standards place a high priority on promoting the skills and dispositions associated with inquiry at all levels of learning. Yet, the questions teachers employ to foster sustained reasoning are most likely borrowed from a textbook, lab manual, or worksheet. Such generic questions generated for a mass audience, lack authenticity and contextual cues that allow learners to immediately appreciate a question’s relevance. Teacher queries intended to motivate, guide, and foster learning through inquiry are known as focus questions. This theoretical article draws upon science education research to present a typology and conceptual framework intended to support science teacher educators as they identify, develop, and evaluate focus questions with their students.

  3. Education in space science

    Science.gov (United States)

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  4. The Nature of Science and Science Education: A Bibliography

    Science.gov (United States)

    Bell, Randy; Abd-El-Khalick, Fouad; Lederman, Norman G.; Mccomas, William F.; Matthews, Michael R.

    Research on the nature of science and science education enjoys a long history, with its origins in Ernst Mach's work in the late nineteenth century and John Dewey's at the beginning of the twentieth century. As early as 1909 the Central Association for Science and Mathematics Teachers published an article - A Consideration of the Principles that Should Determine the Courses in Biology in Secondary Schools - in School Science and Mathematics that reflected foundational concerns about science and how school curricula should be informed by them. Since then a large body of literature has developed related to the teaching and learning about nature of science - see, for example, the Lederman (1992)and Meichtry (1993) reviews cited below. As well there has been intense philosophical, historical and philosophical debate about the nature of science itself, culminating in the much-publicised Science Wars of recent time. Thereferences listed here primarily focus on the empirical research related to the nature of science as an educational goal; along with a few influential philosophical works by such authors as Kuhn, Popper, Laudan, Lakatos, and others. While not exhaustive, the list should prove useful to educators, and scholars in other fields, interested in the nature of science and how its understanding can be realised as a goal of science instruction. The authors welcome correspondence regarding omissions from the list, and on-going additions that can be made to it.

  5. Feyerabend on Science and Education

    Science.gov (United States)

    Kidd, Ian James

    2013-01-01

    This article offers a sympathetic interpretation of Paul Feyerabend's remarks on science and education. I present a formative episode in the development of his educational ideas--the "Berkeley experience"--and describe how it affected his views on the place of science within modern education. It emerges that Feyerabend arrived at a…

  6. Fermilab Education Office: Science Adventures

    Science.gov (United States)

    Search The Education Office: Science Adventures Adventure Catalog Search for Adventures Calendar Class Facebook Group. Contact: Science Adventures Registrar, Education Office Fermilab, MS 777, P.O. Box 500 it again." Opportunities for Instructors The Education Office has openings for instructors who

  7. The nature of science in science education: theories and practices

    Directory of Open Access Journals (Sweden)

    Ana Maria Morais

    2018-01-01

    Full Text Available The article is based on results of research carried out by the ESSA Group (Sociological Studies of the Classroom centred on the inclusion of the nature of science (metascience on science education. The results, based on analyses of various educational texts and contexts – curricula/syllabuses, textbooks and pedagogic practices – and of the relations between those texts/contexts, have in general shown a reduced presence and low conceptualization of metascience. The article starts by presenting the theoretical framework of the research of the ESSA Group which was focused on the introduction of the nature of science in science education. It is mostly based on Ziman’s conceptualization of metascience (1984, 2000 and on Bernstein’s theorization of production and reproduction of knowledge, particularly his model of pedagogic discourse (1990, 2000 and knowledge structures (1999. This is followed by the description of a pedagogical strategy, theoretically grounded, which explores the nature of science in the classroom context. The intention is to give an example of a strategy which privileges a high level learning for all students and which may contribute to a reflection about the inclusion of the nature of science on science education. Finally, considerations are made about the applicability of the strategy on the basis of previous theoretical and empirical arguments which sustain its use in the context of science education.

  8. Globalisation and science education: Rethinking science education reforms

    Science.gov (United States)

    Carter, Lyn

    2005-05-01

    Like Lemke (J Res Sci Teach 38:296-316, 2001), I believe that science education has not looked enough at the impact of the changing theoretical and global landscape by which it is produced and shaped. Lemke makes a sound argument for science education to look beyond its own discourses toward those like cultural studies and politics, and to which I would add globalisation theory and relevant educational studies. Hence, in this study I draw together a range of investigations to argue that globalisation is indeed implicated in the discourses of science education, even if it remains underacknowledged and undertheorized. Establishing this relationship is important because it provides different frames of reference from which to investigate many of science education's current concerns, including those new forces that now have a direct impact on science classrooms. For example, one important question to investigate is the degree to which current science education improvement discourses are the consequences of quality research into science teaching and learning, or represent national and local responses to global economic restructuring and the imperatives of the supranational institutions that are largely beyond the control of science education. Developing globalisation as a theoretical construct to help formulate new questions and methods to examine these questions can provide science education with opportunities to expand the conceptual and analytical frameworks of much of its present and future scholarship.

  9. Science Education for Democratic Citizenship through the Use of the History of Science

    Science.gov (United States)

    Kolsto, Stein Dankert

    2008-01-01

    Scholars have argued that the history of science might facilitate an understanding of processes of science. Focusing on science education for citizenship and active involvement in debates on socioscientific issues, one might argue that today's post-academic science differs from academic science in the past, making the history of academic science…

  10. Science education and everyday action

    Science.gov (United States)

    McCann, Wendy Renee Sherman

    2001-07-01

    This dissertation addresses three related tasks and issues in the larger field of science education. The first is to review of the several uses of "everydayness" at play in the science education literature, and in the education and social science literatures more generally. Four broad iterations of everydayness were found in science education, and these were traced and analyzed to develop their similarities, and contradictions. It was concluded that despite tendencies in science education research to suppose a fundamental demarcation either between professional science and everyday life, or between schools and everyday life, all social affairs, including professional science and activity in schools, are continuous with everyday life, and consist fundamentally in everyday, ordinary mundane actions which are ordered and organized by the participants to those social activities and occasions. The second task for this dissertation was to conduct a naturalistic, descriptive study of undergraduate-level physics laboratory activities from the analytic perspective of ethnomethodology. The study findings are presented as closely-detailed analysis of the students' methods of following their instructions and 'fitting' their observed results to a known scientific concept or principle during the enactment of their classroom laboratory activities. Based on the descriptions of students' practical work in following instructions and 'fitting'. The characterization of school science labs as an "experiment-demonstration hybrid" is developed. The third task of this dissertation was to synthesize the literature review and field study findings in order to clarify what science educators could productively mean by "everydayness", and to suggest what understandings of science education the study of everyday action recommends. It is argued that the significance of the 'experiment-demo hybrid' characterization must be seen in terms of an alternate program for science education research, which

  11. Exploring social networks of municipal science education stakeholders in Danish Science Municipalities

    DEFF Research Database (Denmark)

    von der Fehr, Ane

    development in the science and technology industry. Therefore, much effort has been invested to improve science education. The importance of school external stakeholders in development of education has been an increasingly emphasised, also in the field of science education. This has led to a growing focus......Science education development is a field of many interests and a key interest is recruitment of students who wish to pursue an education in science. This is an urgent societal demand in Denmark as well as internationally, since highly skilled science graduates are needed for the continuous...... involved in science education development. These municipal science education networks (MSE networks) were identified as important for development of science education in the SM project. Therefore, it was a key interest to explore these networks in order to investigate how the central stakeholders affected...

  12. Artificial Intelligence and Science Education.

    Science.gov (United States)

    Good, Ron

    1987-01-01

    Defines artificial intelligence (AI) in relation to intelligent computer-assisted instruction (ICAI) and science education. Provides a brief background of AI work, examples of expert systems, examples of ICAI work, and addresses problems facing AI workers that have implications for science education. Proposes a revised model of the Karplus/Renner…

  13. Fermilab Friends for Science Education | Welcome

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Fermilab Friends for Science Education photo Fermilab Friends for Science Education supports innovative science education programs at Fermilab. Its mission is to: Enhance the quality of precollege science education in

  14. Is Christian Education Compatible With Science Education?

    Science.gov (United States)

    Martin, Michael

    Science education and Christian education are not compatible if by Christian education one means teaching someone to be a Christian. One goal of science education is to give students factual knowledge. Even when there is no actual conflict of this knowledge with the dogmas of Christianity, there exists the potential for conflict. Another goal of science education is to teach students to have the propensity to be sensitive to evidence: to hold beliefs tentatively in light of evidence and to reject these beliefs in the light of new evidence if rejection is warranted by this evidence. This propensity conflicts with one way in which beliefs are often taught in Christian education: namely as fundamental dogmas, rather than as subject to revision in the light of the evidence.

  15. Reforming Science Education: Part II. Utilizing Kieran Egan's Educational Metatheory

    Science.gov (United States)

    Schulz, Roland M.

    2009-04-01

    This paper is the second of two parts and continues the conversation which had called for a shift in the conceptual focus of science education towards philosophy of education, with the requirement to develop a discipline-specific “philosophy” of science education. In Part I, conflicting conceptions of science literacy were identified with disparate “visions” tied to competing research programs as well as school-based curricular paradigms. The impasse in the goals of science education and thereto, the contending views of science literacy, were themselves associated with three underlying fundamental aims of education (knowledge-itself; personal development; socialization) which, it was argued, usually undercut the potential of each other. During periods of “crisis-talk” and throughout science educational history these three aims have repeatedly attempted to assert themselves. The inability of science education research to affect long-term change in classrooms was correlated not only to the failure to reach a consensus on the aims (due to competing programs and to the educational ideologies of their social groups), but especially to the failure of developing true educational theories (largely neglected since Hirst). Such theories, especially metatheories, could serve to reinforce science education’s growing sense of academic autonomy and independence from socio-economic demands. In Part II, I offer as a suggestion Egan’s cultural-linguistic theory as a metatheory to help resolve the impasse. I hope to make reformers familiar with his important ideas in general, and more specifically, to show how they can complement HPS rationales and reinforce the work of those researchers who have emphasized the value of narrative in learning science.

  16. Assessing Education Needs at Tertiary Level: The Focus Group Method

    Directory of Open Access Journals (Sweden)

    Elena-Mirela Samfira

    2015-10-01

    Full Text Available The goal of the paper is to point out the advantages and disadvantages of the focus group method in assessing the education needs of teachers and students in veterinary medicine. It is the first stage of a wider research aiming at developing problem-based teaching and learning methodologies in the field of veterinary medicine. The materials used consisted of literature documents on focus group as a research method in social sciences. The authors studied the literature available in the field and synthesised its main advantages and disadvantages. The paper is the first of this kind in Romania. Results show that there is no agreement yet on the advantages and disadvantages of this method. The research limitation is that there is almost no Romanian literature on focus group as a method. The usefulness of the paper is obvious: it allows other researchers in the field of education see the benefits of using such a research method. The originality of the paper consists in the fact that there has been no such research so far in Romanian higher education. Based on the results of the focus groups organised, the authors will design and implement a problem-based learning methodology for the students in veterinary medicine.

  17. Multicultural Science Education and Curriculum Materials

    Science.gov (United States)

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  18. When Nature of Science Meets Marxism: Aspects of Nature of Science Taught by Chinese Science Teacher Educators to Prospective Science Teachers

    Science.gov (United States)

    Wan, Zhi Hong; Wong, Siu Ling; Zhan, Ying

    2013-01-01

    Nature of science (NOS) is beginning to find its place in the science education in China. In a study which investigated Chinese science teacher educators' conceptions of teaching NOS to prospective science teachers through semi-structured interviews, five key dimensions emerged from the data. This paper focuses on the dimension, "NOS content…

  19. Science and religion: implications for science educators

    Science.gov (United States)

    Reiss, Michael J.

    2010-03-01

    A religious perspective on life shapes how and what those with such a perspective learn in science; for some students a religious perspective can hinder learning in science. For such reasons Staver's article is to be welcomed as it proposes a new way of resolving the widely perceived discord between science and religion. Staver notes that Western thinking has traditionally postulated the existence and comprehensibility of a world that is external to and independent of human consciousness. This has led to a conception of truth, truth as correspondence, in which our knowledge corresponds to the facts in this external world. Staver rejects such a conception, preferring the conception of truth as coherence in which the links are between and among independent knowledge claims themselves rather than between a knowledge claim and reality. Staver then proposes constructivism as a vehicle potentially capable of resolving the tension between religion and science. My contention is that the resolution between science and religion that Staver proposes comes at too great a cost—both to science and to religion. Instead I defend a different version of constructivism where humans are seen as capable of generating models of reality that do provide richer and more meaningful understandings of reality, over time and with respect both to science and to religion. I argue that scientific knowledge is a subset of religious knowledge and explore the implications of this for science education in general and when teaching about evolution in particular.

  20. Science Instructors' Perceptions of the Risks of Biotechnology: Implications for Science Education

    Science.gov (United States)

    Gardner, Grant Ean; Jones, M. Gail

    2011-01-01

    Developing scientifically literate students who understand the socially contextualized nature of science and technology is a national focus of science education reform. Science educators' perceptions of risks and benefits of new technologies (such as biotechnology) may shape their instructional approaches. This study examined the perceived risk of…

  1. Preparing informal science educators perspectives from science communication and education

    CERN Document Server

    2017-01-01

    This book provides a diverse look at various aspects of preparing informal science educators. Much has been published about the importance of preparing formal classroom educators, but little has been written about the importance, need, and best practices for training professionals who teach in aquariums, camps, parks, museums, etc. The reader will find that as a collective the chapters of the book are well-related and paint a clear picture that there are varying ways to approach informal educator preparation, but all are important. The volume is divided into five topics: Defining Informal Science Education, Professional Development, Designing Programs, Zone of Reflexivity: The Space Between Formal and Informal Educators, and Public Communication. The authors have written chapters for practitioners, researchers and those who are interested in assessment and evaluation, formal and informal educator preparation, gender equity, place-based education, professional development, program design, reflective practice, ...

  2. Reforming Science and Mathematics Education

    Science.gov (United States)

    Lagowski, J. J.

    1995-09-01

    , for example, the various SSI's statements of "good educational practice." Most SSI's began their initiatives by establishing clear goals for what students should know and be able to do, reflecting the emergence of a national consensus for broad standards for just about every aspect of the educational process. The concerned persons in each SSI--policy-makers, educators, mathematicians, and scientists--have not necessarily reached the same conclusions about what children should learn or even what efforts are needed to put the necessary changes in place, but they are focused on common goals as expressed locally. The recent national dialogues about goals and standards have provided the basis for a remarkably consistent image of what states--at least the SSI states--consider good educational practice. The differences that do occur across states reflect variations in demographics, geography, resources, values, and educational structure. All the states with SSI's, regardless of their primary strategy, have address the professional development of teachers. Collectively, the SSI's reported that professional development services were provided to more than 50,000 teachers during the past year, which is approximately eight percent of the public school teachers in the participating states. The number of teachers participating varied by grade level and subject matter. Some states, for example, reported reaching more than one in every five middle-school mathematics teachers, but only one in every 20 high-school mathematics teachers. Focusing SSI resources on the professional development of classroom teachers implies changing their skill levels, knowledge, and beliefs. Attitudes and perceptions of administrators also changed in the process. The challenge lies in developing a strategy that provides on-going, in-depth professional development that reaches a significant portion of those who teach mathematics and the sciences. Not only must an effective development model(s), be provided

  3. Tratamiento del concepto de valores humanos desde un enfoque de las ciencias de la educación A treatment of the concept of Human Values from a focus of the sciences of the education

    Directory of Open Access Journals (Sweden)

    Alberto Bujardón Mendoza

    2008-04-01

    Full Text Available El trabajo se centra en destacar la necesidad de la educación en valores, demuestra para poder desarrollar este proceso es imprescindible definir los valores humanos desde las perspectivas de la Ciencias de la Educación. En la bibliografía consultada la definición de los valores se hace desde un enfoque filosófico y de alli se simplifica hacía el objeto de cada una de las Ciencias de la Educación, es decir, la Didáctica, la Psico-pedagogía, la Sociología. Se destaca la necesidad de hacerlo desde las orientaciones metodológicas brindada por la Dialéctica Materialista y utilizando como instrumento la interdisciplinariedad, se trata como un proceso complejo y multidisciplinario, de la otra manera cada ciencia absolutiza su campo y mutila el proceso formativo. Se pretende brindar una serie de artículos que brinden elementos teóricos y metodológicos para el tratamiento del tema.The work is centered in highlighting the necessity of the education in values, but demonstrating that, to be able to develop this process, it is indispensable to define the human values from the perspectives of the Sciences of the Education. In the consulted bibliography, the definition of the values is made from a philosophical focus, and from there, it is simplified to the object of each of the sciences of the education, that is to say, the didactics, the psycho-pedagogy, the sociology, etc, but what is it about is of making it from the methodological orientations provided by the Materialistic Dialectics and using as an instrument the inter-disciplinarity, seeing it as a complex and multidisciplinary process; in the other way, each science absolutize its field and mutilates the formative process. We pretend to provide a series of articles that may offer theoretical-methodological elements for the treatment of the topic.

  4. Science Teacher Identity and Eco-Transformation of Science Education: Comparing Western Modernism with Confucianism and Reflexive "Bildung"

    Science.gov (United States)

    Sjöström, Jesper

    2018-01-01

    This forum article contributes to the understanding of how science teachers' identity is related to their worldviews, cultural values and educational philosophies, and to eco-transformation of science education. Special focus is put on "reform-minded" science teachers. The starting point is the paper "Science education reform in…

  5. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. May 2012 Volume 17 Number 5. SERIES ARTICLES. 436 Dawn of Science. The Quest for Power. T Padmanabhan. GENERAL ARTICLES. 441 Bernoulli Runs Using 'Book Cricket' to Evaluate. Cricketers. Anand Ramalingam. 454 Wilhelm Ostwald, the Father of Physical Chemistry.

  6. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. February 2012 Volume 17 Number 2. SERIES ARTICLES. 106 Dawn of Science. Calculus is Developed in Kerala. T Padmanabhan. GENERAL ARTICLES. 117 Willis H Carrier: Father of Air Conditioning. R V Simha. 139 Refrigerants For Vapour Compression Refrigeration. Systems.

  7. Educational activities for neutron sciences

    International Nuclear Information System (INIS)

    Hiraka, Haruhiro; Ohoyama, Kenji; Iwasa, Kazuaki

    2011-01-01

    Since now we have several world-leading neutron science facilities in Japan, enlightenment activities for introducing neutron sciences, for example, to young people is an indispensable issue. Hereafter, we will report present status of the activities based on collaborations between universities and neutron facilities. A few suggestions for future educational activity of JSNS are also shown. (author)

  8. Sputnik's Impact on Science Education in America

    Science.gov (United States)

    Holbrow, Charles H.

    2007-04-01

    The launch of Sputnik, the world's first artificial Earth orbiting satellite, by the Soviet Union on October 4, 1957 was a triggering event. Before Sputnik pressure had been rising to mobilize America's intellectual resources to be more effective and useful in dealing with the Cold War. Sputnik released that pressure by stirring up a mixture of American hysteria, wounded self-esteem, fears of missile attacks, and deep questioning of the intellectual capabilities of popular democratic society and its educational system. After Sputnik the federal government took several remarkable actions: President Eisenhower established the position of Presidential Science Advisor; the House and the Senate reorganized their committee structures to focus on science policy; Congress created NASA -- the National Aeronautics and Space Agency -- and charged it to create a civilian space program; they tripled funding for the National Science Foundation to support basic research but also to improve science education and draw more young Americans into science and engineering; and they passed the National Defense Education Act which involved the federal government to an unprecedented extent with all levels of American education. I will describe some pre-Sputnik pressures to change American education, review some important effects of the subsequent changes, and talk about one major failure of change fostered by the national government.

  9. Romanticism and Romantic Science: Their Contribution to Science Education

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  10. Guidelines for Building Science Education

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Cheryn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rashkin, Samuel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huelman, Pat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    The U.S. Department of Energy’s (DOE) residential research and demonstration program, Building America, has triumphed through 20 years of innovation. Partnering with researchers, builders, remodelers, and manufacturers to develop innovative processes like advanced framing and ventilation standards, Building America has proven an energy efficient design can be more cost effective, healthy, and durable than a standard house. As Building America partners continue to achieve their stretch goals, they have found that the barrier to true market transformation for high performance homes is the limited knowledge-base of the professionals working in the building industry. With dozens of professionals taking part in the design and execution of building and selling homes, each person should have basic building science knowledge relevant to their role, and an understanding of how various home components interface with each other. Instead, our industry typically experiences a fragmented approach to home building and design. After obtaining important input from stakeholders at the Building Science Education Kick-Off Meeting, DOE created a building science education strategy addressing education issues preventing the widespread adoption of high performance homes. This strategy targets the next generation and provides valuable guidance for the current workforce. The initiative includes: • Race to Zero Student Design Competition: Engages universities and provides students who will be the next generation of architects, engineers, construction managers and entrepreneurs with the necessary skills and experience they need to begin careers in clean energy and generate creative solutions to real world problems. • Building Science to Sales Translator: Simplifies building science into compelling sales language and tools to sell high performance homes to their customers. • Building Science Education Guidance: Brings together industry and academia to solve problems related to

  11. Space Science Education Resource Directory

    Science.gov (United States)

    Christian, C. A.; Scollick, K.

    The Office of Space Science (OSS) of NASA supports educational programs as a by-product of the research it funds through missions and investigative programs. A rich suite of resources for public use is available including multimedia materials, online resources, hardcopies and other items. The OSS supported creation of a resource catalog through a group lead by individuals at STScI that ultimately will provide an easy-to-use and user-friendly search capability to access products. This paper describes the underlying architecture of that catalog, including the challenge to develop a system for characterizing education products through appropriate metadata. The system must also be meaningful to a large clientele including educators, scientists, students, and informal science educators. An additional goal was to seamlessly exchange data with existing federally supported educational systems as well as local systems. The goals, requirements, and standards for the catalog will be presented to illuminate the rationale for the implementation ultimately adopted.

  12. Comprehensive Education Portfolio with a Career Focus

    Science.gov (United States)

    Kruger, Evonne J.; Holtzman, Diane M.; Dagavarian, Debra A.

    2013-01-01

    There are many types of student portfolios used within academia: the prior learning portfolio, credentialing portfolio, developmental portfolio, capstone portfolio, individual course portfolio, and the comprehensive education portfolio. The comprehensive education portfolio (CEP), as used by the authors, is a student portfolio, developed over…

  13. Internationalizing Geography Education: A Focus on India

    Science.gov (United States)

    Solem, Michael; Balachandran, Chandra Shekhar

    2014-01-01

    The Association of American Geographers (AAG), through its Center for Global Geography Education (CGGE) project, recently published a collection of online educational resources examining important geographic issues affecting people, places, and environments in India. The resources were created by a delegation of high school teachers and academic…

  14. The Case for Improving U.S. Computer Science Education

    Science.gov (United States)

    Nager, Adams; Atkinson, Robert

    2016-01-01

    Despite the growing use of computers and software in every facet of our economy, not until recently has computer science education begun to gain traction in American school systems. The current focus on improving science, technology, engineering, and mathematics (STEM) education in the U.S. School system has disregarded differences within STEM…

  15. Education science and biological anthropology.

    Science.gov (United States)

    Krebs, Uwe

    2014-01-01

    This contribution states deficits and makes proposals in order to overcome them. First there is the question as to why the Biological Anthropology--despite all its diversifications--hardly ever deals with educational aspects of its subject. Second it is the question as to why Educational Science neglects or even ignores data of Biological Anthropology which are recognizably important for its subject. It is postulated that the stated deficits are caused by several adverse influences such as, the individual identity of each of the involved single sciences; aspects of the recent history of the German Anthropology; a lack of conceptual understanding of each other; methodological differences and, last but not least, the structure of the universities. The necessity to remedy this situation was deduced from two groups of facts. First, more recent data of the Biological Anthropology (e.g. brain functions and learning, sex specificity and education) are of substantial relevance for the Educational Science. Second, the epistemological requirements of complex subjects like education need interdisciplinary approaches. Finally, a few suggestions of concrete topics are given which are related to both, Educational Science and Biological Anthropology.

  16. Science, Ethics and Education

    Science.gov (United States)

    Elgin, Catherine

    2011-01-01

    An overarching epistemological goal of science is to develop a comprehensive, systematic, empirically grounded understanding of nature. Two obstacles stand in the way: (1) Nature is enormously complicated. (2) Findings are fallible: no matter how well established a conclusion is, it still might be wrong. To pursue this goal in light of the…

  17. Socio-scientific issues with CTS focus on training of science teachers: complementary perspective

    Directory of Open Access Journals (Sweden)

    Rosa Oliveira Marins Azevedo

    2013-06-01

    Full Text Available Theoretical work that seeks to highlight the possible reasons why the STS approach has not effectively be inserted in the educational process and point out alternative to its insertion. It thus explores the origin of the STS movement and discusses its focus on education, science teaching and teacher education. It is a study in a critical perspective, from a documentary research focused on scientific production published in books, theses, papers presented in conference proceedings and journals in the field of education. The readings allowed direct the discussions, assuming the interpretative analysis for the organization of the text. The study shows that teacher education, the problems presented in its theoretical and epistemological aspects and ethical, is the main obstacle to the insertion of the STS approach in the educational process. Alternatively, points to issues of social-scientific approach to STS approach in a complementary perspective, as the possibility of improvements in the aspects highlighted

  18. Earth Science Education in Morocco

    Science.gov (United States)

    Bouabdelli, Mohamed

    1999-05-01

    The earth sciences are taught in twelve universities in Morocco and in three other institutions. In addition there are three more earth science research institutions. Earth science teaching has been taking place since 1957. The degree system is a four-year degree, split into two two-year blocks and geology is taught within the geology-biology programme for the first part of the degree. 'Classical' geology is taught in most universities, although applied geology degrees are also on offer in some universities. Recently-formed technical universities offer a more innovative approach to Earth Science Education. Teaching is in French, although school education is in Arabic. There is a need for a reform of the curriculum, although a lead is being taken by the technical universities. A new geological mapping programme promises new geological and mining discoveries in the country and prospects of employment for geology graduates.

  19. Focus: Bounded Rationality and the History of Science. Introduction.

    Science.gov (United States)

    Cowles, Henry M; Deringer, William; Dick, Stephanie; Webster, Colin

    2015-09-01

    Historians of science see knowledge and its claimants as constrained by myriad factors. These limitations range from the assumptions and commitments of scientific practitioners to the material and ideational contexts of their practice. The precise nature of such limits and the relations among them remains an open question in the history of science. The essays in this Focus section address this question by examining one influential portrayal of constraints--Herbert Simon's theory of "bounded rationality"--as well as the responses to which it has given rise over the last half century.

  20. Inquiry-based science education

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino; Sillasen, Martin Krabbe; Hagelskjær, Jens

    2010-01-01

    Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret naturfagsundervisnings......Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret...

  1. 76 FR 11765 - Education Research and Special Education Research Grant Programs; Institute of Education Sciences...

    Science.gov (United States)

    2011-03-03

    ... DEPARTMENT OF EDUCATION Education Research and Special Education Research Grant Programs; Institute of Education Sciences; Overview Information; Education Research and Special Education Research.... SUMMARY: The Director of the Institute of Education Sciences (Institute) announces the Institute's FY 2012...

  2. Fermilab Friends for Science Education | Join Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Join Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to membership dues allow us to create new, innovative science education programs, making the best use of unique

  3. Cognitive science and mathematics education

    CERN Document Server

    Schoenfeld, Alan H

    1987-01-01

    This volume is a result of mathematicians, cognitive scientists, mathematics educators, and classroom teachers combining their efforts to help address issues of importance to classroom instruction in mathematics. In so doing, the contributors provide a general introduction to fundamental ideas in cognitive science, plus an overview of cognitive theory and its direct implications for mathematics education. A practical, no-nonsense attempt to bring recent research within reach for practicing teachers, this book also raises many issues for cognitive researchers to consider.

  4. System safety education focused on industrial engineering

    Science.gov (United States)

    Johnston, W. L.; Morris, R. S.

    1971-01-01

    An educational program, designed to train students with the specific skills needed to become safety specialists, is described. The discussion concentrates on application, selection, and utilization of various system safety analytical approaches. Emphasis is also placed on the management of a system safety program, its relationship with other disciplines, and new developments and applications of system safety techniques.

  5. System safety education focused on flight safety

    Science.gov (United States)

    Holt, E.

    1971-01-01

    The measures necessary for achieving higher levels of system safety are analyzed with an eye toward maintaining the combat capability of the Air Force. Several education courses were provided for personnel involved in safety management. Data include: (1) Flight Safety Officer Course, (2) Advanced Safety Program Management, (3) Fundamentals of System Safety, and (4) Quantitative Methods of Safety Analysis.

  6. Focus: new perspectives on science and the Cold War. Introduction.

    Science.gov (United States)

    Heyck, Hunter; Kaiser, David

    2010-06-01

    Twenty years after the fall of the Berlin Wall, the Cold War looks ever more like a slice of history rather than a contemporary reality. During those same twenty years, scholarship on science, technology, and the state during the Cold War era has expanded dramatically. Building on major studies of physics in the American context--often couched in terms of "big science"--recent work has broached scientific efforts in other domains as well, scrutinizing Cold War scholarship in increasingly international and comparative frameworks. The essays in this Focus section take stock of current thinking about science and the Cold War, revisiting the question of how best to understand tangled (and sometimes surprising) relationships between government patronage and the world of ideas.

  7. Shifting our focus: Communicating science to a new, nontechnical culture

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, A.; Hollen, G.; Longshore, A.; Mauzy, A.; Reeves, A.

    1994-07-01

    Congress` decision to close down the $11 billion Superconducting Supercollider is spreading anxiety throughout the scientific community. As funding for the nation`s research laboratories becomes increasingly scarce, technical communicators in these organizations must focus much of their communications efforts on a new culture: Congress and the public. We discuss how to characterize this new audience and the importance of evaluating communication products, and we highlight some strategies for interpreting science to nonscientists more effectively.

  8. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  9. Education in Soil Science: the Italian approach

    Science.gov (United States)

    Benedetti, Anna; Canfora, Loredana; Dazzi, Carmelo; Lo Papa, Giuseppe

    2017-04-01

    The Italian Society of Soil Science (SISS) was founded in Florence on February 18th, 1952. It is an association legally acknowledged by Decree of the President of the Italian Republic in February 1957. The Society is member of the International Union of Soil Sciences (IUSS) of the European Confederation of Soil Science Societies (ECSSS) and collaborates with several companies, institutions and organizations having similar objectives or policy aspects. SISS promotes progress, coordination and dissemination of soil science and its applications encouraging relationships and collaborations among soil lovers. Within the SISS there are Working Groups and Technical Committees for specific issues of interest. In particular: • the Working Group on Pedotechniques; • the Working Group on Hydromorphic and Subaqueous Soils and • the Technical Committee for Soil Education and Public Awareness. In this communication we wish to stress the activities developed since its foundation by SISS to spread soil awareness and education in Italy through this last Technical Committee, focusing also the aspect concerning grants for young graduates and PhD graduates to stimulate the involvement of young people in the field of soil science. Keywords: SISS, soil education and awareness.

  10. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. July 2007 Volume 12 Number 7. GENERAL ARTICLES. 04 Josiah Willard Gibbs. V Kumaran. 12 Josiah Willard ... IISc, Bangalore). Rapidity: The Physical Meaning of the Hyperbolic Angle in. Special Relativity. Giorgio Goldoni. Survival in Stationary Phase. S Mahadevan. Classroom.

  11. The Globalization of Science Education

    Science.gov (United States)

    Deboer, George

    2012-02-01

    Standards-based science education, with its emphasis on clearly stated goals, performance monitoring, and accountability, is rapidly becoming a key part of how science education is being viewed around the world. Standards-based testing within countries is being used to determine the effectiveness of a country's educational system, and international testing programs such as PISA and TIMSS enable countries to compare their students to a common standard and to each other. The raising of standards and the competition among countries is driven in part by a belief that economic success depends on a citizenry that is knowledgeable about science and technology. In this talk, I consider the question of whether it is prudent to begin conversations about what an international standards document for global citizenship in science education might look like. I examine current practices to show the areas of international agreement and the significant differences that still exist, and I conclude with a recommendation that such conversations should begin, with the goal of laying out the knowledge and competencies that international citizens should have that also gives space to individual countries to pursue goals that are unique to their own setting.

  12. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    RESONANCE | May 2010. Resonance journal of science education. May 2010 Volume 15 Number 5. On the Measurement of Phase Difference using CROs b. SERIES ARTICLES. 400. Aerobasics – An Introduction to Aeronautics. Mini and Micro Airplanes. S P Govinda Raju. GENERAL ARTICLES. 411. Bird of Passage at ...

  13. Augmented Reality in science education – affordances for student learning

    OpenAIRE

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Håkon

    2016-01-01

    Most extant studies examining augmented reality (AR) have focused on the technology itself. This paper presents findings addressing the issue of AR for educational purposes based on a sequential survey distributed to 35 expert science teachers, ICT designers and science education researchers from four countries. There was consensus among experts in relation to a focus on ‘learning before technology’, and they in particular supplemented affordances identified in literature with perspectives re...

  14. Science in early childhood education

    DEFF Research Database (Denmark)

    Broström, Stig

    2015-01-01

    Bildung Didaktik, and a learning approach based on a Vygotskian cultural-historical activity theory. A science-oriented dynamic contextual didactical model was developed as a tool for educational thinking and planning. The article presents five educational principles for a preschool science Didaktik......Based on an action research project with 12 preschools in a municipality north of Copenhagen the article investigates and takes a first step in order to create a preschool science Didaktik. The theoretical background comprises a pedagogical/didactical approach based on German critical constructive....... Several problems are discussed, the main being: How can preschool teachers balance children’s sense of wonder, i.e. their construction of knowledge (which often result in a anthropocentric thinking) against a teaching approach, which gives children a scientific understanding of scientific phenomena....

  15. Science Education in Egypt and Other Arab Countries in Africa and West Asia.

    Science.gov (United States)

    Hassan, Farkhonda

    1997-01-01

    Examines science education in Egypt and the Arab states, focusing on the status of science and technology at the pre-university level and higher education, the science and technology structural component in the higher education system, student enrollment at the B.S. level, distribution of B.S degrees by sex, science and technology graduates, M.S.…

  16. A Marxist Focus on Comparative Education in Cuba

    Science.gov (United States)

    Cruz, Rosa María Massón

    2015-01-01

    This paper builds systematically on the research experiences of the author, involving the application of a Marxist focus in comparative education studies, in the Cuban and Latin American context. It reflects in a general way the importance of this focus and approach, and in turn the contradictions that occur between formal education policy and…

  17. Does science education need the history of science?

    Science.gov (United States)

    Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K

    2008-06-01

    This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.

  18. IS THE INQUIRY-BASED SCIENCE EDUCATION THE BEST?

    Directory of Open Access Journals (Sweden)

    Milan Kubiatko

    2016-10-01

    Full Text Available The science education is fighting with a relatively big problem. Many academicians, teachers and also laic society are still perceiving difficulty in understanding of concepts from science subject and lack of interest about this group of subjects. In the past the teaching process was very formal focused on the memorizing of the facts without any deeper understanding of the processes in the nature. Pupils and students knew all definitions about concepts in the science subjects, but practical application was on the low level. The academicians, teachers and other people interested in the science education were eager to change system of education.

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Website Reviews. Articles in Resonance – Journal of Science Education. Volume 4 Issue 8 August 1999 pp 91-93 Website Reviews. Website Review · Harini Nagendra · More Details Fulltext PDF ...

  20. Understanding adolescent student perceptions of science education

    Science.gov (United States)

    Ebert, Ellen Kress

    This study used the Relevance of Science Education (ROSE) survey (Sjoberg & Schreiner, 2004) to examine topics of interest and perspectives of secondary science students in a large school district in the southwestern U.S. A situated learning perspective was used to frame the project. The research questions of this study focused on (a) perceptions students have about themselves and their science classroom and how these beliefs may influence their participation in the community of practice of science; (b) consideration of how a future science classroom where the curriculum is framed by the Next Generation Science Standards might foster students' beliefs and perceptions about science education and their legitimate peripheral participation in the community of practice of science; and (c) reflecting on their school science interests and perspectives, what can be inferred about students' identities as future scientists or STEM field professionals? Data were collected from 515 second year science students during a 4-week period in May of 2012 using a Web-based survey. Data were disaggregated by gender and ethnicity and analyzed descriptively and by statistical comparison between groups. Findings for Research Question 1 indicated that boys and girls showed statistically significant differences in scientific topics of interest. There were no statistical differences between ethnic groups although. For Research Question 2, it was determined that participants reported an increase in their interest when they deemed the context of the content to be personally relevant. Results for Research Question 3 showed that participants do not see themselves as youthful scientists or as becoming scientists. While participants value the importance of science in their lives and think all students should take science, they do not aspire to careers in science. Based on this study, a need for potential future work has been identified in three areas: (a) exploration of the perspectives and

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Science Academies' Refresher Course in Advances in Chemical Sciences and Sustainable Development. Information and Announcements Volume 19 Issue 9 September 2014 pp 876-876 ...

  2. Ethiopian Journal of Education and Sciences: Submissions

    African Journals Online (AJOL)

    General: Journal of Education and Sciences is the product of Jimma University ... and behavioral sciences, current sensitive issues like gender and HIV/AIDS. Priority ... and science studies, and information on teaching and learning facilitation.

  3. Invited to Academia. Recruited for Science or Teaching in Education Sciences

    Science.gov (United States)

    Angervall, Petra; Gustafsson, Jan

    2016-01-01

    In the context of higher education in Sweden, we see how major policy change is forming the field of Education Sciences. This change has promoted an increased focus on competitiveness, while reducing inefficiencies in mass-education. It has given legitimacy to specific recruitment strategies and career paths, but can also explain what determines…

  4. Problematizing War: Reviving the Historical Focus of Peace Education

    Science.gov (United States)

    McCorkle, William

    2017-01-01

    In the last forty years, peace education has broadened its focus from primarily international peace and the prevention of war to an approach that encompasses social justice, environmental education, critical theory, and multicultural education. While this is a positive evolution in many respects, there is a danger in de-emphasizing the actual…

  5. Fermilab Friends for Science Education | About Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us About Us national leader in precollege science education. From the first Summer Institute for Science Teachers held year over 37,000 students, and 2,500 teachers participated in programs through the Education Office

  6. Fermilab Friends for Science Education | Support Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Support Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education

  7. Fermilab Friends for Science Education | Contact Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Contact Us Science Education P.O Box 500, MS 777 Batavia, IL 60510-5011 (630) 840-3094 * fax: (630) 840-2500 E-mail : Membership Send all other communications to: Susan Dahl, President Fermilab Friends for Science Education Box

  8. Innovation in Science Education - World-Wide.

    Science.gov (United States)

    Baez, Albert V.

    The purpose of this book is to promote improvements in science education, world-wide, but particularly in developing countries. It is addressed to those in positions to make effective contributions to the improvement of science education. The world-wide role of science education, the goals of innovative activities, past experience in efforts to…

  9. Leadership, Responsibility, and Reform in Science Education.

    Science.gov (United States)

    Bybee, Rodger W.

    1993-01-01

    Regards leadership as central to the success of the reform movement in science education. Defines leadership and introduces a model of leadership modified from the one developed by Edwin Locke and his associates. Provides an overview of the essential qualities of leadership occurring in science education. Discusses reforming science education and…

  10. Advances in Computer Science and Education

    CERN Document Server

    Huang, Xiong

    2012-01-01

    CSE2011 is an integrated conference concentration its focus on computer science and education. In the proceeding, you can learn much more knowledge about computer science and education of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful

  11. Inclusive science education: learning from Wizard

    Science.gov (United States)

    Koomen, Michele Hollingsworth

    2016-06-01

    This case study reports on a student with special education needs in an inclusive seventh grade life science classroom using a framework of disability studies in education. Classroom data collected over 13 weeks consisted of qualitative (student and classroom observations, interviews, student work samples and video-taped classroom teaching and learning record using CETP-COP) methods. Three key findings emerged in the analysis and synthesis of the data: (1) The learning experiences in science for Wizard are marked by a dichotomy straddled between autonomy ["Sometimes I do" (get it)] and dependence ["Sometimes I don't (get it)], (2) the process of learning is fragmented for Wizard because it is underscored by an emerging disciplinary literacy, (3) the nature of the inclusion is fragile and functional. Implications for classroom practices that support students with learning disabilities include focusing on student strengths, intentional use of disciplinary literacy strategies, and opportunities for eliciting student voice in decision making.

  12. Tutorial Instruction in Science Education

    Directory of Open Access Journals (Sweden)

    Rhea Miles

    2015-06-01

    Full Text Available The purpose of the study is to examine the tutorial practices of in-service teachers to address the underachievement in the science education of K-12 students. Method: In-service teachers in Virginia and North Carolina were given a survey questionnaire to examine how they tutored students who were in need of additional instruction. Results: When these teachers were asked, “How do you describe a typical one-on-one science tutorial session?” the majority of their responses were categorized as teacher-directed. Many of the teachers would provide a science tutorial session for a student after school for 16-30 minutes, one to three times a week. Respondents also indicated they would rely on technology, peer tutoring, scientific inquiry, or themselves for one-on-one science instruction. Over half of the in-service teachers that responded to the questionnaire stated that they would never rely on outside assistance, such as a family member or an after school program to provide tutorial services in science. Additionally, very few reported that they incorporated the ethnicity, culture, or the native language of ELL students into their science tutoring sessions.

  13. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-01-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be…

  14. SSMA Science Reviewers' Forecasts for the Future of Science Education.

    Science.gov (United States)

    Jinks, Jerry; Hoffer, Terry

    1989-01-01

    Described is a study which was conducted as an exploratory assessment of science reviewers' perceptions for the future of science education. Arrives at interpretations for identified categories of computers and high technology, science curriculum, teacher education, training, certification, standards, teaching methods, and materials. (RT)

  15. Career education attitudes and practices of K-12 science educators

    Science.gov (United States)

    Smith, Walter S.

    A random sample of 400 K-12 science educators who were members of the National Science Teachers Association were surveyed regarding their attitude toward and practice of career education in their science teaching. These science teachers rejected a narrowly vocational view, favoring instead a conception of career education which included self-perception, values analysis, and vocational skills objectives. The science educators affirmed the importance of career education for a student's education, asserted career education ought to be taught in their existing science courses, and expressed a willingness to do so. Fewer than one-third of the science teachers, however, reported incorporating career education at least on a weekly basis in their science lessons. The major impediment to including more career education in science teaching was seen to be their lack of knowledge of methods and materials relevant to science career education, rather than objections from students, parents, or administrators; their unwillingness; or their evaluation of career education as unimportant. Thus, in order to improve this aspect of science teaching, science teachers need more concrete information about science career education applications.

  16. Fermilab Friends for Science Education | Programs

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Programs Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search photo Fermilab Friends for Science Education, in partnership with Fermilab and area educators, designs

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences. Home · About ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 12. Pictures at an Exhibition – A ... Vivek S Borkar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  18. Coteaching as a Model for Preservice Secondary Science Teacher Education

    Science.gov (United States)

    Scantlebury, Kathryn; Gallo-Fox, Jennifer; Wassell, Beth

    2008-01-01

    This paper focuses on a 3-year, longitudinal study of the implementation of coteaching, as an innovative approach for preparing high school science teachers enrolled in an undergraduate science teacher education programme located in the United States. The coteaching/co-generative dialogue/co-respect/co-responsibility dialectic is introduced as a…

  19. Victorian Certificate of Education: Mathematics, Science and Gender

    Science.gov (United States)

    Cox, Peter J.; Leder, Gilah C.; Forgasz, Helen J.

    2004-01-01

    Gender differences in participation and performance at "high stakes" examinations have received much public attention, which has often focused on mathematics and science subjects. This paper describes the innovative forms of assessment introduced into mathematics and science subjects within the Victorian Certificate of Education (VCE)…

  20. Computational thinking in life science education.

    Directory of Open Access Journals (Sweden)

    Amir Rubinstein

    2014-11-01

    Full Text Available We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1 devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2 focus on discrete notions, rather than on continuous ones, and (3 have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  1. Computational thinking in life science education.

    Science.gov (United States)

    Rubinstein, Amir; Chor, Benny

    2014-11-01

    We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1) devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2) focus on discrete notions, rather than on continuous ones, and (3) have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  2. Augmented Reality in science education – affordances for student learning

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    2016-01-01

    Most extant studies examining augmented reality (AR) have focused on the technology itself. This paper presents findings addressing the issue of AR for educational purposes based on a sequential survey distributed to 35 expert science teachers, ICT designers and science education researchers from...... four countries. There was consensus among experts in relation to a focus on ‘learning before technology’, and they in particular supplemented affordances identified in literature with perspectives related to interactivity, a creator perspective and inquiry based science. Expert reflections were...

  3. Democratizing science and technology education: Perspectives from the philosophy of education

    Science.gov (United States)

    Pierce, Clayton Todd

    This study examines conceptualizations of science and technology and their relation to ideas of democratic education in the history of philosophy of education. My genealogical analysis begins by tracing the anti-democratic emergence of ideas and values of science and technology that have evolved through ancient and modern periods within the philosophy of education and continue to shape the ways science and technology are understood and treated in educational settings. From my critical engagement with Plato's Republic and Rousseau's Emile, I argue that anti-democratic structures and values have been embedded in philosophy of education through Plato's educational theory of techne and Rousseau's pedagogical theory that involves science and technology as important educational force. Following this theme, I analyze the work of John Dewey and Herbert Marcuse and their shared project for democratizing science and technology through education. Through a critical comparison of both theorists' models, I suggest that each provides positive legacies for philosophy of education to draw upon in rethinking the intersection of science, technology, and education: a strong model for understanding public problems associated with a highly technological and scientific society and a reconstructive framework for values and sensibilities that demands a new value relationship to be developed between humans and science and technology. Finally, I situate my critique and assessment of this history in the philosophy of education within the current science and technology education reform movement in the United States. I claim that the official models of science and technological literacy and inquiry, as constructed by the National Academy of Sciences and a host of governmental policies, shape science and technology education with a decidedly neo-liberal focus and purpose. In response to this anti-democratic movement I offer an alternative position that utilizes a counter-epistemology to the

  4. What is `Agency'? Perspectives in Science Education Research

    Science.gov (United States)

    Arnold, Jenny; Clarke, David John

    2014-03-01

    The contemporary interest in researching student agency in science education reflects concerns about the relevance of schooling and a shift in science education towards understanding learning in science as a complex social activity. The purpose of this article is to identify problems confronting the science education community in the development of this new research agenda and to argue that there is a need for research in science education that attends to agency as a social practice. Despite increasing interest in student agency in educational research, the term 'agency' has lacked explicit operationalisation and, across the varied approaches, such as critical ethnography, ethnographies of communication, discourse analysis and symbolic interactionism, there has been a lack of coherence in its research usage. There has also been argument concerning the validity of the use of the term 'agency' in science education research. This article attempts to structure the variety of definitions of 'student agency' in science education research, identifies problems in the research related to assigning intentionality to research participants and argues that agency is a kind of discursive practice. The article also draws attention to the need for researchers to be explicit in the assumptions they rely upon in their interpretations of social worlds. Drawing upon the discursive turn in the social sciences, a definition of agency is provided, that accommodates the discursive practices of both individuals and the various functional social groups from whose activities classroom practice is constituted. The article contributes to building a focused research agenda concerned with understanding and promoting student agency in science.

  5. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    Science.gov (United States)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  6. Between Faith and Science: World Culture Theory and Comparative Education

    Science.gov (United States)

    Carney, Stephen; Rappleye, Jeremy; Silova, Iveta

    2012-01-01

    World culture theory seeks to explain an apparent convergence of education through a neoinstitutionalist lens, seeing global rationalization in education as driven by the logic of science and the myth of progress. While critics have challenged these assumptions by focusing on local manifestations of world-level tendencies, such critique is…

  7. The Future: The Hidden Dimension in Science Education.

    Science.gov (United States)

    Lloyd, David

    Over the last ten or so years this researcher's educational focus has been on providing a science education program that is both liberating and empowering for students. Although there have been a number of motivating themes, the central one has been his work with student images of the future. He has taken these seriously and used them to inform by…

  8. Use of Sexuality-Focused Entertainment Media in Sex Education

    Science.gov (United States)

    Neustifter, Ruth; Blumer, Markie L. C.; O'Reilly, Jessica; Ramirez, Francisco

    2015-01-01

    The literature on the impact of entertainment media on sex education is typically pathology-focused, unclear regarding the effects of such usage, and void of dialogue between those who actually work in the areas of sexuality education and entertainment. To address this gap, this paper is the product of joint authorship between media figures from…

  9. Hands-on science: science education with and for society

    OpenAIRE

    Costa, Manuel F. M., ed. lit.; Pombo, José Miguel Marques, ed. lit.; Vázquez Dorrío, José Benito, ed. lit.

    2014-01-01

    The decisive importance of Science on the development of modern societies gives Science Education a role of special impact. Society sets the requirements rules and procedures of Education defining what concepts and competencies citizens must learn and how this learning should take place. Educational policies set by governments, elected and or imposed, not always reflects the will and ruling of Society. The School as pivotal element of our modern educational system must look ...

  10. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  11. Coding the Biodigital Child: The Biopolitics and Pedagogic Strategies of Educational Data Science

    Science.gov (United States)

    Williamson, Ben

    2016-01-01

    Educational data science is an emerging transdisciplinary field formed from an amalgamation of data science and elements of biological, psychological and neuroscientific knowledge about learning, or learning science. This article conceptualises educational data science as a biopolitical strategy focused on the evaluation and management of the…

  12. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  13. Persuasion and Attitude Change in Science Education.

    Science.gov (United States)

    Koballa, Thomas R., Jr.

    1992-01-01

    Persuasion is presented as it may be applied by science educators in research and practice. The orientation taken is that science educators need to be acquainted with persuasion in the context of social influence and learning theory to be able to evaluate its usefulness as a mechanism for developing and changing science-related attitudes. (KR)

  14. Cofimvaba: Innovative and systemic technology application in rural, education focused, agri-based development initiatives

    CSIR Research Space (South Africa)

    Van Rensburg, J

    2012-10-01

    Full Text Available In this presentation the author shares current learning on the use of more targeted and systemic ICT for development as well as broader technology for development education and LED-focused interventions in the science, engineering and technology...

  15. Cultural studies of science education

    Science.gov (United States)

    Higgins, Joanna; McDonald, Geraldine

    2008-07-01

    In response to Stetsenko's [2008, Cultural Studies of Science Education, 3] call for a more unified approach in sociocultural perspectives, this paper traces the origins of the use of sociocultural ideas in New Zealand from the 1970s to the present. Of those New Zealanders working from a sociocultural perspective who responded to our query most had encountered these ideas while overseas. More recently activity theory has been of interest and used in reports of work in early childhood, workplace change in the apple industry, and in-service teacher education. In all these projects the use of activity theory has been useful for understanding how the elements of a system can transform the activity. We end by agreeing with Stetsenko that there needs to be a more concerted approach by those working from a sociocultural perspective to recognise the contribution of others in the field.

  16. Inquiry Coaching: Scientists & Science Educators Energizing the Next Generation

    Science.gov (United States)

    Shope, R. E.; Alcantara Valverde, L.

    2007-05-01

    A recent National Academy of Sciences report recommends that science educators focus strategically on teaching the practice of science. To accomplish this, we have devised and implemented the Science Performance Laboratory, a collaborative research, education, and workforce model that brings scientists and science educators together to conduct scientific inquiry. In this session, we demonstrate how to form active inquiry teams around Arctica Science Research content areas related to the International Polar Year. We use the term "Arctica Science Research" to refer to the entire scope of exploration and discovery relating to: polar science and its global connections; Arctic and Antarctic research and climate sciences; ice and cryospheric studies on Earth; polar regions of the Moon, Mars, and Mercury; icy worlds throughout the Solar System, such as Europa, Enceladus, Titan, Pluto and the Comets; cryovolcanism; ice in interstellar space, and beyond. We apply the notion of teaching the practice science by enacting three effective strategies: 1) The Inquiry Wheel Game, in which we develop an expanded understanding of what has been traditionally taught as "the scientific method"; 2) Acting Out the Science Story, in which we develop a physicalized expression of our conceptual understanding; and 3) Selecting Success Criteria for Inquiry Coaching, in which we reframe how we evaluate science learning as we teach the practice of science.

  17. NQRY Coaching: Scientists and Science Educators Energizing the Next Generation

    Science.gov (United States)

    Shope, R. E.

    2007-12-01

    A recent National Academy of Science report recommends that science educators focus strategically on teaching the practice of science. To accomplish this, we have devised and implemented the Science Performance Collaboratory, a collaborative research, education, and workforce model that brings scientists and science educators together to conduct scientific inquiry. In this session, we demonstrate how to form active inquiry teams around Arctica Science Research content areas related to the International Polar Year. We use the term Arctica Science Research to refer to the entire scope of exploration and discovery relating to: polar science and its global connections; Arctic and Antarctic research and climate sciences; ice and cryospheric studies on Earth; polar regions of the Moon, Mars, and Mercury; icy worlds throughout the Solar System, such as Europa, Enceladus, Titan, Pluto and the Comets; cryovolvanism; ice in interstellar space, and beyond. We apply the notion of teaching the practice science by enacting three effective strategies: 1) The Inquiry Wheel Game, in which we develop an expanded understanding of what has been traditionally taught as "the scientific method"; 2) Acting Out the Science Story, in which we develop a physicalized expression of our conceptual understanding; and 3) Selecting Success Criteria for Inquiry Coaching, in which we reframe how we evaluate science learning as we teach the practice of science.

  18. Levinas and an Ethics for Science Education

    Science.gov (United States)

    Blades, David W.

    2006-01-01

    Despite claims that STS(E) science education promotes ethical responsibility, this approach is not supported by a clear philosophy of ethics. This paper argues that the work of Emmanuel Levinas provides an ethics suitable for an STS(E) science education. His concept of the face of the Other redefines education as learning from the other, rather…

  19. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  20. Discovering Science Education in the USA

    Science.gov (United States)

    Teaching Science, 2014

    2014-01-01

    Science is amazing for many reasons. One of them is its immeasurable size as a subject, and the breadth of its application. From nanotech to astrophysics, from our backyards to the global arena, science links everything and everyone on Earth. Our understanding of science--and science education--needs to be just as diverse and all-encompassing.…

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 1. An Introduction to Parallel ... Abhiram Ranade1. Department of Computer Science and Engineering, Indian Institute of Technology Powai, Mumbai 400076, India ...

  2. University Science and Mathematics Education in Transition

    DEFF Research Database (Denmark)

    Skovsmose, Ole; Valero, Paola; Christensen, Ole Ravn

    configuration poses to scientific knowledge, to universities and especially to education in mathematics and science. Traditionally, educational studies in mathematics and science education have looked at change in education from within the scientific disciplines and in the closed context of the classroom....... Although educational change is ultimately implemented in everyday teaching and learning situations, other parallel dimensions influencing these situations cannot be forgotten. An understanding of the actual potentialities and limitations of educational transformations are highly dependent on the network...... of educational, cultural, administrative and ideological views and practices that permeate and constitute science and mathematics education in universities today. University Science and Mathematics Education in Transition contributes to an understanding of the multiple aspects and dimensions of the transition...

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Science Academies' Refresher Course on Bioprospection of Bioresources: Land to Lab Approach. Information and Announcements Volume 22 Issue 11 November 2017 pp 1101-1101 ...

  4. ethiopian students' achievement challenges in science education

    African Journals Online (AJOL)

    IICBA01

    Oli Negassa. Adama Science and Technology University, Ethiopia ... achievement in science education across selected preparatory schools of Ethiopia. The .... To what extent do students' achievements vary across grade levels, regions,.

  5. Searching for Meaning in Science Education.

    Science.gov (United States)

    Berkheimer, Glenn D.; McLeod, Richard J.

    1979-01-01

    Discusses how science programs K-16 should be developed to meet the modern objectives of science education and restore its true meaning. The theories of Phenix and Ausubel are included in this discussion. (HM)

  6. Informal science education at Science City

    Science.gov (United States)

    French, April Nicole

    The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.

  7. Earth System Science Education Modules

    Science.gov (United States)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  8. Educational Technology Classics: The Science Teacher and Educational Technology

    Science.gov (United States)

    Harbeck, Richard M.

    2015-01-01

    The science teacher is the key person who has the commitment and the responsibility for carrying out any brand of science education. All of the investments, predictions, and expressions of concern will have little effect on the accomplishment of the broad goals of science education if these are not reflected in the situations in which learning…

  9. Women and girls in science education: Female teachers' and students' perspectives on gender and science

    Science.gov (United States)

    Crotty, Ann

    Science is a part of all students' education, PreK-12. Preparing students for a more scientifically and technologically complex world requires the best possible education including the deliberate inclusion and full contributions of all students, especially an underrepresented group: females in science. In the United States, as elsewhere in the world, the participation of girls and women in science education and professional careers in science is limited, particularly in the physical sciences (National Academy of Sciences [NAS], 2006). The goal of this research study is to gain a better understanding of the perspectives and perceptions of girls and women, both science educators and students, related to gender and participation in science at the time of an important course: high school chemistry. There is a rich body of research literature in science education that addresses gender studies post---high school, but less research that recognizes the affective voices of practicing female science teachers and students at the high school level (Bianchini, Cavazos, & Helms, 2000; Brown & Gilligan, 1992; Gilligan, 1982). Similarly, little is known with regard to how female students and teachers navigate their educational, personal, and professional experiences in science, or how they overcome impediments that pose limits on their participation in science, particularly the physical sciences. This exploratory study focuses on capturing voices (Brown & Gilligan, 1992; Gilligan, 1982) of high school chemistry students and teachers from selected urban and suburban learning communities in public schools in the Capital Region of New York State. Through surveys, interviews, and focus groups, this qualitative study explores the intersection of the students' and teachers' experiences with regard to the following questions: (1) How do female chemistry teachers view the role gender has played in their professional and personal lives as they have pursued education, degree status, and

  10. Guiding students towards sensemaking: teacher questions focused on integrating scientific practices with science content

    Science.gov (United States)

    Benedict-Chambers, Amanda; Kademian, Sylvie M.; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2017-10-01

    Science education reforms articulate a vision of ambitious science teaching where teachers engage students in sensemaking discussions and emphasise the integration of scientific practices with science content. Learning to teach in this way is complex, and there are few examples of sensemaking discussions in schools where textbook lessons and teacher-directed discussions are the norm. The purpose of this study was to characterise the questioning practices of an experienced teacher who taught a curricular unit enhanced with educative features that emphasised students' engagement in scientific practices integrated with science content. Analyses indicated the teacher asked four types of questions: explication questions, explanation questions, science concept questions, and scientific practice questions, and she used three questioning patterns including: (1) focusing students on scientific practices, which involved a sequence of questions to turn students back to the scientific practice; (2) supporting students in naming observed phenomena, which involved a sequence of questions to help students use scientific language; and (3) guiding students in sensemaking, which involved a sequence of questions to help students learn about scientific practices, describe evidence, and develop explanations. Although many of the discussions in this study were not yet student-centred, they provide an image of a teacher asking specific questions that move students towards reform-oriented instruction. Implications for classroom practice are discussed and recommendations for future research are provided.

  11. Evaluation of authentic science projects on climate change in secondary schools: a focus on gender differences

    Science.gov (United States)

    Dijkstra, Elma; Goedhart, Martin

    2011-07-01

    Background and purpose This study examines secondary-school students' opinions on participating in authentic science projects which are part of an international EU project on climate change research in seven countries. Partnerships between schools and research institutes result in student projects, in which students work with and learn from scientists about the global carbon cycle. This study focuses in particular on differences between male and female students, as female students normally like traditional school science less than male students. Sample and design Data, drawn from 1370 students from 60 secondary schools across Europe, were collected through questionnaires taken at the end of the projects. The evaluated aspects were: organization; enjoyment; difficulty; and impact of the projects. Results The findings suggest that authentic science education is appreciated very much by both male students and even more by female students. The projects had positive impacts on climate change ideas, in particular for female students. Female students felt that they had learned many new things more often than male students. Conclusions Both male and female students have positive opinions about the authentic science projects. The results further point to positive effects of activities in which students have an active role, like hands-on experiments or presentation of results. The findings are placed in the international context of science education and their implications for policy are discussed.

  12. Data Mining Tools in Science Education

    OpenAIRE

    Premysl Zaskodny

    2012-01-01

    The main principle of paper is Data Mining in Science Education (DMSE) as Problem Solving. The main goal of paper is consisting in Delimitation of Complex Data Mining Tool and Partial Data Mining Tool of DMSE. The procedure of paper is consisting of Data Preprocessing in Science Education, Data Processing in Science Education, Description of Curricular Process as Complex Data Mining Tool (CP-DMSE), Description of Analytical Synthetic Modeling as Partial Data Mining Tool (ASM-DMSE) and finally...

  13. EDITORIAL: Focus on Advances in Surface and Interface Science 2008 FOCUS ON ADVANCES IN SURFACE AND INTERFACE SCIENCE 2008

    Science.gov (United States)

    Scheffler, Matthias; Schneider, Wolf-Dieter

    2008-12-01

    Basic research in surface and interface science is highly interdisciplinary, covering the fields of physics, chemistry, biophysics, geo-, atmospheric and environmental sciences, material science, chemical engineering, and more. The various phenomena are interesting by themselves, and they are most important in nearly all modern technologies, as for example electronic, magnetic, and optical devices, sensors, catalysts, lubricants, hard and thermal-barrier coatings, protection against corrosion and crack formation under harsh environments. In fact, detailed understanding of the elementary processes at surfaces is necessary to support and to advance the high technology that very much founds the prosperity and lifestyle of our society. Current state-of-the-art experimental studies of elementary processes at surfaces, of surface properties and functions employ a variety of sophisticated tools. Some are capable of revealing the location and motion of individual atoms. Others measure excitations (electronic, magnetic and vibronic), employing, for example, special light sources such as synchrotrons, high magnetic fields, or free electron lasers. The surprising variety of intriguing physical phenomena at surfaces, interfaces, and nanostructures also pose a persistent challenge for the development of theoretical descriptions, methods, and even basic physical concepts. This second focus issue on the topic of 'Advances in Surface and Interface Science' in New Journal of Physics, following on from last year's successful collection, provides an exciting synoptic view on the latest pertinent developments in the field. Focus on Advances in Surface and Interface Science 2008 Contents Organic layers at metal/electrolyte interfaces: molecular structure and reactivity of viologen monolayers Stephan Breuer, Duc T Pham, Sascha Huemann, Knud Gentz, Caroline Zoerlein, Ralf Hunger, Klaus Wandelt and Peter Broekmann Spin polarized d surface resonance state of fcc Co/Cu(001) K Miyamoto, K

  14. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-04-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be integrated. In this paper we describe our philosophy of science education (ASSET approach) which is composed of bounded rationalism as a guideline for understanding teachers' practical reasoning, liberal education underlying the why of teaching, scientific perspectivism as guideline for the what and educational social constructivism as guiding choices about the how of science education. Integration of multiple philosophies into a coherent philosophy of science education is necessary but not sufficient to make it practical for teachers. Philosophies are still formulated at a too abstract level to guide teachers' practical reasoning. For this purpose, a heuristic model must be developed on an intermediate level of abstraction that will provide teachers with a bridge between these abstract ideas and their specific teaching situation. We have developed and validated such a heuristic model, the CLASS model in order to complement our ASSET approach. We illustrate how science teachers use the ASSET approach and the CLASS model to make choices about the what, the how and the why of science teaching.

  15. Research facility access & science education

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  16. Science Education Research vs. Physics Education Research: A Structural Comparison

    Science.gov (United States)

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  17. Science and Society - Problems, issues and dilemmas in science education

    CERN Multimedia

    2001-01-01

    Next in CERN's series of Science and Society speakers is Jonathan Osborne, Senior Lecturer in Science Education at King's College London. On Thursday 26 April, Dr Osborne will speak in the CERN main auditorium about current issues in science education in the light of an ever more science-based society. Jonathan Osborne, Senior Lecturer in Science Education at King's College London. Does science deserve a place at the curriculum high table of each student or is it just a gateway to a set of limited career options in science and technology? This question leads us to an important change in our ideas of what science education has been so far and what it must be. Basic knowledge of science and technology has traditionally been considered as just a starting point for those who wanted to build up a career in scientific research. But nowadays, the processes of science, the analysis of risks and benefits, and a knowledge of the social practices of science are necessary for every citizen. This new way of looking at s...

  18. Building Ocean Learning Communities: A COSEE Science and Education Partnership

    Science.gov (United States)

    Robigou, V.; Bullerdick, S.; Anderson, A.

    2007-12-01

    The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at www.tos.org. This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups

  19. Science Education: Issues, Approaches and Challenges

    Directory of Open Access Journals (Sweden)

    Shairose Irfan Jessani

    2015-06-01

    Full Text Available In today’s global education system, science education is much more than fact-based knowledge. Science education becomes meaningless and incomprehensible for learners, if the learners are unable to relate it with their lives. It is thus recommended that Pakistan, like many other countries worldwide should adopt Science Technology Society (STS approach for delivery of science education. The purpose of the STS approach lies in developing scientifically literate citizens who can make conscious decisions about the socio-scientific issues that impact their lives. The challenges in adopting this approach for Pakistan lie in four areas that will completely need to be revamped according to STS approach. These areas include: the examination system; science textbooks; science teacher education programs; and available resources and school facilities.

  20. A focus on educational choice has social justice consequences

    DEFF Research Database (Denmark)

    Skovhus, Randi Boelskifte

    2016-01-01

    This article demonstrates that in Denmark there is considerable focus on educational and career choices during the last year of lower-secondary school, and investigates the possibility of using Amartya Sen’s capability approach as a lens to analyse this focus. It is argued that attention to the p......This article demonstrates that in Denmark there is considerable focus on educational and career choices during the last year of lower-secondary school, and investigates the possibility of using Amartya Sen’s capability approach as a lens to analyse this focus. It is argued that attention...... to the processes occurring before choices are made is of central importance, as these help to give students a genuine opportunity to choose from a broader range of options. This consideration is important from a social-justice perspective even if students end up choosing what they would have chosen without broader...

  1. Emerging areas of science: Recommendations for Nursing Science Education from the Council for the Advancement of Nursing Science Idea Festival.

    Science.gov (United States)

    Henly, Susan J; McCarthy, Donna O; Wyman, Jean F; Heitkemper, Margaret M; Redeker, Nancy S; Titler, Marita G; McCarthy, Ann Marie; Stone, Patricia W; Moore, Shirley M; Alt-White, Anna C; Conley, Yvette P; Dunbar-Jacob, Jacqueline

    2015-01-01

    The Council for the Advancement of Nursing Science aims to "facilitate and recognize life-long nursing science career development" as an important part of its mission. In light of fast-paced advances in science and technology that are inspiring new questions and methods of investigation in the health sciences, the Council for the Advancement of Nursing Science convened the Idea Festival for Nursing Science Education and appointed the Idea Festival Advisory Committee (IFAC) to stimulate dialogue about linking PhD education with a renewed vision for preparation of the next generation of nursing scientists. Building on the 2005 National Research Council report Advancing The Nation's Health Needs and the 2010 American Association of Colleges of Nursing Position Statement on the Research-Focused Doctorate Pathways to Excellence, the IFAC specifically addressed the capacity of PhD programs to prepare nursing scientists to conduct cutting-edge research in the following key emerging and priority areas of health sciences research: omics and the microbiome; health behavior, behavior change, and biobehavioral science; patient-reported outcomes; big data, e-science, and informatics; quantitative sciences; translation science; and health economics. The purpose of this article is to (a) describe IFAC activities, (b) summarize 2014 discussions hosted as part of the Idea Festival, and (c) present IFAC recommendations for incorporating these emerging areas of science and technology into research-focused doctoral programs committed to preparing graduates for lifelong, competitive careers in nursing science. The recommendations address clearer articulation of program focus areas; inclusion of foundational knowledge in emerging areas of science in core courses on nursing science and research methods; faculty composition; prerequisite student knowledge and skills; and in-depth, interdisciplinary training in supporting area of science content and methods. Copyright © 2015 Elsevier Inc

  2. Education programs at Penn State Breazale Reactor - a focus on waste

    International Nuclear Information System (INIS)

    Davison, C.

    1993-01-01

    Discussions about energy policy and issues focus on environmental impact of energy production and the generation of waste. When dealing specifically with nuclear energy, one of the major concerns is the solution to the open-quotes waste problem.close quotes Since there is no repository in the US for the isolation of high-level radioactive waste generated by nuclear power plants, questions and criticism arise concerning this issue. Education is the key to providing information about this issue to help develop a more technologically literate society. Several educational programs and approaches will be discussed including: Penn State University's programs for students and teachers. The US DOE curriculum materials - open-quotes Science, Society and America's Nuclear Waste,close quotes the open-quotes International Workshop on Education in the field of Radioactive Waste Management - at the crossroad of energy, science and environment,close quotes and the American Nuclear Science Teacher's Association

  3. Flipped learning in science education

    DEFF Research Database (Denmark)

    Andersen, Thomas Dyreborg; Foss, Kristian Kildemoes; Nissen, Stine Karen

    2017-01-01

    During the last decade, massive investment in ICT has been made in Danish schools. There seems, however, to be a need to rethink how to better integrate ICT in education (Bundgaard et al. 2014 p. 216) Flipped learning might be a didactical approach that could contribute to finding a method to use...... research questions are “To what extent can teachers using the FL-teaching method improve Danish pupils' learning outcomes in science subject’s physics / chemistry, biology and geography in terms of the results of national tests?” And “What factors influence on whether FL-teaching improves pupils' learning...... will be addressed. Hereafter an array of different scaffolding activities will be conducted, among these are individual supervision, sharing of materials used in lessons and involving local school leaders in the program. During this 3-year period we will follow the progress of the students involved in the program...

  4. Modern Engineering : Science and Education

    CERN Document Server

    2016-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2014 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  5. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  6. Game based learning for computer science education

    NARCIS (Netherlands)

    Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus

    2011-01-01

    Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.

  7. Science Education Research Trends in Latin America

    Science.gov (United States)

    Medina-Jerez, William

    2018-01-01

    The purpose of this study was to survey and report on the empirical literature at the intersection of science education research in Latin American and previous studies addressing international research trends in this field. Reports on international trends in science education research indicate that authors from English-speaking countries are major…

  8. The Viability of Distance Education Science Laboratories.

    Science.gov (United States)

    Forinash, Kyle; Wisman, Raymond

    2001-01-01

    Discusses the effectiveness of offering science laboratories via distance education. Explains current delivery technologies, including computer simulations, videos, and laboratory kits sent to students; pros and cons of distance labs; the use of spreadsheets; and possibilities for new science education models. (LRW)

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Face to Face. Articles in Resonance – Journal of Science Education. Volume 13 Issue 1 January 2008 pp 89-98 Face to Face. Viewing Life Through Numbers · C Ramakrishnan Sujata Varadarajan · More Details Fulltext PDF. Volume 13 Issue 3 March 2008 pp ...

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Deepak Nandi. Articles written in Resonance – Journal of Science Education. Volume 23 Issue 2 February 2018 pp 197-217 General Article. Thymus: The site for Development of Cellular Immunity · Shamik Majumdar Sanomy Pathak Deepak Nandi · More Details ...

  11. Science and Sanity in Special Education.

    Science.gov (United States)

    Dammann, James E.; Vaughn, Sharon

    2001-01-01

    This article describes the usefulness of a scientific approach to improving knowledge and practice in special education. Of four approaches to knowledge (superstition, folklore, craft, and science), craft and science are supported and implications for special education drawn including the need to bridge the gulf between research knowledge and…

  12. Improving science education for sustainable development

    NARCIS (Netherlands)

    Eijck, van M.W.; Roth, W.-M.

    2007-01-01

    In recent issues of noteworthy journals, natural scientists have argued for the improvement of science education [1–4]. Such pleas reflect the growing awareness that high-quality science education is required not only for sustaining a lively scientific community that is able to address global

  13. Global Reproduction and Transformation of Science Education

    Science.gov (United States)

    Tobin, Kenneth

    2011-01-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and…

  14. Developing Intercultural Science Education in Ecuador

    Science.gov (United States)

    Schroder, Barbara

    2008-01-01

    This article traces the recent development of intercultural science education in Ecuador. It starts by situating this development within the context of a growing convergence between Western and indigenous sciences. It then situates it within the larger historical, political, cultural, and educational contexts of indigenous communities in Ecuador,…

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Film Review. Articles in Resonance – Journal of Science Education. Volume 22 Issue 3 March 2017 pp 317-318 Film Review. The Untold Story of NASA's Trailblazers: Hidden Figures sheds light on the contributions of black women to the US Space Race.

  16. Science and the Ideals of Liberal Education

    Science.gov (United States)

    Carson, Robert N.

    This article examines the influence of mathematics and science on the formation of culture. It then examines several definitions of liberal education, including the notion that languages and fields of study constitute the substrate of articulate intelligence. Finally, it examines the linkages between science, scientific culture, liberal education, and democracy, and proposes that science cannot be taught merely as a body of facts and theories, but must be presented to students as integral with cultural studies. The use of a contextualist approach to science education is recommended.

  17. Student Satisfaction and the Customer Focus in Higher Education

    Science.gov (United States)

    Mark, Eddie

    2013-01-01

    Advocating a customer focus, the Total Quality Management model of leadership has led to success in raising performance levels throughout various manufacturing and service industries. Many education stakeholders, however, are resistant to the notion that postsecondary students benefit from being treated like customers. While many critics oppose…

  18. Canada's International Education Strategy: Focus on Scholarships. CBIE Research

    Science.gov (United States)

    Embleton, Sheila

    2011-01-01

    Based on a survey of approximately 40 professionals involved in various disciplines associated with international education across Canada, this study examines Canada's (federal, provincial, and territorial government) offering of scholarships to international students. Focused at the university level, the study elaborates on relevant international…

  19. Fulbright project focuses on rehabilitation technician education and ...

    African Journals Online (AJOL)

    Rehabilitation technician education and physiotherapy practice 272. Fulbright project focuses on ... particularly those qualified to mentor and teach entry-level learners, there are ... to reinforce classroom didactic knowledge as ongoing learning .... utilization of limited resources, and development of linkages with professional ...

  20. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  1. Symposium 1: Challenges in science education and popularization of Science

    Directory of Open Access Journals (Sweden)

    Ildeo de Castro Moreira

    2014-08-01

    Full Text Available Science education and popularization of science are important elements for social inclusion. The Brazil exhibits strong inequalities regarding the distribution of wealth, access to cultural assets and appropriation of scientific and technological knowledge. Each Brazilian should have the opportunity to acquire a basic knowledge of science and its operation that allow them to understand their environment and expand their professional opportunities. However, the overall performance of Brazilian students in science and math is bad. The basic science education has, most often, few resources and is discouraging, with little appreciation of experimentation, interdisciplinarity and creativity. Beside the shortage of science teachers, especially teachers with good formation, predominate poor wage and working conditions, and deficiencies in instructional materials and laboratories. If there was a significant expansion in access to basic education, the challenge remains to improve their quality. According to the last National Conference of STI, there is need of a profound educational reform at all levels, in particular with regard to science education. Already, the popularization of science can be an important tool for the construction of scientific culture and refinement of the formal teaching instrument. However, we still lack a comprehensive and adequate public policy to her intended. Clearly, in recent decades, an increase in scientific publication occurred: creating science centers and museums; greater media presence; use of the internet and social networks; outreach events, such as the National Week of CT. But the scenario is shown still fragile and limited to broad swathes of Brazilians without access to scientific education and qualified information on CT. In this presentation, from a general diagnosis of the situation, some of the main challenges related to education and popularization of science in the country will address herself.

  2. Current Status of Regulatory Science Education in Faculties of Pharmaceutical Science in Japan.

    Science.gov (United States)

    Tohkin, Masahiro

    2017-01-01

    I introduce the current pharmaceutical education system in Japan, focusing on regulatory science. University schools or faculties of pharmaceutical science in Japan offer two courses: a six-year course for pharmacists and a four-year course for scientists and technicians. Students in the six-year pharmaceutical course receive training in hospitals and pharmacies during their fifth year, and those in the four-year life science course start research activities during their third year. The current model core curriculum for pharmaceutical education requires them to "explain the necessity and significance of regulatory science" as a specific behavior object. This means that pharmacists should understand the significance of "regulatory science", which will lead to the proper use of pharmaceuticals in clinical practice. Most regulatory science laboratories are in the university schools or faculties of pharmaceutical sciences; however, there are too few to conduct regulatory science education. There are many problems in regulatory science education, and I hope that those problems will be resolved not only by university-based regulatory science researchers but also by those from the pharmaceutical industry and regulatory authorities.

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 7. Issue front cover thumbnail Issue back cover thumbnail. Volume 18, Issue 7. July 2013, pages 593-688. pp 593-594 Editorial. Editorial · K L Sebastian · More Details Fulltext PDF. pp 595-595 Science Smiles. Science Smiles · Ayan Guha.

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 18, Issue 6. June 2013, pages 495-594. pp 495-496 Editorial. Editorial · G Nagendrappa · More Details Fulltext PDF. pp 497-497 Science Smiles. Science Smiles · Ayan Guha.

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 9. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 9. September 2015, pages 757-864. pp 757-758 Editorial. Editorial · Amit Roy · More Details Fulltext PDF. pp 759-759 Science Smiles. Science Smiles · Ayan Guha.

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 17, Issue 6. June 2012, pages 527-622. pp 527-528 Editorial. Editorial · G Nagendrappa · More Details Fulltext PDF. pp 529-529 Science Smiles. Science Smiles · Ayan Guha.

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 7. Issue front cover thumbnail. Volume 21, Issue 7. July 2016, pages 579-670. pp 579-579 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 582-582 Science Smiles. Science Smiles ... General Article. The Search for Another Earth.

  8. Promoting Science in Secondary School Education.

    Science.gov (United States)

    Chiovitti, Anthony; Duncan, Jacinta C; Jabbar, Abdul

    2017-06-01

    Engaging secondary school students with science education is crucial for a society that demands a high level of scientific literacy in order to deal with the economic and social challenges of the 21st century. Here we present how parasitology could be used to engage and promote science in secondary school students under the auspice of a 'Specialist Centre' model for science education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Concepts of matter in science education

    CERN Document Server

    Sevian, Hannah

    2013-01-01

    Bringing together a wide collection of ideas, reviews, analyses and new research on particulate and structural concepts of matter, Concepts of Matter in Science Education informs practice from pre-school through graduate school learning and teaching and aims to inspire progress in science education. The expert contributors offer a range of reviews and critical analyses of related literature and in-depth analysis of specific issues, as well as new research. Among the themes covered are learning progressions for teaching a particle model of matter, the mental models of both students and teachers of the particulate nature of matter, educational technology, chemical reactions and chemical phenomena, chemical structure and bonding, quantum chemistry and the history and philosophy of science relating to the particulate nature of matter. The book will benefit a wide audience including classroom practitioners and student teachers at every educational level, teacher educators and researchers in science education.

  10. Multimodal Literacies in Science: Currency, Coherence and Focus

    Science.gov (United States)

    Klein, Perry D.; Kirkpatrick, Lori C.

    2010-01-01

    Since the 1990s, researchers have increasingly drawn attention to the multiplicity of representations used in science. This issue of "RISE" advances this line of research by placing such representations at the centre of science teaching and learning. The authors show that representations do not simply transmit scientific information; they are…

  11. What Are the Social Benefits of Education? Education Indicators in Focus. No. 10

    Science.gov (United States)

    OECD Publishing (NJ3), 2013

    2013-01-01

    "Education Indicators in Focus" is a recurring series of briefs that highlight specific indicators in "OECD's Education at a Glance" that are of particular interest to policy makers and practitioners. They provide a detailed look into current issues in pre-primary, primary and secondary education, higher education, and adult…

  12. Science school and culture school: improving the efficiency of high school science teaching in a system of mass science education.

    Science.gov (United States)

    Charlton, Bruce G

    2006-01-01

    Educational expansion in western countries has been achieved mainly by adding years to full-time education; however, this process has probably reduced efficiency. Sooner or later, efficiency must improve, with a greater educational attainment per year. Future societies will probably wish more people to study science throughout high school (aged c. 11-19 years) and the first college degree. 'Science' may be defined as any abstract, systematic and research-based discipline: including mathematics, statistics and the natural sciences, economics, music theory, linguistics, and the conceptual or quantitative social sciences. Since formal teaching is usually necessary to learn science, science education should be regarded as the core function of high schools. One standard way to improve efficiency is the 'division of labour', with increased specialization of function. Modern schools are already specialized: teachers are specialized according to age-group taught, subject matter expertise, and administrative responsibilities. School students are stratified by age and academic aptitude. I propose a further institutional division of school function between science education, and cultural education (including education in arts, sports, ethics, social interaction and good citizenship). Existing schools might split into 'science school' and 'culture school', reflected in distinct buildings and zones, separate administrative structures, and the recruitment of differently-specialized teaching personnel. Science school would be distinguished by its focus on education in disciplines which promote abstract systematic cognition. All students would spend some part of each day (how much would depend on their aptitude and motivation) in the 'science school'; experiencing a traditional-style, didactic, disciplined and rigorous academic education. The remainder of the students' time at school would be spent in the cultural division, which would focus on broader aspects, and aim to generate

  13. Constructivism in Science and Science Education: A Philosophical Critique

    Science.gov (United States)

    Nola, Robert

    This paper argues that constructivist science education works with an unsatisfactory account of knowledge which affects both its account of the nature of science and of science education. The paper begins with a brief survey of realism and anti-realism in science and the varieties of constructivism that can be found. In the second section the important conception of knowledge and teaching that Plato develops in the Meno is contrasted with constructivism. The section ends with an account of the contribution that Vico (as understood by constructivists), Kant and Piaget have made to constructivist doctrines. Section three is devoted to a critique of the theory of knowledge and the anti-realism of von Glaserfeld. The final section considers the connection, or lack of it, between the constructivist view of science and knowledge and the teaching of science.

  14. Informal Science: Family Education, Experiences, and Initial Interest in Science

    Science.gov (United States)

    Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.

    2016-01-01

    Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…

  15. Population Health Science: A Core Element of Health Science Education in Sub-Saharan Africa.

    Science.gov (United States)

    Hiatt, Robert A; Engmann, Natalie J; Ahmed, Mushtaq; Amarsi, Yasmin; Macharia, William M; Macfarlane, Sarah B; Ngugi, Anthony K; Rabbani, Fauziah; Walraven, Gijs; Armstrong, Robert W

    2017-04-01

    Sub-Saharan Africa suffers an inordinate burden of disease and does not have the numbers of suitably trained health care workers to address this challenge. New concepts in health sciences education are needed to offer alternatives to current training approaches.A perspective of integrated training in population health for undergraduate medical and nursing education is advanced, rather than continuing to take separate approaches for clinical and public health education. Population health science educates students in the social and environmental origins of disease, thus complementing disease-specific training and providing opportunities for learners to take the perspective of the community as a critical part of their education.Many of the recent initiatives in health science education in sub-Saharan Africa are reviewed, and two case studies of innovative change in undergraduate medical education are presented that begin to incorporate such population health thinking. The focus is on East Africa, one of the most rapidly growing economies in sub-Saharan Africa where opportunities for change in health science education are opening. The authors conclude that a focus on population health is a timely and effective way for enhancing training of health care professionals to reduce the burden of disease in sub-Saharan Africa.

  16. Some Reflections on "Going beyond the Consensus View" of the Nature of Science in K-12 Science Education

    Science.gov (United States)

    Berkovitz, Joseph

    2017-01-01

    Hodson and Wong (2017, this issue) argue that, though the nature of science (NOS) is now an established focus of school science education and a key element in defining scientific literacy, "the consensus view" of NOS misrepresents contemporary scientific practice. They then propose a number of alternative approaches to science curriculum…

  17. African Journal of Educational Studies in Mathematics and Sciences

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences. ... Studies in Mathematics and Sciences (AJESMS) is an international publication that ... in the fields of mathematics education, science education and related disciplines.

  18. Integration of Geospatial Science in Teacher Education

    Science.gov (United States)

    Hauselt, Peggy; Helzer, Jennifer

    2012-01-01

    One of the primary missions of our university is to train future primary and secondary teachers. Geospatial sciences, including GIS, have long been excluded from teacher education curriculum. This article explains the curriculum revisions undertaken to increase the geospatial technology education of future teachers. A general education class…

  19. SPORTS SCIENCES AND MULTICULTURALISM - EDUCATIONAL AND PROFESSIONAL IMPACT

    Directory of Open Access Journals (Sweden)

    Danica Pirsl

    2012-09-01

    Full Text Available The aim of the paper is to familiarize the sports sciences educators to the pedagogic concept and professional benefits and awareness of multicultural education if implemented in sports sciences curricula, especially in the efforts to obtain international transparency through sports science literature writing and publishing. Data Sources were textbook chapters and articles searched through the archives of Diversity Digest and Academic Medicine for the years 2000 to 2005 with the key words multiculturalism, diversity, cultural competence, education, and learning. Synthesized data were used to present a rational argument for the inclusion of a critical pedagogy into the field of sports science education. The infrastructure in the professional field of sports sciences, review of the literature on critical multicultural theory and pedagogy and the potential cognitive and intellectual implications of diversity and multicultural education were analyzed. Conclusions/Recommendations focus on possible various and creative strategies for implementing a multicultural agenda in sports sciences curricula and on the analysis of the associated benefits and outcomes of such educational strategies.

  20. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  1. Vegetation survey: a new focus for Applied Vegetation Science

    NARCIS (Netherlands)

    Chytry, M.; Schaminee, J.H.J.; Schwabe, A.

    2011-01-01

    Vegetation survey is an important research agenda in vegetation science. It defines vegetation types and helps understand differences among them, which is essential for both basic ecological research and applications in biodiversity conservation and environmental monitoring. In this editorial, we

  2. A focus on educational choice has social justice consequences

    DEFF Research Database (Denmark)

    Skovhus, Randi Boelskifte

    2016-01-01

    This presentation demonstrates that in Denmark there is considerable focus on educational and career choices during the last year of lower-secondary school, and investigates the possibility of using Amartya Sen?s capability approach as a lens to analyse this focus. It is argued that attention...... to the processes occurring before choices are made is of central importance, as these help to give students a genuine opportunity to choose from a broader range of options. This consideration is important from a social-justice perspective even if students end up choosing what they would have chosen without broader...

  3. 75 FR 13735 - Fund for the Improvement of Postsecondary Education (FIPSE)-Special Focus Competition: Program...

    Science.gov (United States)

    2010-03-23

    ... DEPARTMENT OF EDUCATION Fund for the Improvement of Postsecondary Education (FIPSE)-- Special Focus Competition: Program for North American Mobility in Higher Education ACTION: Extension; Notice... of Postsecondary Education (FIPSE)--Special Focus Competition: Program for North American Mobility in...

  4. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    Science.gov (United States)

    Riedinger, Kelly; Marbach-Ad, Gili; McGinnis, J. Randy; Hestness, Emily; Pease, Rebecca

    2011-01-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching…

  5. Students' Risk Perceptions of Nanotechnology Applications: Implications for Science Education

    Science.gov (United States)

    Gardner, Grant; Jones, Gail; Taylor, Amy; Forrester, Jennifer; Robertson, Laura

    2010-01-01

    Scientific literacy as a goal of a science education reform remains an important discourse in the research literature and is a key component of students' understanding and acceptance of emergent technologies like nanotechnology. This manuscript focuses on undergraduate engineering students' perceptions of the risks and benefits posed by…

  6. How Data Use for Accountability Undermines Equitable Science Education

    Science.gov (United States)

    Braaten, Melissa; Bradford, Chris; Kirchgasler, Kathryn L.; Barocas, Sadie Fox

    2017-01-01

    Purpose: When school leaders advance strategic plans focused on improving educational equity through data-driven decision making, how do policies-as-practiced unfold in the daily work of science teachers? The paper aims to discuss this issue. Design/methodology/approach: This ethnographic study examines how data-centric accountability and…

  7. Problems with Feminist Standpoint Theory in Science Education

    Science.gov (United States)

    Landau, Iddo

    2008-01-01

    Feminist standpoint theory has important implications for science education. The paper focuses on difficulties in standpoint theory, mostly regarding the assumptions that different social positions produce different types of knowledge, and that epistemic advantages that women might enjoy are always effective and significant. I conclude that the…

  8. Science and the city: A visual journey towards a critical place based science education

    Science.gov (United States)

    Ibrahim, Sheliza

    The inclusion of societal and environmental considerations during the teaching and learning of science and technology has been a central focus among science educators for many decades. Major initiatives in science and technology curriculum advocate for science, technology, society and environment (STSE). Yet, it is surprising that despite these longstanding discussions, it is only recently that a handful of researchers have turned to students' 'places' (and the literature of place based education) to serve as a source of teaching and learning in science education. In my study, I explore three issues evident in place based science education. First, it seems that past scholarship focused on place-based projects which explore issues usually proposed by government initiatives, university affiliation, or community organizations. Second, some of the studies fail to pay extended attention to the collaborative and intergenerational agency that occurs between researcher, teacher, student, and community member dynamics, nor does it share the participatory action research process in order to understand how teacher practice, student learning, and researcher/local collaborations might help pedagogy emerge. The third issue is that past place-based projects, rarely if ever, return to the projects to remember the collaborative efforts and question what aspects sustained after they were complete. To address these issues, I propose a critical place based science education (CPBSE) model. I describe a participatory action research project that develops and explores the CPBSE model. The data were gathered collaboratively among teachers, researchers, and students over 3 years (2006-2008), via digital video ethnography, photographs, and written reflections. The data were analysed using a case study approach and the constant comparative method. I discuss the implications for its practice in the field of STSE and place based education. I conclude that an effective pedagogical model of

  9. Philosophy of Education and Other Educational Sciences

    Science.gov (United States)

    Howe, Kenneth R.

    2014-01-01

    This article largely agrees with John White's characterizations of the relationships among philosophy of education, philosophy more generally, and the conventional world. It then extends what White identifies as the fundamental problem that should now be occupying philosophy of education--the irreconcilable opposition between education for…

  10. Virtual Gaming Simulation in Nursing Education: A Focus Group Study.

    Science.gov (United States)

    Verkuyl, Margaret; Hughes, Michelle; Tsui, Joyce; Betts, Lorraine; St-Amant, Oona; Lapum, Jennifer L

    2017-05-01

    The use of serious gaming in a virtual world is a novel pedagogical approach in nursing education. A virtual gaming simulation was implemented in a health assessment class that focused on mental health and interpersonal violence. The study's purpose was to explore students' experiences of the virtual gaming simulation. Three focus groups were conducted with a convenience sample of 20 first-year nursing students after they completed the virtual gaming simulation. Analysis yielded five themes: (a) Experiential Learning, (b) The Learning Process, (c) Personal Versus Professional, (d) Self-Efficacy, and (e) Knowledge. Virtual gaming simulation can provide experiential learning opportunities that promote engagement and allow learners to acquire and apply new knowledge while practicing skills in a safe and realistic environment. [J Nurs Educ. 2017;56(5):274-280.]. Copyright 2017, SLACK Incorporated.

  11. An Ecology of Science Education.

    Science.gov (United States)

    Aubusson, Peter

    2002-01-01

    Reports on a 15-month study of attempted innovation in school science. The teachers in an Australian secondary school were attempting to introduce a constructivist approach to their teaching of science. Uses a method of analysis in which the school science system is mapped against an ecosystem. (Author/MM)

  12. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-01-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of "International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education" from 1990 to 2007. The…

  13. Focus Groups to Reveal Parents' Needs for Prenatal Education

    OpenAIRE

    Dumas, Louise

    2002-01-01

    Focus group interviews are a useful qualitative research technique to obtain data from small groups about their opinions, attitudes, and/or feelings on a given subject. This particular technique has been used in Western Quebec in order to reveal the opinions, needs, and feelings of health professionals and future parents concerning prenatal education. As part of the region's priorities for 2002, all future parents in this part of the province were to be offered prenatal, government-paid, comm...

  14. Elementary science education: Dilemmas facing preservice teachers

    Science.gov (United States)

    Sullivan, Sherry Elaine

    Prospective teachers are involved in a process of induction into a culture of teaching that has rules, or codes of conduct for engaging in teaching practice. This same culture of teaching exists within a larger culture of schooling that also has values and norms for behaviors, that over time have become institutionalized. Teacher educators are faced with the challenging task of preparing preservice teachers to resolve dilemmas that arise from conflicts between the pressure to adopt traditional teaching practices of schooling, or to adopt inquiry-based teaching practices from their university methods classes. One task for researchers in teacher education is to define with greater precision what factors within the culture of schooling hinder or facilitate implementation of inquiry-based methods of science teaching in schools. That task is the focus of this study. A qualitative study was undertaken using a naturalistic research paradigm introduced by Lincoln and Guba in 1985. Participant observation, interviews, discourse analysis of videotapes of lessons from the methods classroom and written artifacts produced by prospective teachers during the semester formed the basis of a grounded theory based on inductive analysis and emergent design. Unstructured interviews were used to negotiate outcomes with participants. Brief case reports of key participants were also written. This study identified three factors that facilitated or hindered the prospective teachers in this research success in implementing inquiry-based science teaching in their field placement classrooms: (a) the culture of teaching/teacher role-socialization, (b) the culture of schooling and its resistance to change, and (c) the culture of teacher education, especially in regards to grades and academic standing. Some recommendations for overcoming these persistent obstacles to best practice in elementary science teaching include: (a) preparing prospective teachers to understand and cope with change

  15. Cultural Memory Banking in Preservice Science Teacher Education

    Science.gov (United States)

    Handa, Vicente C.; Tippins, Deborah J.

    2012-12-01

    This study focused on the exemplification of cultural memory banking as an ethnographic tool to understand cultural practices relevant to science teaching and learning in a rural coastal village in a central island of the Philippine archipelago. Using the collaborative action ethnography as a research methodology, 10 prospective science teachers and a science teacher educator/doctoral candidate formed a research team and documented community funds of knowledge relevant to science teaching and learning through their participation in a Community Immersion course. The study employed the use of the cultural memory banking as a meditational tool to analyze, make sense of, and represent interview, focus-group discussion, and observation data, among others, for the development of culturally relevant science lessons. Originally used as an anthropological tool to preserve cultural knowledge associated with the cultivation of indigenous plant varieties, the cultural memory banking, as adapted in science education, was used, both as a data collection and analytic tool, to locate relevant science at the intersection of community life. The research team developed a cultural memory bank exemplar, "Ginamos: The Stinky Smell that Sells," to highlight the learning experiences and meaning-making process of those involved in its development. Dilemmas and insights on the development and use of cultural memory banking were discussed with respect to issues of knowledge mining and mainstreaming of indigenous/local funds of knowledge, troubling the privileged position of Western-inspired nature of science.

  16. Atmospheric rivers emerge as a global science and applications focus

    Science.gov (United States)

    Ralph, F. Martin; Dettinger, Michael; Lavers, David A.; Gorodetskaya, Irina; Martin, Andrew; Viale, Maximilliano; White, Allen; Oakley, Nina; Rutz, Jonathan; Spackman, J. Ryan; Wernli, Heini; Cordeira, Jason

    2017-01-01

    Recent advances in atmospheric sciences and hydrology have identified the key role of atmo-spheric rivers (ARs) in determining the distribution of strong precipitation events in the midlatitudes. The growth of the subject is evident in the increase in scientific publications that discuss ARs (Fig. 1a). Combined with related phenomena, that is, warm conveyor belts (WCBs) and tropical moisture exports (TMEs), the frequency, position, and strength of ARs determine the occurrence of floods, droughts, and water resources in many parts of the world. A conference at the Scripps Institution of Oceanography in La Jolla, California, recently gathered over 100 experts in atmospheric, hydrologic, oceanic, and polar science; ecology; water management; and civil engineering to assess the state of AR science and to explore the need for new information. This first International Atmospheric Rivers Conference (IARC) allowed for much needed introductions and interactions across fields and regions, for example, participants came from five continents, and studies covered ARs in six continents and Greenland (Fig. 1b). IARC also fostered discussions of the status and future of AR science, and attendees strongly supported the idea of holding another IARC at the Scripps Institution of Oceanography in the summer of 2018.

  17. Integration and timing of basic and clinical sciences education.

    Science.gov (United States)

    Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian

    2013-05-01

    Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational

  18. Creating a Dialogic Environment for Transformative Science Teaching Practices: Towards an Inclusive Education for Science

    Science.gov (United States)

    Reynaga-Peña, Cristina G.; Sandoval-Ríos, Marisol; Torres-Frías, José; López-Suero, Carolina; Lozano Garza, Adrián; Dessens Félix, Maribel; González Maitland, Marcelino; Ibanez, Jorge G.

    2018-01-01

    This paper focuses on the design and application of a teacher training strategy to promote the inclusive education of students with disabilities in the science classroom, through the creation of adult learning environments grounded on the principles of dialogic learning. Participants of the workshop proposal consisted of a group of twelve teachers…

  19. Global reproduction and transformation of science education

    Science.gov (United States)

    Tobin, Kenneth

    2011-03-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and derivative sensibilities, including standards, competition, and accountability systems, that mediate enacted curricula. I investigate these referents in relation to science education in two geographically and temporally discrete contexts Western Australia in the 1960s and 1970s and more recently in an inner city high school in the US. In so doing I problematize some of the taken for granted aspects of science education, including holding teachers responsible for establishing and maintaining control over students, emphasizing competition between individuals and between collectives such as schools, school districts and countries, and holding teachers and school leaders accountable for student achievement.

  20. Nanoscale science and nanotechnology education in Africa ...

    African Journals Online (AJOL)

    Nanoscale science and nanotechnology education in Africa: importance and ... field with its footing in chemistry, physics, molecular biology and engineering. ... career/business/development opportunities, risks and policy challenges that would ...

  1. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    1986-01-01

    The Guidebook contains detailed information on curricula which would provide the professional technical education qualifications which have been established for nuclear power programme personnel. The core of the Guidebook consists of model curricula in engineering and science, including relevant practical work. Curricula are provided for specialization, undergraduate, and postgraduate programmes in nuclear-oriented mechanical, chemical, electrical, and electronics engineering, as well as nuclear engineering and radiation health physics. Basic nuclear science and engineering laboratory work is presented together with a list of basic experiments and the nuclear equipment needed to perform them. Useful measures for implementing and improving engineering and science education and training capabilities for nuclear power personnel are presented. Valuable information on the national experiences of IAEA Member States in engineering and science education for nuclear power, as well as examples of such education from various Member States, have been included

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 3. Issue front ... Metabolic Engineering: Biological Art of Producing Useful Chemicals · Ram Kulkarni ... General Article. Is Calculus a Failure in Cryptography?

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9 ... Atmosphere and Oceans: Evidence from Geological Records - Evolution of the Early Oceans ... Quantum Computing - Building Blocks of a Quantum Computer.

  4. Innovations in Undergraduate Science Education: Going Viral

    OpenAIRE

    Hatfull, Graham F.

    2015-01-01

    Bacteriophage discovery and genomics provides a powerful and effective platform for integrating missions in research and education. Implementation of the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program facilitates a broad impact by including a diverse array of schools, faculty, and students. The program generates new insights into the diversity and evolution of the bacteriophage population and presents a model for introducing first-yea...

  5. Refocusing International Astronomy Education Research Using a Cognitive Focus

    Science.gov (United States)

    Slater, Timothy F.; Slater, Stephanie J.

    2015-08-01

    For over 40 years, the international astronomy education community has given its attention to cataloging the substantial body of "misconceptions" in individual's thinking about astronomy, and to addressing the consequences of those misconceptions in the science classroom. Despite the tremendous amount of effort given to researching and disseminating information related to misconceptions, and the development of a theory of conceptual change to mitigate misconceptions, progress continues to be less than satisfying. An analysis of the literature and our own research has motivated the CAPER Center for Astronomy & Physics Education Research to advance a new model that allowing us to operate on students' astronomical learning difficulties in a more fruitful manner. Previously, much of the field's work binned erroneous student thinking into a single construct, and from that basis, curriculum developers and instructors addressed student misconceptions with a single instructional strategy. In contrast this model suggests that "misconceptions" are a mixture of at least four learning barriers: incorrect factual information, inappropriately applied mental algorithms (e.g., phenomenological primitives), insufficient cognitive structures (e.g., spatial reasoning), and affective/emotional difficulties. Each of these types of barriers should be addressed with an appropriately designed instructional strategy. Initial applications of this model to learning problems in astronomy and the space sciences have been fruitful, suggesting that an effort towards categorizing persistent learning difficulties in astronomy beyond the level of "misconceptions" may allow our community to craft tailored and more effective learning experiences for our students and the general public.

  6. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  7. Science Education in a Secular Age

    Science.gov (United States)

    Long, David E.

    2013-01-01

    A college science education instructor tells his students he rejects evolution. What should we think? The scene unfolds in one of the largest urban centers in the world. If we are surprised, why? Expanding on Federica Raia's (2012) first-hand experience with this scenario, I broaden her discussion by considering the complexity of science education…

  8. Pseudoscience, the Paranormal, and Science Education.

    Science.gov (United States)

    Martin, Michael

    1994-01-01

    Given the widespread acceptance of pseudoscientific and paranormal beliefs, this article suggests that science educators need to seriously consider the problem of how these beliefs can be combated. Proposes teaching science students to critically evaluate the claims of pseudoscience and the paranormal. (LZ)

  9. Education sciences, schooling, and abjection: recognizing ...

    African Journals Online (AJOL)

    people to that future. The double gestures continue in contemporary school reform and its sciences. ... understand their different cultural theses about cosmopolitan modes of life and the child cast out as different and ... Keywords: educational sciences; history of present; politics of schooling; reform; social inclusion/exclusion

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 21, Issue 11. November 2016, pages 965-1062. pp 965-966 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 967-967 Science Smiles ... pp 971-983 General Article.

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Issue front cover thumbnail Issue ... pp 985-1006 General Article. The Ziegler Catalysts: Serendipity or .... Science Academies' Summer Research Fellowship Programme for Students and Teachers - 2018 · More Details Abstract Fulltext PDF.

  12. Science as Myth in Physical Education.

    Science.gov (United States)

    Kirk, David

    Scientization is a process that refers to the mythologies that are generated around the practices of working scientists. This paper discusses how science works on popular consciousness and how particular occupational groups use science to legitimatize their discipline, specifically in physical education. Two examples are presented to illustrate…

  13. Is Museum Education "Rocket Science"?

    Science.gov (United States)

    Dragotto, Erin; Minerva, Christine; Nichols, Michelle

    2006-01-01

    The field of museum education has advanced and adapted over the years to meet the changing needs of audiences as determined by new research, national policy, and international events. Educators from Chicago's Adler Planetarium & Astronomy Museum provide insight into a (somewhat) typical museum education department, especially geared for readers…

  14. Interdisciplinary Science Research and Education

    Science.gov (United States)

    MacKinnon, P. J.; Hine, D.; Barnard, R. T.

    2013-01-01

    Science history shows us that interdisciplinarity is a spontaneous process that is intrinsic to, and engendered by, research activity. It is an activity that is done rather than an object to be designed and constructed. We examine three vignettes from the history of science that display the interdisciplinary process at work and consider the…

  15. Symposium 3 - Science Education “Leopoldo de Meis”: The Critical Importance of Science Education for Society

    Directory of Open Access Journals (Sweden)

    Bruce Albert

    2015-08-01

    Full Text Available Symposium 3 - Science Education “Leopoldo de Meis” Chair: Wagner Seixas da Silva, Universidade Federal do Rio de JaneiroAbstract:Three ambitious goals for science education:1. Enable all children to acquire the problem-solving, thinking, and communication skills of scientists – so that they can be productive and competitive in the new world economy.2. Generate a “scientific temper” for each nation, with scientifically trained people in many professions, ensuring the rationality and the tolerance essential for a democratic society.3. Help each nation generate new scientific knowledge and technology by casting the widest possible net for talent.My preferred strategy for the United States:1. Science education should have a much larger role in all school systems, but only if this science education is of a different kind than is experienced in most schools today.2. Making such a change will require a redefinition of what we mean by the term  “science education”.3. To create continually improving education systems, we will need much more collaborative, effective, and use-inspired education research - research that is focused on real school needs and that integrates the best school teachers into the work.4. Our best teachers need to have a much larger voice in helping to steer our national and state policies, as well as in our local school systems!

  16. Understanding student participation and choice in science and technology education

    CERN Document Server

    Dillon, Justin; Ryder, Jim

    2015-01-01

    Drawing on data generated by the EU’s Interests and Recruitment in Science (IRIS) project, this volume examines the issue of young people’s participation in science, technology, engineering and mathematics education. With an especial focus on female participation, the chapters offer analysis deploying varied theoretical frameworks, including sociology, social psychology and gender studies. The material also includes reviews of relevant research in science education and summaries of empirical data concerning student choices in STEM disciplines in five European countries. Featuring both quantitative and qualitative analyses, the book makes a substantial contribution to the developing theoretical agenda in STEM education. It augments available empirical data and identifies strategies in policy-making that could lead to improved participation—and gender balance—in STEM disciplines. The majority of the chapter authors are IRIS project members, with additional chapters written by specially invited contribu...

  17. From Laboratories to Classrooms: Involving Scientists in Science Education

    Science.gov (United States)

    DeVore, E. K.

    2001-12-01

    Scientists play a key role in science education: the adventure of making new discoveries excites and motivates students. Yet, American science education test scores lag behind those of other industrial countries, and the call for better science, math and technology education is widespread. Thus, improving American science, math and technological literacy is a major educational goal for the NSF and NASA. Today, funding for research often carries a requirement that the scientist be actively involved in education and public outreach (E/PO) to enhance the science literacy of students, teachers and citizens. How can scientists contribute effectively to E/PO? What roles can scientists take in E/PO? And, how can this be balanced with research requirements and timelines? This talk will focus on these questions, with examples drawn from the author's projects that involve scientists in working with K-12 teacher professional development and with K-12 curriculum development and implementation. Experiences and strategies for teacher professional development in the research environment will be discussed in the context of NASA's airborne astronomy education and outreach projects: the Flight Opportunities for Science Teacher EnRichment project and the future Airborne Ambassadors Program for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Effective partnerships with scientists as content experts in the development of new classroom materials will be described with examples from the SETI Institute's Life in the Universe curriculum series for grades 3-9, and Voyages Through Time, an integrated high school science course. The author and the SETI Institute wish to acknowledge funding as well as scientific and technical support from the National Science Foundation, the National Aeronautics and Space Administration, the Hewlett Packard Company, the Foundation for Microbiology, and the Combined Federated Charities.

  18. Making science education meaningful for American Indian students: The effect of science fair participation

    Science.gov (United States)

    Welsh, Cynthia Ann

    Creating opportunities for all learners has not been common practice in the United States, especially when the history of Native American educational practice is examined (Bull, 2006; Chenoweth, 1999; Starnes, 2006a). The American Indian Science and Engineering Society (AISES) is an organization working to increase educational opportunity for American Indian students in science, engineering, and technology related fields (AISES, 2005). AISES provides pre-college support in science by promoting student science fair participation. The purpose of this qualitative research is to describe how American Indian student participation in science fairs and the relationship formed with their teacher affects academic achievement and the likelihood of continued education beyond high school. Two former American Indian students mentored by the principal investigator participated in this study. Four ethnographic research methods were incorporated: participant observation, ethnographic interviewing, search for artifacts, and auto-ethnographic researcher introspection (Eisenhart, 1988). After the interview transcripts, photos documenting past science fair participation, and researcher field notes were analyzed, patterns and themes emerged from the interviews that were supported in literature. American Indian academic success and life long learning are impacted by: (a) the effects of racism and oppression result in creating incredible obstacles to successful learning, (b) positive identity formation and the importance of family and community are essential in student learning, (c) the use of best practice in science education, including the use of curricular cultural integration for American Indian learners, supports student success, (d) the motivational need for student-directed educational opportunities (science fair/inquiry based research) is evident, (e) supportive teacher-student relationships in high school positively influences successful transitions into higher education. An

  19. Focus on performance: the 21 century revolution in medical education.

    Science.gov (United States)

    Davidoff, Frank

    2008-01-01

    For centuries medicine was predominantly a tradition-based "trade" until the introduction of science transformed it into an intellectually rigorous discipline. That transformation contributed heavily to the dominance in medical education of the learning of biomedical concepts ("knowing that") over learning how to translate that knowledge into clinical performance ("knowing how"). The recent emergence of performance-oriented educational initiatives suggests, however, that the balance between these two complementary approaches is changing, a change that has been referred to as "the Flexnerian revolution of the 21(st) century." Problem-based learning, learning the practice of evidence-based medicine, and learning to use clinical guidelines are among the important initiatives designed to develop high-level performance in the care of individual patients. Initiatives in which learners acquire skill in changing the performance of care systems are also being widely implemented. These trends have received important formal support through recent changes in residency training accreditation standards. Although it is too early to assess the impact of these initiatives or to know whether they will develop further, medical education is unlikely to reach its full potential unless it successfully comes to grips with the challenges of understanding, teaching, and measuring performance.

  20. Fermilab Friends for Science Education | Board Tools

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Board Tools Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education FFSE Scholarship Tools Google Drive Join Us/Renew Membership Forms: Online - Print Support Us Donation

  1. Fermilab Friends for Science Education | Calendar

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Calendar Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search Programs Calendar Join Us/Renew Membership Forms: Online - Print Support Us Donation Forms: Online - Print Tree of

  2. Fermilab Friends for Science Education | Mission

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Mission Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search Programs Calendar Join Us/Renew Membership Forms: Online - Print Support Us Donation Forms: Online - Print Tree of

  3. Wisconsin Earth and Space Science Education

    Science.gov (United States)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  4. Knowledge systems and the colonial legacies in African science education

    Science.gov (United States)

    Ziegler, John R.; Lehner, Edward

    2017-10-01

    This review surveys Femi Otulaja and Meshach Ogunniyi's, Handbook of research in science education in sub-Saharan Africa, Sense, Rotterdam, 2017, noting the significance of the theoretically rich content and how this book contributes to the field of education as well as to the humanities more broadly. The volume usefully outlines the ways in which science education and scholarship in sub-Saharan Africa continue to be impacted by the region's colonial history. Several of the chapters also enumerate proposals for teaching and learning science and strengthening academic exchange. Concerns that recur across many of the chapters include inadequate implementation of reforms; a lack of resources, such as for classroom materials and teacher training; and the continued and detrimental linguistic, financial, and ideological domination of African science education by the West. After a brief overview of the work and its central issues, this review closely examines two salient chapters that focus on scholarly communications and culturally responsive pedagogy. The scholarly communication section addresses the ways in which African science education research may in fact be too closely mirroring Western knowledge constructions without fully integrating indigenous knowledge systems in the research process. The chapter on pedagogy makes a similar argument for integrating Western and indigenous knowledge systems into teaching approaches.

  5. Teaching Interdisciplinary Engineering and Science Educations

    DEFF Research Database (Denmark)

    Kofoed, Lise B.; S. Stachowicz, Marian

    2014-01-01

    In this paper we study the challenges for the involved teachers who plan and implement interdisciplinary educations. They are confronted with challenges regarding their understanding of using known disciplines in a new interdisciplinary way and see the possibilities of integrating disciplines when...... creating new knowledge. We will address the challenges by defining the term interdisciplinary in connection with education, and using the Problem Based Learning educational approach and experience from the engineering and science educational areas to find the obstacles. Two cases based on interdisciplinary...... and understand how different expertise can contribute to an interdisciplinary education....

  6. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    347 Impact of Theoretical Chemistry on Chemical and. Biological Sciences. Chemistry Nobel Prize – 2013. Saraswathi Vishveshwara. SERIES ARTICLES. 368 Ecology: From Individuals to Collectives. A Physicist's Perspective on Ecology. Vishwesha Guttal. 310. 368 ...

  7. How Science Really Works: The Student Experience of Research-Led Education

    Science.gov (United States)

    Smyth, Lillian; Davila, Federico; Sloan, Thomas; Rykers, Ellen; Backwell, Sam; Jones, Stephen B.

    2016-01-01

    There has been a shift in modern tertiary education theory that has moved away from a traditional, didactic model of education, towards a more student-led, constructivist approach. Nowhere is this more the case than in science and mathematical education, where the concept of research-led education is gaining more and more traction. The focus of…

  8. Simulations as Scaffolds in Science Education

    DEFF Research Database (Denmark)

    Renken, Maggie; Peffer, Melanie; Otrel-Cass, Kathrin

    This book outlines key issues for addressing the grand challenges posed to educators, developers, and researchers interested in the intersection of simulations and science education. To achieve this, the authors explore the use of computer simulations as instructional scaffolds that provide...... strategies and support when students are faced with the need to acquire new skills or knowledge. The monograph aims to provide insight into what research has reported on navigating the complex process of inquiry- and problem-based science education and whether computer simulations as instructional scaffolds...

  9. Plagiarism challenges at Ukrainian science and education

    Directory of Open Access Journals (Sweden)

    Denys Svyrydenko

    2016-12-01

    Full Text Available The article analyzes the types and severity of plagiarism violations at the modern educational and scientific spheres using the philosophic methodological approaches. The author analyzes Ukrainian context as well as global one and tries to formulate "order of the day" of plagiarism challenges. The plagiarism phenomenon is intuitively comprehensible for academicians but in reality it has a very complex nature and a lot of manifestation. Using approaches of ethics, philosophical anthropology, philosophy of science and education author formulates the series of recommendation for overcoming of plagiarism challenges at Ukrainian science and education.

  10. Modern Romanian Library Science Education

    OpenAIRE

    Elena Tîrziman

    2015-01-01

    Library and Information Science celebrates 25 years of modern existence. An analysis of this period shows a permanent modernisation of this subject and its synchronisation with European realities at both teaching and research levels. The evolution of this subject is determined by the dynamics of the field, the quick evolution of the information and documenting trades in close relationship with science progress and information technologies. This major ensures academic training (Bachelor, Maste...

  11. CREATIVE APPROACHES TO COMPUTER SCIENCE EDUCATION

    Directory of Open Access Journals (Sweden)

    V. B. Raspopov

    2010-04-01

    Full Text Available Using the example of PPS «Toolbox of multimedia lessons «For Children About Chopin» we demonstrate the possibility of involving creative students in developing the software packages for educational purposes. Similar projects can be assigned to school and college students studying computer sciences and informatics, and implemented under the teachers’ supervision, as advanced assignments or thesis projects as a part of a high school course IT or Computer Sciences, a college course of Applied Scientific Research, or as a part of preparation for students’ participation in the Computer Science competitions or IT- competitions of Youth Academy of Sciences ( MAN in Russian or in Ukrainian.

  12. RU COOL's scalable educational focus on immersing society in the ocean through ocean observing systems

    Science.gov (United States)

    Schofield, O.; McDonnell, J. D.; Kohut, J. T.; Glenn, S. M.

    2016-02-01

    Many regions of the ocean are exhibiting significant change, suggesting the need to develop effective focused education programs for a range of constituencies (K-12, undergraduate, and general public). We have been focused on developing a range of educational tools in a multi-pronged strategy built around using streaming data delivered through customized web services, focused undergraduate tiger teams, teacher training and video/documentary film-making. Core to the efforts is on engaging the undergraduate community by leveraging the data management tools of the U.S. Integrated Ocean Observing System (IOOS) and the education tools of the U.S. National Science Foundation's (NSF) Ocean Observing Initiative (OOI). These intuitive interactive browser-based tools reduce the barriers for student participation in sea exploration and discovery, and allowing them to become "field going" oceanographers while sitting at their desk. Those undergraduate student efforts complement efforts to improve educator and student engagement in ocean sciences through exposure to scientists and data. Through professional development and the creation of data tools, we will reduce the logistical costs of bringing ocean science to students in grades 6-16. We are providing opportunities to: 1) build capacity of scientists in communicating and engaging with diverse audiences; 2) create scalable, in-person and virtual opportunities for educators and students to engage with scientists and their research through data visualizations, data activities, educator workshops, webinars, and student research symposia. We are using a blended learning approach to promote partnerships and cross-disciplinary sharing. Finally we use data and video products to entrain public support through the development of science documentaries about the science and people who conduct it. For example Antarctic Edge is a feature length award-winning documentary about climate change that has garnered interest in movie theatres

  13. Forensic Science Education and Educational Requirements for Forensic Scientists.

    Science.gov (United States)

    Gaensslen, Robert E.

    2002-01-01

    Focuses on criminalistics, which can be understood to mean the activities and specialty areas characteristic of most municipal, county, or state forensic science laboratories in the United States. (DDR)

  14. Supporting new science teachers in pursuing socially just science education

    Science.gov (United States)

    Ruggirello, Rachel; Flohr, Linda

    2017-10-01

    This forum explores contradictions that arose within the partnership between Teach for America (TFA) and a university teacher education program. TFA is an alternate route teacher preparation program that places individuals into K-12 classrooms in low-income school districts after participating in an intense summer training program and provides them with ongoing support. This forum is a conversation about the challenges we faced as new science teachers in the TFA program and in the Peace Corps program. We both entered the teaching field with science degrees and very little formal education in science education. In these programs we worked in a community very different from the one we had experienced as students. These experiences allow us to address many of the issues that were discussed in the original paper, namely teaching in an unfamiliar community amid challenges that many teachers face in the first few years of teaching. We consider how these challenges may be amplified for teachers who come to teaching through an alternate route and may not have as much pedagogical training as a more traditional teacher education program provides. The forum expands on the ideas presented in the original paper to consider the importance of perspectives on socially just science education. There is often a disconnect between what is taught in teacher education programs and what teachers actually experience in urban classrooms and this can be amplified when the training received through alternate route provides a different framework as well. This forum urges universities and alternate route programs to continue to find ways to authentically partner using practical strategies that bring together the philosophies and goals of all stakeholders in order to better prepare teachers to partner with their students to achieve their science learning goals.

  15. Extending the purposes of science education: addressing violence within socio-economic disadvantaged communities

    Science.gov (United States)

    Castano, Carolina

    2012-09-01

    Current discourses about science education show a wide concern towards humanisation and a more socio-cultural perspective of school science. They suggest that science education can serve diverse purposes and be responsive to social and environmental situations we currently face. However, these discourses and social approaches to science education tend to focus on global issues. They do not respond to the immediate needs and local context of some communities. I discuss in this paper why the purposes of science education need to be extended to respond to the local issue of violence. For this, I present a case study with a group of 38 students from a poor population in Bogotá, Colombia, located in one of the suburbs with highest levels of crime in the city. I examine the ways that science education contributes to and embodies its own forms of violence and explore how a new approach to science education could contribute to break the cycle of violence.

  16. Bourdieu, Department Chairs and the Reform of Science Education

    Science.gov (United States)

    Melville, Wayne; Hardy, Ian; Bartley, Anthony

    2011-11-01

    Using the insights of the French sociologist, Pierre Bourdieu, this article considers the role of the science department chair in the reform of school science education. Using Bourdieu's 'thinking tools' of 'field', 'habitus' and 'capital', we case study the work of two teachers who both actively pursue the teaching and learning of science as inquiry. One teacher, Dan, has been a department chair since 2000, and has actively encouraged his department to embrace science as inquiry. The other teacher, Leslie, worked for one year in Dan's department before being transferred to another school where science teaching continues to be more traditional. Our work suggests that there are three crucial considerations for chairs seeking to lead the reform of science teaching within their department. The first of these is the development of a reform-minded habitus, as this appears to be foundational to the capital that can be expended in the leadership of reform. The second is an understanding of how to wield power and position in the promotion of reform. The third is the capacity to operate simultaneously and strategically within, and across, two fields; the departmental field and the larger science education field. This involves downplaying administrative logics, and foregrounding more inquiry-focused logics as a vehicle to challenge traditional science-teaching dispositions-the latter being typically dominated by concerns about curriculum 'coverage'.

  17. 75 FR 13265 - National Board for Education Sciences

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences AGENCY: Institute of Education Sciences, Department of Education. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education Sciences. The...

  18. 75 FR 53280 - National Board for Education Sciences

    Science.gov (United States)

    2010-08-31

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences AGENCY: Department of Education, Institute of Education Sciences. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education Sciences. The...

  19. Framing a future for soil science education.

    Science.gov (United States)

    Field, Damien

    2017-04-01

    The emerging concept of Global Soil Security highlights the need to have a renewed education framework that addresses the needs of those who want to; 1) know soil, 2) know of soil, and/or 3) be aware of soil. Those who know soil are soil science discipline experts and are concerned with soil as an object of study. With their discipline expertise focusing on what soil's are capable of they would be brokers of soil knowledge to those who know of soil. The connection with soil by the those in the second group focuses on the soil's utility and are responsible for managing the functionality and condition of the soil, the obvious example are farmers and agronomists. Reconnecting society with soil illustrates those who are members of the third group, i.e. those who are aware of soil. This is predicated on concepts of 'care' and is founded in the notion of beauty and utility. The utility is concerned with soil providing good Quality, clean food, or a source of pharmaceuticals. Soil also provides a place for recreation and those aware of soil know who this contributes to human health. The teaching-research-industry-learning (TRIL) nexus has been used to develop a framework for the learning and teaching of soil science applicable to a range of recipients, particularly campus-based students and practicing farm advisors. Consultation with academics, industry and professionals, by means of online (Delphi Study) and face-to-face forums, developed a heavily content-rich core body of knowledge (CBoK) relevant to industry, satisfying those who; know, and know of soil. Integrating the multidisciplinary approach in soil science teaching is a future aspiration, and will enable the development of curriculum that incorporates those who 'care' for soil. In the interim the application of the TRIL model allows the development of a learning framework more suited to real word needs. The development of a learning framework able to meet industry needs includes authentic complex scenarios that

  20. The Rural Girls in Science Project: from Pipelines to Affirming Science Education

    Science.gov (United States)

    Ginorio, Angela B.; Huston, Michelle; Frevert, Katie; Seibel, Jane Bierman

    The Rural Girls in Science (RGS) program was developed to foster the interest in science, engineering, and mathematics among rural high school girls in the state of Washington. Girls served include American Indians, Latinas, and Whites. This article provides an overview of the program and its outcomes not only for the participants (girls, teachers, counselors, and schools) but the researchers. Lessons learned from and about the participants are presented, and lessons learned from the process are discussed to illustrate how RGS moved from a focus on individuals to a focus on the school. The initial guiding concepts (self-esteem and scientific pipeline) were replaced by “possible selves” and our proposed complementary concepts: science-affirming and affirming science education.

  1. Scientists and Educators: Joining Forces to Enhance Ocean Science Literacy

    Science.gov (United States)

    Keener-Chavis, P.

    2004-12-01

    The need for scientists to work with educators to enhance the general public's understanding of science has been addressed for years in reports like Science for All Americans (1990), NSF in a Changing World (1995), Turning to the Sea: America's Ocean Future (1999), Discovering the Earth's Final Frontier, A U.S. Strategy for Ocean Exploration (2000), and most recently, the U.S. Commission on Ocean Policy Report (2004). As reported in The National Science Foundation's Center for Ocean Science Education Excellence (COSEE) Workshop Report (2000), "The Ocean Sciences community did not answer (this) call, even though their discovery that the ocean was a more critical driving force in the natural environment than previously thought possessed great educational significance." It has been further acknowledged that "rapid and extensive improvement of science education is unlikely to occur until it becomes clear to scientists that they have an obligation to become involved in elementary- and secondary-level science (The Role of Scientists in the Professional Development of Science Teachers, National Research Council, 1996.) This presentation will focus on teachers' perceptions of how scientists conduct research, scientists' perceptions of how teachers should teach, and some misconceptions between the two groups. Criteria for high-quality professional development for teachers working with scientists will also be presented, along with a brief overview of the National Oceanic and Atmospheric Administration's Ocean Exploration program efforts to bring teachers and ocean scientists together to further ocean science literacy at the national level through recommendations put forth in the U.S. Commission on Ocean Policy Report (2004).

  2. Improving science literacy and education through space life sciences

    Science.gov (United States)

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  3. Science Education and Education for Citizenship and Sustainable Development

    Science.gov (United States)

    Johnston, Ronald

    2011-01-01

    In the United Kingdom (UK) and Europe, the need for education for sustainable development and global citizenship has recently been emphasised. This emphasis has arguably found its major home in the social studies in higher education. Concurrently, there has been a decline in interest in "the sciences" as evidenced by a reduction in the…

  4. Emphasizing Morals, Values, Ethics, and Character Education in Science Education and Science Teaching

    Science.gov (United States)

    Chowdhury, Mohammad

    2016-01-01

    This article presents the rationale and arguments for the presence of morals, values, ethics and character education in science curriculum and science teaching. The author examines how rapid science and technological advancements and globalization are contributing to the complexities of social life and underpinning the importance of morals, values…

  5. The feasibility of educating trainee science teachers in issues of science and religion

    Science.gov (United States)

    Poole, Michael

    2016-06-01

    This article reflects on Roussel De Carvalho's paper `Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom'. It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher education project more manageable.

  6. A Cultural Historical Activity Theory Approach in Natural Sciences Education Laboratory Lessons towards Reforming Teachers Training

    Science.gov (United States)

    Kolokouri, Eleni; Theodoraki, Xarikleia; Plakitsi, Katerina

    2012-01-01

    This paper focuses on connecting natural sciences education with Cultural Historical Activity Theory (CHAT). In this sense, natural sciences education is considered as a lifelong learning procedure, not seen as an individual but as a collective activity. Moreover, learning becomes a human activity in which theory and praxis are strongly connected…

  7. Developing a Material-Dialogic Approach to Pedagogy to Guide Science Teacher Education

    Science.gov (United States)

    Hetherington, Lindsay; Wegerif, Rupert

    2018-01-01

    Dialogic pedagogy is being promoted in science teacher education but the literature on dialogic pedagogy tends to focus on explicit voices, and so runs the risk of overlooking the important role that material objects often play in science education. In this paper we use the findings of a teacher survey and classroom case study to argue that there…

  8. Experiential learning for education on Earth Sciences

    Science.gov (United States)

    Marsili, Antonella; D'Addezio, Giuliana; Todaro, Riccardo; Scipilliti, Francesca

    2015-04-01

    The Laboratorio Divulgazione Scientifica e Attività Museali of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Laboratory for Outreach and Museum Activities) in Rome, organizes every year intense educational and outreach activities to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. Focusing on kids, we designed and implemented the "greedy laboratory for children curious on science (Laboratorio goloso per bambini curiosi di scienza)", to intrigue children from primary schools and to attract their interest by addressing in a fun and unusual way topics regarding the Earth, seismicity and seismic risk. We performed the "greedy laboratory" using experiential teaching, an innovative method envisaging the use and handling commonly used substances. In particular, in the "greedy laboratory" we proposed the use of everyday life's elements, such as food, to engage, entertain and convey in a simple and interesting communication approach notions concerning Earth processes. We proposed the initiative to public during the "European Researchers Night" in Rome, on September 26, 2014. Children attending the "greedy laboratory", guided by researchers and technicians, had the opportunity to become familiar with scientific concepts, such as the composition of the Earth, the Plate tectonics, the earthquake generation, the propagation of seismic waves and their shaking effects on the anthropogenic environment. During the hand-on laboratory, each child used not harmful substances such as honey, chocolate, flour, barley, boiled eggs and biscuits. At the end, we administered a questionnaire rating the proposed activities, first evaluating the level of general satisfaction of the laboratory and then the various activities in which it was divided. This survey supplied our team with feedbacks, revealing some precious hints on appreciation and margins of improvement. We provided a semi-quantitative assessment with a

  9. Supramolecular Pharmaceutical Sciences: A Novel Concept Combining Pharmaceutical Sciences and Supramolecular Chemistry with a Focus on Cyclodextrin-Based Supermolecules.

    Science.gov (United States)

    Higashi, Taishi; Iohara, Daisuke; Motoyama, Keiichi; Arima, Hidetoshi

    2018-01-01

    Supramolecular chemistry is an extremely useful and important domain for understanding pharmaceutical sciences because various physiological reactions and drug activities are based on supramolecular chemistry. However, it is not a major domain in the pharmaceutical field. In this review, we propose a new concept in pharmaceutical sciences termed "supramolecular pharmaceutical sciences," which combines pharmaceutical sciences and supramolecular chemistry. This concept could be useful for developing new ideas, methods, hypotheses, strategies, materials, and mechanisms in pharmaceutical sciences. Herein, we focus on cyclodextrin (CyD)-based supermolecules, because CyDs have been used not only as pharmaceutical excipients or active pharmaceutical ingredients but also as components of supermolecules.

  10. Cascadia GeoSciences: Community-Based Earth Science Research Focused on Geologic Hazard Assessment and Environmental Restoration.

    Science.gov (United States)

    Williams, T. B.; Patton, J. R.; Leroy, T. H.

    2007-12-01

    Cascadia GeoSciences (CG) is a new non-profit membership governed corporation whose main objectives are to conduct and promote interdisciplinary community based earth science research. The primary focus of CG is on geologic hazard assessment and environmental restoration in the Western U.S. The primary geographic region of interest is Humboldt Bay, NW California, within the southern Cascadia subduction zone (SCSZ). This region is the on-land portion of the accretionary prism to the SCSZ, a unique and exciting setting with numerous hazards in an active, dynamic geologic environment. Humboldt Bay is also a region rich in history. Timber harvesting has been occurring in California's coastal forestlands for approximately 150 years. Timber products transported with ships and railroads from Mendocino and Humboldt Counties helped rebuild San Francisco after the 1906 earthquake. Historic land-use of this type now commonly requires the services of geologists, engineers, and biologists to restore road networks as well as provide safe fish passage. While Humboldt Bay is a focus of some of our individual research goals, we welcome regional scientists to utilize CG to support its mission while achieving their goals. An important function of CG is to provide student opportunities in field research. One of the primary charitable contributions of the organization is a student grant competition. Funds for the student grant will come from member fees and contributions, as well as a percent of all grants awarded to CG. A panel will review and select the student research proposal annually. In addition to supporting student research financially, professional members of CG will donate their time as mentors to the student researchers, promoting a student mentor program. The Humboldt Bay region is well suited to support annual student research. Thorough research like this will help unravel some of the mysteries of regional earthquake-induced land-level changes, as well as possible fault

  11. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1988-01-01

    Experience has shown that one of the critical conditions for the successful introduction of a nuclear power programme is the availability of sufficient numbers of personnel having the required education and experience qualifications. For this reason, the introduction of nuclear power should be preceded by a thorough assessment of the relevant capabilities of the industrial and education/training infrastructures of the country involved. The IAEA assists its Member States in a variety of ways in the development of infrastructures and capabilities for engineering and science education for nuclear power. Types of assistance provided by the IAEA to Member States include: Providing information in connection with the establishment or upgrading of academic and non-academic engineering and science education programmes for nuclear power (on the basis of curricula recommended in the Agency's Guidebook on engineering and science education for nuclear power); Expert assistance in setting up or upgrading laboratories and other teaching facilities; Assessing the capabilities and interest of Member States and their institutions/organizations for technical co-operation among countries, especially developing ones, in engineering and science education, as well as its feasibility and usefulness; Preparing and conducting nuclear specialization courses (e.g. on radiation protection) in various Member States

  12. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    232. Mahlburg's Work on Crank Functions. Ramanujan's Partitions Revisited. Nagesh Juluru and Arni S R Srinivasa Rao. REFLECTIONS. 268. The Scientific Enterprise. Science in the Modern Indian Context. V V Raman. R. R. R4. 2. 1. C r. L. R3+ rL. H. A. C. D. B. E. 244. 223. Transverse section of the ring porous wood ...

  13. Enhancing Science Education through Art

    Science.gov (United States)

    Merten, Susan

    2011-01-01

    Augmenting science with the arts is a natural combination when one considers that both scientists and artists rely on similar attitudes and values. For example, creativity is often associated with artists, but scientists also use creativity when seeking a solution to a problem or creating a new product. Curiosity is another common trait shared…

  14. Science Education and ESL Students

    Science.gov (United States)

    Allen, Heather; Park, Soonhye

    2011-01-01

    The number of students who learn English as a second language (ESL) in U.S. schools has grown significantly in the past decade. This segment of the student population increased by 56% between the 1994-95 and 2004-05 school years (NCLR 2007). As the ESL student population increases, many science teachers struggle to tailor instructional materials,…

  15. Outdoor Education and Science Achievement

    Science.gov (United States)

    Rios, José M.; Brewer, Jessica

    2014-01-01

    Elementary students have limited opportunities to learn science in an outdoor setting at school. Some suggest this is partially due to a lack of teacher efficacy teaching in an outdoor setting. Yet the research literature indicates that outdoor learning experiences develop positive environmental attitudes and can positively affect science…

  16. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    Sketch made by Niels Bohr in 1944 to illustrate the content of his debate with Einstein on the uncertainty principle at the 6th Solvay Conference in 1930. Niels Bohr (1885–1962). Sketch by Homi Bhabha. (Courtesy: TIFR, Bombay). Front Cover. 871. Science Smiles. Ayan Guha. 876. Back Cover. 948. Classics. Biology and ...

  17. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    (Credit: M S Pavan, IISc). Adolf von Baeyer. (1835–1917). (Illustration: Subhankar Biswas). Front Cover. Science Smiles. Ayan Guha. 488. Back Cover. Inside Back Cover. Flowering Trees. Credit: R Arun Singh, IISc. 483. REFLECTIONS. 570 Ramanujan's Circle. Inspirors, Patrons and Mentors. Utpal Mukhopadhyay. 489.

  18. Primary Science Education in China

    Science.gov (United States)

    Pook, Gayle

    2013-01-01

    Consider the extent to which primary science teaching has evolved since it became a core subject in England with the introduction of the National Curriculum in 1988, and the pace at which theory-driven classroom practice has advanced. It is no wonder that, given the recent economic restructuring and boom in technological development in China,…

  19. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    Refresher Course on Mountain Hydrology and. Climate Change. Science Academies' Seventy-Fifth Refresher Course in Experimental Physics. Information & Announcements. 106. 105. 108. Classics. Are we Utilizing our. Water Resources. Wisely? B P Radhakrishna. General Editorial on. Publication Ethics. 1. 93. 71.

  20. Contextual Factors in Education: Improving Science and Mathematics Education for Minorities and Women.

    Science.gov (United States)

    Cole, Michael, Ed.; Griffin, Peg, Ed.

    This book summarizes research on the various ways that students' cultural backgrounds and innate ways of learning affect academic achievement. It also offers descriptions and recommendations for improving science and mathematics education for minorities and women, based on successful programs, that take these differences into account. The focus is…

  1. Developing a yearlong Next Generation Science Standard (NGSS) learning sequence focused on climate solutions: opportunities, challenges and reflections

    Science.gov (United States)

    Cordero, E.; Centeno, D.

    2015-12-01

    Over the last four years, the Green Ninja Project (GNP) has been developing educational media (e.g., videos, games and online lessons) to help motivate student interest and engagement around climate science and solutions. Inspired by the new emphasis in NGSS on climate change, human impact and engineering design, the GNP is developing a technology focused, integrative, and yearlong science curriculum focused around solutions to climate change. Recognizing the importance of teacher training on the successful implementation of NGSS, we have also integrated teacher professional development into our curriculum. During the presentation, we will describe the design philosophy around our middle school curriculum and share data from a series of classes that are piloting the curriculum during Fall 2015. We will also share our perspectives on how data, media creation and engineering can be used to create educational experiences that model the type of 'three-dimensional learning' encouraged by NGSS.

  2. Science and Common Sense: Perspectives from Philosophy and Science Education

    DEFF Research Database (Denmark)

    Green, Sara

    2016-01-01

    that to clarify the relation between common sense and scientific reasoning, more attention to the cognitive aspects of learning and doing science is needed. As a step in this direction, I explore the potential for cross-fertilization between the discussions about conceptual change in science education...... knowledge, distinguished by an increase in systematicity. On the other, he argues that scientific knowledge often comes to deviate from common sense as science develops. Specifically, he argues that a departure from common sense is a price we may have to pay for increased systematicity. I argue...... and philosophy of science. Particularly, I examine debates on whether common sense intuitions facilitate or impede scientific reasoning. While arguing that these debates can balance some of the assumptions made by Hoyningen-Huene, I suggest that a more contextualized version of systematicity theory could...

  3. Ten Decades of the Science Textbook: A Revealing Mirror of Science Education Past and Present.

    Science.gov (United States)

    Lynch, Paddy P.; Strube, Paul D.

    1985-01-01

    Indicates that trends in science education can be examined by examining science textbook content. Suggests that a historical overview is important and pertinent to contemporary thinking and contemporary problems in science education. (Author/JN)

  4. Cognitive apprenticeship in health sciences education: a qualitative review.

    Science.gov (United States)

    Lyons, Kayley; McLaughlin, Jacqueline E; Khanova, Julia; Roth, Mary T

    2017-08-01

    Cognitive apprenticeship theory emphasizes the process of making expert thinking "visible" to students and fostering the cognitive and meta-cognitive processes required for expertise. The purpose of this review was to evaluate the use of cognitive apprenticeship theory with the primary aim of understanding how and to what extent the theory has been applied to the design, implementation, and analysis of education in the health sciences. The initial search yielded 149 articles, with 45 excluded because they contained the term "cognitive apprenticeship" only in reference list. The remaining 104 articles were categorized using a theory talk coding scheme. An in depth qualitative synthesis and review was conducted for the 26 articles falling into the major theory talk category. Application of cognitive apprenticeship theory tended to focus on the methods dimension (e.g., coaching, mentoring, scaffolding), with some consideration for the content and sociology dimensions. Cognitive apprenticeship was applied in various disciplines (e.g., nursing, medicine, veterinary) and educational settings (e.g., clinical, simulations, online). Health sciences education researchers often used cognitive apprenticeship to inform instructional design and instrument development. Major recommendations from the literature included consideration for contextual influences, providing faculty development, and expanding application of the theory to improve instructional design and student outcomes. This body of research provides critical insight into cognitive apprenticeship theory and extends our understanding of how to develop expert thinking in health sciences students. New research directions should apply the theory into additional aspects of health sciences educational research, such as classroom learning and interprofessional education.

  5. Gender-based education during clerkships: a focus group study

    Directory of Open Access Journals (Sweden)

    van Leerdam L

    2014-02-01

    Full Text Available Lotte van Leerdam, Lianne Rietveld, Doreth Teunissen, Antoine Lagro-JanssenDepartment of Primary and Community Care, Gender and Women's Health, Radboud University Medical Center, Nijmegen, The NetherlandsObjectives: One of the goals of the medical master's degree is for a student to become a gender-sensitive doctor by applying knowledge of gender differences in practice. This study aims to investigate, from the students’ perspective, whether gender medicine has been taught in daily practice during clerkship.Methods: A focus group study was conducted among 29 medical students from Radboud University, Nijmegen, The Netherlands, who had just finished either their internal medicine or surgical clerkships. Data were analyzed in line with the principles of constant comparative analysis.Results: Four focus groups were conducted with 29 participating students. Clinical teachers barely discuss gender differences during students’ clerkships. The students mentioned three main explanatory themes: insufficient knowledge; unawareness; and minor impact. As a result, students feel that they have insufficient competencies to become gender-sensitive doctors.Conclusion: Medical students at our institution perceive that they have received limited exposure to gender-based education after completing two key clinical clerkships. All students feel that they have insufficient knowledge to become gender-sensitive doctors. They suppose that their clinical teachers have insufficient knowledge regarding gender sensitivity, are unaware of gender differences, and the students had the impression that gender is not regarded as an important issue. We suggest that the medical faculty should encourage clinical teachers to improve their knowledge and awareness of gender issues.Keywords: medical education, clerkship, gender, hidden curriculum, clinical teachers

  6. Modern Romanian Library Science Education

    Directory of Open Access Journals (Sweden)

    Elena Tîrziman

    2015-01-01

    Full Text Available Library and Information Science celebrates 25 years of modern existence. An analysis of this period shows a permanent modernisation of this subject and its synchronisation with European realities at both teaching and research levels. The evolution of this subject is determined by the dynamics of the field, the quick evolution of the information and documenting trades in close relationship with science progress and information technologies. This major ensures academic training (Bachelor, Master, and Doctor and post-graduation studies and is involved in research projects relevant for the field and the labour market. Exigencies of the information-related trades and the appearance of new jobs are challenges for this academic major.

  7. Philosophy of Science and Education

    Science.gov (United States)

    Jung, Walter

    2012-01-01

    This is a vast and vague topic. In order to do justice to it one has to write a book or maybe more than one. For it can be understood in quite different ways and on different levels. For example you may think mainly of the historical aspect, that is how philosophy of science developed in the last hundred or so years and how its influence on…

  8. Misrecognition and science education reform

    Science.gov (United States)

    Brandt, Carol B.

    2012-09-01

    In this forum, I expand upon Teo and Osborne's discussion of teacher agency and curriculum reform. I take up and build upon their analysis to further examine one teacher's frustration in enacting an inquiry-based curriculum and his resulting accommodation of an AP curriculum. In this way I introduce the concept of misrecognition (Bourdieu and Passeron 1977) to open up new ways of thinking about science inquiry and school reform.

  9. Joint Science Education Project: Learning about polar science in Greenland

    Science.gov (United States)

    Foshee Reed, Lynn

    2014-05-01

    The Joint Science Education Project (JSEP) is a successful summer science and culture opportunity in which students and teachers from the United States, Denmark, and Greenland come together to learn about the research conducted in Greenland and the logistics involved in supporting the research. They conduct experiments first-hand and participate in inquiry-based educational activities alongside scientists and graduate students at a variety of locations in and around Kangerlussuaq, Greenland, and on the top of the ice sheet at Summit Station. The Joint Committee, a high-level forum involving the Greenlandic, Danish and U.S. governments, established the Joint Science Education Project in 2007, as a collaborative diplomatic effort during the International Polar Year to: • Educate and inspire the next generation of polar scientists; • Build strong networks of students and teachers among the three countries; and • Provide an opportunity to practice language and communication skills Since its inception, JSEP has had 82 student and 22 teacher participants and has involved numerous scientists and field researchers. The JSEP format has evolved over the years into its current state, which consists of two field-based subprograms on site in Greenland: the Greenland-led Kangerlussuaq Science Field School and the U.S.-led Arctic Science Education Week. All travel, transportation, accommodations, and meals are provided to the participants at no cost. During the 2013 Kangerlussuaq Science Field School, students and teachers gathered data in a biodiversity study, created and set geo- and EarthCaches, calculated glacial discharge at a melt-water stream and river, examined microbes and tested for chemical differences in a variety of lakes, measured ablation at the edge of the Greenland Ice Sheet, and learned about fossils, plants, animals, minerals and rocks of Greenland. In addition, the students planned and led cultural nights, sharing food, games, stories, and traditions of

  10. Teaching heroics: Identity and ethical imagery in science education

    Science.gov (United States)

    Robeck, Edward C.

    In what follows, I address ways in which science education can influence personal identity and social relationships. I do this through a consideration of ideological implications of science as it is constituted in science education. In this situation, I consider science to be a symbolic--emanating from socially derived meanings. I begin with the premise that any symbol system is permeated with ideological elements. To highlight the ideological elements of science in science education, I use another more explicitly symbolic system as a comparative framework. That system is epic heroism, primarily as Joseph Campbell (1949) describes it in The Hero With A Thousand Faces. The discussion of science education is given a practical grounding using transcripts from the interviews with twenty Grade 10 students and many of their teachers undertaken in the 1993-1994 school year. I used epic heroism as a framework for initiating interpretations of broad themes from the transcripts, but also read the transcripts in relation to aspects of epic heroism, including existing critiques of Campbell's work and heroism more broadly. Specific quotes are included to illustrations of various points. My particular focus here is on ideological elements that can be associated with racism, sexism, and other social relationships that are collectively referred to as relations involving divisive bias. In particular, two themes are discussed extensively. The first is the theme of identity formed through separation, which results in the promotion of reductive and individualistic identities. The second theme has to do with the role of boundary imagery in the formation of relationship, which establishes difference hierarchically. Both of these are pervasive in divisive bias and in the imagery of epic heroism. Ways in which they can pervade practices in science education are also discussed. The central argument of the thesis is that science education, when undertaken through practices that incorporate

  11. Science teacher identity and eco-transformation of science education: comparing Western modernism with Confucianism and reflexive Bildung

    Science.gov (United States)

    Sjöström, Jesper

    2018-03-01

    This forum article contributes to the understanding of how science teachers' identity is related to their worldviews, cultural values and educational philosophies, and to eco-transformation of science education. Special focus is put on `reform-minded' science teachers. The starting point is the paper Science education reform in Confucian learning cultures: teachers' perspectives on policy and practice in Taiwan by Ying-Syuan Huang and Anila Asghar. It highlights several factors that can explain the difficulties of implementing "new pedagogy" in science education. One important factor is Confucian values and traditions, which seem to both hinder and support the science teachers' implementation of inquiry-based and learner-centered approaches. In this article Confucianism is compared with other learning cultures and also discussed in relation to different worldviews and educational philosophies in science education. Just like for the central/north European educational tradition called Bildung, there are various interpretations of Confucianism. However, both have subcultures (e.g. reflexive Bildung and Neo-Confucianism) with similarities that are highlighted in this article. If an "old pedagogy" in science education is related to essentialism, rationalist-objectivist focus, and a hierarchical configuration, the so called "new pedagogy" is often related to progressivism, modernism, utilitarianism, and a professional configuration. Reflexive Bildung problematizes the values associated with such a "new pedagogy" and can be described with labels such as post-positivism, reconstructionism and problematizing/critical configurations. Different educational approaches in science education, and corresponding eco-identities, are commented on in relation to transformation of educational practice.

  12. What Is "Agency"? Perspectives in Science Education Research

    Science.gov (United States)

    Arnold, Jenny; Clarke, David John

    2014-01-01

    The contemporary interest in researching student agency in science education reflects concerns about the relevance of schooling and a shift in science education towards understanding learning in science as a complex social activity. The purpose of this article is to identify problems confronting the science education community in the development…

  13. Collaborative learning in radiologic science education.

    Science.gov (United States)

    Yates, Jennifer L

    2006-01-01

    Radiologic science is a complex health profession, requiring the competent use of technology as well as the ability to function as part of a team, think critically, exercise independent judgment, solve problems creatively and communicate effectively. This article presents a review of literature in support of the relevance of collaborative learning to radiologic science education. In addition, strategies for effective design, facilitation and authentic assessment of activities are provided for educators wishing to incorporate collaborative techniques into their program curriculum. The connection between the benefits of collaborative learning and necessary workplace skills, particularly in the areas of critical thinking, creative problem solving and communication skills, suggests that collaborative learning techniques may be particularly useful in the education of future radiologic technologists. This article summarizes research identifying the benefits of collaborative learning for adult education and identifying the link between these benefits and the necessary characteristics of medical imaging technologists.

  14. Rural science education as social justice

    Science.gov (United States)

    Eppley, Karen

    2017-03-01

    What part can science education play in the dismantling of obstacles to social justice in rural places? In this Forum contribution, I use "Learning in and about Rural Places: Connections and Tensions Between Students' Everyday Experiences and Environmental Quality Issues in their Community"(Zimmerman and Weible 2016) to explicitly position rural education as a project of social justice that seeks full participatory parity for rural citizens. Fraser's (2009) conceptualization of social justice in rural education requires attention to the just distribution of resources, the recognition of the inherent capacities of rural people, and the right to equal participation in democratic processes that lead to opportunities to make decisions affecting local, regional, and global lives. This Forum piece considers the potential of place-based science education to contribute to this project.

  15. Future challenges in nuclear science education

    International Nuclear Information System (INIS)

    Yates, S.W.

    1993-01-01

    The role of Division of Nuclear Chemistry and Technology of the American Chemical Society in nuclear science education is reviewed, and suggestions for enhanced involvement in additional areas are presented. Possible new areas of emphasis, such as educational programs for pre-college students and non-scientific public, are discussed. Suggestions for revitalizing the position of radiochemistry laboratories in academic institutions are offered. (author) 7 refs

  16. QUALITY ASSESSMENT IN HIGHER EDUCATION: ARE RUSSIAN UNIVERSITIES FOCUSED ON THE EDUCATIONAL NEEDS OF STUDENTS?

    Directory of Open Access Journals (Sweden)

    Sergey Trapitsin

    2015-06-01

    Full Text Available The article touches on the issue of meeting the students' educational needs as a crucial point in the quality of education improvement. The main consumers of educational services are students whose perceptions of the educational quality is analyzed. According to the research the primary attention of the administration have be paid to the dissatisfaction of the consumer and only then to ensure the satisfaction. The focus on the factors causing negative evaluation and dissatisfaction of students, using tactics quick fix ("quick patch" is recommended.

  17. The role of science education for combating and preventing diseases

    International Nuclear Information System (INIS)

    Ghaffar, A.

    2011-01-01

    In most developing countries, the role of science education for combating and preventing diseases is both minimal and impracticable. There are two main reasons to this: i) lack of medical knowledge; and ii) lack of practical knowledge. These consequences may be a result of exclusion of medically trained people in the education system, e.g. in our education systems, there is no established trend of medical doctors to teach at school, college or even at university levels. There is a provision of medical education at teaching hospitals, but they still lack the right educationists and latest trainings at par with global standards. In order to consolidate the concept and promotion of science education in the field of health and medicine, this paper discusses four diseases commonly found in developing countries like Pakistan. These diseases are Poliomyelitis, Malaria, Rabies and Typhoid. The disability/mortality due to Poliomyelitis; the morbidity and mortality as a result of Malaria and Typhoid fever, and a very high death rate (up to 5000/year) as a result of dog bites (Rabies) are reported in Pakistan. The study takes into account myths and mysteries related to these diseases and their consequences/complications leading to mortality. This study is focused on the prophylactic measures (prophylaxis), as an ounce of prevention is worth a pound of cure. Prophytactic measures can only be taken by creating awareness about these diseases and re-evaluation of the role of science education in all sectors. (author)

  18. The role of science education for combating and preventing diseases

    Energy Technology Data Exchange (ETDEWEB)

    Ghaffar, A. [COMSATS Inst. of Information Technology, Islamabad (Pakistan). Dept. of Meteorology; Tariq, S. [Department of Meteorology, Islamabad (Pakistan)

    2011-01-15

    In most developing countries, the role of science education for combating and preventing diseases is both minimal and impracticable. There are two main reasons to this: i) lack of medical knowledge; and ii) lack of practical knowledge. These consequences may be a result of exclusion of medically trained people in the education system, e.g. in our education systems, there is no established trend of medical doctors to teach at school, college or even at university levels. There is a provision of medical education at teaching hospitals, but they still lack the right educationists and latest trainings at par with global standards. In order to consolidate the concept and promotion of science education in the field of health and medicine, this paper discusses four diseases commonly found in developing countries like Pakistan. These diseases are Poliomyelitis, Malaria, Rabies and Typhoid. The disability/mortality due to Poliomyelitis; the morbidity and mortality as a result of Malaria and Typhoid fever, and a very high death rate (up to 5000/year) as a result of dog bites (Rabies) are reported in Pakistan. The study takes into account myths and mysteries related to these diseases and their consequences/complications leading to mortality. This study is focused on the prophylactic measures (prophylaxis), as an ounce of prevention is worth a pound of cure. Prophytactic measures can only be taken by creating awareness about these diseases and re-evaluation of the role of science education in all sectors. (author)

  19. Guidebook to excellence, 1994: A directory of federal resources for mathematics and science education improvement

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The purpose of this Guidebook to Excellence is to assist educators, parents, and students across the country in attaining the National Education Goals, particularly Goal 4: By the year 2000, US students will be first in the world in science and mathematics achievement. The Guidebook will help make the education community aware of the Federal Government`s extensive commitment to mathematics and science education. Sixteen Federal agencies collaborated with the Eisenhower National Clearinghouse to produce this publication. Although the Guidebook contains valuable information for anyone involved in mathematics and science education, its focus is on the elementary and secondary levels.

  20. Cross-curricular goals and raising the relevance of science education

    DEFF Research Database (Denmark)

    Belova, Nadja; Dittmar, Johanna; Hansson, Lena

    2016-01-01

    education go beyond single contents and concepts; many challenges are tied to cross-curricular goals. Specifically, when it comes to the societal and vocational relevance of science education, many demands can only be met when we develop corresponding skills across disciplines and grade levels. This chapter...... focuses on a set of such cross-curricular goals from a chemistry education perspective, namely education for sustainability, critical media literacy, innovation competence, vocational orientation, and employability. It relates them to the idea of relevant chemistry and science education. Directions...... for research and curriculum development will be suggested that emerge from taking into account cross-curricular goals on the science curriculum more thoroughly....

  1. Beliefs and Willingness to Act about Global Warming: Where to Focus Science Pedagogy?

    Science.gov (United States)

    Skamp, Keith; Boyes, Eddie; Stanisstreet, Martin

    2013-01-01

    Science educators have a key role in empowering students to take action to reduce global warming. This involves assisting students to understand its causes as well as taking pedagogical decisions that have optimal probabilities of leading to students being motivated to take actions based on empirically based science beliefs. To this end New South…

  2. An Analysis of the Interdisciplinarity Theme in the Main Brazilian Journals on Science Education

    Directory of Open Access Journals (Sweden)

    Guilherme do Amaral Carneiro

    2018-01-01

    Full Text Available The discussion on interdisciplinarity has been present in the scope of Education for over 30 years and has had repercussions in the area of Science Education. Despite the many works in the main Brazilian journals in the area, there are still gaps about complementary information on research that relates interdisciplinarity and Science Education. In order to fill some of this gap, we carried out a study whose objective was to identify these approaches in articles of the main national science education journals. We use the terms interdisciplinarity and interdisciplinary as descriptors in the titles, abstracts, and keywords to select the articles analyzed. It was found that studies focus on basic education and deal mainly with curriculum issues. The areas of physics and biology education stand out, as well as the science environment technology society and Environmental Education approaches. Data also point to a contrasting panorama, of diversification and decrease of the research that relates Science Teaching and Interdisciplinarity.

  3. Cultural Studies of Science Education

    OpenAIRE

    El-Hani, Charbel Niño; Muñoz, Yupanqui J.

    2012-01-01

    Texto completo: acesso restrito. p. 909-943 Video games, as technological and cultural artifacts of considerable influence in the contemporary society, play an important role in the construction of identities, just as other artifacts (e.g., books, newspapers, television) played for a long time. In this paper, we discuss this role by considering video games under two concepts, othering and technopoly, and focus on how these concepts demand that we deepen our understanding of the ethics of v...

  4. Initial teacher education and continuing professional development for science teachers

    DEFF Research Database (Denmark)

    Dolin, Jens; Evans, Robert Harry

    2011-01-01

    Research into ways of improving the initial education and continuing professional development of science teachers is closely related to both common and unique strands. The field is complex since science teachers teach at different educational levels, are often educated in different science subjects......, and belong to various cultures, both educationally and socially. Section 1 presents a review of the research literature across these dimensions and looks at the knowledge, skills and competences needed for teaching science, specific issues within science teacher education, and strategies for educating...... and developing science teachers....

  5. Educational Technologies in Problem-Based Learning in Health Sciences Education: A Systematic Review

    Science.gov (United States)

    Jin, Jun

    2014-01-01

    Background As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. Objective The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. Methods A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Results Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for

  6. Educational technologies in problem-based learning in health sciences education: a systematic review.

    Science.gov (United States)

    Jin, Jun; Bridges, Susan M

    2014-12-10

    As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for problem-based health sciences education

  7. Improving Primary Teachers' Attitudes toward Science by Attitude-Focused Professional Development

    Science.gov (United States)

    van Aalderen-Smeets, Sandra I.; van der Molen, Juliette H. Walma

    2015-01-01

    This article provides a description of a novel, attitude-focused, professional development intervention, and presents the results of an experimental pretest-posttest control group study investigating the effects of this intervention on primary teachers' personal attitudes toward science, attitudes toward teaching science, and their science…

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 1. Arrows in Chemistry. Abirami Lakshminarayanan. General Article Volume 15 Issue 1 January 2010 pp 51-63. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/015/01/0051-0063. Keywords.

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 8. Use of Isotopes for Studying Reaction Mechanisms-Secondary Kinetic Isotope Effect. Uday Maitra J Chandrasekhar. Series Article Volume 2 Issue 8 August 1997 pp 18-25 ...

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 12. Electrons in Condensed Matter. T V Ramakrishnan. General Article Volume 2 Issue 12 December 1997 pp 17-32. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/002/12/0017-0032 ...

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 10. October 2002, pages 1-100. pp 1-1 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Timoshenko: Father of Engineering ...

  12. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 3, Issue 10. October 1998, pages 1-102. pp 1-2 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. From Fourier Series to Fourier Transforms.

  13. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 12. Pythagorean Means and Carnot Machines: When Music Meets Heat. Ramandeep S Johal.

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 4, Issue 1. January 1999, pages 1-95. pp 1-2 Editorial. Editorial ... More Details Fulltext PDF. pp 80-88 Reflections. Some Moral and Technical Consequences of Automation.

  15. Science and Higher Education in Korea.

    Science.gov (United States)

    Lee, Sungho

    The role and contribution of academic science to national development in the Republic of Korea is discussed. After an overview on the development of the Korean system of higher education, attention is directed to the national research system and its articulation with the academic system. Consideration is given to: factors that contributed to the…

  16. New Biological Sciences, Sociology and Education

    Science.gov (United States)

    Youdell, Deborah

    2016-01-01

    Since the Human Genome Project mapped the gene sequence, new biological sciences have been generating a raft of new knowledges about the mechanisms and functions of the molecular body. One area of work that has particular potential to speak to sociology of education, is the emerging field of epigenetics. Epigenetics moves away from the mapped…

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 8. August 2006, pages 1-106. pp 1-2 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Sir Gilbert Thomas Walker · J Srinivasan M ...

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 11. November 2014, pages 971-1070. pp 971-971 Editorial. Editorial · K L Sebastian · More Details Fulltext PDF. pp 972-973 Article-in-a-Box. Georg Cantor ...

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 14, Issue 1. January 2009, pages 1-100. pp 1-2 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Sir James Lighthill · Renuka Ravindran.

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 10, Issue 8. August 2005, pages 1-105. pp 1-1 Editorial. Editorial · Priti Shankar · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Theodore von Kármán – Rocket Scientist.

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 2. February 2006, pages 1-101. pp 1-1 Editorial. Editorial · S Ramasubramanian · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. David Huffman · Priti Shankar.

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 17, Issue 11. November 2012, pages 1019-1120. pp 1019-1019 Editorial. Editorial · Y N Srikant · More Details Fulltext PDF. pp 1022-1033 Series Article. Fascinating Organic ...

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 9, Issue 10. October 2004, pages 1-98. pp 1-2 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. G. I. Taylor – An Amateur Scientist.

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 4. Issue front cover thumbnail Issue back cover thumbnail. Volume 2, Issue 4. April 1997, pages 1-98. pp 1-1 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. The Chandrasekhar Limit · G Srinivasan.

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 10, Issue 6. June 2005, pages 1-98. pp 1-1 Editorial. Editorial · Jaywant H Arakeri · More Details Fulltext PDF. pp 2-5 Article-in-a-Box. Roentgen and his Rays.

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 7. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 7. July 2014, pages 585-668. pp 585-585 Editorial. Editorial · S Ranganathan · More Details Fulltext PDF. pp 586-589 Article-in-a-Box. Robert Burns Woodward ...

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 8. August 2014, pages 667-778. pp 667-667 Editorial. Editorial · K L Sebastian · More Details Fulltext PDF. pp 668-669 Table of Contents. Table of Contents.

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 12, Issue 1. January 2007, pages 1-96. pp 1-1 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 2-3 Table of Contents. Table of Contents · More Details Fulltext ...

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 12. December 2014, pages 1069-1210. pp 1069-1070 Editorial. Editorial · T N Guru Row Angshuman Roy Choudhury · More Details Fulltext PDF. pp 1071-1073 ...

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 7. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 7. July 2015, pages 571-664. pp 571-571 Editorial. Editorial · Rajaram Nityananda · More Details Fulltext PDF. pp 572-573 Table of Contents. Table of Contents.

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 2. February 2002, pages 1-96. pp 1-1 Editorial. Editorial · Amitabh Joshi · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Claude Elwood Shannon · Priti Shankar.

  12. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 10. October 2015, pages 863-950b. pp 863-863 Editorial. Editorial · Rajaram Nityananda · More Details Fulltext PDF. pp 864-865 Article-in-a-Box. Jan Hendrik Oort ...

  13. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 9. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 9. September 2002, pages 1-102. pp 1-2 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Fritz Haber · Animesh Chakravorty.

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 16, Issue 2. February 2011, pages 103-202. pp 103-103 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 104-104 Article-in-a-Box. A Short Biography of Israel ...

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 15, Issue 8. August 2010, pages 681-772. pp 681-681 Editorial. Editorial · G K Ananthasuresh · More Details Fulltext PDF. pp 682-683 Table of Contents. Table of Contents.

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 11. November 2006, pages 1-98. pp 1-2 Editorial. Editorial · Renuka Ravindran · More Details Fulltext PDF. pp 3-4 Article-in-a-Box. Bernhard Riemann.

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 17, Issue 10. October 2012, pages 923-1020. pp 923-923 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 924-925 Article-in-a-Box. S N De - An Appreciation.

  18. An Ethically Ambitious Higher Education Data Science

    Science.gov (United States)

    Stevens, Mitchell L.

    2014-01-01

    The new data sciences of education bring substantial legal, political, and ethical questions about the management of information about learners. This piece provides a synoptic view of recent scholarly discussion in this domain and calls for a proactive approach to the ethics of learning research.

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Programming Languages - A Brief Review. V Rajaraman ... V Rajaraman1 2. IBM Professor of Information Technology, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India; Hon.Professor, Supercomputer Education & Research Centre Indian Institute of Science, Bangalore 560012, India ...

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current Issue Volume 23 | Issue 4. April 2018. Home · Volumes & Issues · Categories · Special Issues · Search · Editorial Board · Information for Authors · Subscription ...

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Keywords. Scalars; four-vectors; lorentz transformation; special relativity. ... Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current Issue Volume 23 | Issue 4. April 2018. Home · Volumes & Issues · Categories · Special Issues · Search · Editorial Board · Information for Authors · Subscription ...

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. Physical Research Laboratory. P Sharma. Information and Announcements Volume 4 Issue 7 July 1999 pp 92-96. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/004/07/0092-0096 ...

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 2. Erwin Schrödinger, “What is Life? The Physical Aspect of the Living Cell”. N Mukunda. Book Review Volume 4 Issue 2 February 1999 pp 85-87. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 12. December 2006, pages 1-102. pp 1-2 Editorial. Editorial · Renuka Ravindran · More Details Fulltext PDF. pp 3-6 Article-in-a-Box. Isaac Newton (1642/43-1727).

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 11. November 2002, pages 1-102. pp 1-1 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 2-5 Article-in-a-Box. Stephen Jay Gould: A View of Life.

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 10. Fractals: A New Geometry of Nature. Balakrishnan Ramasamy T S K V Iyer P Varadharajan. Classroom Volume 2 Issue 10 October 1997 pp 62-68. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 23 .... pp 387-391 Book Review ... Parava: Soaring Towards New Directions in Human-Animal Relations.

  8. The Learning Sciences and Liberal Education

    Science.gov (United States)

    Budwig, Nancy

    2013-01-01

    This article makes the case for a new framing of liberal education based on several decades of research emerging from the learning and developmental sciences. This work suggests that general knowledge stems from acquiring both the habits of mind and repertoires of practice that develop from participation in knowledge-building communities. Such…

  9. How Can Science Education Foster Students' Rooting?

    Science.gov (United States)

    Østergaard, Edvin

    2015-01-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to "prevent" (further) uprooting and efforts to "promote" rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the…

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 12. Jacques Monod and the Advent of the Age of Operons. R Jayaraman. General Article Volume 15 Issue 12 December 2010 pp 1084-1096. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Issue front cover thumbnail Issue back cover thumbnail. Volume 21, Issue 9. September 2016, pages 767-863. pp 767-768 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 769-772 Article in a Box. The Creative Genius: John Nash.

  12. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 1, Issue 11. November 1996, pages 1-98. pp 1-1 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Karl Popper · G Prathap · More Details ...

  13. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 16, Issue 1. January 2011, pages 1-104. pp 1-1 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Leeuwenhoek: Discoverer of the Microbial ...

  14. Programming Paradigms in Computer Science Education

    OpenAIRE

    Bolshakova, Elena

    2005-01-01

    Main styles, or paradigms of programming – imperative, functional, logic, and object-oriented – are shortly described and compared, and corresponding programming techniques are outlined. Programming languages are classified in accordance with the main style and techniques supported. It is argued that profound education in computer science should include learning base programming techniques of all main programming paradigms.

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Issue front cover thumbnail Issue back cover thumbnail. Volume 3, Issue 5. May 1998, pages 1-98. pp 1-1 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 2-2 Article-in-a-Box. Thermal Ionisation and the Saha Equation!

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    ... Resonance – Journal of Science Education; Volume 6; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 6, Issue 10. October 2001, pages 1- ... pp 96-97 Book Review. Call of Indian Birds – An Audio Cassette · Lt General Baljit Singh · More Details Fulltext PDF. pp 97-100 Book Review. Essentials ...

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 3, Issue 8 ... P G Babu · More Details Fulltext PDF. pp 56-65 Feature Article. Nature Watch - Hornbills – Giants Among the Forest Birds · T R Shankar Raman Divya Mudappa.

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 4. Issue front cover thumbnail Issue back cover thumbnail. Volume 13, Issue 4. April 2008 ... K R Y Simha Dhruv C Hoysall · More Details Fulltext PDF. pp 394-397 Think It Over. Solution to How Many Birds are Unwatched · Soubhik Chakraborty.

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    ... Journals; Resonance – Journal of Science Education; Volume 15; Issue 5. Issue front cover thumbnail Issue back cover thumbnail. Volume 15, Issue 5 ... pp 411-427 General Article. Bird of Passage at Four Universities - Student Days of Rudolf Peierls · G Baskaran · More Details Fulltext PDF. pp 428-433 General Article.

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 13, Issue 1. January 2008, pages 1-102. pp 1-1 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 2-3 Table of Contents. Table of Contents · More Details Fulltext ...

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 6. The Ribosome and the 2009 Nobel Prize in Chemistry. Laasya Samhita Umesh Varshney. General Article Volume 15 Issue 6 June 2010 pp 526-537. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 1, Issue 2. February 1996, pages 1-130. pp 1-1 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Chief Editor's column - After the Eclipse.

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 4, Issue 6. June 1999, pages 1-102. pp 1-2 Editorial. Editorial · Alladi Sitaram · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Mahalanobis and Indian Statistics · T Krishnan.

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 9. Haber Process for Ammonia Synthesis. Jayant M Modak. General Article Volume 7 Issue 9 September 2002 pp 69-77. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/09/0069-0077 ...

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 10. October 2006, pages 1-102. pp 1-2 Editorial. Editorial · Renuka Ravindran · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Archimedes · P N Shankar.

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 8, Issue 10. October 2003, pages 1-101. pp 1-1 Editorial. Editorial · G Nagendrappa · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Satish Dhawan · Srinivas Bhogle.

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 15, Issue 6. June 2010, pages 489-584. pp 489-490 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 491-492 Article-in-a-Box. Conrad Waddington and the ...

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 8. Detergents – Zeolites and Enzymes Excel Cleaning Power. B S Sekhon Manjeet K Sangha. General Article Volume 9 Issue 8 August 2004 pp 35-45. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 3. Issue front cover thumbnail Issue back cover thumbnail. Volume 1, Issue 3. March 1996, pages 1-130. pp 1-2 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 3-3 Article-in-a-Box. Fermat and the Minimum Principle.

  10. weaving together climate science and chemistry education

    African Journals Online (AJOL)

    Preferred Customer

    ... students, educators, and the general public, designed to help bridge the gap ... Design Principles of Visualizing and Understanding the Science of Climate ... The user is also able to examine simple models for these predictions ... Figure 6 illustrates the fluctuations in mean global temperature over an 800 ka span and.

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 12. December 2002, pages 1-106. pp 1-1 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 2-4 Article-in-a-Box. K. S. Krishnan – An Outstanding Scientist.

  12. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. Artificial Seeds and their Applications. G V S Saiprasad. General Article Volume 6 Issue 5 May 2001 pp 39-47. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/05/0039-0047 ...

  13. Radiation risk and science education

    International Nuclear Information System (INIS)

    Eijkelhof, H.M.C.

    1996-01-01

    Almost everywhere the topic of radioactivity is taught in the physics or chemistry classes of secondary schools. The question has been raised whether the common approach of teaching this topic would contribute to a better understanding of the risks of ionising radiation: and, if the answer is negative, how to explain and improve this situation? In a Dutch research programme which took almost ten years, answers to this question have been sought by means of analyses of newspaper reports, curriculum development, consultation with radiation experts, physics textbook analysis, interviews and questionnaires with teachers and pupils, class observations and curriculum development. Th main results of this study are presented and some recommendations given for science teaching and for communication with the public in general as regards radiation risk. (author)

  14. The Federal Role in Education and the Rise of Social Science Research: Historical and Comparative Perspectives

    Science.gov (United States)

    Beadie, Nancy

    2016-01-01

    Studies of the rise of social science research in education typically focus on the Progressive Era, from 1890 to 1930, the period in which the American Educational Research Association (AERA) was founded. As central as this story is to the intellectual history of education as a field, however, it obscures an earlier set of events that arguably is…

  15. Promoting Pre-college Science Education

    Science.gov (United States)

    Lee, R. L.

    1999-11-01

    The Fusion Education Program, with support from DOE, continues to promote pre-college science education for students and teachers using multiple approaches. An important part of our program is direct scientist-student interaction. Our ``Scientist in a Classroom'' program allows students to interact with scientists and engage in plasma science activities in the students' classroom. More than 1000 students from 11 schools have participated in this exciting program. Also, this year more than 800 students and teachers have visited the DIII--D facility and interacted with scientists to cover a broad range of technical and educational issues. Teacher-scientist interaction is imperative in professional development and each year more than 100 teachers attend workshops produced by the fusion education team. We also participate in unique learning opportunities. Members of the team, in collaboration with the San Diego County Office of Education, held a pioneering Internet-based Physics Olympiad for American and Siberian students. Our teamwork with educators helps shape material that is grade appropriate, relevant, and stimulates thinking in educators and students.

  16. Derivation and Implementation of a Model Teaching the Nature of Science Using Informal Science Education Venues

    Science.gov (United States)

    Spector, Barbara S.; Burkett, Ruth; Leard, Cyndy

    2012-01-01

    This paper introduces a model for using informal science education venues as contexts within which to teach the nature of science. The model was initially developed to enable university education students to teach science in elementary schools so as to be consistent with "National Science Education Standards" (NSES) (1996) and "A Framework for…

  17. Science-Technology-Society (STS): A New Paradigm in Science Education

    Science.gov (United States)

    Mansour, Nasser

    2009-01-01

    Changes in the past two decades of goals for science education in schools have induced new orientations in science education worldwide. One of the emerging complementary approaches was the science-technology-society (STS) movement. STS has been called the current megatrend in science education. Others have called it a paradigm shift for the field…

  18. Science Education & Advocacy: Tools to Support Better Education Policies

    Science.gov (United States)

    O'Donnell, Christine; Cunningham, B.; Hehn, J. G.

    2014-01-01

    Education is strongly affected by federal and local policies, such as testing requirements and program funding, and many scientists and science teachers are increasingly interested in becoming more engaged with the policy process. To address this need, I worked with the American Association of Physics Teachers (AAPT) --- a professional membership society of scientists and science teachers that is dedicated to enhancing the understanding and appreciation of physics through teaching --- to create advocacy tools for its members to use, including one-page leave-behinds, guides for meeting with policymakers, and strategies for framing issues. In addition, I developed a general tutorial to aid AAPT members in developing effective advocacy strategies to support better education policies. This work was done through the Society for Physics Students (SPS) Internship program, which provides a range of opportunities for undergraduates, including research, education and public outreach, and public policy. In this presentation, I summarize these new advocacy tools and their application to astronomy education issues.

  19. SSC education: Science to capture the imagination

    International Nuclear Information System (INIS)

    Gadsden, T.; Kivlighn, S.

    1992-01-01

    To the great majority of Americans, science is merely a collection of facts and theories that should (for unknown reasons) be memorized and perhaps even understood in order for one to function as a responsible citizen. Few see science as a way of thinking and questioning and as an approach to learning the secrets of our world. In addition, most children and many adults have a stereotypical view of scientists as studious men in lab coats who spend all their time working alone in dark and smelly chemical or biological laboratories. The Superconducting Super Collider (SSC) totally contradicts such a perception. This great instrument is being created by thousands of scientists, engineers, business people, technicians, administrators, and others, from dozens of nations, working together to realize a shared vision to seek answers to shared questions. The SSCL also provides an opportunity to change the mistaken impressions about science and scientists that have resulted in fewer students pursuing careers in fields related to science. In addition, it will serve as a catalyst to help people understand the roles that scientific thought and inquiry can play in bettering their lives and the lives of their offspring. Recognizing this problem in our society, the creators of the SSC Laboratory made a commitment to use the SSC to improve science education. Consequently, in addition to building the world's premier high-energy physics laboratory, the SSCL has a second goal: creation of a major national and international educational resource. To achieve the latter goal, the Education Office of the SSCL is charged with using the resources of the Laboratory, both during construction and during operation, to improve education in science and mathematics at all levels (prekindergarten through post-doctorate) and for all components of our society (including the general public), in the United States and around the world

  20. 75 FR 5771 - Institute of Education Sciences; Overview Information; Education Research and Special Education...

    Science.gov (United States)

    2010-02-04

    ... DEPARTMENT OF EDUCATION Institute of Education Sciences; Overview Information; Education Research and Special Education Research Grant Programs; Notice Inviting Applications for New Awards for Fiscal....305D, 84.305E, 84.324A, 84.324B, and 84.324C. Summary: The Director of the Institute of Education...

  1. Teaching research ethics better: focus on excellent science, not bad scientists.

    Science.gov (United States)

    Yarborough, Mark; Hunter, Lawrence

    2013-06-01

    A recent report of the United States' Presidential Commission for the Study of Bioethical Issues highlights how important it is for the research community to enjoy the "earned confidence" of the public and how creating a "culture of responsibility" can contribute to that confidence. It identifies a major role for "creative, flexible, and innovative" ethics education in creating such a culture. Other recent governmental reports from various nations similarly call for a renewed emphasis on ethics education in the sciences. We discuss why some common approaches to ethics education in the graduate sciences fail to meet the goals envisioned in the reports and we describe an approach, animated by primary attention on excellent science as opposed to bad scientists, that we have employed in our ethics teaching that we think is better suited for inspiring and sustaining responsible, trustworthy science. © 2013 Wiley Periodicals, Inc.

  2. The Feasibility of Educating Trainee Science Teachers in Issues of Science and Religion

    Science.gov (United States)

    Poole, Michael

    2016-01-01

    This article reflects on Roussel De Carvalho's paper "Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom" (EJ1102211). It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher…

  3. Heritage Education in Museums: an Inclusion- Focused Model

    OpenAIRE

    Fontal Merillas, Olaia; Marín Cepeda, Sofía

    2016-01-01

    Heritage Education in Museums: Inclusion Model (HEM-INMO) is one of the research conclusions of the Spanish Heritage Education Observatory (SHEO), funded by Spain’s Ministry of Economy and Competitiveness. The Observatory evaluates educational programs generated in Spain and in the international area in the last two decades, especially in museums as heritage education non-formal contexts. Also, the HEM-INMO model is included within the aims of the National Education and Heritage Plan (NE&HP),...

  4. Education and Professional Outreach as an Integrated Component of Science and Graduate Education

    Science.gov (United States)

    Staudigel, H.; Koppers, A. A.

    2007-12-01

    Education and Professional Outreach (EPO) is increasingly becoming a substantive and much needed activity for scientists. Significant efforts are expended to satisfy funding agency requirements, but such requirements may also develop into a mutually beneficial collaboration between scientists and K-16 educators with a minimal impact on science productivity. We focus here on two particularly high impact EPO opportunities, hosting of high school interns and the inclusion of an educational component to a graduate student's&pthesis work. We emphasize the importance of hands-on collaboration with teachers and teacher-educators, and the substantive benefits of highly leveraged customized internet-distribution. We will present two examples for how we integrated this K-12 EPO into our university-based science and education efforts, what types of products emerged from these activities, and how such products may be widely produced by any scientist and disseminated to the educational community. High school seniors offer a unique resource to university EPO because some of them can substantively contribute to the science, and they can be very effective peer-mentors for high and middle schools. Extended internships may be built easily into the schedule of many senior high school student programs, and we were able to involve such interns into a three-week seagoing expedition. The seniors were responsible for our EPO by maintaining a cruise website and video conferencing with their high school. They added substantially to the science outcome, through programming and participating in a range of shipboard science chores. Graduate theses may be augmented with an educational component that places the main theme of the thesis into an educational setting. We designed and supervised such a Master's graduate thesis with an educational component on the geochronology of hot spot volcanoes, including a high school lesson plan, enactment in the classroom and preparation of a wide range of web

  5. Implications for Focusing Research in Career and Technical Education and Workforce Development

    Science.gov (United States)

    Lambeth, Jeanea M.; Joerger, Richard M.; Elliot, Jack

    2009-01-01

    Education and educational research is shaped by philosophy, psychology, practice, and ever changing educational policies. Previous studies have expressed a need for a relevant and focused research agenda for career and technical education (CTE), workforce development education and career and technical education. A need for a relevant and timely…

  6. Troubling an embodied pedagogy in science education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin; Kristensen, Liv Kondrup

    2017-01-01

    This chapter explores the idea of using an embodied pedagogy for science teaching following the mandated introduction of physical activity across all subjects in Danish primary schools. While there is research available that explores the different ways of utilizing movement in school, very little...... for the intertwined relationship between the body and mind. Based on observations that were conducted in science lessons at a Danish primary school, and from talking with the students, we examine how an embodied pedagogy in science was implemented. We explore a specific instance where a group of 14-16 year old...... of that which is available applies to science education. The argument is made that an embodied pedagogy recognises and validates the centrality of the body in learning, but it is about more than making students move. Utilising such an approach requires one to recognise that embodiment shapes interactions...

  7. Parental Engagement: Beyond Parental Involvement in Science Education

    Science.gov (United States)

    St. Louis, Kathleen

    This study critically analyzes parents' complex stories of engagement in school and science education. The purpose is not to essentialize parental involvement, but rather to understand the processes of parental involvement and push forward the current discourse on the engagement of low-income minority and immigrant parents in schools and specifically science education. Employing critical grounded theory methods over a four-year span, this study had three areas of focus. First, voices of marginalized parents in the context of various spaces within the school system are examined. Using a qualitative approach, informal, formal, and research spaces were explored along with how minority parents express voice in these various spaces. Findings indicate parents drew on capital to express voice differently in different spaces, essentially authoring new spaces or the type of engagement in existing spaces. Second, the values and beliefs of traditionally marginalized people, the Discourse of mainstream society, and how they can inform a third, more transformative space for parental engagement in science are considered. The voices of low-income, marginalized parents around science and parental engagement (i.e., first space) are contrasted with the tenets of major national science policy documents (i.e., second space). Findings indicate a disparity between the pathways of engagement for low-income parents and policymakers who shape science education. Third, methodological questions of responsibility and assumption in qualitative research are explored. The author's complex struggle to make sense of her positionality, responsibilities, and assumptions as a researcher is chronicled. Findings focused on insider/outsider issues and implications for culturally sensitive research are discussed. Finally, the implications for policy, teaching, and research are discussed.

  8. Investigating the Self-Perceived Science Teaching Needs of Local Elementary Educators

    Science.gov (United States)

    Carver, Cynthia G.

    Elementary teachers in one school system have expressed low self-efficacy teaching science and desire more support teaching science. However, little research has been conducted on how best to meet these teachers' needs. The theories of perceived self-efficacy, social cognition, and behaviorism make up the conceptual framework of this study. The focus of this qualitative project study was on the needs of local elementary educators. These teachers were asked what they felt they needed most to be more effective science educators. The methodology of phenomenology was used in this study in which local elementary teachers were questioned in focus groups regarding their own science teaching efficacy and perceived needs. Using inductive analysis, data were coded for links to discussion questions as well as any additional patterns that emerged. Findings indicated that local elementary teachers desire improved communication among administrators and teachers as well as better science content support and training. Focus group participants agreed that teacher self-efficacy affects the time spent, effort toward, and quality of elementary science education. Using the results of the study, a science mentor program was developed to support the needs of elementary teachers and increase teacher self-efficacy, thus improving local elementary science education. Implications for positive social change include the development and support of elementary science programs in other school systems with the goal of improving science education for elementary students.

  9. An evaluation of post-registration neuroscience focused education and neuroscience nurses' perceived educational needs.

    Science.gov (United States)

    Braine, Mary E; Cook, Neal

    2015-11-01

    People with complex neurological conditions require co-ordinated care provided by nurses educated in meeting service needs, understanding the pathophysiological processes of disease and the preparation to care for those with complex needs. However, evidence suggests that neuroscience specific education provision is largely unregulated and set outside of a cohesive professional development context. Furthermore, it largely seems to only address the induction phase into working within neurosciences. To evaluate the nature of post-registration neuroscience focused education across Europe and neuroscience nurses' perceived educational needs. Post qualifying nurses working in the field of neurosciences were invited to complete a self-reported 29-item on-line questionnaire that contained closed and open-ended questions exploring professional background, clinical and educational experience, educational opportunities available to them and their perspectives on their educational needs. 154 participants from fourteen countries across Europe completed the survey. 75% (n=110) of respondents had undertaken neuroscience focused education with the most accessible education opportunities found to be conferences 77% (n=96) and study days 69% (n=86). Overall, 52.6% of courses were multidisciplinary in nature, and 47.4% were exclusively nursing. Most identified that their courses were funded by their employer (57%, n=63) or partly funded by their employer. Results illustrate a significant variance across Europe, highlighting the need for more effective communication between neuroscience nurses across Europe. Implications for future education provision, recruitment/retention, and funding are discussed, resulting in recommendations for the future of neuroscience nursing. This study, the largest of its kind to survey neuroscience nurses, illustrates the absence of a cohesive career development pathway for neuroscience nurses in Europe. Nurses need quality assured specialist education to

  10. BioSIGHT: Interactive Visualization Modules for Science Education

    Science.gov (United States)

    Wong, Wee Ling

    1998-01-01

    Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high- speed network capabilities. The BioSIGHT project at IMSC is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches towards the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross

  11. Response to science education reforms: The case of three science education doctoral programs in the United States

    Science.gov (United States)

    Gwekwerere, Yovita Netsai

    who 'all students' refers to and what science literacy means for learners with diverse cultural, linguistic or economic backgrounds. Faculty members' views significantly influence the nature and content of the courses as well as the program focus. It was also shown that a relationship exists between faculty views and the views of their doctoral students and recent graduates. In general, faculty exhibited narrower and more in-depth views about issues they consider being important in the field of science education, than doctoral students and recent graduates. External funding is critical in doctoral studies as it enables faculty to enact their visions of achieving science literacy for all. The study provides some implications for practice, policy and research. In order to achieve both equity and excellence in science teaching, there is need for dialogue among science educators to enable them to address issues of equity more effectively than at present. If doctoral programs are to continue preparing graduates who can address important issues in the field, there is need for external funding for specific research programs.

  12. Educational Psychology's Past and Future Contributions to the Science of Learning, Science of Instruction, and Science of Assessment

    Science.gov (United States)

    Mayer, Richard E.

    2018-01-01

    Patricia Alexander (2018) provides a thought-provoking analysis of the past and future of educational psychology. Based on the themes in Alexander's paper, the present paper explores the past and future of educational psychology's contributions to: (a) the science of learning, corresponding to Alexander's theme of "a focus on learning as a…

  13. Danish and German students’ reflections and recommendations to changes in their science education

    DEFF Research Database (Denmark)

    Petersen, Morten Rask; Ahrenkiel, Linda; Michelsen, Claus

    We here present a case study on students’ reflections and recommendations on their everyday science education. These recommendations come from a minority group seldom heard in science education, namely those students who are already engaged in science and science education. In November 2010...... situation in science education. The seminar was studied as a case study and data was collected by the use of questionnaires, videotaping, student presentations, field notes and interviews with some of the participants. The focus on the findings is on the students’ motives for changing their current...... a seminar was held in Sankelmark, Schleswig-Holstein, Germany. 29 upper secondary students from 4 schools (2 Danish and 2 German) attended the seminar in order to prepare some recommendations to take home to their own school. The students were asked to describe their current situation in science education...

  14. Precincts and Prospects in the Use of Focus Groups in Social and Behavioral Science Research

    Science.gov (United States)

    Sagoe, Dominic

    2012-01-01

    Over the past few years, the focus group method has assumed a very important role as a method for collecting qualitative data in social and behavioural science research. This article elucidates theoretical and practical problems and prospects associated with the use of focus groups as a qualitative research method in social and behavioural science…

  15. Educational challenges of molecular life science: Characteristics and implications for education and research.

    Science.gov (United States)

    Tibell, Lena A E; Rundgren, Carl-Johan

    2010-01-01

    Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life-often with deep, ethical dimensions. At the same time, the content is inherently complex, highly abstract, and deeply rooted in diverse disciplines ranging from "pure sciences," such as math, chemistry, and physics, through "applied sciences," such as medicine and agriculture, to subjects that are traditionally within the remit of humanities, notably philosophy and ethics. Together, these features pose diverse, important, and exciting challenges for tomorrow's teachers and educational establishments. With backgrounds in molecular life science research and secondary life science teaching, we (Tibell and Rundgren, respectively) bring different experiences, perspectives, concerns, and awareness of these issues. Taking the nature of the discipline as a starting point, we highlight important facets of molecular life science that are both characteristic of the domain and challenging for learning and education. Of these challenges, we focus most detail on content, reasoning difficulties, and communication issues. We also discuss implications for education research and teaching in the molecular life sciences.

  16. Theme: The Role of Science in the Agricultural Education Curriculum.

    Science.gov (United States)

    Agricultural Education Magazine, 2002

    2002-01-01

    Thirteen theme articles discuss integration of science and agriculture, the role of science in agricultural education, biotechnology, agriscience in Tennessee and West Virginia, agriscience and program survival, modernization of agricultural education curriculum, agriscience and service learning, and biotechnology websites. (SK)

  17. Informal science education: lifelong, life-wide, life-deep.

    Science.gov (United States)

    Sacco, Kalie; Falk, John H; Bell, James

    2014-11-01

    Informal Science Education: Lifelong, Life-Wide, Life-Deep Informal science education cultivates diverse opportunities for lifelong learning outside of formal K-16 classroom settings, from museums to online media, often with the help of practicing scientists.

  18. Southern Africa Journal of Education, Science and Technology ...

    African Journals Online (AJOL)

    Southern Africa Journal of Education, Science and Technology: Journal Sponsorship. Journal Home > About the Journal > Southern Africa Journal of Education, Science and Technology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  19. Southern Africa Journal of Education, Science and Technology: Site ...

    African Journals Online (AJOL)

    Southern Africa Journal of Education, Science and Technology: Site Map. Journal Home > About the Journal > Southern Africa Journal of Education, Science and Technology: Site Map. Log in or Register to get access to full text downloads.

  20. Homi Bhabha Centre for Science Education, Tata Institute of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 2. Homi Bhabha Centre for Science Education, Tata Institute of Fundamental Research (A Deemed University). Information and Announcements Volume 22 Issue 2 February 2017 pp 189-189 ...

  1. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Editorial Board. Editorial Board. Resonance – Journal of Science Education. Chief Editor. N Sathyamurthy, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore ... Guruswamy Kumaraswamy, CSIR-National Chemical Laboratory, Pune

  2. African Journal of Educational Studies in Mathematics and Sciences ...

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences: Advanced Search. Journal Home > African Journal of Educational Studies in Mathematics and Sciences: Advanced Search. Log in or Register to get access to full text downloads.

  3. Teacher Leaders in Research Based Science Education

    Science.gov (United States)

    Rector, T. A.; Jacoby, S. H.; Lockwood, J. F.; McCarthy, D. W.

    2001-12-01

    NOAO facilities will be used in support of ``Teacher Leaders in Research Based Science Education" (TLRBSE), a new Teacher Retention and Renewal program that will be funded through the National Science Foundation's Directorate for Education and Human Resources. The goal of TLRBSE is to provide professional development for secondary teachers of mathematics and science in an effort to support novice teachers beginning their careers as well as to motivate and retain experienced teachers. Within the context of astronomy, TLRBSE will develop master teachers who will mentor a second tier of novice teachers in the exemplary method of research-based science education, a proven effective teaching method which models the process of inquiry and exploration used by scientists. Participants will be trained through a combination of in-residence workshops at Kitt Peak National Observatory and the National Solar Observatory, a distance-learning program during the academic year, interaction at professional meetings and mentor support from teacher leaders and professional astronomers. A total of 360 teachers will participate in the program over five years.

  4. Penicillin for Education: How Cognitive Science Can Contribute to Education.

    Science.gov (United States)

    Bruer, John T.

    1995-01-01

    Education can benefit from knowledge derived from cognitive and developmental psychology. Family demographics have actually improved between 1970 and 90 and so have NAEP scores. Three innovative programs demonstrating cognitive science applications include the Teaching Number Sense elementary math program, reciprocal teaching (reading strategy),…

  5. Defining Integrated Science Education and Putting It to Test

    OpenAIRE

    Åström, Maria

    2008-01-01

    The thesis is made up by four studies, on the comprehensive theme of integrated and subject-specific science education in Swedish compulsory school. A literature study on the matter is followed by an expert survey, then a case study and ending with two analyses of students' science results from PISA 2003 and PISA 2006. The first two studies explore similarities and differences between integrated and subject-specific science education, i.e. Science education and science taught as Biology, Chem...

  6. Qualitative exploration of centralities in municipal science education networks

    DEFF Research Database (Denmark)

    von der Fehr, Ane; Sølberg, Jan

    2016-01-01

    This article examines the social nature of educational change by conducting a social network analysis of social networks involving stakeholders of science education from teachers to political stakeholders. Social networks that comprise supportive structures for development of science education ar...... of science education, especially if they are aware of their own centrality and are able to use their position intentionally for the benefit of science education.......This article examines the social nature of educational change by conducting a social network analysis of social networks involving stakeholders of science education from teachers to political stakeholders. Social networks that comprise supportive structures for development of science education...... are diverse and in order to understand how municipal stakeholders may support such development, we explored four different municipal science education networks (MSE networks) using three different measures of centrality. The centrality measures differed in terms of what kind of stakeholder functions...

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 1. Discrete Event Simulation. Matthew Jacob ... Keywords. Simulation; modelling; computer programming. Author Affiliations. Matthew Jacob1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012.

  8. Implementing the Next Generation Science Standards: Impacts on Geoscience Education

    Science.gov (United States)

    Wysession, M. E.

    2014-12-01

    This is a critical time for the geoscience community. The Next Generation Science Standards (NGSS) have been released and are now being adopted by states (a dozen states and Washington, DC, at the time of writing this), with dramatic implications for national K-12 science education. Curriculum developers and textbook companies are working hard to construct educational materials that match the new standards, which emphasize a hands-on practice-based approach that focuses on working directly with primary data and other forms of evidence. While the set of 8 science and engineering practices of the NGSS lend themselves well to the observation-oriented approach of much of the geosciences, there is currently not a sufficient number of geoscience educational modules and activities geared toward the K-12 levels, and geoscience research organizations need to be mobilizing their education & outreach programs to meet this need. It is a rare opportunity that will not come again in this generation. There are other significant issues surrounding the implementation of the NGSS. The NGSS involves a year of Earth and space science at the high school level, but there does not exist a sufficient workforce is geoscience teachers to meet this need. The form and content of the geoscience standards are also very different from past standards, moving away from a memorization and categorization approach and toward a complex Earth Systems Science approach. Combined with the shift toward practice-based teaching, this means that significant professional development will therefore be required for the existing K-12 geoscience education workforce. How the NGSS are to be assessed is another significant question, with an NRC report providing some guidance but leaving many questions unanswered. There is also an uneasy relationship between the NGSS and the Common Core of math and English, and the recent push-back against the Common Core in many states may impact the implementation of the NGSS.

  9. Implementation of inquiry-based science education in different countries: some reflections

    Science.gov (United States)

    Rundgren, Carl-Johan

    2017-03-01

    In this forum article, I reflect on issues related to the implementation of inquiry-based science education (IBSE) in different countries. Regarding education within the European Union (EU), the Bologna system has in later years provided extended coordination and comparability at an organizational level. However, the possibility of the EU to influence the member countries regarding the actual teaching and learning in the classrooms is more limited. In later years, several EU-projects focusing on IBSE have been funded in order to make science education in Europe better, and more motivating for students. Highlighting what Heinz and her colleagues call the policy of `soft governance' of the EU regarding how to improve science education in Europe, I discuss the focus on IBSE in the seventh framework projects, and how it is possible to maintain more long-lasting results in schools through well-designed teacher professional development programs. Another aspect highlighted by Heinz and her colleagues is how global pressures on convergence in education interact with educational structures and traditions in the individual countries. The rise of science and science education as a global culture, encompassing contributions from all around the world, is a phenomenon of great potential and value to humankind. However, it is important to bear in mind that if science and science education is going to become a truly global culture, local variation and differences regarding foci and applications of science in different cultures must be acknowledged.

  10. Library exhibits and programs boost science education

    Science.gov (United States)

    Dusenbery, Paul B.; Curtis, Lisa

    2012-05-01

    Science museums let visitors explore and discover, but for many families there are barriers—such as cost or distance—that prevent them from visiting museums and experiencing hands-on science, technology, engineering, and mathematics (STEM) learning. Now educators are reaching underserved audiences by developing STEM exhibits and programs for public libraries. With more than 16,000 outlets in the United States, public libraries serve almost every community in the country. Nationwide, they receive about 1.5 billion visits per year, and they offer their services for free.

  11. Equity Audit: Focusing on Distance Education Students and Students with Individualized Educational Plans

    Science.gov (United States)

    Dupree, Almecia

    2016-01-01

    Problem: Many inequities frequently have been found to exist in representations of students and access to school programs in public schools. Theory: The purpose of this equity audit is to utilize theoretical positioning and conduct an empirical study involving student representations and access to educational opportunities. The audit focuses on…

  12. Enhancing the "Science" in Elementary Science Methods: A Collaborative Effort between Science Education and Entomology.

    Science.gov (United States)

    Boardman, Leigh Ann; Zembal-Saul, Carla; Frazier, Maryann; Appel, Heidi; Weiss, Robinne

    Teachers' subject matter knowledge is a particularly important issue in science education in that it influences instructional practices across subject areas and at different grade levels. This paper provides an overview of efforts to develop a unique elementary science methods course and related field experience through a partnership between…

  13. Family Life Education for Remarriage: Focus on Financial Management.

    Science.gov (United States)

    Lown, Jean M.; And Others

    1989-01-01

    Reviews literature on family financial management of remarried couples and describes educational workshop on financial management in remarriage. Proposes five premises based on family developmental conceptual framework. Encourages family life educators to include financial management in remarriage education programs and presents outline for…

  14. A Research Focused on Improving Vocalisation Level on Violin Education

    Science.gov (United States)

    Parasiz, Gökalp

    2018-01-01

    The research aimed to improve vocalisation levels of music teacher's candidates on performance works for violin education moving from difficulties faced by prospective teachers. At the same time, it was aimed to provide new perspectives to violin educators. Study group was composed of six 3rd grade students studying violin education in a State…

  15. Korean Gifted Education: Domain-Specific Developmental Focus

    Science.gov (United States)

    Cho, Seokhee; Suh, Yewon

    2016-01-01

    The current Korean gifted education system is designed to help gifted children have a balance between excellence and emotional and social wellbeing. In this article, the current status of Korean gifted education is presented, reflecting on the history, purpose, theoretical foundation, infrastructure, and state of art of gifted education with…

  16. Spatial Thinking in Atmospheric Science Education

    Science.gov (United States)

    McNeal, P. M.; Petcovic, H. L.; Ellis, T. D.

    2016-12-01

    Atmospheric science is a STEM discipline that involves the visualization of three-dimensional processes from two-dimensional maps, interpretation of computer-generated graphics and hand plotting of isopleths. Thus, atmospheric science draws heavily upon spatial thinking. Research has shown that spatial thinking ability can be a predictor of early success in STEM disciplines and substantial evidence demonstrates that spatial thinking ability is improved through various interventions. Therefore, identification of the spatial thinking skills and cognitive processes used in atmospheric science is the first step toward development of instructional strategies that target these skills and scaffold the learning of students in atmospheric science courses. A pilot study of expert and novice meteorologists identified mental animation and disembedding as key spatial skills used in the interpretation of multiple weather charts and images. Using this as a starting point, we investigated how these spatial skills, together with expertise, domain specific knowledge, and working memory capacity affect the ability to produce an accurate forecast. Participants completed a meteorology concept inventory, experience questionnaire and psychometric tests of spatial thinking ability and working memory capacity prior to completing a forecasting task. A quantitative analysis of the collected data investigated the effect of the predictor variables on the outcome task. A think-aloud protocol with individual participants provided a qualitative look at processes such as task decomposition, rule-based reasoning and the formation of mental models in an attempt to understand how individuals process this complex data and describe outcomes of particular meteorological scenarios. With our preliminary results we aim to inform atmospheric science education from a cognitive science perspective. The results point to a need to collaborate with the atmospheric science community broadly, such that multiple

  17. Towards Science Education for all: Teacher Support for Female ...

    African Journals Online (AJOL)

    Towards Science Education for all: Teacher Support for Female Pupils in the Zimbabwean Science Class. ... Annals of Modern Education ... One hundred female pupils studying sciences at either Ordinary or Advanced level, and 10 science teachers from 10 selected secondary schools in one province in Zimbabwe, ...

  18. Encountering Science Education's Capacity to Affect and Be Affected

    Science.gov (United States)

    Alsop, Steve

    2016-01-01

    What might science education learn from the recent affective turn in the humanities and social sciences? Framed as a response to Michalinos Zembylas's article, this essay draws from selected theorizing in affect theory, science education and science and technology studies, in pursuit of diverse and productive ways to talk of affect within science…

  19. Learning science and science education in a new era.

    Science.gov (United States)

    Aysan, Erhan

    2015-06-01

    Today, it takes only a few months for the amount of knowledge to double. The volume of information available has grown so much that it cannot be fully encompassed by the human mind. For this reason, science, learning, and education have to change in the third millennium. The question is thus: what is it that needs to be done? The answer may be found through three basic stages. The first stage is persuading scientists of the necessity to change science education. The second stage is more difficult, in that scientists must be told that they should not place an exaggerated importance on their own academic field and that they should see their field as being on an equal basis with other fields. In the last stage, scientists need to condense the bulk of information on their hands to a manageable size. "Change" is the magic word of our time. Change brings about new rules, and this process happens very quickly in a global world. If we scientists do not rapidly change our scientific learning and education, we will find our students and ourselves caught up in an irreversibly destructive and fatal change that sets its own rules, just like the Arab spring.

  20. Learning science and science education in a new era

    Directory of Open Access Journals (Sweden)

    Erhan Aysan

    2015-06-01

    Full Text Available Today, it takes only a few months for the amount of knowledge to double. The volume of information available has grown so much that it cannot be fully encompassed by the human mind. For this reason, science, learning, and education have to change in the third millennium. The question is thus: what is it that needs to be done? The answer may be found through three basic stages. The first stage is persuading scientists of the necessity to change science education. The second stage is more difficult, in that scientists must be told that they should not place an exaggerated importance on their own academic field and that they should see their field as being on an equal basis with other fields. In the last stage, scientists need to condense the bulk of information on their hands to a manageable size. “Change” is the magic word of our time. Change brings about new rules, and this process happens very quickly in a global world. If we scientists do not rapidly change our scientific learning and education, we will find our students and ourselves caught up in an irreversibly destructive and fatal change that sets its own rules, just like the Arab spring.

  1. Fermilab Friends for Science Education | Tree of Knowledge

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Tree of Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education precollege science education programs. Prominently displayed at the Lederman Science Center is the lovely

  2. Special Education Teachers' Nature of Science Instructional Experiences

    Science.gov (United States)

    Mulvey, Bridget K.; Chiu, Jennifer L.; Ghosh, Rajlakshmi; Bell, Randy L.

    2016-01-01

    Special education teachers provide critical science instruction to students. However, little research investigates special education teacher beliefs and practices around science in general or the nature of science and inquiry in particular. This investigation is a cross-case analysis of four elementary special education teachers' initial…

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Bala Iyer. Articles written in Resonance – Journal of Science Education. Volume 21 Issue 3 March 2016 pp 203-205 Editorial. Editorial · Bala Iyer · More Details Fulltext PDF. Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current ...

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Kathy Ceceri. Articles written in Resonance – Journal of Science Education. Volume 16 Issue 9 September 2011 pp 879-880 Personal Reflections. Five Things I Learned from Richard Feynman About Science Education · Kathy Ceceri · More Details Fulltext PDF ...

  5. The Role of Critical Thinking in Science Education

    Science.gov (United States)

    Santos, Luis Fernando

    2017-01-01

    This review aims to respond various questions regarding the role of Critical Thinking in Science Education from aspects concerning the importance or relevance of critical thinking in science education, the situation in the classroom and curriculum, and the conception of critical thinking and fostering in science education. This review is specially…

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. R K Varma. Articles written in Resonance – Journal of Science Education. Volume 3 Issue 8 August 1998 pp 8-13. On Science Education and Scientific Research · R K Varma · More Details Fulltext PDF ...

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Search. Search. Resonance – Journal of Science Education. Title. Author. Keywords. Category. Fulltext. Submit. Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current Issue Volume 23 | Issue 4. April 2018. Home · Volumes & Issues ...

  8. Imaginative science education the central role of imagination in science education

    CERN Document Server

    Hadzigeorgiou, Yannis

    2016-01-01

    This book is about imaginative approaches to teaching and learning school science. Its central premise is that science learning should reflect the nature of science, and therefore be approached as an imaginative/creative activity. As such, the book can be seen as an original contribution of ideas relating to imagination and creativity in science education. The approaches discussed in the book are storytelling, the experience of wonder, the development of ‘romantic understanding’, and creative science, including science through visual art, poetry and dramatization. However, given the perennial problem of how to engage students (of all ages) in science, the notion of ‘aesthetic experience’, and hence the possibility for students to have more holistic and fulfilling learning experiences through the aforementioned imaginative approaches, is also discussed. Each chapter provides an in-depth discussion of the theoretical background of a specific imaginative approach (e.g., storytelling, ‘wonder-full’ s...

  9. The making of a bilingual science educator: An autobiographical study

    Science.gov (United States)

    Chacon, Hugo Alejandro

    This qualitative study explores the journey of a Latino educator in becoming a bilingual high school science teacher and university professor. It focuses on discovering how the practice of teaching and learning is shaped through social, psychological, and cultural factors. Through the use of an autobiographical method known as currere, the researcher recounts personal and educational experiences that address important issues in education related to language, science, culture, and social class through the perspective of one doing the work. The study reviews the literature on autobiographical forms of research in the field of education and suggests how autobiography in education, an emerging genre, holds the promise for creating new meanings of the self while at the same time attempts to develop a theory of autobiography that acknowledges the importance of people of color and other marginalized groups. Data collected include 22 hours of audiotaped recordings, conversations, and educational artifacts including notes from innovative classroom projects, lesson plans, conference presentations, computer files, graduate coursework, classroom videotaping, university course evaluations, and department memos. Findings of this study revealed that: (a) the process of becoming a transformative educator involves critical self-reflection on one's cultural/ethnic identity and linguistic heritage; (b) the importance of self-reflection on one's teaching is a critical component in moving towards a more culturally and linguistically responsive curriculum; (c) the bilingual educator can achieve a greater understanding of the important role in the maintenance, implementation, and promotion of minority language education through a reflective practice; and (d) the development of the underrepresented voice in education and the awakening to one's personal and philosophical worldviews is as important as the preparation one receives in becoming a bilingual teacher.

  10. Interprofessional education and the basic sciences: Rationale and outcomes.

    Science.gov (United States)

    Thistlethwaite, Jill E

    2015-01-01

    Interprofessional education (IPE) aims to improve patient outcomes and the quality of care. Interprofessional learning outcomes and interprofessional competencies are now included in many countries' health and social care professions' accreditation standards. While IPE may take place at any time in health professions curricula it tends to focus on professionalism and clinical topics rather than basic science activities. However generic interprofessional competencies could be included in basic science courses that are offered to at least two different professional groups. In developing interprofessional activities at the preclinical level, it is important to define explicit interprofessional learning outcomes plus the content and process of the learning. Interprofessional education must involve interactive learning processes and integration of theory and practice. This paper provides examples of IPE in anatomy and makes recommendations for course development and evaluation. © 2015 American Association of Anatomists.

  11. Hermeneutics of science and multi-gendered science education

    Science.gov (United States)

    Ginev, Dimitri Jordan

    2008-11-01

    In this paper, I consider the relevance of the view of cognitive existentialism to a multi-gendered picture of science education. I am opposing both the search for a particular feminist standpoint epistemology and the reduction of philosophy of science to cultural studies of scientific practices as championed by supporters of postmodern political feminism. In drawing on the theory of gender plurality and the conception of dynamic objectivity, the paper suggests a way of treating the nexus between the construction of gender within the interrelatedness of scientific practices and the constitution of particular objects of inquiry. At stake is the notion of characteristic hermeneutic situation which proves to be helpful in designing a multi-gendered pedagogy as well.

  12. Rocket Science 101 Interactive Educational Program

    Science.gov (United States)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  13. Clinical Correlations as a Tool in Basic Science Medical Education

    Directory of Open Access Journals (Sweden)

    Brenda J. Klement

    2016-01-01

    Full Text Available Clinical correlations are tools to assist students in associating basic science concepts with a medical application or disease. There are many forms of clinical correlations and many ways to use them in the classroom. Five types of clinical correlations that may be embedded within basic science courses have been identified and described. (1 Correlated examples consist of superficial clinical information or stories accompanying basic science concepts to make the information more interesting and relevant. (2 Interactive learning and demonstrations provide hands-on experiences or the demonstration of a clinical topic. (3 Specialized workshops have an application-based focus, are more specialized than typical laboratory sessions, and range in complexity from basic to advanced. (4 Small-group activities require groups of students, guided by faculty, to solve simple problems that relate basic science information to clinical topics. (5 Course-centered problem solving is a more advanced correlation activity than the others and focuses on recognition and treatment of clinical problems to promote clinical reasoning skills. Diverse teaching activities are used in basic science medical education, and those that include clinical relevance promote interest, communication, and collaboration, enhance knowledge retention, and help develop clinical reasoning skills.

  14. New concepts of science and medicine in science and technology studies and their relevance to science education

    Directory of Open Access Journals (Sweden)

    Hsiu-Yun Wang

    2012-02-01

    Full Text Available Science education often adopts a narrow view of science that assumes the lay public is ignorant, which seemingly justifies a science education limited to a promotional narrative of progress in the form of scientific knowledge void of meaningful social context. We propose that to prepare students as future concerned citizens of a technoscientific society, science education should be informed by science, technology, and society (STS perspectives. An STS-informed science education, in our view, will include the following curricular elements: science controversy education, gender issues, historical perspective, and a move away from a Eurocentric view by looking into the distinctive patterns of other regional (in this case of Taiwan, East Asian approaches to science, technology, and medicine. This article outlines the significance of some major STS studies as a means of illustrating the ways in which STS perspectives can, if incorporated into science education, enhance our understanding of science and technology and their relationships with society.

  15. Emotions, Aesthetics and Wellbeing in Science Education

    DEFF Research Database (Denmark)

    Bellocchi, Alberto; Cassie, Quigley; Otrel-Cass, Kathrin

    2017-01-01

    This internationally edited collection on emotions, aesthetics, and wellbeing emerged following an exploratory research workshop held in Luxembourg associated with the journal Cultural Studies of Science Education (CSSE). The workshop was entitled ‘Innovation and collaboration in cultural studies...... of science education: Towards an international research agenda.’ Authors were invited to articulate the theoretical and philosophical underpinnings of their research, offering empirical elaborations to illustrate applications of these conceptual and methodological foundations. An outcome...... informing such research. Possibilities for future research are elaborated within the collection generating scope for further collaborative and international studies informed by perspectives represented in the collection. In the present chapter, we outline the origin of this edited collection against...

  16. Towards a truer multicultural science education: how whiteness impacts science education

    Science.gov (United States)

    Le, Paul T.; Matias, Cheryl E.

    2018-03-01

    The hope for multicultural, culturally competent, and diverse perspectives in science education falls short if theoretical considerations of whiteness are not entertained. Since whiteness is characterized as a hegemonic racial dominance that has become so natural it is almost invisible, this paper identifies how whiteness operates in science education such that it falls short of its goal for cultural diversity. Because literature in science education has yet to fully entertain whiteness ideology, this paper offers one of the first theoretical postulations. Drawing from the fields of education, legal studies, and sociology, this paper employs critical whiteness studies as both a theoretical lens and an analytic tool to re-interpret how whiteness might impact science education. Doing so allows the field to reconsider benign, routine, or normative practices and protocol that may influence how future scientists of Color experience the field. In sum, we seek to have the field consider the theoretical frames of whiteness and how it might influence how we engage in science education such that our hope for diversity never fully materializes.

  17. A field focused university education in NRI : A case of UST-KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Byung Chul; Hwang, In A [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The University of Science and Technology (UST) was founded in Oct. 2003 through the approval of the former Ministry of Education and Human Resources Development to nurture R and D professionals in convergence technology, who will lead us into the 21st century, the era of information technology. In the era of 'global talent war', every country competes to secure young scientific/technological leaders who will cope with future global and national agenda. In accordance with this need, advanced countries have diversified their higher level education channels utilizing the representative national research institutes or laboratories in addition to the traditional graduate school. Recently, almost all the advanced countries operate a unique graduate school or university to nurture higher talents based on the national research institutes (NRIs) which lead national strategic R and D fields. They include International Max Planck research school(IMPRS) and International Helmholtz graduate school in Germany, Watson school of the Cold Spring Harbor Lab. and Kellogg school of the Scripps Research Institute in US, Feinberg graduate school of the Weizmann Institute in Israel, SOKENDAI in Japan, and UST in Korea. UST has enormous research facilities and special high tech equipment, and has faculty members who have outstanding research records, which is not common in general universities. With high tech equipment, the excellent faculty members are participating in useful field focused R and D education. Instead of having a rigid department, UST allows flexible opening of a major for new convergence technology. By doing this, UST is responding actively to fast changes in science and technology. UST manages 29 campuses granted as government funded research institutes in the area of science and technology with educational functions. Each campus member and faculty are joining a network related to educating each other and cooperating with different research activities, which is

  18. A field focused university education in NRI : A case of UST-KAERI

    International Nuclear Information System (INIS)

    Shin, Byung Chul; Hwang, In A

    2012-01-01

    The University of Science and Technology (UST) was founded in Oct. 2003 through the approval of the former Ministry of Education and Human Resources Development to nurture R and D professionals in convergence technology, who will lead us into the 21st century, the era of information technology. In the era of 'global talent war', every country competes to secure young scientific/technological leaders who will cope with future global and national agenda. In accordance with this need, advanced countries have diversified their higher level education channels utilizing the representative national research institutes or laboratories in addition to the traditional graduate school. Recently, almost all the advanced countries operate a unique graduate school or university to nurture higher talents based on the national research institutes (NRIs) which lead national strategic R and D fields. They include International Max Planck research school(IMPRS) and International Helmholtz graduate school in Germany, Watson school of the Cold Spring Harbor Lab. and Kellogg school of the Scripps Research Institute in US, Feinberg graduate school of the Weizmann Institute in Israel, SOKENDAI in Japan, and UST in Korea. UST has enormous research facilities and special high tech equipment, and has faculty members who have outstanding research records, which is not common in general universities. With high tech equipment, the excellent faculty members are participating in useful field focused R and D education. Instead of having a rigid department, UST allows flexible opening of a major for new convergence technology. By doing this, UST is responding actively to fast changes in science and technology. UST manages 29 campuses granted as government funded research institutes in the area of science and technology with educational functions. Each campus member and faculty are joining a network related to educating each other and cooperating with different research activities, which is expanding

  19. Scientism and Scientific Thinking. A Note on Science Education

    Science.gov (United States)

    Gasparatou, Renia

    2017-11-01

    The move from respecting science to scientism, i.e., the idealization of science and scientific method, is simple: We go from acknowledging the sciences as fruitful human activities to oversimplifying the ways they work, and accepting a fuzzy belief that Science and Scientific Method, will give us a direct pathway to the true making of the world, all included. The idealization of science is partly the reason why we feel we need to impose the so-called scientific terminologies and methodologies to all aspects of our lives, education too. Under this rationale, educational policies today prioritize science, not only in curriculum design, but also as a method for educational practice. One might expect that, under the scientistic rationale, science education would thrive. Contrariwise, I will argue that scientism disallows science education to give an accurate image of the sciences. More importantly, I suggest that scientism prevents one of science education's most crucial goals: help students think. Many of my arguments will borrow the findings and insights of science education research. In the last part of this paper, I will turn to some of the most influential science education research proposals and comment on their limits. If I am right, and science education today does not satisfy our most important reasons for teaching science, perhaps we should change not just our teaching strategies, but also our scientistic rationale. But that may be a difficult task.

  20. Focus: knowing the ocean: a role for the history of science.

    Science.gov (United States)

    Rozwadowski, Helen M

    2014-06-01

    While most historians have treated the sea as a surface or a void, the history of science is well positioned to draw the ocean itself into history. The contributors to this Focus section build on the modest existing tradition of history of oceanography and extend that tradition to demonstrate both the insights to be gained by studying oceans historically and the critical role that the history of science should play in future environmental history of the ocean.

  1. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences ... Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 1. Factoring Fermat Numbers. C E Veni ... C E Veni Madhavan1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012.

  2. Educating Accountants in Corruption Pervasive Societies: A Focus on Nigeria

    Science.gov (United States)

    Idialu, Jeremiah Uwaifo; Oghuma, Richard Iyere

    2007-01-01

    There has been widespread corruption in almost all societies and a general belief that without the involvement of Accountants, or if accountants carry out their duties effectively, there will be no corruption. Therefore this paper is designed to look at the current approach educating accountants in order to discover the educational arrangement put…

  3. Teaching Traditions in Science Education in Switzerland, Sweden and France: A Comparative Analysis of Three Curricula

    Science.gov (United States)

    Marty, Laurence; Venturini, Patrice; Almqvist, Jonas

    2018-01-01

    Classroom actions rely, among other things, on teaching habits and traditions. Previous research has clarified three different teaching traditions in science education: the academic tradition builds on the idea that simply the products and methods of science are worth teaching; the applied tradition focuses on students' ability to use scientific…

  4. Computer Science (CS) in the Compulsory Education Curriculum: Implications for Future Research

    Science.gov (United States)

    Passey, Don

    2017-01-01

    The subject of computer science (CS) and computer science education (CSE) has relatively recently arisen as a subject for inclusion within the compulsory school curriculum. Up to this present time, a major focus of technologies in the school curriculum has in many countries been on applications of existing technologies into subject practice (both…

  5. Investigating the Role of Student Motivation in Computer Science Education through One-on-One Tutoring

    Science.gov (United States)

    Boyer, Kristy Elizabeth; Phillips, Robert; Wallis, Michael D.; Vouk, Mladen A.; Lester, James C.

    2009-01-01

    The majority of computer science education research to date has focused on purely cognitive student outcomes. Understanding the "motivational" states experienced by students may enhance our understanding of the computer science learning process, and may reveal important instructional interventions that could benefit student engagement and…

  6. Effective Integration of the World-Wide Web in Earth Science Education.

    Science.gov (United States)

    Herbert, Bruce; Bednarz, Sarah; Boyd, Tom; Blake, Sally; Harder, Vicki; Sutter, Marilyn

    The earth sciences is an evolving set of disciplines encompassing more than 30 specialties; however, earth scientists continue to be trained within the traditional disciplinary structure. Earth science education should focus not only on student acquisition and retention of factual knowledge, but also on the development of higher-order skills…

  7. Women in Education, Science and Leadership in New Zealand: A Personal Reflection

    Science.gov (United States)

    Austin, Margaret

    2016-01-01

    In global terms, the position of women in New Zealand society is relatively strong and at one stage in the early 2000s many senior roles were occupied by women. Equality of opportunity for women in leadership in science and the community has been a focus of attention in New Zealand in government, education, and the sciences for at least two…

  8. Dawn Mission Education and Public Outreach: Science as Human Endeavor

    Science.gov (United States)

    Cobb, W. H.; Wise, J.; Schmidt, B. E.; Ristvey, J.

    2012-12-01

    Dawn Education and Public Outreach strives to reach diverse learners using multi-disciplinary approaches. In-depth professional development workshops in collaboration with NASA's Discovery Program, MESSENGER and Stardust-NExT missions focusing on STEM initiatives that integrate the arts have met the needs of diverse audiences and received excellent evaluations. Another collaboration on NASA ROSES grant, Small Bodies, Big Concepts, has helped bridge the learning sequence between the upper elementary and middle school, and the middle and high school Dawn curriculum modules. Leveraging the Small Bodies, Big Concepts model, educators experience diverse and developmentally appropriate NASA activities that tell the Dawn story, with teachers' pedagogical skills enriched by strategies drawn from NSTA's Designing Effective Science Instruction. Dawn mission members enrich workshops by offering science presentations to highlight events and emerging data. Teachers' awareness of the process of learning new content is heightened, and they use that experience to deepen their science teaching practice. Activities are sequenced to enhance conceptual understanding of big ideas in space science and Vesta and Ceres and the Dawn Mission 's place within that body of knowledge Other media add depth to Dawn's resources for reaching students. Instrument and ion engine interactives developed with the respective science team leads help audiences engage with the mission payload and the data each instrument collects. The Dawn Dictionary, an offering in both audio as well as written formats, makes key vocabulary accessible to a broader range of students and the interested public. Further, as Dawn E/PO has invited the public to learn about mission objectives as the mission explored asteroid Vesta, new inroads into public presentations such as the Dawn MissionCast tell the story of this extraordinary mission. Asteroid Mapper is the latest, exciting citizen science endeavor designed to invite the

  9. Improving Health with Science: Exploring Community-Driven Science Education in Kenya

    Science.gov (United States)

    Leak, Anne Emerson

    This study examines the role of place-based science education in fostering student-driven health interventions. While literature shows the need to connect science with students' place and community, there is limited understanding of strategies for doing so. Making such connections is important for underrepresented students who tend to perceive learning science in school as disconnected to their experiences out of school (Aikenhead, Calabrese-Barton, & Chinn, 2006). To better understand how students can learn to connect place and community with science and engineering practices in a village in Kenya, I worked with community leaders, teachers, and students to develop and study an education program (a school-based health club) with the goal of improving knowledge of health and sanitation in a Kenyan village. While students selected the health topics and problems they hoped to address through participating in the club, the topics were taught with a focus on providing opportunities for students to learn the practices of science and health applications of these practices. Students learned chemistry, physics, environmental science, and engineering to help them address the health problems they had identified in their community. Surveys, student artifacts, ethnographic field notes, and interview data from six months of field research were used to examine the following questions: (1) In what ways were learning opportunities planned for using science and engineering practices to improve community health? (2) In what ways did students apply science and engineering practices and knowledge learned from the health club in their school, homes, and community? and (3) What factors seemed to influence whether students applied or intended to apply what they learned in the health club? Drawing on place-based science education theory and community-engagement models of health, process and structural coding (Saldana, 2013) were used to determine patterns in students' applications of their

  10. Development of TPF-1 plasma focus for education

    Science.gov (United States)

    Picha, R.; Promping, J.; Channuie, J.; Poolyarat, N.; Sangaroon, S.; Traikool, T.

    2017-09-01

    The plasma focus is a device that uses high voltage and electromagnetic force to induce plasma generation and acceleration, in order to cause nuclear reactions. Radiation of various types (X-ray, gamma ray, electrons, ions, neutrons) can be generated using this method during the pinch phase, thus making the plasma focus able to serve as a radiation source. Material testing, modification, and identification are among the current applications of the plasma focus. Other than being an alternative option to isotopic sources, the plasma focus, which requires multidisciplinary team of personnel to design, operate, and troubleshoot, can also serve as an excellent learning device for physics and engineering students in the fields including, but not limited to, plasma physics, nuclear physics, electronics engineering, and mechanical engineering. This work describes the parameters and current status of Thai Plasma Focus 1 (TPF-1) and the characteristics of the plasma being produced in the machine using a Rogowski coil.

  11. Incorporating Hot Topics in Ocean Sciences to Outreach Activities in Marine and Environmental Science Education

    Science.gov (United States)

    Bergondo, D. L.; Mrakovcich, K. L.; Vlietstra, L.; Tebeau, P.; Verlinden, C.; Allen, L. A.; James, R.

    2016-02-01

    The US Coast Guard Academy, an undergraduate military Academy, in New London CT, provides STEM education programs to the local community that engage the public on hot topics in ocean sciences. Outreach efforts include classroom, lab, and field-based activities at the Academy as well as at local schools. In one course, we partner with a STEM high school collecting fish and environmental data on board a research vessel and subsequently students present the results of their project. In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops and/or participates in outreach programs including Science Partnership for Innovation in Learning (SPIL), Women in Science, Physics of the Sea, and the Ocean Exploration Trust Honors Research Program. As part of the programs, instructors and cadets create interactive and collaborative activities that focus on hot topics in ocean sciences such as oil spill clean-up, ocean exploration, tsunamis, marine biodiversity, and conservation of aquatic habitats. Innovative science demonstrations such as real-time interactions with the Exploration Vessel (E/V) Nautilus, rotating tank simulations of ocean circulation, wave tank demonstrations, and determining what materials work best to contain and clean-up oil, are used to enhance ocean literacy. Children's books, posters and videos are some creative ways students summarize their understanding of ocean sciences and marine conservation. Despite time limitations of students and faculty, and challenges associated with securing funding to keep these programs sustainable, the impact of the programs is overwhelmingly positive. We have built stronger relationships with local community, enhanced ocean literacy, facilitated communication and mentorship between young

  12. Towards Eco-reflexive Science Education. A Critical Reflection About Educational Implications of Green Chemistry

    Science.gov (United States)

    Sjöström, Jesper; Eilks, Ingo; Zuin, Vânia G.

    2016-05-01

    The modern world can be described as a globalized risk society. It is characterized by increasing complexity, unpredictable consequences of techno-scientific innovations and production, and its environmental consequences. Therefore, chemistry, just like many other knowledge areas, is in an ongoing process of environmentalization. For example, green chemistry has emerged as a new chemical metadiscipline and movement. The philosophy of green chemistry was originally based on a suggestion of twelve principles for environment-friendly chemistry research and production. The present article problematizes limitations in green chemistry when it comes to education. It argues that the philosophy of green chemistry in the context of education needs to be extended with socio-critical perspectives to form educated professionals and citizens who are able to understand the complexity of the world, to make value-based decisions, and to become able to engage more thoroughly in democratic decision-making on sustainability issues. Different versions of sustainability-oriented science/chemistry education are discussed to sharpen a focus on the most complex type, which is Bildung-oriented, focusing emancipation and leading to eco-reflexive education. The term eco- reflexive is used for a problematizing stance towards the modern risk society, an understanding of the complexity of life and society and their interactions, and a responsibility for individual and collective actions towards socio-ecojustice and global sustainability. The philosophical foundation and characteristics of eco-reflexive science education are sketched on in the article.

  13. Earth System Science Education Interdisciplinary Partnerships

    Science.gov (United States)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  14. The Centers for Ocean Science Education Excellence (COSEE) initiative

    Science.gov (United States)

    Cook, S.; Rom, E.

    2003-04-01

    Seven regional Centers for Ocean Science Education Excellence have recently been established to promote the integration of ocean science research into high-quality education programs aimed at both formal and informal audiences throughout the United States. The regional Centers include two complementary partnerships in California, a New England regional effort, a Mid-Atlantic partnership, a Southeastern collaborative, a Florida initiative and a central Gulf of Mexico alliance. A Central Coordinating Office in Washington DC will help the group develop into a cohesive and focused national network. Initial funding has been provided by the National Science Foundation with complementary support from the Office of Naval Research and multiple units within the National Oceanographic and Atmospheric Administration (specifically the National Ocean Service, the Office of Ocean Exploration and the National SeaGrant Office). Under an umbrella of common goals and objectives, the first cohort of Centers in the COSEE network is remarkably diverse in terms of geography, organizational structure and programmatic focus. NSF’s presentation will describe these partnerships, the different approaches that are being taken by the individual Centers and the expectations that NSF has for the network as a whole.

  15. Potential of augmented reality in sciences education. A literature review.

    OpenAIRE

    Swensen, Håkon

    2016-01-01

    POTENTIAL OF AUGMENTED REALITY IN SCIENCES EDUCATION A LITERATURE REVIEW H. Swensen Oslo and Akershus University College of Applied Sciences (NORWAY) Fewer and fewer students in Europe choose STEM education, while in today's job market have a growing need for people with such education. There are many reasons for this situation, but one important factor is that many students perceive school science as difficult. In science, there are many complex and abstract concepts to be learned, which put...

  16. Cross-curricular goals and raising the relevance of science education

    DEFF Research Database (Denmark)

    Belova, Nadja; Dittmar, Johanna; Hansson, Lena

    2017-01-01

    ‘Relevance’ is one of the most commonly used terms when it comes to reforms in science education. The term is used in manifold ways. It can be understood – among other things – as meeting an interest, fulfilling needs or contributing to intellectual development. Many components of relevant science...... education go beyond single contents and concepts; many challenges are tied to cross-curricular goals. Specifically, when it comes to the societal and vocational relevance of science education, many demands can only be met when we develop corresponding skills across disciplines and grade levels. This chapter...... focuses on a set of such cross-curricular goals from a chemistry education perspective, namely, education for sustainability, critical media literacy, innovation competence, vocational orientation and employability. It relates them to the idea of relevant chemistry and science education. Directions...

  17. Trajectories in higher education: ProUni in focus

    OpenAIRE

    Felicetti,Vera Lucia; Cabrera,Alberto F.

    2017-01-01

    Abstract Trajectories in higher education and the University for All Program (ProUni) are the central theme of this paper. The research question was: To what extent were some factors experienced during university difficulties in the academic trajectory of ProUni and non-ProUni graduates? The approach was quantitative with an explanatory goal. Descriptive and inferential statistics were used in the data analysis. The research subjects were 197 higher education graduates from a Southern Brazil ...

  18. Proposing an Evaluation Framework for Interventions: Focusing on Students' Behaviours in Interactive Science Exhibitions

    Science.gov (United States)

    Hauan, Nils Petter; DeWitt, Jennifer; Kolstø, Stein Dankert

    2017-01-01

    Materials designed for self-guided experiences such as worksheets and digital applications are widely used as tools to enable interactive science exhibitions to support students' progress towards conceptual understanding. However, there is a need to find expedient ways to evaluate the quality of educational experiences resulting from the use of…

  19. PARRISE, Promoting Attainment of Responsible Research and Innovation in Science Education, FP7 : Rethinking science, rethinking education

    NARCIS (Netherlands)

    Knippels, M.C.P.J.; van Dam, F.W.

    The PARRISE (Promoting Attainment of Responsible Research & Innovation in Science Education) project aims at introducing the concept of Responsible Research and Innovation in primary and secondary education. It does so by combining inquiry-based learning and citizenship education with

  20. LANGUAGE, HUMAN DEVELOPMENT AND EDUCATION: FOCUS ON CHILDREN’S EDUCATION

    Directory of Open Access Journals (Sweden)

    Solange Maria Alves

    2010-06-01

    Full Text Available Based on theoretical patterns of historical-cultural approach, this text proposes a critical discussion about the relation among the process of human development, the role of language and scholar education as elements of specific and intentional mediation, directed to the development of typical human ways of thinking, or, as preferred by Vygotsky, superior psychological functions. Under this focus, the author points some characteristics to be assumed by scholar organization, committed with pedagogic praxis for childhood, approaching the playful of social roles and the game as linguistic elements itself, and, thus, owners of social content, fundamental symbolic contents to be taken as start element for the educative action of change. KEYWORDS: Language and play. Human development. Education. Childhood. AUTORA

  1. PROGNOSIS OF VISUALIZATION USAGE IN THE SCIENCE EDUCATION PROCESS

    OpenAIRE

    Bilbokaite, Renata

    2016-01-01

    Future education depends on many external exogenous factors - society evolution, technologic progress, teachers’ opinion and their ability to organize the education process. Science education is difficult for many students but the progress of the society definitely correlated with achievements of science. This highlights the importance of teaching biology, chemistry, physics, geography and mathematics at school. Visualization helps students to learn science education but at the moment teacher...

  2. Using a creativity-focused science program to foster general creativity in young children: A teacher action research study

    Science.gov (United States)

    Gomes, Joan Julieanne Mariani

    The importance of thinking and problem-solving skills, and the ability to integrate and analyze information has been recognized and yet may be lacking in schools. Creativity is inherently linked to problem finding, problem solving, and divergent thinking (Arieti, 1976; Csikszentmihalyi, 1990; Milgram, 1990). The importance of early childhood education and its role in the formation of young minds has been recognized (Caine & Caine, 1991; Montessori, 1967a, 1967b; Piaget, 1970). Early childhood education also impacts creativity (Gardner, 1999). The features of brain-based learning (Caine & Caine, 1991; Jensen, 1998; Sousa, 2001; Wolfe, 2001) have a clear connection to nurturing the creative potential in students. Intrinsic motivation and emotions affect student learning and creativity as well (Hennessey & Amabile, 1987). The purpose of this study was to discern if a creativity-focused science curriculum for the kindergarteners at a Montessori early learning center could increase creativity in students. This action research study included observations of the students in two classrooms, one using the creativity-focused science curriculum, and the other using the existing curriculum. The data collected for this interpretive study included interviews with the students, surveys and interviews with their parents and teachers, teacher observations, and the administration of Torrance's (1981) Thinking Creatively in Action and Movement (TCAM) test. The interpretation of the data indicated that the enhanced science curriculum played a role in enhancing the creativity of the children in the creativity-focused group. The results of the TCAM (Torrance, 1981) showed a significant increase in scores for the children in the creativity-focused group. The qualitative data revealed a heightened interest in science and the observation of creative traits, processes, and products in the creativity-focused group children. The implications of this study included the need for meaningful

  3. Project of international science-education center and integration problems of nano science education in far eastern region of Asia

    International Nuclear Information System (INIS)

    Plusnin, N I; Lazarev, G I

    2008-01-01

    Some conception of international science-education center on nano science in Vladivostok is presented. The conception is based on internal and external prerequisites. Internal one is high intellectual potential of institutes of Russian Academy of Sciences and universities of Vladivostok and external one is need of countries of Far Eastern region of Asia in high level manpower. The conception takes into account a specific distribution of science and education potential between Russian Academy of Sciences and Russian universities and a specific their dislocation in Vladivostok. First specific dictates some similarity of organization structure and function of international science-education center to typical science-education center in Russia. But as for dislocation of the international science-education center in Vladivostok, it should be near dislocation of institutes of Far Eastern Brunch of Russian Academy of Sciences in Vladivostok, which are dislocated very compactly in suburb zone of Vladivostok

  4. Science as a general education: Conceptual science should constitute the compulsory core of multi-disciplinary undergraduate degrees.

    Science.gov (United States)

    Charlton, Bruce G

    2006-01-01

    It is plausible to assume that in the future science will form the compulsory core element both of school curricula and multi-disciplinary undergraduate degrees. But for this to happen entails a shift in the emphasis and methods of science teaching, away from the traditional concern with educating specialists and professionals. Traditional science teaching was essentially vocational, designed to provide precise and comprehensive scientific knowledge for practical application. By contrast, future science teaching will be a general education, hence primarily conceptual. Its aim should be to provide an education in flexible rationality. Vocational science teaching was focused on a single-discipline undergraduate degree, but a general education in abstract systematic thinking is best inculcated by studying several scientific disciplines. In this sense, 'science' is understood as mathematics and the natural sciences, but also the abstract and systematic aspects of disciplines such as economics, linguistics, music theory, history, sociology, political science and management science. Such a wide variety of science options in a multi-disciplinary degree will increase the possibility of student motivation and aptitude. Specialist vocational science education will progressively be shifted to post-graduate level, in Masters and Doctoral programs. A multi-disciplinary and conceptually-based science core curriculum should provide an appropriate preparation for dealing with the demands of modern societies; their complex and rapidly changing social systems; and the need for individual social and professional mobility. Training in rational conceptual thinking also has potential benefits to human health and happiness, since it allows people to over-ride inappropriate instincts, integrate conflicting desires and pursue long-term goals.

  5. A typology of educationally focused medical simulation tools.

    Science.gov (United States)

    Alinier, Guillaume

    2007-10-01

    The concept of simulation as an educational tool in healthcare is not a new idea but its use has really blossomed over the last few years. This enthusiasm is partly driven by an attempt to increase patient safety and also because the technology is becoming more affordable and advanced. Simulation is becoming more commonly used for initial training purposes as well as for continuing professional development, but people often have very different perceptions of the definition of the term simulation, especially in an educational context. This highlights the need for a clear classification of the technology available but also about the method and teaching approach employed. The aims of this paper are to discuss the current range of simulation approaches and propose a clear typology of simulation teaching aids. Commonly used simulation techniques have been identified and discussed in order to create a classification that reports simulation techniques, their usual mode of delivery, the skills they can address, the facilities required, their typical use, and their pros and cons. This paper presents a clear classification scheme of educational simulation tools and techniques with six different technological levels. They are respectively: written simulations, three-dimensional models, screen-based simulators, standardized patients, intermediate fidelity patient simulators, and interactive patient simulators. This typology allows the accurate description of the simulation technology and the teaching methods applied. Thus valid comparison of educational tools can be made as to their potential effectiveness and verisimilitude at different training stages. The proposed typology of simulation methodologies available for educational purposes provides a helpful guide for educators and participants which should help them to realise the potential learning outcomes at different technological simulation levels in relation to the training approach employed. It should also be a useful

  6. Student Empowerment in an Environmental Science Classroom: Toward a Framework for Social Justice Science Education

    Science.gov (United States)

    Dimick, Alexandra Schindel

    2012-01-01

    Social justice education is undertheorized in science education. Given the wide range of goals and purposes proposed within both social justice education and social justice science education scholarship, these fields require reconciliation. In this paper, I suggest a student empowerment framework for conceptualizing teaching and learning social…

  7. The Implications for Science Education of Heidegger's Philosophy of Science

    Science.gov (United States)

    Shaw, Robert

    2013-01-01

    Science teaching always engages a philosophy of science. This article introduces a modern philosophy of science and indicates its implications for science education. The hermeneutic philosophy of science is the tradition of Kant, Heidegger, and Heelan. Essential to this tradition are two concepts of truth, truth as correspondence and truth as…

  8. Reconceptualizing the Nature of Science for Science Education: Why Does it Matter?

    Science.gov (United States)

    Dagher, Zoubeida R.; Erduran, Sibel

    2016-01-01

    Two fundamental questions about science are relevant for science educators: (a) What is the nature of science? and (b) what aspects of nature of science should be taught and learned? They are fundamental because they pertain to how science gets to be framed as a school subject and determines what aspects of it are worthy of inclusion in school…

  9. Reflections on the challenges and possibilities of journal publication in science education

    Science.gov (United States)

    Milne, Catherine; Siry, Christina; Mueller, Michael

    2015-12-01

    In this editorial we reflect on the intersections between the review and publishing policies of Cultural Studies of Science Education (CSSE) and the challenges and possibilities in global science education publishing. In particular we discuss the tensions associated with open or closed review policies, the hegemony of English as a language of publication, and reflect on some of the common challenges experienced by editors and authors from different contexts. We draw on the paper set in this issue consisting of five papers focused on publishing in various contexts, and elaborate several central questions for the field of science education and the dissemination of knowledges.

  10. Focused Campaign Increases Activity among Participants in "Nature's Notebook," a Citizen Science Project

    Science.gov (United States)

    Crimmins, Theresa M.; Weltzin, Jake F.; Rosemartin, Alyssa H.; Surina, Echo M.; Marsh, Lee; Denny, Ellen G.

    2014-01-01

    Science projects, which engage non-professional scientists in one or more stages of scientific research, have been gaining popularity; yet maintaining participants' activity level over time remains a challenge. The objective of this study was to evaluate the potential for a short-term, focused campaign to increase participant activity in a…

  11. Improving primary teachers’ attitudes toward science by attitude-focused professional development

    NARCIS (Netherlands)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Julie Henriëtte

    2015-01-01

    This article provides a description of a novel, attitude-focused, professional development intervention, and presents the results of an experimental pretest-posttest control group study investigating the effects of this intervention on primary teachers’ personal attitudes toward science, attitudes

  12. Communicating the Nature of Science through "The Big Bang Theory": Evidence from a Focus Group Study

    Science.gov (United States)

    Li, Rashel; Orthia, Lindy A.

    2016-01-01

    In this paper, we discuss a little-studied means of communicating about or teaching the nature of science (NOS)--through fiction television. We report some results of focus group research which suggest that the American sitcom "The Big Bang Theory" (2007-present), whose main characters are mostly working scientists, has influenced…

  13. Time for action: science education for an alternative future

    Science.gov (United States)

    Hodson, Derek

    2003-06-01

    Following a brief historical survey of the popular 'slogans' that have influenced science education during the past quarter century and a review of current international debate on scientific literacy and science pedagogy, the author takes the view that while much of value has been achieved, there is still considerable cause for concern and that it is time for action in two senses. First, it is time to take action on the school science curriculum because it no longer meets the needs, interests and aspirations of young citizens. Second, it is time for a science curriculum oriented toward sociopolitical action. The author argues that if current social and environmental problems are to be solved, we need a generation of scientifically and politically literate citizens who are not content with the role of 'armchair critic'. A particular concern in North America is the link between science education, economic globalization, increasing production and unlimited expansion - a link that threatens the freedom of individuals, the spiritual well-being of particular societies and the very future of the planet. The author's response is to advocate a politicized, issues-based curriculum focused on seven areas of concern (human health; food and agriculture; land, water and mineral resources; energy resources and consumption; industry; information transfer and transportation; ethics and social responsibility) and addressed at four levels of sophistication, culminating in preparation for sociopolitical action. The curriculum proposal outlined in the article is intended to produce activists: people who will fight for what is right, good and just; people who will work to re-fashion society along more socially-just lines; people who will work vigorously in the best interests of the biosphere. At the heart of this curriculum is a commitment to pursue a fundamental realignment of the values underpinning Western industrialized society. Achieving that goal is a formidable task - one that

  14. STEREO-IMPACT Education and Public Outreach: Sharing STEREO Science

    Science.gov (United States)

    Craig, N.; Peticolas, L. M.; Mendez, B. J.

    2005-12-01

    The Solar TErrestrial RElations Observatory (STEREO) is scheduled for launch in Spring 2006. STEREO will study the Sun with two spacecrafts in orbit around it and on either side of Earth. The primary science goal is to understand the nature and consequences of Coronal Mass Ejections (CMEs). Despite their importance, scientists don't fully understand the origin and evolution of CMEs, nor their structure or extent in interplanetary space. STEREO's unique 3-D images of the structure of CMEs will enable scientists to determine their fundamental nature and origin. We will discuss the Education and Public Outreach (E/PO) program for the In-situ Measurement of Particles And CME Transients (IMPACT) suite of instruments aboard the two crafts and give examples of upcoming activities, including NASA's Sun-Earth day events, which are scheduled to coincide with a total solar eclipse in March. This event offers a good opportunity to engage the public in STEREO science, because an eclipse allows one to see the solar corona from where CMEs erupt. STEREO's connection to space weather lends itself to close partnerships with the Sun-Earth Connection Education Forum (SECEF), The Exploratorium, and UC Berkeley's Center for New Music and Audio Technologies to develop informal science programs for science centers, museum visitors, and the public in general. We will also discuss our teacher workshops locally in California and also at annual conferences such as those of the National Science Teachers Association. Such workshops often focus on magnetism and its connection to CMEs and Earth's magnetic field, leading to the questions STEREO scientists hope to answer. The importance of partnerships and coordination in working in an instrument E/PO program that is part of a bigger NASA mission with many instrument suites and many PIs will be emphasized. The Education and Outreach Porgram is funded by NASA's SMD.

  15. Neoliberal Universities and the Education of Arts, Humanities and Social Sciences in Bangladesh

    Science.gov (United States)

    Anwaruddin, Rdar M.

    2013-01-01

    In this article, the author explores the neoliberal impacts on higher education in Bangladesh, how market-driven policies might limit the education of arts, humanities and social sciences, and whether or not this phenomenon may have consequences for the future of democracy in the country. First, the author focuses on the privatisation of higher…

  16. Integrating Science and Technology into a Policy of Lifelong Education in Nigeria.

    Science.gov (United States)

    Urevbu, Andrew O.

    1985-01-01

    Examines Nigeria's National Policy on Education guidelines, specifically focusing on science and technological education. Discusses the development of vocational and technical schools, transfer of technology, and the role of research institutes. Recommendations are made concerning academic survival skills, respect for manual skills, improved…

  17. Collaboration and Near-Peer Mentoring as a Platform for Sustainable Science Education Outreach

    Science.gov (United States)

    Pluth, Michael D.; Boettcher, Shannon W.; Nazin, George V.; Greenaway, Ann L.; Hartle, Matthew D.

    2015-01-01

    Decreased funding for middle and high school education has resulted in reduced classroom time, which, when coupled with an increased focus on standardized testing, has decreased the exposure of many middle school students to hands-on science education. To help address these challenges, we developed an integrated outreach program, spanning grades…

  18. Promoting science and technology in primary education : a review of integrated curricula

    NARCIS (Netherlands)

    Gresnigt, H.L.L.; Taconis, R.; Keulen, van Hanno; Gravemeijer, K.P.E.; Baartman, L.K.J.

    2014-01-01

    Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focused on integrated curricula in primary education from

  19. All Christians? Experiences of science educators in Northern Ireland

    Science.gov (United States)

    Murphy, Colette; Hickey, Ivor; Beggs, Jim

    2010-03-01

    In this paper we respond to Staver's article (this issue) on an attempt to resolve the discord between science and religion. Most specifically, we comment on Staver's downplaying of difference between Catholics and Protestants in order to focus on the religion-science question. It is our experience that to be born into one or other of these traditions in some parts of the world (especially Northern Ireland) resulted in starkly contrasting opportunities, identities and practices in becoming and being science educators. The paper starts with a short contextual background to the impact of religion on schooling and higher education in Northern Ireland. We then explore the lives and careers of three science/religious educators in Northern Ireland: Catholic (Jim) and Protestant (Ivor) males who are contemporaries and whose experience spans pre-Troubles to post-conflict and a Catholic female (Colette) who moved to Northern Ireland during the Troubles as a teenager. Finally, we discuss the situation regarding the teaching of creationism and evolution in Northern Ireland—an issue has recently generated high public interest. The Chair of the Education Committee of the Northern Ireland Assembly recently stated that "creationism is not for the RE class because I believe that it can stand scientific scrutiny and that is a debate which I am quite happy to encourage and be part of…" (News Letter 2008). It could be the case that the evolution debate is being fuelled as a deliberate attempt to undermine some of the post-conflict collaboration projects between schools and communities in Northern Ireland.

  20. Nordic Science and Technology Entrepreneurship Education

    DEFF Research Database (Denmark)

    Warhuus, Jan P.; Basaiawmoit, Rajiv Vaid

    As a university discipline, entrepreneurship education (EEd) has moved from whether it can be taught, to what and how it should be taught (Kuratko 2005) and beyond the walls of the business school (Hindle 2007), where a need for a tailored, disciplinary approach is becoming apparent. Within science......, technology, engineering, and mathematics (STEM) EEd, tacit knowledge of what works and why is growing, while reflections to activate this knowledge are often kept local or reported to the EEd community as single cases, which are difficult compare and contrast for the purpose of deriving cross-case patterns......, findings, and knowledge. The objective of this paper is to decode this tacit knowledge within Nordic science and technology institutions, and use it to provide guidance for future EEd program designs and improvements....