WorldWideScience

Sample records for science education courses

  1. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    Science.gov (United States)

    Riedinger, Kelly; Marbach-Ad, Gili; McGinnis, J. Randy; Hestness, Emily; Pease, Rebecca

    2011-01-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching…

  2. Redesigning a General Education Science Course to Promote Critical Thinking

    Science.gov (United States)

    Rowe, Matthew P.; Gillespie, B. Marcus; Harris, Kevin R.; Koether, Steven D.; Shannon, Li-Jen Y.; Rose, Lori A.

    2015-01-01

    Recent studies question the effectiveness of a traditional university curriculum in helping students improve their critical thinking and scientific literacy. We developed an introductory, general education (gen ed) science course to overcome both deficiencies. The course, titled Foundations of Science, differs from most gen ed science offerings in that it is interdisciplinary; emphasizes the nature of science along with, rather than primarily, the findings of science; incorporates case studies, such as the vaccine-autism controversy; teaches the basics of argumentation and logical fallacies; contrasts science with pseudoscience; and addresses psychological factors that might otherwise lead students to reject scientific ideas they find uncomfortable. Using a pretest versus posttest design, we show that students who completed the experimental course significantly improved their critical-thinking skills and were more willing to engage scientific theories the general public finds controversial (e.g., evolution), while students who completed a traditional gen ed science course did not. Our results demonstrate that a gen ed science course emphasizing the process and application of science rather than just scientific facts can lead to improved critical thinking and scientific literacy. PMID:26231561

  3. Students' Attitudes towards Interdisciplinary Education: A Course on Interdisciplinary Aspects of Science and Engineering Education

    Science.gov (United States)

    Gero, Aharon

    2017-01-01

    A course entitled "Science and Engineering Education: Interdisciplinary Aspects" was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is…

  4. Redesigning a General Education Science Course to Promote Critical Thinking.

    Science.gov (United States)

    Rowe, Matthew P; Gillespie, B Marcus; Harris, Kevin R; Koether, Steven D; Shannon, Li-Jen Y; Rose, Lori A

    2015-01-01

    Recent studies question the effectiveness of a traditional university curriculum in helping students improve their critical thinking and scientific literacy. We developed an introductory, general education (gen ed) science course to overcome both deficiencies. The course, titled Foundations of Science, differs from most gen ed science offerings in that it is interdisciplinary; emphasizes the nature of science along with, rather than primarily, the findings of science; incorporates case studies, such as the vaccine-autism controversy; teaches the basics of argumentation and logical fallacies; contrasts science with pseudoscience; and addresses psychological factors that might otherwise lead students to reject scientific ideas they find uncomfortable. Using a pretest versus posttest design, we show that students who completed the experimental course significantly improved their critical-thinking skills and were more willing to engage scientific theories the general public finds controversial (e.g., evolution), while students who completed a traditional gen ed science course did not. Our results demonstrate that a gen ed science course emphasizing the process and application of science rather than just scientific facts can lead to improved critical thinking and scientific literacy. © 2015 M. P. Rowe, B. M. Gillespie, et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  6. Communicating Ocean Sciences College Courses: Science Faculty and Educators Working and Learning Together

    Science.gov (United States)

    Halversen, C.; Simms, E.; McDonnell, J. D.; Strang, C.

    2011-12-01

    As the relationship between science and society evolves, the need for scientists to engage and effectively communicate with the public about scientific issues has become increasingly urgent. Leaders in the scientific community argue that research training programs need to also give future scientists the knowledge and skills to communicate. To address this, the Communicating Ocean Sciences (COS) series was developed to teach postsecondary science students how to communicate their scientific knowledge more effectively, and to build the capacity of science faculty to apply education research to their teaching and communicate more effectively with the public. Courses are co-facilitated by a faculty scientist and either a K-12 or informal science educator. Scientists contribute their science content knowledge and their teaching experience, and educators bring their knowledge of learning theory regarding how students and the public make meaning from, and understand, science. The series comprises two university courses for science undergraduate and graduate students that are taught by ocean and climate scientists at approximately 25 universities. One course, COS K-12, is team-taught by a scientist and a formal educator, and provides college students with experience communicating science in K-12 classrooms. In the other course, COSIA (Communicating Ocean Sciences to Informal Audiences), a scientist and informal educator team-teach, and the practicum takes place in a science center or aquarium. The courses incorporate current learning theory and provide an opportunity for future scientists to apply that theory through a practicum. COS addresses the following goals: 1) introduce postsecondary students-future scientists-to the importance of education, outreach, and broader impacts; 2) improve the ability of scientists to communicate science concepts and research to their students; 3) create a culture recognizing the importance of communicating science; 4) provide students and

  7. Interdisciplinary Science Courses for College General Education Requirements: Perspectives of Faculty at a State University.

    Science.gov (United States)

    Dass, Pradeep Maxwell

    Science educators have been advocating a broader role for science education--that of helping all students see the relevance of science to their own lives. Yet the only experience with post-secondary science that non-science majors get is through a couple of science courses which are part of the general education requirements (GERs) for a liberal…

  8. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    Science.gov (United States)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  9. Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course

    Science.gov (United States)

    Avard, Margaret

    2009-01-01

    In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…

  10. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  11. The Impact of Agricultural Science Education on Performance in a Biology Course

    Science.gov (United States)

    Ernest, Byron L.

    The lack of student achievement in science is often cited in U.S. educational reports. At the study site, low student achievement in science has been an ongoing concern for administrators. The purpose of this mixed methods study was to investigate the impact of agricultural science education on student performance in a Biology course. Vygotsky's constructivist theory and Gardner's multiple intelligences theory provided the framework for the study. The quantitative research question examined the relationship between the completion of Fundamentals of Agriculture Science and Business course and student performance in Biology I. Teacher perceptions and experiences regarding the integration of science and agricultural curriculum and traditional science curriculum were examined qualitatively. A sequential explanatory design was employed using 3 years of data collected from 486 high school students and interviews with 10 teachers. Point-biserial correlation and chi square tests revealed statistically significant relationships between whether or not students completed Fundamentals of Agriculture Science and Business and Biology I course performance, as measured by the end of course assessment and the course grade. In the qualitative sequence, typological and inductive data analyses were applied to the interview data, and themes of student impact and teacher experience emerged. Social change implications may be possible through improved science education for students in this program. Agriculture science courses may be used to facilitate learning of complex science concepts, designing teacher collaboration and professional development for teaching science in a relevant context, and resultant improved student performance in science.

  12. A Bioethics Course for Biology and Science Education Students.

    Science.gov (United States)

    Bryant, John; la Velle, Linda Baggott

    2003-01-01

    Points out the importance of awareness among biologists and biology teachers of the ethical and social implications of their work. Describes the bioethics module established at the University of Exeter mainly targeting students majoring in biology and science education. (Contains 18 references.) (Author/YDS)

  13. Early Childhood Pre-Service Teachers' Self-Images of Science Teaching in Constructivism Science Education Courses

    Science.gov (United States)

    Go, Youngmi; Kang, Jinju

    2015-01-01

    The purpose of this study is two-fold. First, it investigates the self-images of science teaching held by early childhood pre-service teachers who took constructivism early childhood science education courses. Second, it analyzes what aspects of those courses influenced these images. The participants were eight pre-service teachers who took these…

  14. Adopting Just-in-Time Teaching in the Context of an Elementary Science Education Methodology Course

    Science.gov (United States)

    Osmond, Pamela; Goodnough, Karen

    2011-01-01

    In this self-study, Pamela, a new science teacher educator, adopted Just-in-Time Teaching (JiTT) in the context of an elementary science education methodology course. JiTT is a teaching and learning strategy involving interaction between web-based study assignments and face-to-face class sessions. Students respond electronically to web-based…

  15. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  16. Educational Status of Dental Basic Science Course and its Correlation with Students' Educational Background in Kermanshah University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Mozafar Khazaei

    2014-04-01

    Full Text Available Introduction: Basic science course plays a pivotal role in the academic achievement of the students. The scientific background and educational performance of the students are also influential in this period. The aim of the present study was to investigate the educational status of dental basic science course in the first three admissions (2009-2011 and its association with students’ educational background in Kermanshah University of Medical Sciences (KUMS. Methods: In this descriptive cross-sectional study, all dental students admitted to school of dentistry in 2009-2011 years were included. The students’ academic background (scores, grade point average, score of comprehensive basic sciences examination (CBSE were recorded. Data were analyzed by SPSS 16 using one-way analysis of variance (ANOVA and independent t-test. Results: Kermanshah dental students admitted to university in 2009-2011 were mostly female (59.2%, belonged to regions 2 and 3 (81.6% of university entrance exam, had sciences diploma (89.8% and their grade point average of diploma was nearly 18. There was a significant difference between the three groups of students admitted to university in Biology, Chemistry, Mathematics, Arabic, English language and Theology lessones of entrane exam (P<0.05. The students’ failure rate was 1.5% in university coureses. They all (100% passed CBSE and were ranked second nationally in the year. There was no significant difference between male and female students in terms of age, diploma grade point average, grade point average of basic sciences and score of CBSE. Conclusion: Basic science courses of dentistry in Kermanshah enjoyed a rather constant status and students had a good academic level in these courses.

  17. Road Safety Education in a Science Course: Evaluation of "Science and the Road."

    Science.gov (United States)

    Gardner, Paul L.

    1989-01-01

    A traffic safety instructional package--"Science and the Road"--was assessed. It was designed by the Road Traffic Authority of Victoria (Australia) for use in tenth-grade science courses. Evaluation findings resulted in revision of the unit and implementation of more inservice courses for teachers lacking relevant biology and physics…

  18. Rethinking the Elementary Science Methods Course: A Case for Content, Pedagogy, and Informal Science Education.

    Science.gov (United States)

    Kelly, Janet

    2000-01-01

    Indicates the importance of preparing prospective teachers who will be elementary science teachers with different methods. Presents the theoretical and practical rationale for developing a constructivist-based elementary science methods course. Discusses the impact student knowledge and understanding of science and student attitudes has on…

  19. Factors associated with staff development processes and the creation of innovative science courses in higher education

    Science.gov (United States)

    Hodges, Jeanelle Bland

    1999-11-01

    The purpose of the study was to determine factors associated with staff development processes and the creation of innovative science courses by higher education faculty who have participated in a model staff development project. The staff development program was designed for college faculty interested in creating interdisciplinary, constructivist-based science, mathematics, or engineering courses designed for non-majors. The program includes workshops on incorporating constructivist pedagogy, alternative assessment, and technology into interdisciplinary courses. Staff development interventions used in the program include grant opportunities, distribution of resource materials, and peer mentoring. University teams attending the workshops are comprised of faculty from the sciences, mathematics, or engineering, as well as education, and administration. A purposeful and convenient sample of three university teams were subjects for this qualitative study. Each team had attended a NASA Opportunities for Visionary Academics (NOVA) workshop, received funding for course development, and offered innovative courses. Five questions were addressed in this study: (a) What methods were used by faculty teams in planning the courses? (b) What changes occurred in existing science courses? (c) What factors affected the team collaboration process? (d) What personal characteristics of faculty members were important in successful course development? and (e) What barriers existed for faculty in the course development process? Data was collected at each site through individual faculty interviews (N = 11), student focus group interviews (N = 15), and classroom observations. Secondary data included original funding proposals. The NOVA staff development model incorporated effective K--12 interventions with higher education interventions. Analysis of data revealed that there were four factors of staff development processes that were most beneficial. First, the team collaborative processes

  20. Geophysics education on the Internet: Course production and assessment of our MOOC, "Deep Earth Science"

    Science.gov (United States)

    Okuda, Y.; Tazawa, K.; Sugie, K.; Sakuraba, H.; Hideki, M.; Tagawa, S.; Cross, S. J.

    2016-12-01

    Recently, massive open online courses (MOOC or MOOCs) have gained wide-spread attention as a new educational platform delivered via the internet. Many leading institutions all over the world have provided many fascinating MOOC courses in various fields. Students enrolled in MOOCs study their interested topic in a course not only by watching video lectures, reading texts, and answering questions, but also by utilizing interactive online tools such as discussion boards, Q&A sessions and peer assessments. MOOC is also gaining popularity as a way to do outreach activity and diffuse research results. Tokyo Institute of Technology provided its 1st MOOC, "Introduction to Deep Earth Science Part1" on edX, which is one of the largest MOOC providers. This four-week-long course was designed for 1st year college students and with two learning goals in this course; 1) to introduce students to the fascinating knowledge of solid Earth, 2) to provide an opportunity to use scientific thinking as well as to show how interesting and exciting science can be. This course contained materials such as 1) structure of inside of the Earth 2) internal temperature of the earth and how it is estimated and 3) chemical compositions and dynamics inside the earth. After the end of the provision of Part1, this course was re-made as "Introduction to Deep Earth Science"(so to speak, Part2) on the basis of opinions obtained from students who have attended our course and student teaching assistants (TA) who have run and produced this course. In this presentation, we will explain our MOOC making model, which is a team based course creation effort between the course instructor, Tokyo Tech Online Education Development Office (OEDO) staff and TA students. Moreover, we will share details and feedback of Part1 received from some of the 5000 enrolled students from 150 counties and regions, and report the implementation of Part2 in the light of challenges resulted from Part1.

  1. Impact of SCALE-UP on science teaching self-efficacy of students in general education science courses

    Science.gov (United States)

    Cassani, Mary Kay Kuhr

    The objective of this study was to evaluate the effect of two pedagogical models used in general education science on non-majors' science teaching self-efficacy. Science teaching self-efficacy can be influenced by inquiry and cooperative learning, through cognitive mechanisms described by Bandura (1997). The Student Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP) model of inquiry and cooperative learning incorporates cooperative learning and inquiry-guided learning in large enrollment combined lecture-laboratory classes (Oliver-Hoyo & Beichner, 2004). SCALE-UP was adopted by a small but rapidly growing public university in the southeastern United States in three undergraduate, general education science courses for non-science majors in the Fall 2006 and Spring 2007 semesters. Students in these courses were compared with students in three other general education science courses for non-science majors taught with the standard teaching model at the host university. The standard model combines lecture and laboratory in the same course, with smaller enrollments and utilizes cooperative learning. Science teaching self-efficacy was measured using the Science Teaching Efficacy Belief Instrument - B (STEBI-B; Bleicher, 2004). A science teaching self-efficacy score was computed from the Personal Science Teaching Efficacy (PTSE) factor of the instrument. Using non-parametric statistics, no significant difference was found between teaching models, between genders, within models, among instructors, or among courses. The number of previous science courses was significantly correlated with PTSE score. Student responses to open-ended questions indicated that students felt the larger enrollment in the SCALE-UP room reduced individual teacher attention but that the large round SCALE-UP tables promoted group interaction. Students responded positively to cooperative and hands-on activities, and would encourage inclusion of more such activities in all of the

  2. Persistence and withdrawal by students in a preservice science and mathematics teacher education course

    Science.gov (United States)

    Tulip, David F.; Lucas, Keith B.

    1991-12-01

    At a time when recruitment into preservice teacher education courses in mathematics and science is difficult, one strategy to increase the number of graduates is to minimise the number of students who fail to complete their university courses. This study sought to determine factors which distinguish withdrawers from persisters in the first semester of a B.Ed course. Discriminant analysis was employed; a discriminant function employing seven factors resulted in correct classification in 81% of cases. Further analysis distinguishing between dropouts and transferees resulted in two discriminant functions with some common variables.

  3. Making Connections to Students' Lives and Careers Throughout a General Education Science Course

    Science.gov (United States)

    LaDue, D. S.

    2014-12-01

    The University of Oklahoma's general education lecture course Severe & Unusual Weather, taught in two sections each fall and spring, covers about nine topics. The sections are taught by different instructors, each of whom has flexibility to employ a variety of instructional strategies and choose specific topics to cover while meeting the requirement that general education courses in the natural sciences help students understand the importance of the science for appreciating the world around them. Students enrolled have been approximately 6-10% returning adult students, some of whom were veterans or active duty military, and about 10% members of racial or ethnic groups. Their majors are mostly in the humanities (theater, photography) and social sciences (education, English, journalism, sociology), with some natural science majors (psychology, aviation). For the past two years, Section 001 has been designed with adult and active learning concepts in mind, using deliberate connections between course content and students' lives and careers to motivate meaningful learning. Students were grouped in teams according to similar majors and assigned group presentations connecting course content to topics that should interest them, such as economic impacts of weather, societal and personal impacts of severe weather, risks to aviation, media coverage of weather, and psychological and sociological responses to weather risks. Students learn about the peer review process for scientific papers while also exploring a connection of course content to their future career or life interests through papers that are run through a mock peer review process. Public policy is discussed in several sections of the course, such as hurricane building codes, wind-resistant construction in tornado alley, and the disproportionate impacts of weather and climate on certain socioeconomic groups. Most students deeply appreciate the opportunity to explore how course content intersects with their lives

  4. Exploring the development of science self-efficacy in preservice elementary school teachers participating in a science education methods course

    Science.gov (United States)

    Gunning, Amanda M.

    The demands of society's increasing dependence on science and technology call for our students to have a solid foundation in science education, starting in the earliest grades. However, elementary school teachers often lack the necessary experiences to deliver that education. This qualitative study seeks to explore the development of six preservice elementary teachers in a semester-long science methods course. The course consisted of many components; one in particular was a microteaching experience, which emerged as especially significant. The participants' experiences throughout the semester were studied primarily through the lens of self-efficacy, but were also examined considering learning theories and mental models. It was found that two participants in particular were self-directed learners and were able to construct for themselves a self-selected cognitive apprenticeship. Other findings include the significance of a microteaching experience on development of self-efficacy in science teaching and the role mental models may or may not play in development of self-efficacy in the science methods course. This study has implications both for preservice elementary education in science and in general.

  5. Debates of science vs. religion in undergraduate general education cosmology courses

    Science.gov (United States)

    Lopez-Aleman, Ramon

    2015-04-01

    Recent advances in theoretical physics such as the discovery of the Higgs boson or the BICEP2 data supporting inflation can be part of the general science curriculum of non-science majors in a cosmology course designed as part of the General Education component. Yet to be a truly interdisciplinary experience one must deal with the religious background and faith of most of our students. Religious faith seems to be important in their lives, but the philosophical outlook of sciences like cosmology or evolutionary biology is one in which God is an unnecessary component in explaining the nature and origin of the universe. We will review recent advances in cosmology and suggestions on how to establish a respectful and intelligent science vs. religion debate in a transdisciplinary general education setting.

  6. The Art of Astronomy: A New General Education Course for Non-Science Majors

    Science.gov (United States)

    Pilachowski, Catherine A.; van Zee, Liese

    2017-01-01

    The Art of Astronomy is a new general education course developed at Indiana University. The topic appeals to a broad range of undergraduates and the course gives students the tools to understand and appreciate astronomical images in a new way. The course explores the science of imaging the universe and the technology that makes the images possible. Topics include the night sky, telescopes and cameras, light and color, and the science behind the images. Coloring the Universe: An Insider's Look at Making Spectacular Images of Space" by T. A. Rector, K. Arcand, and M. Watzke serves as the basic text for the course, supplemented by readings from the web. Through the course, students participate in exploration activities designed to help them first to understand astronomy images, and then to create them. Learning goals include an understanding of scientific inquiry, an understanding of the basics of imaging science as applied in astronomy, a knowledge of the electromagnetic spectrum and how observations at different wavelengths inform us about different environments in the universe, and an ability to interpret astronomical images to learn about the universe and to model and understand the physical world.

  7. Perceptions of Science Teachers on Implementation of Seven Principles for Good Practice in Education by Chickering and Gamson in Courses

    Science.gov (United States)

    Ugras, Mustafa; Asiltürk, Erol

    2018-01-01

    The present study aimed to determine the perceptions of science teachers on the implementation of the seven principles for good practice in education by Chickering and Gamson in their courses. Seven principles for good science education were used as a data collection tool in the survey. "The seven principles for good practice in science…

  8. Pura Vida: Teacher Experiences in a Science Education Study Abroad Course in Costa Rica

    Science.gov (United States)

    Medina, Stephanie Rae

    The purpose of this study was to explore the experiences of classroom teachers who participated in a science-focused study abroad during their time as a preservice teacher and to explore how they are using their study abroad experiences in science curriculum planning and in classroom instruction. This study is guided by two research questions: 1) what are the study abroad experiences that have influenced classroom teachers; and, 2) how do classroom teachers incorporate study abroad experiences into science curriculum planning and instruction in the classroom? Participants were two in-service science teachers from schools located in the Southwestern United States. The participants were enrolled in the course, Environmental Science and Multicultural Experience for K-8 Teachers offered through the Department of Educational Leadership, Curriculum and Instruction during their time as preservice teachers. The course included a two-week study abroad component in Costa Rica. Participants spent their mornings observing a monolingual, Spanish-speaking elementary classroom followed by a faculty-led multicultural seminar. Afternoons during the study abroad experience were dedicated to field science activities such as quantifying plant and animal biodiversity, constructing elevation profiles, determining nutrient storage in soil, and calculating river velocity. Throughout the course students participated in science-focused excursions. A cross case study design was used to answer the two research questions guiding this dissertation study. Data collection included participant-created concept maps of the science experiences during the study abroad experience, in-depth interviews detailing the study abroad experience and classroom instruction, and participant reflective journal entries. Cross-caseanalysis was employed to explore the uniqueness of each participant's experience and commonalities between the cases. Trustworthiness was established by utilizing multiple sources of data

  9. Examination of the Effects of STEM Education Integrated as a Part of Science, Technology, Society and Environment Courses

    Science.gov (United States)

    Yildirim, Bekir; Selvi, Mahmut

    2016-01-01

    This study was carried out to determine the view of prospective teachers with regard to STEM education given in Science, Technology, Society and Environment course and the effects of STEM education on prospective teachers' attitudes towards renewable energy sources and awareness of environment problems. The study was carried out in 2014-2015…

  10. Content Analysis of the Practicum Course in the Master of Science in Educational Leadership/Administration Program

    Science.gov (United States)

    Norman, Scott W.

    2013-01-01

    In this study, I explored the overall efficacy of the Master of Science in Educational Leadership/ Administration (MSEL/A) program at Florida State University (FSU), by taking a closer look at the introductory course, Practicum in Educational Leadership (the Practicum), as well as the final assessment, the student e-portfolio. The MSEL/A at FSU is…

  11. Educational Impact of Digital Visualization Tools on Digital Character Production Computer Science Courses

    Science.gov (United States)

    van Langeveld, Mark Christensen

    2009-01-01

    Digital character production courses have traditionally been taught in art departments. The digital character production course at the University of Utah is centered, drawing uniformly from art and engineering disciplines. Its design has evolved to include a synergy of computer science, functional art and human anatomy. It gives students an…

  12. Big Data Science Education: A Case Study of a Project-Focused Introductory Course

    Science.gov (United States)

    Saltz, Jeffrey; Heckman, Robert

    2015-01-01

    This paper reports on a case study of a project-focused introduction to big data science course. The pedagogy of the course leveraged boundary theory, where students were positioned to be at the boundary between a client's desire to understand their data and the academic class. The results of the case study demonstrate that using live clients…

  13. Development of a pre-service teacher training course on integration of ICT into inquiry based science education.

    NARCIS (Netherlands)

    Tran, Trinh-Ba; van den Berg, Ed; Ellermeijer, Ton; Beishuizen, Jos; Dvořák, Leoš; Koudelková, Věra

    In order to be able to integrate ICT into Inquiry Based Science Education (IBSE), teachers need much time and support for mastering ICT tools, learning the basis of IBSE, and getting experience in applying these tools in pupil investigations. For this purpose, we have developed a course within the

  14. Science Academies' Refresher Course on Theoretical Structural ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 8. Science Academies' Refresher Course on Theoretical Structural Geology, Crystallography, Mineralogy, Thermodynamics, Experimental Petrology and Theoretical Geophysics. Information and Announcements Volume 22 Issue 8 August 2017 ...

  15. Developing a science teacher education course that supports student teachers' thinking and teaching about the nature of science

    Science.gov (United States)

    Sorensen, Pete; Newton, Len; McCarthy, Sue

    2012-04-01

    Background and purpose . This paper reports on part of an ongoing research project in England concerning the Nature of Science (NOS). The particular focus is on the initial thinking of the graduate scientists starting a one-year, Postgraduate Certificate of Education (PGCE) course and the way the course approaches adopted influence their views and understanding of NOS and their teaching. The research is set against a wealth of literature indicating that teachers find it difficult to teach curricula that emphasise NOS. Thus a key impetus for research in this area has been to look for ways that beginning teachers might be better prepared to face such challenges. Sample The paper draws on data from three cohorts of secondary PGCE students in a university-schools partnership, involving a total of 169 students. Design and method The research lies within a design research tradition. It has used mixed methods, involving written tasks, interviews and focus groups, with an iterative approach where the outcomes from one cohort have been used to inform course developments in successive years. Results The results from these cohorts suggest that, while the students starting the course have a less restricted view of NOS than indicated by some other studies, in most cases there is a lack of breadth and depth to their understanding. There is some evidence that the use of specific tasks focusing on NOS in university-based sessions may be helping to develop and deepen understanding. However, the impact of current approaches remains fairly limited and attempts to develop teaching practices often face considerable barriers in the school-based practicum. Conclusions Graduate science students' understanding of NOS as they embark on the PGCE is not highly developed. Hence, the emphasis on aspects of NOS in the school curriculum presents a considerable challenge. This study suggests that there is a need to both further develop an explicit focus on NOS in university-based sessions and to

  16. Academe-Industry Partnership: Basis for Enhanced Learning Guide in the New Science General Education Course

    Directory of Open Access Journals (Sweden)

    Alma D. Agero

    2016-11-01

    Full Text Available This study explores the academe-industry partnership of Cebu Technological University Bachelor of Science in Hospitality Management and Bachelor of Science in Industrial Technology major in Food Preparation and Services courses, SY 2014-2015 to improve the quality of course offering. It takes on the feedback received from supervisors of 50 different hotels and restaurants of Cebu province, as well as the self-rating of 185 OJTs of the two courses as regard to OJTs' level of functional and science-based core competencies. This descriptive research utilizes Likert-type research-made survey questionnaire which was previously tested for validity and reliability. The findings revealed that industry supervisors evaluated the trainees as Competent in core competencies (Bartending, Bread and pastry products, Cookery, Customer services, Front office services, food and beverages as well as functional skills (Problem solving, Leadership, Communication, Independent work, Creativity, Negotiation, Teamwork, Time management and Initiative. However, they found the students need of strengthening their problem solving and communication skills. The researchers therefore developed an enhanced learning guide for the New Science GE course to address the gaps based on the industry feedback.

  17. NATURAL SCIENCE AND GENERAL EDUCATION COURSES PLANNING AT THE TIME OF INTRODUCTON OF THE NEW FEDERAL EDUCATIONAL STANDARDS IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Alsu Raufovna Kamaleeva

    2015-12-01

    Full Text Available The article presents an experience of educational courses planning and technologies of it realization considering level and type of training at the time of new educational standards introduction in Russia. The research was conducted on the basis of specially developed questionnaire, the experimental educational courses and programs observation, the study of existing teachers experience, that permitted to develop methodical recommendations, didactic and experimental supplies. It reveals that planning of educational course within the framework of educational module and student’s competence forming approaches in accordance with the requirements of The Federal State Educational Standards (FSES, is accompanied with the range of difficulties. They are: determination of the course related to the formation of certain required competences; defining the content of the modules; establishing of inter subject connections (preliminary, parallel, and subsequent; strengthening of student’s vocational determination (professional abilities development of the future employee.

  18. Development and implementation of a science training course for breast cancer activists: Project LEAD (leadership, education and advocacy development).

    Science.gov (United States)

    Dickersin, K; Braun, L; Mead, M; Millikan, R; Wu, A M; Pietenpol, J; Troyan, S; Anderson, B; Visco, F

    2001-12-01

    To develop and implement Project LEAD (leadership, education, and advocacy development), a science course for breast cancer activists. Students were breast cancer activists and other consumers, mainly affiliated with advocacy organizations in the United States of America. Project LEAD is offered by the National Breast Cancer Coalition; the course takes place over 5 days and is offered 4 times a year, in various cities in the United States of America. The Project LEAD curriculum has developed over 5 years to include lectures, problem-based study groups, case studies, interactive critical appraisal sessions, a seminar by an 'expert' scientist, role play, and homework components. A core faculty has been valuable for evaluating and revising the course and has proved necessary to provide consistent high quality teaching. Course evaluations indicated that students gained critical appraisal skills, enhanced their knowledge and developed confidence in selected areas of basic science and epidemiology. Project LEAD comprises a unique curriculum for training breast cancer activists in science and critical appraisal. Course evaluations indicate that students gain confidence and skills from the course.

  19. Content Analysis of the Science Textbooks of Iranian Junior High School Course in terms of the Components of Health Education

    Directory of Open Access Journals (Sweden)

    Abdolreza Gilavand

    2016-12-01

    Full Text Available BackgroundProviding healthcare for students is one of the primary duties of the states. This study aimed to analyze the contents of the science textbooks of Junior High School course in terms of the components of health education in Iran.Materials and MethodsThis descriptive study was conducted through content analysis. To collect data, a researcher-made check list including: physical health, nutritional health, the environment, environmental health, family health, accidents and safety, mobility, physical education, mental health, prevention of risky behavior, control and prevention of diseases, disabilities, public health and school health, was used. The samples were the science textbooks of Junior High School course (7th, 8th and 9th grades. Analysis unit was all pages of the textbooks (texts, pictures and exercises. Descriptive method (frequency table, percentage, mean and standard deviation [SD] was used to analyze the data and non-parametric Chi-square test was used to investigate the probable significant differences between the components.ResultsThe results showed that the authors of sciences textbooks of Junior High School course have paid most attention to the component of control and prevention of diseases (21.10% and have paid no attention to the component of "mental health". Also, there were significant differences among the components of physical health, family health, the environment and environmental health in terms of to be addressed in the science textbooks of Junior High School (P

  20. Science ethics education part II: changes in attitude toward scientific fraud among medical researchers after a short course in science ethics.

    Science.gov (United States)

    Vuckovic-Dekic, L; Gavrilovic, D; Kezic, I; Bogdanovic, G; Brkic, S

    2012-01-01

    To determine the impact of the short science ethics courses on the knowledge of basic principles of responsible conduct of research (RCR), and on the attitude toward scientific fraud among young biomedical researchers. A total of 361 attendees of the course on science ethics answered a specially designed anonymous multiple- choice questionnaire before and after a one-day course in science ethics. The educational course consisted of 10 lectures: 1) Good scientific practice - basic principles; 2) Publication ethics; 3) Scientific fraud - fabrication, falsification, plagiarism; 4) Conflict of interests; 5) Underpublishing; 6) Mentorship; 7) Authorship; 8) Coauthorship; 9) False authorship; 10) Good scientific practice - ethical codex of science. In comparison to their answers before the course, a significantly higher (pscience ethics as sufficient after the course was completed. That the wrongdoers deserve severe punishment for all types of scientific fraud, including false authorship, thought significantly (pscience ethics had a great impact on the attendees, enlarging their knowledge of responsible conduct of research and changing their previous, somewhat opportunistic, behavior regarding the reluctance to react publicly and punish the wrongdoers.

  1. Initial Results of On-Line Earth System Science Course Offerings at the University of Nebraska-Omaha Through the Earth System Science Education Alliance

    Science.gov (United States)

    Shuster, R. D.; Grandgenett, N. F.; Schnase, W. L.; Hamersky, S.; Moshman, R.

    2008-12-01

    The University of Nebraska at Omaha has been offering on-line Earth System Science coursework to teachers in Nebraska since 2002. UNO was one of the initial members in the Earth Systems Science Education Alliance (ESSEA) and has offered three different ESSEA courses, with nearly 200 students having taken ESSEA courses at UNO for graduate credit. Our experiences in delivering this coursework have involved both teachers who have received a stipend to take the course and those who have paid their own tuition and fees and received graduate credit for the course. We will report on the online behavior of teachers from both populations and also discuss pros and cons of each approach. UNO has also experimented with different approaches in the support and management of the course, including using undergraduate majors as content experts. This improves access of teachers to content-related feedback and is a positive experience for the undergraduate major. Feedback surveys from earlier ESSEA offerings indicate a strongly positive perception of the courses by the teachers enrolled in the coursework. Project impact has been documented in teacher projects, quotes, and lessons associated with the coursework activities. We will also describe online course modules being developed within the UNO online course efforts, including one focusing on the global amphibian crisis.

  2. Science Education: The New Humanity?

    Science.gov (United States)

    Douglas, John H.

    1973-01-01

    Summarizes science education trends, problems, and controversies at the elementary, secondary, and higher education levels beginning with the Physical Science Study Committee course, and discusses the present status concerning the application of the Fourth Revolution to the education system. (CC)

  3. Using a Massive Open Online Course (MOOC) for Earth Science Education: Who Did We Teach and What Did We Learn?

    Science.gov (United States)

    Gold, Anne; Gordon, Eric

    2016-04-01

    Over the last decade, Massive Open Online Courses (MOOCs) have rapidly gained traction as a way to provide virtually anyone with an internet connection free access to a broad variety of high-quality college-level courses. That means Earth science instructors can now teach courses that reach tens of thousands of students--an incredible opportunity, but one that also poses many novel challenges. In April 2015, we used the Coursera platform to run a MOOC entitled "Water in the Western United States," to deliver a survey course of broad interest and partly as a venue to make research efforts accessible to a wide audience. Leveraging a previous online course run on a smaller MOOC platform (Canvas), we created a course largely based on short expert video lectures tied together by various types of assessments.Over a dozen experts provided short lectures offering a survey course that touches on the social, legal, natural, and societal aspects of the topic.This style of MOOC, in which the content is not delivered by one expert but by many, helped us showcase the breadth of available expertise both at the University of Colorado and elsewhere. In this presentation we will discuss the challenges that arose from planning a MOOC with no information about the characteristics of the student body, teaching thousands of unidentified students, and understanding the nature of online learning in an increasingly mobile-dominated world. We will also discuss the opportunities a MOOC offers for changes in undergraduate education, sharing across campuses or even across levels, and promoting flipped classroom-style learning. Finally, we will describe the general characteristics of our MOOC student body and describe lessons learned from our experience while aiming to place the MOOC experience into a larger conversation about the future of education at multiple levels.

  4. Linking Science Fiction and Physics Courses

    Science.gov (United States)

    McBride, Krista K.

    2016-05-01

    Generally, cohorts or learning communities enrich higher learning in students. Learning communities consist of conventionally separate groups of students that meet together with common academic purposes and goals. Types of learning communities include paired courses with concurrent student enrollment, living-learning communities, and faculty learning communities. This article discusses a learning community of 21 students that I created with a colleague in the English department. The community encompasses two general education courses: an algebra-based physics course entitled "Intro to Physics" and a literature course entitled "Science Fiction, Science Fact." Students must enroll in both of these courses during the same semester. Additionally, I highlight advantages to linking these courses through surveying the assignments and course materials that we used in our learning community. Figure 1 shows the topics that are covered in both physics and literature courses.

  5. Value Added: History of Physics in a ``Science, Technology, and Society'' General Education Undergraduate Course

    Science.gov (United States)

    Neuenschwander, Dwight

    2016-03-01

    In thirty years of teaching a capstone ``Science, Technology, and Society'' course to undergraduate students of all majors, I have found that, upon entering STS, to most of them the Manhattan Project seems about as remote as the Civil War; few can describe the difference between nuclear and large non-nuclear weapons. With similar lack of awareness, many students seem to think the Big Bang was dreamed up by science sorcerers. One might suppose that a basic mental picture of weapons that held entire populations hostage should be part of informed citizenship. One might also suppose that questions about origins, as they are put to nature through evidence-based reasoning, should be integral to a culture's identity. Over the years I have found the history of physics to be an effective tool for bringing such subjects to life for STS students. Upon hearing some of the history behind (for example) nuclear weapons and big bang cosmology, these students can better imagine themselves called upon to help in a Manhattan Project, or see themselves sleuthing about in a forensic science like cosmology. In this talk I share sample student responses to our class discussions on nuclear weapons, and on cosmology. The history of physics is too engaging to be appreciated only by physicists.

  6. A survey on the quality of Master of Medical Education e-learning Course at Mashhad University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    M nobakht

    2017-03-01

    Full Text Available Introduction:Universities and educational institutes provide a great variety of e-learning programs to accommodate the increasing demands for higher education. However, some specialists believe that many of these courses fail to meet the required standards of e-learning, thus cannot achieve the goals of implemented programs. Therefore, regular quality assessment of e-learning programs should be carried out by education providers. This study aimed to assess the quality of medical education e-learning course at Mashhad University of Medical Science. Methods:In the first step, most important components of e-learning standards were extracted through a comprehensive literature review of previous studies and a rating scale consisting of nine elements and 173 items were designed. Content validity of the scale was assured by consulting with ten different instructional design experts using Lawshe's Content Validity Ratio. Reliability of this scale is also investigated by inter-rater reliability coefficient which was 88% . In the next step we provided three instructional design experts with the above mentioned scale to collect required information for each sample lesson. Data was analyzed through SPSS Ver 16.0 software. Result: The elements associated with ‘quality of contents’ and ‘accessibility’ were satisfactory, elements related to ‘instructional design’, ’learning management system’, ’multimedia’ and ‘student assessment’ were relatively satisfactory, and elements associated with ‘interaction’, ‘feedback’ and ‘student support’ were unsatisfactory. Overall, we evaluated the quality of the medical education e-learning course as relatively satisfactory. Conclusion: Although the quality of the assessed e-learning course was relatively satisfactory, it is still necessary for corresponding administrators to reassess those items with an average of less than 1.66 (satisfactory level and pay their special attentions to

  7. Courses and distances, wedges and difficulties of doctors’ formers in science and mathematics education

    Directory of Open Access Journals (Sweden)

    Rosália Maria Ribeiro de Aragão

    2012-06-01

    Full Text Available The problem put under focus stems from cultivation of doctoral actions, reactions and attitudes of doctors already practicing in other areas and that resolve to migrate to the areas of Science and Math Education to take-on collaboration-training for new doctors formation in Science Education or Mathematics Education, in accord with North Regional Brazilian context claims. With this in mind, doctors professionally bound to higher education Institutions – Universities and Federal Institutes – as a NET located in Legal Amazon assume responsibilities which include taking on partnerships in order to increase the number of teachers held for the training of doctors in the newly created NET. Even already being doctors and working in the so-called "hard areas" or in related fields, these doctors seek accreditation in a newly created doctoral program, with desire and willingness to migrate to focus and share scientific-pedagogical training in a high positive quality new doctors in Education Science and Mathematics Education. The "migrant doctors" aim to establish themselves in this new/other program assuming new formative relationships in order to provide both the necessary visibility to this area in its region of insertion, and the production of positive and desirable responses for the academic, scientific and pedagogical advancement of higher education in the training of doctors. These doctors who are working in the NET for accrediting doctor trainers since two years in a developing regional programme will be investigated pursuant to investigative narrative mode of qualitative research, in the light of epistemological, theoretical and methodological foundations of teaching and research. So as, in their accession processes or proposed-resistance the migrating doctors will be investigated especially in relation to both (i their participation as teachers-researchers held forming quality doctors for this century while generating academic production in

  8. Promoting Continuing Computer Science Education through a Massively Open Online Course

    Science.gov (United States)

    Oliver, Kevin

    2016-01-01

    This paper presents the results of a comparison study between graduate students taking a software security course at an American university and international working professionals taking a version of the same course online through a free massive open online course (MOOC) created in the Google CourseBuilder learning environment. A goal of the study…

  9. Science Academies' Refresher Course on Quantum Mechanics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 7. Science Academies' Refresher Course on Quantum Mechanics. Information and Announcements Volume 21 Issue 7 July 2016 pp 669-670. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Science Academies' Refresher Course in Developmental Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 8. Science Academies' Refresher Course in Developmental Biology. Information and Announcements Volume 20 Issue 8 August 2015 pp 756-756. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. The Long-Term Impact of an Education for Sustainability Course on Israeli Science and Technology Teachers' Pro-Environment Awareness, Commitment and Behaviour

    Science.gov (United States)

    Abramovich, Anat; Loria, Yahavit

    2015-01-01

    The impact of an Education for Sustainability (EfS) course for science and technology junior high school teachers on the intentional and actual environmental behaviour of participants was studied by researching the EfS implementation of 13 science and technology teachers within their family, community, and work environment. The research was…

  12. General Education Earth, Astronomy and Space Science College Courses Serve as a Vehicle for Improving Science Literacy in the United States.

    Science.gov (United States)

    Prather, E.

    2011-10-01

    Every year approximately 500,000 undergraduate college students take a general education Earth, Astronomy and Space Science (EASS) course in the Unites States. For the majority of these students this will be their last physical science course in life. This population of students is incredibly important to the science literacy of the United States citizenry and to the success of the STEM career pipeline. These students represent future scientists, technologists, business leaders, politicians, journalists, historians, artists, and most importantly, policy makers, parents, voters, and teachers. A significant portion of these students are taught at minority serving institutions and community colleges and often are from underserved and underrepresented groups, such as women and minorities. Members of the Center for Astronomy Education (CAE) at the University of Arizona have been developing and conducting research on the effectiveness of instructional strategies and materials that are explicitly designed to challenge students' naïve ideas and intellectually engage their thinking at a deep level in the traditional lecture classroom. The results of this work show that dramatic improvement in student understanding can be made from increased use of interactive learning strategies. These improvements are shown to be independent of institution type or class size, but appear to be strongly influenced by the quality of the instructor's implementation. In addition, we find that the positive effects of interactive learning strategies apply equally to men and women, across ethnicities, for students with all levels of prior mathematical preparation and physical science course experience, independent of GPA, and regardless of primary language. These results powerfully illustrate that all students can benefit from the effective implementation of interactive learning strategies.

  13. CLIMANDES climate science e-learning course

    Science.gov (United States)

    Hunziker, Stefan; Giesche, Alena; Jacques-Coper, Martín; Brönnimann, Stefan

    2016-04-01

    Over the past three years, members of the Oeschger Centre for Climate Change Research (OCCR) and the Climatology group at the Institute of Geography at the University of Bern, have developed a new climate science e-learning course as part of the CLIMANDES project. This project is a collaboration between Peruvian and Swiss government, research, and education institutions. The aim of this e-learning material is to strengthen education in climate sciences at the higher education and professional level. The course was recently published in 2015 by Geographica Bernensia, and is hosted online by the Peruvian Servicio Nacional de Meteorología e Hidrología (SENAMHI): http://surmx.com/chamilo/climandes/e-learning/. The course is furthermore available for offline use through USB sticks, and a number of these are currently being distributed to regional training centers around the world by the WMO (World Meteorological Organization). There are eight individual modules of the course that each offer approximately 2 hours of individual learning material, featuring several additional learning activities, such as the online game "The Great Climate Poker" (http://www.climatepoker.unibe.ch/). Overall, over 50 hours of learning material are provided by this course. The modules can be integrated into university lectures, used as single units in workshops, or be combined to serve as a full course. This e-learning course presents a broad spectrum of topics in climate science, including an introduction to climatology, atmospheric and ocean circulation, climate forcings, climate observations and data, working with data products, and climate models. This e-learning course offers a novel approach to teaching climate science to students around the world, particularly through three important features. Firstly, the course is unique in its diverse range of learning strategies, which include individual reading material, video lectures, interactive graphics, responsive quizzes, as well as group

  14. Data Science Programs in U.S. Higher Education: An Exploratory Content Analysis of Program Description, Curriculum Structure, and Course Focus

    Science.gov (United States)

    Tang, Rong; Sae-Lim, Watinee

    2016-01-01

    In this study, an exploratory content analysis of 30 randomly selected Data Science (DS) programs from eight disciplines revealed significant gaps in current DS education in the United States. The analysis centers on linguistic patterns of program descriptions, curriculum requirements, and DS course focus as pertaining to key skills and domain…

  15. Science Academies Refresher Course on Traditional and Modern

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. Science Academies Refresher Course on Traditional and Modern Approaches in Plant Taxonomy'. Information and Announcements Volume 17 Issue 9 September 2012 pp 921-921 ...

  16. Referesher Course on Recent Advances in Chemical Science and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 9. Referesher Course on Recent Advances in Chemical Science and Its Technological Applications. Information and Announcements Volume 15 Issue 9 September 2010 pp 860-861 ...

  17. Virtual Laboratories in Science Education: Students' Motivation and Experiences in Two Tertiary Biology Courses

    Science.gov (United States)

    Dyrberg, Nadia Rahbek; Treusch, Alexander H.; Wiegand, Claudia

    2017-01-01

    Potential benefits of simulations and virtual laboratory exercises in natural sciences have been both theorised and studied recently. This study reports findings from a pilot study on student attitude, motivation and self-efficacy when using the virtual laboratory programme Labster. The programme allows interactive learning about the workflows and…

  18. An elective course in aromatherapy science.

    Science.gov (United States)

    Esposito, Emily R; Bystrek, Mary V; Klein, JoAnn S

    2014-05-15

    To evaluate the impact of an innovative team-taught elective course on second-year (P2) students' knowledge and skills relating to the relationship between aromatherapy and pharmacy. An Aromatherapy Science elective course was offered to P2 students in an accelerated doctor of pharmacy (PharmD) degree program and was designed to provide an elective course experience while focusing on active-learning skills such as group work, student-led presentations, and in-class activities. Lectures were designed to reinforce core curricular threads from the basic sciences within the pharmaceutical sciences department while highlighting key aromatherapy principles. Course evaluations, grades, and student self-assessments were used to evaluate student fulfillment and knowledge gained. Students agreed this hands-on course integrated pharmaceutical science experiences, enriched their pharmacy education, and provided knowledge to enhance their confidence in describing essential oil uses, drug interactions, and key aromatherapy clinical implications. Students agreed this course prepared them to identify essential oil therapeutic uses and potential essential oil-drug interactions, and interpret literature. The introduction of aromatherapy principles to pharmacy students will prepare a new generation of healthcare professionals on the role of alternative medicines.

  19. Values Education in 4th Grade Social Science Courses from the Perspectives of Teachers

    Science.gov (United States)

    Turan, Mehmet; Bozkurt, Eyüp

    2017-01-01

    In today's changing and developing world, the most important elements that enable people to live together in society are values. The education of such values start in the family and the social environment that they are in, from the moment a person is born and do continue in school as the child starts to study. Schools teach values to their…

  20. Designing Online Education Courses.

    Science.gov (United States)

    Trentin, Guglielmo

    2001-01-01

    Focuses on the main elements that characterize online course design. Topics include design constraints; analysis of learning needs; defining objectives; course prerequisites; content structuring; course flexibility; learning strategies; evaluation criteria; course activities; course structure; communication architecture; and design evaluation.…

  1. Teaching an Introductory Programming Language in a General Education Course

    Science.gov (United States)

    Ali, Azad; Smith, David

    2014-01-01

    A department of computer science (CS) has faced a peculiar situation regarding their selection of introductory programming course. This course is a required course for the students enrolled in the CS program and is a prerequisite to their other advanced programming courses. At the same time, the course can be considered a general education course…

  2. Science Teacher Education for Sustainable Development: A Case Study of a Residential Field Course in a Norwegian Pre-Service Teacher Education Programme

    Science.gov (United States)

    Jegstad, Kirsti Marie; Gjøtterud, Sigrid Marie; Sinnes, Astrid Tonette

    2018-01-01

    In this paper, we explore how a Norwegian teacher education institution promotes education for sustainable development (ESD) through a residential field course. The residential field course was located in a mountain area and data were collected through participant observation. The data included--together with instructional artefacts--evaluation…

  3. Assessing the Development of Educational Research Literacy: The Effect of Courses on Research Methods in Studies of Educational Science

    Science.gov (United States)

    Groß Ophoff, Jana; Schladitz, Sandra; Leuders, Juliane; Leuders, Timo; Wirtz, Markus A.

    2015-01-01

    The ability to purposefully access, reflect, and use evidence from educational research (Educational Research Literacy) is expected of future professionals in educational practice. Based on the presented conceptual framework, a test instrument was developed to assess the different competency aspects: Information Literacy, Statistical Literacy, and…

  4. The Impact of E-Education on At Risk High School Students' Science Achievement and Experiences during Summer School Credit Recovery Courses

    Science.gov (United States)

    Phillips, Pamela Prevette

    Nationally, at risk students make up to 30% of U.S. students in public schools. Many at risk students have poor attendance, are disengaged from the learning environment and have low academic achievement. Educational failure occurs when students do not complete the required courses and as a result do not receive a high school diploma or a certificate of attendance. Many at risk students will not graduate; nearly one-third of all United States high school students have left the public school system before graduating, which has been referred to as a national crisis. Many at risk students fail science courses that are required for graduation, such as biology. Clearly, many students are not responding positively to the conditions in many public school classrooms, suggesting the need for different methods of educating at risk students, such as e-education. Three research questions guided the study: 1) Who are the students in an e-education, online summer school credit recovery course? 2) Do students' beliefs about their learning environment or other personal factors influence their academic achievement?, and 3) How do students describe their experiences of an e-education science course? This mixed methods study investigates thirty-two at risk students who were enrolled in one of three e-education science education courses (biology, earth science, and physical science) during a summer session in a rural county in a southeastern US state. These students failed their most recent science course taken in a traditional classroom setting. Artino's (2010) social-cognitive model of academic motivation and emotion was used as a theoretical framework to highlight the salient motivational factors toward learning science (e.g., task characteristics, task value beliefs, positive emotions). Student data included pre and post tests for all e-education lessons, a final exam, survey data (Students Motivation towards Science Learning (SMTSL), time (on task and idle), field notes, and

  5. Refresher Course on Earth Sciences

    Indian Academy of Sciences (India)

    Information and Announcements ... Introduction: Geoscience education in India is in the throes of a serious crisis and any paradigm ... considerations: geology needs to be taught as an earth system science, linked with cognate ... viable and employment-generating management of natural resources: the global trend of.

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Science Academies' Refresher Course in Advances in Chemical Sciences and Sustainable Development. Information and Announcements Volume 19 Issue 9 September 2014 pp 876-876 ...

  7. Predictors of Student Success in Entry-Level Science Courses

    Science.gov (United States)

    Singh, Mamta K.

    2009-01-01

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and…

  8. A Tale of Two Courses: Exploring Teacher Candidates' Translation of Science and Special Education Methods Instruction into Inclusive Science Practices

    Science.gov (United States)

    Kahn, Sami; Pigman, Ryan; Ottley, Jennifer

    2017-01-01

    Early childhood educators teach science to all students, including students with disabilities. Strategies for accommodating students with disabilities in science, including familiarity with equitable frameworks such as Universal Design for Learning (UDL) are therefore a critical aspect of early childhood teacher candidates' pedagogical content…

  9. Geography, Resources, and Environment of Latin America: An Undergraduate Science Course focused on Attracting Hispanic students to Science and on Educating Non-Hispanics about Latin America.

    Science.gov (United States)

    Pujana, I.; Stern, R. J.; Ledbetter, C. E.

    2004-12-01

    With NSF-CCLI funding, we have developed, taught, and evaluated a new lower-division science course for non-majors, entitled "Geography, Resources, and Environment of Hispanic America" (GRELA). This is an adaptation of a similar course, "Geology and Development of Modern Africa" developed by Barbara Tewksbury (Hamilton College), to attract African American students to science by highlighting cultural ties with their ancestral lands. We think that a similar approach focusing on Latin America may attract Hispanic undergraduates, at the same time that it increases awareness among non-Hispanic students about challenges facing our neighbors to the south. GRELA is an interdisciplinary exploration of how the physical and biological environment of Mexico, Central America, and South America have influenced the people who live there. The course consists of 20 lectures and requires the student to present a report partnering with correspondents in Latin American universities. GRELA begins with an overview of Latin American physical and cultural geography and geologic evolution followed by a series of modules that relate the natural resources and environment of Latin America to the history, economy, and culture of the region. This is followed by an exploration of pre-Columbian cultures. The use of metals by pre-Columbian, colonial, and modern cultures is presented next. We then discuss hydrocarbon resources, geothermal energy, and natural hazards of volcanoes and earthquakes. The last half of the course focuses on Earth System Science themes, including El Nino, glaciers, the Amazon river and rainforest, and coral reefs. The final presentation concerns population growth and water resources along the US-Mexico border. Grades are based on two midterms, one final, and a project which requires that groups of students communicate with scientists in Latin America to explore some aspect of geography, natural resources, or the environment of a Latin American region of common interest

  10. Course Syllabus--Culture, Science and Technology.

    Science.gov (United States)

    Coleman, Sam

    1988-01-01

    Presents a course syllabus and requirements for an anthropology course on the cross-cultural analysis of the relationships between technology, science, and social organization. Provides daily topics, suggested text readings, and reference articles. (MVL)

  11. Engineering a General Education Program: Designing Mechanical Engineering General Education Courses

    Science.gov (United States)

    Fagette, Paul; Chen, Shih-Jiun; Baran, George R.; Samuel, Solomon P.; Kiani, Mohammad F.

    2013-01-01

    The Department of Mechanical Engineering at our institution created two engineering courses for the General Education Program that count towards second level general science credit (traditional science courses are first level). The courses were designed for the general student population based upon the requirements of our General Education Program…

  12. Educational course in emergency radiology

    International Nuclear Information System (INIS)

    Velkova, K.; Stoeva, M.; Cvetkova, S.; Hilendarov, A.; Petrova, A.; Stefanov, P.; Simova, E.; Georgieva, V.; Sirakov, N.

    2012-01-01

    Emergency radiology is the part of radiology primarily focused on acute diagnosing conditions in ER patients. This advanced area of radiology improves the quality of care and treatment of patients and of the emergency medicine as a whole. The educational course in Emergency (ER) Radiology is available for medical students in their 8th and 9th semester. The main objective of the ER course is to obtain knowledge about the indications, possibilities and diagnostic value of the contemporary imaging methods in ER cases. Therapeutic methods under imaging control are also covered by the course. The curriculum of the course consists of 6 lectures and 12 practical classes. (authors)

  13. Education in space science

    Science.gov (United States)

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  14. Intended and Unintended Effects of State-Mandated High School Science and Mathematics Course Graduation Requirements on Educational Attainment.

    Science.gov (United States)

    Plunk, Andrew D; Tate, William F; Bierut, Laura J; Grucza, Richard A

    2014-06-01

    Mathematics and science course graduation requirement (CGR) increases in the 1980s and 1990s might have had both intended and unintended consequences. Using logistic regression with Census and American Community Survey (ACS) data ( n = 2,892,444), we modeled CGR exposure on (a) high school dropout, (b) beginning college, and (c) obtaining any college degree. Possible between-groups differences were also assessed. We found that higher CGRs were associated with higher odds to drop out of high school, but results for the college-level outcomes varied by group. Some were less likely to enroll, whereas others who began college were more likely to obtain a degree. Increased high school dropout was consistent across the population, but some potential benefit was also observed, primarily for those reporting Hispanic ethnicity.

  15. Science Academies Refresher Course on Crustal Strength ...

    Indian Academy of Sciences (India)

    2017-05-26

    May 26, 2017 ... Sponsored by Indian Academy of Sciences, Bengaluru. Indian National Science ... Only 25 outstations and 10 Local ... a brief statement (between 250 and 500 words) as to why they think the Course will help to improve their.

  16. How Much Learning Could Possibly Be Going On In A 700 Person General Education Science Course? Research Results On The Teaching And Learning Of A "Mega” Astro 101 Course

    Science.gov (United States)

    Prather, Edward E.; Rudolph, A. L.; Brissenden, G.; Cormier, S.; Consiglio, D.; Collaboration of Astronomy Teaching Scholars CATS

    2012-01-01

    Researchers with the NSF-funded Collaboration of Astronomy Teaching Scholars (CATS) Program and the JPL NASA funded Center for Astronomy Education at the University of Arizona have engaged in a multi-year study on the learning that occurs in a general education introductory astronomy class with an enrollment of greater than 700 students. This new "Mega” course, was modeled after the University of Arizona's highly-effective Astro 101 instructional environment which evolved out of the development and testing from the Lecture-Tutorials and Ranking-Task curriculum projects (Prather, Rudolph, & Brissenden 2009). We have undertaken an ambitious research project to assess the effectiveness of this Mega course through the simultaneous implementation of the Light and Spectroscopy Concept Inventory (LSCI), the Stellar Properties Concept Inventory (SPCI), The Lawson Test for Scientific Reasoning, and the Thinking about Science Survey Instrument (TSSI). Results indicate that the content learning gains of the students in these courses are quite high, and that new models for instruction pioneered for this course are critical to crating a productive and collaborative learning environment in the Mega classroom. This material is based in part upon work supported by the National Science Foundation under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Prather, E. E., A. L. Rudolph, and G. Brissenden. 2009. "Teaching and Learning Astronomy in the 21st Century.” Physics Today 62(10), 41.

  17. Predictors of student success in entry-level science courses

    Science.gov (United States)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses

  18. A Physics Course for Non-Physical Science Teachers

    Science.gov (United States)

    Cottle, Paul D.

    1997-11-01

    A two semester introductory physics sequence exclusively for undergraduates and graduate students in science education who were not seeking certification in physics was taught at Florida State for the first time in 1996-97. The course emphasized building understanding in both qualitative and quantitative aspects of physics through group learning approaches to laboratories and written problem assignments, assessments which required detailed written explanations, and frequent interactions between the instructor and individual students. This talk will briefly outline the structure of the course and some of the more interesting observations made by the group of science education graduate students and faculty who evaluated aspects of the course.

  19. METHODOLOGY EDUCATIONAL PROCESS ORGANIZATION OF FUTURE MAGISTRA TEACHER EDUCATION ON THE EXAMPLE OF THE COURSE «INFORMATION TECHNOLOGIES IN SCIENCE AND EDUCATION»

    OpenAIRE

    V. Shelud’ko

    2013-01-01

    The article provides a technique of training activities for future masters of using information technology as an example of discipline "Information technologies in science and education." Defined and characterized every stage of the educational process masters in the application of learning technologies and the use of certain technologies. The results verify the effectiveness of this technique and the analysis of questionnaires experimental groups.

  20. NOTES. A Course Relating Agronomy and Science to Society.

    Science.gov (United States)

    McIntosh, Marla S.

    1993-01-01

    Describes a course designed to teach the relationship between science, agronomy, and society. Includes course and class description, course content, and evaluation of the course. (11 references) (MCO)

  1. Science Academies' Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    2017-12-18

    Dec 18, 2017 ... laws and principles and yield reasonably accurate results. The Refresher Course is jointly spon- sored by the Indian Academy of Sciences, ... Selected participants will be provided local hospitality during the Course in addition to course material. Outstation participants will be given three-tier A/c train fare.

  2. Do compulsory secondary science courses change students’ attitude towards studying science?

    DEFF Research Database (Denmark)

    Kristensen, Lærke Elisabeth; Petersen, Morten Rask

    2015-01-01

    recruitment to STEM education has been a compulsory course in the Gymnasium called Natural Science Subject (NSS). This is an interdisciplinary, introductory course with the intention that students shall “ … realize the importance of knowing and understanding natural science thinking” (Authors translation...... science and science careers. In this approach we ended up with the following research question: “Does a compulsory introductory sciences course have an impact on students’ attitude towards studying sciences in secondary school?” In this approach we chose to use parameters as motivation (Deci & Ryan, 2002...... Subject course. The distribution included all levels (K10-K12) and all study lines. Student answers were analyzed using Mann-Whitney U-test using SPSS statistics 22 as analytical tool. Comparisons for this study were made across study lines (natural science vs. human science & social science...

  3. Science Academies' Refresher Course on Hydrology of Floods

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 10. Science Academies' Refresher Course on Hydrology of Floods. Information and Announcements Volume 22 Issue 10 October 2017 pp 978-978. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Science Academies' Refresher Course on Bioprospection of Bioresources: Land to Lab Approach. Information and Announcements Volume 22 Issue 11 November 2017 pp 1101-1101 ...

  5. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  6. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  7. METHODOLOGY EDUCATIONAL PROCESS ORGANIZATION OF FUTURE MAGISTRA TEACHER EDUCATION ON THE EXAMPLE OF THE COURSE «INFORMATION TECHNOLOGIES IN SCIENCE AND EDUCATION»

    Directory of Open Access Journals (Sweden)

    V. Shelud’ko

    2013-03-01

    Full Text Available The article provides a technique of training activities for future masters of using information technology as an example of discipline "Information technologies in science and education." Defined and characterized every stage of the educational process masters in the application of learning technologies and the use of certain technologies. The results verify the effectiveness of this technique and the analysis of questionnaires experimental groups.

  8. SPECIAL EDUCATION COURSES OF STUDY. COURSE OF STUDY, GRADES 9 THROUGH 11, FOR SPECIAL EDUCATION.

    Science.gov (United States)

    Phoenix Union High School District, AZ.

    THIS GUIDE FOR GRADES 9 TO 11 WAS DEVELOPED FROM MANY SOURCES BUT WITH MAJOR CONTRIBUTIONS FROM TEACHERS WHO USE IT IN A SPECIAL EDUCATION PROGRAM TO PARTIALLY MEET DIPLOMA REQUIREMENTS. UNITS ARE IN ENGLISH, MATHEMATICS, SCIENCE, SOCIAL STUDIES, AMERICAN HISTORY AND GOVERNMENT, ECONOMICS, HOME ECONOMICS, FOOD SERVICE, AND SHOP. EACH COURSE PLAN…

  9. Tested Tools You Can Use: Evaluating Earth System Science Courses

    Science.gov (United States)

    Lee, S. P.; Prakash, A.; Reider, D.; Baker, D.

    2006-12-01

    Earth System Science Education for the 21st Century (ESSE 21) has created a public access on-line evaluation resource available at http://esse21.usra.edu/evaltoolkit in collaboration with the ESSE 21 institutions, PIs, and evaluators. The purpose of the ESSE toolkit is to offer examples of how evaluation and assessment are/have been used in Earth System Science courses and programs. Our goal is to help instructors recognize different types of assessment and evaluation tools and uses that have proved useful in these courses and provide models for designing assessments in new courses. We have included actual examples of evaluations used by ESSE institution faculty in their own courses. This is not a comprehensive toolkit on educational evaluation and assessment, but it does provide several examples of evaluations that have been used successfully in Earth System Science courses and links to many good web resources on course evaluation. We have provided examples of assessments that are designed to collect information from students before, during and after courses. Some, presented in different formats, are designed to assess what students learn, others are designed to provide course instructors with information they can use to revise their courses. These assessments range from content tests to portfolios, from feedback forms to interviews, and from concept maps to attitude surveys.

  10. Assessing Gains in Science Teaching Self-Efficacy after Completing an Inquiry-Based Earth Science Course

    Science.gov (United States)

    Gray, Kyle

    2017-01-01

    Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…

  11. Teaching Critical Thinking through a course on Science and Religion

    Science.gov (United States)

    Shipman, H. L.; Jordan, J. J.

    2004-12-01

    The relationship between science and religion is, according to the public debate, rather stormy. It doesn't have to be this way. Since 1998, an astronomer (Shipman) and a philosopher (Jordan) have team-taught a course with a more constructive approach. This course has a recognized role in the University's General Education program and in the philosophy major. As overall course goals, we hope that our students will be able to: - exhibit critical thinking skills in being able to tell the difference between good arguments and bad arguments in this area - recognize that the relationship between science and religion is not necessarily an antagonistic one. We accomplish these goals by focusing the course on four major issues, namely: - Does Big Bang Cosmology leave room for a Creator? - Can a rational person believe in miracle reports? - In the light of modern science, what does it mean to be human? - Can a theist, someone who believes in God, rationally accept the scientific theory of biological evolution? We have evidence in the course to evaluate student progress towards our goals. Student responses to a pre- and post-testing methodology, where they responded to the same assignment at the beginning and at the end of the course, were classified as seeing the relationship between science and religion as confrontational, distinct, convergent, or transitional between distinct and convergent. Preliminary analysis of the student responses shows a significant shift away from a confrontational position and towards a more convergent position. The development of this course was supported by the John Templeton Foundation's Science and Religion course program. H.L.S.'s scholarly work integrating science research and science education research is supported by the National Science Foundation's Distinguished Teaching Scholars Program. DUE-0306557),

  12. Perceived barriers to online education by radiologic science educators.

    Science.gov (United States)

    Kowalczyk, Nina K

    2014-01-01

    Radiologic science programs continue to adopt the use of blended online education in their curricula, with an increase in the use of online courses since 2009. However, perceived barriers to the use of online education formats persist in the radiologic science education community. An electronic survey was conducted to explore the current status of online education in the radiologic sciences and to identify barriers to providing online courses. A random sample of 373 educators from radiography, radiation therapy, and nuclear medicine technology educational programs accredited by the Joint Review Committee on Education in Radiologic Technology and Joint Review Committee on Educational Programs in Nuclear Medicine Technology was chosen to participate in this study. A qualitative analysis of self-identified barriers to online teaching was conducted. Three common themes emerged: information technology (IT) training and support barriers, student-related barriers, and institutional barriers. Online education is not prevalent in the radiologic sciences, in part because of the need for the clinical application of radiologic science course content, but online course activity has increased substantially in radiologic science education, and blended or hybrid course designs can effectively provide opportunities for student-centered learning. Further development is needed to increase faculty IT self-efficacy and to educate faculty regarding pedagogical methods appropriate for online course delivery. To create an excellent online learning environment, educators must move beyond technology issues and focus on providing quality educational experiences for students.

  13. Increasing Scientific Literacy about Global Climate Change through a Laboratory-Based Feminist Science Course

    Science.gov (United States)

    George, Linda A.; Brenner, Johanna

    2010-01-01

    The authors have developed and implemented a novel general education science course that examines scientific knowledge, laboratory experimentation, and science-related public policy through the lens of feminist science studies. They argue that this approach to teaching general science education is useful for improving science literacy. Goals for…

  14. Science Academies' Refresher Course on Advanced Quantum ...

    Indian Academy of Sciences (India)

    IAS Admin

    2016-10-10

    Sponsored by Indian Academy of Sciences, Bengaluru. Indian National ... brief statement (between 250 and 500 words) as to why they think the Course will help to improve their classroom ... Last date for receipt of applications: October 10, 2016.

  15. Science Academies' Refresher Course in Chemistry

    Indian Academy of Sciences (India)

    2017-10-25

    Oct 25, 2017 ... Modern College of Arts, Science and Commerce. Ganeshkhind, Pune ... API scores for career advancement. Applications are invited from teachers experience in teaching undergraduate and postgraduate courses in chemistry ...

  16. Could Nursing Educational Courses Change the Attitudes of Students to Mental Disorders stigma? A Quasi- Experimental Study in Alborz University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    F. Kordlou

    2015-11-01

    Full Text Available Introduction: The prevalence mental disorders and its burden in the world is one of the most important challenges for health system and service delivery to people with mental disorders need enough and trained manpower. Stigma of mental disorders not only influence patients and their families but also is a barrier for delivering mental health services to the patients, hence beyond the knowledge and expertise, health care providers must have an appropriate attitude especially toward the stigma of mental disorder. The aim of this study was to determine the effect of mental health related courses of nursing curriculum on the nursing student’s attitude about mental disorders in Alborz University of Medical Sciences. Methods: A quasi-experimental study with before and after design was used. All 197 nursing students who had one of the related courses of mental health, were studied for attitudes about mental disorder stigma before and after the semester. Farsi version of OMSHC questionnaire was used to measure nursing student’s attitude. One way ANOVAs, Pearson Correlation and Paired T-Test used for Data analysis. Results: Student’s attitude about mental health stigma didn’t improve after the course lessons. Mental health attitude score was different based on gender (P<0/035 and marital status (P<0.006. There was a weak negative correlation between age and attitude score (r=-0.22, P<0/003. Conclusion: The current educational course and lessons can’t improve the nursing student’s attitudes about the stigma of mental disorders. To get desired outcomes, changing lesson plans and the presentation styles must be considered.

  17. Flipped Classrooms for Advanced Science Courses

    Science.gov (United States)

    Tomory, Annette; Watson, Sunnie Lee

    2015-12-01

    This article explains how issues regarding dual credit and Advanced Placement high school science courses could be mitigated via a flipped classroom instructional model. The need for advanced high school courses will be examined initially, followed by an analysis of advanced science courses and the reform they are experiencing. Finally, it will conclude with an explanation of flipped classes as well as how they may be a solution to the reform challenges teachers are experiencing as they seek to incorporate more inquiry-based activities.

  18. Refresher Course on Frontier in Atomospheric Sciences

    Indian Academy of Sciences (India)

    Admin

    This course will include lectures by eminent scientists and visits to the state-of-art computer and instrumentation facilities. It will provide an excellent opportunity to get an insight into the latest developments and modern outlook of atmospheric science for students who plan to make their careers in atmospheric sciences or for ...

  19. An Analysis of the Model and Enacted Curricula for a History of Science Course in a Nationwide Teacher Education Program

    Science.gov (United States)

    Nouri, Noushin

    2017-01-01

    The UTeach program, a national model for undergraduate teacher preparation, includes "Perspectives on Science and Mathematics," a class designed to share content about the History of Science (HOS) with preservice teachers. UTeach provides a model curriculum as a sample for instructors teaching "Perspectives." The purpose of…

  20. An Investigation of Science and Technology Teachers’ Views on the 5th Grade Science Course

    OpenAIRE

    İkramettin Daşdemir

    2014-01-01

    This study was conducted to explore the science and technology teachers’ views on the implementation of 5th grade science course. Open-ended questions were used as a data collection tool. The study sample consisted of 28 science and technology teachers working in Erzurum in 2012-2013 education year. The data gathered were analysed via content analysis method. According to the results obtained from the open-ended questions, a great majority of science and technology teache...

  1. Dynamics of Clothing I. Curriculum Guide. A Family and Consumer Sciences Education Course of Study for Grades 9-12.

    Science.gov (United States)

    Hunger, Dean-Ellen, Ed.; Hancey, Helen-Louise; Hendrickson, Diane; Hicks, Camille; Munns, Barbara; Price, Barbara

    This document is a six-unit curriculum guide for a high school (grades 9-12) course in clothing instruction. The units contain one to three lessons on the following topics: (1) psychology of clothing and appearance (role of clothing and clothing choices, personal grooming); (2) design principles (line and design, color); (3) construction…

  2. Development of a Bi-Disciplinary Course in Forensic Science

    Directory of Open Access Journals (Sweden)

    Stacey L. Raimondi

    2013-08-01

    Full Text Available Forensic science programs and courses have traditionally been housed within chemistry departments at the college/university level, largely because the pioneers of the field were chemists who applied technology that was more chemical than biological in nature. However, with the development of such areas of study as DNA analysis, anatomical studies, and forensic entomology, it is becoming more and more important for forensic science students to have a strong biological background as well as a chemical background. Furthermore, while biology students are typically required to have extensive chemistry training as part of their major, the converse is not true for chemistry students. Therefore, it is possible that a student interested in forensic science could complete a major in chemistry and never have taken a biology class, leaving them woefully under-prepared for any type of masters program or career in forensic science immediately following graduation. Indeed, an examination of available positions in forensic science shows a large number of positions for DNA analysts for which the typical chemistry student would not be prepared without extensive biology training (http://www.aafs.org. Furthermore, positions for medical examiners or pathologists require extensive training in biology in addition to the continued medical training and residency programs. Therefore, it seems imperative that introductory forensic science courses adapt to these needs and be taught with a more bi-disciplinary approach in order to educate students on the whole field rather than one aspect. To that end, a new bi-disciplinary Forensic Science course was developed at Elmhurst College. This course was team-taught by a biology and a chemistry professor so that students would obtain a thorough understanding of the field and techniques used by both biologists and chemists. A description of this new version of a forensic science course follows, focusing on the addition of biology

  3. Safety Education and Science.

    Science.gov (United States)

    Ralph, Richard

    1980-01-01

    Safety education in the science classroom is discussed, including the beginning of safe management, attitudes toward safety education, laboratory assistants, chemical and health regulation, safety aids, and a case study of a high school science laboratory. Suggestions for safety codes for science teachers, student behavior, and laboratory…

  4. The General Philosophy Behind the New Integrated and Co-ordinated Science Courses in N.S.W. and the Science Foundation for Physics Textbook Series.

    Science.gov (United States)

    Messel, H.; Barker, E. N.

    Described are the science syllabuses and texts for the science courses written to fulfill the aims of the new system of education in the state of New South Wales, Australia. The science course was developed in two stages: (1) A four year integrated science syllabus for grades 7-10, and (2) separate courses in physics, chemistry, and biology with…

  5. Science in General Education

    Science.gov (United States)

    Read, Andrew F.

    2013-01-01

    General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.

  6. Science Education Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Discusses: (1) the nature of science; (2) Ausubel's learning theory and its application to introductory science; and (3) mathematics and physics instruction. Outlines a checklist approach to Certificate of Extended Education (CSE) practical assessment in biology. (JN)

  7. Plagiarism in computer science courses

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.K. [Francis Marion Univ., Florence, SC (United States)

    1994-12-31

    Plagiarism of computer programs has long been a problem in higher education. Ease of electronic copying, vague understanding by students as to what constitutes plagiarism, increasing acceptance of plagiarism by students, lack of enforcement by instructors and school administrators, and a whole host of other factors contribute to plagiarism. The first step in curbing plagiarism is prevention, the second (and much less preferable) is detection. History files and software metrics can be used as a tool to aid in detecting possible plagiarism. This paper gives advice concerning how to deal with plagiarism and with using software monitors to detect plagiarism.

  8. How In-Service Science Teachers Integrate History and Nature of Science in Elementary Science Courses

    Science.gov (United States)

    Hacieminoglu, Esme

    2014-01-01

    The purpose of this study is to investigate how the in-service science teachers' (IST) perceptions and practices about curriculum and integration of the history of science (HOS) and the nature of science (NOS) affect their science courses. For this aim, how ISTs integrated the NOS and HOS in their elementary science courses for understanding of…

  9. A Survey of Computer Science Capstone Course Literature

    Science.gov (United States)

    Dugan, Robert F., Jr.

    2011-01-01

    In this article, we surveyed literature related to undergraduate computer science capstone courses. The survey was organized around course and project issues. Course issues included: course models, learning theories, course goals, course topics, student evaluation, and course evaluation. Project issues included: software process models, software…

  10. A survey of computer science capstone course literature

    Science.gov (United States)

    Dugan, Robert F., Jr.

    2011-09-01

    In this article, we surveyed literature related to undergraduate computer science capstone courses. The survey was organized around course and project issues. Course issues included: course models, learning theories, course goals, course topics, student evaluation, and course evaluation. Project issues included: software process models, software process phases, project type, documentation, tools, groups, and instructor administration. We reflected on these issues and thecomputer science capstone course we have taught for seven years. The survey summarized, organized, and synthesized the literature to provide a referenced resource for computer science instructors and researchers interested in computer science capstone courses.

  11. Science Academies' Refresher Course on Theoretical Structural ...

    Indian Academy of Sciences (India)

    A course on Theoretical Structural Geology, Crystallography, Mineralogy, Thermodynamics, Exper- imental Petrology and Theoretical Geophysics will be conducted in the Jallahalli Campus under the aegis of Indian Academy of Sciences during 20th November to 4th December, 2017. University lec- turers, Research ...

  12. External Science Courses: The Practicals Problem.

    Science.gov (United States)

    Kember, David

    1982-01-01

    Describes three methods for offering practical work for external science courses: residential sessions on campus, local centers, and use of home laboratory kits. The advantages and disadvantages of each are discussed and examples of each in operation are given. A 21-item bibliography is provided. (EAO)

  13. Career education attitudes and practices of K-12 science educators

    Science.gov (United States)

    Smith, Walter S.

    A random sample of 400 K-12 science educators who were members of the National Science Teachers Association were surveyed regarding their attitude toward and practice of career education in their science teaching. These science teachers rejected a narrowly vocational view, favoring instead a conception of career education which included self-perception, values analysis, and vocational skills objectives. The science educators affirmed the importance of career education for a student's education, asserted career education ought to be taught in their existing science courses, and expressed a willingness to do so. Fewer than one-third of the science teachers, however, reported incorporating career education at least on a weekly basis in their science lessons. The major impediment to including more career education in science teaching was seen to be their lack of knowledge of methods and materials relevant to science career education, rather than objections from students, parents, or administrators; their unwillingness; or their evaluation of career education as unimportant. Thus, in order to improve this aspect of science teaching, science teachers need more concrete information about science career education applications.

  14. Multicultural Education Course Put into Practice

    Science.gov (United States)

    Jun, Eun Jeong

    2016-01-01

    This study examines the ways in which two teachers who have previously taken a multicultural education course put into practice multicultural teaching in a first grade afterschool program. Banks' five dimensions of multicultural education are used as the theoretical framework for analyzing past research on multicultural education courses and for…

  15. Developing a constructivist learning environment in online postsecondary science courses

    Science.gov (United States)

    Hackworth, Sylvester N.

    This Delphi study addressed the concerns of postsecondary educators regarding the quality of education received by postsecondary science students who receive their instruction online. This study was framed with the constructivist learning theory and Piaget's and Dewey's cognitive development theories. The overarching question addressed a gap in research literature surrounding the pedagogical practices that could be successfully applied to future postsecondary online science education. The panel consisted of 30 experts in the area of online postsecondary education. Qualitative data from the initial seed questions were used to create a Likert-type survey to seek consensus of the themes derived from participant responses. Participants reached agreement on six items: apply constructivism to science curricula, identify strengths and challenges of online collegiate students, explicate students' consequences due to lack of participation in discussion forums, ensure that online course content is relevant to students' lives, reinforce academic integrity, and identify qualities face-to-face collegiate science instructors need when transitioning to online science instructors. The majority of participants agreed that gender is not an important factor in determining the success of an online collegiate science student. There was no consensus on the efficacy of virtual labs in an online science classroom. This study contributes to positive social change by providing information to new and struggling postsecondary science teachers to help them successfully align their instruction with students' needs and, as a result, increase students' success.

  16. Building Bridges between Science Courses Using Honors Organic Chemistry Projects

    Science.gov (United States)

    Hickey, Timothy; Pontrello, Jason

    2016-01-01

    Introductory undergraduate science courses are traditionally offered as distinct units without formalized student interaction between classes. To bridge science courses, the authors used three Honors Organic Chemistry projects paired with other science courses. The honors students delivered presentations to mainstream organic course students and…

  17. A Course in Science and Pseudoscience

    Science.gov (United States)

    Taylor, Richard

    2009-04-01

    A new course at Hockaday, Science and Pseudoscience, examines what we know, how we know it, and why we get fooled so often and so easily. This is a course in which we measure things we thought we understood and use statistical analysis to test our understanding. We investigate extraordinary claims through the methods of science, asking what makes a good scientific theory, and what makes scientific evidence. We examine urban myths, legends, bad science, medical quackery, and plain old hoaxes. We analyze claims of UFOs, cold fusion, astrology, structure-altered water, apricot pit cures, phlogiston and N-rays, phrenology and orgonomy, ghosts, telekinesis, crop circles and the Bermuda Triangle -- some may be true, some are plainly false, and some we're not really sure of. We develop equipment and scientific techniques to investigate extra-sensory perception, precognition, and EM disturbances.

  18. The Impact of a Curriculum Course on Pre-Service Primary Teachers' Science Content Knowledge and Attitudes towards Teaching Science

    Science.gov (United States)

    Murphy, Cliona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students'…

  19. Games in Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2014-01-01

    , 2007). Some of these newer formats are developed in partnerships between research and education institutions and game developers and are based on learning theory as well as game design methods. Games well suited for creating narrative framework or simulations where students gain first-hand experience......This paper presents a categorisation of science game formats in relation to the educational possibilities or limitations they offer in science education. This includes discussion of new types of science game formats and gamification of science. Teaching with the use of games and simulations...... in science education dates back to the 1970s and early 80s were the potentials of games and simulations was discussed extensively as the new teaching tool ( Ellington et al. , 1981). In the early 90s the first ITC -based games for exploration of science and technical subjects was developed (Egenfeldt...

  20. Science, Worldviews, and Education

    Science.gov (United States)

    Gauch, Hugh G., Jr.

    2009-01-01

    Whether science can reach conclusions with substantial worldview import, such as whether supernatural beings exist or the universe is purposeful, is a significant but unsettled aspect of science. For instance, various scientists, philosophers, and educators have explored the implications of science for a theistic worldview, with opinions spanning…

  1. Remodeling Science Education

    Science.gov (United States)

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  2. The Impact of E-Education on At Risk High School Students' Science Achievement and Experiences during Summer School Credit Recovery Courses

    Science.gov (United States)

    Phillips, Pamela Prevette

    2015-01-01

    Nationally, "at risk" students make up to 30% of U.S. students in public schools. Many "at risk" students have poor attendance, are disengaged from the learning environment and have low academic achievement. Educational failure occurs when students do not complete the required courses and as a result do not receive a high…

  3. The impact of a curriculum course on pre-service primary teachers' science content knowledge and attitudes towards teaching science

    OpenAIRE

    Murphy, Clíona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students' conceptual and pedagogical knowledge of science and on their attitudes towards teaching science in the primary classroom. A questionnaire, containing closed ...

  4. Massive open online courses in foreign and Russian education system

    Directory of Open Access Journals (Sweden)

    Сергей Дмитриевич Каракозов

    2014-12-01

    Full Text Available The article discusses the phenomenon of MOOC (Massive Open Online Courses, which opened up new opportunities for the distance learning. Shows the advantages and disadvantages of the MOOC, the prospects of their use in the education system of Russia and in particular in the sector of teacher education. Research is executed within the State task Ministry of Education and Science of the Russian Federation, number of the state registration - 01201153724.

  5. Charting a Course to Earth System Science Literacy

    Science.gov (United States)

    Karsten, J. L.; Koch, L.; Ridky, R.; Wei, M.; Ladue, N.

    2008-12-01

    Public literacy of fundamental ideas in Earth System Science (ESS) is immensely important, both because of its relevance to the daily lives of individual citizens and the role played by informed policy decisions related to water, energy, climate change, and hazards in securing our Nation's well-being and prosperity. The National Science Education Standards (NRC, 1996) argued that topics which comprise ESS also have tremendous value in providing context and meaning for the teaching of Biology, Chemistry, and Physics concepts and their applications, thereby serving the goals of the America COMPETES Act. Yet, as documented in the 2006 Program for International Student Assessment (PISA) results, the U.S. continues to lag significantly behind other developed nations in science literacy. A major obstacle to improving public ESS literacy, specifically, and strengthening science literacy, in general, is the fact that fewer than 30% of students in U.S. high schools take any courses related to ESS. Often, these courses are taught by teachers with limited preparation in this content area. A new grass-roots movement within the geoscience research and education communities, fueled by interagency collaboration, is seeking to overcome these obstacles and steer a new course for ESS education in the Nation. The Earth System Science Literacy Initiative (ESSLI) builds on recent efforts within portions of the geosciences community to reach consensus on what defines scientific literacy within their fields. Individual literacy frameworks now exist for the ocean, atmospheric science, Earth science, and climate topic areas, and others are under development. The essential principles and fundamental concepts articulated in these frameworks provide consistent core messages that can be delivered and reinforced not only through formal education channels, but also through informal education activities and the media, thereby avoiding the inherent obstacles of the formal education setting

  6. Understanding Science and Technology Interactions Through Ocean Science Exploration: A Summer Course for Science Teachers

    Science.gov (United States)

    Baldauf, J.; Denton, J.

    2003-12-01

    In order to replenish the national supply of science and mathematics educators, the National Science Foundation has supported the formation of the Center for Applications of Information Technology in the Teaching and Learning of Science (ITS) at Texas A&M University. The center staff and affiliated faculty work to change in fundamental ways the culture and relationships among scientists, educational researchers, and teachers. ITS is a partnership among the colleges of education, science, geosciences, agriculture and life science at Texas A&M University. Participants (teachers and graduate students) investigate how science is done and how science is taught and learned; how that learning is assessed, and how scholarly networks among all engaged in this work can be encouraged. While the center can offer graduate degrees most students apply as non-degree seekers. ITS participants are schooled on classroom technology applications, experience working on project teams, and access very current research work being conducted by scientists. ITS offers a certificate program consisting of two summer sessions over two years that results in 12 hours of graduate credit that can be applied to a degree. Interdisciplinary project teams spend three intense weeks connecting current research to classroom practices. During the past summer with the beginning of the two-year sequence, a course was implemented that introduced secondary teachers to Ocean Drilling Program (ODP) contributions to major earth science themes, using core and logging data, engineering (technology) tools and processes. Information Technology classroom applications were enhanced through hands-on laboratory exercises, web resources and online databases. The course was structured around the following objectives. 1. Distinguish the purpose and goals of the Ocean Drilling Program from the Integrated Ocean Drilling Program and describe the comparable science themes (ocean circulation, marine sedimentation, climate history

  7. Science education through informal education

    Science.gov (United States)

    Kim, Mijung; Dopico, Eduardo

    2016-06-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.

  8. Designing Social Media into Higher Education Courses

    OpenAIRE

    Thapanee Seechaliao

    2015-01-01

    This research paper presents guiding on how to design social media into higher education courses. The research methodology used a survey approach. The research instrument was a questionnaire about guiding on how to design social media into higher education courses. Thirty-one lecturers completed the questionnaire. The data were scored by frequency and percentage. The research results were the lecturers' opinions concerning the designing social media into higher education ...

  9. Globalization and Science Education

    Science.gov (United States)

    Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won

    2013-06-01

    Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.

  10. Stereotyped: Investigating Gender in Introductory Science Courses

    Science.gov (United States)

    Lauer, Shanda; Momsen, Jennifer; Offerdahl, Erika; Kryjevskaia, Mila; Christensen, Warren; Montplaisir, Lisa

    2013-01-01

    Research in science education has documented achievement gaps between men and women in math and physics that may reflect, in part, a response to perceived stereotype threat. Research efforts to reduce achievement gaps by mediating the impact of stereotype threat have found success with a short values-affirmation writing exercise. In biology and…

  11. CREATIVE APPROACHES TO COMPUTER SCIENCE EDUCATION

    Directory of Open Access Journals (Sweden)

    V. B. Raspopov

    2010-04-01

    Full Text Available Using the example of PPS «Toolbox of multimedia lessons «For Children About Chopin» we demonstrate the possibility of involving creative students in developing the software packages for educational purposes. Similar projects can be assigned to school and college students studying computer sciences and informatics, and implemented under the teachers’ supervision, as advanced assignments or thesis projects as a part of a high school course IT or Computer Sciences, a college course of Applied Scientific Research, or as a part of preparation for students’ participation in the Computer Science competitions or IT- competitions of Youth Academy of Sciences ( MAN in Russian or in Ukrainian.

  12. Assessment in Science Education

    Science.gov (United States)

    Rustaman, N. Y.

    2017-09-01

    An analyses study focusing on scientific reasoning literacy was conducted to strengthen the stressing on assessment in science by combining the important of the nature of science and assessment as references, higher order thinking and scientific skills in assessing science learning as well. Having background in developing science process skills test items, inquiry in its many form, scientific and STEM literacy, it is believed that inquiry based learning should first be implemented among science educators and science learners before STEM education can successfully be developed among science teachers, prospective teachers, and students at all levels. After studying thoroughly a number of science researchers through their works, a model of scientific reasoning was proposed, and also simple rubrics and some examples of the test items were introduced in this article. As it is only the beginning, further studies will still be needed in the future with the involvement of prospective science teachers who have interests in assessment, either on authentic assessment or in test items development. In balance usage of alternative assessment rubrics, as well as valid and reliable test items (standard) will be needed in accelerating STEM education in Indonesia.

  13. Science self-efficacy of African Americans enrolled in freshman level physical science courses in two historically black institutions

    Science.gov (United States)

    Prihoda, Belinda Ann

    2011-12-01

    Science education must be a priority for citizens to function and be productive in a global, technological society. African Americans receive fewer science degrees in proportion to the Caucasian population. The primary purposes of this study were to determine the difference between the pretest and posttest science self-efficacy scores of African-American nonscience majors, the difference between the pretest and posttest science self-efficacy scores of African-American science majors, the relationship between science self-efficacy and course grade, the relationship between gender and science self-efficacy score, and the relationship between science self-efficacy score and course withdrawal. This study utilized a Likert survey instrument. All participants were enrolled in freshman level courses in the physical sciences at a historically black institution: a college or university. Participants completed the pretest survey within two weeks after the 12th class day of the semester. Initially, 458 participants completed the pretest survey. The posttest was administered within two weeks before the final exam. Only 245 participants completed the posttest survey. Results indicate that there is a difference in science self-efficacy of science majors and nonscience majors. There was no significant difference between the pretest and posttest science self-efficacy scores of African-American science majors and nonscience majors. There was no significant relationship between science self-efficacy and course grade, gender and science self-efficacy score, and course withdrawal and science self-efficacy score.

  14. Effects of a Science Content Course on Elementary Preservice Teachers' Self-Efficacy of Teaching Science

    Science.gov (United States)

    Bergman, Daniel J.; Morphew, Jason

    2015-01-01

    The preparation of elementary teachers to successfully teach science in their classrooms is a central issue in science education. The teacher preparation program at a large Midwestern university was modified to include a new science content course aimed at this need. A pre-/postassessment research model involved participants (N = 154) completing a…

  15. International Collaboration in Packaging Education: Hands-on System-on-Package (SOP) Graduate Level Courses at Indian Institute of Science and Georgia Tech PRC

    OpenAIRE

    Varadarajan, Mahesh; Bhattacharya, Swapan; Doraiswami, Ravi; Rao, Ananda G; Rao, NJ; May, Gary; Conrad, Leyla; Tummala, Rao

    2005-01-01

    System-on-Package (SOP) continues to revolutionize the realization of convergent systems in microelectronics packaging. The SOP concept which began at the Packaging Research Center (PRC) at Georgia Tech has benefited its international collaborative partners in education including the Indian Institute of Science (IISc). The academic program for electronics packaging currently in the Centre for Electronics Design and Technology (CEDT) at IISc is aimed at educating a new breed of globally-compet...

  16. Assessing Attitudes Towards Science During an Adaptive Online Astrobiology Course: Comparing Online and On-Campus Undergraduates

    Science.gov (United States)

    Perera, Viranga; Mead, Chris; Buxner, Sanlyn; Horodyskyj, Lev; Semken, Steven; Lopatto, David; Anbar, Ariel

    2016-10-01

    General-education Science, Technology, Engineering, and Mathematics (STEM) courses are accepted as essential to a college education. An often cited reason is to train a scientifically literate populace who can think critically and make informed decisions about complex issues such as climate change, health care, and atomic energy. Goals of these STEM courses, therefore, go beyond content knowledge to include generating positive attitudes towards science, developing competence in evaluating scientific information in everyday life and understanding the nature of science. To gauge if such non-content learning outcomes are being met in our course, an online astrobiology course called Habitable Worlds, we administered the Classroom Undergraduate Research Experience (CURE) survey to students. The survey was administered before and after completion of the course for three semesters starting with the Fall 2014 semester and ending with the Fall 2015 semester (N = 774). A factor analysis indicated three factors on attitudes: toward science education, toward the interconnectedness of science with non-science fields, and toward the nature of science. Here we present some differences between students enrolled in online degree programs (o-course) and those enrolled in traditional undergraduate programs (i-course). While mean course grades were similar, changes in attitudes toward science differ significantly between o-course and i-course students. The o-course students began the course with more positive attitudes across all three factors than the i-course students. Their attitudes toward science education improved during the course, while the i-course students showed no change. Attitudes toward the other two factors declined in both populations during the course, but declines were smaller among o-course students. These differences may indicate lesser intrinsic motivation among the i-course students. The CURE survey has not been used before in an online course; therefore, we will

  17. Impact of Informal Science Education on Children's Attitudes About Science

    Science.gov (United States)

    Wulf, Rosemary; Mayhew, Laurel M.; Finkelstein, Noah D.

    2010-10-01

    The JILA Physics Frontier Center Partnerships for Informal Science Education in the Community (PISEC) provides informal afterschool inquiry-based science teaching opportunities for university participants with children typically underrepresented in science. We focus on the potential for this program to help increase children's interest in science, mathematics, and engineering and their understanding of the nature of science by validating the Children's Attitude Survey, which is based on the Colorado Learning Attitudes about Science Survey [1] and designed to measure shifts in children's attitudes about science and the nature of science. We present pre- and post-semester results for several semesters of the PISEC program, and demonstrate that, unlike most introductory physics courses in college, our after-school informal science programs support and promote positive attitudes about science.

  18. Course on Radiological Protection and Quality Assurance in Medical Radiodiagnostic Practices (4th Ed.) : Tel educational through Internet on Health Science

    International Nuclear Information System (INIS)

    Alcaraz, M.; Chico, P.; Armero, D.; Saura Iniesta, A. M.; Fernandez, H.; Vicente, V.

    2006-01-01

    The creation of an interdepartmental project subsidised by the Spanish Ministry of Education has made possible the elaboration of a series of specific didactic materials on Radiological Protection and Quality Assurance in Medical Radiodiagnostic Practices, which has led to the publication of a specific manual and practical notebook. As a consequence, this material now constitutes the working base for those professionals exposed to ionising radiation who are following the first Tel educational continuous formation course in Spanish via the Internet on this subject. (Author)

  19. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Science Academies' Refresher Course on Experimental Biology: Orthodox to Modern. Information and Announcements Volume 21 Issue 9 September 2016 pp 858-858 ...

  20. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 2. Science Academies' Refresher Course on Modern Biiotechnology: Concepts and Practice. Information and Announcements Volume 18 Issue 2 February 2013 pp 197-197 ...

  1. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 10. Science Academies' Refresher Course on Modern and Ancient Environment and Ecology: Sediments and Biota. Information and Announcements Volume 22 Issue 10 October 2017 pp 973-973 ...

  2. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 12. Science Academies' Refresher Course on Modern Genetics: Concepts and Practice. Information and Announcements Volume 17 Issue 12 December 2012 pp 1198-1198 ...

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 8. Science Academies' Refresher Course in Foundations of Physical Chemistry and its Applications. Information and Announcements Volume 22 Issue 8 August 2017 pp 816-816 ...

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Science Academies' Refresher Course on Classical Mechanics and Electromagnetism. Information and Announcements Volume 19 Issue 8 August 2014 pp 775-775 ...

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 10. Science Academies' Refresher Course on Experimental Approaches to Molecular Microbiology and Cell Biology. Information and Announcements Volume 22 Issue 10 October 2017 pp 971-971 ...

  6. Intensive educational course in allergy and immunology.

    Science.gov (United States)

    Elizalde, A; Perez, E E; Sriaroon, P; Nguyen, D; Lockey, R F; Dorsey, M J

    2012-09-01

    A one-day intensive educational course on allergy and immunology theory and diagnostic procedure significantly increased the competency of allergy and immunology fellows-in-training. © 2012 John Wiley & Sons A/S.

  7. Report on short course in educational methodology for university teachers in complementary and alternative medicine (CAM) disciplines - a pilot study conducted at Rajiv Gandhi University of Health Sciences, Karnataka, India.

    Science.gov (United States)

    Munir, Ahmed R; Prem, Kumar D

    2016-03-01

    There is a growing awareness among teachers in the complementary and alternative medicine (CAM) disciplines that a formal training in educational methodology can improve their performance as teachers and student evaluators. The Training of Trainers programs conducted by Rajiv Gandhi University of Health Sciences, Karnataka, in the previous years have brought about a transformation among the teachers who attended those programs. Also the teachers were witness to a changing perception among students towards teachers who adapt innovative teaching/assessment strategies. This report illustrates an innovative training activity that was adapted to design a reference model that can be developed as an operational model for large-scale execution. Teachers who are under the affiliated CAM Institutions in Rajiv Gandhi University of Health Sciences, Karnataka, participated in a three-month 'Short Course in Educational Methodology'. This program was delivered on distance learning mode. The course was organised into four modules. Study material was provided for each of the module in the form of a study guide and related reference articles in electronic form. There were three contact programs - Induction and Introduction that also addressed overview of entire course and the subject matter of Module 1, and this was at the beginning of the course, first contact program to address the learner needs of Modules 2 and 3 and second contact program for the contents in Module 4. The participants were engaged during the entire course duration with interactive contact programs, self-study and application of concepts in their teaching/assessment practices, submission of assignments online, and microteaching presentation and peer review. The documentation and raw data generated during the course of training were used to generate an operational model for training of university teachers of health sciences faculty in general and teachers of CAM disciplines in particular. Establishing a model of

  8. Exploration of offering photoelectric experimental general elective courses for college students of science and technology

    Science.gov (United States)

    Tao, Shen; Sun, Binchao

    2017-08-01

    The necessity of offering photoelectric experiment general elective courses, such as the experiments of modern optical and innovational photoelectric design for non optic-electric's science and engineering students were discussed based on the analysis of the status quo and problems in experimental general elective course in science and engineering colleges of our country. And the characters of photoelectric disciplines, the goal of science and engineering quality-oriented education and the reform of science education at home and abroad were also considered. The instructional objectives, contents and characteristics of the courses were investigated. The specific methods, the CDIO (conceive, design, implement and operate) mode in the general courses has been proposed; the experiences and practical effects of offering these courses were concluded.

  9. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  10. Adding a Bit More History to Science Courses

    Science.gov (United States)

    DeBuvitz, William

    2011-01-01

    The usual science course is not meant to be a history course and the usual science book is not meant to be a history book. However, most science books do include some historical information. Unfortunately, the history part is usually so brief that it is far from interesting and often so oversimplified that it is totally wrong. Introductory physics…

  11. Information visualization courses for students with a computer science background.

    Science.gov (United States)

    Kerren, Andreas

    2013-01-01

    Linnaeus University offers two master's courses in information visualization for computer science students with programming experience. This article briefly describes the syllabi, exercises, and practices developed for these courses.

  12. A Short Course in Problems in Applied Science and Engineering.

    Science.gov (United States)

    Nicholson, H. W.

    1987-01-01

    Provides a description of a concentrated four-week term course that provided students with opportunities of association with applied science and engineering professionals. Reviews the program's organizational structure, project requirements, and summarizes students reactions to the course. (ML)

  13. Improving Pre-Service Elementary Teachers' Education via a Laboratory Course on Air Pollution: One University's Experience

    Science.gov (United States)

    Mandrikas, Achilleas; Parkosidis, Ioannis; Psomiadis, Ploutarchos; Stoumpa, Artemisia; Chalkidis, Anthimos; Mavrikaki, Evangelia; Skordoulis, Constantine

    2013-01-01

    This paper describes the structure of the "Air Pollution Course", an environmental science laboratory course developed at the Science Education Laboratory of the Faculty of Primary Education, University of Athens, as well as the findings resulting from its implementation by pre-service elementary teachers. The course proposed in this…

  14. The relationship between competencies acquired through Swiss academic sports science courses and the job requirements.

    Science.gov (United States)

    Schlesinger, T; Studer, F; Nagel, S

    2016-01-01

    In view of the changes in and growing variety of sports-related occupations, it is highly relevant for educational institutions to know how well the educational contents of their sport science courses meet the professional requirements. This study analyses the relationship between the competencies acquired through academic sports science courses and the requirements of the relevant jobs in Switzerland. The data for this empirical analysis were drawn from a sample of n = 1054 graduates of different academic sport science programmes at all eight Swiss universities. The results show that academic sport science courses primarily communicate sports-specific expertise and practical sports skills. On the other hand, most graduates consider that the acquisition of interdisciplinary competencies plays a comparatively minor role in sport science education, even though these competencies are felt to be an important requirement in a variety of work-related environments and challenges.

  15. Science education ahead?

    Science.gov (United States)

    1999-01-01

    In spite of the achievements and successes of science education in recent years, certain problems undoubtedly remain. Firstly the content taught at secondary level has largely remained unchanged from what had been originally intended to meet the needs of those who would go on to become scientists. Secondly the curriculum is overloaded with factual content rather than emphasizing applications of scientific knowledge and skills and the connections between science and technology. Thirdly the curriculum does not relate to the needs and interests of the pupils. A recent report entitled Beyond 2000: Science Education for the Future, derived from a series of seminars funded by the Nuffield Foundation, attempts to address these issues by setting out clear aims and describing new approaches to achieve them. Joint editors of the report are Robin Millar of the University of York and Jonathan Osborne of King's College London. The recommendations are that the curriculum should contain a clear statement of its aims, with the 5 - 16 science curriculum seen as enhancing general `scientific literacy'. At key stage 4 there should be more differentiation between the literacy elements and those designed for the early stages of a specialist training in science; up to the end of key stage 3 a common curriculum is still appropriate. The curriculum should be presented clearly and simply, following on from the statement of aims, and should provide young people with an understanding of some key `ideas about science'. A wide variety of teaching methods and approaches should be encouraged, and the assessment approaches for reporting on students' performance should focus on their ability to understand and interpret information as well as their knowledge and understanding of scientific ideas. The last three recommendations in the report cover the incorporation of aspects of technology and the applications of science into the curriculum, with no substantial change overall in the short term but a

  16. The Nature of Science and Science Education: A Bibliography

    Science.gov (United States)

    Bell, Randy; Abd-El-Khalick, Fouad; Lederman, Norman G.; Mccomas, William F.; Matthews, Michael R.

    Research on the nature of science and science education enjoys a long history, with its origins in Ernst Mach's work in the late nineteenth century and John Dewey's at the beginning of the twentieth century. As early as 1909 the Central Association for Science and Mathematics Teachers published an article - A Consideration of the Principles that Should Determine the Courses in Biology in Secondary Schools - in School Science and Mathematics that reflected foundational concerns about science and how school curricula should be informed by them. Since then a large body of literature has developed related to the teaching and learning about nature of science - see, for example, the Lederman (1992)and Meichtry (1993) reviews cited below. As well there has been intense philosophical, historical and philosophical debate about the nature of science itself, culminating in the much-publicised Science Wars of recent time. Thereferences listed here primarily focus on the empirical research related to the nature of science as an educational goal; along with a few influential philosophical works by such authors as Kuhn, Popper, Laudan, Lakatos, and others. While not exhaustive, the list should prove useful to educators, and scholars in other fields, interested in the nature of science and how its understanding can be realised as a goal of science instruction. The authors welcome correspondence regarding omissions from the list, and on-going additions that can be made to it.

  17. Introductory life science mathematics and quantitative neuroscience courses.

    Science.gov (United States)

    Duffus, Dwight; Olifer, Andrei

    2010-01-01

    We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an upper-division course in computational neuroscience. We provide a description of each course, detailed syllabi, examples of content, and a brief discussion of the main issues encountered in developing and offering the courses.

  18. Collaborating to Improve Inquiry-Based Teaching in Elementary Science and Mathematics Methods Courses

    Science.gov (United States)

    Magee, Paula A.; Flessner, Ryan

    2012-01-01

    This study examines the effect of promoting inquiry-based teaching (IBT) through collaboration between a science methods course and mathematics methods course in an elementary teacher education program. During the collaboration, preservice elementary teacher (PST) candidates experienced 3 different types of inquiry as a way to foster increased…

  19. 28 CFR 550.51 - Drug abuse education course.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Drug abuse education course. 550.51... DRUG PROGRAMS Drug Abuse Treatment Program § 550.51 Drug abuse education course. (a) Purpose of the drug abuse education course. All institutions provide a drug abuse education course to: (1) Inform...

  20. Enhancing the "Science" in Elementary Science Methods: A Collaborative Effort between Science Education and Entomology.

    Science.gov (United States)

    Boardman, Leigh Ann; Zembal-Saul, Carla; Frazier, Maryann; Appel, Heidi; Weiss, Robinne

    Teachers' subject matter knowledge is a particularly important issue in science education in that it influences instructional practices across subject areas and at different grade levels. This paper provides an overview of efforts to develop a unique elementary science methods course and related field experience through a partnership between…

  1. Science Education - Deja Vu Revised.

    Science.gov (United States)

    Walsh, John

    1982-01-01

    Summarizes views expressed and issues raised at the National Convocation on Precollege Education in Mathematics and Science and another meeting to establish a coalition of affiliates for science and mathematics education. (DC)

  2. Assessing Student Attitudes Towards Science in an Adaptive Online Astrobiology Course: Comparing Online and On-Campus Undergraduates

    Science.gov (United States)

    Buxner, S.; Perera, V.; Mead, C.; Horodyskyj, L.; Semken, S. C.; Lopatto, D.; Anbar, A. D.

    2016-12-01

    General-education Science, Technology, Engineering, and Mathematics (STEM) courses are considered essential to a college education, in part, to train students to think critically and to make informed decisions about complex scientific issues such as climate change and public health. Therefore, the goals of these STEM courses go beyond content knowledge to include generating positive attitudes towards science, developing competence in evaluating scientific information in everyday life, and understanding the nature of science. The Classroom Undergraduate Research Experience (CURE) survey is frequently used to measure these attitudes, but it has not previously been used in an online, general education course. In this work, we administered the CURE survey for three semesters (N = 774) before and after completion of an online astrobiology course called Habitable Worlds. We compare students taking this course as part of fully-online degree programs (o-course) with those taking it as part of traditional undergraduate programs (i-course). More females and older students were among the o-course group, while overall the course had more white students than the Arizona State University average. Mean course grades were similar between the two groups but attitudes toward science differred significantly. O-course students began the course with more positive attitudes than i-course students, and o-course students also showed more positive changes at the end of the course. These differences suggest lesser intrinsic motivation among the i-course students. Additionally, pre-course attitudes correlated with final course grade for o-course students, but not for i-course students, which implies that success among o-course students is influenced by different factors than i-course students. Thus, effective student support strategies may differ for online-only students. Future work will include student interviews to better calibrate the CURE survey to online science courses.

  3. Sensory Science Education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2018-01-01

    little note of the body-mind interactions we have with the material world. Utilizing examples from primary schools, it is argued that a sensory pedagogy in science requires a deliberate sensitization and validation of the senses’ presence and that a sensor pedagogy approach may reveal the unique ways...... in how we all experience the world. Troubling science education pedagogy is therefore also a reconceptualization of who we are and how we make sense of the world and the acceptance that the body-mind is present, imbalanced and complex....

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 12. Pythagorean Means and Carnot Machines: When Music Meets Heat. Ramandeep S Johal.

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 23 .... pp 387-391 Book Review ... Parava: Soaring Towards New Directions in Human-Animal Relations.

  6. Crowdfunding for Elementary Science Educators

    Science.gov (United States)

    Reese, Jessica; Miller, Kurtz

    2017-01-01

    The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…

  7. A Guide to Undergraduate Science Course and Laboratory Improvements.

    Science.gov (United States)

    Straumanis, Joan, Ed.; Watson, Robert F., Ed.

    Reported are activities carried out at colleges and universities during 1976-1980 with support from the National Science Foundation's Local Course Improvement (LOCI) and Instructional Scientific Equipment Program (ISEP). It is intended as a reference for persons interested in current course and laboratory developments in the sciences at the…

  8. Integrating Climate Change Science and Sustainability in Environmental Science, Sociology, Philosophy and Business Courses.

    Science.gov (United States)

    Boudrias, M. A.; Cantzler, J.; Croom, S.; Huston, C.; Woods, M.

    2015-12-01

    Courses on sustainability can be taught from multiple perspectives with some focused on specific areas (environmental, socio-cultural, economic, ethics) and others taking a more integrated approach across areas of sustainability and academic disciplines. In conjunction with the Climate Change Education Program efforts to enhance climate change literacy with innovative approaches, resources and communication strategies developed by Climate Education Partners were used in two distinct ways to integrate climate change science and impacts into undergraduate and graduate level courses. At the graduate level, the first lecture in the MBA program in Sustainable Supply Chain Management is entirely dedicated to climate change science, local and global impacts and discussions about key messages to communicate to the business community. Basic science concepts are integrated with discussions about mitigation and adaptation focused on business leaders. The concepts learned are then applied to the semester-long business plan project for the students. At the undergraduate level, a new model of comprehensive integration across disciplines was implemented in Spring 2015 across three courses on Sustainability each with a specific lens: Natural Science, Sociology and Philosophy. All three courses used climate change as the 'big picture' framing concept and had similar learning objectives creating a framework where lens-specific topics, focusing on depth in a discipline, were balanced with integrated exercises across disciplines providing breadth and possibilities for integration. The comprehensive integration project was the creation of the climate action plan for the university with each team focused on key areas of action (water, energy, transportation, etc.) and each team built with at least one member from each class ensuring a natural science, sociological and philosophical perspective. The final project was presented orally to all three classes and an integrated paper included

  9. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  10. Science Academies' Refresher Course in Quantum Mechanics

    Indian Academy of Sciences (India)

    IAS Admin

    2013-02-28

    Feb 28, 2013 ... A Refresher Course in Quantum Mechanics for college/university teachers ... The Course will cover the basic and advanced topics of Quantum ... Module 1:- Principles of Quantum Mechanics (with associated mathematics), ...

  11. Science Academies' Refresher Course in Statistical Mechanics

    Indian Academy of Sciences (India)

    2018-02-27

    Feb 27, 2018 ... Post Graduate and Research Department of Physics. Bishop Moore ... The Course will cover the basic and advanced topics of Statistical. Mechanics ... Courses of good standing for promotion, vide notification. F3-1/2009 ...

  12. Science Academies' Refresher Course in Statistical Mechanics

    Indian Academy of Sciences (India)

    IAS Admin

    ), Dibyendu Das (IIT,. Mumbai), Kedar Damle (TIFR, Mumbai). Course Director: Deepak Dhar; Course Coordinator: Anuradha Misra. Teachers/research scholars who wish to participate should send a short letter explaining their reasons for ...

  13. Science Academies' Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    2016-02-20

    Students who wish to participate in this Refresher Course should submit their completed application form (in the prescribed format) by email or by post address (insaku2016@gmail.com),. (gulnoor.dar@gmail.com) or Course ...

  14. A Portable Bioinformatics Course for Upper-Division Undergraduate Curriculum in Sciences

    Science.gov (United States)

    Floraino, Wely B.

    2008-01-01

    This article discusses the challenges that bioinformatics education is facing and describes a bioinformatics course that is successfully taught at the California State Polytechnic University, Pomona, to the fourth year undergraduate students in biological sciences, chemistry, and computer science. Information on lecture and computer practice…

  15. Is Religious Education Compatible with Science Education?

    Science.gov (United States)

    Mahner, Martin; Bunge, Mario

    1996-01-01

    Addresses the problem of the compatibility of science and religion, and its bearing on science and religious education, challenges the popular view that science and religion are compatible or complementary. Discusses differences at the doctrinal, metaphysical, methodological, and attitudinal levels. Argues that religious education should be kept…

  16. Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report. Appendix

    Science.gov (United States)

    Achieve, Inc., 2010

    2010-01-01

    This appendix accompanies the report "Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report," a study conducted by Achieve to compare the science standards of 10 countries. This appendix includes the following: (1) PISA and TIMSS Assessment Rankings; (2) Courses and…

  17. Science Academies Refresher Course in Topology

    Indian Academy of Sciences (India)

    knowledge thereby add value to their teaching. The course will be directed by Prof. Parameswaran Sankaran, FNASc, FASc. It may be noted that ... ipants will be provided with travel assistance (limited to three-tier A/c train fare), accommodation and local hospitality during the Course in addition to course material. Interested ...

  18. Science Academies' Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    2017-12-18

    Dec 18, 2017 ... A Refresher Course in Experimental Physics will be held at the Department of Physics, Panjab. University, Chandigarh held from 18 December 2017 to 2 January 2018 for the benefit of faculty involved in teaching undergraduate and postgraduate courses. The Course aims to familiarize the teachers with a ...

  19. Courses on the Beauty of Mathematics: Our Version of General Education Mathematics Courses

    Science.gov (United States)

    Rash, Agnes M.; Fillebrown, Sandra

    2016-01-01

    This article describes various courses designed to incorporate mathematical proofs into courses for non-math and non-science majors. These courses, nicknamed "math beauty" courses, are designed to discuss one topic in-depth rather than to introduce many topics at a superficial level. A variety of courses, each requiring students to…

  20. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  1. Personal and Shared Experiences as Resources for Meaning Making in a Philosophy of Science Course

    Science.gov (United States)

    Arvaja, Maarit

    2012-01-01

    The aim of this case study was to explore health-education students' personal and collaborative meaning making activities during an online science philosophy course in the higher-education context. Through applying the dialogical perspective for learning, the focus was on studying how different contextual resources were used in building…

  2. Study of science students' expectation for university writing courses

    Directory of Open Access Journals (Sweden)

    Shanthi Nadarajan

    2013-07-01

    Full Text Available The New Malaysia Education Blueprint (2012 states that the private sector continues to have concerns for Malaysian graduates’ English proficiency. The present study investigates the views and expectations of science students taking English courses in a public university. The findings revealed that learners saw opportunities to communicate and job applications process as important soft skills. They preferred practical learning methods above traditional teaching methods. Learners considered group performance, personal attitudes and online activities as important learning opportunities, while factual knowledge, report writing were least supported despite the fact that the majority viewed both assessments and instructional process as relevant. The data revealed that though they were dissatisfied with their existing level of proficiency, many students continued to expect an A for their course. An assessment of the learner’s’ language ability revealed that language ability was less under the learner’s control and more dependent on learner proficiency level. Taken together, this study suggests that the curriculum for the Professional Writing course should be highly diversified and balanced, with some emphasis on getting less proficient learners to read and improve their grammar skills while better students should be given opportunities to develop creative talents and interpersonal skills.

  3. Communicating the Benefits of a Full Sequence of High School Science Courses

    Science.gov (United States)

    Nicholas, Catherine Marie

    High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit in the STEM degree production rate needed to fill the demand of the current job market and remain competitive as a nation. The purpose of the study was to make a difference in the number of students who have access to information about the benefits of completing a full sequence of science courses. This dissertation study employed qualitative research methodology to gain a broad perspective of staff through a questionnaire and document review and then a deeper understanding through semi-structured interview protocol. The data revealed that a universal sequence of science courses in the high school district did not exist. It also showed that not all students had access to all science courses; students were sorted and tracked according to prerequisites that did not necessarily match the skill set needed for the courses. In addition, the study showed a desire for more support and direction from the district office. It was also apparent that there was a disconnect that existed between who staff members believed should enroll in a full sequence of science courses and who actually enrolled. Finally, communication about science was shown to occur mainly through counseling and peers. A common science sequence, detracking of science courses, increased communication about the postsecondary and academic benefits of a science education, increased district direction and realistic mathematics alignment were all discussed as solutions to the problem.

  4. Science Academies' 83rd Refresher Course on Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    A Science Academies' Refresher Course in “Experimental Physics” will be held in the Department of Physics,. College of Arts, Science and Humanities, Mody University of Science and Technology, Lakshmangarh, District. Sikar (Rajasthan), from 29 December 2016 to 13 January 2017 for the benefit of faculty involved in ...

  5. Perceptions of psychology as a science among university students: the influence of psychology courses and major of study.

    Science.gov (United States)

    Bartels, Jared M; Hinds, Ryan M; Glass, Laura A; Ryan, Joseph J

    2009-10-01

    The goal was to examine the relationship between the number of psychology courses students have taken and their perceptions of psychology as a science. Additionally, differences in perceptions of psychology among psychology, education, and natural science majors were examined. Results indicated that students who had taken four or more psychology courses had more favorable perceptions of psychology as a science compared to those who had taken no courses or one course and those who had taken two to three courses. No significant differences in overall perceptions of psychology emerged among students in the three majors.

  6. Problem-based learning in a health sciences librarianship course.

    Science.gov (United States)

    Dimitroff, A; Ancona, A M; Beman, S B; Dodge, A M; Hutchinson, K L; LaBonte, M J; Mays, T L; Simon, D T

    1998-01-01

    Problem-based learning (PBL) has been adopted by many medical schools in North America. Because problem solving, information seeking, and lifelong learning skills are central to the PBL curriculum, health sciences librarians have been actively involved in the PBL process at these medical schools. The introduction of PBL in a library and information science curriculum may be appropriate to consider at this time. PBL techniques have been incorporated into a health sciences librarianship course at the School of Library and Information Science (LIS) at the University of Wisconsin-Milwaukee to explore the use of this method in an advanced Library and Information Science course. After completion of the course, the use of PBL has been evaluated by the students and the instructor. The modified PBL course design is presented and the perceptions of the students and the instructor are discussed. PMID:9681169

  7. Feyerabend on Science and Education

    Science.gov (United States)

    Kidd, Ian James

    2013-01-01

    This article offers a sympathetic interpretation of Paul Feyerabend's remarks on science and education. I present a formative episode in the development of his educational ideas--the "Berkeley experience"--and describe how it affected his views on the place of science within modern education. It emerges that Feyerabend arrived at a…

  8. Fermilab Education Office: Science Adventures

    Science.gov (United States)

    Search The Education Office: Science Adventures Adventure Catalog Search for Adventures Calendar Class Facebook Group. Contact: Science Adventures Registrar, Education Office Fermilab, MS 777, P.O. Box 500 it again." Opportunities for Instructors The Education Office has openings for instructors who

  9. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 2. Special Courses at Schumacher College-Schumacher College. Geetha Iyer Keshav Mukunda. Information and Announcements Volume 2 Issue 2 February 1997 pp 96-97 ...

  10. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    Refresher Course on Mountain Hydrology and. Climate Change. Science Academies' Seventy-Fifth Refresher Course in Experimental Physics. Information & Announcements. 106. 105. 108. Classics. Are we Utilizing our. Water Resources. Wisely? B P Radhakrishna. General Editorial on. Publication Ethics. 1. 93. 71.

  11. Science Academies Refresher Course in Topology

    Indian Academy of Sciences (India)

    Selected partic- ipants will be provided with travel assistance (limited to three-tier A/c train fare), accommodation and local hospitality during the Course in addition to course material. Interested persons must submit their application ONLINE by clicking on the following link http://web-japps.ias.ac.in:8080/Refreshcourse/TTPP.

  12. Science Academies' Refresher Course in Statistical Physics

    Indian Academy of Sciences (India)

    The Course is aimed at college teachers of statistical physics at BSc/MSc level. ... teachers, with at least a masters degree in Physics/Mathematics/Engineering are ... Topics: There will be six courses dealing with, Basic principles and general ...

  13. Science Academies' Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    The Course is particularly aimed at teachers (from University and Colleges in and around Mizoram, Aizawl) teaching at UG/PG level. College/University teachers having at least a Master's degree in Physics are eligible to apply. The UGC has also approved of 2-week Refresher Courses of good standing for promotion of ...

  14. Science Academies' Refresher Course in Mathematics

    Indian Academy of Sciences (India)

    IAS Admin

    2015-06-14

    Jun 14, 2015 ... A two-week Refresher Course in Mathematics will be organized during 1–14 June 2015 at School of Mathematics,. SMVD University, Katra, Jammu & Kashmir in association with School of Innovation and Community Develop- ment, SMVDU. The aim of the Course is to display the beauty of “complex ...

  15. Science Academies' Refresher Course on Bioprospection of ...

    Indian Academy of Sciences (India)

    2017-11-22

    Nov 22, 2017 ... A refresher course on 'Bioprospection of Bioresources: Land to Lab Approach' will be held at PG and Research Department of Botany, St. Joseph's College, Tiruchirappalli, Tamil Nadu for two weeks from 04–18 January,2018. The aim of the Refresher Course is to encourage the College teachers and ...

  16. Comparing the Impact of an Astronomy Course and a Science and Society Seminar on Undergraduate Students' Attitudes toward Science

    Science.gov (United States)

    Flohic, Hélène M. L. G.

    2017-01-01

    A common challenge among university professors is how to best design undergraduate courses to successfully enhance students' attitudes. To compare which curriculum was more efficient at fostering a positive attitude towards science in general, I studied the impact of two different general education science courses on the attitudes of college…

  17. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Albert Einstein. Articles written in Resonance – Journal of Science Education. Volume 5 Issue 3 March 2000 pp 105-108 Classics. The Cause of the Formation of Meanders in the Courses of Rivers and of the So-Called Baer's Law · Albert Einstein · More Details ...

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Dilip D Dhavale. Articles written in Resonance – Journal of Science Education. Volume 5 Issue 10 October 2000 pp 24-31 Series Article. Microscale Experiments in Chemistry – The Need of the New Millennium-Newer Ways of Teaching Laboratory Courses with ...

  19. Research facility access & science education

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  20. Comparisons Between Science Knowledge, Interest, and Information Literacy of Learners in Introductory Astronomy Courses

    Science.gov (United States)

    Buxner, Sanlyn; Impey, Chris David; Formanek, Martin; Wenger, Matthew

    2018-01-01

    Introductory astronomy courses are exciting opportunities to engage non-major students in scientific issues, new discoveries, and scientific thinking. Many undergraduate students take these courses to complete their general education requirements. Many free-choice learners also take these courses, but for their own interest. We report on a study comparing the basic science knowledge, interest in science, and information literacy of undergraduate students and free choice learners enrolled in introductory astronomy courses run by the University of Arizona. Undergraduate students take both in-person and online courses for college credit. Free choice learners enroll in massive open online courses (MOOCs), through commercial platforms, that can earn them a certificate (although most do not take advantage of that opportunity). In general, we find that undergraduate students outperform the general public on basic science knowledge and that learners in our astronomy MOOCs outperform the undergraduate students in the study. Learners in the MOOC have higher interest in science in general. Overall, learners in both groups report getting information about science from online sources. Additionally, learners’ judgement of the reliability of different sources of information is weakly related to their basic science knowledge and more strongly related to how they describe what it means to study something scientifically. We discuss the implications of our findings for both undergraduate students and free-choice learners as well as instructors of these types of courses.

  1. Incorporating Geoethics in Introductory Earth System Science Courses

    Science.gov (United States)

    Schmitt, J.

    2014-12-01

    The integrative nature of Earth System Science courses provides extensive opportunities to introduce students to geoethical inquiry focused on globally significant societal issues. Geoscience education has traditionally lagged in its efforts to increase student awareness of the significance of geologic knowledge to understanding and responsibly confronting causes and possible solutions for emergent, newly emerging, and future problems of anthropogenic cause and consequence. Developing an understanding of the human impact on the earth system requires early (lower division) and for geoscience majors, repeated (upper division) curricular emphasis on the interactions of the lithosphere, hydrosphere, atmosphere, biosphere, and pedosphere across space and through time. Capturing the interest of university students in globally relevant earth system issues and their ethical dimensions while first learning about the earth system is an important initial step in bringing geoethical deliberation and awareness to the next generation of geoscientists. Development of a new introductory Earth System Science course replacing a traditional introductory Physical Geology course at Montana State University has involved abandonment of concept-based content organization in favor of a place-based approach incorporating examination of the complex interactions of earth system components and emergent issues and dilemmas deriving from the unique component interactions that characterize each locale. Thirteen different place-based week-long modules (using web- and classroom-based instruction) were developed to ensure cumulative broad coverage across the earth geographically and earth system components conceptually. Each place-based instructional module contains content of societal relevance requiring synthesis, critical evaluation, and reflection by students. Examples include making linkages between deforestation driven by economics and increased seismicity in Haiti, agriculture and development

  2. Globalisation and science education: Rethinking science education reforms

    Science.gov (United States)

    Carter, Lyn

    2005-05-01

    Like Lemke (J Res Sci Teach 38:296-316, 2001), I believe that science education has not looked enough at the impact of the changing theoretical and global landscape by which it is produced and shaped. Lemke makes a sound argument for science education to look beyond its own discourses toward those like cultural studies and politics, and to which I would add globalisation theory and relevant educational studies. Hence, in this study I draw together a range of investigations to argue that globalisation is indeed implicated in the discourses of science education, even if it remains underacknowledged and undertheorized. Establishing this relationship is important because it provides different frames of reference from which to investigate many of science education's current concerns, including those new forces that now have a direct impact on science classrooms. For example, one important question to investigate is the degree to which current science education improvement discourses are the consequences of quality research into science teaching and learning, or represent national and local responses to global economic restructuring and the imperatives of the supranational institutions that are largely beyond the control of science education. Developing globalisation as a theoretical construct to help formulate new questions and methods to examine these questions can provide science education with opportunities to expand the conceptual and analytical frameworks of much of its present and future scholarship.

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 10. Science Academies Refresher Course on Immunology Laboratory Techniques Using Fish Model at School of Life Sciences. Information and Announcements Volume 21 Issue 10 October 2016 pp 963-963 ...

  4. Science Academies' Refresher Course on Quantum Mechanics

    Indian Academy of Sciences (India)

    IAS Admin

    research scholars will be held at the Post-Graduate ... The Course is primarily aimed at teachers involved in teaching quantum mechanics at ... Module 2: Scattering, time-independent perturbations, WKB, variational method;. Module 3: Symmetries ...

  5. Successful Massive Open Online Climate Course on Climate Science and Psychology

    Science.gov (United States)

    Nuccitelli, D. A.; Cook, J.

    2015-12-01

    In 2015, the University of Queensland and edX launched a Massive Open Online Course (MOOC), 'Making Sense of Climate Science Denial.' The MOOC debunked approximately 50 common climate myths using elements of both physical science and psychology. Students learned how to recognise the social and psychological drivers of climate science denial, how to better understand climate change, how to identify the techniques and fallacies that climate myths employ to distort climate science, and how to effectively debunk climate misinformation. Contributors to the website Skeptical Science delivered the lectures, which were reinforced via interviews with climate science and psychology experts. Over 15,000 students from 167 countries enrolled in the course, and student feedback was overwhelmingly positive. This MOOC provides a model for effective climate science education.

  6. Science of Food and Cooking: A Non-Science Majors Course

    Science.gov (United States)

    Miles, Deon T.; Bachman, Jennifer K.

    2009-01-01

    Recent emphasis on the science of food and cooking has been observed in our popular literature and media. As a result of this, a new non-science majors course, The Science of Food and Cooking, is being taught at our institution. We cover basic scientific concepts, which would normally be discussed in a typical introductory chemistry course, in the…

  7. Science Academies' Refresher Course on Multiomic Applications in ...

    Indian Academy of Sciences (India)

    and epigenetics, transcriptomics, proteomics, and metabolomics and data analysis. Applications are invited from teachers with experience in teaching undergraduate and postgraduate courses in Life Sciences, Agriculture and Technology. Applications from highly motivated Research. Scholars will also be considered.

  8. A Comparison of Students' Achievement and Attitude Changes Resulting From a Laboratory and Non-Laboratory Approach to General Education Physical Science Courses.

    Science.gov (United States)

    Gunsch, Leonhardt Maurice

    Student achievement and attitude changes resulting from two different approaches to teaching of physical science were studied among 94 non-science freshmen enrolled at Valley City State College during the 1970-71 winter quarter. Thirty-four students were taught the laboratory-oriented Physical Science for Nonscience Students (PSNS) Project course…

  9. The Importance of Attendance in an Introductory Textile Science Course

    Science.gov (United States)

    Marcketti, Sara B.; Wang, Xinxin; Greder, Kate

    2013-01-01

    At Iowa State University, the introductory textile science course is a required 4-credit class for all undergraduate students enrolled in the Apparel, Merchandising, and Design Program. Frustrated by a perceived gap between students who easily comprehended course material and those who complained and struggled, the instructor implemented an…

  10. Reforming an Undergraduate Environmental Science Course for Nonscience Majors

    Science.gov (United States)

    Kazempour, Mahsa; Amirshokoohi, Aidin

    2013-01-01

    This article discusses the key components of a reform-based introductory undergraduate environmental science course for nonscience majors and elementary teacher candidates as well as the impact of such components on the participants. The main goals for the course were to actively engage the students in their learning and, in doing so, to enhance…

  11. Incorporating Primary Literature in Undergraduate Crop Science Courses

    Science.gov (United States)

    Scott, Lori K.; Simmons, Steve R.

    2006-01-01

    Primary literature is an underutilized learning resource for undergraduate courses in crop science. Reading assignments from scientific journals were utilized in an undergraduate University of Minnesota crop physiology course at Southwest Minnesota State University from 2002 to 2004. The subjects of the articles corresponded to the lecture topics.…

  12. Introductory Life Science Mathematics and Quantitative Neuroscience Courses

    Science.gov (United States)

    Duffus, Dwight; Olifer, Andrei

    2010-01-01

    We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an…

  13. Science Academies' Refresher Course on Modern and Ancient ...

    Indian Academy of Sciences (India)

    Sengupta, AvH Fellow, F.A.Sc., F.N.A (pulaksg@gmail.com). It may be noted that UGC regulations include Refresher Courses in API scores for career advancement. Applications are invited from teachers with experience in teaching undergraduate and postgraduate courses in Earth Science. Motivated research scholars ...

  14. Assessment of an On-Line Earth System Science Course for Teachers

    Science.gov (United States)

    Shuster, R. D.; Grandgenett, N.

    2009-12-01

    The University of Nebraska at Omaha (UNO) has been offering on-line Earth System Science coursework to in-service teachers in Nebraska since 2002 through the Earth Systems Science Education Alliance (ESSEA). The goal of this course is to increase teacher content knowledge in Earth Science, introduce them to Earth System Science, and have them experience cooperative learning. We have offered three different ESSEA courses, with nearly 200 students having taken ESSEA courses at UNO for graduate credit. This effort represents a close collaboration between faculty and students from the Colleges of Arts & Sciences and Education, with periodic assistance of the local schools. In a follow-up study related to ESSEA coursework, UNO examined the perceptions of teachers who have taken the course and the potential benefits of the ESSEA courses for their own educational settings. The study was descriptive in design and included an online survey and a focus group. The results of these assessments indicated that the teachers felt very positive about what they learned in these courses, and in particular, how they could incorporate cooperative learning, inquiry based activities, and Earth System Science interconnections in their own classrooms. Problems identified by the teachers included a perceived lack of time to be able to integrate the learned material into their science curriculua and a lack of computer and/or technological resources in their educational settings. In addition, this Fall, we will conduct two teacher case studies, where we will interview two teachers, visit their classrooms, acquire work samples and talk with students. All of the results of our survey and focus group will be presented.

  15. Current Status of Regulatory Science Education in Faculties of Pharmaceutical Science in Japan.

    Science.gov (United States)

    Tohkin, Masahiro

    2017-01-01

    I introduce the current pharmaceutical education system in Japan, focusing on regulatory science. University schools or faculties of pharmaceutical science in Japan offer two courses: a six-year course for pharmacists and a four-year course for scientists and technicians. Students in the six-year pharmaceutical course receive training in hospitals and pharmacies during their fifth year, and those in the four-year life science course start research activities during their third year. The current model core curriculum for pharmaceutical education requires them to "explain the necessity and significance of regulatory science" as a specific behavior object. This means that pharmacists should understand the significance of "regulatory science", which will lead to the proper use of pharmaceuticals in clinical practice. Most regulatory science laboratories are in the university schools or faculties of pharmaceutical sciences; however, there are too few to conduct regulatory science education. There are many problems in regulatory science education, and I hope that those problems will be resolved not only by university-based regulatory science researchers but also by those from the pharmaceutical industry and regulatory authorities.

  16. Science, Technology and Social Change Course's Effects on Technological Literacy Levels of Social Studies Pre-Service Teachers

    Science.gov (United States)

    Yigit, E. Ozlem

    2013-01-01

    Social studies curricula are required in order to prepare to educate children who continue to learn after their formal training, and it is vital that teachers receive an education properly. In Social Studies Education Departments of Education Faculties Science, Technology and Social Change course is convenient to this aim and it contributes to…

  17. Innovación educativa para el fortalecimiento del enfoque Ciencia-Tecnología-Sociedad en la educación postgraduada Strengthening the Science-Technology-Society approach: an educative innovation for postgraduate courses

    Directory of Open Access Journals (Sweden)

    Maria Elena Macías Llanes

    2003-12-01

    emphasize the social aspects of the science-technology phenomenon in its social and environmental consequences, for that reason it regards critically the images or classic approaches of science and technology that are still predominant. It also guides towards a careful attitude around the scientific activity. Their valuable theoretical and conceptual structures are fundamental for the analysis of health sciences and technologies, which turns it into a meaningful instrument of higher medical education and of the theory and practice of Public Health in general. These educational strategy allows upgrading the paradigms from which the interrelations science-technology-society are analyzed, as a way to answer the necessities of satisfying cognitive demands in this area. The essential objective of the strategy consists of providing better developed and vaster visions of the scientific-technological activity, so that this promotes an ethical and responsible attitude among health professionals. The post graduate course proposed is part of the Postgraduate System of Education of the Center of Humanities and Ethics in Health Sciences and it has been approved by the Public Health National School as an international course

  18. Cell Phones Transform a Science Methods Course

    Science.gov (United States)

    Madden, Lauren

    2012-01-01

    A science methods instructor intentionally encouraged cell phone use for class work to discover how cell phones can be used as research tools to enhance the content and engage the students. The anecdotal evidence suggested that students who used their smartphones as research tools experienced the science content and pedagogical information…

  19. Computational thinking in life science education.

    Directory of Open Access Journals (Sweden)

    Amir Rubinstein

    2014-11-01

    Full Text Available We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1 devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2 focus on discrete notions, rather than on continuous ones, and (3 have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  20. Computational thinking in life science education.

    Science.gov (United States)

    Rubinstein, Amir; Chor, Benny

    2014-11-01

    We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1) devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2) focus on discrete notions, rather than on continuous ones, and (3) have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  1. Gamification of a higher education course

    DEFF Research Database (Denmark)

    Ejsing-Duun, Stine; Karoff, Helle Skovbjerg

    2014-01-01

    Does play belong to the learning situation? What kind of sociability is promoted when gamifying education. This article explores how students' behaviours and interaction change when introducing game elements into a university course such as awarding points for different types of active participat......Does play belong to the learning situation? What kind of sociability is promoted when gamifying education. This article explores how students' behaviours and interaction change when introducing game elements into a university course such as awarding points for different types of active...... participation during lessons. On the basis of the students’ response to and actions in course as well as the teachers’ experiences and observations, the article underlines the importance of understanding how the teacher can affect students' motivation, social contact and experience in the learning situation...... contributes with a discussion of and findings in relation to the interaction we design for, when using game elements in a learning context. It is through these interactions with peers and teachers as well as by experimenting that students learn about the topic at hand. Inviting students to participate...

  2. Science education and everyday action

    Science.gov (United States)

    McCann, Wendy Renee Sherman

    2001-07-01

    This dissertation addresses three related tasks and issues in the larger field of science education. The first is to review of the several uses of "everydayness" at play in the science education literature, and in the education and social science literatures more generally. Four broad iterations of everydayness were found in science education, and these were traced and analyzed to develop their similarities, and contradictions. It was concluded that despite tendencies in science education research to suppose a fundamental demarcation either between professional science and everyday life, or between schools and everyday life, all social affairs, including professional science and activity in schools, are continuous with everyday life, and consist fundamentally in everyday, ordinary mundane actions which are ordered and organized by the participants to those social activities and occasions. The second task for this dissertation was to conduct a naturalistic, descriptive study of undergraduate-level physics laboratory activities from the analytic perspective of ethnomethodology. The study findings are presented as closely-detailed analysis of the students' methods of following their instructions and 'fitting' their observed results to a known scientific concept or principle during the enactment of their classroom laboratory activities. Based on the descriptions of students' practical work in following instructions and 'fitting'. The characterization of school science labs as an "experiment-demonstration hybrid" is developed. The third task of this dissertation was to synthesize the literature review and field study findings in order to clarify what science educators could productively mean by "everydayness", and to suggest what understandings of science education the study of everyday action recommends. It is argued that the significance of the 'experiment-demo hybrid' characterization must be seen in terms of an alternate program for science education research, which

  3. Artificial Intelligence and Science Education.

    Science.gov (United States)

    Good, Ron

    1987-01-01

    Defines artificial intelligence (AI) in relation to intelligent computer-assisted instruction (ICAI) and science education. Provides a brief background of AI work, examples of expert systems, examples of ICAI work, and addresses problems facing AI workers that have implications for science education. Proposes a revised model of the Karplus/Renner…

  4. Learning the 'grammar of science': The influence of a physical science content course on teachers' understanding of the nature of science

    Science.gov (United States)

    Hanuscin, Deborah L.

    This research examined the development of practicing K--8 teachers' views of the nature of science (NOS) within a physical science content course. Reforms in science education have called for the teaching of science as inquiry. In order to achieve the vision of the reforms, teachers must understand science, both a body of knowledge and as a process, but also the very nature of science itself-or the values and assumptions inherent in the construction of scientific knowledge. NOS has been deemed a critical component of scientific literacy, with implications for making informed decisions about scientific claims. Research has indicated that despite the emphasis of reforms, teachers generally do not possess accurate views of NOS. Recent work in science education has led to the recommendation that efforts undertaken within teacher education programs to improve teachers' understanding of NOS can be enhanced through relevant coursework in other academic areas, including the sciences. The purpose of this dissertation was to provide an empirical basis for this recommendation, by examining the development of teachers' views of NOS within a physical science content course. To this end, the researcher employed qualitative methodology including participant observation, interview, document analysis, and questionnaire to assess teacher participants' views of the nature of science and the impact of their experience in the content course on these views. As a result of this research, implications for both the course design and science teacher education have been described. In addition, various aspects of the community of practice that characterizes the classroom that inhibit the development of understandings about the nature of science are identified. It is argued that instruction in NOS should be approached from the perspective that builds bridges between the communities of practice of learners and of scientists.

  5. Fermilab Friends for Science Education | Welcome

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Fermilab Friends for Science Education photo Fermilab Friends for Science Education supports innovative science education programs at Fermilab. Its mission is to: Enhance the quality of precollege science education in

  6. Open BIM in courses in engineering education

    DEFF Research Database (Denmark)

    Karlshøj, Jan; Vestergaard, Flemming

    2016-01-01

    The Technical University of Denmark has included open BIM in its BIM or BIM-related courses for bachelor, master and PhD students studying civil or architectural engineering. A majority of students are introduced to open BIM during their education, and those who are selecting courses in advanced...... BIM or building design are becoming more familiar with the concept. A number of students are including open BIM in their bachelor projects or master theses. The main reason for including open BIM in teaching is that open BIM has been a mandatory deliverable in Denmark since 2007 in state......-financed construction projects through the IFC format. From 2013 the requirements also included social housing and all public building projects. Students are exploring the capabilities of open BIM, and have been able both to identify satisfactory results as well as propose enhancements in order to compensate...

  7. Science Academies' Refresher Course on Bioresources ...

    Indian Academy of Sciences (India)

    2017-11-14

    Nov 14, 2017 ... biotechnological tools for conservation, genetic resource and bio-diversity, DNA finger printing tech- nology and applications, functional genomics and targeted genome editing, genetic engineering. The course will comprise of lectures, tutorials and experiments. Applications are invited from teachers with ...

  8. Science Academies' Refresher Course on Modern Genetics ...

    Indian Academy of Sciences (India)

    IAS Admin

    The objective of this Refresher Course is to give the participants a hands-on training on genetics and molecular biology techniques; and the theory behind them. A variety of teaching methods such as lectures, interaction with renowned resource persons, discussion and laboratory work shall facilitate the learning process.

  9. Science Academies' Sixtieth Refresher Course in Experimental ...

    Indian Academy of Sciences (India)

    IAS Admin

    by the organizing institution for outstation participants. Participants are requested to send in their application with a detailed CV, and the reason for attending the Course through the Head of the Institution to: Dr K RamachandraRao, Lecturer in PHYSICS & Research Director, Department of Physics (UG &. PG), Goverment ...

  10. Linking Science Fiction and Physics Courses

    Science.gov (United States)

    McBride, Krista K.

    2016-01-01

    Generally, cohorts or learning communities enrich higher learning in students. Learning communities consist of conventionally separate groups of students that meet together with common academic purposes and goals. Types of learning communities include paired courses with concurrent student enrollment, living-learning communities, and faculty…

  11. An English Course in Science and Humanities.

    Science.gov (United States)

    Reno, Robert P.

    1979-01-01

    One way in which changing attitudes toward scientific knowledge and technology can be made the focus of attention in a college literature course is suggested by this analysis of Christopher Marlowe's "Doctor Faustus," Mary Shelley's "Frankenstein," and Friedrich Durrenmatt's "The Physicists." (JMD)

  12. Science Academies' Refresher Course in Quantum Mechanics

    Indian Academy of Sciences (India)

    IAS Admin

    2013-09-15

    Sep 15, 2013 ... The Course is aimed for college teachers engaged in teaching at the UG/PG level as well as those who use ... in their research work. ... In order to participate, please send a short letter explaining your motivation to participate.

  13. Library-Labs-for-Science Literacy Courses.

    Science.gov (United States)

    Pestel, Beverly C.; Engeldinger, Eugene A.

    1992-01-01

    Describes two library-lab exercises the authors have incorporated into their college chemistry course. The first exercise introduces students to scientific information and familiarizes them with the tools for accessing it. The second provides a framework for evaluating the reliability of that information and addresses the criteria that should be…

  14. Science Academies' Refresher Course in Statistical Physics

    Indian Academy of Sciences (India)

    The Course is aimed at college teachers of statistical physics at BSc/MSc level. It will cover basic principles and techniques, in a pedagogical manner, through lectures and tutorials, with illustrative problems. Some advanced topics, and common difficulties faced by students will also be discussed. College/University ...

  15. A Discipline-Specific Approach to the History of U.S. Science Education

    Science.gov (United States)

    Otero, Valerie K.; Meltzer, David E.

    2017-01-01

    Although much has been said and written about the value of using the history of science in teaching science, relatively little is available to guide educators in the various science disciplines through the educational history of their own discipline. Through a discipline-specific approach to a course on the history of science education in the…

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Science Academies' Refresher Course on Theoretical Structural Geology, Crystallography, Mineralogy, Thermodynamics, Experimental Petrology and Theoretical Geophysics · More Details Abstract Fulltext PDF. pp 816-816 Information and Announcements. Science Academies' Refresher Course in Foundations of ...

  17. Science Academies Refresher Course on Traditional and Modern ...

    Indian Academy of Sciences (India)

    Admin

    The National Academy of Sciences, India, Allahabad. In collaboration with. Botanical Garden & Herbarium, University of Agricultural Sciences, Bangalore from 15 to 29 November. 2012. A Refresher Course on Traditional and Modern Approaches in Plant Taxonomy for postgraduate college/university teachers and research ...

  18. Science Academies' Refresher Course on Modern Biotechnology ...

    Indian Academy of Sciences (India)

    IAS Admin

    , PCR and RT-PCR. A variety of teaching methods like lectures by eminent ... knowledge to boost their confidence in handling modern instruments used in the discipline of life sciences and modern biotechnology. Skills gained during this ...

  19. Pre-Service Teachers' Mind Maps and Opinions on STEM Education Implemented in an Environmental Literacy Course

    Science.gov (United States)

    Sümen, Özlem Özçakir; Çalisici, Hamza

    2016-01-01

    This study aims to implement a science, technology, engineering, and mathematics (STEM) education approach in an environmental education course. The research involved the design and implementation of STEM activities by researchers, as part of the environmental education course taught in the second year of a Primary School Teaching undergraduate…

  20. Effect of a Problem Based Simulation on the Conceptual Understanding of Undergraduate Science Education Students

    Science.gov (United States)

    Kumar, David Devraj; Sherwood, Robert D.

    2007-01-01

    A study of the effect of science teaching with a multimedia simulation on water quality, the "River of Life," on the science conceptual understanding of students (N = 83) in an undergraduate science education (K-9) course is reported. Teaching reality-based meaningful science is strongly recommended by the National Science Education Standards…

  1. NATURAL-SCIENCE EDUCATION: SCIENTIFIC AND RELIGIOUS KNOWLEDGE CORRELATION IN THE VIEW OF A SYMMETRY PRINCIPLE. Ch. 2. Examples of religious content selection in general natural science courses based on the principle of symmetry

    Directory of Open Access Journals (Sweden)

    Vitalii L. Gapontsev

    2015-01-01

    Full Text Available This work is aimed at demonstrating the possibility of the inclusion of religious elements contained in Holy Scripture and Holy Tradition in the general natural scientific courses based on the principle of symmetry.The method used in the work is confined to a comparison of perceptions formed in modern science and is closely related to the forms of symmetry and invariance principles (symmetry principles and, in particular, space-time concepts with those of the Book of Genesis. Such a comparison reveals the following unexpected feature: most profound presentation of modern natural sciences is closer to the provisions of Holy Scripture and Holy Tradition than a look at the same things existed in the earlier stages of the development of science. This allows the authors to formulate the hypothesis that in the process of development of scientific knowledge, it gradually becomes closer to the religious worldview. This process is slow, so its results have become visible only within 3500 years after the establishment of the truth of the Old Testament and 2000 years after the New Testament.Results and scientific novelty. The «firmament of heaven» and «water under the firmament» concepts are explained in the terms of the model of the Kleinert – Planck World crystal and understanding of the properties of matter and fields which are related with the conservation law of the wave-function parity. The relational nature of phenomena such as «life» and «death» in the course of universe evolution as a general trend is considered as the process of lowering the degree of symmetry of matter after the Big Bang wherein the Universe was created. The concepts used by E. Wigner for the description of the structure of the scientific knowledge are analysed. Its structure is determined by shapes and specific principles of the symmetry of exact sciences. The analysis of the concept «natural phenomenon» has shown that they are different in the degree of space

  2. Introducing Engineering Design to a Science Teaching Methods Course through Educational Robotics and Exploring Changes in Views of Preservice Elementary Teachers

    Science.gov (United States)

    Kaya, Erdogan; Newley, Anna; Deniz, Hasan; Yesilyurt, Ezgi; Newley, Patrick

    2017-01-01

    Engineering has become an important subject in the Next Generation Science Standards (NGSS), which have raised engineering design to the same level as scientific inquiry when teaching science disciplines at all levels. Therefore, preservice elementary teachers (PSTs) need to know how to integrate the engineering design process (EDP) into their…

  3. Is Christian Education Compatible With Science Education?

    Science.gov (United States)

    Martin, Michael

    Science education and Christian education are not compatible if by Christian education one means teaching someone to be a Christian. One goal of science education is to give students factual knowledge. Even when there is no actual conflict of this knowledge with the dogmas of Christianity, there exists the potential for conflict. Another goal of science education is to teach students to have the propensity to be sensitive to evidence: to hold beliefs tentatively in light of evidence and to reject these beliefs in the light of new evidence if rejection is warranted by this evidence. This propensity conflicts with one way in which beliefs are often taught in Christian education: namely as fundamental dogmas, rather than as subject to revision in the light of the evidence.

  4. Evaluation of Life Sciences and Social Sciences Course Books in Term of Societal Sexuality

    Science.gov (United States)

    Aykac, Necdet

    2012-01-01

    This study aims to evaluate primary school Life Sciences (1st, 2nd, and 3rd grades) and Social Sciences (4th, 5th, and 6th grades) course books in terms of gender discrimination. This study is a descriptive study aiming to evaluate the primary school Life Sciences (1st, 2nd, 3rd grades) and Social Sciences (4th, 5th, and 6th grades) course books…

  5. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1988-01-01

    Experience has shown that one of the critical conditions for the successful introduction of a nuclear power programme is the availability of sufficient numbers of personnel having the required education and experience qualifications. For this reason, the introduction of nuclear power should be preceded by a thorough assessment of the relevant capabilities of the industrial and education/training infrastructures of the country involved. The IAEA assists its Member States in a variety of ways in the development of infrastructures and capabilities for engineering and science education for nuclear power. Types of assistance provided by the IAEA to Member States include: Providing information in connection with the establishment or upgrading of academic and non-academic engineering and science education programmes for nuclear power (on the basis of curricula recommended in the Agency's Guidebook on engineering and science education for nuclear power); Expert assistance in setting up or upgrading laboratories and other teaching facilities; Assessing the capabilities and interest of Member States and their institutions/organizations for technical co-operation among countries, especially developing ones, in engineering and science education, as well as its feasibility and usefulness; Preparing and conducting nuclear specialization courses (e.g. on radiation protection) in various Member States

  6. Mathematics education giving meaning to Social Science students

    DEFF Research Database (Denmark)

    Andersson, Annica; Valero, Paola

    Compulsory mathematics for social science students is problematic. We discuss the case of a group of students in Sweden who met a mathematics course inspired on the ideas of critical mathematics education and ethnomathematics. The evidence collected about students' experiences on this course...

  7. Multicultural Science Education and Curriculum Materials

    Science.gov (United States)

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  8. Ethiopian Journal of Education and Sciences

    African Journals Online (AJOL)

    The Ethiopian Journal of Education and Sciences focuses on publishing articles relating to education and sciences. It publishes ... The objective is to create forum for researchers in education and sciences. ... AJOL African Journals Online.

  9. A Sample Application for Use of Biography in Social Studies; Science, Technology and Social Change Course

    Science.gov (United States)

    Er, Harun

    2017-01-01

    The aim of this study is to evaluate the opinions of social studies teacher candidates on use of biography in science, technology and social change course given in the undergraduate program of social studies education. In this regard, convergent parallel design as a mixed research pattern was used to make use of both qualitative and quantitative…

  10. Teaching Introductory Life Science Courses in Colleges of Agriculture: Faculty Experiences

    Science.gov (United States)

    Balschweid, Mark; Knobloch, Neil A.; Hains, Bryan J.

    2014-01-01

    Insignificant numbers of college students declaring STEM majors creates concern for the future of the U.S. economy within the global marketplace. This study highlights the educational development and teaching strategies employed by STEM faculty in teaching first-year students in contextualized life science courses, such as animal, plant, and food…

  11. Computer Assisted Instruction in Teacher Education: A Full Length Course.

    Science.gov (United States)

    Cartwright, G. Phillip

    Pennsylvania State University has developed, evaluated, and implemented a series of modules and an entire three-credit teacher education course which is offered completely by microcomputer. The course is entitled "Educating Special Learners." The modules use the Apple II series and the IBM PC series. Evaluation of the course, based on…

  12. Distance Education Quality Course Delivery Framework: A Formative Research Study

    Science.gov (United States)

    Berta, Michael Raymond

    2013-01-01

    In the Fall 2010 semester, student enrollment in distance education courses increased in the United States to over 6.1 million students taking at least one distance course. Distance education allows institutions to meet increasing demands from the government and business sectors for more graduates in ways that face-to-face courses cannot meet with…

  13. Implementing E-Learning Designed Courses in General Education

    Science.gov (United States)

    Nuangchalerm, Prasart; Sakkumduang, Krissada; Uhwha, Suleepornn; Chansirisira, Pacharawit

    2014-01-01

    The aim of this study is to implement e-learning designed course for general education. The study employed 3 phases for developing e-learning course: contextual study, designing, and implementing. Two courses general education, 217 undergraduate students are participated the study. Research tool consisted of interview about e-learning form and…

  14. Science and religion: implications for science educators

    Science.gov (United States)

    Reiss, Michael J.

    2010-03-01

    A religious perspective on life shapes how and what those with such a perspective learn in science; for some students a religious perspective can hinder learning in science. For such reasons Staver's article is to be welcomed as it proposes a new way of resolving the widely perceived discord between science and religion. Staver notes that Western thinking has traditionally postulated the existence and comprehensibility of a world that is external to and independent of human consciousness. This has led to a conception of truth, truth as correspondence, in which our knowledge corresponds to the facts in this external world. Staver rejects such a conception, preferring the conception of truth as coherence in which the links are between and among independent knowledge claims themselves rather than between a knowledge claim and reality. Staver then proposes constructivism as a vehicle potentially capable of resolving the tension between religion and science. My contention is that the resolution between science and religion that Staver proposes comes at too great a cost—both to science and to religion. Instead I defend a different version of constructivism where humans are seen as capable of generating models of reality that do provide richer and more meaningful understandings of reality, over time and with respect both to science and to religion. I argue that scientific knowledge is a subset of religious knowledge and explore the implications of this for science education in general and when teaching about evolution in particular.

  15. Studies on education for radiation and courses of study (2009)

    International Nuclear Information System (INIS)

    Sakuraba, Kazuhiro; Nakamura, Hideo; Ukai, Mitsuko

    2009-01-01

    The Courses of Study are provided as the standards for educational courses in all schools in Japan. The new Courses of Study have been started this year. In this research, we revealed the ways how to teach radiation using the Courses of Study (2009). Education for radiation was first opened for the third grade of secondary school children. The contents in terms of radiation education in this Courses of Study (2009) are the characterization and application of radiation. To promote this new study courses, the knowledge about radiation of young man and woman were also studied. We concluded it is necessary to start radiation education from elementary school. Furthermore to apply the Courses of Study effectively, we need the comments on radiation education from the researcher of radiation. After the comments, teachers are able to make precise educational materials for their own children. (author)

  16. Introduction of a Science Policy Course at the University of Oklahoma

    Science.gov (United States)

    Mishra, S.; Parsons, D.

    2012-12-01

    In modern society, science and policy are two processes that have a symbiotic relationship to each other; wherein policy dictates the direction of science while science shapes the future of policy. Although the policy side is often ignored in scientific environments, the rate of scientific advancement is heavily influenced by policy. Science policy is very different from the conduct of science itself and future scientists need to be aware of the issues and factors that dictate the present and future direction of science. Based on the intricate relationship between science and policy, it is essential to introduce an overview of the policy process to future scientists and decision makers. In the context of climate change, policy implications are extensive and critical owing to their large socio-economic impacts. Hence, knowledge of the policy process is even more relevant to earth scientists. In this regard, the proposal to start an introductory course in science policy is currently being discussed in the department of Meteorology at the University of Oklahoma. If such a course is approved, an interactive graduate level class will be introduced for students pursuing a career in science. Such a course will be cross- disciplinary and will be offered to a wide audience across the university. Since the American Meteorological Society's (AMS) Summer Policy Colloquium has been a very successful program in educating scientists about the policy process, a format similar to the colloquium may be adopted. The primary topics will include the understanding of policy fundamentals, effective communication, ethics and integrity in the conduct of scientific research, executive leadership in science and the responsibilities of a scientific leader, impact of science on globalization and international diplomacy, etc. The AMS policy program office will be consulted to help design the course curriculum. An overview of the steps involved in introducing the class will be presented at the

  17. Preparing informal science educators perspectives from science communication and education

    CERN Document Server

    2017-01-01

    This book provides a diverse look at various aspects of preparing informal science educators. Much has been published about the importance of preparing formal classroom educators, but little has been written about the importance, need, and best practices for training professionals who teach in aquariums, camps, parks, museums, etc. The reader will find that as a collective the chapters of the book are well-related and paint a clear picture that there are varying ways to approach informal educator preparation, but all are important. The volume is divided into five topics: Defining Informal Science Education, Professional Development, Designing Programs, Zone of Reflexivity: The Space Between Formal and Informal Educators, and Public Communication. The authors have written chapters for practitioners, researchers and those who are interested in assessment and evaluation, formal and informal educator preparation, gender equity, place-based education, professional development, program design, reflective practice, ...

  18. A Course in Earth System Science: Developed for Teachers by Teachers

    Science.gov (United States)

    Wong, K.; Read, K.; Charlevoix, D.; Tomkin, J.; Hug, B.; Williams, M.; Pianfetti, E.

    2008-12-01

    ESES 202 is a new general education course in physical science at the University of Illinois's School of Earth, Society and Environment, designed for pre-service K-8 teachers. The goal of the course is to help future classroom teachers become confident with teaching earth science content. The designers of this course include a faculty expert in earth system science, a pre-service teacher and a former middle school science teacher. The goal of the in the curriculum design was to utilize the unique perspectives and experiences of our team. Our poster will highlight the unique nature of the curriculum development outlining the challenges and successes of designing the course. The general format of the class will be a combination of discussions, hands on experiences, and opportunities for students to design their own lessons. Class meetings will be once per week in a three-hour block, allowing students to immediately transfer new content knowledge into classroom activities. The end goal is that they can use these same activities with their students once they are practicing teachers. The content of the course shall be taught using an earth systems approach by showing the relationships among the four spheres: biosphere, hydrosphere, atmospheric, and anthrosphere. There are five units in the course: Introduction to Earth Systems, Carbon Cycle, Water Quality, El Niño and Climate Change. In addition to the science portion of the course, students will spend time reflecting on the classroom activities from the perspective of future educators. Activities will be presented at a late elementary school level; however, time will be devoted to discussing methods to adapt the lesson to different grade levels and differentiation needs within a classroom. Additionally, students in this course will be instructed on how to utilize a multitude of resources from stream tables to science education databases to prepare them for the dynamic nature of the classroom. By the end of the class

  19. A Field Course in Ocean Sciences that Emphasizes Sustainabilty

    Science.gov (United States)

    Macko, S. A.; O'Connell, M. T.

    2016-12-01

    Sustainability awareness is increasingly a subject in educational settings. Marine science classes are perfect settings of establishing sustainability awareness owing to declining populations of organisms and perceived collapse in fisheries worldwide. Students in oceanography classes often request more direct exposure to actual ocean situations or field trips. During regular session (18 week) or shorter term (4 week) summer classes such long trips are logistically difficult owing to large numbers of students involved or timing. This approach, to use a field basis for a course supplement addresses the requests by utilizing local resources and trips for a limited number of students (20) to locations in which Ocean experiences are available, and are often supported through education and outreach components. The vision of the class was a mixture of classroom time, readings, along with paper and laboratories. In addition, short day-long trips to locations where the ocean was "captured" were also used to supplement the experience as well as speakers involved with aquaculture. Central Virginia is a fortunate location for such a class, with close access for travel to the Chesapeake Bay and numerous field stations, museums with ocean-based exhibits (the Smithsonian and NOAA) that address both extant and extinct Earth history, as well as national/state aquaria in Baltimore and Virginia Beach. Furthermore, visits to local seafood markets at local stores, or larger city markets in Washington, Baltimore and Virginia Beach and International distribution centers, enhanced the understanding of productivity in the ocean, and viability of the fisheries sustainability. The course could then address not only the particulars of the marine science, but also aspects of sustainability with discussions on ethics, including keeping animals in captivity or overfishing of particular species and the special difficulties that arise from captive or culturing ocean populations. In addition, the

  20. Reforming Science and Mathematics Education

    Science.gov (United States)

    Lagowski, J. J.

    1995-09-01

    Since 1991, the National Science Foundation has signed cooperative agreements with 26 states to undertake ambitious and comprehensive initiatives to reform science, mathematics, and technology education. Collectively, those agreements are known as the State Systemic Initiatives (SSI's). Two complimentary programs, The Urban and Rural Systemic Initiatives (USI's and RSI's), address similar reforms in the nation's largest cities and poorest rural areas. The SSI Program departs significantly from past NSF practice in several ways. The funding is for a longer term and is larger in amount, and the NSF is taking a more activist role, seeking to leverage state and private funds and promote the coordination of programs within states. The Initiatives also have a stronger policy orientation than previous NSF programs have had. The NSF strategy is a reflection of the growing and widely held view that meaningful reforms in schools are most likely to be achieved through state initiatives that set clear and ambitious learning goals and standards; align all of the available policy levers in support of reform; stimulate school-level initiatives; and mobilize human and financial resources to support these changes. Two premises underlie systemic reform: (1) all children can meet significantly higher standards if they are asked to do so and given adequate opportunities to master the content, and (2) state and local policy changes can create opportunities by giving schools strong and consistent signals about the changes in practice and performance that are expected. Because this is an enormous investment of Federal resources that is intended to bring about deep, systemic improvement in the nation's ability to teach science and mathematics effectively, the NSF has contracted with a consortium of independent evaluators to conduct a review of the program. The first of the SSI's were funded in 1991, sufficiently long ago to begin to formulate some initial impressions of their impact. Take

  1. How a science methods course may influence the curriculum decisions of preservice teachers in the Bahamas

    Science.gov (United States)

    Wisdom, Sonya L.

    The purpose of this study was to examine how a science methods course in primary education might influence the curriculum decisions of preservice teachers in The Bahamas related to unit plan development on environmental science topics. Grounded in a social constructivist theoretical framework for teaching and learning science, this study explored the development of the confidence and competence of six preservice teachers to teach environmental science topics at the primary school level. A qualitative case study using action research methodologies was conducted. The perspectives of preservice teachers about the relevancy of methods used in a science methods course were examined as I became more reflective about my practice. Using constant comparative analysis, data from student-written documents and interviews as well as my field notes from class observations and reflective journaling were analyzed for emerging patterns and themes. Findings of the study indicated that while preservice teachers showed a slight increase in interest regarding learning and teaching environmental science, their primary focus during the course was learning effective teaching strategies in science on topics with which they already had familiarity. Simultaneously, I gained a deeper understanding of the usefulness of reflection in my practice. As a contribution to the complexity of learning to teach science at the primary school level, this study suggests some issues for consideration as preservice teachers are supported to utilize more of the national primary science curriculum in The Bahamas.

  2. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 2. Science Academies' Refresher Course on Bioinformatics in Modern Biology. Information and Announcements Volume 19 Issue 2 February 2014 pp 192-192. Fulltext. Click here to view fulltext PDF. Permanent link:

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 5. A Public Experiment in the History of Science Naked Eye Visibility of the Transit of Venus. Nirupama Raghavan. Classroom Volume 9 Issue 5 May 2004 pp 72-78 ...

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 11. Science Academies' Refresher Course on Paradigms and Applications of Pattern Recognition in Image Processing and Computer Vision. Information and Announcements Volume 16 Issue 11 November 2011 pp 1100-1100 ...

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 4. Refresher Course in Earth System Science. Information and Announcements Volume 10 Issue 4 April 2005 pp 91-91. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/010/04/0091-0091 ...

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 10. Science Academies' Refresher Course in Plant Taxonomy and Ethnobotany. Information and Announcements Volume 22 Issue 10 October 2017 pp 975-975. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Experience in presenting short courses in waste management technologies for secondary science and mathematics teachers

    International Nuclear Information System (INIS)

    Toth, W.J.; Smith, T.H.; Garcia, M.M.; Ferguson, J.E.

    1991-01-01

    The Department of Energy (DOE) and its Idaho National Engineering Laboratory (INEL) are developing educational programs that will help avert projected shortages in scientific and engineering manpower. One approach to this end is to help teachers become better prepared to teach topics that enthuse more students. INEL developed and offered a Short Course in Waste Management Technologies for Secondary Science and Mathematics Teachers. Short Course has two purposes: (1) to provide secondary-level science and mathematics teachers with training and information that will be useful to them in the classroom, and (2) to provide information on a topic of widespread interest in today's society, i.e., the management of hazardous and radioactive wastes and the restoration and preservation of the environment. This paper describes the development of the Short Course and summarizes some of the lessons learned in the preparation and presentation of such courses. 2 refs., 2 tabs

  8. An interprofessional education Russian cultural competence course: Implementation and follow-up perspectives.

    Science.gov (United States)

    Topping, Daniel

    2015-01-01

    Health sciences educators are faced with creating meaningful, effective and satisfying experiences in interprofessional education (IPE) and cultural competence (CC) required of both students and professionals in practice. This study evaluated the experience and attitudes of the participants in a course combining IPE and CC. A novel, interprofessional course in the Russian language and culture was developed and delivered to a group of medical, nursing, and pharmacy students. One year after the completion of the course, an anonymous, online survey was sent to the participants. Attitudes, comfort, self-efficacy in working with other cultures/healthcare professionals, and comparison of the course to other IPE activities were assessed. The survey suggested that the course was a satisfying and effective combination of IPE and CC in a pre-professional health educational setting. Further work could be undertaken to evaluate the experiences of similar activities in the professional and continuing education arenas.

  9. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. May 2012 Volume 17 Number 5. SERIES ARTICLES. 436 Dawn of Science. The Quest for Power. T Padmanabhan. GENERAL ARTICLES. 441 Bernoulli Runs Using 'Book Cricket' to Evaluate. Cricketers. Anand Ramalingam. 454 Wilhelm Ostwald, the Father of Physical Chemistry.

  10. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. February 2012 Volume 17 Number 2. SERIES ARTICLES. 106 Dawn of Science. Calculus is Developed in Kerala. T Padmanabhan. GENERAL ARTICLES. 117 Willis H Carrier: Father of Air Conditioning. R V Simha. 139 Refrigerants For Vapour Compression Refrigeration. Systems.

  11. Educational activities for neutron sciences

    International Nuclear Information System (INIS)

    Hiraka, Haruhiro; Ohoyama, Kenji; Iwasa, Kazuaki

    2011-01-01

    Since now we have several world-leading neutron science facilities in Japan, enlightenment activities for introducing neutron sciences, for example, to young people is an indispensable issue. Hereafter, we will report present status of the activities based on collaborations between universities and neutron facilities. A few suggestions for future educational activity of JSNS are also shown. (author)

  12. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston

    Science.gov (United States)

    Chen, R. F.; Pelletier, P.; Dorsen, J.; Douglas, E. M.; Pringle, M. S.; Karp, J.

    2009-12-01

    Inquiry-based, hands-on, graduate content courses have been developed specifically for Boston Public School middle school teachers of Earth Science. Earth Science I: Weather and Water and Earth Science II: The Solid Earth--Earth History and Planetary Systems have been taught a total of seven times to over 120 teachers. Several key attributes to these successful courses have been identified, including co-instruction by a university professor and a high school and a middle school teacher that are familiar with the Boston curriculum, use of hands-on activities that are closed related to those used in the Boston curriculum, pre- and post-course local field trips, and identification of key learning objectives for each day. This model of professional development was developed over several years in all disciplines (Earth Science, Physics, Biology, Chemistry) by the Boston Science Partnership (BSP), an NSF-funded Math Science Partnership program. One of the core strategies of the BSP is these Contextualized Content Courses (CCC), graduate level, lab-based courses taught at either UMass Boston or Northeastern University during summer intensive or semester formats. Two of the eleven courses developed under the grant are Earth Science I & II. This presentation shares the model of the CCC, the impact on teacher participants, the value of these courses for the professor, and lessons learned for successful professional development. Findings about the courses’ impact and effectiveness come from our external evaluation by the Program Evaluation Research Group (PERG). The combination of content and modeling good instructional practices have many positive outcomes for teachers, including increased self-efficacy in science understanding and teaching, positive impacts on student achievement, and teacher shifts from more traditional, more lecture-based instructional models to more inquiry approaches. STEM faculty members become involved in science education and learn and practice new

  13. Assessment of the Forensic Sciences Profession. A Survey of Educational Offerings in the Forensic Sciences. Volume I.

    Science.gov (United States)

    Field, Kenneth S.; And Others

    This survey of the educational offerings in the Forensic Sciences was initiated to identify institutions and agencies offering educational courses and/or programs in the forensic sciences and to evaluate the availability of these programs. The information gathered by surveying members of the American Academy of Forensic Sciences reveals that…

  14. Evidence of The Importance of Philosophy of Science Course On Undergraduate Level

    Science.gov (United States)

    Suyono

    2018-01-01

    This study aimed to describe academic impact of Philosophy of Science course in change of students’ conceptions on the Nature of science (NOS) before and after attending the course. This study followed one group pretest-posttest design. Treatment in this study was Philosophy of Science course for one semester. Misconception diagnostic tests of the NOS had been developed by Suyono et al. (2015) equipped with Certainty of Response Index (CRI). It consists of 15 concept questions about the NOS. The number of students who were tested on Chemistry Education Program (CEP) and Chemistry Program (CP) respectively 42 and 45 students. This study shows that after the learning of Philosophy of Science course happened: (1) the decrease of the number of misconception students on the NOS from 47.47 to 19.20% in CEP and from 47.47 to 18.18% in CP and (2) the decrease in the number of concepts that understood as misconception by the large number of students from 11 to 2 concepts on the CEP and from 10 to 2 concepts on CP. Therefore, the existence of Philosophy of Science course has a positive academic impact on students from both programs on undergraduate level.

  15. Gender Mainstreaming in the General Education and Professional Education Courses

    Directory of Open Access Journals (Sweden)

    Analyn Q. Villaroman

    2017-11-01

    Full Text Available Taking into account the increased research on the status of women and on gender concerns which lead to question the stereotyped assumptions about gender elations and the roles and responsibilities of men and women, the study determined the gender mainstreaming in the General Education and Professional Education Courses in one Higher Education Institution in the Philippines where there were 21 participants interviewed through two sets of focus group discussion. The result of the study showed that there is an apparent inclusion of gender and development in General Education and Professional Education Courses which can be categorized into explicit or implicit integration. Moreover, there were variety of teaching strategies and materials used inintegrating Gender and Development (GAD. It ranges from film showing followed by critical discussions, research output presentations, role-play, class discussions, art analysis, literary analysis, and lecture/forum of an expert. From the employed strategies and materials, it articulates the meaning of GAD that men and women must be provided with equal opportunities to realize their full potentials. Such articulation, however, requires committed interpretation especially from the faculty members. From there, it gives students an awareness and to an extent of self-interpretations. The university can further help in GAD initiatives by defining the university’s GAD framework so as to integrate GAD in the level of the curriculum, research, extension, planning, materials, policies, and budget.

  16. Education program for radiation emergency medicine at the Hirosaki University Graduate School of Health Sciences: A training course for medical personnel

    International Nuclear Information System (INIS)

    Saito, Yoko; Nakamura, Toshiya; Urushizaka, Mayumi; Kitajima, Yu; Itaki, Chieko; Terashima, Shingo; Hosokawa, Yoichiro

    2016-01-01

    Although nuclear disaster is considered rare, its effects are serious, and we must prepare a system to enable an effective response. Since 2010, we have been offering a two-day seminar to provide current nurses and radiological technologists with basic knowledge and train them in radiation emergency medicine (REM) techniques. This training offers lectures to deepen each specialty from the perspective of REM, as well as exercises on ways to handle irradiated and/or contaminated patients. Participants were expected to treat patients according to the concept of REM. All participants learn to assess and decontaminate contaminated wounds through drills. The questionnaire survey for participants indicated that participants were satisfied with this training and wanted to attend again. We believe that this training course will provide a valuable opportunity for medical professionals to gain knowledge and expertise in REM

  17. Education program for radiation emergency medicine at the Hirosaki University Graduate School of Health Sciences: A training course for medical personnel

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Yoko; Nakamura, Toshiya; Urushizaka, Mayumi; Kitajima, Yu; Itaki, Chieko; Terashima, Shingo; Hosokawa, Yoichiro [Hirosaki University Graduate School of Health Sciences, Hirosaki (Japan)

    2016-12-15

    Although nuclear disaster is considered rare, its effects are serious, and we must prepare a system to enable an effective response. Since 2010, we have been offering a two-day seminar to provide current nurses and radiological technologists with basic knowledge and train them in radiation emergency medicine (REM) techniques. This training offers lectures to deepen each specialty from the perspective of REM, as well as exercises on ways to handle irradiated and/or contaminated patients. Participants were expected to treat patients according to the concept of REM. All participants learn to assess and decontaminate contaminated wounds through drills. The questionnaire survey for participants indicated that participants were satisfied with this training and wanted to attend again. We believe that this training course will provide a valuable opportunity for medical professionals to gain knowledge and expertise in REM.

  18. A case-based, small-group cooperative learning course in preclinical veterinary science aimed at bridging basic science and clinical literacy

    Directory of Open Access Journals (Sweden)

    J.P. Schoeman

    2009-05-01

    Full Text Available In 1999 a dedicated problem-based learning course was introduced into the lecture-based preclinical veterinary curriculum of the University of Pretoria. The Introduction to Clinical Studies Course combines traditional lectures, practical sessions, student self-learning and guided tutorials. The self-directed component of the course utilises case-based, small group cooperative learning as an educational vehicle to link basic science with clinical medicine. The aim of this article is to describe the objectives and structure of the course and to report the results of the assessment of the students' perceptions on some aspects of the course. Students reacted very positively to the ability of the course to equip them with problem-solving skills. Students indicated positive perceptions about the workload of the course. There were, however, significantly lower scores for the clarity of the course objectives. Although the study guide for the course is very comprehensive, the practice regarding the objectives is still uncertain. It is imperative to set clear objectives in non-traditional, student-centred courses. The objectives have to be explained at the outset and reiterated throughout the course. Tutors should also communicate the rationale behind problem based learning as a pedagogical method to the students. Further research is needed to verify the effectiveness of this course in bridging the gap between basic science and clinical literacy in veterinary science. Ongoing feedback and assessment of the management and content are important to refine this model for integrating basic science with clinical literacy.

  19. A case-based, small-group cooperative learning course in preclinical veterinary science aimed at bridging basic science and clinical literacy.

    Science.gov (United States)

    Schoeman, J P; van Schoor, M; van der Merwe, L L; Meintjes, R A

    2009-03-01

    In 1999 a dedicated problem-based learning course was introduced into the lecture-based preclinical veterinary curriculum of the University of Pretoria. The Introduction to Clinical Studies Course combines traditional lectures, practical sessions, student self-learning and guided tutorials. The self-directed component of the course utilises case-based, small-group cooperative learning as an educational vehicle to link basic science with clinical medicine. The aim of this article is to describe the objectives and structure of the course and to report the results of the assessment of the students' perceptions on some aspects of the course. Students reacted very positively to the ability of the course to equip them with problem-solving skills. Students indicated positive perceptions about the workload of the course. There were, however, significantly lower scores for the clarity of the course objectives. Although the study guide for the course is very comprehensive, the practice regarding the objectives is still uncertain. It is imperative to set clear objectives in non-traditional, student-centred courses. The objectives have to be explained at the outset and reiterated throughout the course. Tutors should also communicate the rationale behind problem-based learning as a pedagogical method to the students. Further research is needed to verify the effectiveness of this course in bridging the gap between basic science and clinical literacy in veterinary science. Ongoing feedback and assessment of the management and content are important to refine this model for integrating basic science with clinical literacy.

  20. Syllabus for Weizmann Course: Earth System Science 101

    Science.gov (United States)

    Wiscombe, Warren J.

    2011-01-01

    This course aims for an understanding of Earth System Science and the interconnection of its various "spheres" (atmosphere, hydrosphere, etc.) by adopting the view that "the microcosm mirrors the macrocosm". We shall study a small set of microcosims, each residing primarily in one sphere, but substantially involving at least one other sphere, in order to illustrate the kinds of coupling that can occur and gain a greater appreciation of the complexity of even the smallest Earth System Science phenomenon.

  1. Do Policies that Encourage Better Attendance in Lab Change Students' Academic Behaviors and Performances in Introductory Science Courses?

    Science.gov (United States)

    Moore, Randy; Jensen, Philip A.

    2008-01-01

    Science courses with hands-on investigative labs are a typical part of the general education requirements at virtually all colleges and universities. In these courses, labs that satisfy a curricular requirement for "lab experience" are important because they provide the essence of the scientific experience--that is, they give students…

  2. Spatial Thinking in Atmospheric Science Education

    Science.gov (United States)

    McNeal, P. M.; Petcovic, H. L.; Ellis, T. D.

    2016-12-01

    Atmospheric science is a STEM discipline that involves the visualization of three-dimensional processes from two-dimensional maps, interpretation of computer-generated graphics and hand plotting of isopleths. Thus, atmospheric science draws heavily upon spatial thinking. Research has shown that spatial thinking ability can be a predictor of early success in STEM disciplines and substantial evidence demonstrates that spatial thinking ability is improved through various interventions. Therefore, identification of the spatial thinking skills and cognitive processes used in atmospheric science is the first step toward development of instructional strategies that target these skills and scaffold the learning of students in atmospheric science courses. A pilot study of expert and novice meteorologists identified mental animation and disembedding as key spatial skills used in the interpretation of multiple weather charts and images. Using this as a starting point, we investigated how these spatial skills, together with expertise, domain specific knowledge, and working memory capacity affect the ability to produce an accurate forecast. Participants completed a meteorology concept inventory, experience questionnaire and psychometric tests of spatial thinking ability and working memory capacity prior to completing a forecasting task. A quantitative analysis of the collected data investigated the effect of the predictor variables on the outcome task. A think-aloud protocol with individual participants provided a qualitative look at processes such as task decomposition, rule-based reasoning and the formation of mental models in an attempt to understand how individuals process this complex data and describe outcomes of particular meteorological scenarios. With our preliminary results we aim to inform atmospheric science education from a cognitive science perspective. The results point to a need to collaborate with the atmospheric science community broadly, such that multiple

  3. Development of Graduate Course Education by Industry Collaboration in Center for Engineering Education Development, CEED

    Science.gov (United States)

    Noguchi, Toru; Yoshikawa, Kozo; Nakamura, Masato; Kaneko, Katsuhiko

    New education programs for engineering graduate courses, and the achievements are described. Following the previous reports on overseas and domestic internship2) , 3) , this article states other common programs ; seminars on state of technologies in industries, practical English and internationalization programs, and a program to accept overseas internship students. E-learning system to assist off-campus students is also described. All these programs are developed and conducted by specialist professors invited from industries and national institutions, in collaboration with faculty professors. Students learn how the engineering science apply to the practical problems, acquire wider view and deeper understanding on industries, and gain abilities to act in global society including communication skill, those are not taught in classrooms and laboratories. Educational effects of these industry collaborated programs is significant to activate the graduate course education, although the comprehensive evaluation is the future subject.

  4. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    Science.gov (United States)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  5. Students' conceptions of evidence during a university introductory forensic science course

    Science.gov (United States)

    Yeshion, Theodore Elliot

    Students' Conceptions of Science, Scientific Evidence, and Forensic Evidence during a University Introductory Forensic Science Course This study was designed to examine and understand what conceptions undergraduate students taking an introductory forensic science course had about scientific evidence. Because the relationships between the nature of science, the nature of evidence, and the nature of forensic evidence are not well understood in the science education literature, this study sought to understand how these concepts interact and affect students' understanding of scientific evidence. Four participants were purposefully selected for this study from among 89 students enrolled in two sections of an introductory forensic science course taught during the fall 2005 semester. Of the 89 students, 84 were criminal justice majors with minimal science background and five were chemistry majors with academic backgrounds in the natural and physical sciences. All 89 students completed a biographical data sheet and a pre-instruction Likert scale survey consisting of twenty questions relating to the nature of scientific evidence. An evaluation of these two documents resulted in a purposeful selection of four varied student participants, each of whom was interviewed three times throughout the semester about the nature of science, the nature of evidence, and the nature of forensic evidence. The same survey was administered to the participants again at the end of the semester-long course. This study examined students' assumptions, prior knowledge, their understanding of scientific inference, scientific theory, and methodology. Examination of the data found few differences with regard to how the criminal justice majors and the chemistry majors responded to interview questions about forensic evidence. There were qualitative differences, however, when the same participants answered interview questions relating to traditional scientific evidence. Furthermore, suggestions are

  6. Preservice Science Teacher Beliefs about Teaching and the Science Methods Courses: Exploring Perceptions of Microteaching Outcomes

    Science.gov (United States)

    McLaury, Ralph L.

    2011-01-01

    This study investigates beliefs about teaching held by preservice science teachers and their influences on self-perceived microteaching outcomes within interactive secondary science teaching methods courses. Hermeneutic methodology was used in cooperation with seven preservice science teachers (N = 7) to infer participant beliefs about teaching…

  7. Implementation of an Online Climate Science Course at San Antonio College

    Science.gov (United States)

    Reyes, R.; Strybos, J.

    2016-12-01

    San Antonio College (SAC) plans to incorporate an online climate science class into the curriculum with a focus on local weather conditions and data. SAC is part of a network of five community colleges based around San Antonio, Texas, has over 20,000 students enrolled, and its student population reflects the diversity in ethnicity, age and gender of the San Antonio community. The college understands the importance of educating San Antonio residents on climate science and its complexities. San Antonio residents are familiar with weather changes and extreme conditions. The region has experienced an extreme drought, including water rationing in the city. Then, this year's El Niño intensified expected annual rainfalls and flash floods. The proposed climate science course will uniquely prepare students to understand weather data and the evidence of climate change impacting San Antonio at a local level. This paper will discuss the importance and challenges of introducing the new climate science course into the curriculum, and the desired class format that will increase the course's success. Two of the most significant challenges are informing students about the value of this class and identifying the best teaching format. Additionally, measuring and monitoring enrollment will be essential to determine the course performance and success. At the same time, Alamo Colleges is modifying the process of teaching online classes and is officially working to establish an online college. Around 23% of students enrolled in SAC offered courses are currently enrolled in online courses only, representing an opportunity to incorporate the climate science class as an online course. Since the proposed course will be using electronic textbooks and online applications to access hyperlocal weather data, the class is uniquely suited for online students.

  8. Enhancing Science and Mathematics Education for Child Care Providers and Preschool Teachers.

    Science.gov (United States)

    White, Jennifer Meux; Hosoume, Kimi

    The Lawrence Hall of Science (LHS), University of California at Berkeley has completed a 3-year project to develop a science and mathematics education course and science curriculum for early childhood educators. This project was in response to the need for improving the science and mathematics knowledge and teaching skills of adults who work with…

  9. Class Size and Academic Achievement in Introductory Political Science Courses

    Science.gov (United States)

    Towner, Terri L.

    2016-01-01

    Research on the influence of class size on student academic achievement is important for university instructors, administrators, and students. The article examines the influence of class size--a small section versus a large section--in introductory political science courses on student grades in two comparable semesters. It is expected that…

  10. "Two Cultures" Topics for General Studies Science Courses.

    Science.gov (United States)

    Larson, James H.

    1982-01-01

    Theses proposed in C. P. Snow's book "The Two Cultures," including uncommunicative scientific and literary groups, gap between rich and poor, overpopulation, and nuclear war remain viable topics. Discusses the scientific and literary cultural gap and what can be done in general studies science courses to ameliorate the condition.…

  11. Science Academies' 82nd Refresher Course on Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Experimental Physics will be held at Department of Physics, ... the participants to gain hands on experience with set of new experiments developed as a low cost kit by the Indian Academy of Sciences, Bangalore, Indian ...

  12. Polymerization Simulator for Introductory Polymer and Material Science Courses

    Science.gov (United States)

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  13. Designing English for Specific Purposes Course for Computer Science Students

    Science.gov (United States)

    Irshad, Isra; Anwar, Behzad

    2018-01-01

    The aim of this study was to design English for Academic Purposes (EAP) course for University students enrolled in the Computer Science Department. For this purpose, academic English language needs of the students were analyzed by using a 5 point Likert scale questionnaire. Additionally, interviews were also conducted with four faculty members of…

  14. Women and Spatial Change: Learning Resources for Social Science Courses.

    Science.gov (United States)

    Rengert, Arlene C., Ed.; Monk, Janice J., Ed.

    Six units focusing on the effects of spatial change on women are designed to supplement college introductory courses in geography and the social sciences. Unit 1, Woman and Agricultural Landscapes, focuses on how women contributed to landscape change in prehistory, women's impact on the environment, and the hypothesis that women developed…

  15. Advances in Computer Science and Education

    CERN Document Server

    Huang, Xiong

    2012-01-01

    CSE2011 is an integrated conference concentration its focus on computer science and education. In the proceeding, you can learn much more knowledge about computer science and education of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful

  16. Romanticism and Romantic Science: Their Contribution to Science Education

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  17. Guidelines for Building Science Education

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Cheryn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rashkin, Samuel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huelman, Pat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    The U.S. Department of Energy’s (DOE) residential research and demonstration program, Building America, has triumphed through 20 years of innovation. Partnering with researchers, builders, remodelers, and manufacturers to develop innovative processes like advanced framing and ventilation standards, Building America has proven an energy efficient design can be more cost effective, healthy, and durable than a standard house. As Building America partners continue to achieve their stretch goals, they have found that the barrier to true market transformation for high performance homes is the limited knowledge-base of the professionals working in the building industry. With dozens of professionals taking part in the design and execution of building and selling homes, each person should have basic building science knowledge relevant to their role, and an understanding of how various home components interface with each other. Instead, our industry typically experiences a fragmented approach to home building and design. After obtaining important input from stakeholders at the Building Science Education Kick-Off Meeting, DOE created a building science education strategy addressing education issues preventing the widespread adoption of high performance homes. This strategy targets the next generation and provides valuable guidance for the current workforce. The initiative includes: • Race to Zero Student Design Competition: Engages universities and provides students who will be the next generation of architects, engineers, construction managers and entrepreneurs with the necessary skills and experience they need to begin careers in clean energy and generate creative solutions to real world problems. • Building Science to Sales Translator: Simplifies building science into compelling sales language and tools to sell high performance homes to their customers. • Building Science Education Guidance: Brings together industry and academia to solve problems related to

  18. Redesigning Introductory Science Courses to Teach Sustainability: Introducing the L(SC)2 Paradigm

    Science.gov (United States)

    Myers, J. D.; Campbell-Stone, E.; Massey, G.

    2008-12-01

    Modern societies consume vast quantities of Earth resources at unsustainable levels; at the same time, resource extraction, processing, production, use and disposal have resulted in environmental damage severe enough to threaten the life-support systems of our planet. These threats are produced by multiple, integrative and cumulative environmental stresses, i.e. syndromes, which result from human physical, ecological and social interactions with the environment in specific geographic places. In recent decades, recognition of this growing threat has lead to the concept of sustainability. The science needed to provide the knowledge and know-how for a successful sustainability transition differs markedly from the science that built our modern world. Sustainability science must balanced basic and applied research, promote integrative research focused on specific problems and devise a means of merging fundamental, general scientific principles with understanding of specific places. At the same time, it must use a variety of knowledge areas, i.e. biological systems, Earth systems, technological systems and social systems, to devise solutions to the many complex and difficult problems humankind faces. Clearly, sustainability science is far removed from the discipline-based science taught in most U.S. colleges. Many introductory science courses focus on content, lack context and do not integrate scientific disciplines. To prepare the citizens who will confront future sustainability issues as well as the scientists needed to devise future sustainability strategies, educators and scientists must redesign the typical college science course. A new course paradigm, Literacies and Scientific Content in Social Context (L(SC)2), is ideally suited to teach sustainability science. It offers an alternative approach to liberal science education by redefining and expanding the concept of the interdisciplinary course and merging it with the integrated science course. In addition to

  19. Science Identity in Informal Education

    Science.gov (United States)

    Schon, Jennifer A.

    The national drive to increase the number of students pursuing Science Technology, Engineering, and Math (STEM) careers has brought science identity into focus for educators, with the need to determine what encourages students to pursue and persist in STEM careers. Science identity, the degree to which students think someone like them could be a scientist is a potential indicator of students pursuing and persisting in STEM related fields. Science identity, as defined by Carlone and Johnson (2007) consists of three constructs: competence, performance, and recognition. Students need to feel like they are good at science, can perform it well, and that others recognize them for these achievements in order to develop a science identity. These constructs can be bolstered by student visitation to informal education centers. Informal education centers, such as outdoor science schools, museums, and various learning centers can have a positive impact on how students view themselves as scientists by exposing them to novel and unique learning opportunities unavailable in their school. Specifically, the University of Idaho's McCall Outdoor Science School (MOSS) focuses on providing K-12 students with the opportunity to learn about science with a place-based, hands-on, inquiry-based curriculum that hopes to foster science identity development. To understand the constructs that lead to science identity formation and the impact the MOSS program has on science identity development, several questions were explored examining how students define the constructs and if the MOSS program impacted how they rate themselves within each construct. A mixed-method research approach was used consisting of focus group interviews with students and pre, post, one-month posttests for visiting students to look at change in science identity over time. Results from confirmatory factor analysis indicate that the instrument created is a good fit for examining science identity and the associated

  20. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits and chall......Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...... and challenges related to AR enhancing student learning in science in lower secondary school were identified by expert science teachers, ICT designers and science education researchers from four countries in a Delphi survey. Findings were condensed in a framework to categorize educational AR designs....

  1. The Big Crunch: A Hybrid Solution to Earth and Space Science Instruction for Elementary Education Majors

    Science.gov (United States)

    Cervato, Cinzia; Kerton, Charles; Peer, Andrea; Hassall, Lesya; Schmidt, Allan

    2013-01-01

    We describe the rationale and process for the development of a new hybrid Earth and Space Science course for elementary education majors. A five-step course design model, applicable to both online and traditional courses, is presented. Assessment of the course outcomes after two semesters indicates that the intensive time invested in the…

  2. My Science Is Better than Your Science: Conceptual Change as a Goal in Teaching Science Majors Interested in Teaching Careers about Education

    Science.gov (United States)

    Utter, Brian C.; Paulson, Scott A.; Almarode, John T.; Daniel, David B.

    2018-01-01

    We argue, based on a multi-year collaboration to develop a pedagogy course for physics majors by experts in physics, education, and the science of learning, that the process of teaching science majors about education and the science of learning, and evidence-based teaching methods in particular, requires conceptual change analogous to that…

  3. Identification of multiple intelligences for high school students in theoretical and applied science courses

    Science.gov (United States)

    Wiseman, D. Kim

    Historically educators in the United States have used the Stanford-Binet intelligence test to measure a students' ability in logical/mathematical and linguistic domains. This measurement is being used by a society that has evolved from agrarian and industrial-based economies to what is presently labeled a technological society. As society has changed so have the educational needs of the students who will live in this technological society. This study assessed the multiple intelligences of high school students enrolled in theoretical and applied science (physics and applied physics) courses. Studies have verified that performance and outcomes of students enrolled in these courses are similar in standardized testing but instructional methodology and processes are dissimilar. Analysis of multiple intelligence profiles collected from this study found significant differences in logical/mathematical, bodily/kinesthetic and intrapersonal multiple intelligences of students in theoretical science courses compared to students in applied science courses. Those differences clearly illustrate why it is imperative for educators to expand the definition of intelligence for students entering the new millennium.

  4. A Literary Genre in Value Education in History Courses: Poems

    Science.gov (United States)

    Öztas, Sezai

    2018-01-01

    One of the objectives of education in schools is to acquire values. In this sense, history courses are among the important courses in which students can acquire values. Students can acquire values such as justice, peace, honesty, empathy, tolerance, human rights, respect, love, responsibility, charity, patriotism, etc. through history courses.…

  5. Online Persistence in Higher Education Web-Supported Courses

    Science.gov (United States)

    Hershkovitz, Arnon; Nachmias, Rafi

    2011-01-01

    This research consists of an empirical study of online persistence in Web-supported courses in higher education, using Data Mining techniques. Log files of 58 Moodle websites accompanying Tel Aviv University courses were drawn, recording the activity of 1189 students in 1897 course enrollments during the academic year 2008/9, and were analyzed…

  6. Machine Shop Practice. Trade and Industrial Education Course of Study.

    Science.gov (United States)

    Emerly, Robert J.; And Others

    Designed for secondary school students who are interested in becoming machinists, this beginning course guide in machine shop practice is organized into the following sections: (1) Introduction, (2) instructional plan, (3) educational philosophy, (4) specific course objectives, (5) course outline, (6) job sheets, and (7) operation sheets. The…

  7. Prevalence of Evaluation Method Courses in Education Leader Doctoral Preparation

    Science.gov (United States)

    Shepperson, Tara L.

    2013-01-01

    This exploratory study investigated the prevalence of single evaluation methods courses in doctoral education leadership programs. Analysis of websites of 132 leading U.S. university programs found 62 evaluation methods courses in 54 programs. Content analysis of 49 course catalog descriptions resulted in five categories: survey, planning and…

  8. A Hybrid Course Design: The Best of Both Educational Worlds

    Science.gov (United States)

    Poirier, Sandra

    2010-01-01

    Career and technical educators are constantly being challenged to have their courses meet the changing needs of their students in this fast-paced world people live in. As the name implies, the hybrid online course is a melding of traditional and online learning. In this article, the author describes her experience designing hybrid courses that…

  9. [Teaching human anatomy to the graduation course in Health Sciences of the Lisbon University: five years of a new educational experience].

    Science.gov (United States)

    Furtado, Ivo A; Gonçalves Ferreira, Ana D; Gonçalves Ferreira, António J

    2013-01-01

    The authors make the balance of the first five years of teaching Anatomy to the Licensure in Health Sciences, of Lisbon University. Were studied 408 students, enrolled in the Curricular Unit of Anatomy (mandatory subject of the 1st semester) and 29 in the Curricular Unit of Neuroanatomy (optional subject of the 6th semester). It was performed the statistical analysis by Anova and t Student test. There was an annual growing influx of students enrolled in Curricular Unit of Anatomy, a stable number in Neuroanatomy and clear predominance of female students; ratio teacher / student variable between 1/9 and 1/17 in Anatomy and 1/8 in Neuroanatomy; high number of initial dropouts (15.69%) in Anatomy; approval levels of 95.93% in Anatomy and Neuroanatomy 100%; trend of improvement in the last two years, with statistical significance in the Curricular Unit of Anatomy (p = 0.0001) and equal academic performance of students of both genders; satisfaction scores of students of Anatomy, Good = 71% and Very Good = 8%; in Neuroanatomy, unanimous classification by students = Very Good. It was a very positive learning experience. The authors propose: the study of the causes and prevention of early dropout of incoming students, improving the ratio teacher / student, possible extension to a 2nd semester of the Curricular Unit of Anatomy and improving facilities that are already underway and includes the refurbishment and modernization of the anatomical theater of the Institute of Anatomy, Faculty of Medicine, University of Lisbon.

  10. Practicing the practice: Learning to guide elementary science discussions in a practice-oriented science methods course

    Science.gov (United States)

    Shah, Ashima Mathur

    University methods courses are often criticized for telling pre-service teachers, or interns, about the theories behind teaching instead of preparing them to actually enact teaching. Shifting teacher education to be more "practice-oriented," or to focus more explicitly on the work of teaching, is a current trend for re-designing the way we prepare teachers. This dissertation addresses the current need for research that unpacks the shift to more practice-oriented approaches by studying the content and pedagogical approaches in a practice-oriented, masters-level elementary science methods course (n=42 interns). The course focused on preparing interns to guide science classroom discussions. Qualitative data, such as video records of course activities and interns' written reflections, were collected across eight course sessions. Codes were applied at the sentence and paragraph level and then grouped into themes. Five content themes were identified: foregrounding student ideas and questions, steering discussion toward intended learning goals, supporting students to do the cognitive work, enacting teacher role of facilitator, and creating a classroom culture for science discussions. Three pedagogical approach themes were identified. First, the teacher educators created images of science discussions by modeling and showing videos of this practice. They also provided focused teaching experiences by helping interns practice the interactive aspects of teaching both in the methods classroom and with smaller groups of elementary students in schools. Finally, they structured the planning and debriefing phases of teaching so interns could learn from their teaching experiences and prepare well for future experiences. The findings were analyzed through the lens of Grossman and colleagues' framework for teaching practice (2009) to reveal how the pedagogical approaches decomposed, represented, and approximated practice throughout course activities. Also, the teacher educators

  11. The transfer of learning process: From an elementary science methods course to classroom instruction

    Science.gov (United States)

    Carter, Nina Leann

    The purpose of this qualitative multiple-case study was to explore the transfer of learning process in student teachers. This was carried out by focusing on information learned from an elementary science methods and how it was transferred into classroom instruction during student teaching. Participants were a purposeful sampling of twelve elementary education student teachers attending a public university in north Mississippi. Factors that impacted the transfer of learning during lesson planning and implementation were sought. The process of planning and implementing a ten-day science instructional unit during student teaching was examined through lesson plan documentation, in-depth individual interviews, and two focus group interviews. Narratives were created to describe the participants' experiences as well as how they plan for instruction and consider science pedagogical content knowledge (PCK). Categories and themes were then used to build explanations applying to the research questions. The themes identified were Understanding of Science PCK, Minimalism, Consistency in the Teacher Education Program, and Emphasis on Science Content. The data suggested that the participants lack in their understanding of science PCK, took a minimalistic approach to incorporating science into their ten-day instructional units, experienced inconsistencies in the teacher education program, and encountered a lack of emphasis on science content in their field experience placements. The themes assisted in recognizing areas in the elementary science methods courses, student teaching field placements, and university supervision in need of modification.

  12. Space Science Education Resource Directory

    Science.gov (United States)

    Christian, C. A.; Scollick, K.

    The Office of Space Science (OSS) of NASA supports educational programs as a by-product of the research it funds through missions and investigative programs. A rich suite of resources for public use is available including multimedia materials, online resources, hardcopies and other items. The OSS supported creation of a resource catalog through a group lead by individuals at STScI that ultimately will provide an easy-to-use and user-friendly search capability to access products. This paper describes the underlying architecture of that catalog, including the challenge to develop a system for characterizing education products through appropriate metadata. The system must also be meaningful to a large clientele including educators, scientists, students, and informal science educators. An additional goal was to seamlessly exchange data with existing federally supported educational systems as well as local systems. The goals, requirements, and standards for the catalog will be presented to illuminate the rationale for the implementation ultimately adopted.

  13. Is the P-Value Really Dead? Assessing Inference Learning Outcomes for Social Science Students in an Introductory Statistics Course

    Science.gov (United States)

    Lane-Getaz, Sharon

    2017-01-01

    In reaction to misuses and misinterpretations of p-values and confidence intervals, a social science journal editor banned p-values from its pages. This study aimed to show that education could address misuse and abuse. This study examines inference-related learning outcomes for social science students in an introductory course supplemented with…

  14. Education science and biological anthropology.

    Science.gov (United States)

    Krebs, Uwe

    2014-01-01

    This contribution states deficits and makes proposals in order to overcome them. First there is the question as to why the Biological Anthropology--despite all its diversifications--hardly ever deals with educational aspects of its subject. Second it is the question as to why Educational Science neglects or even ignores data of Biological Anthropology which are recognizably important for its subject. It is postulated that the stated deficits are caused by several adverse influences such as, the individual identity of each of the involved single sciences; aspects of the recent history of the German Anthropology; a lack of conceptual understanding of each other; methodological differences and, last but not least, the structure of the universities. The necessity to remedy this situation was deduced from two groups of facts. First, more recent data of the Biological Anthropology (e.g. brain functions and learning, sex specificity and education) are of substantial relevance for the Educational Science. Second, the epistemological requirements of complex subjects like education need interdisciplinary approaches. Finally, a few suggestions of concrete topics are given which are related to both, Educational Science and Biological Anthropology.

  15. Science, Ethics and Education

    Science.gov (United States)

    Elgin, Catherine

    2011-01-01

    An overarching epistemological goal of science is to develop a comprehensive, systematic, empirically grounded understanding of nature. Two obstacles stand in the way: (1) Nature is enormously complicated. (2) Findings are fallible: no matter how well established a conclusion is, it still might be wrong. To pursue this goal in light of the…

  16. BioMEMS and Lab-on-a-Chip Course Education at West Virginia University

    Directory of Open Access Journals (Sweden)

    Yuxin Liu

    2011-01-01

    Full Text Available With the rapid growth of Biological/Biomedical MicroElectroMechanical Systems (BioMEMS and microfluidic-based lab-on-a-chip (LOC technology to biological and biomedical research and applications, demands for educated and trained researchers and technicians in these fields are rapidly expanding. Universities are expected to develop educational plans to address these specialized needs in BioMEMS, microfluidic and LOC science and technology. A course entitled BioMEMS and Lab-on-a-Chip was taught recently at the senior undergraduate and graduate levels in the Department of Computer Science and Electrical Engineering at West Virginia University (WVU. The course focused on the basic principles and applications of BioMEMS and LOC technology to the areas of biomedicine, biology, and biotechnology. The course was well received and the enrolled students had diverse backgrounds in electrical engineering, material science, biology, mechanical engineering, and chemistry. Student feedback and a review of the course evaluations indicated that the course was effective in achieving its objectives. Student presentations at the end of the course were a highlight and a valuable experience for all involved. The course proved successful and will continue to be offered regularly. This paper provides an overview of the course as well as some development and future improvements.

  17. A First Course in Mind, Brain, and Education

    Science.gov (United States)

    Blake, Peter R.; Gardner, Howard

    2007-01-01

    We describe what may well be the first course devoted explicitly to the topic of Mind, Brain, and Education (MBE). In the course, students examine four central topics (literacy, numeracy, emotion/motivation, and conceptual change) through the perspectives of psychology, neuroscience, genetics, and education. We describe the pedagogical tools we…

  18. Lecturers' Experience of Using Social Media in Higher Education Courses

    Science.gov (United States)

    Seechaliao, Thapanee

    2015-01-01

    This research paper presents lecturers' experience of using social media in higher education courses. The research methodology used a survey approach. The research instrument was a questionnaire about lecturers' experience of using social media in higher education courses. Thirty-one lecturers completed the questionnaire. The data were scored by…

  19. Earth Science Education in Morocco

    Science.gov (United States)

    Bouabdelli, Mohamed

    1999-05-01

    The earth sciences are taught in twelve universities in Morocco and in three other institutions. In addition there are three more earth science research institutions. Earth science teaching has been taking place since 1957. The degree system is a four-year degree, split into two two-year blocks and geology is taught within the geology-biology programme for the first part of the degree. 'Classical' geology is taught in most universities, although applied geology degrees are also on offer in some universities. Recently-formed technical universities offer a more innovative approach to Earth Science Education. Teaching is in French, although school education is in Arabic. There is a need for a reform of the curriculum, although a lead is being taken by the technical universities. A new geological mapping programme promises new geological and mining discoveries in the country and prospects of employment for geology graduates.

  20. Sources of Science Teaching Self-Efficacy for Preservice Elementary Teachers in Science Content Courses

    Science.gov (United States)

    Menon, Deepika; Sadler, Troy D.

    2018-01-01

    Self-efficacy beliefs play a major role in determining teachers' science teaching practices and have been a topic of great interest in the area of preservice science teacher education. This qualitative study investigated factors that influenced preservice elementary teachers' science teaching self-efficacy beliefs in a physical science content…

  1. A General Education Course in Cultural Astronomy: Exploring the Universe Through Human Eyes

    Science.gov (United States)

    Larsen, Kristine

    2017-01-01

    Astronomy courses for non-science majors (often referred to as Astro 101) are the bread and butter of the general education service obligation of astronomy faculty and programs across the US. Their content has traditionally been a general survey of the solar system, stars and galaxies, or even the entire universe. However, because the audience is students who will not be continuing on in astronomy, there is actually no need to cover a broad range of specific topics. Rather, it is more important to concentrate on the scientific process, and hopefully leave the student with an understanding of the relevance of science in everyday life, regardless of his or her major. As a result, some faculty prefer a more interdisciplinary focus for their Astro 101 classes, for example courses on the search for extraterrestrial life. Another option for general education astronomy courses is what has become known as cultural astronomy. Cultural astronomy focuses on the ways in which astronomical knowledge and belief influences human behavior and social structures. Under this umbrella fall two important areas of study, archaeoastronomy (concentrating on ancient cultures) and enthoastronomy (focusing on extant cultures). Such interdisciplinary courses draw heavily upon archaeology, history, anthropology, art, and other fields more traditionally aligned with the humanities and social sciences than the natural sciences, and therefore can be attractive to students in these non-science majors. In such courses, students experience the “humanity” of science: the important connections between science and the human experience, and how experts in myriad fields contribute in meaningful ways to our understanding of how astronomical knowledge has been constructed and disseminated across time and space. This poster describes the content and pedagogy of a general education course in cultural astronomy for non-science majors that stresses hands-on and experiential learning, including the use of

  2. Integrated Lecture and Laboratory Chemistry Components of Science Education Program for Early and Middle Childhood Education Majors

    Science.gov (United States)

    Lunsford, S. K.

    2004-05-01

    Two new chemistry courses were developed for early childhood and middle childhood education majors. The results of a pre- and posttest in the courses indicate success in developing student content knowledge and ability to problem solve. In addition these courses are designed to develop preservice teachers' understanding of the National Science Education Standards and foster support for implementing these standards in their classrooms. These courses provide materials, resources, and guidance in implementing the standards in their future teaching careers.

  3. Inquiry-based science education

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino; Sillasen, Martin Krabbe; Hagelskjær, Jens

    2010-01-01

    Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret naturfagsundervisnings......Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret...

  4. 76 FR 11765 - Education Research and Special Education Research Grant Programs; Institute of Education Sciences...

    Science.gov (United States)

    2011-03-03

    ... DEPARTMENT OF EDUCATION Education Research and Special Education Research Grant Programs; Institute of Education Sciences; Overview Information; Education Research and Special Education Research.... SUMMARY: The Director of the Institute of Education Sciences (Institute) announces the Institute's FY 2012...

  5. Fermilab Friends for Science Education | Join Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Join Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to membership dues allow us to create new, innovative science education programs, making the best use of unique

  6. An Investigation into Prospective Science Teachers' Attitudes towards Laboratory Course and Self-Efficacy Beliefs in Laboratory Use

    Science.gov (United States)

    Aka, Elvan Ince

    2016-01-01

    The aim of the current study is to identify the attitudes towards the laboratory course and self-efficacy beliefs in the laboratory use of prospective teachers who are attending Gazi University Gazi Education Faculty Primary Education Science Teaching program, and to investigate the relationship between the attitudes and self-efficacy beliefs.…

  7. Towards a Versatile Tele-Education Platform for Computer Science Educators Based on the Greek School Network

    Science.gov (United States)

    Paraskevas, Michael; Zarouchas, Thomas; Angelopoulos, Panagiotis; Perikos, Isidoros

    2013-01-01

    Now days the growing need for highly qualified computer science educators in modern educational environments is commonplace. This study examines the potential use of Greek School Network (GSN) to provide a robust and comprehensive e-training course for computer science educators in order to efficiently exploit advanced IT services and establish a…

  8. Latina girls of Puerto Rican origin who are successful in science and mathematics high school courses

    Science.gov (United States)

    Oquendo-Rodriguez, Aida L.

    Professions and careers related to science and mathematics lack representation of minorities. Within these underrepresented minority populations there is no other group more affected than Latina women and girls. Women in general, are still underrepresented in many areas of our society. While women's roles are changing in today's society, most changes encourage the participation of more White/Anglo women in traditionally male roles. Latina women are still more disadvantaged than White women. There is no doubt that education is significant in increasing the participation of minorities in the fields of science and mathematics, especially for minority girls (Oakes, 1990; Rodriguez, 1993). This study explored the interests, life experiences, characteristics and motivations of Latina girls of Puerto Rican origin who are successful in science and mathematics high school courses. The study identifies factors that can influence the interest of Latina girls of Puerto Rican origin in science and mathematics career choices. This research is significant and relevant to educators and policy makers, especially to science and mathematics educators. The research is primarily descriptive and exploratory. It explores the social characteristics of Latina girls and professional women who have been successful in science and mathematics high school courses. The research offers the reader a visit to the participants' homes with descriptions and the opportunity to explore the thoughts and life experiences of Latina girls, their mothers and young Latina professionals of Puerto Rican origin. This research reveals the common characteristics of successful students found in the Latina girls of Puerto Rican origin who where interviewed. Creating a portrait of Latina girls of Puerto Rican origin who are successful in science and mathematics high school courses in one of the school districts of western Massachusetts. The research findings reveal that teacher relationships, family expectations

  9. Cognitive science and mathematics education

    CERN Document Server

    Schoenfeld, Alan H

    1987-01-01

    This volume is a result of mathematicians, cognitive scientists, mathematics educators, and classroom teachers combining their efforts to help address issues of importance to classroom instruction in mathematics. In so doing, the contributors provide a general introduction to fundamental ideas in cognitive science, plus an overview of cognitive theory and its direct implications for mathematics education. A practical, no-nonsense attempt to bring recent research within reach for practicing teachers, this book also raises many issues for cognitive researchers to consider.

  10. Using wikis to stimulate collaborative learning in two online health sciences courses.

    Science.gov (United States)

    Zitzelsberger, Hilde; Campbell, Karen A; Service, Dorothea; Sanchez, Otto

    2015-06-01

    The use of wiki technology fits well in courses that encourage constructive knowledge building and social learning by a community of learners. Pedagogically, wikis have attracted interest in higher education environments because they facilitate the collaborative processes required for developing student group assignments. This article describes a pilot project to assess the implementation of wikis in two online small- and mid-sized elective courses comprising nursing students in third- or fourth-year undergraduate levels within interdisciplinary health sciences courses. The need exists to further develop the pedagogical use of wiki environments before they can be expected to support collaboration among undergraduate nursing students. Adapting wiki implementation to suitable well-matched courses will make adaptation of wikis into nursing curricula more effective and may increase the chances that nursing students will hone the collaborative abilities that are essential in their future professional roles in communities of practice. Copyright 2015, SLACK Incorporated.

  11. Integrating international relations and environmental science course concepts through an interactive world politics simulation

    Science.gov (United States)

    Straub, K. H.; Kesgin, B.

    2012-12-01

    scientific research and uncertainty on this topic. One of the global issues that students must face in the simulation is the melting of "Ice Mountain," which threatens to flood coastal cities before the end of the game; only through cooperative action can the "Globe of Frost" be built to potentially stop the melting. In addition, the game fundamentally integrates tradeoffs between resources, pollution, immigration, education, health, defense, and other sustainability-related subjects throughout. Pre- and post-course surveys will include both environmental science/sustainability and political science concepts that may not be explicitly taught in both courses, but that students should have a greater awareness of through their interaction in the Statecraft simulation. Student attitudes toward integration of the course material will also be assessed.

  12. An analysis of high-performing science students' preparation for collegiate science courses

    Science.gov (United States)

    Walter, Karen

    This mixed-method study surveyed first year high-performing science students who participated in high-level courses such as International Baccalaureate (IB), Advanced Placement (AP), and honors science courses in high school to determine their perception of preparation for academic success at the collegiate level. The study used 52 students from an honors college campus and surveyed the students and their professors. The students reported that they felt better prepared for academic success at the collegiate level by taking these courses in high school (pstudent GPA with honors science courses (n=55 and Pearson's r=-0.336), while AP courses (n=47 and Pearson's r=0.0016) and IB courses (n=17 and Pearson's r=-0.2716) demonstrated no correlation between perception of preparation and GPA. Students reported various themes that helped or hindered their perception of academic success once at the collegiate level. Those themes that reportedly helped students were preparedness, different types of learning, and teacher qualities. Students reported in a post-hoc experience that more lab time, rigorous coursework, better teachers, and better study techniques helped prepare them for academic success at the collegiate level. Students further reported on qualities of teachers and teaching that helped foster their academic abilities at the collegiate level, including teacher knowledge, caring, teaching style, and expectations. Some reasons for taking high-level science courses in high school include boosting GPA, college credit, challenge, and getting into better colleges.

  13. The ongoing educational anomaly of earth science placement

    Science.gov (United States)

    Messina, P.; Speranza, P.; Metzger, E.P.; Stoffer, P.

    2003-01-01

    The geosciences have traditionally been viewed with less "aCademic prTstige" than other science curricula. Among the results of this perception are depressed K-16 enrollments, Earth Science assignments to lower-performing students, and relegation of these classes to sometimes under-qualified educators, all of which serve to confirm the widely-held misconceptions. An Earth Systems course developed at San Jos??e State University demonstrates the difficulty of a standard high school Earth science curriculum, while recognizing the deficiencies in pre-college Earth science education. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course would greatly improve student understanding of the geosciences, while development of Earth systems courses that infuse real-world and hands-on learning at the college level is critical to bridging the information gap for those with no prior exposure to the Earth sciences. Well-crafted workshops for pre-service and inservice teachers of Earth Science can heIp to reverse the trends and unfortunate "sTatus" in geoscience education.

  14. Tailoring science education graduate programs to the needs of science educators in low-income countries

    Science.gov (United States)

    Lunetta, Vincent N.; van den Berg, Euwe

    Science education graduate programs in high-income countries frequently enroll students from low-income countries. Upon admission these students have profiles of knowledge, skills, and experiences which can be quite different from those of students from the host high-income countries. Upon graduation, they will normally return to work in education systems with conditions which differ greatly from those in high-income countries. This article attempts to clarify some of the differences and similarities between such students. It offers suggestions for making graduate programs more responsive to the special needs of students from low-income countries and to the opportunities they offer for enhancing cross-cultural sensitivity. Many of the suggestions can be incorporated within existing programs through choices of elective courses and topics for papers, projects, and research. Many references are provided to relevant literature on cultural issues and on science education in low-income countries.

  15. Science Credit for Agriculture: Perceived Support, Preferred Implementation Methods and Teacher Science Course Work.

    Science.gov (United States)

    Johnson, Donald M.

    1996-01-01

    Arkansas agriculture teachers (213 of 259 surveyed) expressed support for granting science credit for agriculture (88.8%); 65.6% supported science credit for a limited number of agriculture courses. Blanket endorsement for all certified agriculture teachers was favored by 71.5%; 56.6% preferred endorsement only for certified teachers completing an…

  16. An Interdisciplinary Undergraduate Space Physics Course: Understanding the Process of Science Through One Field's Colorful History

    Science.gov (United States)

    Lopez, Ramon E.

    1996-01-01

    Science education in this country is in its greatest period of ferment since the post-Sputnik frenzy a generation ago. In that earlier time, however, educators' emphasis was on producing more scientists and engineers. Today we recognize that all Americans need a good science background. The ability to observe, measure, think quantitatively, and reach logical conclusions based on available evidence is a set of skills that everyone entering the workforce needs to acquire if our country is to be competitive in a global economy. Moreover, as public policy increasingly crystallizes around scientific issues, it is critical that citizens be educated in science so that they may provide informed debate and on these issues. In order to develop this idea more fully, I proposed to teach a historically based course about space physics as an honors course at the University of Maryland-College Park (UMCP). The honors program at UMCP was established to foster broad-based undergraduate courses that utilize innovative teaching techniques to provide exemplary education to a select group of students. I designed an introductory course that would have four basic goals: to acquaint students with geomagnetic and auroral phenomena and their relationship to the space environment; to examine issues related to the history of science using the evolution of the field as an example; to develop familiarity with basic skills such as describing and interpreting observations, analyzing scientific papers, and communicating the results of their own research; and to provide some understanding of basic physics, especially those aspect that play a role in the near-earth space environment.

  17. Democratizing education? Examining access and usage patterns in massive open online courses.

    Science.gov (United States)

    Hansen, John D; Reich, Justin

    2015-12-04

    Massive open online courses (MOOCs) are often characterized as remedies to educational disparities related to social class. Using data from 68 MOOCs offered by Harvard and MIT between 2012 and 2014, we found that course participants from the United States tended to live in more-affluent and better-educated neighborhoods than the average U.S. resident. Among those who did register for courses, students with greater socioeconomic resources were more likely to earn a certificate. Furthermore, these differences in MOOC access and completion were larger for adolescents and young adults, the traditional ages where people find on-ramps into science, technology, engineering, and mathematics (STEM) coursework and careers. Our findings raise concerns that MOOCs and similar approaches to online learning can exacerbate rather than reduce disparities in educational outcomes related to socioeconomic status. Copyright © 2015, American Association for the Advancement of Science.

  18. Student Buy-In to Active Learning in a College Science Course.

    Science.gov (United States)

    Cavanagh, Andrew J; Aragón, Oriana R; Chen, Xinnian; Couch, Brian; Durham, Mary; Bobrownicki, Aiyana; Hanauer, David I; Graham, Mark J

    2016-01-01

    The benefits of introducing active learning in college science courses are well established, yet more needs to be understood about student buy-in to active learning and how that process of buy-in might relate to student outcomes. We test the exposure-persuasion-identification-commitment (EPIC) process model of buy-in, here applied to student (n = 245) engagement in an undergraduate science course featuring active learning. Student buy-in to active learning was positively associated with engagement in self-regulated learning and students' course performance. The positive associations among buy-in, self-regulated learning, and course performance suggest buy-in as a potentially important factor leading to student engagement and other student outcomes. These findings are particularly salient in course contexts featuring active learning, which encourage active student participation in the learning process. © 2016 A. J. Cavanagh et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  20. Students’ acceptance of peer review in Computer Science course

    Directory of Open Access Journals (Sweden)

    Zuzana Kubincová

    2016-04-01

    Full Text Available Peer review technique used in educational context could be beneficial for students from several points of view. Besides of developing students’ writing skills, critical thinking, practising articulation of own knowledge to the others and giving them feedback, it can encourage collaborative learning and boost the students’ interest in the course. In our web design course we successfully introduced peer review activities more than 2 years ago. In this paper we discuss the students’ acceptance of peer review applied on evaluation of other students’ projects.

  1. The Utopia of Science Education

    Science.gov (United States)

    Castano, Carolina

    2012-01-01

    In this forum I expand on the ideas I initially presented in "Extending the purposes of science education: addressing violence within socio-economic disadvantaged communities" by responding to the comments provided by Matthew Weinstein, Francis Broadway and Sheri Leafgren. Focusing on their notion of utopias and superheroes, I ask us to reconsider…

  2. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. July 2007 Volume 12 Number 7. GENERAL ARTICLES. 04 Josiah Willard Gibbs. V Kumaran. 12 Josiah Willard ... IISc, Bangalore). Rapidity: The Physical Meaning of the Hyperbolic Angle in. Special Relativity. Giorgio Goldoni. Survival in Stationary Phase. S Mahadevan. Classroom.

  3. The Globalization of Science Education

    Science.gov (United States)

    Deboer, George

    2012-02-01

    Standards-based science education, with its emphasis on clearly stated goals, performance monitoring, and accountability, is rapidly becoming a key part of how science education is being viewed around the world. Standards-based testing within countries is being used to determine the effectiveness of a country's educational system, and international testing programs such as PISA and TIMSS enable countries to compare their students to a common standard and to each other. The raising of standards and the competition among countries is driven in part by a belief that economic success depends on a citizenry that is knowledgeable about science and technology. In this talk, I consider the question of whether it is prudent to begin conversations about what an international standards document for global citizenship in science education might look like. I examine current practices to show the areas of international agreement and the significant differences that still exist, and I conclude with a recommendation that such conversations should begin, with the goal of laying out the knowledge and competencies that international citizens should have that also gives space to individual countries to pursue goals that are unique to their own setting.

  4. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    RESONANCE | May 2010. Resonance journal of science education. May 2010 Volume 15 Number 5. On the Measurement of Phase Difference using CROs b. SERIES ARTICLES. 400. Aerobasics – An Introduction to Aeronautics. Mini and Micro Airplanes. S P Govinda Raju. GENERAL ARTICLES. 411. Bird of Passage at ...

  5. Flipping an Agricultural Education Teaching Methods Course

    Science.gov (United States)

    Conner, Nathan W.; Stripling, Christopher T.; Blythe, Jessica M.; Roberts, T. Grady; Stedman, Nicole L. P.

    2014-01-01

    Flipping or inverting a course is a relatively new approach to structuring a course. Using this method, the lectures traditionally delivered during regularly scheduled class time are converted to a media for delivery online, often in the form of videos. Learners are expected to view the online lectures prior to class. Then in turn, in-class time…

  6. Science in early childhood education

    DEFF Research Database (Denmark)

    Broström, Stig

    2015-01-01

    Bildung Didaktik, and a learning approach based on a Vygotskian cultural-historical activity theory. A science-oriented dynamic contextual didactical model was developed as a tool for educational thinking and planning. The article presents five educational principles for a preschool science Didaktik......Based on an action research project with 12 preschools in a municipality north of Copenhagen the article investigates and takes a first step in order to create a preschool science Didaktik. The theoretical background comprises a pedagogical/didactical approach based on German critical constructive....... Several problems are discussed, the main being: How can preschool teachers balance children’s sense of wonder, i.e. their construction of knowledge (which often result in a anthropocentric thinking) against a teaching approach, which gives children a scientific understanding of scientific phenomena....

  7. Mainstreaming ESd into Science teacher Education Courses:

    African Journals Online (AJOL)

    2007-12-11

    Dec 11, 2007 ... participating in preserving ecosystems in one's immediate and distant ... of scrap metal; land degradation due to mining and dumping; ... carbon monoxide, carbon dioxide, sulphur dioxide, nitrogen and lead oxides; the dangers of ... products, local foods, and resources such as plants, air, soil and water in ...

  8. Teaching professionalism in science courses: Anatomy to zoology

    Directory of Open Access Journals (Sweden)

    Cheryl C. Macpherson

    2012-02-01

    Full Text Available Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies’ trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences.

  9. Teaching professionalism in science courses: anatomy to zoology.

    Science.gov (United States)

    Macpherson, Cheryl C

    2012-02-01

    Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies' trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences. Copyright © 2011. Published by Elsevier B.V.

  10. Science Education: A Case for Astronomy

    Science.gov (United States)

    Wentzel, Donat G.

    1971-01-01

    Describes astronomy course used as a medium to provide an understanding of how science progresses and how it relates to society. Illustrations are given of how scientific judgment, importance of basic science, humanistic aspects of science, and the priorities among science are presented. (DS)

  11. Developing Food Science Core Competencies in Vietnam: The Role of Experience and Problem Solving in an Industry-Based Undergraduate Research Course

    Science.gov (United States)

    LeGrand, Karen; Yamashita, Lina; Trexler, Cary J.; Vu, Thi Lam An; Young, Glenn M.

    2017-01-01

    Although many educators now recognize the value of problem-based learning and experiential learning, undergraduate-level food science courses that reflect these pedagogical approaches are still relatively novel, especially in East and Southeast Asia. Leveraging existing partnerships with farmers in Vietnam, a food science course for students at…

  12. Educational Software for First Order Logic Semantics in Introductory Logic Courses

    Science.gov (United States)

    Mauco, María Virginia; Ferrante, Enzo; Felice, Laura

    2014-01-01

    Basic courses on logic are common in most computer science curricula. Students often have difficulties in handling formalisms and getting familiar with them. Educational software helps to motivate and improve the teaching-learning processes. Therefore, incorporating these kinds of tools becomes important, because they contribute to gaining…

  13. A Synchronous Distance Education Course for Non-Scientists Coordinated among Three Universities

    Science.gov (United States)

    Smith, Tamara Floyd; Baah, David; Bradley, James; Sidler, Michelle; Hall, Rosine; Daughtrey, Terrell; Curtis, Christine

    2010-01-01

    A Synchronous Distance Education (SDE) course, jointly offered by Auburn University, Tuskegee University and Auburn University at Montgomery, introduced non-science majors to the concepts of nanoscience. Lectures originated from each of the three campuses during the semester, and video conferencing equipment allowed students at all three campuses…

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Science Academies' Refresher Course in Statistical Physics · More Details Fulltext PDF. pp 197-197 Information and Announcements. Science Academies' Refresher Course on Modern Biiotechnology: Concepts and Practice · More Details Fulltext PDF. pp 198-198 Information and Announcements. Forty Ninth Refresher ...

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Quantization of an Ideal Monoatomic Gas · E Fermi · More Details Fulltext PDF. pp 97-97 Information and Announcements. Science Academies' Refresher Course in Experimental Physics · More Details Fulltext PDF. pp 98-98 Information and Announcements. Science Academies' Sixtieth Refresher Course in Experimental ...

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Science Academies' Refresher Course on Paradigms and Applications of Pattern Recognition in Image Processing and Computer Vision · More Details Fulltext PDF. pp 1101-1101 Information and Announcements. Science Academies' Refresher Course on Cell and Molecular Biology Techniques · More Details Fulltext PDF.

  17. Physics Myth Busting: A Lab-Centered Course for Non-Science Students

    Science.gov (United States)

    Madsen, Martin John

    2011-01-01

    There is ongoing interest in how and what we teach in physics courses for non-science students, so-called "physics for poets" courses. Art Hobson has effectively argued that teaching science literacy should be a key ingredient in these courses. Hobson uses Jon Millers definition of science literacy, which has two components: first, "a basic…

  18. The Structure and Assessment of a Unique and Popular Interdisciplinary Science Course for Nonmajors

    Science.gov (United States)

    Train, Tonya Laakko; Gammon, David E.

    2012-01-01

    Science Without Borders is a unique interdisciplinary science course that uses group and active-learning strategies and is in high demand among nonscience majors at a masters-level university. Registrar data showed that nonscience majors were far more likely to choose this course compared with other, discipline-based science courses. In an…

  19. Does science education need the history of science?

    Science.gov (United States)

    Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K

    2008-06-01

    This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Website Reviews. Articles in Resonance – Journal of Science Education. Volume 4 Issue 8 August 1999 pp 91-93 Website Reviews. Website Review · Harini Nagendra · More Details Fulltext PDF ...

  1. English Language Arts and Science Courses in a Virtual School: A Comparative Case Study

    Science.gov (United States)

    Tustin, Rachel Sarah

    Virtual K-12 schools have rapidly become a popular choice for parents and students in the last decade. However, little research has been done on the instructional practices used in virtual courses. As reflected in the central research question, the purpose of this study was to explore how teachers provided instruction for Grade 7-10 students in both English language arts and science courses in a virtual school in a southern state. The conceptual framework was based on Piaget's theory of cognitive development and Garrison, Anderson, and Siemens' research on instructional design. The units of analysis in this qualitative, comparative case study were four virtual courses; the data were collected from teacher and student questionnaires, threaded student discussions, student work samples, and archival records. The first level of data analysis involved coding and categorization using the constant comparative method, and the second level involved examining the data for patterns, themes, and relationships to determine key findings. Results indicated that a standardized virtual course design supported teacher use of direct instruction and summative assessments and some individualized instruction to deliver course content, including adjusting the course pace, conducting individual telephone conferences, and providing small group instruction using Blackboard Elluminate. Opportunities for student interaction and inquiry learning were limited. This study is expected to contribute to positive social change by providing educators and policymakers with an awareness of the critical need for further study of research-based instructional practices in K-12 virtual courses that would improve student learning.

  2. Ethiopian Journal of Education and Sciences: Submissions

    African Journals Online (AJOL)

    General: Journal of Education and Sciences is the product of Jimma University ... and behavioral sciences, current sensitive issues like gender and HIV/AIDS. Priority ... and science studies, and information on teaching and learning facilitation.

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 7. Nature Watch - Tent-making Bats. N Gopukumar J Balasingh. Feature Article Volume 7 Issue ...

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    ... Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 7. Microfluidics – A Lab in Your Palm. Dileep Mampallil Sajan D George. General Article Volume 17 Issue 7 July 2012 pp 682-690 ...

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Events · Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 2. Understanding Active Metal Reaction Kinetis with Cu-Mg Replacement Reaction.

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 6. The Antiquity of Earthquakes. Ramesh Chander Priyamvada Singh. General Article Volume 5 ...

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    ... Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 6. Chaos - Routes to Chaos. K Krishan Manu R Ramaswamy. Series Article Volume 3 Issue 6 June 1998 pp 8-15 ...

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 4. Chaos - Introduction to Chaos. K Krishan Manu R Ramaswamy. Series Article Volume 3 Issue ...

  9. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    ... Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Vibration and Sound Damping in Polymers. V G Geethamma R Asaletha Nandakumar Kalarikkal Sabu Thomas. General Article Volume 19 Issue 9 September 2014 pp 821-833 ...

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 7. Refresher Course in Immunology. Information and Announcements Volume 7 Issue 7 July 2002 pp 92-92. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/07/0092-0092. Resonance – Journal ...

  11. Introductory Statistics Education and the National Science Foundation

    Science.gov (United States)

    Hall, Megan R.; Rowell, Ginger Holmes

    2008-01-01

    This paper describes 27 National Science Foundation supported grant projects that have innovations designed to improve teaching and learning in introductory statistics courses. The characteristics of these projects are compared with the six recommendations given in the "Guidelines for Assessment and Instruction in Statistics Education (GAISE)…

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 10. Quantum Computing - Algorithms. C S Vijay Vishal Gupta. General Article Volume 5 Issue 10 ...

  13. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 6. A Course in Number Theory and Cryptology. Rajat Tandon. Book Review Volume 6 Issue 6 June 2001 pp 91-94. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/06/0091-0094 ...

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. Refresher Course on "Vistas in Zoological Teaching". Information and Announcements Volume 12 Issue 12 December 2007 pp 75-75. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    ... Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 3. Two-Dimensional Collision – at Higher Secondary Level. A W Joshi Vijayshri. Classroom Volume 11 Issue 3 March 2006 pp 69- ...

  16. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 7. Why do Elephants have Big Ear Flaps? Arunn Narasimhan. General Article Volume 13 Issue ...

  17. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 5. Colin Pittendrigh: The Lion in Winter. Russell N Van Gelder. General Article Volume 11 Issue ...

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 11. A Pedagogical Study of Cooling of a Granualar Gas. Rahul Makhijani Praveen Pathak Vijay ...

  19. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 11. Of Flies and Fly Culture. Amitabh Joshi. Book Review Volume 8 Issue 11 November 2003 pp ...

  20. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 4. Nitrix Oxide: The Wonder Molecule. Kushal Chakraborty. General Article Volume 8 Issue 4 ...

  1. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 4. The Special Theory of Relativity. Vasant Natarajan Diptiman Sen. General Article Volume 10 ...

  2. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 7. A Course on Integration Theory. B J Venkatachala. Book Review Volume 2 Issue 7 July 1997 pp 93-94. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/002/07/0093-0094. Author Affiliations.

  3. Fermilab Friends for Science Education | About Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us About Us national leader in precollege science education. From the first Summer Institute for Science Teachers held year over 37,000 students, and 2,500 teachers participated in programs through the Education Office

  4. Fermilab Friends for Science Education | Support Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Support Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education

  5. Fermilab Friends for Science Education | Contact Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Contact Us Science Education P.O Box 500, MS 777 Batavia, IL 60510-5011 (630) 840-3094 * fax: (630) 840-2500 E-mail : Membership Send all other communications to: Susan Dahl, President Fermilab Friends for Science Education Box

  6. Innovation in Science Education - World-Wide.

    Science.gov (United States)

    Baez, Albert V.

    The purpose of this book is to promote improvements in science education, world-wide, but particularly in developing countries. It is addressed to those in positions to make effective contributions to the improvement of science education. The world-wide role of science education, the goals of innovative activities, past experience in efforts to…

  7. Leadership, Responsibility, and Reform in Science Education.

    Science.gov (United States)

    Bybee, Rodger W.

    1993-01-01

    Regards leadership as central to the success of the reform movement in science education. Defines leadership and introduces a model of leadership modified from the one developed by Edwin Locke and his associates. Provides an overview of the essential qualities of leadership occurring in science education. Discusses reforming science education and…

  8. Competency-Based Education: A Framework for Measuring Quality Courses

    Science.gov (United States)

    Krause, Jackie; Dias, Laura Portolese; Schedler, Chris

    2015-01-01

    The growth of competency-based education in an online environment requires the development and measurement of quality competency-based courses. While quality measures for online courses have been developed and standardized, they do not directly align with emerging best practices and principles in the design of quality competency-based online…

  9. Using Sport Education in a University Physical Activity Course

    Science.gov (United States)

    Blocker, Danielle; Wahl-Alexander, Zachary

    2018-01-01

    At a majority of colleges and universities around the country, basic activity courses are taught predicated on teaching students basic skills and instilling healthy habits. The purpose of this article is to outline and describe a physical conditioning course that utilized the sport education (SE) model and emphasized outside engagement to instill…

  10. Motivational decline and recovery in higher education STEM courses

    Science.gov (United States)

    Young, Anna M.; Wendel, Paul J.; Esson, Joan M.; Plank, Kathryn M.

    2018-06-01

    Decline in student motivation is a concern for STEM education, especially for underrepresented groups in the sciences. Using the Science Motivation Questionnaire II, 41 foundational STEM courses were surveyed at the beginning and end of each semester in an academic year at a small primarily undergraduate university. Significant pre- to post-semester declines were observed in each of five measured motivational factors (Intrinsic motivation, Career motivation, Self determination, Self-efficacy, and Grade motivation), with effect sizes ranging from 0.21 to 0.41. However, in the second semester pre-survey, four motivational factors rebounded, including three returning to initial levels, suggesting that the observed motivational decline is not long-lasting. Analysis suggests that declines are not related to survey fatigue or student demographics, but rather to grades and, in the case of one motivational factor, to academic field. These findings suggest that a refocus on grading practices across STEM fields may influence student motivation and persistence in STEM.

  11. Pathways from parental stimulation of children's curiosity to high school science course accomplishments and science career interest and skill

    Science.gov (United States)

    Eskeles Gottfried, Adele; Johnson Preston, Kathleen Suzanne; Gottfried, Allen W.; Oliver, Pamella H.; Delany, Danielle E.; Ibrahim, Sirena M.

    2016-08-01

    Curiosity is fundamental to scientific inquiry and pursuance. Parents are important in encouraging children's involvement in science. This longitudinal study examined pathways from parental stimulation of children's curiosity per se to their science acquisition (SA). A latent variable of SA was indicated by the inter-related variables of high school science course accomplishments, career interest, and skill. A conceptual model investigated parental stimulation of children's curiosity as related to SA via science intrinsic motivation and science achievement. The Fullerton Longitudinal Study provided data spanning school entry through high school (N = 118). Parental stimulation of curiosity at age 8 years comprised exposing children to new experiences, promoting curiosity, encouraging asking questions, and taking children to a museum. Intrinsic motivation was measured at ages 9, 10, and 13 years, and achievement at ages 9, 10, and 11 years. Structural equation modelling was used for analyses. Controlling for socio-economic status, parental stimulation of curiosity bore positive and significant relations to science intrinsic motivation and achievement, which in turn related to SA. Gender neither related to stimulation of curiosity nor contributed to the model. Findings highlight the importance of parental stimulation of children's curiosity in facilitating trajectories into science, and relevance to science education is discussed.

  12. Tutorial Instruction in Science Education

    Directory of Open Access Journals (Sweden)

    Rhea Miles

    2015-06-01

    Full Text Available The purpose of the study is to examine the tutorial practices of in-service teachers to address the underachievement in the science education of K-12 students. Method: In-service teachers in Virginia and North Carolina were given a survey questionnaire to examine how they tutored students who were in need of additional instruction. Results: When these teachers were asked, “How do you describe a typical one-on-one science tutorial session?” the majority of their responses were categorized as teacher-directed. Many of the teachers would provide a science tutorial session for a student after school for 16-30 minutes, one to three times a week. Respondents also indicated they would rely on technology, peer tutoring, scientific inquiry, or themselves for one-on-one science instruction. Over half of the in-service teachers that responded to the questionnaire stated that they would never rely on outside assistance, such as a family member or an after school program to provide tutorial services in science. Additionally, very few reported that they incorporated the ethnicity, culture, or the native language of ELL students into their science tutoring sessions.

  13. Final Comparison Study of Teaching Blended In-Class Courses vs. Teaching Distance Education Courses

    Directory of Open Access Journals (Sweden)

    Susan J. Martin

    2012-12-01

    Full Text Available This paper will share with the members of the conference the findings from the final study. This study contains five semesters of analyzed data which compares the retention of students, final grades for students, grades for five specific tasks that were given in blended in-class courses and in the totally online courses, and a comparison of data by GPA, gender, and by class level. All courses were American Politics PLSC 111. Each semester one or two American Politics courses were conducted in the classroom and one American Politics distance education course was conducted totally online. Each time the courses were given, it was during the same semester and by the same professor who is the researcher.

  14. A sociohistorical examination of George Herbert Mead's approach to science education.

    Science.gov (United States)

    Edwards, Michelle L

    2016-07-01

    Although George Herbert Mead is widely known for his social psychological work, his views on science education also represent a significant, yet sometimes overlooked contribution. In a speech delivered in March 1906 entitled "The Teaching of Science in College," Mead calls for cultural courses on the sciences, such as sociology of science or history of science courses, to increase the relevancy of natural and physical science courses for high school and university students. These views reflect Mead's perspective on a number of traditional dualisms, including objectivity versus subjectivity and the social sciences versus natural and physical sciences. Taking a sociohistorical outlook, I identify the context behind Mead's approach to science education, which includes three major influences: (1) German intellectual thought and the Methodenstreit debate, (2) pragmatism and Darwin's theory of evolution, and (3) social reform efforts in Chicago and the General Science Movement. © The Author(s) 2014.

  15. Participation in an experiential education professional development course: An analysis of the teacher experience

    Science.gov (United States)

    McNamee, Dana Crosby

    Experiential education opportunities are recommended in science classrooms but due to budget and time constraints (Cowart, 2010; Dallimore, et al., 2010; Johnson, 2007) schools often resort to simple science inquiry (Chinn, 2002). While many programs exist with the intention of providing teachers with experiential education opportunities, often these are short-term day trips that do not provide the same learning benefits that an extended program would (Gulamhussein, 2013). To help address these issues in their own classrooms, middle and high school teachers from New England voluntarily chose to participate in an experiential education professional development course. This study examined how the individuals' teaching had or had not changed as a result of their participation in this course. The question that guided this research was: * How do teachers benefit, and how do teachers perceive their students benefit, after their participation in an experiential education professional development course? . Research focused on teachers from middle and high schools across New England who completed a three-day program. Their participation in the course was entirely voluntary. The course goal was to provide teachers with the skills to be able to understand and apply experiential education pedagogy and principles in their classrooms. This interpretative phenomenological analysis found that all participating teachers had made changes to their curriculum and teaching methodologies as a result of their participation in the professional development course. While the experiential learning model (Kolb, 1984) played a significant role how the professional development was implemented during the professional development course for teachers, only portions of the experiential learning model were present when teachers implemented those lessons into their own classes. Regardless, teachers found that students had been impacted through the engagement they felt and the connections they made to

  16. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-01-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be…

  17. SSMA Science Reviewers' Forecasts for the Future of Science Education.

    Science.gov (United States)

    Jinks, Jerry; Hoffer, Terry

    1989-01-01

    Described is a study which was conducted as an exploratory assessment of science reviewers' perceptions for the future of science education. Arrives at interpretations for identified categories of computers and high technology, science curriculum, teacher education, training, certification, standards, teaching methods, and materials. (RT)

  18. Integrating Computational Science Tools into a Thermodynamics Course

    Science.gov (United States)

    Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew

    2018-01-01

    Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of their disciplines, some universities have started to integrate these tools within core courses. This paper evaluates the effect of introducing three computational modules within a thermodynamics course on student disciplinary learning and self-beliefs about computation. The results suggest that using worked examples paired to computer simulations to implement these modules have a positive effect on (1) student disciplinary learning, (2) student perceived ability to do scientific computing, and (3) student perceived ability to do computer programming. These effects were identified regardless of the students' prior experiences with computer programming.

  19. Embedding Probeware Technology in the Context of Ocean Acidification in Elementary Science Methods Courses

    Science.gov (United States)

    Ensign, Todd I.; Rye, James A.; Luna, Melissa J.

    2017-12-01

    Research indicates that preservice teacher (PT) education programs can positively impact perceptions of scientific probeware use in K-8 environments. Despite the potential of probeware to improve science instruction and student engagement, its use in elementary education has been limited. Sixty-seven PT enrolled across three sections of an elementary science methods course participated in a mixed-methods study through which they utilized probeware in a thematic experience on ocean acidification. One-way repeated measures ANOVA of pre and post survey data measuring subscales of utility, ability, and intent to use probeware demonstrated a statistically significant increase with medium to large effect sizes for all subscales across all sections (p<0.01,{η}_p^2=0.384;p<0.001,{η}_p^2=0.517;p<0.001,{η}_p^2=0.214) . Analysis of reflective journals revealed over 60% felt the multiple capabilities (notably graphing) of probeware make it a useful classroom tool, and almost one-half believed that its use makes science more enjoyable and engaging. Mapping of the unitized data from the journals on the Next Generation Science Standards suggested that probeware use especially engages learners in planning and carrying out investigations and in analyzing and interpreting data. Journals also revealed that despite PT having prior experience with probeware in science courses, its use in their future elementary classroom is conditional on having a positive experience with probeware in a science methods course. Further, embedding a probeware experience in a unit on ocean acidification provides PT with strategies for addressing climate change and engaging in argument from evidence.

  20. Acceptance of technology-enhanced learning for a theoretical radiological science course: a randomized controlled trial.

    Science.gov (United States)

    Nkenke, Emeka; Vairaktaris, Elefterios; Bauersachs, Anne; Eitner, Stephan; Budach, Alexander; Knipfer, Christoph; Stelzle, Florian

    2012-03-30

    Technology-enhanced learning (TEL) gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience. 42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation) questionnaire for the evaluation of courses given at universities. Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course. The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course. The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group. It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired. However, technology-enhanced learning cannot completely replace

  1. Acceptance of technology-enhanced learning for a theoretical radiological science course: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Nkenke Emeka

    2012-03-01

    Full Text Available Abstract Background Technology-enhanced learning (TEL gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience. Methods 42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation questionnaire for the evaluation of courses given at universities. Results Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course. The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course. The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group. Conclusions It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired

  2. Acceptance of technology-enhanced learning for a theoretical radiological science course: a randomized controlled trial

    Science.gov (United States)

    2012-01-01

    Background Technology-enhanced learning (TEL) gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience. Methods 42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation) questionnaire for the evaluation of courses given at universities. Results Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course. The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course. The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group. Conclusions It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired. However, technology

  3. Sustainability and the Rural Education Course: is such approach possible?

    Directory of Open Access Journals (Sweden)

    Juliana Pereira Araújo

    2017-12-01

    Full Text Available The Licentiate Course in Rural Education with a degree in Nature Sciences from the Federal University of Goiás - Region Catalão was created in 2014 and since then has been facing challenges for its consolidation. Besides the implementation of a new curriculum design and the training of teacher trainers who also approach field issues, we notice from our daily practice the need to establish anchorage in concepts and theories that actually act for the benefit of the project itself in training for the field. It is in this context, from the absence of anchorages, that we carry out a reflexive study about the concept of sustainability, seeking both the understanding about it and the evaluation of the possibilities of its use as a guide to the practice or theoretical-methodological inspiration. The result of this study indicates that the concept of sustainability is more complex than it seems and requires greater understanding, however, we consider that it derives from it possibilities that should be admitted as the assumption of another role for education in the dimension of sustainable development.

  4. Bridging the Gap: Embedding Communication Courses in the Science Undergraduate Curriculum

    Science.gov (United States)

    Jandciu, Eric; Stewart, Jaclyn J.; Stoodley, Robin; Birol, Gülnur; Han, Andrea; Fox, Joanne A.

    2015-01-01

    The authors describe a model for embedding science communication into the science curriculum without displacing science content. They describe the rationale, development, design, and implementation of two courses taught by science faculty addressing these criteria. They also outline the evaluation plan for these courses, which emphasize broad…

  5. Adding Vectors across the North: Development of Laboratory Component of Distance Education Physics Course

    Science.gov (United States)

    Spencer, V. K.; Solie, D. J.

    2010-12-01

    Bush Physics for the 21st Century (BP21) is a distance education physics course offered through the Interior Aleutians Campus of the University of Alaska Fairbanks. It provides an opportunity for rural Alaskan high school and community college students, many of whom have no other access to advanced science courses, to earn university science credit. The curriculum is mathematically rigorous and includes a laboratory component to prepare students who wish to pursue science and technology careers. The laboratory component has been developed during the past 3 years. Students learn lab safety, basic laboratory technique, experiment components and group collaboration. Experiments have place-based themes and involve skills that translate to rural Alaska when possible. Preliminary data on the general effectiveness of the labs have been analyzed and used to improve the course.

  6. Fermilab Friends for Science Education | Programs

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Programs Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search photo Fermilab Friends for Science Education, in partnership with Fermilab and area educators, designs

  7. Outdoor Education Course - The New Product of a Company Offer

    OpenAIRE

    Beránek, Jiří

    2007-01-01

    and Key Words Title: Outdoor Education Course- The New Product of a Company Offer Aim: Analysis and evaluation of needs and attitudes of the present company clients of Firma na zážitky, s.r.o. company in the outdoor education field to frame a pilot project of an outdoor course programme. Method: Method of questionnare was used to analyse and evaluate needs and attitudes ofthe company clients. Results: A project of outdoor course programme was created according to results of realized research....

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences. Home · About ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 12. Pictures at an Exhibition – A ... Vivek S Borkar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  9. Malaysian nurses' evaluation of transnational higher education courses.

    Science.gov (United States)

    Arunasalam, Nirmala

    The internationalisation of higher education has led some UK and Australian universities to deliver transnational higher education (TNHE) post-registration top-up nursing degree courses in Malaysia. These are bridging courses that allow registered nurses to upgrade their diploma qualifications to degree level. What is not sufficiently explored in the literature is nurses' evaluation of these courses and the impact of TNHE qualifications. A hermeneutic phenomenology approach was used to explore the views of 18 Malaysian nurses from one Australian and two UK TNHE universities. Semi-structured interviews were conducted to enable the Malaysian nurses to evaluate the courses. Data were analysed by thematic analysis. Findings showed a gap between Malaysian and Western teaching and learning outlook, professional values and clinical practices. The data give important insights at a time when the aim of Malaysia's investment in TNHE courses is to attain a graduate workforce with changed mindsets and enhanced patient care.

  10. Increasing Student Success in Large Survey Science Courses via Supplemental Instruction in Learning Centers

    Science.gov (United States)

    Hooper, Eric Jon; Nossal, S.; Watson, L.; Timbie, P.

    2010-05-01

    Large introductory astronomy and physics survey courses can be very challenging and stressful. The University of Wisconsin-Madison Physics Learning Center (PLC) reaches about 10 percent of the students in four introductory physics courses, algebra and calculus based versions of both classical mechanics and electromagnetism. Participants include those potentially most vulnerable to experiencing isolation and hence to having difficulty finding study partners as well as students struggling with the course. They receive specially written tutorials, conceptual summaries, and practice problems; exam reviews; and most importantly, membership in small groups of 3 - 8 students which meet twice per week in a hybrid of traditional teaching and tutoring. Almost all students who regularly participate in the PLC earn at least a "C,” with many earning higher grades. The PLC works closely with other campus programs which seek to increase the participation and enhance the success of underrepresented minorities, first generation college students, and students from lower-income circumstances; and it is well received by students, departmental faculty, and University administration. The PLC staff includes physics education specialists and research scientists with a passion for education. However, the bulk of the teaching is conducted by undergraduates who are majoring in physics, astronomy, mathematics, engineering, and secondary science teaching (many have multiple majors). The staff train these enthusiastic students, denoted Peer Mentor Tutors (PMTs) in general pedagogy and mentoring strategies, as well as the specifics of teaching the physics covered in the course. The PMTs are among the best undergraduates at the university. While currently there is no UW-Madison learning center for astronomy courses, establishing one is a possible future direction. The introductory astronomy courses cater to non-science majors and consequently are less quantitative. However, the basic structure

  11. A graduate course for science communicators: a Mexican approach

    Directory of Open Access Journals (Sweden)

    Elaine Reynoso Haynes

    2009-03-01

    Full Text Available Within the UNAM (The National Autonomous University of Mexico there is an institution, the Dirección General de Divulgación de la Ciencia (DGDC devoted to the popularization of science through different media such as museums, exhibitions, journals, books, radio and TV programs, internet, workshops for children, demos, shows, plays, summer courses and outreach programs. Most of these products and materials are planned, designed and manufactured by a multidisciplinary team of professionals in the DGDC. Some of our most outstanding projects are: the creation and operation of two science museums, UNIVERSUM (on the university campus, and the Museo de la Luz (Museum of Light in the center of the city, many temporary and traveling exhibitions, museums in other parts of the country and abroad and a monthly publication for young readers called ¿Cómo ves?

  12. A New Coherent Science Content Storyline Astronomy Course for Pre-Service Teachers at Penn State

    Science.gov (United States)

    Palma, Christopher; Plummer, Julia; Earth and Space Science Partnership

    2016-01-01

    The Earth and Space Science Partnership (ESSP) is a collaboration among Penn State scientists, science educators and seven school districts across Pennsylvania. One of the ESSP goals has been to provide pre-service teachers with new or improved science course offerings at Penn State in the Earth and Space Science domains. In particular, we aim to provide students with opportunities to learn astronomy content knowledge through teaching methods that engage them in investigations where they experience the practices used by astronomers. We have designed a new course that builds on our research into students' ideas about Solar System astronomy (Plummer et al. 2015) and the curriculum our team created for a professional development workshop for in-service teachers (Palma et al. 2013) with this same theme. The course was offered for the first time in the spring 2015 semester. We designed the course using a coherent science content storyline approach (see, e.g., Palma et al. 2014), which requires all of the student investigations to build towards a big idea in science; in this case, we chose the model for formation of our Solar System. The course led pre-service teachers through a series of investigations that model the type of instruction we hope they will adopt in their own classrooms. They were presented with a series of research questions that all tie in to the big idea of Solar System formation, and they were responsible for collecting and interpreting their own data to draw evidence-based conclusions about one aspect of this model. Students in the course were assessed on their astronomy content knowledge, but also on their ability to construct arguments using scientific reasoning to answer astronomy questions. In this poster, we will present descriptions of the investigations, the assessments used, and our preliminary results about how the course led this group of pre-service teachers to improved understanding of astronomy content and the practices astronomers use in

  13. A systematic review of factors influencing student ratings in undergraduate medical education course evaluations.

    Science.gov (United States)

    Schiekirka, Sarah; Raupach, Tobias

    2015-03-05

    Student ratings are a popular source of course evaluations in undergraduate medical education. Data on the reliability and validity of such ratings have mostly been derived from studies unrelated to medical education. Since medical education differs considerably from other higher education settings, an analysis of factors influencing overall student ratings with a specific focus on medical education was needed. For the purpose of this systematic review, online databases (PubMed, PsycInfo and Web of Science) were searched up to August 1st, 2013. Original research articles on the use of student ratings in course evaluations in undergraduate medical education were eligible for inclusion. Included studies considered the format of evaluation tools and assessed the association of independent and dependent (i.e., overall course ratings) variables. Inclusion and exclusion criteria were checked by two independent reviewers, and results were synthesised in a narrative review. Twenty-five studies met the inclusion criteria. Qualitative research (2 studies) indicated that overall course ratings are mainly influenced by student satisfaction with teaching and exam difficulty rather than objective determinants of high quality teaching. Quantitative research (23 studies) yielded various influencing factors related to four categories: student characteristics, exposure to teaching, satisfaction with examinations and the evaluation process itself. Female gender, greater initial interest in course content, higher exam scores and higher satisfaction with exams were associated with more positive overall course ratings. Due to the heterogeneity and methodological limitations of included studies, results must be interpreted with caution. Medical educators need to be aware of various influences on student ratings when developing data collection instruments and interpreting evaluation results. More research into the reliability and validity of overall course ratings as typically used in the

  14. An analysis of the information technology discipline in archival sciences undergraduate courses of universities from the south of Brazil

    Directory of Open Access Journals (Sweden)

    Nelma Camêlo Araujo

    2009-10-01

    Full Text Available The present article is part of a research conducted at universities of the south of Brazil that offers disciplines of Information Technology in Archival Sciences undergraduate courses. The research objective to identify through the educational project of these courses the subjects which have emphasis in the Information Technology, as well as to identify the teachers’ perception about the condition of these subjects in enabling the student for the challenges of the work market

  15. Performing the Future. On the Use of Drama in Philosophy Courses for Science Students

    Science.gov (United States)

    Toonders, Winnie; Verhoeff, Roald P.; Zwart, Hub

    2016-10-01

    Drama is a relatively unexplored tool in academic science education. This paper addresses in what way the use of drama may allow science students to deepen their understanding of recent developments in the emerging and controversial field of neuro-enhancement, by means of a case study approach. First, we emphasise the congruency between drama and science, notably the dramatic dimension of experimental research. Subsequently, we draw on educational literature to elaborate the potential of using drama as a teaching modality, specifically focusing on the ethical and moral dimensions of future techno-scientific innovations. Our case study consisted of a drama experiment as a module in a philosophy course on human enhancement. Twenty-two students from various science disciplines performed multiple roles, as authors, actors, audience and reviewers. Qualitative data were collected on the educational process and student performance during the course, i.e. observations and video recordings of class discussions, group work and plays, interviews and questionnaires. Our drama experiment proved to be effective in enabling students to explore and relate to a future life world affected by enhancement technologies. It allowed them to deepen their awareness of social and ethical implications of neuro-technologies and of the different viewpoints people may have on this issue in academic, professional or everyday settings. Moreover, drama allowed them to develop a reflexive position of their own in the neuro-enhancement debate by enacting a moral dilemma in front of an audience. Our results confirm the potential of drama as a tool for exploring techno-scientific futures in science education.

  16. Benefits and Limitations of Online Instruction in Natural Science Undergraduate Liberal Arts Courses

    Science.gov (United States)

    Liddicoat, Joseph; Roberts, Godfrey; Liddicoat, Kendra; Porzecanski, Ana Luz; Mendez, Martin; McMullen, David

    2013-04-01

    Online courses in the Natural Sciences are taught three ways at New York University to undergraduate students majoring in the liberal arts and professional programs - synchronous courses in which students communicate online with the instructor and classmates in real time, asynchronous courses when faculty present course material for students to access and learn at their leisure, and hybrid or blended courses when part is taught asynchronously and part is taught face-to-face in a classroom with all students present. We have done online courses each way - Global Ecology (synchronous); Stars, Planets, and Life (synchronous and asynchronous); Darwin to DNA: An Overview of Evolution (asynchronous); Biodiversity Conservation (asynchronous); and Biology of Hunger and Population (blended). We will present the advantages and challenges we experienced teaching courses online in this fashion. Besides the advantages listed in the description for this session, another can be programmed learning that allows a set of sequential steps or a more complex branching of steps that allows students to repeat lessons multiple times to master the material. And from an academic standpoint, course content and assessment can be standardized, making it possible for each student to learn the same material. Challenges include resistance to online learning by a host of stakeholders who might be educators, students, parents, and the community. Equally challenging might be the readiness of instructors and students to teach and learn online. Student integrity issues such as plagiarism and cheating are a concern in a course taught online (Thormann and Zimmerman, 2012), so we will discuss our strategies to mitigate them.

  17. Prospective Science Teachers' Attitudes and Views of Using Journal Writing in the "Methods of Teaching Science" Course

    Science.gov (United States)

    Ambusaidi, Abdullah

    2014-01-01

    The aim of this study was to investigate the attitudes of prospective science teachers at Sultan Qaboos University towards and their views about using journal writing in the Methods of Teaching Science course. Twenty-six prospective science teachers were asked to write about each topic in the course in their journal to show their understanding of…

  18. Social Science Boot Camp: Development and Assessment of a Foundational Course on Academic Literacy in the Social Sciences

    Science.gov (United States)

    Eaton, Judy; Long, Jennifer; Morris, David

    2018-01-01

    We developed a course, as part of our institution's core program, which provides students with a foundation in academic literacy in the social sciences: how to find, read, critically assess, and communicate about social science research. It is not a research methods course; rather, it is intended to introduce students to the social sciences and be…

  19. Physiotherapy Students’ Attitudes to Basic Medical Sciences Courses

    Directory of Open Access Journals (Sweden)

    Vasaghi Gharamaleki B

    2015-04-01

    Full Text Available  Aims: Students’ attitude to the basic sciences courses has a considerable impact in their clinical practice. The aim of this study was to investigate the attitudes of undergraduate and graduate students to the Physiotherapy rather than basic science. Instrument & Methods: This descriptive cross-sectional study was done on 151 undergraduate and graduate schools of Physiotherapy and Rehabilitation, Tehran and Iran University of Medical Sciences students using easy access sampling in October and November of 2012. To evaluate the attitude and the importance and effectiveness subscales the West questionnaire was used. Data were analyzed using SPSS 17 software using One-way ANOVA, independent T, and logistic regression tests. Findings: There was a significant difference between the sexes in response to items 1, 4, 7 and 8. The attitudes mean and the importance and effectiveness subscales were greater in women in the bachelor fifth and seventh semesters. The attitude and the importance of women were significantly more positive than men in Master degree students of the first semester, but there was no statistically significant difference between the sexes in the third semester of the Master degree students. Conclusion: Bachelor and Master students' positive attitudes toward physical science is affected by their gender and women pay more attention to learn treatment physiologically details, while men are more likely to emphasize on the results of the treatment. By increasing the presence of women in Master degrees their attitude get closer to men.

  20. The rate of knowledge retention in basic sciences courses among dentistry students

    Directory of Open Access Journals (Sweden)

    S.S Mazloomi

    2009-03-01

    Full Text Available Background: Acquiring and recalling knowledge can be considered as the starting point of learning; so increasing  the acquisition  of knowledge and information  recall is one the most important goals of education.Objective: To determine the students'  information recall in the basic courses of histology, immunology, physiology, biochemistry,  head and neck anatomy,  and microbiology  in dentistry  school.Method:  In this descriptive  survey, 60 students who had passed their basis courses were studied. The tests  were  held  five semesters  following  the basic  courses,  and  were  like  those  they  had  passed previously.Results: The results revealed that information recall was the highest for the physiology course (z=0.72, while it was the lowest for anatomy (z=0.07. For the histology course, the lowest mean score was achieved by the students entered in the  year 1997, and the highest  by those  entered  in 1999. The relationship between the entry year  of the  students  and  their  information recall  is  statistically significant  (p<0.05.Discussant: The results showed that the teaching basic science courses such as physiology, anatomy, immunology, microbiology, and biochemistry should  accompany new  strategies in  teaching  and learning. One of these is the inclusion by the teachers of retrieval cues in any course so as to facilitate learning.Keywords:  knowledge retention,  basic sciences

  1. Development of an ICT in IBSE course for science teachers: A design-based research

    Science.gov (United States)

    Tran, Trinh-Ba

    2018-01-01

    Integration of ICT tools for measuring with sensors, analyzing video, and modelling into Inquiry-Based Science Education (IBSE) is a need globally recognized. The challenge to teachers is how to turn manipulation of equipment and software into manipulation of ideas. We have developed a short ICT in IBSE course to prepare and support science teachers to teach inquiry-based activities with ICT tools. Within the framework of design-based research, we first defined the pedagogical principles from the literature, developed core materials for teacher learning, explored boundary conditions of the training in different countries, and elaborated set-ups of the course for the Dutch, Slovak, and Vietnamese contexts. Next, we taught and evaluated three iterative cycles of the Dutch course set-ups for pre-service science teachers from four teacher-education institutes nationwide. In each cycle, data on the teacher learning was collected via observations, questionnaires, interviews, and documents. These data were then analyzed for the questions about faithful implementation and effectiveness of the course. Following the same approach, we taught and evaluated two cycles of the Slovak course set-ups for in-service science teachers in the context of the national accreditation programme for teacher professional development. In addition, we investigated applicability of the final Dutch course set-up in the context of the physics-education master program in Vietnam with adaptations geared to educational and cultural difference. Through the iterations of implementation, evaluation, and revision, eventually the course objectives were achieved to certain extent; the pedagogical principles and core materials proved to be effective and applicable in different contexts. We started this research and design project with the pedagogical principles and concluded it with these principles (i.e. complete theory-practice cycle, depth first, distributed learning, and ownership of learning) as the

  2. A Case Study of an Affective Education Course in Taiwan

    Science.gov (United States)

    Wang, Chin-Chiang; Ku, Heng-Yu

    2010-01-01

    The purpose of this study was to identify the components of a framework for affective education implementation based on a positive psychology approach. A fifth grade class of 31 students in a public rural elementary school in Taiwan participated in a 13-week long affective education course that consisted of six units: Self-discovery, Love and…

  3. What's up DOCC? Creating Third Space Courses in Teacher Education

    Science.gov (United States)

    Elsden-Clifton, Jennifer; Jordan, Kathy

    2015-01-01

    There are increasing calls to improve the quality of Teacher Education by reconceptualising the connection between university-based coursework and the teaching practicum. In response, the School of Education at RMIT University, Melbourne, Victoria redesigned courses in its first year program to interconnect the two spaces of universities (first…

  4. The knowledge most worth having: Otis W. Caldwell (1869 1947) and the rise of the general science course

    Science.gov (United States)

    Heffron, John M.

    1995-07-01

    In 1860 Herbert Spencer asked the famous rhetorical question ‘What Knowledge is of Most Worth?’ The unequivocal answer was science. Giving greater attention to science and scientific knowledge would not only produce additional scientists; more important, argued Spencer, it would make better parents, better church-goers, better citizens and workers, better artists and better consumers of art. It would lead to a ‘command of fundamental processes’, ‘worthy home membership’, ‘worthy use of leisure’, ‘ethical character’ — the goals of a general education spelled out by Spencerians within the National Educational Association in 1918. Here is our puzzle, then: how are we to interpret a definition of science, one widely accepted both in Spencer's time and in our own, that comes so close descriptively to a commonsensical view of what constitutes non-science? The answer to this question lies in part in the historical relationship between science and general education, a relationship established in the opening decades of this century, when the authority of science and scientific objectivity was in the minds of most educators unimpeachable. The high school general science course, developed in its early stages by the botanist and educator, Otis W. Caldwell, was a potent symbol of this new relationship. Organized around broad, topical issues and claiming to teach the mundane truths of life, general science was more than a loose collection of facts from the various earth, biological, and physical sciences. Its many advocates viewed the new unified science course as pedagogically independent of the specialties yet central to education in general. In 1949, two years after Caldwell's death, 72 percent of the total science enrollments in the United States were in general science and biology, its closest cognate. This paper examines the rise of the general science course and its implications for the reform of secondary school science education. It concludes that

  5. Chinese National Optical Education Small Private Online Course system

    Science.gov (United States)

    Zhang, XiaoJie; Lin, YuanFang; Liu, Xu; Liu, XiangDong; Cen, ZhaoFeng; Li, XiaoTong; Zheng, XiaoDong; Wang, XiaoPing

    2017-08-01

    In order to realize the sharing of high quality course resources and promote the deep integration of `Internet+' higher education and talent training, a new on-line to off-line specialized courses teaching mode was explored in Chinese colleges and universities, which emphasized different teaching places, being organized asynchronously and localized. The latest progress of the Chinese National Optical Education Small Private On-line Course (CNOESPOC) system set up by Zhejiang University and other colleges and universities having disciplines in the field of optics and photonics under the guidance of the Chinese National Steering Committee of Optics and Photonics (CNSCOP) was introduced in this paper. The On-line to Off-line (O2O) optical education teaching resource sharing practice offers a new good example for higher education in China under the background of Internet +.

  6. French language space science educational outreach

    Science.gov (United States)

    Schofield, I.; Masongsong, E. V.; Connors, M. G.

    2015-12-01

    Athabasca University's AUTUMNX ground-based magnetometer array to measure and report geomagnetic conditions in eastern Canada is located in the heart of French speaking Canada. Through the course of the project, we have had the privilege to partner with schools, universities, astronomy clubs and government agencies across Quebec, all of which operate primarily in French. To acknowledge and serve the needs of our research partners, we have endeavored to produce educational and outreach (EPO) material adapted for francophone audiences with the help of UCLA's department of Earth, Planetary and Space Sciences (EPSS). Not only will this provide greater understanding and appreciation of the geospace environment unique to Quebec and surrounding regions, it strengthens our ties with our francophone, first nations (native Americans) and Inuit partners, trailblazing new paths of research collaboration and inspiring future generations of researchers.

  7. Course on Radiological Protection and Quality Assurance in Radiology. Tele-education course: A Possible Solution to continued Postgraduate training

    International Nuclear Information System (INIS)

    Alcaraz, M.; Chico, P.; Saura Iniesta, A.; Armero, D.; Vicente, V.

    2004-01-01

    The creation of an interdepartmental project subsidised by the Spanish Ministry of Education has made it possible to create a series of specific didactic materials on Radiological Protection and Quality Assurance in Medical Radiodiagnostic Practices, leading to the publication of a specific manual and practical notebook. As a result, this material now constitutes the working basis for those professionals exposed to ionising radiation who are following the first continuous tele-education training course in Spanish via the Internet on this subject. Interactive multimedia training and tele-education may become one of the alternatives that allow health science professionals to receive continuous training, if adequate content and aims have been established during undergraduate training. (Author) 18 refs

  8. A Module-Based Environmental Science Course for Teaching Ecology to Non-Majors

    Science.gov (United States)

    Smith, Geoffrey R.

    2010-01-01

    Using module-based courses has been suggested to improve undergraduate science courses. A course based around a series of modules focused on major environmental issues might be an effective way to teach non-science majors about ecology and ecology's role in helping to solve environmental problems. I have used such a module-based environmental…

  9. College Student Perceptions of Psychology as a Science as a Function of Psychology Course Enrollment

    Science.gov (United States)

    Pettijohn, Terry F., II; Pettijohn, Terry F.; Brenneman, Miranda M.; Glass, Jamie N.; Brito, Gabriela R.; Terranova, Andrew M.; Kim, JongHan; Meyersburg, C. A.; Piroch, Joan

    2015-01-01

    College students (N = 297) completed a perceptions of psychology as a science survey before and after completion of psychology courses. Psychology as a science scores increased significantly from the beginning to the end of the research methods courses, but scores in introductory psychology courses did not change and scores for students in…

  10. Research and Teaching: Reenvisioning the Introductory Science Course as a Cognitive Apprenticeship

    Science.gov (United States)

    Thompson, Meredith M.; Pastorino, Lucia; Lee, Star; Lipton, Paul

    2016-01-01

    Introductory science courses play a critical role in the recruitment and retention of undergraduate science majors. In particular, first-year courses are opportunities to engage students in scientific practices and motivate them to consider scientific careers. We developed an introductory course using a semester-long series of established…

  11. Hands-on science: science education with and for society

    OpenAIRE

    Costa, Manuel F. M., ed. lit.; Pombo, José Miguel Marques, ed. lit.; Vázquez Dorrío, José Benito, ed. lit.

    2014-01-01

    The decisive importance of Science on the development of modern societies gives Science Education a role of special impact. Society sets the requirements rules and procedures of Education defining what concepts and competencies citizens must learn and how this learning should take place. Educational policies set by governments, elected and or imposed, not always reflects the will and ruling of Society. The School as pivotal element of our modern educational system must look ...

  12. A Comprehensive Course Introducing Environmental Science : Case Study of “Introduction to Environmental Science” as a Common Course in the Graduate School of Environmental Science

    OpenAIRE

    山中, 康裕; 三井, 翔太

    2017-01-01

    The course “Introduction to Environmental Science” was designed and held during the academic year 2015-2016 for new masterʼs course students at the Graduate School of Environmental Science, Hokkaido University. The course was designed in accord with societal needs such as consensus building for environmental conservation and associated scientific evidence, bringing together a large number of students from various disciplines. The course was composed of six modules in which multipl...

  13. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  14. The Effects of Teaching a Science Topic in the Regents Living Environment Course in a Mini-Lesson Instructional Environment

    Science.gov (United States)

    Barrows, Calder James

    2010-01-01

    This study investigated the effects on high school students' understanding of studying a science topic in the Regents Living Environment course using a Mini-Lesson educational protocol. Mini-Lesson instruction is one of guided instruction, which consists primarily of three sections. First, a brief, focused section in which the teachers explicitly…

  15. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  16. Persuasion and Attitude Change in Science Education.

    Science.gov (United States)

    Koballa, Thomas R., Jr.

    1992-01-01

    Persuasion is presented as it may be applied by science educators in research and practice. The orientation taken is that science educators need to be acquainted with persuasion in the context of social influence and learning theory to be able to evaluate its usefulness as a mechanism for developing and changing science-related attitudes. (KR)

  17. Optimization of courses offer in educational institutions

    Directory of Open Access Journals (Sweden)

    Rafael López Bracho

    2015-08-01

    Full Text Available In the problem of scheduling of courses, it is generally assumed that the allocation of subjects to teaching periods is an input of the problem, which is defined by the academic authorities. This paper presents a methodology that makes use of linear programs with 0-1 integer variables, to establish the assignment of subjects to teaching periods, which takes into account the degree of difficulty of each subject and academic requirements of these, with the objective of minimizing the differences in degree of difficulty between the various academic periods.

  18. The Effect of Enrollment in Middle School Challenge Courses on Advanced Placement Exams in Social Studies and Science

    Science.gov (United States)

    Glaude-Bolte, Katherine

    Educators seek to guide students through appropriate programs and courses that prepare them for future success, in more advanced coursework and in other challenges of life. Some middle schools offer Challenge, or honors, courses for students who have demonstrated high ability. High schools often offer Advanced Placement (AP) courses, which are taught at the college level. This study examined the correlation between enrollment in middle school Challenge courses and subsequent AP exam category scores in social studies and science in a suburban school district. The independent variables were the number of years of enrollment in middle school social studies or science Challenge courses. The dependent variables were the AP exam category scores in the eight social studies AP courses or the six science AP courses. The sample sizes were limited to the number of students who took an AP social studies or science exam and also attended the middle school of study. The null hypothesis was that there was no relationship between the two variables. This study included eight social studies AP courses and six science AP courses. A significant positive correlation was indicated in only two of the courses, U.S. Government and Comparative Government, supporting the claim that enrollment in middle school Challenge social studies was correlated with success, at least on these two AP exams. In the remaining 12 courses, there was not enough evidence to reject the null hypothesis. Therefore, enrollment in middle school Challenge science and social studies courses generally did not seem to correlate with AP exam category scores. Results of this study call into question the validity of the claim by the district that enrollment in Challenge courses helps prepare students for rigorous coursework in high school. Several factors, including student readiness, teacher training, familiarity with course content, and previous AP experience may contribute more to a student's AP exam category score

  19. Women and girls in science education: Female teachers' and students' perspectives on gender and science

    Science.gov (United States)

    Crotty, Ann

    Science is a part of all students' education, PreK-12. Preparing students for a more scientifically and technologically complex world requires the best possible education including the deliberate inclusion and full contributions of all students, especially an underrepresented group: females in science. In the United States, as elsewhere in the world, the participation of girls and women in science education and professional careers in science is limited, particularly in the physical sciences (National Academy of Sciences [NAS], 2006). The goal of this research study is to gain a better understanding of the perspectives and perceptions of girls and women, both science educators and students, related to gender and participation in science at the time of an important course: high school chemistry. There is a rich body of research literature in science education that addresses gender studies post---high school, but less research that recognizes the affective voices of practicing female science teachers and students at the high school level (Bianchini, Cavazos, & Helms, 2000; Brown & Gilligan, 1992; Gilligan, 1982). Similarly, little is known with regard to how female students and teachers navigate their educational, personal, and professional experiences in science, or how they overcome impediments that pose limits on their participation in science, particularly the physical sciences. This exploratory study focuses on capturing voices (Brown & Gilligan, 1992; Gilligan, 1982) of high school chemistry students and teachers from selected urban and suburban learning communities in public schools in the Capital Region of New York State. Through surveys, interviews, and focus groups, this qualitative study explores the intersection of the students' and teachers' experiences with regard to the following questions: (1) How do female chemistry teachers view the role gender has played in their professional and personal lives as they have pursued education, degree status, and

  20. A Comparison of Didactic and Inquiry Teaching Methods in a Rural Community College Earth Science Course

    Science.gov (United States)

    Beam, Margery Elizabeth

    The combination of increasing enrollment and the importance of providing transfer students a solid foundation in science calls for science faculty to evaluate teaching methods in rural community colleges. The purpose of this study was to examine and compare the effectiveness of two teaching methods, inquiry teaching methods and didactic teaching methods, applied in a rural community college earth science course. Two groups of students were taught the same content via inquiry and didactic teaching methods. Analysis of quantitative data included a non-parametric ranking statistical testing method in which the difference between the rankings and the median of the post-test scores was analyzed for significance. Results indicated there was not a significant statistical difference between the teaching methods for the group of students participating in the research. The practical and educational significance of this study provides valuable perspectives on teaching methods and student learning styles in rural community colleges.

  1. Cultural studies of science education

    Science.gov (United States)

    Higgins, Joanna; McDonald, Geraldine

    2008-07-01

    In response to Stetsenko's [2008, Cultural Studies of Science Education, 3] call for a more unified approach in sociocultural perspectives, this paper traces the origins of the use of sociocultural ideas in New Zealand from the 1970s to the present. Of those New Zealanders working from a sociocultural perspective who responded to our query most had encountered these ideas while overseas. More recently activity theory has been of interest and used in reports of work in early childhood, workplace change in the apple industry, and in-service teacher education. In all these projects the use of activity theory has been useful for understanding how the elements of a system can transform the activity. We end by agreeing with Stetsenko that there needs to be a more concerted approach by those working from a sociocultural perspective to recognise the contribution of others in the field.

  2. Laboratory Development and Lecture Renovation for a Science of Food and Cooking Course

    Science.gov (United States)

    Miles, Deon T.; Borchardt, Adrienne C.

    2014-01-01

    Several years ago, a new nonscience majors course, The Science of Food and Cooking, was developed at our institution. The course covered basic scientific concepts that would normally be discussed in a typical introductory chemistry course, in the context of food and food preparation. Recently, the course has been revamped in three major ways: (1)…

  3. Levinas and an Ethics for Science Education

    Science.gov (United States)

    Blades, David W.

    2006-01-01

    Despite claims that STS(E) science education promotes ethical responsibility, this approach is not supported by a clear philosophy of ethics. This paper argues that the work of Emmanuel Levinas provides an ethics suitable for an STS(E) science education. His concept of the face of the Other redefines education as learning from the other, rather…

  4. Targeting Future Customers: An Introductory Biobanking Course for Undergraduate Students of Life Sciences.

    Science.gov (United States)

    Abdelhafiz, Ahmed Samir; Fouda, Merhan Ahmed; El-Jaafary, Shaimaa Ibrahim; Farghly, Maysa Ibrahim; Salem, Mazen; Tammam, Ahmed; Gabr, Hala

    2017-08-01

    Biobanking is a relatively new concept in the Arab region. Targeting different stakeholders to introduce the concept of biobanking and develop an acceptance of it among them is important for the growth of biobanking in the region. Undergraduate students of life sciences represent an important segment of stakeholders, since they constitute potential future biobank customers. Limited funding, lack of awareness of the existence of the term "biobanking" itself among these students, and questions regarding best marketing strategies presented challenges to planning for the most effective message delivery to this target group. A specific course was designed for undergraduate students of life sciences, which was conducted at the Faculty of Medicine, Cairo University, Egypt. The course was conducted twice in 2016 and included lectures covering biobanking, quality, ethics, information technology, and translational research. Facebook and word-of-mouth were used for marketing and advertising. A total number of 125 participants attended both courses cumulatively. Facebook appeared to have been an effective marketing outlet, especially when paid advertisements were used. Evaluation of knowledge, measured using a pretest and posttest, demonstrated some improvement in knowledge of participants. Evaluation forms filled after the course showed positive attitude toward content and message delivery by a majority of participants. Facebook was also used as an evaluation method through analysis of engagement with posts created after course completion. Biobanking education can be carried out effectively with limited resources. Understanding the needs of the target group and using appropriate methods of communication are essential prerequisites to a well-tailored curriculum and effective message delivery. Using Facebook appears to be an effective and affordable method of communication and advertising. Targeting undergraduate students of life sciences interested in research is a good

  5. Developing Earth System Science Courses and Programs at Minority Serving Institutions

    Science.gov (United States)

    Johnson, D. R.; Jackson, C.; Ruzek, M.

    2004-12-01

    In the current NASA/USRA ESSE21 Program, emphasis is placed on the development of Earth System Science courses and degree offerings in Minority Serving Institutions (MSIs). Of the 18 colleges/universities being supported by NASA through USRA, 10 colleges/universities are MSIs. While there is recognition of the need for Earth system science courses, minors and degree programs by NASA and other agencies, within MSIs, a central challenge is how to provide a vision of the future opportunities in ESS and STEM disciplines that attracts and motivates students to these studies. Students need career guidance, role models and mentoring to encourage entry into STEM in general, and Earth system science in particular. Then there is the question of how to bring interested faculty together in institutions to form a critical mass that would forego the breadth and depth of disciplinary interests to undertake the development of multi/cross and interdisciplinary courses, minors and degree programs in ESS. Within the ESSE21 Diversity Working Group, the question has been raised as to how will MSIs ever be mainstream participants in ESS without teaching and engaging in research in remote sensing, modeling of the Earth's climate system and other like endeavors. Two other related questions raised within the Working Group are what are the long-term objectives of MSI adoption of ESS and what course corrections are needed to make ESS viable at MSIs. Within these considerations there are unresolved questions concerning the need and availability of resources from NASA, other agencies and local institutions. Apart from these larger considerations, efforts are underway within the ESSE21 Program that provide for sharing of resources among participants, organization of and access to materials that already exist, online resources, course outlines and successful listings for online resources by topics for particular courses and subject areas. The Lesson Learned Working Group, as well as the program

  6. Introduction of virtual reality system into education and training course

    International Nuclear Information System (INIS)

    Nakashima, Satoru; Inada, Kuninobu; Matsushima, Akihito; Koba, Ryoji; Teramoto, Hiroaki; Yamasaki, Naomi; Shizuma, Kiyoshi

    2007-01-01

    A Virtual Reality System was introduced into the Education and Training Course. This system covers a 2 hr lesson in the safe handling of radioisotopes. Students took this course with great interest. Questionnaires revealed that they learned how to handle radioisotopes safely. Some students, however, did not understand the meaning of the experiments, because they did not know the kind of radiation from radioisotopes used. It was suggested that the system combined with an effective lecture would have a greater effect. (author)

  7. Teaching Graduate Students How To Do Informal Science Education

    Science.gov (United States)

    Ackerman, S. A.; Crone, W.; Dunwoody, S. L.; Zenner, G.

    2011-12-01

    One of the most important skills a student needs to develop during their graduate days is the skill of communicating their scientific work with a wide array of audiences. That facility will serve them across audiences, from scientific peers to students to neighbors and the general public. Increasingly, graduate students express a need for training in skills needed to manage diverse communicative environments. In response to that need we have created a course for graduate students in STEM-related fields which provides a structured framework and experiential learning about informal science education. This course seeks to familiarize students with concepts and processes important to communicating science successfully to a variety of audiences. A semester-long course, "Informal Science Education for Scientists: A Practicum," has been co-taught by a scientist/engineer and a social scientist/humanist over several years through the Delta Program in Research, Teaching, & Learning at the University of Wisconsin-Madison. The course is project based and understanding audience is stressed throughout the class. Through development and exhibition of the group project, students experience front end, formative and summative evaluation methods. The disciplines of the participating students is broad, but includes students in the geosciences each year. After a brief description of the course and its evolution, we will present assessment and evaluation results from seven different iterations of the course showing significant gains in how informed students felt about evaluation as a tool to determine the effectiveness of their science outreach activities. Significant gains were found in the graduate students' perceptions that they were better qualified to explain a research topic to a lay audience, and in the students' confidence in using and understanding evaluation techniques to determine the effectiveness of communication strategies. There were also increases in the students

  8. Communicating the Benefits of a Full Sequence of High School Science Courses

    Science.gov (United States)

    Nicholas, Catherine Marie

    2014-01-01

    High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit…

  9. Science Education at Arts-Focused Colleges

    Science.gov (United States)

    Oswald, W. Wyatt; Ritchie, Aarika; Murray, Amy Vashlishan; Honea, Jon

    2016-01-01

    Many arts-focused colleges and universities in the United States offer their undergraduate students coursework in science. To better understand the delivery of science education at this type of institution, this article surveys the science programs of forty-one arts-oriented schools. The findings suggest that most science programs are located in…

  10. Discovering Science Education in the USA

    Science.gov (United States)

    Teaching Science, 2014

    2014-01-01

    Science is amazing for many reasons. One of them is its immeasurable size as a subject, and the breadth of its application. From nanotech to astrophysics, from our backyards to the global arena, science links everything and everyone on Earth. Our understanding of science--and science education--needs to be just as diverse and all-encompassing.…

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 1. An Introduction to Parallel ... Abhiram Ranade1. Department of Computer Science and Engineering, Indian Institute of Technology Powai, Mumbai 400076, India ...

  12. Educational Game Systems in Artificial Intelligence Course

    Science.gov (United States)

    Chubarkova, Elena V.; Sadchikov, Ilya A.; Suslova, Irina A.; Tsaregorodtsev, Andrey ?.; Milova, Larisa N.

    2016-01-01

    Article actuality based on fact that existing knowledge system aimed at future professional life of students: a skillful use game activity in educational process will teach students to look for alternative ways solving of real problems. The purpose of article lies in theoretical substantiation, development and testing of criteria, which must be…

  13. Students’ perceptions of the academic learning environment in seven medical sciences courses based on DREEM

    Science.gov (United States)

    Bakhshialiabad, Hamid; Bakhshi, Mohammadhosien; Hassanshahi, Gholamhossein

    2015-01-01

    Objective Learning environment has a significant role in determining students’ academic achievement and learning. The aim of this study is to investigate the viewpoints of undergraduate medical sciences students on the learning environment using the Dundee Ready Education Environment Measure (DREEM) at Rafsanjan University of Medical Sciences (RUMS). Methods The descriptive cross-sectional study was performed on 493 medical sciences students in the following majors: nursing, midwifery, radiology, operating room nursing, laboratory sciences, medical emergency, and anesthesia. The DREEM questionnaire was used as a standard tool. Data were analyzed using SPSS (v17) software. Student’s t-tests and analysis of variance (ANOVA) statistical tests were used. Results The mean of the achieved scores in the five domains was 113.5 out of 200 (56.74%), which was considered to be more positive than negative. The total mean scores for perception of learning, teaching, and atmosphere were 27.4/48 (57.24%), 24.60/44 (55.91%), and 26.8/48 (55.89%), respectively. Academic and social self-perceptions were 20.5/32 (64.11%) and 15.7/28 (56.36%), respectively. The total DREEM scores varied significantly between courses (Penvironment. The differences between courses and their study pathway should be further investigated by analysis of specific items. Our results showed that it is essential for faculty members and course managers to make more efforts toward observing principles of instructional designs, to create an appropriate educational environment, and to reduce deficits in order to provide a better learning environment with more facilities and supportive systems for the students. PMID:25848331

  14. Teacher candidates in an online post-baccalaureate science methods course: Implications for teaching science inquiry with technology

    Science.gov (United States)

    Colon, Erica L.

    Online learning is becoming more prevalent in today's education and is changing the way students learn and instructors teach. This study proposed using an informative case study design within a multilevel conceptual framework as teacher candidates were learning to teach and use science inquiry while in an online post-baccalaureate science methods course. The purposes were to (a) explore whether the teacher candidates had a thorough understanding of scientific inquiry and how to implement higher-order thinking skills, (b) examine whether or not the teacher candidates used a variety of computer-based instructional technologies when choosing instructional objectives, and (c) identify barriers that impede teacher candidates from using science inquiry or technology singly, or the ability to incorporate technology into learning science inquiry. The findings indicate that an online approach in preparing science teachers holds great potential for using innovative technology to teach science inquiry. First, the teacher candidates did incorporate essential features of classroom inquiry, however it was limited and varied in the type of inquiry used. Second, of the 86 lesson plans submitted by the teacher candidates, less than twelve percent of the learning objectives involved higher-order skills that promoted science inquiry. Third, results supported that when using technology in their lesson planning, participants had widely varying backgrounds in reference to their familiarity with technology. However, even though each participant used some form or another, the technology used was fairly low level. Finally, when discussing implementing inquiry-based science in the lesson plans, this study identified time as a reason that participants may not be pushing for more inquiry-based lessons. The researcher also identifies that school placements were a huge factor in the amount of inquiry-based skills coded in the lesson plans. The study concludes that online teacher preparation

  15. Outreach Education Modules on Space Sciences in Taiwan

    Science.gov (United States)

    Lee, I.-Te; Tiger Liu, Jann-Yeng; Chen, Chao-Yen

    2013-04-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Meanwhile, scientific camps are given to lead students a better understanding and interesting on space science. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  16. Integrating Brain Science into Health Studies: An Interdisciplinary Course in Contemplative Neuroscience and Yoga

    Science.gov (United States)

    Wolfe, Uta; Moran, Amy

    2017-01-01

    As neuroscience knowledge grows in its scope of societal applications so does the need to educate a wider audience on how to critically evaluate its research findings. Efforts at finding teaching approaches that are interdisciplinary, accessible and highly applicable to student experience are thus ongoing. The article describes an interdisciplinary undergraduate health course that combines the academic study of contemplative neuroscience with contemplative practice, specifically yoga. The class aims to reach a diverse mix of students by teaching applicable, health-relevant neuroscience material while directly connecting it to first-hand experience. Outcomes indicate success on these goals: The course attracted a wide range of students, including nearly 50% non-science majors. On a pre/post test, students showed large increases in their knowledge of neuroscience. Students’ ratings of the course overall, of increases in positive feelings about its field, and of their progress on specific course objectives were highly positive. Finally, students in their written work applied neuroscience course content to their personal and professional lives. Such results indicate that this approach could serve as a model for the interdisciplinary, accessible and applied integration of relevant neuroscience material into the undergraduate health curriculum. PMID:29371845

  17. Influence of an Intensive, Field-Based Life Science Course on Preservice Teachers' Self-Efficacy for Environmental Science Teaching

    Science.gov (United States)

    Trauth-Nare, Amy

    2015-08-01

    Personal and professional experiences influence teachers' perceptions of their ability to implement environmental science curricula and to positively impact students' learning. The purpose of this study was twofold: to determine what influence, if any, an intensive field-based life science course and service learning had on preservice teachers' self-efficacy for teaching about the environment and to determine which aspects of the combined field-based course/service learning preservice teachers perceived as effective for enhancing their self-efficacy. Data were collected from class documents and written teaching reflections of 38 middle-level preservice teachers. Some participants ( n = 18) also completed the Environmental Education Efficacy Belief Instrument at the beginning and end of the semester. Both qualitative and quantitative data analyses indicated a significant increase in PSTs' personal efficacies for environmental teaching, t(17) = 4.50, p = .000, d = 1.30, 95 % CI (.33, .90), but not outcome expectancy, t(17) = 1.15, p = .268, d = .220, 95 % CI (-.06, .20). Preservice teachers reported three aspects of the course as important for enhancing their self-efficacies: learning about ecological concepts through place-based issues, service learning with K-5 students and EE curriculum development. Data from this study extend prior work by indicating that practical experiences with students were not the sole factor in shaping PSTs' self-efficacy; learning ecological concepts and theories in field-based activities grounded in the local landscape also influenced PSTs' self-efficacy.

  18. University Science and Mathematics Education in Transition

    DEFF Research Database (Denmark)

    Skovsmose, Ole; Valero, Paola; Christensen, Ole Ravn

    configuration poses to scientific knowledge, to universities and especially to education in mathematics and science. Traditionally, educational studies in mathematics and science education have looked at change in education from within the scientific disciplines and in the closed context of the classroom....... Although educational change is ultimately implemented in everyday teaching and learning situations, other parallel dimensions influencing these situations cannot be forgotten. An understanding of the actual potentialities and limitations of educational transformations are highly dependent on the network...... of educational, cultural, administrative and ideological views and practices that permeate and constitute science and mathematics education in universities today. University Science and Mathematics Education in Transition contributes to an understanding of the multiple aspects and dimensions of the transition...

  19. ethiopian students' achievement challenges in science education

    African Journals Online (AJOL)

    IICBA01

    Oli Negassa. Adama Science and Technology University, Ethiopia ... achievement in science education across selected preparatory schools of Ethiopia. The .... To what extent do students' achievements vary across grade levels, regions,.

  20. Searching for Meaning in Science Education.

    Science.gov (United States)

    Berkheimer, Glenn D.; McLeod, Richard J.

    1979-01-01

    Discusses how science programs K-16 should be developed to meet the modern objectives of science education and restore its true meaning. The theories of Phenix and Ausubel are included in this discussion. (HM)

  1. Informal science education at Science City

    Science.gov (United States)

    French, April Nicole

    The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.

  2. Teaching for Conceptual Change in Elementary and Secondary Science Methods Courses.

    Science.gov (United States)

    Marion, Robin; Hewson, Peter W.; Tabachnick, B. Robert; Blomker, Kathryn B.

    1999-01-01

    Describes and analyzes two science methods courses at the elementary and secondary levels for how they addressed four ideas: (1) how students learn science; (2) how teachers teach science to students; (3) how prospective science teachers learn about the first two ideas; and (4) how methods instructors teach prospective science teachers about the…

  3. Social Relations of Science and Technology: perceptions of teachers of technical training, PARFOR course participants

    Directory of Open Access Journals (Sweden)

    Manuella Candéo

    2014-12-01

    Full Text Available We present in this paper a study on the perceptions of teachers of technical training, course participants (PARFOR National Plan for Training Teachers of Basic Education , offered by the Federal Technological University of Paraná, Campus Ponta Grossa (PG - UTFPR on the social relations of science and technology. The study conducted with 15 teachers from various disciplines. The methodological approach was quantitative research , the instrument of data collection was based questionnaire with open questions . The main results show that the vast majority of teachers had a very narrow view about science and technology , consider that the scientific and technological development always bring benefits to its own population of traditional / classic , positivist view. The need to promote reflection on social issues of science and technology in education technology in order to train professionals aware of their responsibilities as citizens in a highly technological age was observed. It is emphasized that these are recorded in the master's thesis entitled Scientific and Technological Literacy (ACT by Focus Science, Technology and Society (STS from commercial films of the University Program Graduate School of Science and Technology Tecnológica Federal do Paraná ( UTFPR Campus Ponta Grossa, Brazil.

  4. Earth System Science Education Modules

    Science.gov (United States)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  5. The impact of science methods courses on preservice elementary teachers' science teaching self-efficacy beliefs: Case studies from Turkey and the United States

    Science.gov (United States)

    Bursal, Murat

    Four case studies in two American and two Turkish science methods classrooms were conducted to investigate the changes in preservice elementary teachers' personal science teaching efficacy (PSTE) beliefs during their course periods. The findings indicated that while Turkish preservice elementary teachers (TR sample) started the science methods course semester with higher PSTE than their American peers (US sample), due to a significant increase in the US sample's and an insignificant decline in the TR sample's PSTE scores, both groups completed the science methods course with similar PSTE levels. Consistent with Bandura's social cognitive theory, describing four major sources of self-efficacy, the inclusion of mastery experiences (inquiry activities and elementary school micro-teaching experiences) and vicarious experiences (observation of course instructor and supervisor elementary teacher) into the science methods course, providing positive social persuasion (positive appraisal from the instructor and classmates), and improving physiological states (reduced science anxiety and positive attitudes toward becoming elementary school teachers), were found to contribute to the significant enhancement of the US sample's PSTE beliefs. For the TR sample, although some of the above sources were present, the lack of student teaching experiences and inservice teacher observations, as well as the TR samples' negative attitudes toward becoming elementary school teachers and a lack of positive classroom support were found to make Turkish preservice teachers rely mostly on their mastery in science concepts, and therefore resulted in not benefiting from their science methods course, in terms of enhancing their PSTE beliefs. Calls for reforms in the Turkish education system that will include more mastery experiences in the science methods courses and provide more flexibility for students to choose their high school majors and college programs, and switch between them are made. In

  6. Educational Technology Classics: The Science Teacher and Educational Technology

    Science.gov (United States)

    Harbeck, Richard M.

    2015-01-01

    The science teacher is the key person who has the commitment and the responsibility for carrying out any brand of science education. All of the investments, predictions, and expressions of concern will have little effect on the accomplishment of the broad goals of science education if these are not reflected in the situations in which learning…

  7. Using AN Essea Earth Systems Science Course in a Web-Enhanced Setting for Pre-Service Middle School Teachers

    Science.gov (United States)

    Slattery, W.

    2003-12-01

    The ESSEA Middle School course was originally designed as an asynchronous on-line tool for teacher professional development. The ESSEA course uses real world events such as deforestation, volcanic eruptions and hurricanes to develop content understandings of Earth systems processes and to model pedagogical best practices appropriate for middle school students. The course is structured as multiple three-week learning cycles. During week one of each cycle, participants are formed into Sphere groups to study the impact of the event under consideration on the atmosphere, biosphere, hydrosphere, or lithosphere. During week two, Event teams are formed to include members from each of the previous week's Sphere groups. Together they develop interactions between the different spheres and the event. During week three, teachers develop classroom applications and post them on-line for other participants to comment upon. On-going assessment suggests that in-service teacher participants of the on-line course are more likely to infuse inquiry-based science instruction into their classroom settings and to teach science as a subject integrating Physical science, Life science, and Earth/Space science in their own classrooms It is imperative to develop such characteristics in pre-service teachers as well. Wright State University's undergraduate Middle School teacher preparation program requires that undergraduates seeking Middle Childhood Licensure by the State of Ohio take a course in Earth Systems science that is aligned with the national and state science education standards. Towards this end the ESSEA course has been adapted for use in a web-enhanced setting. Weeks one and two (Sphere and Event study) of the ESSEA Middle School course are used as an integral component of this Earth Systems science course. In this way content knowledge and pedagogical strategies are modeled just as they are in the fully on-line course. Questions raised on-line are the topic of research or

  8. Reflective Course Design: An Interplay between Pedagogy and Technology in a Language Teacher Education Course

    Science.gov (United States)

    Firdyiwek, Yitna; Scida, Emily E.

    2014-01-01

    This study reports on a sequence of iterative redesigns of a graduate-level foreign language teacher education course. The study describes the interplay between technology and pedagogy that resulted in important curricular changes, from a focus on individual to social and then holistic reflection. Using a team-based design model, instructional…

  9. Data Mining Tools in Science Education

    OpenAIRE

    Premysl Zaskodny

    2012-01-01

    The main principle of paper is Data Mining in Science Education (DMSE) as Problem Solving. The main goal of paper is consisting in Delimitation of Complex Data Mining Tool and Partial Data Mining Tool of DMSE. The procedure of paper is consisting of Data Preprocessing in Science Education, Data Processing in Science Education, Description of Curricular Process as Complex Data Mining Tool (CP-DMSE), Description of Analytical Synthetic Modeling as Partial Data Mining Tool (ASM-DMSE) and finally...

  10. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    Science.gov (United States)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    Earth Science II: The Solid Earth -- Earth History and Planetary Science -- is the second of two Earth Science courses, and one of eleven graduate level science Contextualized Content Courses (CCC), that have been developed by the Boston Science Partnership as part of an NSF-funded Math Science Partnership program. A core goal of these courses is to provide high level science content to middle and high school teachers while modeling good instructional practices directly tied to the Boston Public Schools and Massachusetts science curriculum frameworks. All of these courses emphasize hands-on, lab-based, inquiry-driven, student-centered lessons. The Earth Science II team aimed to strictly adhere to ABC (Activity Before Concept) and 5E/7E models of instruction, and limited lecture or teacher-centered instruction to the later “Explanation” stages of all lessons. We also introduced McNeill and Krajick’s Claim-Evidence-Reasoning (CER) model of scientific explanation for middle school classroom discourse, both as a powerful scaffold leading to higher levels of accountable talk in the classroom, and to model science as a social construct. Daily evaluations, dutifully filled out by the course participants and diligently read by the course instructors, were quite useful in adapting instruction to the needs of the class on a real-time basis. We find the structure of the CCC teaching teams - university-based faculty providing expert content knowledge, K-12-based faculty providing age appropriate pedagogies and specific links to the K-12 curriculum - quite a fruitful, two-way collaboration. From the students’ perspective, one of the most useful takeaways from the university-based faculty was “listening to experts model out loud how they reason,” whereas some of the more practical takeaways (i.e., lesson components directly portable to the classroom?) came from the K-12-based faculty. The main takeaways from the course as a whole were the promise to bring more hands

  11. Investigation of Primary Education Second Level Students' Motivations toward Science Learning in Terms of Various Factors

    Science.gov (United States)

    Sert Çibik, Ayse

    2014-01-01

    The purpose of this research was to investigate the primary education second level students' motivations towards science learning in terms of various factors. Within the research, the variation of the total motivational scores in science learning according to the gender, class, socio-economic levels, success in science-technology course and…

  12. Experiences of Using Automated Assessment in Computer Science Courses

    Directory of Open Access Journals (Sweden)

    John English

    2015-10-01

    Full Text Available In this paper we discuss the use of automated assessment in a variety of computer science courses that have been taught at Israel Academic College by the authors. The course assignments were assessed entirely automatically using Checkpoint, a web-based automated assessment framework. The assignments all used free-text questions (where the students type in their own answers. Students were allowed to correct errors based on feedback provided by the system and resubmit their answers. A total of 141 students were surveyed to assess their opinions of this approach, and we analysed their responses. Analysis of the questionnaire showed a low correlation between questions, indicating the statistical independence of the individual questions. As a whole, student feedback on using Checkpoint was very positive, emphasizing the benefits of multiple attempts, impartial marking, and a quick turnaround time for submissions. Many students said that Checkpoint gave them confidence in learning and motivation to practise. Students also said that the detailed feedback that Checkpoint generated when their programs failed helped them understand their mistakes and how to correct them.

  13. Accomplishing the Visions for Teacher Education Programs Advocated in the National Science Education Standards

    Science.gov (United States)

    Akcay, Hakan; Yager, Robert

    2010-10-01

    The purpose of this study was to investigate the advantages of an approach to instruction using current problems and issues as curriculum organizers and illustrating how teaching must change to accomplish real learning. The study sample consisted of 41 preservice science teachers (13 males and 28 females) in a model science teacher education program. Both qualitative and quantitative research methods were used to determine success with science discipline-specific “Societal and Educational Applications” courses as one part of a total science teacher education program at a large Midwestern university. Students were involved with idea generation, consideration of multiple points of views, collaborative inquiries, and problem solving. All of these factors promoted grounded instruction using constructivist perspectives that situated science with actual experiences in the lives of students.

  14. Telescopic Topics: The Impact of Student-Created Podcasts in a Large, General Education Course

    Science.gov (United States)

    Kraal, E. R.

    2014-12-01

    Large, general education courses are important to the geoscience community. These courses serve as valuable recruiting tools for future geoscience majors because over 55% of geoscience students select their major in the first two years of college (Wilson, 2013). These courses can have many challenges such as large class sizes, limited (or no) laboratory time and facilities, little financial resource support, non-permanent faculty, and a variety of student abilities and needs. High impact practices, such as writing courses, student research, and community service can be difficult to integrate into large, non-major courses. Student-produced audio (e. g. podcasts) provide one approach to providing high impact practices within these courses. Other researchers have found student produced audio to be effective at transmitting content, integrating place based experiences, and building community connections within the students. Here I present the implementation of student-created audio within a large (100+), general education course (AST 30 - Mission to the Planets) over the last 4 years called 'Telescopic Topics.' Activities scaffold the students through the semester where they select a topic on planetary science, work with the science reference librarian, visit the writing center, and record their podcast at campus student radio station. The top podcasts are then aired on the campus radio station during the news broadcasts through a rotating series. Surveys of student experiences find that student find the activity valuable and engaging. Students reported feeling less intimidated by the science content and more connected to the subject matter. In addition, it provides many of them with their first introduction to and use of the university library and associated campus resources.

  15. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-04-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be integrated. In this paper we describe our philosophy of science education (ASSET approach) which is composed of bounded rationalism as a guideline for understanding teachers' practical reasoning, liberal education underlying the why of teaching, scientific perspectivism as guideline for the what and educational social constructivism as guiding choices about the how of science education. Integration of multiple philosophies into a coherent philosophy of science education is necessary but not sufficient to make it practical for teachers. Philosophies are still formulated at a too abstract level to guide teachers' practical reasoning. For this purpose, a heuristic model must be developed on an intermediate level of abstraction that will provide teachers with a bridge between these abstract ideas and their specific teaching situation. We have developed and validated such a heuristic model, the CLASS model in order to complement our ASSET approach. We illustrate how science teachers use the ASSET approach and the CLASS model to make choices about the what, the how and the why of science teaching.

  16. A Science Faculty's Transformation of Nature of Science Understanding into His Teaching Graduate Level Chemistry Course

    Science.gov (United States)

    Aydin, Sevgi

    2015-01-01

    This is an interpretive case study to examine the teaching of an experienced science faculty who had a strong interest in teaching undergraduate and graduate science courses and nature of science specifically. It was interested in how he transformed knowledge from his experience as a scientist and his ideas about nature of science into forms…

  17. Science Education Research vs. Physics Education Research: A Structural Comparison

    Science.gov (United States)

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  18. Applicability of Online Education to Large Undergraduate Engineering Courses

    Science.gov (United States)

    Bir, Devayan Debashis

    With the increase in undergraduate engineering enrollment, many universities have chosen to teach introductory engineering courses such as Statics of Engineering and Mechanics of Materials in large classes due to budget limitations. With the overwhelming literature against traditionally taught large classes, this study aims to see the effects of the trending online pedagogy. Online courses are the latest trend in education due to the flexibility they provide to students in terms of schedule and pace of learning with the added advantage of being less expensive for the university over a period. In this research, the effects of online lectures on engineering students' course performances and students' attitudes towards online learning were examined. Specifically, the academic performances of students enrolled in a traditionally taught, lecture format Mechanics of Materials course with the performance of students in an online Mechanics of Materials course in summer 2016 were compared. To see the effect of the two different teaching approaches across student types, students were categorized by gender, enrollment status, nationality, and by the grades students obtained for Statics, one of the prerequisite courses for Mechanics of Materials. Student attitudes towards the online course will help to keep the process of continuously improving the online course, specifically, to provide quality education through the online medium in terms of course content and delivery. The findings of the study show that the online pedagogy negatively affects student academic performance when compared to the traditional face-to-face pedagogy across all categories, except for the high scoring students. Student attitudes reveal that while they enjoyed the flexibility schedule and control over their pace of studying, they faced issues with self-regulation and face-to-face interaction.

  19. Science and Society - Problems, issues and dilemmas in science education

    CERN Multimedia

    2001-01-01

    Next in CERN's series of Science and Society speakers is Jonathan Osborne, Senior Lecturer in Science Education at King's College London. On Thursday 26 April, Dr Osborne will speak in the CERN main auditorium about current issues in science education in the light of an ever more science-based society. Jonathan Osborne, Senior Lecturer in Science Education at King's College London. Does science deserve a place at the curriculum high table of each student or is it just a gateway to a set of limited career options in science and technology? This question leads us to an important change in our ideas of what science education has been so far and what it must be. Basic knowledge of science and technology has traditionally been considered as just a starting point for those who wanted to build up a career in scientific research. But nowadays, the processes of science, the analysis of risks and benefits, and a knowledge of the social practices of science are necessary for every citizen. This new way of looking at s...

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Science Academies' 91st Refresher Course on Innovations in Genetics and Plant Breeding with Special Reference to Biotic and Abiotic Stress · More Details Abstract Fulltext PDF. pp 718-718 Information and Announcements. Workshops on Writing Science · More Details Abstract Fulltext PDF. pp 719-719 Flowering Trees.

  1. An Examination of Black Science Teacher Educators' Experiences with Multicultural Education, Equity, and Social Justice

    Science.gov (United States)

    Atwater, Mary M.; Butler, Malcolm B.; Freeman, Tonjua B.; Carlton Parsons, Eileen R.

    2013-12-01

    Diversity, multicultural education, equity, and social justice are dominant themes in cultural studies (Hall in Cultural dialogues in cultural studies. Routledge, New York, pp 261-274, 1996; Wallace 1994). Zeichner (Studying teacher education: The report of the AERA panel on research and teacher education. Lawrence Erlbaum Associates, Mahwah, pp 737-759, 2005) called for research studies of teacher educators because little research exists on teacher educators since the late 1980s. Thomson et al. (2001) identified essential elements needed in order for critical multiculturalism to be infused in teacher education programs. However, little is known about the commitment and experiences of science teacher educators infusing multicultural education, equity, and social justice into science teacher education programs. This paper examines twenty (20) Black science teacher educators' teaching experiences as a result of their Blackness and the inclusion of multicultural education, equity, and social justice in their teaching. This qualitative case study of 20 Black science teacher educators found that some of them have attempted and stopped due to student evaluations and the need to gain promotion and tenure. Other participants were able to integrate diversity, multicultural education, equity and social justice in their courses because their colleagues were supportive. Still others continue to struggle with this infusion without the support of their colleagues, and others have stopped The investigators suggest that if science teacher educators are going to prepare science teachers for the twenty first century, then teacher candidates must be challenged to grapple with racial, ethnic, cultural, instructional, and curricular issues and what that must mean to teach science to US students in rural, urban, and suburban school contexts.

  2. EDUCATIONAL WEB-QUEST IN NEW INTERNET-EDUCATION ELECTIVE COURSES IN PHYSICS

    Directory of Open Access Journals (Sweden)

    D. Grabchak

    2012-07-01

    Full Text Available The article reveals the essence of the concept of "educational web-Quest" proved its application in the study of elective courses in physics, methodical advice for teachers on the design features of elective courses in physics through the use of educational web-quest.

  3. Undergraduate Research or Research-Based Courses: Which Is Most Beneficial for Science Students?

    Science.gov (United States)

    Olivares-Donoso, Ruby; González, Carlos

    2017-06-01

    Over the last 25 years, both research literature and practice-oriented reports have claimed the need for improving the quality of undergraduate science education through linking research and teaching. Two manners of doing this are reported: undergraduate research and research-based courses. Although there are studies reporting benefits of participating in these experiences, few synthesize their findings. In this article, we present a literature review aimed at synthesizing and comparing results of the impact of participating in these research experiences to establish which approach is most beneficial for students to develop as scientists. Twenty studies on student participation in undergraduate research and research-based courses were reviewed. Results show that both types of experiences have positive effects on students. These results have implications for both practice and research. Regarding practice, we propose ideas for designing and implementing experiences that combine both types of experiences. Concerning research, we identify some methodological limitations that should be addressed in further studies.

  4. A Composite Self-Report: Reasons for Taking Science Courses as Given by Cocoa High School Science Students.

    Science.gov (United States)

    Louwerse, Frances H.

    A self-report instrument (questionnaire/reaction scale) was developed and administered to students in grades 9-12 to: (1) determine the number of science courses taken by each grade level; (2) estimate the number of science courses requested for future years and indicate where recruitment efforts would be needed; (3) examine other-directed reasons…

  5. Science Education: Issues, Approaches and Challenges

    Directory of Open Access Journals (Sweden)

    Shairose Irfan Jessani

    2015-06-01

    Full Text Available In today’s global education system, science education is much more than fact-based knowledge. Science education becomes meaningless and incomprehensible for learners, if the learners are unable to relate it with their lives. It is thus recommended that Pakistan, like many other countries worldwide should adopt Science Technology Society (STS approach for delivery of science education. The purpose of the STS approach lies in developing scientifically literate citizens who can make conscious decisions about the socio-scientific issues that impact their lives. The challenges in adopting this approach for Pakistan lie in four areas that will completely need to be revamped according to STS approach. These areas include: the examination system; science textbooks; science teacher education programs; and available resources and school facilities.

  6. A profile on the methodology courses at the ELT departments of the education faculties in Turkey

    OpenAIRE

    Dalkılıç, Nilüfer

    1996-01-01

    Ankara : Institute of Economics and Social Sciences, Bilkent Univ., 1996. Thesis (Master's) -- Bilkent University, 1996. Includes bibliographical references leaves 78-80 In this study, the methodology courses at ELT departments in Turkey were examined in terms of design, content and delivery. In order to collect data, sample ELT Departments of the Education Faculties in Turkey were chosen from different parts of Turkey. Data were collected through questionnaires administered to two ...

  7. Restructuring a basic science course for core competencies: an example from anatomy teaching.

    Science.gov (United States)

    Gregory, Jeremy K; Lachman, Nirusha; Camp, Christopher L; Chen, Laura P; Pawlina, Wojciech

    2009-09-01

    Medical schools revise their curricula in order to develop physicians best skilled to serve the public's needs. To ensure a smooth transition to residency programs, undergraduate medical education is often driven by the six core competencies endorsed by the Accreditation Council for Graduate Medical Education (ACGME): patient care, medical knowledge, practice-based learning, interpersonal skills, professionalism, and systems-based practice. Recent curricular redesign at Mayo Medical School provided an opportunity to restructure anatomy education and integrate radiology with first-year gross and developmental anatomy. The resulting 6-week (120-contact-hour) human structure block provides students with opportunities to learn gross anatomy through dissection, radiologic imaging, and embryologic correlation. We report more than 20 educational interventions from the human structure block that may serve as a model for incorporating the ACGME core competencies into basic science and early medical education. The block emphasizes clinically-oriented anatomy, invites self- and peer-evaluation, provides daily formative feedback through an audience response system, and employs team-based learning. The course includes didactic briefing sessions and roles for students as teachers, leaders, and collaborators. Third-year medical students serve as teaching assistants. With its clinical focus and competency-based design, the human structure block connects basic science with best-practice clinical medicine.

  8. Games and Simulations for Climate, Weather and Earth Science Education

    Science.gov (United States)

    Russell, R. M.; Clark, S.

    2015-12-01

    We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by the UCAR Center for Science Education. These materials have been disseminated via our web site (SciEd.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility in Boulder, Colorado. Our group has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory.

  9. Teaching about teaching and instruction on instruction: a challenge for health sciences library education.

    Science.gov (United States)

    Detlefsen, Ellen Gay

    2012-10-01

    This is a review of the master's-level curricula of the fifty-eight America Library Association-accredited library and information science programs and iSchools for evidence of coursework and content related to library instruction. Special emphasis is placed on the schools and programs that also offer coursework in medical or health sciences librarianship. Fifty-eight school and program websites were reviewed. Course titles and course descriptions for seventy-three separate classes were analyzed. Twenty-three syllabi were examined. All North American library education programs offer at least one course in the general area of library instruction; some programs offer multiple courses. No courses on instruction, however, are focused directly on the specialized area of health sciences librarianship. Master's degree students can take appropriate classes on library instruction, but the medical library profession needs to offer continuing education opportunities for practitioners who want to have specific instruction for the specialized world of the health sciences.

  10. Building a Global Ocean Science Education Network

    Science.gov (United States)

    Scowcroft, G. A.; Tuddenham, P. T.; Pizziconi, R.

    2016-02-01

    It is imperative for ocean science education to be closely linked to ocean science research. This is especially important for research that addresses global concerns that cross national boundaries, including climate related issues. The results of research on these critical topics must find its way to the public, educators, and students of all ages around the globe. To facilitate this, opportunities are needed for ocean scientists and educators to convene and identify priorities and strategies for ocean science education. On June 26 and 27, 2015 the first Global Ocean Science Education (GOSE) Workshop was convened in the United States at the University of Rhode Island Graduate School of Oceanography. The workshop, sponsored by the Consortium for Ocean Science Exploration and Engagement (COSEE) and the College of Exploration, had over 75 participants representing 15 nations. The workshop addressed critical global ocean science topics, current ocean science research and education priorities, advanced communication technologies, and leveraging international ocean research technologies. In addition, panels discussed elementary, secondary, undergraduate, graduate, and public education across the ocean basins with emphasis on opportunities for international collaboration. Special presentation topics included advancements in tropical cyclone forecasting, collaborations among Pacific Islands, ocean science for coastal resiliency, and trans-Atlantic collaboration. This presentation will focus on workshop outcomes as well as activities for growing a global ocean science education network. A summary of the workshop report will also be provided. The dates and location for the 2016 GOES Workshop will be announced. See http://www.coexploration.net/gose/index.html

  11. Design and Assessment of a General Science STEM Course with a Blended Learning Approach

    Science.gov (United States)

    Courtier, A. M.; Liu, J. C.; St John, K. K.

    2015-12-01

    Blended learning, a combination of classroom- and computer-mediated teaching and learning, is becoming prominent in higher education, and structured assessment is necessary to determine pedagogical costs and benefits. Assessment of a blended general education science class at James Madison University used a mixed-method causal-comparative design: in Spring 2014, two classes with identical content and similar groups of non-science majors were taught by the same instructor in either blended or full face-to-face formats. The learning experience of 160 students in the two classes was compared based on course and exam grades, classroom observation, and student survey results. Student acquisition of content in both classes was measured with pre-post tests using published concept inventories, and surveys, quizzes, and grade reports in the Blackboard learning management system were additionally used for data collection. Exams were identical between the two sections, and exam questions were validated in advance by a faculty member who teaches other sections of the same course. A course experience questionnaire was administered to measure students' personal experiences in both classes, addressing dimensions of good teaching, clear goals and standards, generic skills, appropriate assessment and workload, and emphasis on independence. Using a STEM classroom observation checklist, two researchers conducted in-class observations for four 75-minute face-to-face meetings with similar content focus in both classes, which allowed assessment of student engagement and participation. We will present details of the course design and research plan, as well as assessment results from both quantitative and qualitative analysis. The preliminary findings include slightly higher average grade distribution and more ready responses to in-class activities in the blended class.

  12. Flipped learning in science education

    DEFF Research Database (Denmark)

    Andersen, Thomas Dyreborg; Foss, Kristian Kildemoes; Nissen, Stine Karen

    2017-01-01

    During the last decade, massive investment in ICT has been made in Danish schools. There seems, however, to be a need to rethink how to better integrate ICT in education (Bundgaard et al. 2014 p. 216) Flipped learning might be a didactical approach that could contribute to finding a method to use...... research questions are “To what extent can teachers using the FL-teaching method improve Danish pupils' learning outcomes in science subject’s physics / chemistry, biology and geography in terms of the results of national tests?” And “What factors influence on whether FL-teaching improves pupils' learning...... will be addressed. Hereafter an array of different scaffolding activities will be conducted, among these are individual supervision, sharing of materials used in lessons and involving local school leaders in the program. During this 3-year period we will follow the progress of the students involved in the program...

  13. Modern Engineering : Science and Education

    CERN Document Server

    2016-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2014 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  14. Physical Computing for STEAM Education: Maker-Educators' Experiences in an Online Graduate Course

    Science.gov (United States)

    Hsu, Yu-Chang; Ching, Yu-Hui; Baldwin, Sally

    2018-01-01

    This research explored how K-16 educators learned physical computing, and developed as maker-educators in an online graduate course. With peer support and instructor guidance, these educators designed maker projects using Scratch and Makey Makey, and developed educational maker proposals with plans of teaching the topics of their choice in STEAM…

  15. Principles of formation of the course of computer science for engineering specialities

    Directory of Open Access Journals (Sweden)

    Валерий Евгеньевич Жужжалов

    2010-03-01

    Full Text Available The article describes the principles of computer science courses. The advantages and disadvantages of functional programming and importance of the Lisp language in teaching computer science are reflected in the article.

  16. Interprofessional education and the basic sciences: Rationale and outcomes.

    Science.gov (United States)

    Thistlethwaite, Jill E

    2015-01-01

    Interprofessional education (IPE) aims to improve patient outcomes and the quality of care. Interprofessional learning outcomes and interprofessional competencies are now included in many countries' health and social care professions' accreditation standards. While IPE may take place at any time in health professions curricula it tends to focus on professionalism and clinical topics rather than basic science activities. However generic interprofessional competencies could be included in basic science courses that are offered to at least two different professional groups. In developing interprofessional activities at the preclinical level, it is important to define explicit interprofessional learning outcomes plus the content and process of the learning. Interprofessional education must involve interactive learning processes and integration of theory and practice. This paper provides examples of IPE in anatomy and makes recommendations for course development and evaluation. © 2015 American Association of Anatomists.

  17. Educating science editors: is there a comprehensive strategy?

    Science.gov (United States)

    Gasparyan, Armen Yuri; Yessirkepov, Marlen; Gorin, Sergey V; Kitas, George D

    2014-12-01

    The article considers available options to educate science editors in the fast-transforming digital environment. There is no single course or resource that can cover their constantly changing and diversifying educational needs. The involvement in research, writing, and reviewing is important for gaining editing skills, but that is not all. Membership in editorial associations and access to updated scholarly information in the field are mandatory for maintaining editorial credentials. Learned associations offer access to a few widely-recognized periodicals. There are also formal training courses covering issues in science writing and ethical editing, but no high-level evidence data exist to promote any of these. Networking with like-minded specialists within the global and regional editorial associations seems a useful strategy to upgrade editorial skills and resolve problems with the quality control and digitization of scholarly periodicals.

  18. Examining the Effectiveness of Social Responsibility Courses in Higher Education

    Science.gov (United States)

    Droms, Courtney; Stephen, Sheryl-Ann K.

    2015-01-01

    Individual and corporate social responsibility has been gaining more and more attention over the last several years. We examine the effectiveness of incorporating social responsibility courses into the curriculum in higher education, with a specific look at Butler University. In general, the results indicate that implementing this type of…

  19. Emerging areas of science: Recommendations for Nursing Science Education from the Council for the Advancement of Nursing Science Idea Festival.

    Science.gov (United States)

    Henly, Susan J; McCarthy, Donna O; Wyman, Jean F; Heitkemper, Margaret M; Redeker, Nancy S; Titler, Marita G; McCarthy, Ann Marie; Stone, Patricia W; Moore, Shirley M; Alt-White, Anna C; Conley, Yvette P; Dunbar-Jacob, Jacqueline

    2015-01-01

    The Council for the Advancement of Nursing Science aims to "facilitate and recognize life-long nursing science career development" as an important part of its mission. In light of fast-paced advances in science and technology that are inspiring new questions and methods of investigation in the health sciences, the Council for the Advancement of Nursing Science convened the Idea Festival for Nursing Science Education and appointed the Idea Festival Advisory Committee (IFAC) to stimulate dialogue about linking PhD education with a renewed vision for preparation of the next generation of nursing scientists. Building on the 2005 National Research Council report Advancing The Nation's Health Needs and the 2010 American Association of Colleges of Nursing Position Statement on the Research-Focused Doctorate Pathways to Excellence, the IFAC specifically addressed the capacity of PhD programs to prepare nursing scientists to conduct cutting-edge research in the following key emerging and priority areas of health sciences research: omics and the microbiome; health behavior, behavior change, and biobehavioral science; patient-reported outcomes; big data, e-science, and informatics; quantitative sciences; translation science; and health economics. The purpose of this article is to (a) describe IFAC activities, (b) summarize 2014 discussions hosted as part of the Idea Festival, and (c) present IFAC recommendations for incorporating these emerging areas of science and technology into research-focused doctoral programs committed to preparing graduates for lifelong, competitive careers in nursing science. The recommendations address clearer articulation of program focus areas; inclusion of foundational knowledge in emerging areas of science in core courses on nursing science and research methods; faculty composition; prerequisite student knowledge and skills; and in-depth, interdisciplinary training in supporting area of science content and methods. Copyright © 2015 Elsevier Inc

  20. A comprehensive program of nuclear engineering and science education

    International Nuclear Information System (INIS)

    Bereznai, G.; Lewis, B.

    2014-01-01

    The University of Ontario Institute of Technology offers undergraduate degrees in nuclear engineering, nuclear power, health physics and radiation science, graduate degrees (masters as well as doctorate) in nuclear engineering, and graduate diplomas that encompass a wide range of nuclear engineering and technology topics. Professional development programs tailored to specific utility needs are also offered, and the sharing of course material between the professional development and university education courses has strengthened both approaches to ensuring the high qualification levels required of professionals in the nuclear industry. (author)