WorldWideScience

Sample records for science education classroom

  1. Science education beyond the classroom

    International Nuclear Information System (INIS)

    Harle, E.J.; Van Natta, D.; Powell, M.L.

    1993-01-01

    The Yucca Mountain Site Characterization Project (YMP) sponsors a variety of classroom-oriented projects and activities for teachers who request them. Also available, though, are extra-curricular programs. One notably successful program is a workshop designed to award girl and boy scouts with geology and atomic energy merit badges. There was a tremendous response to this workshop--it attracted 450 requests within the first week of its announcement. Since October 1991, the YMP has sponsored five such girl scout workshops and four boy scout workshops, attended by a total of 400 scouts. These workshops demonstrate that highly technical subjects can be taught simply through hands-on activities. The idea behind them is not to teach scouts what to think but, rather, how to think. For adults meanwhile, the YMP offers a monthly lecture series, with each lecture averaging 45 minutes in length with 35 people in attendance. These lectures center on such subjects as volcanoes, earthquakes and hydrology. They are usually delivered by YMP technical staff members, who have learned that complex technical issues are best addressed in a small-group format

  2. From Laboratories to Classrooms: Involving Scientists in Science Education

    Science.gov (United States)

    DeVore, E. K.

    2001-12-01

    Scientists play a key role in science education: the adventure of making new discoveries excites and motivates students. Yet, American science education test scores lag behind those of other industrial countries, and the call for better science, math and technology education is widespread. Thus, improving American science, math and technological literacy is a major educational goal for the NSF and NASA. Today, funding for research often carries a requirement that the scientist be actively involved in education and public outreach (E/PO) to enhance the science literacy of students, teachers and citizens. How can scientists contribute effectively to E/PO? What roles can scientists take in E/PO? And, how can this be balanced with research requirements and timelines? This talk will focus on these questions, with examples drawn from the author's projects that involve scientists in working with K-12 teacher professional development and with K-12 curriculum development and implementation. Experiences and strategies for teacher professional development in the research environment will be discussed in the context of NASA's airborne astronomy education and outreach projects: the Flight Opportunities for Science Teacher EnRichment project and the future Airborne Ambassadors Program for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Effective partnerships with scientists as content experts in the development of new classroom materials will be described with examples from the SETI Institute's Life in the Universe curriculum series for grades 3-9, and Voyages Through Time, an integrated high school science course. The author and the SETI Institute wish to acknowledge funding as well as scientific and technical support from the National Science Foundation, the National Aeronautics and Space Administration, the Hewlett Packard Company, the Foundation for Microbiology, and the Combined Federated Charities.

  3. Classroom Animals Provide More than Just Science Education

    Science.gov (United States)

    Herbert, Sandra; Lynch, Julianne

    2017-01-01

    Keeping classroom animals is a common practice in many classrooms. Their value for learning is often seen narrowly as the potential to involve children in learning biological science. They also provide opportunities for increased empathy, as well as socio-emotional development. Realization of their potential for enhancing primary children's…

  4. Multicultural science education in Lesotho high school biology classrooms

    Science.gov (United States)

    Nthathakane, Malefu Christina

    2001-12-01

    This study investigated how Basotho high school biology students responded to a multicultural science education (MCSE) approach. Students' home language---Sesotho---and cultural experiences were integrated into the teaching of a unit on alcohol, tobacco and other drugs (ATOD) abuse. The focus was on students whose cultural background is African and who are English second language users. The study was conducted in three high school biology classrooms in Lesotho where the ATOD unit was taught using MCSE. A fourth biology classroom was observed for comparison purposes. In this classroom the regular biology teacher taught ATOD using typical instructional strategies. The study was framed by the general question: How does a multicultural science education approach affect Basotho high school biology students? More specifically: How does the use of Sesotho (or code-switching between Sesotho and English) and integration of Basotho students' cultural knowledge and experiences with respect to ATOD affect students' learning? In particular how does the approach affect students' participation and academic performance? A qualitative research method was used in this study. Data were drawn from a number of different sources and analyzed inductively. The data sources included field-notes, transcripts of ATOD lessons, research assistant lesson observation notes and interviews, regular biology teachers' interviews and notes from observing a few of their lessons, students' interviews and pre and posttest scripts, and other school documents that recorded students' performance throughout the year. Using the students' home language---Sesotho---was beneficial in that it enabled them to share ideas, communicate better and understand each other, the teacher and the material that was taught. Integrating students' cultural and everyday experiences was beneficial because it enabled students to anchor the new ATOD ideas in what was familiar and helped them find the relevance of the unit by

  5. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    Science.gov (United States)

    Katz, Phyllis; McGinnis, J. Randy; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-01-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews,…

  6. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  7. Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalised science classroom

    Science.gov (United States)

    De Carvalho, Roussel

    2016-06-01

    Steven Vertovec (2006, 2007) has recently offered a re-interpretation of population diversity in large urban centres due to a considerable increase in immigration patterns in the UK. This complex scenario called superdiversity has been conceptualised to help illuminate significant interactions of variables such as religion, language, gender, age, nationality, labour market and population distribution on a larger scale. The interrelationships of these themes have fundamental implications in a variety of community environments, but especially within our schools. Today, London schools have over 300 languages being spoken by students, all of whom have diverse backgrounds, bringing with them a wealth of experience and, most critically, their own set of religious beliefs. At the same time, Science is a compulsory subject in England's national curriculum, where it requires teachers to deal with important scientific frameworks about the world; teaching about the origins of the universe, life on Earth, human evolution and other topics, which are often in conflict with students' religious views. In order to cope with this dynamic and thought-provoking environment, science initial teacher education (SITE)—especially those catering large urban centres—must evolve to equip science teachers with a meaningful understanding of how to handle a superdiverse science classroom, taking the discourse of inclusion beyond its formal boundaries. Thus, this original position paper addresses how the role of SITE may be re-conceptualised and re-framed in light of the immense challenges of superdiversity as well as how science teachers, as enactors of the science curriculum, must adapt to cater to these changes. This is also the first in a series of papers emerging from an empirical research project trying to capture science teacher educators' own views on religio-scientific issues and their positions on the place of these issues within science teacher education and the science classroom.

  8. Classroom Environment in the Implementation of an Innovative Curriculum Project in Science Education.

    Science.gov (United States)

    Suarez, Mercedes; Pias, Rosa; Membiela, Pedro; Dapia, Dolores

    1998-01-01

    Analyzes the perceptions of students, teachers, and external observers in order to study the influence of classroom environment on the implementation of an innovative project in science education. Contains 33 references. (DDR)

  9. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  10. Meeting Classroom Needs: Designing Space Physics Educational Outreach for Science Education Standards

    Science.gov (United States)

    Urquhart, M. L.; Hairston, M.

    2008-12-01

    As with all NASA missions, the Coupled Ion Neutral Dynamics Investigation (CINDI) is required to have an education and public outreach program (E/PO). Through our partnership between the University of Texas at Dallas William B. Hanson Center for Space Sciences and Department of Science/Mathematics Education, the decision was made early on to design our educational outreach around the needs of teachers. In the era of high-stakes testing and No Child Left Behind, materials that do not meet the content and process standards teachers must teach cannot be expected to be integrated into classroom instruction. Science standards, both state and National, were the fundamental drivers behind the designs of our curricular materials, professional development opportunities for teachers, our target grade levels, and even our popular informal educational resource, the "Cindi in Space" comic book. The National Science Education Standards include much more than content standards, and our E/PO program was designed with this knowledge in mind as well. In our presentation we will describe how we came to our approach for CINDI E/PO, and how we have been successful in our efforts to have CINDI materials and key concepts make the transition into middle school classrooms. We will also present on our newest materials and high school physics students and professional development for their teachers.

  11. Science Fiction in Education: Case Studies from Classroom Implementations

    Science.gov (United States)

    Vrasidas, Charalambos; Avraamidou, Lucy; Theodoridou, Katerina; Themistokleous, Sotiris; Panaou, Petros

    2015-01-01

    This manuscript reports on findings from the implementation of the EU project "Science Fiction in Education" (Sci-Fi-Ed). The project provides teachers with tools, training, and guidance that will assist them in enhancing their teaching, making science more attractive to students, connecting it with real-life issues such as the…

  12. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    Science.gov (United States)

    Katz, Phyllis; Randy McGinnis, J.; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-12-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews, electronic communications, and drawing prompts. We found that our two participants referenced as important the ISE experiences in their development of classroom science identities that included resilience, excitement and engagement in science teaching and learning-qualities that are emphasized in ISE contexts. The data support our conclusion that the ISE experiences proved especially memorable to teacher education interns during the implementation of the No Child Left Behind policy which concentrated on school-tested subjects other than science.

  13. CosmoQuest: Training Educators and Engaging Classrooms in Citizen Science through a Virtual Research Facility

    Science.gov (United States)

    Buxner, Sanlyn; Bracey, Georgia; Summer, Theresa; Cobb, Whitney; Gay, Pamela L.; Finkelstein, Keely D.; Gurton, Suzanne; Felix-Strishock, Lisa; Kruse, Brian; Lebofsky, Larry A.; Jones, Andrea J.; Tweed, Ann; Graff, Paige; Runco, Susan; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    CosmoQuest is a Citizen Science Virtual Research Facility that engages scientists, educators, students, and the public in analyzing NASA images. Often, these types of citizen science activities target enthusiastic members of the public, and additionally engage students in K-12 and college classrooms. To support educational engagement, we are developing a pipeline in which formal and informal educators and facilitators use the virtual research facility to engage students in real image analysis that is framed to provide meaningful science learning. This work also contributes to the larger project to produce publishable results. Community scientists are being solicited to propose CosmoQuest Science Projects take advantage of the virtual research facility capabilities. Each CosmoQuest Science Project will result in formal education materials, aligned with Next Generation Science Standards including the 3-dimensions of science learning; core ideas, crosscutting concepts, and science and engineering practices. Participating scientists will contribute to companion educational materials with support from the CosmoQuest staff of data specialists and education specialists. Educators will be trained through in person and virtual workshops, and classrooms will have the opportunity to not only work with NASA data, but interface with NASA scientists. Through this project, we are bringing together subject matter experts, classrooms, and informal science organizations to share the excitement of NASA SMD science with future citizen scientists. CosmoQuest is funded through individual donations, through NASA Cooperative Agreement NNX16AC68A, and through additional grants and contracts that are listed on our website, cosmoquest.org.

  14. Science beyond the Classroom Boundaries

    Science.gov (United States)

    Feasey, Rosemary; Bianchi, Lynne

    2011-01-01

    There have been many years of innovation in primary science education. Surprisingly, however, most of this has taken place within the confines of the classroom. What primary science has not yet done with universal success is step outside the classroom boundaries to use the school grounds for teaching and learning across all aspects of the science…

  15. Leaving the Classroom: A Didactic Framework for Education in Environmental Sciences

    Science.gov (United States)

    Dopico, Eduardo; Garcia-Vazquez, Eva

    2011-01-01

    In Continuous Education curricula in Spain, the programs on sciences of the environment are aimed toward understandings of sustainability. Teaching practice rarely leaves the classroom for outdoor field studies. At the same time, teaching practice is generally focused on examples of how human activities are harmful for ecosystems. From a pedagogic…

  16. Lunar and Meteorite Sample Education Disk Program — Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, J.; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-03-01

    NASA’s Lunar and Meteorite Sample Education Disk Program has Lucite disks containing Apollo lunar samples and meteorite samples that are available for trained educators to borrow for use in classrooms, museums, science center, and libraries.

  17. Teacher and Student Perceptions on High School Science Flipped Classrooms: Educational Breakthrough or Media Hype?

    Science.gov (United States)

    Hunley, Rebecca C.

    For years educators have struggled to ensure students meet the rigors of state mandated tests. Challenges that often impede student success are student absences, school closings due to weather, and remediation for students who need additional help while advanced students can move ahead. Many educators, especially secondary math and science teachers, have responded to these issues by implementing a teaching strategy called the flipped classroom where students view lectures, power points, or podcasts outside of school and class time shifts to allow opportunities for collaborative learning. The purpose of this research was to evaluate teacher and student perceptions of high school flipped science classrooms. A qualitative phenomenological study was conducted to observe 3 high school science teachers from Georgia, North Carolina, and Tennessee selected through purposeful sampling who have used the flipped classroom method for a minimum of 2 years. Analysis of data from an online survey, direct observation, teacher interviews, and student focus groups helped to identify challenges and benefits of this teaching and learning strategy. Findings indicated that teachers find the flipped classroom beneficial to build student relationships but requires a significant amount of time to develop. Mixed student reactions revealed benefits of a flipped classroom as a successful learning tool for current and future endeavors for college or career preparation.

  18. Planetary Science Education - Workshop Concepts for Classrooms and Internships

    Science.gov (United States)

    Musiol, S.; Rosenberg, H.; Rohwer, G.; Balthasar, H.; van Gasselt, S.

    2014-12-01

    In Germany, education in astronomy and planetary sciences is limited to very few schools or universities and is actively pursued by only selected research groups. Our group is situated at the Freie Universität Berlin and we are actively involved in space missions such as Mars Express, Cassini in the Saturnian system, and DAWN at Vesta and Ceres. In order to enhance communication and establish a broader basis for building up knowledge on our solar-system neighborhood, we started to offer educational outreach in the form of workshops for groups of up to 20 students from primary/middle schools to high schools. Small group sizes guarantee practical, interactive, and dialog-based working environments as well as a high level of motivation. Several topical workshops have been designed which are targeted at different age groups and which consider different educational background settings. One workshop called "Impact craters on planets and moons" provides a group-oriented setting in which 3-4 students analyze spacecraft images showing diverse shapes of impact craters on planetary surfaces. It is targeted not only at promoting knowledge about processes on planetary surfaces but it also stimulates visual interpretation skills, 3D viewing and reading of map data. A second workshop "We plan a manned mission to Mars" aims at fostering practical team work by designing simple space mission scenarios which are solved within a team by collaboration and responsibility. A practical outdoor activity called "Everything rotates around the Sun" targets at developing a perception of absolute - but in particular relative - sizes, scales and dimensions of objects in our solar system. Yet another workshop "Craters, volcanoes and co. - become a geologist on Mars" was offered at the annual national "Girls' Day" aiming at motivating primary to middle school girls to deal with topics in classical natural sciences. Small groups investigated and interpreted geomorphologic features in image data of

  19. Learning Science beyond the Classroom.

    Science.gov (United States)

    Ramey-Gassert, Linda

    1997-01-01

    Examines a cross-section of craft knowledge and research-based literature of science learning beyond the classroom. Describes informal science education programs, and discusses implications for science teaching, focusing on the importance of informal science learning for children and in-service and preservice teachers. Proposes a model for…

  20. Middle school girls: Experiences in a place-based education science classroom

    Science.gov (United States)

    Shea, Charlene K.

    The middle school years are a crucial time when girls' science interest and participation decrease (Barton, Tan, O'Neill, Bautista-Guerra, & Brecklin, 2013). The purpose of this study was to examine the experiences of middle school girls and their teacher in an eighth grade place-based education (PBE) science classroom. PBE strives to increase student recognition of the importance of educational concepts by reducing the disconnection between education and community (Gruenewald, 2008; Smith, 2007; Sobel, 2004). The current study provides two unique voices---the teacher and her students. I describe how this teacher and her students perceived PBE science instruction impacting the girls' participation in science and their willingness to pursue advanced science classes and science careers. The data were collected during the last three months of the girls' last year of middle school by utilizing observations, interviews and artifacts of the teacher and her female students in their eighth grade PBE science class. The findings reveal how PBE strategies, including the co-creation of science curriculum, can encourage girls' willingness to participate in advanced science education and pursue science careers. The implications of these findings support the use of PBE curricular strategies to encourage middle school girls to participate in advance science courses and science careers.

  1. Ethnographic case study of a high school science classroom: Strategies in stem education

    Science.gov (United States)

    Sohn, Lucinda N.

    Historically, science education research has promoted that learning science occurs through direct physical experiences. In recent years, the need for best practices and student motivation have been highlighted in STEM research findings. In response to the instructional challenges in STEM education, the National Research Council has provided guidelines for improving STEM literacy through best practices in science and mathematics instruction. A baseline qualitative ethnographic case study of the effect of instructional practices on a science classroom was an opportunity to understand how a teacher and students work together to learn in an International Baccalaureate life science course. This study was approached through an interpretivist lens with the assumption that learning science is socially constructed. The following were the research questions: 1.) How does the teacher implement science instruction strategies in the classroom? 2.) In what ways are students engaged in the classroom? 3.) How are science concepts communicated in the classroom? The total 35 participants included a high school science teacher and two classes of 11th grade students in the International Baccalaureate program. Using exploratory qualitative methods of research, data was collected from field notes and transcripts from a series of classroom observations, a single one-on-one interview with the teacher and two focus groups with students from each of the two classes. Three themes emerged from text coded using initial and process coding with the computer assisted qualitative data analysis software, MAXQDA. The themes were: 1.) Physical Forms of Communication Play Key Role in Instructional Strategy, 2.) Science Learning Occurs in Casual Environment Full of Distractions, and 3.) Teacher Persona Plays Vital Role in Classroom Culture. The findings provided insight into the teacher's role on students' motivation to learn science. The recommendation for STEM programs and new curriculum is a

  2. Student Empowerment in an Environmental Science Classroom: Toward a Framework for Social Justice Science Education

    Science.gov (United States)

    Dimick, Alexandra Schindel

    2012-01-01

    Social justice education is undertheorized in science education. Given the wide range of goals and purposes proposed within both social justice education and social justice science education scholarship, these fields require reconciliation. In this paper, I suggest a student empowerment framework for conceptualizing teaching and learning social…

  3. The status of environmental education in Illinois public high school science and social studies classrooms

    Science.gov (United States)

    Carter, Jill F.

    Examines relationships among the levels of pre-service and inservice teacher preparation in various topic areas within environmental education (EE) and the levels of implementation of those topic areas in public high school science and social studies classrooms in Illinois. Measures teacher attitudes toward EE. Findings indicate that teachers who had received pre-service/inservice teacher education in EE implemented significantly more EE topics into the curriculum than did teachers who reported receiving no pre-service/inservice teacher education in EE. Findings also indicate that beginning teachers do not implement the EE topics nearly as much as veteran teachers.

  4. Using Authentic Science in the Classroom: NASA's Coordinated Efforts to Enhance STEM Education

    Science.gov (United States)

    Lawton, B.; Schwerin, T.; Low, R.

    2015-11-01

    A key NASA education goal is to attract and retain students in science, technology engineering, and mathematics (STEM) disciplines. When teachers engage students in the examination of authentic data derived from NASA satellite missions, they simultaneously build 21st century technology skills as well as core content knowledge about the Earth and space. In this session, we highlight coordinated efforts by NASA Science Mission Directorate (SMD) Education and Public Outreach (EPO) programs to enhance educator accessibility to data resources, distribute state-of -the-art data tools and expand pathways for educators to find and use data resources. The group discussion explores how NASA SMD EPO efforts can further improve teacher access to authentic NASA data, identifies the types of tools and lessons most requested by the community, and explores how communication and collaboration between product developers and classroom educators using data tools and products can be enhanced.

  5. Climate Change Education Today in K-12: What's Happening in the Earth and Space Science Classroom?

    Science.gov (United States)

    Holzer, M. A.; National Earth Science Teachers Association

    2011-12-01

    Climate change is a highly interdisciplinary topic, involving not only multiple fields of science, but also social science and the humanities. There are many aspects of climate change science that make it particularly well-suited for exploration in the K-12 setting, including opportunities to explore the unifying processes of science such as complex systems, models, observations, change and evolution. Furthermore, this field of science offers the opportunity to observe the nature of science in action - including how scientists develop and improve their understanding through research and debate. Finally, climate change is inherently highly relevant to students - indeed, students today will need to deal with the consequences of the climate change. The science of climate change is clearly present in current science education standards, both at the National level as well as in the majority of states. Nonetheless, a significant number of teachers across the country report difficulties addressing climate change in the classroom. The National Earth Science Teachers Association has conducted several surveys of Earth and space science educators across the country over the past several years on a number of issues, including their needs and concerns, including their experience of external influences on what they teach. While the number of teachers that report external pressures to not teach climate change science are in the minority (and less than the pressure to not teach evolution and related topics), our results suggest that this pressure against climate change science in the K-12 classroom has grown over the past several years. Some teachers report being threatened by parents, being encouraged by administrators to not teach the subject, and a belief that the "two sides" of climate change should be taught. Survey results indicate that teachers in religious or politically-conservative districts are more likely to report difficulties in teaching about climate change than in

  6. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries

    Science.gov (United States)

    Allen, J. S.

    2009-12-01

    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and

  7. Determining Useful Tools for the Flipped Science Education Classroom

    Science.gov (United States)

    MacKinnon, Gregory

    2015-01-01

    This paper reports the results of a 3-year longitudinal study on the perceived utility of supplying elementary science teacher interns with four asynchronous tools to assist them in creating their first lesson plan of a constructivist nature. The research accessed qualitative and quantitative measures to sample intern reaction to the notion of a…

  8. Toward Understanding the Nature of a Partnership between an Elementary Classroom Teacher and an Informal Science Educator

    Science.gov (United States)

    Weiland, Ingrid S.; Akerson, Valarie L.

    2013-01-01

    This study explored the nature of the relationship between a fifth-grade teacher and an informal science educator as they planned and implemented a life science unit in the classroom, and sought to define this relationship in order to gain insight into the roles of each educator. In addition, student learning as a result of instruction was…

  9. Leaving the classroom: a didactic framework for education in environmental sciences

    Science.gov (United States)

    Dopico, Eduardo; Garcia-Vazquez, Eva

    2011-06-01

    In Continuous Education curricula in Spain, the programs on sciences of the environment are aimed toward understandings of sustainability. Teaching practice rarely leaves the classroom for outdoor field studies. At the same time, teaching practice is generally focused on examples of how human activities are harmful for ecosystems. From a pedagogic point of view, it is less effective to teach environmental science with negative examples such as catastrophe, tragedy, and crisis. Rather, teaching environmental sciences and sustainable development might be focused on positive human-environment relationships, which is both important for the further development of students and educators. Within rural settings, there are many such examples of positive relationships that can be emphasized and integrated into the curriculum. In this article, we propose teaching environmental sciences through immersion in rural cultural life. We discuss how fieldwork serves as a learning methodology. When students are engaged through research with traditional cultural practices of environmental management, which is a part of the real and traditional culture of a region, they better understand how positive pedagogy instead of pedagogy structured around how not-to-do examples, can be used to stimulate the interactions between humans and the environment with their students. In this way, cultural goods serve as teaching resources in science and environmental education. What we present is authentic cases where adults involved in a course of Continuous Education explore `environmentally-friendly' practices of traditional agriculture in Asturias (north of Spain), employing methodologies of cultural studies.

  10. The impact of the inclusion of students with handicaps and disabilities in the regular education science classroom

    Science.gov (United States)

    Donald, Cathey Nolan

    This study was conducted to determine the impact of the inclusion of students with handicaps and disabilities in the regular education science classroom. Surveys were mailed to the members of the Alabama Science Teachers Association to obtain information from teachers in inclusive classrooms. Survey responses from teachers provide insight into these classrooms. This study reports the results of the teachers surveyed. Results indicate multiple changes occur in the educational opportunities presented to regular education students when students with handicaps and disabilities are included in the regular science classroom. Responding teachers (60%) report omitting activities that formerly provided experiences for students, such as laboratory activities using dangerous materials, field activities, and some group activities. Also omitted, in many instances (64.1%), are skill building opportunities of word problems and higher order thinking skills. Regular education students participate in classes where discipline problems related to included students are reported as the teachers most time consuming task. In these classrooms, directions are repeated frequently, reteaching of material already taught occurs, and the pace of instruction has been slowed. These changes to the regular classroom occur across school levels. Many teachers (44.9%) report they do not see benefits associated with the inclusion of students with special needs in the regular classroom.

  11. The Viability of Portraiture for Science Education Research: Learning from Portraits of Two Science Classrooms

    Science.gov (United States)

    Quigley, Cassie; Trauth-Nare, Amy; Beeman-Cadwallader, Nicole

    2015-01-01

    The purpose of this paper is to describe the relevance of a qualitative methodology called portraiture for science education. Portraiture is a method of inquiry that blends art and science by combining the empirical aspects of inquiry with beauty and aesthetic properties. This method encompasses all aspects of a research study, including protocol,…

  12. K--12 science educator perception of instructing students with learning disabilities in the regular classroom

    Science.gov (United States)

    Holliday-Cashwell, Janet Rose

    2000-10-01

    Selected K--12 public school science educators in 14 eastern North Carolina counties were surveyed to examine their perceptions of their undergraduate preparation programs with regard to instructing students with learning disabilities in the regular classroom. A quantitative study, this research examined science educator preparedness in instructing students with learning disabilities by evaluating educator perception in regard to mainstrearned and inclusive educational settings. Specifically, two null hypotheses were tested. Null hypothesis I stated a significant difference does not exist between selected North Carolina K--12 science educators' perceptions of their undergraduate teacher education preparation programs and their perceptions of their abilities to instruct students needing accommodations on behalf of their learning disabilities in mainstrearned or inclusive settings. Participants' responses to perception as well as value statements regarding opinions, adaptations, and undergraduate training with respect to mainstreaming and inclusion were evaluated through t-test analyses of 22 Likert-scale items. Null hypothesis 1 was not accepted because a statistically significant difference did exist between the educators' perceptions of their undergraduate training and their perceived abilities to instruct students with learning disabilities in mainstreamed or inclusive settings. Null hypothesis 2 stated a significant difference does not exist between selected North Carolina K--12 science educators' attained educational level; grade level currently taught, supervised or chaired; and years of experience in teaching science, supervising science education, and/or chairing science departments in selected North Carolina public schools and their opinions of their undergraduate teacher education program with regard to instructing students with learning disabilities in mainstreamed or inclusive educational settings. Null hypothesis 2 was evaluated through an analysis of

  13. Predicting Pre-Service Classroom Teachers' Civil Servant Recruitment Examination's Educational Sciences Test Scores Using Artificial Neural Networks

    Science.gov (United States)

    Demir, Metin

    2015-01-01

    This study predicts the number of correct answers given by pre-service classroom teachers in Civil Servant Recruitment Examination's (CSRE) educational sciences test based on their high school grade point averages, university entrance scores, and grades (mid-term and final exams) from their undergraduate educational courses. This study was…

  14. The effect of inclusion classrooms on the science achievement of general education students

    Science.gov (United States)

    Dodd, Matthew Robert

    General education and Special Education students from three high schools in Rutherford County were sampled to determine the effect on their academic achievement on the Tennessee Biology I Gateway Exam in Inclusion classrooms. Each student's predicted and actual Gateway Exam scores from the academic year 2006--2007 were used to determine the effect the student's classroom had on his academic achievement. Independent variables used in the study were gender, ethnicity, socioeconomic level, grade point average, type of classroom (general or Inclusion), and type student (General Education or Special Education). The statistical tests used in this study were a t-test and a Mann--Whitney U Test. From this study, the effect of the Inclusion classroom on general education students was not significant statistically. Although the Inclusion classroom allows the special education student to succeed in the classroom, the effect on general education students is negligible. This study also provided statistical data that the Inclusion classroom did not improve the special education students' academic performances on the Gateway Exam. Students in a general education classroom with a GPA above 3.000 and those from a household without a low socioeconomic status performed at a statistically different level in this study.

  15. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-01-01

    NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the

  16. Implementation of National Science Education Standards in suburban elementary schools: Teachers' perceptions and classroom practices

    Science.gov (United States)

    Khan, Rubina Samer

    2005-07-01

    This was an interpretive qualitative study that focused on how three elementary school science teachers from three different public schools perceived and implemented the National Science Education Standards based on the Reformed Teaching Observation Protocol and individual interviews with the teachers. This study provided an understanding of the standards movement and teacher change in the process. Science teachers who were experienced with the National Science Education Standards were selected as the subjects of the study. Grounded in the theory of teacher change, this study's phenomenological premise was that the extent to which a new reform has an effect on students' learning and achievement on standardized tests depends on the content a teacher teaches as well as the style of teaching. It was therefore necessary to explore how teachers understand and implement the standards in the classrooms. The surveys, interviews and observations provided rich data from teachers' intentions, reflections and actions on the lessons that were observed while also providing the broader contextual framework for the understanding of the teachers' perspectives.

  17. The impact of professional development on classroom teaching for science educators participating in a long term community of practice

    Science.gov (United States)

    Jensen, Aaron C.

    Efforts to modify and improve science education in the United States have seen minimal success (Crawford, 2000; Borko & Putman, 1996; Puntambekar, Stylianou & Goldstein, 2007; Lustick, 2011). One important reason for this is the professional development that teachers go through in order to learn about and apply these new ideas is generally of poor quality and structured incorrectly for long-term changes in the classroom (Little, 1993; Fullen, 1996; Porter, 2000; Jeanpierre, Oberhauser, & Freeman, 2005). This grounded theory study explores a science community of practice and how the professional development achieved through participation in that community has effected the instruction of the teachers involved, specifically the incorporation of researched based effective science teaching instructional strategies. This study uses personal reflection papers written by the participants, interviews, and classroom observations to understand the influence that the science community of practice has had on the participants. Results indicate that participation in this science community of practice has significant impact on the teachers involved. Participants gained greater understanding of science content knowledge, incorporated effective science instructional strategies into their classroom, and were able to practice both content knowledge and strategies in a non-threatening environment thus gaining a greater understanding of how to apply them in the classrooms. These findings motivate continued research in the role that communities of practice may play in teacher professional develop and the effectiveness of quality professional development in attaining long-term, sustained improvement in science education.

  18. Science for Girls: Successful Classroom Strategies

    Science.gov (United States)

    Goetz, Susan Gibbs

    2007-01-01

    "Science for Girls: Successful Classroom Strategies" looks at how girls learn, beginning with the time they are born through both the informal and formal education process. In the author's current role as professor of science education, Dr. Goetz has surveyed hundreds of female elementary education majors in their junior and senior year of…

  19. Kuhn in the Classroom, Lakatos in the Lab: Science Educators Confront the Nature-of-Science Debate.

    Science.gov (United States)

    Turner, Steven; Sullenger, Karen

    1999-01-01

    Examines how science educators and educational researchers have drawn on the fragmented teachings of science studies about the nature of science, and how they have used those teachings as a resource in their own projects. Analyzes some of the deep assumptions about the relationship between science, school science, and children's learning.…

  20. Engineering Education in the Science Classroom: A Case Study of One Teacher's Disparate Approach with Ability-Tracked Classrooms

    Science.gov (United States)

    Schnittka, Christine G.

    2012-01-01

    Currently, unless a K-12 student elects to enroll in technology-focused schools or classes, exposure to engineering design and habits of mind is minimal. However, the "Framework for K-12 Science Education," published by the National Research Council in 2011, includes engineering design as a new and major component of the science content…

  1. Constructing and Using Multimodal Narratives to Research in Science Education: Contributions Based on Practical Classroom

    Science.gov (United States)

    Lopes, J. B.; Silva, A. A.; Cravino, J. P.; Santos, C. A.; Cunha, A.; Pinto, A.; Silva, A.; Viegas, C.; Saraiva, E.; Branco, M. J.

    2014-01-01

    This study deals with the problem of how to collect genuine and useful data about science classroom practices, and preserving the complex and holistic nature of teaching and learning. Additionally, we were looking for an instrument that would allow comparability and verifiability for teaching and research purposes. Given the multimodality of…

  2. Using NASA Data in the Classroom: Promoting STEM Learning in Formal Education using Real Space Science Data

    Science.gov (United States)

    Lawton, B.; Hemenway, M. K.; Mendez, B.; Odenwald, S.

    2013-04-01

    Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provides formal educators the opportunity to teach their students real-world applications of the STEM subjects. Combining real space science data with lessons aimed at meeting state and national education standards provides a memorable educational experience that students can build upon throughout their academic careers. Many of our colleagues have adopted the use of real data in their education and public outreach (EPO) programs. There are challenges in creating resources using real data for classroom use that include, but are not limited to, accessibility to computers/Internet and proper instruction. Understanding and sharing these difficulties and best practices with the larger EPO community is critical to the development of future resources. In this session, we highlight three examples of how NASA data is being utilized in the classroom: the Galaxies and Cosmos Explorer Tool (GCET) that utilizes real Hubble Space Telescope data; the computer image-analysis resources utilized by the NASA WISE infrared mission; and the space science derived math applications from SpaceMath@NASA featuring the Chandra and Kepler space telescopes. Challenges and successes are highlighted for these projects. We also facilitate small-group discussions that focus on additional benefits and challenges of using real data in the formal education environment. The report-outs from those discussions are given here.

  3. Oximetry: a reflective tool for the detection of physiological expression of emotions in a science education classroom

    Science.gov (United States)

    Calderón, Olga

    2016-09-01

    The pulse oximeter is a device that measures the oxygen concentration (or oxygen saturation—SpO2); heart rate, and heartbeat of a person at any given time. This instrument is commonly used in medical and aerospace fields to monitor physiological outputs of a patient according to health conditions or physiological yields of a flying pilot according to changes in altitude and oxygen availability in the atmosphere. Nonetheless, the uses for pulse oximetry may expand to other fields where there is human interaction and where physiological outputs reflect fluctuations mediated by arising emotions. A classroom, for instance is filled with a plethora of emotions, but very often participants in this space are unaware of others' or their own sentiments as these arise as a result of interactions and responses to class discussions. In this paper I describe part of a larger study-taking place at Brooklyn College of the City University of New York. The focus is on the exploration of emotions and mindfulness in the science classroom. The oximeter is used in this study as a reflexive tool to detect emotions emerging among participants of a graduate History and Philosophy of Science Education course offered in the spring of 2012. Important physiological information of class participants provided by the oximeter is used to analyze the role of emotions in the classroom as sensitive and controversial topics in science education are discussed every week.

  4. Professional Development for Early Childhood Educators: Efforts to Improve Math and Science Learning Opportunities in Early Childhood Classrooms

    Science.gov (United States)

    Piasta, Shayne B.; Logan, Jessica A. R.; Pelatti, Christina Yeager; Capps, Janet L.; Petrill, Stephen A.

    2014-01-01

    Because recent initiatives highlight the need to better support preschool-aged children’s math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hours) of training on math and science or on an alternative topic. Educators’ provision of math and science learning opportunities were documented, as were the fall-to-spring math and science learning gains of children (n = 385) enrolled in their classrooms. Professional development significantly impacted provision of science, but not math, learning opportunities. Professional development did not directly impact children’s math or science learning, although science learning was indirectly affected via the increase in science learning opportunities. Both math and science learning opportunities were positively associated with children’s learning. Results suggest that substantive efforts are necessary to ensure that children have opportunities to learn math and science from a young age. PMID:26257434

  5. Science Specialists or Classroom Teachers: Who Should Teach Elementary Science?

    Science.gov (United States)

    Levy, Abigail Jurist; Jia, Yueming; Marco-Bujosa, Lisa; Gess-Newsome, Julie; Pasquale, Marian

    2016-01-01

    This study examined science programs, instruction, and student outcomes at 30 elementary schools in a large, urban district in the northeast United States in an effort to understand whether there were meaningful differences in the quality, quantity and cost of science education when provided by a science specialist or a classroom teacher. Student…

  6. Safety Education and Science.

    Science.gov (United States)

    Ralph, Richard

    1980-01-01

    Safety education in the science classroom is discussed, including the beginning of safe management, attitudes toward safety education, laboratory assistants, chemical and health regulation, safety aids, and a case study of a high school science laboratory. Suggestions for safety codes for science teachers, student behavior, and laboratory…

  7. Science, mathematics and technology education in the US: a perspective from the "frontlines of the classroom to national policy"

    Directory of Open Access Journals (Sweden)

    R. A. Pertzborn

    2005-01-01

    Full Text Available In the past decade significant emphasis has been placed on increasing the involvement and influence of the professional scientific community in America's K-12 classrooms. The origins of this thrust have arisen from a variety of real and perceived crises occurring in America's K-12 classrooms. Projections for the nation's future workforce needs indicate an increased demand for science and technically literate workers, while fewer of the nation's students are pursuing advanced degrees in these academic areas of expertise. In an effort to address these issues and to impact the overall understanding and quality of science, math and technology education, several of the federal agencies have increasingly included a percentage of research funding devoted to the objective of improving the quality of kindergarten through Grade 12 (K-12, see Table 1 formal education and informal public outreach. To this end, NASA's Space Science Enterprise in particular has demonstrated a successful implementation approach and has been a national leader in forging strong partnerships with the education community to address these concerns.

  8. WISE Science: Web-based Inquiry in the Classroom. Technology, Education--Connections

    Science.gov (United States)

    Slotta, James D.; Linn, Marcia C.

    2009-01-01

    This book shares the lessons learned by a large community of educational researchers and science teachers as they designed, developed, and investigated a new technology-enhanced learning environment known as WISE: The Web-Based Inquiry Science Environment. WISE offers a collection of free, customizable curriculum projects on topics central to the…

  9. Tech-Savvy Science Education? Understanding Teacher Pedagogical Practices for Integrating Technology in K-12 Classrooms

    Science.gov (United States)

    Hechter, Richard; Vermette, Laurie Anne

    2014-01-01

    This paper examines the technology integration practices of Manitoban K-12 inservice science educators based on the Technological, Pedagogical, and Content knowledge (TPACK) framework. Science teachers (n = 433) completed a 10-item online survey regarding pedagogical beliefs about technology integration, types of technology used, and how often…

  10. Using Educational Computer Games in the Classroom: Science Teachers' Experiences, Attitudes, Perceptions, Concerns, and Support Needs

    Science.gov (United States)

    An, Yun-Jo; Haynes, Linda; D'Alba, Adriana; Chumney, Frances

    2016-01-01

    Science teachers' experiences, attitudes, perceptions, concerns, and support needs related to the use of educational computer games were investigated in this study. Data were collected from an online survey, which was completed by 111 science teachers. The results showed that 73% of participants had used computer games in teaching. Participants…

  11. Hearts and minds in the science classroom: The education of a confirmed evolutionist

    Science.gov (United States)

    Jackson, David F.; Doster, Elizabeth C.; Meadows, Lee; Wood, Teresa

    This study traces a heuristic inquiry process from the point of view of a science educator, from a secular-humanist background in the northern United States, attempting to better understand and appreciate a major aspect of religious-influenced culture in the southern United States which has a major bearing on science education in the region. The intellectual and emotional viewpoints of selected scientists, science educators, science teachers, and prospective science teachers are examined regarding the relationship between their orthodox Christian religious beliefs and biological evolutionary theory. We view the prospect of teaching evolution to students with such a religious commitment as a prime example of the severe limitations of cognitively-oriented conceptual change theory. We also view conflicts between religion and science regarding evolution as a bona fide example of a multicultural issue in education. These theoretical perspectives are inconsistent with the common tendency among science professionals to view or treat orthodox Christian students in a manner unconscionable with others - to disrespect their intellect or belittle their motivations, to offer judgments based on stereotypes and prejudices, to ignore threats to personal selfesteem, or to deny the de facto connection of some scientific conceptions to the morals, attitudes, and values of individuals with such religious commitments.Received: 14 June 1994; Revised: 7 November 1994;

  12. Initiating New Science Partnerships in Rural Education (INSPIRE) Brining STEM Research to 7th-12th Grade Science and Math Classrooms

    Science.gov (United States)

    Radencic, S.; McNeal, K. S.; Pierce, D.

    2012-12-01

    The Initiating New Science Partnerships in Rural Education (INSPIRE) program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on the advancement of Earth and Space science education in K-12 classrooms. INSPIRE currently in its third year of partnering ten graduate students each year from the STEM fields of Geosciences, Engineering, Physics and Chemistry at MSU with five teachers from local, rural school districts. The five year project serves to enhance graduate student's communication skills as they create interactive lessons linking their STEM research focus to the state and national standards covered in science and math classrooms for grades 7-12 through inquiry experiences. Each graduate student is responsible for the development of two lessons each month of the school year that include an aspect of their STEM research, including the technologies that they may utilize to conduct their STEM research. The plans are then published on the INSPIRE project webpage, www.gk12.msstate.edu, where they are a free resource for any K-12 classroom teacher seeking innovative activities for their classrooms and total over 300 lesson activities to date. Many of the participating teachers and graduate students share activities developed with non-participating teachers, expanding INSPIRE's outreach of incorporating STEM research into activities for K-12 students throughout the local community. Examples of STEM research connections to classroom topics related to earth and ocean science include activities using GPS with GIS for triangulation and measurement of area in geometry; biogeochemical response to oil spills compared to organism digestive system; hydrogeology water quality monitoring and GIS images used as a determinant for habitat suitability in area water; interactions of acids and bases in the Earth's environments and surfaces; and the importance of electrical circuitry in an electrode used in

  13. Early Childhood Educators' Self-Efficacy in Science, Math, and Literacy Instruction and Science Practice in the Classroom

    Science.gov (United States)

    Gerde, Hope K.; Pierce, Steven J.; Lee, Kyungsook; Van Egeren, Laurie A.

    2018-01-01

    Research Findings: Quality early science education is important for addressing the low science achievement, compared to international peers, of elementary students in the United States. Teachers' beliefs about their skills in a content area, that is, their content self-efficacy is important because it has implications for teaching practice and…

  14. The New Science of Teaching and Learning: Using the Best of Mind, Brain, and Education Science in the Classroom

    Science.gov (United States)

    Tokuhama-Espinosa, Tracey

    2009-01-01

    This book offers a definitive, scientifically grounded guide for better teaching and learning practices. Drawing from thousands of documents and the opinions of recognized experts worldwide, it explains in straight talk the new Mind, Brain, and Education Science--a field that has grown out of the intersection of neuroscience, education, and…

  15. Integrating local environmental research into K-12 science classrooms and the value of graduate student-educator partnerships

    Science.gov (United States)

    Ward, N. D.; Petrik-Finley, R.

    2015-12-01

    Collaboration between researchers and K-12 educators enables an invaluable exchange of teaching philosophies and educational tools. Programs that partner graduate students with K-12 educators serve the dual purpose of training future educators and providing K-12 students with unique opportunities and perspectives. The benefits of this type of partnership include providing students with enhanced educational experiences and positive student-mentor relationships, training STEM graduate students in effective teaching strategies, and providing teachers with a firsthand resource for scientific information and novel educational materials. Many high school students have had little exposure to science beyond the classroom. Frequent interactions with "real-life" scientists can help make science more approachable and is an effective strategy for promoting science as a career. Here I describe my experiences and several lessons designed as a NSK GK-12 fellow. For example, a month-long unit on biogeochemical principles was framed as a crime scene investigation of a fish kill event in Hood Canal, Washington, in which students were given additional pieces of evidence to solve the mystery as they satisfied checkpoints in their understanding of key concepts. The evidence pieces included scientific plots, maps, datasets, and laboratory exercises. A clear benefit of this investigation-style unit is that students were able to learn the material at their individual pace. This structure allowed for a streamlined integration of differentiated materials such as simplified background readings or visual learning aids for struggling students or more detailed news articles and primary literature for more advanced students. Although the NSF GK-12 program has been archived, educators and researchers should pursue new partnerships, leveraging local and state-level STEM outreach programs with the goal of increasing national exposure of the societal benefits of such synergistic activities.

  16. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  17. Urban special education policy and the lived experience of stigma in a high school science classroom

    Science.gov (United States)

    Hale, Chris

    2015-12-01

    In this paper, I provide a window into the lived experience of a group of urban high school science students confronted with the stigma associated with special education, disability, and academic failure and present tools to understanding the ideological forces and institutional structures that undermine the ability of schools to create a culture of care and inclusion of children with disabilities. With the purpose of understanding the context of these students' tainted social status within the school community, I draw connections between the ideological bipolarity and ambiguity of federal and state special education law and the lack of moral commitment at the local level to including and protecting the rights of children with disabilities in New York City schools. An important element of this paper is an exploration of a decade of neoliberal reform in the New York City Department of Education and the meticulously documented failure of New York City's special education system to provide mandated services, adequately include special education students, and generally protect the rights of children with disabilities. I conclude that the ableism embedded in special education law and a lack of meaningful enforcement renders special education regulations intangible to administrators whereas neoliberal performance benchmarks are extremely salient due to the dire consequences for schools of not meeting them.

  18. Science and Exploration in the Classroom & Beyond: An Interdisciplinary STEAM Curriculum Developed by SSERVI Educators & Scientists

    Science.gov (United States)

    Becker, Tracy M.; Runyon, Cassandra; Cynthia, Hall; Britt, Daniel; Tracy Becker

    2017-10-01

    Through NASA’s Solar System Exploration Research Virtual Institute (SSERVI), the Center for Lunar and Asteroid Surface Science (CLASS) and the SSERVI Evolution and Environment of Exploration Destinations (SEEED) nodes have developed an interdisciplinary formal and informal hands-on curriculum to bring the excitement of space exploration directly to the students.With a focus on exploring asteroids, this 5-year effort has infused art with traditional STEM practices (creating STEAM) and provides teachers with learning materials to incorporate art, social studies, English language arts, and other courses into the lesson plans. The formal curricula being developed follows Next Generation Standards and incorporates effective and engaging pedagogical strategies, such as problem-based learning (PBL), design thinking, and document based questions, using authentic data and articles, some of which are produced by the SSERVI scientists. From the materials developed for the formal education component, we have built up a collection of informal activities of varying lengths (minutes to weeks-long programs) to be used by museums, girl and boy scouts, science camps, etc.The curricula are being developed by formal and informal educators, artists, storytellers, and scientists. The continual feedback between the educators, artists, and scientists enables the program to evolve and mature such that the material will be accessible to the students without losing scientific merit. Online components will allow students to interact with SSERVI scientists and will ultimately infuse ongoing, exciting research into the student’s lessons.Our Education & Public Engagement (EPE) program makes a strong effort to make educational material accessible to all learners, including those with visual or hearing impairments. Specific activities have been included or independently developed to give all students an opportunity to experience the excitement of the universe.

  19. Assessment of general education teachers' Tier 1 classroom practices: contemporary science, practice, and policy.

    Science.gov (United States)

    Reddy, Linda A; Fabiano, Gregory A; Jimerson, Shane R

    2013-12-01

    Progress monitoring is a type of formative assessment. Most work on progress monitoring in elementary school settings has been focused on students. However, teachers also can benefit from frequent evaluations. Research addressing teacher progress monitoring is critically important given the recent national focus on teacher evaluation and effectiveness. This special topic section of School Psychology Quarterly is the first to showcase the current research on measuring Tier 1 instructional and behavioral management practices used by prekindergarten and elementary school teachers in general education settings. The three studies included in the special section describe the development and validation efforts of several teacher observational and self-report measures of instruction and/or behavioral management. These studies provide evidence for the utility of such assessments for documenting the use of classroom practices, and these assessment results may be leveraged in innovative coaching models to promote best practice. These articles also offer insight and ideas for the next generation of teacher practice assessment for the field. Finally, the special topic is capped by a commentary synthesizing the current work and offers "big ideas" for future measurement development, policy, and professional development initiatives. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  20. Initiating New Science Partnerships in Rural Education: STEM Graduate Students Bring Current Research into 7th-12th Grade Science Classrooms

    Science.gov (United States)

    Radencic, S.; Dawkins, K. S.; Jackson, B. S.; Walker, R. M.; Schmitz, D.; Pierce, D.; Funderburk, W. K.; McNeal, K.

    2014-12-01

    Initiating New Science Partnerships in Rural Education (INSPIRE), a NSF Graduate K-12 (GK-12) program at Mississippi State University, pairs STEM graduate students with local K-12 teachers to bring new inquiry and technology experiences to the classroom (www.gk12.msstate.edu). The graduate fellows prepare lessons for the students incorporating different facets of their research. The lessons vary in degree of difficulty according to the content covered in the classroom and the grade level of the students. The focus of each lesson is directed toward the individual research of the STEM graduate student using inquiry based designed activities. Scientific instruments that are used in STEM research (e.g. SkyMaster weather stations, GPS, portable SEM, Inclinometer, Soil Moisture Probe, Google Earth, ArcGIS Explorer) are also utilized by K-12 students in the activities developed by the graduate students. Creativity and problem solving skills are sparked by curiosity which leads to the discovery of new information. The graduate students work to enhance their ability to effectively communicate their research to members of society through the creation of research linked classroom activities, enabling the 7-12th grade students to connect basic processes used in STEM research with the required state and national science standards. The graduate students become respected role models for the high school students because of their STEM knowledge base and their passion for their research. Sharing enthusiasm for their chosen STEM field, as well as the application techniques to discover new ideas, the graduate students stimulate the interests of the classroom students and model authentic science process skills while highlighting the relevance of STEM research to K-12 student lives. The measurement of the student attitudes about science is gathered from pre and post interest surveys for the past four years. This partnership allows students, teachers, graduate students, and the public to

  1. The creation of a pedagogy of promise: Examples of educational excellence in high-stakes science classrooms

    Science.gov (United States)

    McCollough, Cherie A.

    The current reform movement in education has two forces that appear contradictory in nature. The first is an emphasis on rigor and accountability that is assessed through high-stakes testing. The second is the recommendation to have student centered approaches to teaching and learning, especially those that emphasize inquiry methodology and constructivist pedagogy. Literature reports that current reform efforts involving accountability through high-stakes tests are detrimental to student learning and are contradictory to student-centered teaching approaches. However, by focusing attention on those teachers who "teach against the grain" and raise the achievement levels of students from diverse backgrounds, instructional strategies and personal characteristics of exemplary teachers can be identified. This mixed-methods research study investigated four exemplary urban high school science teachers in high-stakes (TAKS) tested science classrooms. Classroom observations, teacher and student interviews, pre-/postcontent tests and the Constructivist Learning Environment Survey (CLES) (Johnson & McClure, 2004) provided the main data sources. The How People Learn (National Research Council, 2000) theoretical framework provided evidence of elements of inquiry-based, student-centered teaching. Descriptive case analysis (Yin, 1994) and quantitative analysis of pre/post tests and the CLES revealed the following results. First, all participating teachers included elements of learner-centeredness, knowledge-centeredness, assessment-centeredness and community-centeredness in their teaching as recommended by the National Research Council, (2000), thus creating student-centered classroom environments. Second, by establishing a climate of caring where students felt supported and motivated to learn, teachers managed tensions resulting from the incorporation of student-centered elements and the accountability-based instructional mandates outlined by their school district and state

  2. Classroom communication in lessons of educational science and psychology at secondary school

    OpenAIRE

    Šimáková, Monika

    2017-01-01

    This bachelor thesis deals with classroom communication during pedagogy and psychology lessons at high schools. The aim of the thesis is to describe classroom communication in the observed subjects in a complex way and to give the reader a realistic idea about the communication between the teachers and their students during instruction. The thesis is divided into a theoretical and an empirical part. The theoretical part focuses on pedagogical communication itself, which is a key term in class...

  3. Model program for the recruitment and preparation of high ability elementary mathematics/science teachers: A collaborative project among scientists, teacher educators and classroom teachers

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This teacher education program will provide a model for recruiting, educating and retaining high ability students to become mathematics and science lead teachers in elementary schools. The quality experiences and support provided these students will help them develop the knowledge and attitudes necessary to provide leadership for elementary mathematics and science programs. Students will have research experiences at the Ames Laboratory, high quality field experiences with nationally recognized mathematics and science teachers in local schools and opportunities to meaningfully connect these two experiences. This program, collaboratively designed and implemented by scientists, teacher educators and classroom teachers, should provide a replicatable model for other teacher education institutions. In addition, materials developed for the project should help other laboratories interface more effectively with K-8 schools and help other teacher education programs incorporate real science and mathematics experience into their curriculum.

  4. The flipped classroom: practices and opportunities for health sciences librarians.

    Science.gov (United States)

    Youngkin, C Andrew

    2014-01-01

    The "flipped classroom" instructional model is being introduced into medical and health sciences curricula to provide greater efficiency in curriculum delivery and produce greater opportunity for in-depth class discussion and problem solving among participants. As educators employ the flipped classroom to invert curriculum delivery and enhance learning, health sciences librarians are also starting to explore the flipped classroom model for library instruction. This article discusses how academic and health sciences librarians are using the flipped classroom and suggests opportunities for this model to be further explored for library services.

  5. Bringing Inquiry Science to K-5 Classrooms

    Science.gov (United States)

    Schachtel, Paula L.; Messina, D. L.; McDermott, L. C.

    2006-12-01

    As a science coach in the Seattle School District, I am responsible for helping other elementary teachers teach science. For several years, I have been participating in a program that consists of intensive NSF Summer Institutes and an ongoing academic-year Continuation Course. Teachers in this program work through modules in Physics by Inquiry, a research-based curriculum developed by the Physics Education Group at the University of Washington.1 I will discuss how this type of professional development has deepened my understanding of topics in physical science, helped me to teach science by inquiry to my own students, and enabled me to assist my colleagues in implementing inquiry science in their K-5 classrooms. Sponsored by Lillian C. McDermott. 1. A research-based curriculum developed by L.C. McDermott and the Physics Education Group at the University of Washington, Physics by Inquiry, New York, NY, John Wiley & Sons, Inc. (1996.)

  6. Spontaneous Play and Imagination in Everyday Science Classroom Practice

    Science.gov (United States)

    Andrée, Maria; Lager-Nyqvist, Lotta

    2013-01-01

    In science education, students sometimes create and engage in spontaneous science-oriented play where ideas about science and scientists are put to use. However, in previous research, little attention has been given to the role of informal spontaneous play in school science classrooms. We argue that, in order to enhance our understanding of…

  7. Inviting queer ideas into the science classroom: studying sexuality education from a queer perspective

    Science.gov (United States)

    Lundin, Mattias

    2014-06-01

    Science education has been pointed out as fact-based and built on reliable knowledge. Nevertheless, there are areas that include other aspects. Sexual education is, according to the Swedish syllabus, such an example and it involves aspects as love, sexuality and relations. These aspects suggest a possible tension between the biological and well-established definition of sex and later non-dichotomized perspectives. Teachers need to take both of these aspects into account as they work. Equality work aiming at providing equality for people that are not part of the prevalent norms for doing gender and sexuality is another endeavour to teachers in science education. To be able to study prevalent norms a queer perspective has been used. The hetero norm is defined in this perspective and it is explained as the expectation that everybody is heterosexual and wishes to live in hetero pair-ship. This perspective also involves the normative construction of man and woman. The different ways to approach sex and sexuality is the research object of this study and the research question is formulated as follows: How can the construction of the hetero norm be visualized by queer theory to challenge the norm in sexuality education? A framework that visualizes the hetero norm and that could elicit attempts to question the norm was chosen for the analysis. The applied framework can be summarized using the following descriptions: repetition of desirability, dichotomization of sexes, differentiation of sexualities and hierarchy of positions. The data constituted of observations made in two classes with 14-year-old students during sexuality education lessons. The results illustrate how the hetero norm was reconstructed in all of the four parts of the applied framework. The analysis provides four examples of how the norm was challenged, first, by expressing the unexpected and uncommon, second, by an orientation towards uncommon positions, third, by eliciting the communalities of sexes and

  8. School Influence and Classroom Control: A Comparison of Career and Technical Education, Science, and Mathematics Teachers

    Science.gov (United States)

    Bowen, Bradley; Marx, Adam; Williams, Thomas; Napoleon, Larry, Jr.

    2017-01-01

    Teacher retention in the STEM fields is of national interest. Several factors, such as job satisfaction, classroom control, and school influence have been linked to teachers leaving the profession. By statistically analyzing various questions from the Schools and Staffing Survey Teacher Questionnaire, this study evaluated the current state of how…

  9. Symposium 3 - Science Education “Leopoldo de Meis”: The Relevance of Neuroscience in Evaluation of Students in Classroom

    Directory of Open Access Journals (Sweden)

    Diogo O. Souza

    2015-08-01

    Full Text Available Symposium 3 - Science Education “Leopoldo de Meis” Chair: Wagner Seixas da Silva, Universidade Federal do Rio de JaneiroAbstract:In this talk we will discuss the relevance of the brain neurobiology in the student learning/formal evaluation processes in the classroom. It is important to emphasize that the students “are alive” before and after each class. It means that their brains are receiving a massive amount of environmental stimuli, which are processed by the complex cerebral circuitry involved in learning and memory processes. These stimuli interact with previous memories, which adapt to the new stimuli and are adjusted by them. These constant new interactions induce brain plasticity, changing the behavior in such way that a student that leaves the class is not exactly the same that will enter in the next class. At the same time, when students are in the class, what they are learning is not only (even nor the most relevant what the teacher is trying to teach. These “anonymous” experiences may impact the brain stronger than the teacher’s information. The neurobiological bases of all these interactions are nowadays being more and more revealed; unfortunately this new scientific knowledge is still not integrated in most of the class activities. The idea of this talk is to contribute for the discussion on how important is to incorporate this new scientific information to the current evaluation methods. Importantly, the aim here is not to transform all teachers in neuroscientists, but only motivate the school community for accepting that we learn with the brain and, consequently, the neurobiology of learning and memory should be valorized in formal evaluation of learning. Finally, it is important in terms of evaluation not consider strictly the answers to the question raised in an exam, but what happened within the time between a previous classroom and the time in which the exam is applied.

  10. Teaching about Nature of Science in Secondary Education: A View from Multicultural Classrooms

    Science.gov (United States)

    Gandolfi, Haira Emanuela

    2017-01-01

    Teaching about nature of science (NOS) within a science curriculum that is primarily concerned with developing scientific content continues to provide a challenge for teachers. This study of science lessons focuses on whether NOS is being incorporated implicitly or explicitly, and whether epistemic aspects (e.g. models, theories) and social…

  11. Technology Integration in Science Education: A Study of How Teachers Use Modern Learning Technologies in Biology Classrooms

    Science.gov (United States)

    Gnanakkan, Dionysius Joseph

    This multiple case-study investigated how high school biology teachers used modern learning technologies (probes, interactive simulations and animations, animated videos) in their classrooms and why they used the learning technologies. Another objective of the study was to assess whether the use of learning technologies alleviated misconceptions in Biology documented by American Association for the Advancement of Science. The sample consisted of eight teachers: four rural public school teachers, two public selective enrollment school teachers, and two private school teachers. Each teacher was followed for two Units of instruction. Data collected included classroom observations, field notes, student assignments and tests, teacher interviews, and pre-and post-misconception assessments. Paired t-tests were done to analyze the pre-post test data at a significance level of 0.05 and the qualitative data was analyzed using the constant comparative method. Each case study was characterized and then a cross-case analyses was done to find common themes across the different cases. Teachers were found to use the learning technologies as a tool to supplement instruction to visualize abstract processes, collect data, and explore abstract concepts and processes. Teachers were found to situate learning, use scaffolding and questioning and make students work in collaborative groups. The genetics, photosynthesis, and evolution misconceptions were better alleviated than cellular respiration. Student work that was collected demonstrated a superficial understanding of the concepts under discussion even when they had misconceptions. The teachers used the learning technologies in their classrooms for a variety of reasons: visual illustrations, time-saving measure to collect data, best way to collect data, engaging and fun for students and the interactive nature of the visualization tools and models. The study's findings had many implications for research, professional development

  12. Opening Pandora's Box: Texas Elementary Campus Administrators use of Educational Policy And Highly Qualified Classroom Teachers Professional Development through Data-informed Decisions for Science Education

    Science.gov (United States)

    Brown, Linda Lou

    Federal educational policy, No Child Left Behind Act of 2001, focused attention on America's education with conspicuous results. One aspect, highly qualified classroom teacher and principal (HQ), was taxing since states established individual accountability structures. The HQ impact and use of data-informed decision-making (DIDM) for Texas elementary science education monitoring by campus administrators, Campus Instruction Leader (CILs), provides crucial relationships to 5th grade students' learning and achievement. Forty years research determined improved student results when sustained, supported, and focused professional development (PD) for teachers is available. Using mixed methods research, this study applied quantitative and qualitative analysis from two, electronic, on-line surveys: Texas Elementary, Intermediate or Middle School Teacher Survey(c) and the Texas Elementary Campus Administrator Survey(c) with results from 22.3% Texas school districts representing 487 elementary campuses surveyed. Participants selected in random, stratified sampling of 5th grade teachers who attended local Texas Regional Collaboratives science professional development (PD) programs between 2003-2008. Survey information compared statistically to campus-level average passing rate scores on the 5th grade science TAKS using Statistical Process Software (SPSS). Written comments from both surveys analyzed with Qualitative Survey Research (NVivo) software. Due to the level of uncertainty of variables within a large statewide study, Mauchly's Test of Sphericity statistical test used to validate repeated measures factor ANOVAs. Although few individual results were statistically significant, when jointly analyzed, striking constructs were revealed regarding the impact of HQ policy applications and elementary CILs use of data-informed decisions on improving 5th grade students' achievement and teachers' PD learning science content. Some constructs included the use of data

  13. Understanding children's science identity through classroom interactions

    Science.gov (United States)

    Kim, Mijung

    2018-01-01

    Research shows that various stereotypes about science and science learning, such as science being filled with hard and dry content, laboratory experiments, and male-dominated work environments, have resulted in feelings of distance from science in students' minds. This study explores children's experiences of science learning and science identity. It asks how children conceive of doing science like scientists and how they develop views of science beyond the stereotypes. This study employs positioning theory to examine how children and their teacher position themselves in science learning contexts and develop science identity through classroom interactions. Fifteen students in grades 4-6 science classrooms in Western Canada participated in this study. Classroom activities and interactions were videotaped, transcribed, and analysed to examine how the teacher and students position each other as scientists in the classroom. A descriptive explanatory case analysis showed how the teacher's positioning acted to develop students' science identity with responsibilities of knowledge seeking, perseverance, and excitement about science.

  14. Science in the Bilingual Classroom

    Science.gov (United States)

    Gutierrez, Patricia A.

    1996-07-01

    One in seven children in the United States speaks a language other than English at home. Their difficulties with English may seem like a barrier to science education. But science education can be the impetus they need to overcome their difficulties with English. With sidebars by Isabel Hawkins and George Musser.

  15. Elementary Science Education in Classrooms and Outdoors: Stakeholder Views, Gender, Ethnicity, and Testing

    Science.gov (United States)

    Carrier, Sarah J.; Thomson, Margareta M.; Tugurian, Linda P.; Stevenson, Kathryn Tate

    2014-01-01

    In this article, we present a mixed-methods study of 2 schools' elementary science programs including outdoor instruction specific to each school's culture. We explore fifth-grade students in measures of science knowledge, environmental attitudes, and outdoor comfort levels including gender and ethnic differences. We further examine students'…

  16. Initiating New Science Partnerships in Rural Education (INSPIRE): Enhancing Scientific Communication by Bringing STEM Research into the Classroom

    Science.gov (United States)

    Pierce, D.; Radencic, S.; Funderburk, W. K.; Walker, R. M.; Jackson, B. S.; Dawkins, K. S.; Schmitz, D.; Bruce, L. M.; McNeal, K.

    2014-12-01

    INSPIRE, a five-year partnership between Mississippi State University and three local school districts, is designed to strengthen the communication skills of graduate Fellows in geosciences, physics, astronomy, chemistry, and engineering as they incorporate their research into inquiry-based lessons in 7th - 12th grade science and math classrooms. All lesson plans designed and taught by the graduate Fellows must include one or more connections to their research, and these connections must be demonstrated to the students during the lessons. International research partnerships with Australia, the Bahamas, England, and Poland provide valuable opportunities for graduate Fellows to conduct field work abroad and allow our partner teachers to have authentic research experiences that they can bring back to their classrooms. Program effectiveness has been examined using pre- and post-year attitudinal surveys, formal lesson plan documents, Fellow and teacher journals, focus group meetings with a project evaluator, and direct observation of Fellow-led classroom activities. Analyses of data gathered during the past four years of the partnership will be presented that examine the diversity in approaches taken by Fellows to communicate big ideas, changes in the ability of Fellows to find connections between their research and classroom lessons while keeping them aligned with state and national standards, and the quality of the mentorship provided to the Fellows by our partner teachers. INSPIRE is funded by the Graduate K-12 (GK-12) STEM Fellowship Program of the National Science Foundation (Award No. DGE-0947419).

  17. Everyday classroom assessment practices in science classrooms in Sweden

    Science.gov (United States)

    Gómez, María del Carmen; Jakobsson, Anders

    2014-12-01

    The focus of this study is to examine to what extent and in what ways science teachers practice assessment during classroom interactions in everyday activities in an upper-secondary school in Sweden. We are science teachers working now with a larger research project on assessment in science education that seeks to examine teachers' assessment practices in the upper-secondary school. Framing questions include: are teachers performing an integrated assessment of students' skills as the national curriculum mandates? If so, what do the instructional discourses look like in those situations and what are students' experiences regarding their agency on learning and assessment? We emphasize the social, cultural and historic character of assessment and sustain a situated character of learning instead of the notion that learning is "stored inside the head". Teacher led lessons in three science classrooms were video-recorded and analyzed by combining ethnographic and discourse methods of analysis. Both methods are appropriate to the theoretical foundation of our approach on learning and can give some answers to questions about how individuals interact socially, how their experience is passed on to next generations through language and how language use may reveal cultural changes in the studied context. Making the study of action in a classroom the focal point of sociocultural analysis supports the examination of assessment processes and identification of the social roles in which teachers and students are immersed. Such an approach requires observations of how teachers act in authentic teaching situations when they interact with their students in classroom making possible to observe negotiation processes, agencies when both teachers and students are involved in every-day activities. Our study showed that teachers mostly ignored students' questions and that students solved their own problems by helping each other. Teachers did not provide opportunities for students to discuss

  18. Nihithewak Ithiniwak, Nihithewatisiwin and science education: An exploratory narrative study examining Indigenous-based science education in K--12 classrooms from the perspectives of teachers in Woodlands Cree community contexts

    Science.gov (United States)

    Michell, Herman Jeremiah

    This study was guided by the following research questions: What do the stories of teachers in Nihithewak (Woodlands Cree) school contexts reveal about their experiences and tendencies towards cultural and linguistic-based pedagogical practices and actions in K-12 classrooms? How did these teachers come to teach this way? How do their beliefs and values from their experiences in science education and cultural heritage influence their teaching? Why do these teachers do what they do in their science classroom and instructional practices? The research explores Indigenous-based science education from the perspectives and experiences of science teachers in Nihithewak school contexts. Narrative methodology (Clandinin & Connelly, 2000) was used as a basis for collecting and analyzing data emerging from the research process. The results included thematic portraits and stories of science teaching that is connected to Nihithewak and Nihithewatisiwin (Woodlands Cree Way of Life). Major data sources included conversational interviews, out-of-class observations and occasional in-class observations, field notes, and a research journal. An interview guide with a set of open-ended and semi-structured questions was used to direct the interviews. My role as researcher included participation in storied conversations with ten selected volunteer teachers to document the underlying meanings behind the ways they teach science in Nihithewak contexts. This research is grounded in socio-cultural theory commonly used to support the examination and development of school science in Indigenous cultural contexts (Lemke, 2001; O'Loughlin, 1992). Socio-cultural theory is a framework that links education, language, literacy, and culture (Nieto, 2002). The research encapsulates a literature review that includes the history of Aboriginal education in Canada (Battiste & Barman, 1995; Kirkness, 1992; Perley, 1993), Indigenous-based science education (Cajete, 2000; Aikenhead, 2006a), multi

  19. An Engineering Innovation Tool: Providing Science Educators a Picture of Engineering in Their Classroom

    Science.gov (United States)

    Ross, Julia Myers; Peterman, Karen; Daugherty, Jenny L.; Custer, Rodney L.

    2018-01-01

    An Engineering Innovation Tool was designed to support science teachers as they navigate the opportunities and challenges the inclusion of engineering affords by providing a useful tool to be used within the professional development environment and beyond. The purpose of this manuscript is to share the design, development and substance of the tool…

  20. Applying a Goal-Driven Model of Science Teacher Cognition to the Resolution of Two Anomalies in Research on the Relationship between Science Teacher Education and Classroom Practice

    Science.gov (United States)

    Hutner, Todd L.; Markman, Arthur B.

    2017-01-01

    Two anomalies continue to confound researchers and science teacher educators. First, new science teachers are quick to discard the pedagogy and practices that they learn in their teacher education programs in favor of a traditional, didactic approach to teaching science. Second, a discrepancy exists at all stages of science teachers' careers…

  1. Professional Development for Early Childhood Educators: Efforts to Improve Math and Science Learning Opportunities in Early Childhood Classrooms

    Science.gov (United States)

    Piasta, Shayne B.; Logan, Jessica A. R.; Pelatti, Christina Yeager; Capps, Janet L.; Petrill, Stephen A.

    2015-01-01

    Because recent initiatives highlight the need to better support preschool-aged children's math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hr) of training on math and science or on…

  2. Connecting Cultures & Classrooms. K-12 Curriculum Guide: Language Arts, Science, Social Studies. Indian Education for All

    Science.gov (United States)

    Fox, Sandra J., Ed.

    2006-01-01

    This curriculum guide is but one of the resources that the Montana Office of Public Instruction is providing to help teachers implement Indian Education for All. The philosophy of this document promotes the use of Indian literature as an instructional tool. There are no textbooks presently for including aspects of Montana Indian cultures into the…

  3. Educational Theory and Classroom Behavior.

    Science.gov (United States)

    Swanson, Ronald G.; Smith, William S.

    1979-01-01

    Described are two instruments used in a workshop designed to help teachers clarify their own beliefs about education and to shape their classroom behavior accordingly. The Student-Content Inventory concerns styles of student-teacher interaction and the Educational Theory Inventory correlates the respondent's beliefs to major educational theories.…

  4. Science Learning outside the Classroom

    Science.gov (United States)

    Robelen, Erik W.; Sparks, Sarah D.; Cavanagh, Sean; Ash, Katie; Deily, Mary-Ellen Phelps; Adams, Caralee

    2011-01-01

    As concern mounts that U.S. students lack sufficient understanding of science and related fields, it has become increasingly clear that schools can't tackle the challenge alone. This special report explores the field often called "informal science education," which is gaining broader recognition for its role in helping young people…

  5. Sample classroom activities based on climate science

    Science.gov (United States)

    Miler, T.

    2009-09-01

    We present several activities developed for the middle school education based on a climate science. The first activity was designed to teach about the ocean acidification. A simple experiment can prove that absorption of CO2 in water increases its acidity. A liquid pH indicator is suitable for the demonstration in a classroom. The second activity uses data containing coordinates of a hurricane position. Pupils draw a path of a hurricane eye in a tracking chart (map of the Atlantic ocean). They calculate an average speed of the hurricane, investigate its direction and intensity development. The third activity uses pictures of the Arctic ocean on September when ice extend is usually the lowest. Students measure the ice extend for several years using a square grid printed on a plastic foil. Then they plot a graph and discuss the results. All these activities can be used to improve the natural science education and increase the climate change literacy.

  6. Exploring alternative assessment strategies in science classrooms

    Directory of Open Access Journals (Sweden)

    Michèle Stears

    2010-01-01

    Full Text Available The knowledge children bring to the classroom or construct in the classroom may find expression in a variety of activities and is often not measurable with the traditional assessment instruments used in science classrooms. Different approaches to assessment are required to accommodate the various ways in which learners construct knowledge in social settings. In our research we attempted to determine the types of outcomes achieved in a Grade 6 classroom where alternative strategies such as interactive assessments were implemented. Analyses of these outcomes show that the learners learned much more than the tests indicate, although what they learnt was not necessarily science. The implications for assessment are clear: strategies that assess knowledge of science concepts, as well as assessment of outcomes other than science outcomes, are required if we wish to gain a holistic understanding of the learning that occurs in science classrooms.

  7. Increasing ocean sciences in K and 1st grade classrooms through ocean sciences curriculum aligned to A Framework for K-12 Science Education, and implementation support.

    Science.gov (United States)

    Pedemonte, S.; Weiss, E. L.

    2016-02-01

    Ocean and climate sciences are rarely introduced at the early elementary levels. Reasons for this vary, but include little direct attention at the national and state levels; lack of quality instructional materials; and, lack of teacher content knowledge. Recent recommendations by the National Research Council, "revise the Earth and Space sciences core ideas and grade band endpoints to include more attention to the ocean whenever possible" (NRC, 2012, p. 336) adopted in the Next Generation Science Standards (NGSS), may increase the call for ocean and climate sciences to be addressed. In response to these recommendations' and the recognition that an understanding of some of the Disciplinary Core Ideas (DCIs) would be incomplete without an understanding of processes or phenomena unique to the ocean and ocean organisms; the ocean Literacy community have created documents that show the alignment of NGSS with the Ocean Literacy Principles and Fundamental Concepts (Ocean Literacy, 2013) as well as the Ocean Literacy Scope and Sequence for Grades K-12 (Ocean Literacy, 2010), providing a solid argument for how and to what degree ocean sciences should be part of the curriculum. However, the percentage of science education curricula focused on the ocean remains very low. This session will describe a new project, that draws on the expertise of curriculum developers, ocean literacy advocates, and researchers to meet the challenges of aligning ocean sciences curriculum to NGSS, and supporting its implementation. The desired outcomes of the proposed project are to provide a rigorous standards aligned curricula that addresses all of the Life Sciences, and some Earth and Space Sciences and Engineering Design Core Ideas for Grades K and 1; and provides teachers with the support they need to understand the content and begin implementation. The process and lessons learned will be shared.

  8. Water in everyday life and in science classrooms: analysis of discursive interactions and teaching strategies in primary education

    Directory of Open Access Journals (Sweden)

    Andreza Fortini da Silva

    2012-02-01

    Full Text Available This article examines how a primary teacher establishes links between students' initial contributions on the theme ‘water’ and the elements that will make up the teaching approach of this subject in the science classroom. For this purpose, we examine discursive interactions in the first lessons of a teaching sequence, looking for links between events that are being elicited and developed by the teacher with intense participation of the students. We shall also examine the teaching strategies conducted by the teacher, emphasizing the presence of visual resources in text production activities, understanding them as literacy practices in the context of science lessons. To examine the effectiveness of these strategies and mediational resources, we shall analyze some exemplars of the students' productions (texts and drawings. We will use as criteria of analysis: speech marks of the opening activity and of the preliminary discussions in the texts produced by the pupils; evidence of changes in the pupils’ initial repertoires about the theme; evidence of connections between the “water in our lives” and “water as a science subject”. The context of the research is a third year grade classroom in a public elementary school in Contagem / MG - Brazil.

  9. Protein Structure and Function: An Interdisciplinary Multimedia-Based Guided-Inquiry Education Module for the High School Science Classroom

    Science.gov (United States)

    Bethel, Casey M.; Lieberman, Raquel L.

    2014-01-01

    Here we present a multidisciplinary educational unit intended for general, advanced placement, or international baccalaureate-level high school science, focused on the three-dimensional structure of proteins and their connection to function and disease. The lessons are designed within the framework of the Next Generation Science Standards to make…

  10. The Impact of the Social Norms of Education on Beginning Science Teachers' Understanding of NOS During their First Three Years in the Classroom

    Science.gov (United States)

    Firestone, Jonah B.

    An understanding of the Nature of Science (NOS) remains a fundamental goal of science education in the Unites States. A developed understanding of NOS provides a framework in which to situate science knowledge. Secondary science teachers play a critical role in providing students with an introduction to understanding NOS. Unfortunately, due to the high turnover rates of secondary science teachers in the United States, this critical role is often filled by relatively novice teachers. These beginning secondary science teachers make instructional decisions regarding science that are drawn from their emerging knowledge base, including a tentative understanding of NOS. This tentative knowledge can be affected by environment and culture of the classroom, school, and district in which beginning teachers find themselves. When examining NOS among preservice and beginning teachers the background and demographics of the teachers are often ignored. These teachers are treated as a homogenous block in terms of their initial understanding of NOS. This oversight potentially ignores interactions that may happen over time as teachers cross the border from college students, preservice teachers, and scientists into the classroom environment. Through Symbolic Interactionism we can explain how teachers change in order to adapt to their new surroundings and how this adaptation may be detrimental to their understanding of NOS and ultimately to their practice. 63 teachers drawn from a larger National Science Foundation (NSF) funded study were interviewed about their understanding of NOS over three years. Several demographic factors including college major, preservice program, number of History and Philosophy of Science classes, and highest academic degree achieve were shown to have an affect on the understanding of NOS over time. In addition, over time, the teachers tended to 'converge' in their understanding of NOS regardless of preservice experiences or induction support. Both the affect

  11. Cognitive science and mathematics education

    CERN Document Server

    Schoenfeld, Alan H

    1987-01-01

    This volume is a result of mathematicians, cognitive scientists, mathematics educators, and classroom teachers combining their efforts to help address issues of importance to classroom instruction in mathematics. In so doing, the contributors provide a general introduction to fundamental ideas in cognitive science, plus an overview of cognitive theory and its direct implications for mathematics education. A practical, no-nonsense attempt to bring recent research within reach for practicing teachers, this book also raises many issues for cognitive researchers to consider.

  12. Frame Analysis in Science Education: A Classroom Activity for Promoting Media Literacy and Learning about Genetic Causation

    Science.gov (United States)

    Carver, Rebecca Bruu; Wiese, Eline Fatima; Breivik, Jarle

    2014-01-01

    After completion of formal education, the mass media represent people's primary source of scientific information. Besides the traditional attention to scientific knowledge, national curricula are therefore increasingly emphasizing critical and reflexive engagement with media content as a key objective of science education. Despite this curricular…

  13. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  14. Interdisciplinary Science in the Classroom

    Science.gov (United States)

    French, L. M.; Lopresti, V. C.; Papali, P.

    1993-05-01

    The practice of science is by its very nature interdisciplinary. Most school curricula, however, present science as a "layer cake" with one year each of biology, chemistry, earth science, and physics. Students are too often left with a fragmented, disjointed view of the sciences as separate and distinct bodies of information. The continuity of scientific thought and the importance of major ideas such as energy, rates of change, and the nature of matter are not seen. We describe two efforts to integrate the sciences in a middle school curriculum and in an introductory science course for prospective elementary teachers. Introductory physical science for eighth graders at the Park School has three major units: "Observing the Sky", "The Nature of Matter", and "The Nature of Light". The course moves from simple naked-eye observations of the Sun and Moon to an understanding of the apparent motions of the Sun and of the Earth's seasons. In "The Nature of Matter", students construct operational definitions of characteristic properties of matter such as density, boiling point, solubility, and flame color. They design and perform many experiments and conclude by separating a mixture of liquids and solids by techniques such as distillation and fractional crystallization. In studying flame tests, students learn that different materials have different color "signatures" and that the differences can be quantified with a spectroscope. They then observe solar absorption lines with their spectroscopes and discover which elements are present in the Sun. Teachers of young children are potentially some of the most powerful allies in increasing our country's scientific literacy, yet most remain at best uneasy about science. At Wheelock College we are designing a course to be called "Introduction to Natural Science" for elementary education majors. We will address special needs of many in this population, including science anxiety and poor preparation in mathematics. A broad conceptual

  15. Mathematics and Science Learning Opportunities in Preschool Classrooms

    Science.gov (United States)

    Piasta, Shayne B.; Pelatti, Christina Yeager; Miller, Heather Lynnine

    2014-01-01

    Research findings The present study observed and coded instruction in 65 preschool classrooms to examine (a) overall amounts and (b) types of mathematics and science learning opportunities experienced by preschool children as well as (c) the extent to which these opportunities were associated with classroom and program characteristics. Results indicated that children were afforded an average of 24 and 26 minutes of mathematics and science learning opportunities, respectively, corresponding to spending approximately 25% of total instructional time in each domain. Considerable variability existed, however, in the amounts and types of mathematics and science opportunities provided to children in their classrooms; to some extent, this variability was associated with teachers’ years of experience, teachers’ levels of education, and the socioeconomic status of children served in the program. Practice/policy Although results suggest greater integration of mathematics and science in preschool classrooms than previously established, there was considerable diversity in the amounts and types of learning opportunities provided in preschool classrooms. Affording mathematics and science experiences to all preschool children, as outlined in professional and state standards, may require additional professional development aimed at increasing preschool teachers’ understanding and implementation of learning opportunities in these two domains in their classrooms. PMID:25489205

  16. A qualitative study of the instructional behaviors and practices of a dyad of educators in self-contained and inclusive co-taught secondary biology classrooms during a nine-week science instruction grading period

    Science.gov (United States)

    Hardy, Shanon D.

    The Individuals with Disabilities Education Act (IDEA) (1997) mandates that students with disabilities have access to the general education curriculum. School districts have developed a variety of service delivery models to provide challenging educational experiences for all students. Co-teaching or collaborative teaching is the most widely used of the different service delivery models. While the philosophy of inclusion is widely accepted, the efficacy of the various inclusion models has recently been the focus of educational research. Researchers have questioned whether the presence of a special educator in the general education classroom has resulted in students with high incidence disabilities receiving specialized instruction. A qualitative study was designed to examine the instructional behaviors and practices exhibited and used by a dyad of educators in self-contained learning disabilities and inclusive co-taught secondary Biology classrooms during a nine-week science instruction grading period. In addition to utilizing interviews, observations, and classroom observation scales to answer the research questions, supporting student data (time-sampling measurement/opportunity to learn and student grades) were collected. The study concluded that the presence of a special educator in a co-taught classroom: (1) did contribute to the creation of a new learning environment, and notable changes in the instructional behaviors and practices of a general educator; (2) did contribute to limited specialized instruction for students with disabilities in the co-taught classrooms and embedded (not overt) special education practices related to the planning and decision-making of the educators; (3) did contribute to the creation of a successful co-teaching partnership including the use of effective teaching behaviors; and (4) did impact success for some of the students with disabilities in the co-taught classrooms; but (5) did not ensure the continuation of some of the new

  17. The Flipped Classroom in Counselor Education

    Science.gov (United States)

    Moran, Kristen; Milsom, Amy

    2015-01-01

    The flipped classroom is proposed as an effective instructional approach in counselor education. An overview of the flipped-classroom approach, including advantages and disadvantages, is provided. A case example illustrates how the flipped classroom can be applied in counselor education. Recommendations for implementing or researching flipped…

  18. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    Science.gov (United States)

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-01-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by…

  19. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    Science.gov (United States)

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-08-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by prominent policy documents. Specifically, we examined the opportunities present in Montessori classrooms for students to develop an interest in the natural world, generate explanations in science, and communicate about science. Using ethnographic research methods in four Montessori classrooms at the primary and elementary levels, this research captured a range of scientific learning opportunities. The study found that the Montessori learning environment provided opportunities for students to develop enduring interests in scientific topics and communicate about science in various ways. The data also indicated that explanation was largely teacher-driven in the Montessori classroom culture. This study offers lessons for both conventional and Montessori classrooms and suggests further research that bridges educational contexts.

  20. AGI's Earth Science Week and Education Resources Network: Connecting Teachers to Geoscience Organizations and Classroom Resources that Support NGSS Implementation

    Science.gov (United States)

    Robeck, E.; Camphire, G.; Brendan, S.; Celia, T.

    2016-12-01

    There exists a wide array of high quality resources to support K-12 teaching and motivate student interest in the geosciences. Yet, connecting teachers to those resources can be a challenge. Teachers working to implement the NGSS can benefit from accessing the wide range of existing geoscience resources, and from becoming part of supportive networks of geoscience educators, researchers, and advocates. Engaging teachers in such networks can be facilitated by providing them with information about organizations, resources, and opportunities. The American Geoscience Institute (AGI) has developed two key resources that have great value in supporting NGSS implement in these ways. Those are Earth Science Week, and the Education Resources Network in AGI's Center for Geoscience and Society. For almost twenty years, Earth Science Week, has been AGI's premier annual outreach program designed to celebrate the geosciences. Through its extensive web-based resources, as well as the physical kits of posters, DVDs, calendars and other printed materials, Earth Science Week offers an array of resources and opportunities to connect with the education-focused work of important geoscience organizations such as NASA, the National Park Service, HHMI, esri, and many others. Recently, AGI has initiated a process of tagging these and other resources to NGSS so as to facilitate their use as teachers develop their instruction. Organizing Earth Science Week around themes that are compatible with topics within NGSS contributes to the overall coherence of the diverse array of materials, while also suggesting potential foci for investigations and instructional units. More recently, AGI has launched its Center for Geoscience and Society, which is designed to engage the widest range of audiences in building geoscience awareness. As part of the Center's work, it has launched the Education Resources Network (ERN), which is an extensive searchable database of all manner of resources for geoscience

  1. Streaming Seismograms into Earth-Science Classrooms

    Science.gov (United States)

    Ammon, C. J.

    2011-12-01

    Seismograms are the fundamental observations upon which seismology is based; they are central to any course in seismology and important for any discussion of earthquake-related phenomena based on seismic observations. Advances in the collection and distribution of seismic data have made the use of research-quality seismograms in any network capable classroom feasible. The development of large, deep seismogram archives place an unprecedented quantity of high-quality data within reach of the modern classroom environment. I describe and discuss several computer tools and classroom activities that I use in introductory (general education) and advanced undergraduate courses that present near real-time research-quality seismic observations in the classroom. The Earth Motion Monitor Application (EMMA), is a MacOS application that presents a visually clear seismogram display that can be projected in classrooms with internet access. Seismic signals from thousands of station are available from the IRIS data center and the bandwidth can be tailored to the particular type of signal of interest (large event, low frequencies; small event, high frequencies). In introductory classes for non-science students, the near realtime display routinely shows magnitude 4.0-5.0 earthquake-generated signals, demonstrating to students the frequency of earthquake occurrence. Over the next few minutes as the waves travel through and across the planet, their arrival on the seismogram display provides some basic data for a qualitative estimate of the event's general location. When a major or great earthquake occurs, a broad-band display of signals from nearby stations can dramatically and dynamically illuminate the frequent activity associated with the aftershock sequence. Routine use of the display (while continuing the traditional classroom activities) provides students with a significant dose of seismogram study. Students generally find all the signals, including variations in seismic

  2. Biological design in science classrooms

    Science.gov (United States)

    Scott, Eugenie C.; Matzke, Nicholas J.

    2007-01-01

    Although evolutionary biology is replete with explanations for complex biological structures, scientists concerned about evolution education have been forced to confront “intelligent design” (ID), which rejects a natural origin for biological complexity. The content of ID is a subset of the claims made by the older “creation science” movement. Both creationist views contend that highly complex biological adaptations and even organisms categorically cannot result from natural causes but require a supernatural creative agent. Historically, ID arose from efforts to produce a form of creationism that would be less vulnerable to legal challenges and that would not overtly rely upon biblical literalism. Scientists do not use ID to explain nature, but because it has support from outside the scientific community, ID is nonetheless contributing substantially to a long-standing assault on the integrity of science education. PMID:17494747

  3. Science Students' Classroom Discourse: Tasha's Umwelt

    Science.gov (United States)

    Arnold, Jenny

    2012-04-01

    Over the past twenty-five years researchers have been concerned with understanding the science student. The need for such research is still grounded in contemporary issues including providing opportunities for all students to develop scientific literacy and the failure of school science to connect with student's lives, interests and personal identities. The research reported here is unusual in its use of discourse analysis in social psychology to contribute to an understanding of the way students make meaning in secondary school science. Data constructed for the study was drawn from videotapes of nine consecutive lessons in a year-seven science classroom in Melbourne, post-lesson video-stimulated interviews with students and the teacher, classroom observation and the students' written work. The classroom videotapes were recorded using four cameras and seven audio tracks by the International Centre for Classroom Research at the University of Melbourne. Student talk within and about their science lessons was analysed from a discursive perspective. Classroom episodes in which students expressed their sense of personal identity and agency, knowledge, attitude or emotion in relation to science were identified for detailed analysis of the function of the discourse used by students, and in particular the way students were positioned by others or positioned themselves. This article presents the discursive Umwelt or life-space of one middle years science student, Tasha. Her case is used here to highlight the complex social process of meaning making in science classrooms and the need to attend to local moral orders of rights and duties in research on student language use, identity and learning in science.

  4. Teaching and learning science in linguistically diverse classrooms

    Science.gov (United States)

    Moore, Emilee; Evnitskaya, Natalia; Ramos-de Robles, S. Lizette

    2017-01-01

    In this paper we reflect on the article, Science education in a bilingual class: problematising a translational practice, by Zeynep Ünsal, Britt Jakobson, Bengt-Olav Molander and Per-Olaf Wickman (Cult Stud Sci Educ, 10.1007/s11422-016-9747-3). In their article, the authors present the results of a classroom research project by responding to one main question: How is continuity between everyday language and the language of science construed in a bilingual science classroom where the teacher and the students do not speak the same minority language? Specifically, Ünsal et al. examine how bilingual students construe relations between everyday language and the language of science in a class taught in Swedish, in which all students also spoke Turkish, whereas the teacher also spoke Bosnian, both being minority languages in the context of Swedish schools. In this forum, we briefly discuss why close attention to bilingual dynamics emerging in classrooms such as those highlighted by Ünsal et al. matters for science education. We continue by discussing changing ontologies in relation to linguistic diversity and education more generally. Recent research in bilingual immersion classroom settings in so-called "content" subjects such as Content and Language Integrated Learning, is then introduced, as we believe this research offers some significant insights in terms of how bilingualism contributes to knowledge building in subjects such as science. Finally, we offer some reflections in relation to the classroom interactional competence needed by teachers in linguistically diverse classrooms. In this way, we aim to further the discussion initiated by Ünsal et al. and to offer possible frameworks for future research on bilingualism in science education. In their article, Ünsal et al. conclude the analysis of the classroom data by arguing in favor of a translanguaging pedagogy, an approach to teaching and learning in which students' whole language repertoires are used as

  5. From the Field to the Classroom: Developing Scientifically Literate Citizens Using the Understanding Global Change Framework in Education and Citizen Science

    Science.gov (United States)

    Toupin, C.; Bean, J. R.; Gavenus, K.; Johnson, H.; Toupin, S.

    2017-12-01

    With the copious amount of science and pseudoscience reported on by non-experts in the media, it is critical for educators to help students develop into scientifically literate citizens. One of the most direct ways to help students develop deep scientific understanding and the skills to critically question the information they encounter is to bring science into their daily experiences and to contextualize scientific inquiry within the classroom. Our work aims to use a systems-based models approach to engage students in science, in both formal and informal contexts. Using the Understanding Global Change (UGC) and the Understanding Science models developed at the Museum of Paleontology at UC Berkeley, high school students from Arizona were tasked with developing a viable citizen science program for use at the Center for Alaskan Coastal Studies in Homer, Alaska. Experts used the UGC model to help students define why they were doing the work, and give context to the importance of citizen science. Empowered with an understanding of the scientific process, excited by the purpose of their work and how it could contribute to the scientific community, students whole-heartedly worked together to develop intertidal monitoring protocols for two locations while staying at Peterson Bay Field Station, Homer. Students, instructors, and scientists used system models to communicate and discuss their understanding of the biological, physical, and chemical processes in Kachemak Bay. This systems-based models approach is also being used in an integrative high school physics, chemistry, and biology curriculum in a truly unprecedented manner. Using the Understanding Global Change framework to organize curriculum scope and sequence, the course addresses how the earth systems work, how interdisciplinary science knowledge is necessary to understand those systems, and how scientists and students can measure changes within those systems.

  6. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. July 2007 Volume 12 Number 7. GENERAL ARTICLES. 04 Josiah Willard Gibbs. V Kumaran. 12 Josiah Willard ... IISc, Bangalore). Rapidity: The Physical Meaning of the Hyperbolic Angle in. Special Relativity. Giorgio Goldoni. Survival in Stationary Phase. S Mahadevan. Classroom.

  7. Effect of Engineering Education by Science Classroom for High School, Junior High School and Elementary School Students

    Science.gov (United States)

    Yukita, Kazuto; Goto, Tokimasa; Mizuno, Katsunori; Nakano, Hiroyuki; Ichiyanagi, Katsuhiro; Goto, Yasuyuki; Mori, Tsuyoshi

    Recently the importance of Monozukuri (manufacturing) has been watched with keen interest as a social; problem, which has a relation with schoolchildren's decline of their academic standards, pointed out by the reports of PISA of OECD and TIMSS, etc., and their “losing interest in science” and “dislike of science”, some people worry about, which will lead to the decline of technology in the home industry, the top-class personnel shortage, and the decrease of economical power in this country in the future. In order to solve such a problem, science pavilions, universities, and academic societies of science and engineering etc. in various places hold “Monozukuiri Classrooms” or “Science Classrooms”. We can say that various activities which try to hold off “losing interest in science” and “dislike of science.” in the whole society. Under such a situation, Aichi Institute of Technology (AIT) to which we belong, also tries to contribute to the activity of solving the problem, and holds various engineering education lectures which intend for elementary, junior high school and senior high school students. AIT has held “The Whole Experience World” which tries to bring up a talented person who has a dream and hope towards science and technology, grows his/her originality, intellectual curiosity and spirit of inquiry, and supports the nation based on science and technology in the summer vacation since 2001. This paper reports the result of a questionnaire about what kind of the long-term learning effect on the children who participated in “The Whole Experience World” and “Boys and Girls Robot Lectures”. As the conclusion of the study, we can say that the lectures could give the participants who were interested in science and technology more interest. And we could give them the idea of what the study of science and technology is. As a result, we could contribute to the participants' decision of the courses' selection in life.

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Resonance – Journal of Science Education started in the year 1996 was the ... new classroom experiments, emerging techniques and ideas, and innovative ... concise texts in article-in-a-box, classroom and nature-watch, research news, book ...

  9. Discovery stories in the science classroom

    Science.gov (United States)

    Arya, Diana Jaleh

    School science has been criticized for its lack of emphasis on the tentative, dynamic nature of science as a process of learning more about our world. This criticism is the guiding force for this present body of work, which focuses on the question: what are the educational benefits for middle school students of reading texts that highlight the process of science in the form of a discovery narrative? This dissertation traces my journey through a review of theoretical perspectives of narrative, an analysis of first-hand accounts of scientific discovery, the complex process of developing age-appropriate, cohesive and engaging science texts for middle school students, and a comparison study (N=209) that seeks to determine the unique benefits of the scientific discovery narrative for the interest in and retained understanding of conceptual information presented in middle school science texts. A total of 209 middle school participants in nine different classrooms from two different schools participated in the experimental study. Each subject read two science texts that differed in topic (the qualities of and uses for radioactive elements and the use of telescopic technology to see planets in space) and genre (the discovery narrative and the "conceptually known exposition" comparison text). The differences between the SDN and CKE versions for each topic were equivalent in all possible ways (initial introduction, overall conceptual accuracy, elements of human interest, coherence and readability level), save for the unique components of the discovery narrative (i.e., love for their work, acknowledgement of the known, identification of the unknown and the explorative or experimental process to discovery). Participants generally chose the discovery narrative version as the more interesting of the two texts. Additional findings from the experimental study suggest that science texts in the form of SDNs elicit greater long-term retention of key conceptual information, especially

  10. Scientists in the Classroom Mentor Model Program - Bringing real time science into the K - 12 classroom

    Science.gov (United States)

    Worssam, J. B.

    2017-12-01

    Field research finally within classroom walls, data driven, hands on with students using a series of electronic projects to show evidence of scientific mentor collaboration. You do not want to miss this session in which I will be sharing the steps to develop an interactive mentor program between scientists in the field and students in the classroom. Using next generation science standards and common core language skills you will be able to blend scientific exploration with scientific writing and communication skills. Learn how to make connections in your own community with STEM businesses, agencies and organizations. Learn how to connect with scientists across the globe to make your classroom instruction interactive and live for all students. Scientists, you too will want to participate, see how you can reach out and be a part of the K-12 educational system with students learning about YOUR science, a great component for NSF grants! "Scientists in the Classroom," a model program for all, bringing real time science, data and knowledge into the classroom.

  11. Globalisation and science education: Rethinking science education reforms

    Science.gov (United States)

    Carter, Lyn

    2005-05-01

    Like Lemke (J Res Sci Teach 38:296-316, 2001), I believe that science education has not looked enough at the impact of the changing theoretical and global landscape by which it is produced and shaped. Lemke makes a sound argument for science education to look beyond its own discourses toward those like cultural studies and politics, and to which I would add globalisation theory and relevant educational studies. Hence, in this study I draw together a range of investigations to argue that globalisation is indeed implicated in the discourses of science education, even if it remains underacknowledged and undertheorized. Establishing this relationship is important because it provides different frames of reference from which to investigate many of science education's current concerns, including those new forces that now have a direct impact on science classrooms. For example, one important question to investigate is the degree to which current science education improvement discourses are the consequences of quality research into science teaching and learning, or represent national and local responses to global economic restructuring and the imperatives of the supranational institutions that are largely beyond the control of science education. Developing globalisation as a theoretical construct to help formulate new questions and methods to examine these questions can provide science education with opportunities to expand the conceptual and analytical frameworks of much of its present and future scholarship.

  12. Examining classroom interactions related to difference in students' science achievement

    Science.gov (United States)

    Zady, Madelon F.; Portes, Pedro R.; Ochs, V. Dan

    2003-01-01

    The current study examines the cognitive supports that underlie achievement in science by using a cultural historical framework (L. S. Vygotsky (1934/1986), Thought and Language, MIT Press, Cambridge, MA.) and the activity setting (AS) construct (R. G. Tharp & R. Gallimore (1988), Rousing minds to life: Teaching, learning and schooling in social context, Cambridge University Press, Cambridge, MA.) with its five features: personnel, motivations, scripts, task demands, and beliefs. Observations were made of the classrooms of seventh-grade science students, 32 of whom had participated in a prior achievement-related parent-child interaction or home study (P. R. Portes, M. F. Zady, & R. M. Dunham (1998), Journal of Genetic Psychology, 159, 163-178). The results of a quantitative analysis of classroom interaction showed two features of the AS: personnel and scripts. The qualitative field analysis generated four emergent phenomena related to the features of the AS that appeared to influence student opportunity for conceptual development. The emergent phenomenon were science activities, the building of learning, meaning in lessons, and the conflict over control. Lastly, the results of the two-part classroom study were compared to those of the home science AS of high and low achievers. Mismatches in the AS features in the science classroom may constrain the opportunity to learn. Educational implications are discussed.

  13. Informal science education: lifelong, life-wide, life-deep.

    Science.gov (United States)

    Sacco, Kalie; Falk, John H; Bell, James

    2014-11-01

    Informal Science Education: Lifelong, Life-Wide, Life-Deep Informal science education cultivates diverse opportunities for lifelong learning outside of formal K-16 classroom settings, from museums to online media, often with the help of practicing scientists.

  14. Science Fiction in the Classroom.

    Science.gov (United States)

    Brake, Mark; Thornton, Rosi

    2003-01-01

    Considers science fiction as an imaginative forum to focus on the relationships between science, culture, and society. Outlines some of the ways in which using the genre can help achieve a dynamic and pluralistic understanding of the nature and evolution of science. (Author/KHR)

  15. Developing Marine Science Instructional Materials Using Integrated Scientist-Educator Collaborative Design Teams: A Discussion of Challenges and Success Developing Real Time Data Projects for the COOL Classroom

    Science.gov (United States)

    McDonnell, J.; Duncan, R. G.; Glenn, S.

    2007-12-01

    Current reforms in science education place increasing demands on teachers and students to engage not only with scientific content but also to develop an understanding of the nature of scientific inquiry (AAAS, 1993; NRC, 1996). Teachers are expected to engage students with authentic scientific practices including posing questions, conducting observations, analyzing data, developing explanations and arguing about them using evidence. This charge is challenging for many reasons most notably the difficulty in obtaining meaningful data about complex scientific phenomena that can be used to address relevant scientific questions that are interesting and understandable to K-12 students. We believe that ocean sciences provide an excellent context for fostering scientific inquiry in the classroom. Of particular interest are the technological and scientific advances of Ocean Observing Systems, which allow scientists to continuously interact with instruments, facilities, and other scientists to explore the earth-ocean- atmosphere system remotely. Oceanographers are making long-term measurements that can also resolve episodic oceanic processes on a wide range of spatial and temporal scales crucial to resolving scientific questions related to Earth's climate, geodynamics, and marine ecosystems. The availability of a diverse array of large data sets that are easily accessible provides a unique opportunity to develop inquiry-based learning environments in which students can explore many important questions that reflect current research trends in ocean sciences. In addition, due to the interdisciplinary nature of the ocean sciences these data sets can be used to examine ocean phenomena from a chemical, physical, or biological perspective; making them particularly useful for science teaching across the disciplines. In this session we will describe some of the efforts of the Centers for Ocean Sciences Education Excellence- Mid Atlantic (COSEE MA) to develop instructional materials

  16. Science Education and the Material Culture of the Nineteenth-Century Classroom: Physics and Chemistry in Spanish Secondary Schools

    Science.gov (United States)

    Simon, Josep; Cuenca-Lorente, Mar

    2012-02-01

    Although a large number of Spanish secondary schools have preserved an important scientific heritage, including large scientific instrument collections, this heritage has never been officially protected. Their current state is very diverse, and although several research projects have attempted to initiate their recovery and use, their lack of coordination and wide range of methodological approaches has limited their impact. This paper presents a case-study integrated in a new project supported by the Catalan Scientific Instrument Commission (COMIC) whose final aim is the establishment of a research hub for the preservation, study and use of Spanish scientific instrument collections. Major aims in this project are promoting a better coordination of Spanish projects in this field, and furthering international research on science pedagogy and the material culture of science. The major focus of COMIC is currently the recovery of secondary school collections. This paper provides first, a historical account of the development of secondary education in Spain, and the contemporary establishment of physics and chemistry school collections. Second, we focus on a case-study of three Spanish schools (Valencia, Castellón, and Alicante). Finally, we provide a brief overview of current projects to preserve Spanish school collections, and discuss how COMIC can contribute to help to coordinate them, and to take a step forward interdisciplinary research in this context.

  17. Pedagogical Relationship in Secondary Social Science Classrooms

    Science.gov (United States)

    Girard, Brian James

    2010-01-01

    This study investigates two high school social science classrooms in order to better understand the pedagogical relationships among teachers, students, and disciplinary content, and how teachers can influence students' opportunities to learn disciplinary literacy. Drawing on conceptual resources from sociocultural theories of learning and…

  18. Using Infographics in the Science Classroom

    Science.gov (United States)

    Davidson, Rosemary

    2014-01-01

    As a chemistry teacher, Rosemary Davidson has found "infographics" (information graphics) successfully engage her students in science--not only in carrying out the research for classroom projects but also in presenting the results of their research to their peers. This article will help teachers integrate student-created infographics…

  19. Addressing Next Generation Science Standards: A Method for Supporting Classroom Teachers

    Science.gov (United States)

    Pellien, Tamara; Rothenburger, Lisa

    2014-01-01

    The Next Generation Science Standards (NGSS) will define science education for the foreseeable future, yet many educators struggle to see the bridge between current practice and future practices. The inquiry-based methods used by Extension professionals (Kress, 2006) can serve as a guide for classroom educators. Described herein is a method of…

  20. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    Science.gov (United States)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  1. Technology Integration in Science Education: A Study of How Teachers Use Modern Learning Technologies in Biology Classrooms

    Science.gov (United States)

    Gnanakkan, Dionysius Joseph

    2017-01-01

    This multiple case-study investigated how high school biology teachers used modern learning technologies (probes, interactive simulations and animations, animated videos) in their classrooms and why they used the learning technologies. Another objective of the study was to assess whether the use of learning technologies alleviated misconceptions…

  2. The feasibility of educating trainee science teachers in issues of science and religion

    Science.gov (United States)

    Poole, Michael

    2016-06-01

    This article reflects on Roussel De Carvalho's paper `Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom'. It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher education project more manageable.

  3. Preparing informal science educators perspectives from science communication and education

    CERN Document Server

    2017-01-01

    This book provides a diverse look at various aspects of preparing informal science educators. Much has been published about the importance of preparing formal classroom educators, but little has been written about the importance, need, and best practices for training professionals who teach in aquariums, camps, parks, museums, etc. The reader will find that as a collective the chapters of the book are well-related and paint a clear picture that there are varying ways to approach informal educator preparation, but all are important. The volume is divided into five topics: Defining Informal Science Education, Professional Development, Designing Programs, Zone of Reflexivity: The Space Between Formal and Informal Educators, and Public Communication. The authors have written chapters for practitioners, researchers and those who are interested in assessment and evaluation, formal and informal educator preparation, gender equity, place-based education, professional development, program design, reflective practice, ...

  4. Avatar in the Science Classroom

    Science.gov (United States)

    Siegel, Deborah

    2011-01-01

    Students love pop culture, which is often full of science and scientific concepts that may or may not be correctly presented. When teachers tie a science project to a movie, TV series, or song, they help guide students toward correct interpretations. And, more important, teachers stimulate their creativity by tapping into their culture. This…

  5. Question Asking in the Science Classroom: Teacher Attitudes and Practices

    Science.gov (United States)

    Eshach, Haim; Dor-Ziderman, Yair; Yefroimsky, Yana

    2014-02-01

    Despite the wide agreement among educators that classroom learning and teaching processes can gain much from student and teacher questions, their potential is not fully utilized. Adopting the view that reporting both teachers' (of varying age groups) views and actual classroom practices is necessary for obtaining a more complete view of the phenomena at hand, the present study closely examines both cognitive and affective domains of: (a) teachers' views (via interviews) concerning: (1) importance and roles of teacher and student questions, (2) teacher responses, and (3) planning and teacher training; and (b) teachers' actual practices (via classroom observations) concerning: (1) number and (2) level of teacher and student questions, as well as (3) teachers' responses to questions. The data were collected from 3 elementary, 3 middle, and 3 high school science teachers and their respective classroom students. The findings lay out a wide view of classroom questioning and teachers' responses, and relate what actually occurs in classes to teachers' stated views. Some of the study's main conclusions are that a gap exists between how science researchers and teachers view the role of teacher questions: the former highlight the cognitive domain, while the latter emphasize the affective domain.

  6. Silencing of voices in a Swedish science classroom

    Science.gov (United States)

    Ramos de Robles, S. Lizette

    2018-03-01

    From a sociocultural perspective, I discuss data from a Swedish science classroom presented in María Gómez's article "Student Explanations of their Science Teachers' Assessments, Grading Practices, and How they learn Science". In this discussion, I focus on the need to change existing conceptions of assessment in the teaching and learning of science. Next, I talk about the importance of taking into consideration the dialectic between agency and passivity as filters in order to understand what student silence may signify in science classes as well as in relation to their perceptions of assessment. I conclude with the importance of the teacher's role in developing formative assessment, along with the challenges in developing assessments which transform science education into a relevant field of knowledge for both students and society at large.

  7. Science education and everyday action

    Science.gov (United States)

    McCann, Wendy Renee Sherman

    2001-07-01

    This dissertation addresses three related tasks and issues in the larger field of science education. The first is to review of the several uses of "everydayness" at play in the science education literature, and in the education and social science literatures more generally. Four broad iterations of everydayness were found in science education, and these were traced and analyzed to develop their similarities, and contradictions. It was concluded that despite tendencies in science education research to suppose a fundamental demarcation either between professional science and everyday life, or between schools and everyday life, all social affairs, including professional science and activity in schools, are continuous with everyday life, and consist fundamentally in everyday, ordinary mundane actions which are ordered and organized by the participants to those social activities and occasions. The second task for this dissertation was to conduct a naturalistic, descriptive study of undergraduate-level physics laboratory activities from the analytic perspective of ethnomethodology. The study findings are presented as closely-detailed analysis of the students' methods of following their instructions and 'fitting' their observed results to a known scientific concept or principle during the enactment of their classroom laboratory activities. Based on the descriptions of students' practical work in following instructions and 'fitting'. The characterization of school science labs as an "experiment-demonstration hybrid" is developed. The third task of this dissertation was to synthesize the literature review and field study findings in order to clarify what science educators could productively mean by "everydayness", and to suggest what understandings of science education the study of everyday action recommends. It is argued that the significance of the 'experiment-demo hybrid' characterization must be seen in terms of an alternate program for science education research, which

  8. Classroom Implementation of Science, Technology, Engineering ...

    African Journals Online (AJOL)

    Zimbabwe Journal of Educational Research ... Understanding science, technology, engineering, and mathematics (STEM) education as a ... life skills in general and scientific literacy, along with a productive disposition and sense of social ...

  9. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    Science.gov (United States)

    Zhai, Junqing; Tan, Aik-Ling

    2015-01-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers…

  10. Hospitable Classrooms: Biblical Hospitality and Inclusive Education

    Science.gov (United States)

    Anderson, David W.

    2011-01-01

    This paper contributes to a Christian hermeneutic of special education by suggesting the biblical concept of hospitality as a necessary characteristic of classroom and school environments in which students with disabilities and other marginalized students can be effectively incorporated into the body of the classroom. Christian hospitality, seen…

  11. It's in the Bag!: Going beyond the Science Classroom with Take-Home Literacy Bags

    Science.gov (United States)

    Martin, Susan Ferguson; Daughenbaugh, Lynda; Shaw, Edward L., Jr.; Burch, Katrina

    2013-01-01

    Although literacy plays a large role in elementary science classrooms, one thing that offers a challenge for educators is meeting the linguistic needs of English language learners (ELLs) while also meeting their content needs. An additional challenge is ensuring that academic literacy extends beyond the classroom. This article presents ways of…

  12. Inclusive science education: learning from Wizard

    Science.gov (United States)

    Koomen, Michele Hollingsworth

    2016-06-01

    This case study reports on a student with special education needs in an inclusive seventh grade life science classroom using a framework of disability studies in education. Classroom data collected over 13 weeks consisted of qualitative (student and classroom observations, interviews, student work samples and video-taped classroom teaching and learning record using CETP-COP) methods. Three key findings emerged in the analysis and synthesis of the data: (1) The learning experiences in science for Wizard are marked by a dichotomy straddled between autonomy ["Sometimes I do" (get it)] and dependence ["Sometimes I don't (get it)], (2) the process of learning is fragmented for Wizard because it is underscored by an emerging disciplinary literacy, (3) the nature of the inclusion is fragile and functional. Implications for classroom practices that support students with learning disabilities include focusing on student strengths, intentional use of disciplinary literacy strategies, and opportunities for eliciting student voice in decision making.

  13. Does science education need the history of science?

    Science.gov (United States)

    Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K

    2008-06-01

    This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.

  14. The materiality of materials and artefacts used in science classrooms

    DEFF Research Database (Denmark)

    Cowie, Bronwen; Otrel-Cass, Kathrin; Moreland, Judy

    Material objects and artefacts receive limited attention in science education (Roehl, 2012) though they shape emerging interactions. This is surprising given science has material and a social dimensions (Pickering, 1995) whereby new knowledge develops as a consensus explanation of natural phenomena...... that is mediated significantly through materials and instruments used. Here we outline the ways teachers deployed material objects and artefacts by identifying their materiality to provide scenarios and resources (Roth, 2005) for interactions. Theoretical framework We use Ingold's (2011) distinction between...... materials as natural objects in this world and artefacts as manmade objects. We are aware that in a classroom material objects and artefacts shape, and are shaped by classroom practice through the way they selectively present scientific explanations. However, materials and artefacts have no intrinsic...

  15. News Conference: Physics brings the community together Training: CERN trains physics teachers Education: World conference fosters physics collaborations Lecture: Physics education live at ASE Prize: Physics teacher wins first Moore medal Festival: European presidents patronize Science on Stage festival Videoconference: Videoconference brings Durban closer to the classroom

    Science.gov (United States)

    2012-03-01

    Conference: Physics brings the community together Training: CERN trains physics teachers Education: World conference fosters physics collaborations Lecture: Physics education live at ASE Prize: Physics teacher wins first Moore medal Festival: European presidents patronize Science on Stage festival Videoconference: Videoconference brings Durban closer to the classroom

  16. Flipped Classrooms for Advanced Science Courses

    Science.gov (United States)

    Tomory, Annette; Watson, Sunnie Lee

    2015-12-01

    This article explains how issues regarding dual credit and Advanced Placement high school science courses could be mitigated via a flipped classroom instructional model. The need for advanced high school courses will be examined initially, followed by an analysis of advanced science courses and the reform they are experiencing. Finally, it will conclude with an explanation of flipped classes as well as how they may be a solution to the reform challenges teachers are experiencing as they seek to incorporate more inquiry-based activities.

  17. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    Science.gov (United States)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle school science classrooms, and the research question that guided the present study is: How can we characterize Turkish PSTs' SSI-based teaching practices in middle school science classrooms (ages 11-14)? Sample: In order to address the research question of this study, we explored 10 Turkish PSTs' SSI-based teaching practices in middle school science classrooms. A purposeful sampling strategy was used, thus, PSTs were specifically chosen because they were ideal candidates to teach SSI and to integrate SSI into the science curricula since they were seniors in the science education program who had to take the field experience courses. Design and method: The participants' SSI teaching practices were characterized in light of qualitative research approach. SSI-based teaching practices were analyzed, and the transcripts of all videotape recordings were coded by two researchers. Results: The current data analysis describes Turkish PSTs' SSI-based teaching practices under five main categories: media, argumentation, SSI selection and presentation, risk analysis, and moral perspective. Most of PSTs did not use media resources in their lesson and none of them considered moral perspective in their teaching. While the risk analyses were very simple and superficial, the arguments developed in the classrooms generally remained at a simple level. PSTs did not think SSI as a central topic and discussed these issues in a very limited time and at the end of the class period. Conclusions: The findings of this study manifest the need of the reforms in science education programs. The present study provides evidence that moral, media

  18. Teaching Planetary Sciences in Bilingual Classrooms

    Science.gov (United States)

    Lebofsky, L. A.; Lebofsky, N. R.

    1993-05-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. It also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80% feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K--3 and 38 minutes per day in 4--6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. Therefore in order to teach earth/space science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. Tucson has another, but not unique, problem. The largest public school district, the Tucson Unified School District (TUSD), provides a neighborhood school system enhanced with magnet, bilingual and special needs schools for a school population of 57,000 students that is 4.1% Native American, 6.0% Black, and 36.0% Hispanic (1991). This makes TUSD and the other school districts in and around Tucson ideal for a program that reaches students of diverse ethnic backgrounds. However, few space sciences materials exist in Spanish; most materials could not be used effectively in the classroom. To address this issue, we have translated NASA materials into Spanish and are conducting a series of workshops for bilingual classroom teachers. We will discuss in detail our bilingual classroom workshops

  19. Photobioreactor: Biotechnology for the Technology Education Classroom.

    Science.gov (United States)

    Dunham, Trey; Wells, John; White, Karissa

    2002-01-01

    Describes a problem scenario involving photobioreactors and presents materials and resources, student project activities, and teaching and evaluation methods for use in the technology education classroom. (Contains 14 references.) (SK)

  20. Science classroom inquiry (SCI simulations: a novel method to scaffold science learning.

    Directory of Open Access Journals (Sweden)

    Melanie E Peffer

    Full Text Available Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  1. Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.

    Science.gov (United States)

    Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  2. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  3. The Feasibility of Educating Trainee Science Teachers in Issues of Science and Religion

    Science.gov (United States)

    Poole, Michael

    2016-01-01

    This article reflects on Roussel De Carvalho's paper "Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom" (EJ1102211). It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher…

  4. Classroom research in religious education: The potential of grounded theory

    OpenAIRE

    Rothgangel, Martin; Saup, Judith

    2017-01-01

    Grounded theory is one of the most common qualitative research strategies in social sciences. Currently, many applications of this theory are being developed for religious education. In the article it is argued that grounded theory deserves special attention for classroom research in religious education. For this reason, the basic features (fundamental openness and concurrence of data collection and analysis; constant comparison and asking analytical questions) as well as the coding strategie...

  5. College science teachers' views of classroom inquiry

    Science.gov (United States)

    Brown, Patrick L.; Abell, Sandra K.; Demir, Abdulkadir; Schmidt, Francis J.

    2006-09-01

    The purposes of this study were to (a) gain an understanding of the views of inquiry held by faculty members involved in undergraduate science teaching and (b) describe the challenges, constraints, and opportunities that they perceived in designing and teaching inquiry-based laboratories. Participants included 19 college professors, representing both life and physical science disciplines, from (a) 2-year community college, (b) small, private nonprofit liberal arts college, (c) public master's granting university, and (d) public doctoral/research extensive university. We collected data through semistructured interviews and applied an iterative data analysis process. College science faculty members held a full and open inquiry view, seeing classroom inquiry as time consuming, unstructured, and student directed. They believed that inquiry was more appropriate for upper level science majors than for introductory or nonscience majors. Although faculty members valued inquiry, they perceived limitations of time, class size, student motivation, and student ability. These limitations, coupled with their view of inquiry, constrained them from implementing inquiry-based laboratories. Our proposed inquiry continuum represents a broader view of inquiry that recognizes the interaction between two dimensions of inquiry: (a) the degree of inquiry and (b) the level of student directedness, and provides for a range of inquiry-based classroom activities.

  6. Changes in science classrooms resulting from collaborative action research initiatives

    Science.gov (United States)

    Oh, Phil Seok

    Collaborative action research was undertaken over two years between a Korean science teacher and science education researchers at the University of Iowa. For the purpose of realizing science learning as envisioned by constructivist principles, Group-Investigations were implemented three or five times per project year. In addition, the second year project enacted Peer Assessments among students. Student perceptions of their science classrooms, as measured by the Constructivist Learning Environment Survey (CLES), provided evidence that the collaborative action research was successful in creating constructivist learning environments. Student attitudes toward science lessons, as examined by the Enjoyment of Science Lessons Scale (ESLS), indicated that the action research also contributed to developing more positive attitudes of students about science learning. Discourse analysis was conducted on video-recordings of in-class presentations and discussions. The results indicated that students in science classrooms which were moving toward constructivist learning environments engaged in such discursive practices as: (1) Communicating their inquiries to others, (2) Seeking and providing information through dialogues, and (3) Negotiating conflicts in their knowledge and beliefs. Based on these practices, science learning was viewed as the process of constructing knowledge and understanding of science as well as the process of engaging in scientific inquiry and discourse. The teacher's discursive practices included: (1) Wrapping up student presentations, (2) Addressing misconceptions, (3) Answering student queries, (4) Coaching, (5) Assessing and advising, (6) Guiding students discursively into new knowledge, and (7) Scaffolding. Science teaching was defined as situated acts of the teacher to facilitate the learning process. In particular, when the classrooms became more constructivist, the teacher intervened more frequently and carefully in student activities to fulfill a

  7. Relationships Between the Way Students Are Assessed in Science Classrooms and Science Achievement Across Canada

    Science.gov (United States)

    Chu, Man-Wai; Fung, Karen

    2018-04-01

    Canadian students experience many different assessments throughout their schooling (O'Connor 2011). There are many benefits to using a variety of assessment types, item formats, and science-based performance tasks in the classroom to measure the many dimensions of science education. Although using a variety of assessments is beneficial, it is unclear exactly what types, format, and tasks are used in Canadian science classrooms. Additionally, since assessments are often administered to help improve student learning, this study identified assessments that may improve student learning as measured using achievement scores on a standardized test. Secondary analyses of the students' and teachers' responses to the questionnaire items asked in the Pan-Canadian Assessment Program were performed. The results of the hierarchical linear modeling analyses indicated that both students and teachers identified teacher-developed classroom tests or quizzes as the most common types of assessments used. Although this ranking was similar across the country, statistically significant differences in terms of the assessments that are used in science classrooms among the provinces were also identified. The investigation of which assessment best predicted student achievement scores indicated that minds-on science performance-based tasks significantly explained 4.21% of the variance in student scores. However, mixed results were observed between the student and teacher responses towards tasks that required students to choose their own investigation and design their own experience or investigation. Additionally, teachers that indicated that they conducted more demonstrations of an experiment or investigation resulted in students with lower scores.

  8. Engagerande samtal i det naturvetenskapliga klassrummetInquiry based dialouge in science classroom

    Directory of Open Access Journals (Sweden)

    Ragnhild Löfgren

    2014-10-01

    Full Text Available This study focuses on classroom communication within an inquiry-based science education (IBSE program, called NTA (Naturvetenskap och Teknik för Alla. The overall aim of the study is to highlight the ways in which productive and engaging conversations are conducted in the classroom. We have analysed the work within the unit ”The Chemistry of food” and the theme testing of fat in food in grade five and six in a Swedish and a Danish science classroom. We have used video cameras and mp3-players to follow the classroom interaction. Our findings indicate that the classroom communication was focused on everyday science content and that the introduction and the summary of the theme were very important for the pupils’ possibilities to productive disciplinary engagement.

  9. The Role of Critical Thinking in Science Education

    Science.gov (United States)

    Santos, Luis Fernando

    2017-01-01

    This review aims to respond various questions regarding the role of Critical Thinking in Science Education from aspects concerning the importance or relevance of critical thinking in science education, the situation in the classroom and curriculum, and the conception of critical thinking and fostering in science education. This review is specially…

  10. Remixing the Dance Education Classroom

    Science.gov (United States)

    Koff, Susan R.

    2017-01-01

    Dance Education and Music Education are not the same, but are often considered together as Arts Education along with Theatre Education and Art Education. The history of Dance Education as a discipline is much shorter than Music Education, so Dance Education often looks to music education for leadership as well as scholarship. Remixing the…

  11. Exploring the classroom: Teaching science in early childhood

    Directory of Open Access Journals (Sweden)

    Peter J.N. DEJONCKHEERE

    2016-06-01

    Full Text Available This study tested and integrated the effects of an inquiry-based didactic method for preschool science in a real practical classroom setting. Four preschool classrooms participated in the experiment (N= 57 and the children were 4–6 years old. In order to assess children’s attention for causal events and their understanding at the level of scientific reasoning skills, we designed a simple task in which a need for information gain was created. Compared to controls, children in the post-test showed significant learning gains in the development of the so-called control of variables strategy. Indeed, they executed more informative and less uninformative explorations during their spontaneous play. Furthermore, the importance of such programmes was discussed in the field of STEM education.

  12. Informal Science Learning in the Formal Classroom

    Science.gov (United States)

    Walsh, Lori; Straits, William

    2014-01-01

    In this article the authors share advice from the viewpoints of both a formal and informal educator that will help teachers identify the right Informal Science Institutions (ISIs)--institutions that specialize in learning that occurs outside of the school setting--to maximize their students' learning and use informal education to their…

  13. Examining student-generated questions in an elementary science classroom

    Science.gov (United States)

    Diaz, Juan Francisco, Jr.

    This study was conducted to better understand how teachers use an argument-based inquiry technique known as the Science Writing Heuristic (SWH) approach to address issues on teaching, learning, negotiation, argumentation, and elaboration in an elementary science classroom. Within the SWH framework, this study traced the progress of promoting argumentation and negotiation (which led to student-generated questions) during a discussion in an elementary science classroom. Speech patterns during various classroom scenarios were analyzed to understand how teacher--student interactions influence learning. This study uses a mixture of qualitative and quantitative methods. The qualitative aspect of the study is an analysis of teacher--student interactions in the classroom using video recordings. The quantitative aspect uses descriptive statistics, tables, and plots to analyze the data. The subjects in this study were fifth grade students and teachers from an elementary school in the Midwest, during the academic years 2007/2008 and 2008/2009. The three teachers selected for this study teach at the same Midwestern elementary school. These teachers were purposely selected because they were using the SWH approach during the two years of the study. The results of this study suggest that all three teachers moved from using teacher-generated questions to student-generated questions as they became more familiar with the SWH approach. In addition, all three promoted the use of the components of arguments in their dialogs and discussions and encouraged students to elaborate, challenge, and rebut each other's ideas in a non-threatening environment. This research suggests that even young students, when actively participating in class discussions, are capable of connecting their claims and evidence and generating questions of a higher-order cognitive level. These findings demand the implementation of more professional development programs and the improvement in teacher education to help

  14. University Science and Mathematics Education in Transition

    DEFF Research Database (Denmark)

    Skovsmose, Ole; Valero, Paola; Christensen, Ole Ravn

    configuration poses to scientific knowledge, to universities and especially to education in mathematics and science. Traditionally, educational studies in mathematics and science education have looked at change in education from within the scientific disciplines and in the closed context of the classroom....... Although educational change is ultimately implemented in everyday teaching and learning situations, other parallel dimensions influencing these situations cannot be forgotten. An understanding of the actual potentialities and limitations of educational transformations are highly dependent on the network...... of educational, cultural, administrative and ideological views and practices that permeate and constitute science and mathematics education in universities today. University Science and Mathematics Education in Transition contributes to an understanding of the multiple aspects and dimensions of the transition...

  15. Life Skills from the Perspectives of Classroom and Science Teachers

    Science.gov (United States)

    Kurtdede-Fidan, Nuray; Aydogdu, Bülent

    2018-01-01

    The aim of this study is to determine classroom and science teachers' views about life skills. The study employed phenomenological method. The participants of the study were 24 teachers; twelve of them were classroom teachers and the remaining were science teachers. They were working at public schools in Turkey. The participants were selected…

  16. A case study on the formation and sharing process of science classroom norms

    Science.gov (United States)

    Chang, Jina; Song, Jinwoong

    2016-03-01

    The teaching and learning of science in school are influenced by various factors, including both individual factors, such as member beliefs, and social factors, such as the power structure of the class. To understand this complex context affected by various factors in schools, we investigated the formation and sharing process of science classroom norms in connection with these factors. By examining the developmental process of science classroom norms, we identified how the norms were realized, shared, and internalized among the members. We collected data through classroom observations and interviews focusing on two elementary science classrooms in Korea. From these data, factors influencing norm formation were extracted and developed as stories about norm establishment. The results indicate that every science classroom norm was established, shared, and internalized differently according to the values ingrained in the norms, the agent of norm formation, and the members' understanding about the norm itself. The desirable norms originating from values in science education, such as having an inquiring mind, were not established spontaneously by students, but were instead established through well-organized norm networks to encourage concrete practice. Educational implications were discussed in terms of the practice of school science inquiry, cultural studies, and value-oriented education.

  17. Ways to Prepare Future Teachers to Teach Science in Multicultural Classrooms

    Science.gov (United States)

    Billingsley, Berry

    2016-01-01

    Roussel De Carvalho uses the notion of superdiversity to draw attention to some of the pedagogical implications of teaching science in multicultural schools in cosmopolitan cities such as London. De Carvalho makes the case that if superdiverse classrooms exist then Science Initial Teacher Education has a role to play in helping future science…

  18. Facilitating Conceptual Change through Modeling in the Middle School Science Classroom

    Science.gov (United States)

    Carrejo, David J.; Reinhartz, Judy

    2014-01-01

    Engaging students in both hands-on and minds-on experiences is needed for education that is relevant and complete. Many middle school students enter science classrooms with pre-conceived ideas about their world. Some of these ideas are misconceptions that hinder students from developing accepted concepts in science, such as those related to…

  19. The perception of science teachers on the role of student relationships in the classroom

    Science.gov (United States)

    Mattison, Cheryl Ann

    With the increased accountability of educators comes the responsibility of the entire educational community to find ways in which we can help our students succeed in the classroom. In addition, it is important to discover what it takes to keep those students in school Many science teachers enter the profession unprepared to handle the regular classroom routine. Classroom management, grading, lesson planning, setting up labs, and the myriad of other obligations, can leave teachers overwhelmed and sometimes can get in the way of actually helping students be successful. This study investigated how science teachers viewed the importance of developing strong teacher/student relationships to the increase of student success in a science classroom. I attempted to answer 4 major questions: · How do science teachers in a select high school community view the role of interactive relationships in their classrooms and how that might impact their students? · How do science teachers in a select high school community believe they establish successful interactive relationships with their students? · What do science teachers in a select high school community believe are some of the outcomes of those relationships? · What do science teachers suggest to increase the teacher's ability to form good relationships with their students? A qualitative research method was used including observations, interviews and group discussions of 5 high school science teachers in a small urban school.

  20. K-12 STEM Educators and the Inclusive Classroom

    OpenAIRE

    Li, Songze

    2016-01-01

    The United States public schools promote inclusion and educational equity among diverse student populations. Considerable and growing numbers of students with categorical disabilities and Limited English Proficiency (LEP) are enrolled in regular classrooms. The systemic barriers in learning that they have could impact teacher perceptions and decisions about teaching practices as well as the teaching profession. These students have challenged K-12 science, technology, engineering, and mathemat...

  1. Senior science teachers' experience of teaching in a changing multicultural classroom: A case study

    Science.gov (United States)

    Ryan, Mark

    Demographic changes within the US are bringing significant changes in the cultural make-up of the classrooms in our schools. Results from national and state assessments indicate a growing achievement gap between the science scores of white students and students from minority communities. This gap indicates a disconnect somewhere in the science classrooms. This study examines the teacher's perspective of the changing learning environment. The study focuses on senior teachers with traditional Midwestern backgrounds and little multicultural experience assuming these teachers had little or no education in multicultural education. Senior teachers are also more likely to have completed their science education within a traditional Universalist perspective of science and likewise have little or no education in multicultural science. The research method was comparative case studies of a purposeful sample of nine science teachers within a community experiencing significant demographic change, seven core senior teachers and two frame of reference teachers. The interviews examined the teachers' awareness of their own cultural beliefs and the impact of those beliefs on classroom practices, the teachers' understanding of cultural influences on the students' academic performance, and the relationships between the teachers' understanding of the cultural aspects of the nature of science and their classroom practices. Analysis of the interview data revealed that the teachers maintain a strong, traditional Midwestern worldview for classroom expectations and they are generally unaware of the impact of those standards on the classroom environment. The teachers were supportive of minority students within their classroom, changing several practices to accommodate student needs, but they were unaware of the broader cultural influences on student learning. The teachers had a poor understanding of the nature of science and none of them recognized a cultural element of NOS. They maintained a

  2. The Earth Science for Tomorrows Classroom

    Science.gov (United States)

    Shanskiy, Merrit

    2015-04-01

    The Earth sciences comprises many fascinating topics that is teached to different age level pupils/students in order to bring hard core science closer to their daily life. With developing possibilities in IT, multimedia overall electronic sector the teachers/lecturers have continuous possibilities to accomplish novel approaches and utilize new ideas to make science more interesting for students in all ages. Emerging, from personal experiences, the teaching of our surrounding Environment can be very enjoyable. In our everyday life the SOIL remains invisible. The soil is covered by plant cover which makes the topic somewhat in distant that is not "visible" to an eye and its importance is underestimated. In other hand, the SOIL is valuable primary resource for food production and basis of life for healthy environment. From several studies have found that because its complications, SOIL related topics are not very often chosen topic for course or diploma works by students. The lower-school students are very open to environmental topics accordingly to the grades. Here, the good results can be obtained through complimentary materials creation, like story telling and drawing books and puzzles. The middle/ and upper/school students will experience "real science" being able to learn what the science is about which often can play a important role on making choices for future curriculum completion at university level. Current presentation shares the ideas of selected methods that had showed successful results on different Earth Science topics teaching (biodiversity, growing substrates, green house gas emissions). For some ideas the presentation introduces also the further developmental possibilities to be used in teaching at Tomorrows Classroom.

  3. The impact of single-gender classrooms on science achievement of middle school gifted girls

    Science.gov (United States)

    Ulkins, David S.

    Studies indicate a gap in science achievement and positive attitudes towards science between gifted male and female students with females performing less than the males. This study investigated the impact of a single-gender classroom environment as opposed to a mixed-gender classroom, on motivation, locus of control, self-concept, and science achievement of middle school gifted girls. The Motivated Strategies for Learning Questionnaire (MSLQ), Review of Personal Effectiveness with Locus of Control (ROPELOC), Test of Science Related Attitudes (TOSRA), and Stanford Achievement Test 10th Edition, were used to measure the dependent variables respectively. The independent-measure t test was used to compare the differences between girls in a single-gender classroom with the ones in a mixed-gender classroom. A significant difference in the external locus of control resulted for girls in the single gender classroom. However, there were no significant differences found in science achievement, motivation, and the attitudes toward science between the two groups. The implication is that a single-gender learning environment and the use of differentiated teaching strategies can help lessen the negative effects of societal stereotypes in today's classrooms. These, along with being cognizant of the differences in learning styles of girls and their male counterparts, will result in a greater level of success for gifted females in the area of science education.

  4. Single-sex middle school science classrooms: Separate and equal?

    Science.gov (United States)

    Glasser, Howard M.

    The U.S. Department of Education's amended regulations to Title IX have attempted to expand the circumstances in which single-sex classes are permissible in public schools. This ethnographic study uses grounded theory to investigate aspects of one single-sex offering at a public, coeducational middle school. Applying elements of postmodern, queer, and sociocultural lenses, it examines the perspectives for this offering, shedding insight into the cultures of two single-sex classrooms and what it meant to be a boy or girl in this setting. Additionally, it focuses attention on the all-boy and all-girl science classes that were taught by the same teacher and examines what it meant to learn science as boys and girls in this program. Although participants supplied financial, socio-emotional, and academic reasons for these classes, the initial motivation for these classes stemmed from the teachers' desire to curb the amount of sex talk and related behaviors that were exhibited in their classrooms. Through these conversations and classroom events, the girls were constructed as idealized students, academically and behaviorally, who needed to be protected from boys' behaviors---both boys' dominating classroom behaviors and aggressive (hetero)sexual behaviors. Conversely, boys were constructed as needing help both academically and behaviorally, but in the specific discipline of science boys were identified as the sex that was more interested in the content and gained greater exposure to skills that could assist them in future science courses and careers. Overall, boys and girls, and the culture of their two classrooms, were regularly defined relative to each other and efforts were made to maintain these constructed differences. As a result, the classes and students were hierarchically ranked in ways that often pitted one sex of students, or the entire class, as better or worse than the other. The theory emerging from this study is that single-sex policies arise and survive

  5. Exploring the meaning of practicing classroom inquiry from the perspectives of National Board Certified Science Teachers

    Science.gov (United States)

    Karaman, Ayhan

    Inquiry has been one of the most prominent terms of the contemporary science education reform movement (Buck, Latta, & Leslie-Pelecky, 2007; Colburn, 2006; Settlage, 2007). Practicing classroom inquiry has maintained its central position in science education for several decades because science education reform documents promote classroom inquiry as the potential savior of science education from its current problems. Likewise, having the capabilities of teaching science through inquiry has been considered by National Board for Professional Teaching Standards [NBPTS] as one of the essential elements of being an accomplished science teacher. Successful completion of National Board Certification [NBC] assessment process involves presenting a clear evidence of enacting inquiry with students. Despite the high-profile of the word inquiry in the reform documents, the same is not true in schools (Crawford, 2007). Most of the science teachers do not embrace this type of approach in their everyday teaching practices of science (Johnson, 2006; Luera, Moyer, & Everett, 2005; Smolleck, Zembal-Saul, & Yoder, 2006; Trumbull, Scarano, & Bonney, 2006). And the specific meanings attributed to inquiry by science teachers do not necessarily match with the original intentions of science education reform documents (Matson & Parsons, 2006; Wheeler, 2000; Windschitl, 2003). Unveiling the various meanings held by science teachers is important in developing better strategies for the future success of science education reform efforts (Jones & Eick, 2007; Keys & Bryan, 2001). Due to the potential influences of National Board Certified Science Teachers [NBCSTs] on inexperienced science teachers as their mentors, examining inquiry conceptions of NBCSTs is called for. How do these accomplished practitioners understand and enact inquiry? The purpose of this dissertation research study was twofold. First, it investigated the role of NBC performance assessment process on the professional development

  6. International Space Education Outreach: Taking Exploration to the Global Classroom

    Science.gov (United States)

    Dreschel, T. W.; Lichtenberger, L. A.; Chetirkin, P. V.; Garner, L. C.; Barfus, J. R.; Nazarenko, V. I.

    2005-01-01

    With the development of the International Space Station and the need for international collaboration for returning to the moon and developing a mission to Mars, NASA has embarked on developing international educational programs related to space exploration. In addition, with the explosion of educational technology, linking students on a global basis is more easily accomplished. This technology is bringing national and international issues into the classroom, including global environmental issues, the global marketplace, and global collaboration in space. We present the successes and lessons learned concerning international educational and public outreach programs that we have been involved in for NASA as well as the importance of sustaining these international peer collaborative programs for the future generations. These programs will undoubtedly be critical in enhancing the classroom environment and will affect the achievements in and attitudes towards science, technology, engineering and mathematics.

  7. Teaching Ocean Sciences in the 21st Century Classroom: Lab to Classroom Videoconferencing

    Science.gov (United States)

    Peach, C. L.; Gerwick, W.; Gerwick, L.; Senise, M.; Jones, C. S.; Malloy, K.; Jones, A.; Trentacoste, E.; Nunnery, J.; Mendibles, T.; Tayco, D.; Justice, L.; Deutscher, R.

    2010-12-01

    Teaching Ocean Science in the 21st Century Classroom (TOST) is a Center for Ocean Sciences Education Excellence (COSEE CA) initiative aimed at developing and disseminating technology-based instructional strategies, tools and ocean science resources for both formal and informal science education. San Diego Unified School District (SDUSD), Scripps Institution of Oceanography (SIO) and the Lawrence Hall of Science (LHS) have established a proving ground for TOST activities and for development of effective, sustainable solutions for researchers seeking to fulfill NSF and other funding agency broader impact requirements. Lab to Classroom Videoconferencing: Advances in Information and Communications Technology (ICT) are making it easier to connect students and researchers using simple online tools that allow them to interact in novel ways. COSEE CA is experimenting with these tools and approaches to identify effective practices for providing students with insight into the research process and close connections to researchers and their laboratory activities. At the same time researchers, including graduate students, are learning effective communication skills and how to align their presentations to specific classroom needs - all from the comfort of their own lab. The lab to classroom videoconferencing described here is an ongoing partnership between the Gerwick marine biomedical research lab and a group of three life science teachers (7th grade) at Pershing Middle School (SDUSD) that started in 2007. Over the last 5 years, the Pershing science teachers have created an intensive, semester-long unit focused on drug discovery. Capitalizing on the teacher team’s well-developed unit of study and the overlap with leading-edge research at SIO, COSEE CA created the videoconferencing program as a broader impact solution for the lab. The team has refined the program over 3 iterations, experimenting with structuring the activities to most effectively reach the students. In the

  8. The nature of science in science education: theories and practices

    Directory of Open Access Journals (Sweden)

    Ana Maria Morais

    2018-01-01

    Full Text Available The article is based on results of research carried out by the ESSA Group (Sociological Studies of the Classroom centred on the inclusion of the nature of science (metascience on science education. The results, based on analyses of various educational texts and contexts – curricula/syllabuses, textbooks and pedagogic practices – and of the relations between those texts/contexts, have in general shown a reduced presence and low conceptualization of metascience. The article starts by presenting the theoretical framework of the research of the ESSA Group which was focused on the introduction of the nature of science in science education. It is mostly based on Ziman’s conceptualization of metascience (1984, 2000 and on Bernstein’s theorization of production and reproduction of knowledge, particularly his model of pedagogic discourse (1990, 2000 and knowledge structures (1999. This is followed by the description of a pedagogical strategy, theoretically grounded, which explores the nature of science in the classroom context. The intention is to give an example of a strategy which privileges a high level learning for all students and which may contribute to a reflection about the inclusion of the nature of science on science education. Finally, considerations are made about the applicability of the strategy on the basis of previous theoretical and empirical arguments which sustain its use in the context of science education.

  9. "But at school … I became a bit shy": Korean immigrant adolescents' discursive participation in science classrooms

    Science.gov (United States)

    Ryu, Minjung

    2013-09-01

    In reform-based science curricula, students' discursive participation is highly encouraged as a means of science learning as well as a goal of science education. However, Asian immigrant students are perceived to be quiet and passive in classroom discursive situations, and this reticence implies that they may face challenges in discourse-rich science classroom learning environments. Given this potentially conflicting situation, the present study aims to understand how and why Asian immigrant students participate in science classroom discourse. Findings from interviews with seven Korean immigrant adolescents illustrate that they are indeed hesitant to speak up in classrooms. Drawing upon cultural historical perspectives on identity and agency, this study shows how immigrant experiences shaped the participants' othered identity and influenced their science classroom participation, as well as how they negotiated their identities and situations to participate in science classroom and peer communities. I will discuss implications of this study for science education research and science teacher education to support classroom participation of immigrant students.

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Nirupama Raghavan. Articles written in Resonance – Journal of Science Education. Volume 9 Issue 5 May 2004 pp 72-78 Classroom. A Public Experiment in the History of Science Naked Eye Visibility of the Transit of Venus · Nirupama Raghavan · More Details ...

  11. Classroom Climate among Teacher Education Mathematics Students

    Directory of Open Access Journals (Sweden)

    Polemer M. Cuarto

    2015-11-01

    Full Text Available Classroom climate has gained prominence as recent studies revealed its potentials as an effective mediator in the various motivational factors as well as an antecedent of academic performance outcome of the students. This descriptive-correlational study determined the level of classroom climate dimensions among teacher education students specializing in Mathematics at Mindoro State College of Agriculture and Technology. Employing a self-structured questionnaire adapted to the WIHIC (What Is Happening In this Class questionnaire, the surveyed data were treated statistically using Pearson’s r. Result showed that there was high level of classroom climate among the respondents in their Mathematics classes in both teacher-directed and student-directed dimensions specifically in terms of equity, teacher support, cohesiveness, involvement, responsibility and task orientation. Also, it revealed that equity and teacher support were both positively related to the students-directed classroom climate dimensions. With these results, teachers are seen to be very significant determinants of the climate in the classroom. Relevant to this, the study recommended that faculty should develop effective measures to enhance classroom climate dimensions such as equity and teacher support to address the needs of diverse studentsdespite large size classes. Moreover, faculty should provide greater opportunitiesfor the students to achieve higher level of responsibility, involvement, cohesiveness, and task orientation as these could motivate them to develop positive learning attitude, perform to the best of their ability, as well as maximize their full potential in school.

  12. Talking about science: An interpretation of the effects of teacher talk in a high school science classroom

    Science.gov (United States)

    Moje, Elizabeth B.

    This paper builds on research in science education, secondary education, and sociolinguistics by arguing that high school classrooms can be considered speech communities in which language may be selectively used and imposed on students as a means of fostering academic speech community identification. To demonstrate the ways in which a high school teacher's language use may encourage subject area identification, the results of an interactionist analysis of data from a 2-year ethnographic study of one high school chemistry classroom are presented. Findings indicate that this teacher's uses of language fell into three related categories. These uses of language served to foster identification with the academic speech community of science. As a result of the teacher's talk about science according to these three patterns, students developed or reinforced particular views of science. In addition, talking about science in ways that fostered identity with the discipline promoted the teacher as expert and built classroom solidarity or community. These results are discussed in light of sociolinguistic research on classroom competence and of the assertions of science educators regarding social and ideologic implications of language use in science instruction.Received: 23 September 1993; Revised: 15 September 1994;

  13. Graduate students teaching elementary earth science through interactive classroom lessons

    Science.gov (United States)

    Caswell, T. E.; Goudge, T. A.; Jawin, E. R.; Robinson, F.

    2014-12-01

    Since 2005, graduate students in the Brown University Department of Earth, Environmental, and Planetary Studies have volunteered to teach science to second-grade students at Vartan Gregorian Elementary School in Providence, RI. Initially developed to bring science into classrooms where it was not explicitly included in the curriculum, the graduate student-run program today incorporates the Providence Public Schools Grade 2 science curriculum into weekly, interactive sessions that engage the students in hypothesis-driven science. We will describe the program structure, its integration into the Providence Public Schools curriculum, and 3 example lessons relevant to geology. Lessons are structured to develop the students' ability to share and incorporate others' ideas through written and oral communication. The volunteers explain the basics of the topic and engage the students with introductory questions. The students use this knowledge to develop a hypothesis about the upcoming experiment, recording it in their "Science Notebooks." The students record their observations during the demonstration and discuss the results as a group. The process culminates in the students using their own words to summarize what they learned. Activities of particular interest to educators in geoscience are called "Volcanoes!", "The "Liquid Race," and "Phases of the Moon." The "Volcanoes!" lesson explores explosive vs. effusive volcanism using two simulated volcanoes: one explosive, using Mentos and Diet Coke, and one effusive, using vinegar and baking soda (in model volcanoes that the students construct in teams). In "Liquid Race," which explores viscosity and can be integrated into the "Volcanoes!" lesson, the students connect viscosity to flow speed by racing liquids down a ramp. "Phases of the Moon" teaches the students why the Moon has phases, using ball and stick models, and the terminology of the lunar phases using cream-filled cookies (e.g., Oreos). These lessons, among many others

  14. Science in General Education

    Science.gov (United States)

    Read, Andrew F.

    2013-01-01

    General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.

  15. Science Education Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Discusses: (1) the nature of science; (2) Ausubel's learning theory and its application to introductory science; and (3) mathematics and physics instruction. Outlines a checklist approach to Certificate of Extended Education (CSE) practical assessment in biology. (JN)

  16. Impacts of Flipped Classroom in High School Health Education

    Science.gov (United States)

    Chen, Li-Ling

    2016-01-01

    As advanced technology increasingly infiltrated into classroom, the flipped classroom has come to light in secondary educational settings. The flipped classroom is a new instructional approach that intends to flip the traditional teacher-centered classroom into student centered. The purpose of this research is to investigate the impact of the…

  17. Instructional strategies in science classrooms of specialized secondary schools for the gifted

    Science.gov (United States)

    Poland, Donna Lorraine

    This study examined the extent to which science teachers in Academic Year Governor's Schools were adhering to the national standards for suggested science instruction and providing an appropriate learning environment for gifted learners. The study asked 13 directors, 54 instructors of advanced science courses, and 1190 students of advanced science courses in 13 Academic Year Governor's Schools in Virginia to respond to researcher-developed surveys and to participate in classroom observations. The surveys and classroom observations collected demographic data as well as instructors' and students' perceptions of the use of various instructional strategies related to national science reform and gifted education recommendations. Chi-square analyses were used to ascertain significant differences between instructors' and students' perceptions. Findings indicated that instructors of advanced science classes in secondary schools for the gifted are implementing nationally recognized gifted education and science education instructional strategies with less frequency than desired. Both students and instructors concur that these strategies are being implemented in the classroom setting, and both concur as to the frequency with which the implementation occurs. There was no significant difference between instructors' and students' perceptions of the frequency of implementation of instructional strategies. Unfortunately, there was not a single strategy that students and teachers felt was being implemented on a weekly or daily basis across 90% of the sampled classrooms. Staff development in gifted education was found to be minimal as an ongoing practice. While this study offers some insights into the frequency of strategy usage, the study needs more classroom observations to support findings; an area of needed future research. While this study was conducted at the secondary level, research into instructional practices at the middle school and elementary school gifted science

  18. Integrating technology into radiologic science education.

    Science.gov (United States)

    Wertz, Christopher Ira; Hobbs, Dan L; Mickelsen, Wendy

    2014-01-01

    To review the existing literature pertaining to the current learning technologies available in radiologic science education and how to implement those technologies. Only articles from peer-reviewed journals and scholarly reports were used in the research for this review. The material was further restricted to those articles that emphasized using new learning technologies in education, with a focus on radiologic science education. Teaching in higher education is shifting from a traditional classroom-based lecture format to one that incorporates new technologies that allow for more varied and diverse educational models. Radiologic technology educators must adapt traditional education delivery methods to incorporate current technologies. Doing so will help engage the modern student in education in ways in which they are already familiar. As students' learning methods change, so must the methods of educational delivery. The use of new technologies has profound implications for education. If implemented properly, these technologies can be effective tools to help educators.

  19. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. I Ceyhun. Articles written in Resonance – Journal of Science Education. Volume 9 Issue 6 June 2004 pp 86-91 Classroom. An Experiment for Teaching Chemical Kinetics in Chemical Education · I Ceyhun Z Karagölge · More Details Fulltext PDF ...

  20. Teaching and Learning Science in Authoritative Classrooms: Teachers' Power and Students' Approval in Korean Elementary Classrooms

    Science.gov (United States)

    Lee, Jeong-A.; Kim, Chan-Jong

    2017-09-01

    This study aims to understand interactions in Korean elementary science classrooms, which are heavily influenced by Confucianism. Ethnographic observations of two elementary science teachers' classrooms in Korea are provided. Their classes are fairly traditional teaching, which mean teacher-centered interactions are dominant. To understand the power and approval in science classroom discourse, we have adopted Critical Discourse Analysis (CDA). Based on CDA, form and function analysis was adopted. After the form and function analysis, all episodes were analyzed in terms of social distance. The results showed that both teachers exercised their power while teaching. However, their classes were quite different in terms of getting approval by students. When a teacher got students' approval, he could conduct the science lesson more effectively. This study highlights the importance of getting approval by students in Korean science classrooms.

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 10. Fractals: A New Geometry of Nature. Balakrishnan Ramasamy T S K V Iyer P Varadharajan. Classroom Volume 2 Issue 10 October 1997 pp 62-68. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. Makiguchian pedagogy in the middle school science classroom

    Science.gov (United States)

    Pagan, Iris Teresa

    In an atmosphere of multi-culturism and the increasing need for innovative methods for science teaching, investigating educators from different parts of the world is well regarded. Tsunesaburo Makiguchi (1871--1944) was a prescient thinker who foreshadowed many of the modern social constructivist ideals of teaching before they became formalized in Western thought. He believed in the harmonious balance between an individual and society as the only viable goal of education. With this in mind, he introduced the concepts of "evaluation," "cognition" and "value creation" that embody this balance. "Cognition" is associated with "truth" and "evaluation" is involved with the subject-object relationship. Moreover, Makiguchian pedagogy's concept of "value creation" offers a sociological and philosophical basis for "classroom inclusion." Additionally, Makiguchian pedagogy is compared to John Dewey's philosophy as well as the educational philosophy expressed in The National Science Standards. In this teacher participant study, classroom observational data showed that several dimensions of Makiguchian pedagogical practice occurred conjointly with relatively high frequencies. These included frequent occurrences of interactional conversation between students and teacher merged within a context of expressions of personal and collective values, social contextual references, valuing and personal evaluative statements, and episodic information that the students contributed from personal experiences relevant to the science topics. Additionally, Likert-type questionnaire data collected from the students who experienced the Makiguchian lessons, and observational data from professional colleagues who viewed video taped records of the lessons, provided additional corroborative evidence supporting the researcher's findings. A content analysis of lesson plans containing Makiguchian principles of teaching and learning in relation to the ensuing classroom performance of the teacher showed a

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 8. Various Quantum Mechanical Concepts for Confinements in Semiconductor Nanocrystals. Jayakrishna Khatei Karuna Kar Nanda. Classroom Volume 18 Issue 8 August 2013 pp 771-776 ...

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 7. An Appreciation of Free Radical Chemistry Part - 4. Free Radicals in Atmospheric Chemistry. G Nagendrappa. Classroom Volume 10 Issue 7 July 2005 pp 61-72 ...

  5. A Cultural Study of a Science Classroom and Graphing Calculator-based Technology

    OpenAIRE

    Casey, Dennis Alan

    2001-01-01

    Social, political, and technological events of the past two decades have had considerable bearing on science education. While sociological studies of scientists at work have seriously questioned traditional histories of science, national and state educational systemic reform initiatives have been enacted, stressing standards and accountability. Recently, powerful instructional technologies have become part of the landscape of the classroom. One example, graphing calculator-based technology...

  6. Concepts of matter in science education

    CERN Document Server

    Sevian, Hannah

    2013-01-01

    Bringing together a wide collection of ideas, reviews, analyses and new research on particulate and structural concepts of matter, Concepts of Matter in Science Education informs practice from pre-school through graduate school learning and teaching and aims to inspire progress in science education. The expert contributors offer a range of reviews and critical analyses of related literature and in-depth analysis of specific issues, as well as new research. Among the themes covered are learning progressions for teaching a particle model of matter, the mental models of both students and teachers of the particulate nature of matter, educational technology, chemical reactions and chemical phenomena, chemical structure and bonding, quantum chemistry and the history and philosophy of science relating to the particulate nature of matter. The book will benefit a wide audience including classroom practitioners and student teachers at every educational level, teacher educators and researchers in science education.

  7. K-12 STEM Educator Autonomy: An Investigation of School Influence and Classroom Control

    Science.gov (United States)

    Ernst, Jeremy V.; Williams, Thomas O.; Clark, Aaron C.; Kelly, Daniel P.; Sutton, Kevin

    2018-01-01

    Over the past decade, teacher autonomy within the formal educational system has been a central topic of discussion among educational stakeholders. This study explored influence over school policy and classroom control (teacher autonomy) among in-service science, technology, and mathematics (STM) educators within the United States. The National…

  8. Applying the Flipped Classroom Model to English Language Arts Education

    Science.gov (United States)

    Young, Carl A., Ed.; Moran, Clarice M., Ed.

    2017-01-01

    The flipped classroom method, particularly when used with digital video, has recently attracted many supporters within the education field. Now more than ever, language arts educators can benefit tremendously from incorporating flipped classroom techniques into their curriculum. "Applying the Flipped Classroom Model to English Language Arts…

  9. Games in Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2014-01-01

    , 2007). Some of these newer formats are developed in partnerships between research and education institutions and game developers and are based on learning theory as well as game design methods. Games well suited for creating narrative framework or simulations where students gain first-hand experience......This paper presents a categorisation of science game formats in relation to the educational possibilities or limitations they offer in science education. This includes discussion of new types of science game formats and gamification of science. Teaching with the use of games and simulations...... in science education dates back to the 1970s and early 80s were the potentials of games and simulations was discussed extensively as the new teaching tool ( Ellington et al. , 1981). In the early 90s the first ITC -based games for exploration of science and technical subjects was developed (Egenfeldt...

  10. Science, Worldviews, and Education

    Science.gov (United States)

    Gauch, Hugh G., Jr.

    2009-01-01

    Whether science can reach conclusions with substantial worldview import, such as whether supernatural beings exist or the universe is purposeful, is a significant but unsettled aspect of science. For instance, various scientists, philosophers, and educators have explored the implications of science for a theistic worldview, with opinions spanning…

  11. Remodeling Science Education

    Science.gov (United States)

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  12. Silencing of Voices in a Swedish Science Classroom

    Science.gov (United States)

    Ramos de Robles, S. Lizette

    2018-01-01

    From a sociocultural perspective, I discuss data from a Swedish science classroom presented in María Gómez's article "Student Explanations of their Science Teachers' Assessments, Grading Practices, and How they learn Science". In this discussion, I focus on the need to change existing conceptions of assessment in the teaching and…

  13. From the field to classrooms: Scientists and educators collaborating to develop K-12 lessons on arctic carbon cycling and climate change that align with Next Generation Science Standards, and informal outreach programs that bring authentic data to informal audiences.

    Science.gov (United States)

    Brinker, R.; Cory, R. M.

    2014-12-01

    Next Generation Science Standards (NGSS) calls for students across grade levels to understand climate change and its impacts. To achieve this goal, the NSF-sponsored PolarTREC program paired an educator with scientists studying carbon cycling in the Arctic. The data collection and fieldwork performed by the team will form the basis of hands-on science learning in the classroom and will be incorporated into informal outreach sessions in the community. Over a 16-day period, the educator was stationed at Toolik Field Station in the High Arctic. (Toolik is run by the University of Alaska, Fairbanks, Institute of Arctic Biology.) She participated in a project that analyzed the effects of sunlight and microbial content on carbon production in Artic watersheds. Data collected will be used to introduce the following NGSS standards into the middle-school science curriculum: 1) Construct a scientific explanation based on evidence. 2) Develop a model to explain cycling of water. 3) Develop and use a model to describe phenomena. 4) Analyze and interpret data. 5) A change in one system causes and effect in other systems. Lessons can be telescoped to meet the needs of classrooms in higher or lower grades. Through these activities, students will learn strategies to model an aspect of carbon cycling, interpret authentic scientific data collected in the field, and conduct geoscience research on carbon cycling. Community outreach sessions are also an effective method to introduce and discuss the importance of geoscience education. Informal discussions of firsthand experience gained during fieldwork can help communicate to a lay audience the biological, physical, and chemical aspects of the arctic carbon cycle and the impacts of climate change on these features. Outreach methods will also include novel use of online tools to directly connect audiences with scientists in an effective and time-efficient manner.

  14. Question Asking in the Science Classroom: Teacher Attitudes and Practices

    Science.gov (United States)

    Eshach, Haim; Dor-Ziderman, Yair; Yefroimsky, Yana

    2014-01-01

    Despite the wide agreement among educators that classroom learning and teaching processes can gain much from student and teacher questions, their potential is not fully utilized. Adopting the view that reporting both teachers' (of varying age groups) views and actual classroom practices is necessary for obtaining a more complete view of the…

  15. The I-Cleen Project (Inquiring on CLimate & ENergy). Research Meets Education in AN Inquiry-Based Approach to Earth System Science in Italian Classrooms

    Science.gov (United States)

    Cattadori, M.; Editorial Staff of the I-CLEN Project

    2011-12-01

    Italian citizens' perception of the seriousness of the issue of climate change is one of the lowest in Europe (Eurobarometer survey, 2008), running next to last among the 28 EU Nations. This has recently driven many national science institutions to take action in order to connect society with the complexities and consequences of climate change. These connection initiatives have encountered a certain deal of opposition in Italian schools. A fact most likely due both to a further weakening of the use of inquiry-based educational practices adopted by teachers and to their reluctance to cooperate on a professional level, which hinders the diffusion of educational practices. I-CLEEN (Inquiring on CLimate and Energy, www.icleen.museum) is a service that offers a new type of link between schools and the complexity of climate change. The project took off in 2008 thanks to the Trento Science Museum (former Tridentine Museum of Natural Science), one of the major Italian science museums that includes both research and science education and dissemination departments. The main aim is to create, using the tools of professional cooperation, a free repository of educational resources that can support teachers in preparing inquiry-based lessons on climate change and earth system science topics, making the task less of a burden. I-CLEEN is inspired by many models, which include: the ARISE (Andrill Research Immersion for Science Educators), the OER (Open Educational Resources) models and those of other projects that have developed similar information gateways such as LRE (Learning Resource Exchange) and DLESE (Digital Library on Earth Science Education). One of the strategies devised by I-CLEEN is to rely upon an editorial team made up of a highly selected group of teachers that interacts with the researchers of the museum and of other Earth system science research centres like the National Institute of Geophysics and Volcanology (INGV). Resource selection, production, revision and

  16. `Models of' versus `Models for'. Toward an Agent-Based Conception of Modeling in the Science Classroom

    Science.gov (United States)

    Gouvea, Julia; Passmore, Cynthia

    2017-03-01

    The inclusion of the practice of "developing and using models" in the Framework for K-12 Science Education and in the Next Generation Science Standards provides an opportunity for educators to examine the role this practice plays in science and how it can be leveraged in a science classroom. Drawing on conceptions of models in the philosophy of science, we bring forward an agent-based account of models and discuss the implications of this view for enacting modeling in science classrooms. Models, according to this account, can only be understood with respect to the aims and intentions of a cognitive agent (models for), not solely in terms of how they represent phenomena in the world (models of). We present this contrast as a heuristic— models of versus models for—that can be used to help educators notice and interpret how models are positioned in standards, curriculum, and classrooms.

  17. Teaching and Learning in the Mixed-Reality Science Classroom

    Science.gov (United States)

    Tolentino, Lisa; Birchfield, David; Megowan-Romanowicz, Colleen; Johnson-Glenberg, Mina C.; Kelliher, Aisling; Martinez, Christopher

    2009-12-01

    As emerging technologies become increasingly inexpensive and robust, there is an exciting opportunity to move beyond general purpose computing platforms to realize a new generation of K-12 technology-based learning environments. Mixed-reality technologies integrate real world components with interactive digital media to offer new potential to combine best practices in traditional science learning with the powerful affordances of audio/visual simulations. This paper introduces the realization of a learning environment called SMALLab, the Situated Multimedia Arts Learning Laboratory. We present a recent teaching experiment for high school chemistry students. A mix of qualitative and quantitative research documents the efficacy of this approach for students and teachers. We conclude that mixed-reality learning is viable in mainstream high school classrooms and that students can achieve significant learning gains when this technology is co-designed with educators.

  18. Winners and Losers in Single-Sex Science and Mathematics Classrooms.

    Science.gov (United States)

    Baker, Dale; Jacobs, Kathy

    This paper discusses the success of single sex science and mathematics education classrooms. Most studies on single sex learning environments come from countries such as Australia, Jamaica, Nigeria, Great Britain, New Zealand, and Thailand, and there is little research on American public schools. This study investigates single sex mathematics and…

  19. Assessing Students' Attitudes and Achievements in a Multicultural and Multilingual Science Classroom.

    Science.gov (United States)

    Hadi-Tabassum, Samina

    1999-01-01

    Takes a qualitative and quantitative look at the curriculum and teaching of a two-way immersion eighth-grade solar energy science classroom and examines its implications for education policy and reform. Results for a class of 25 students indicate that the approach increases the retention rate of Hispanic students. (SLD)

  20. Classroom

    Indian Academy of Sciences (India)

    "Classroom" is equally a forum for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science. ! Quantum Theory of the Doppler Effed. Generally text books give only the wave ...

  1. Classroom

    Indian Academy of Sciences (India)

    "Classroom" is equally a foru11J. for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science. Point Set Topological ... a new way of looking at this problem and we will prove.

  2. Classroom

    Indian Academy of Sciences (India)

    responses, or both. "Classroom" is equally a forum for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science. ... I shall give the solution to the problem, along with relevant.

  3. Classroom

    Indian Academy of Sciences (India)

    in a classroom situation. We may suggest strategies for dealing with them, or invite responses, or both. ... research, could then both inject greater vigour into teaching of ... ture, forestry and fishery sciences, management of natural resources.

  4. Turkish Science Teachers' Use of Educational Research and Resources

    Science.gov (United States)

    Ilhan, Nail; Sözbilir, Mustafa; Sekerci, Ali Riza; Yildirim, Ali

    2015-01-01

    Research results demonstrate that there is a gap between educational research and practice. Turkey is not an exception in this case. This study aims to examine to what extent and how educational research and resources are being followed,understood and used in classroom practices by science teachers in Turkey. A sample of 968 science teachers…

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Categories. Resonance – Journal of Science Education. Article in a Box · Article-in-a-Box · Book Review · Books Received · Classics · Classroom · Crossword · Editorial · Errata · Face to Face · Feature Article · Featured Scientist · Filler · Film Review · Flowering ...

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Vilas Gohad. Articles written in Resonance – Journal of Science Education. Volume 2 Issue 9 September 1997 pp 58-64 Classroom. Polarization of Light - An Experimental Approach · Vilas Gohad · More Details Fulltext PDF. Volume 3 Issue 9 September 1998 pp ...

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Bhaskar Bagchi. Articles written in Resonance – Journal of Science Education. Volume 1 Issue 11 November 1996 pp 88-91 Classroom. Bachet's Problem · Bhaskar Bagchi · More Details Fulltext PDF. Volume 2 Issue 9 September 1997 pp 18-26 General Article.

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. K Viswanath. Articles written in Resonance – Journal of Science Education. Volume 3 Issue 7 July 1998 pp 74-77 Classroom. Teaching the Limit Concept · K Viswanath · More Details Fulltext PDF. Volume 3 Issue 8 August 1998 pp 73-73 Book Review.

  9. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Saikat Guha. Articles written in Resonance – Journal of Science Education. Volume 5 Issue 1 January 2000 pp 83-92 Classroom. International Physics Olympiad'98 – 1. Experiments · Saikat Guha · More Details Fulltext PDF. Volume 5 Issue 5 May 2000 pp 74-86 ...

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. H Guhan Venkat. Articles written in Resonance – Journal of Science Education. Volume 12 Issue 10 October 2007 pp 79-79 Classroom. Sudoku Magic Square · H Guhan Venkat · More Details Fulltext PDF ...

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. C P Navathe. Articles written in Resonance – Journal of Science Education. Volume 11 Issue 3 March 2006 pp 80-85 Classroom. Understanding Vanishing Energy During Charging of Capacitor Level · C P Navathe S Nigam · More Details Fulltext PDF ...

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Syed R Hussaini. Articles written in Resonance – Journal of Science Education. Volume 15 Issue 4 April 2010 pp 351-354 Classroom. Interconversion of Fischer and Zig-Zag Projections - Learning Stereochemistry with the Help of Hands · Syed R Hussaini.

  13. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. M T Tanuja. Articles written in Resonance – Journal of Science Education. Volume 4 Issue 9 September 1999 pp 95-104 Classroom. Teaching and Learning Genetics With Drosophila · H A Ranganath M T Tanuja · More Details Fulltext PDF. Volume 4 Issue 10 ...

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Santosh K Sharma. Articles written in Resonance – Journal of Science Education. Volume 12 Issue 1 January 2007 pp 67-75 Classroom. Learning Foodchain with Calotropis procera · Dilip Amritphale Santosh K Sharma · More Details Fulltext PDF. Volume 13 ...

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Usha Srinivasan. Articles written in Resonance – Journal of Science Education. Volume 11 Issue 10 October 2006 pp 78-92 Classroom. Archimedes:Bathtub Academic par excellence · K R Y Simha Usha Srinivasan · More Details Fulltext PDF ...

  16. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. T Krishnan. Articles written in Resonance – Journal of Science Education. Volume 2 Issue 9 September 1997 pp 32-37 General Article. Fisher's Contributions to Statistics · T Krishnan · More Details Fulltext PDF. Volume 4 Issue 3 March 1999 pp 71-73 Classroom.

  17. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Krushnamegh J Kunte. Articles written in Resonance – Journal of Science Education. Volume 5 Issue 3 March 2000 pp 86-97 Classroom. Project Lifescape: Butterfly Accounts · Krushnamegh J Kunte · More Details Fulltext PDF ...

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Bhalchandra W Gore. Articles written in Resonance – Journal of Science Education. Volume 22 Issue 7 July 2017 pp 705-714 Classroom. On Finding the Shortest Distance of a Point From a Line: Which Method Do You Prefer? Bhalchandra W Gore · More Details ...

  19. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Bigyansu Behera. Articles written in Resonance – Journal of Science Education. Volume 22 Issue 8 August 2017 pp 801-807 Classroom. The Inveterate Tinkerer: 6. Bubble Raft · Bigyansu Behera Chirag Kalelkar · More Details Abstract Fulltext PDF. In this series ...

  20. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Akshita Sahni. Articles written in Resonance – Journal of Science Education. Volume 22 Issue 6 June 2017 pp 611-618 Classroom. The Inveterate Tinkerer : 4. Experiments With Soap Bubbles and Soap Films · Akshita Sahni Chirag kalelkar · More Details ...

  1. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Kovid Goyal. Articles written in Resonance – Journal of Science Education. Volume 8 Issue 2 February 2003 pp 76-79 Classroom. Matrix Magic: Spin Half Systems · Kovid Goyal · More Details Fulltext PDF ...

  2. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Matthew Jacob. Articles written in Resonance – Journal of Science Education. Volume 18 Issue 1 January 2013 pp 78-86 Classroom. Discrete Event Simulation · Matthew Jacob · More Details Fulltext PDF ...

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Arvind. Articles written in Resonance – Journal of Science Education. Volume 1 Issue 5 May 1996 pp 85-86 Book Review. A Down to Earth Exposition · Arvind · More Details Fulltext PDF. Volume 2 Issue 7 July 1997 pp 75-81 Classroom. Pitfalls in Elementary ...

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Rajkumar Radder. Articles written in Resonance – Journal of Science Education. Volume 11 Issue 4 April 2006 pp 100-105 Classroom. On Teaching the Theory of Evolution · Rajkumar Radder · More Details Fulltext PDF ...

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Shruti Sharma. Articles written in Resonance – Journal of Science Education. Volume 20 Issue 1 January 2015 pp 55-72 Classroom. Hard Sphere Simulator: Visualization and Modelling of Atomic Structures · M Geeta Shruti Sharma A S Panwar M P Gururajan.

  6. Wisconsin Earth and Space Science Education

    Science.gov (United States)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  7. National Labs Host Classroom Ready Energy Educational Materials

    Science.gov (United States)

    Howell, C. D.

    2009-12-01

    The Department of Energy (DOE) has a clear goal of joining all climate and energy agencies in the task of taking climate and energy research and development to communities across the nation and throughout the world. Only as information on climate and energy education is shared with the nation and world do research labs begin to understand the massive outreach work yet to be accomplished. The work at hand is to encourage and ensure the climate and energy literacy of our society. The national labs have defined the K-20 population as a major outreach focus, with the intent of helping them see their future through the global energy usage crisis and ensure them that they have choices and a chance to redirect their future. Students embrace climate and energy knowledge and do see an opportunity to change our energy future in a positive way. Students are so engaged that energy clubs are springing up in highschools across the nation. Because of such global clubs university campuses are being connected throughout the world (Energy Crossroads www.energycrossroads.org) etc. There is a need and an interest, but what do teachers need in order to faciliate this learning? It is simple, they need financial support for classroom resources; standards based classroom ready lessons and materials; and, training. The National Renewable Energy Laboratory (NREL), a Department of Energy Lab, provides standards based education materials to schools across the nation. With a focus on renewable energy and energy efficiency education, NREL helps educators to prompt students to analyze and then question their energy choices and evaluate their carbon footprint. Classrooms can then discover the effects of those choices on greenhouse gas emmissions and climate change. The DOE Office of Science has found a way to contribute to teachers professional development through the Department of Energy Academics Creating Teacher Scientists (DOE ACTS) Program. This program affords teachers an opportunity to

  8. Science education through informal education

    Science.gov (United States)

    Kim, Mijung; Dopico, Eduardo

    2016-06-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.

  9. The opportunities and challenges for ICT in science education

    OpenAIRE

    Ferk Savec, Vesna

    2017-01-01

    This article examines the opportunities and challenges for the use of ICT in science education in the light of science teachers’ Technological Pedagogical Content Knowledge (TPACK). Some of the variables that have been studied with regard to the TPACK fra mework in science classrooms (such as teachers’ self - efficacy, gender, teaching experience, teachers’ beliefs, etc.) are reviewed, and variations of the TPACK framework specific for science education ...

  10. Multidimensional Classroom Support to Inclusive Education Teachers in Beijing, China

    Science.gov (United States)

    Wang, Yan; Mu, Guanglun Michael; Wang, Zhiqing; Deng, Meng; Cheng, Li; Wang, Hongxia

    2015-01-01

    Classroom support plays a salient role in successful inclusive education, hence it has been widely debated in the literature. Much extant work has only focused on a particular aspect of classroom support. A comprehensive, systematic discussion of classroom support is sporadic in the literature. Relevant research concerning the Chinese context is…

  11. Bringing Reality to Classroom Management in Teacher Education

    Science.gov (United States)

    Eisenman, Gordon; Edwards, Susan; Cushman, Carey Anne

    2015-01-01

    Learning how to manage a classroom effectively is a difficult task for preservice teachers. This is compounded by the lack of attention that classroom management receives in many teacher preparation programs and in the field of education in general. This article offers a rationale for the lack of attention to classroom management in teacher…

  12. Globalization and Science Education

    Science.gov (United States)

    Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won

    2013-06-01

    Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.

  13. Exploring the application of an evolutionary educational complex systems framework to teaching and learning about issues in the science and technology classroom

    Science.gov (United States)

    Yoon, Susan Anne

    Understanding the world through a complex systems lens has recently garnered a great deal of interest in many knowledge disciplines. In the educational arena, interactional studies, through their focus on understanding patterns of system behaviour including the dynamical processes and trajectories of learning, lend support for investigating how a complex systems approach can inform educational research. This study uses previously existing literature and tools for complex systems applications and seeks to extend this research base by exploring learning outcomes of a complex systems framework when applied to curriculum and instruction. It is argued that by applying the evolutionary dynamics of variation, interaction and selection, complexity may be harnessed to achieve growth in both the social and cognitive systems of the classroom. Furthermore, if the goal of education, i.e., the social system under investigation, is to teach for understanding, conceptual knowledge of the kind described in Popper's (1972; 1976) World 3, needs to evolve. Both the study of memetic processes and knowledge building pioneered by Bereiter (cf. Bereiter, 2002) draw on the World 3 notion of ideas existing as conceptual artifacts that can be investigated as products outside of the individual mind providing an educational lens from which to proceed. The curricular topic addressed is the development of an ethical understanding of the scientific and technological issues of genetic engineering. 11 grade 8 students are studied as they proceed through 40 hours of curricular instruction based on the complex systems evolutionary framework. Results demonstrate growth in both complex systems thinking and content knowledge of the topic of genetic engineering. Several memetic processes are hypothesized to have influenced how and why ideas change. Categorized by factors influencing either reflective or non-reflective selection, these processes appear to have exerted differential effects on students

  14. Performance-based classrooms: A case study of two elementary teachers of mathematics and science

    Science.gov (United States)

    Jones, Kenneth W.

    This case study depicts how two elementary teachers develop classrooms devoted to performance-based instruction in mathematics and science. The purpose is to develop empirical evidence of classroom practices that leads to a conceptual framework about the nature of performance-based instruction. Performance-based assessment and instruction are defined from the literature to entail involving students in tasks that are complex and engaging, requiring them to apply knowledge and skills in authentic contexts. In elementary mathematics and science, such an approach emphasizes problem solving, exploration, inquiry, and reasoning. The body of the work examines teacher beliefs, curricular orientations, instructional strategies, assessment approaches, management and organizational skills, and interpersonal relationships. The focus throughout is on those aspects that foster student performance in elementary mathematics and science. The resulting framework describes five characteristics that contribute to performance-based classrooms: a caring classroom community, a connectionist learning theory, a thinking and doing curriculum, diverse opportunities for learning, and ongoing assessment, feedback, and adjustment. The conclusion analyzes factors external to the classroom that support or constrain the development of performance-based classrooms and discusses the implications for educational policy and further research.

  15. Citizen Science in the Classroom: Perils and Promise of the New Web

    Science.gov (United States)

    Loughran, T.; Dirksen, R.

    2010-12-01

    Classroom citizen science projects invite students to generate, curate, post, query, and analyze data, publishing and discussing results in potentially large collaborative contexts. The new web offers a rich palette of such projects for any STEM educator to select from or create. This easy access to citizen science in the classroom is full of both promise and peril for science education. By offering examples of classroom citizen science projects in particle physics, earth and environmental sciences, each supported by a common mashup of technologies available to ordinary users, we will illustrate something of the promise of these projects for science education, and point to some of the challenges and failure modes--the peril--raised by easy access and particularly easy publication of data. How one sensibly responds to this promise and peril depends on how one views the goals of science (or more broadly, STEM) education: either as the equipping of individual students with STEM knowledge and skills so as to empower them for future options, or as the issuing of effective invitations into STEM communities. Building on the claim that these are complementary perspectives, both of value, we will provide an example of a classroom citizen science project analyzed from both perspectives. The BOSCO classroom-to-classroom water source mapping project provides students both in Northern Uganda and in South Dakota a collaborative platform for analyzing and responding to local water quality concerns. Students gather water quality data, use Google Forms embedded in a project wiki to enter data in a spreadsheet, which then automatically (through Mapalist, a free web service) gets posted to a Google Map, itself embedded in the project wiki. Using these technologies, data is thus collected and posted for analysis in a collaborative environment: the stage is set for classroom citizen science. In the context of this project we will address the question of how teachers can take advantage

  16. Assessment in Science Education

    Science.gov (United States)

    Rustaman, N. Y.

    2017-09-01

    An analyses study focusing on scientific reasoning literacy was conducted to strengthen the stressing on assessment in science by combining the important of the nature of science and assessment as references, higher order thinking and scientific skills in assessing science learning as well. Having background in developing science process skills test items, inquiry in its many form, scientific and STEM literacy, it is believed that inquiry based learning should first be implemented among science educators and science learners before STEM education can successfully be developed among science teachers, prospective teachers, and students at all levels. After studying thoroughly a number of science researchers through their works, a model of scientific reasoning was proposed, and also simple rubrics and some examples of the test items were introduced in this article. As it is only the beginning, further studies will still be needed in the future with the involvement of prospective science teachers who have interests in assessment, either on authentic assessment or in test items development. In balance usage of alternative assessment rubrics, as well as valid and reliable test items (standard) will be needed in accelerating STEM education in Indonesia.

  17. Metacognitive Strategies in the Introduction to Political Science Classroom

    Science.gov (United States)

    Lusk, Adam

    2016-01-01

    This article examines metacognitive-based teaching strategies and provides preliminary evidence about their effectiveness in the political science classroom. In a 2013 Fall semester Introduction to Political Science course, three metacognitive-based teaching strategies were designed and implemented for improving student learning through greater…

  18. Students' Regulation of Their Emotions in a Science Classroom

    Science.gov (United States)

    Tomas, Louisa; Rigano, Donna; Ritchie, Stephen M.

    2016-01-01

    Research aimed at understanding the role of the affective domain in student learning in classrooms has undergone a recent resurgence due to the need to understand students' affective response to science instruction. In a case study of a year 8 science class in North Queensland, students worked in small groups to write, film, edit, and produce…

  19. Implementing Concepts of Pharmaceutical Engineering into High School Science Classrooms

    Science.gov (United States)

    Kimmel, Howard; Hirsch, Linda S.; Simon, Laurent; Burr-Alexander, Levelle; Dave, Rajesh

    2009-01-01

    The Research Experience for Teachers was designed to help high school science teachers develop skills and knowledge in research, science and engineering with a focus on the area of pharmaceutical particulate and composite systems. The experience included time for the development of instructional modules for classroom teaching. Results of the…

  20. Weber's Critique of Advocacy in the Classroom: Critical Thinking and Civic Education.

    Science.gov (United States)

    Weaver, Mark

    1998-01-01

    Discusses the four aspects of Max Weber's argument against including advocacy in the political science classroom. Believes that Weber's critique is a useful starting point for considering the issue in relation to contemporary education. Describes two models, critical thinking and civic education, that present advocacy in the political science…

  1. Beyond Evolution: Addressing Broad Interactions between Science and Religion in Science Teacher Education

    Science.gov (United States)

    Shane, Joseph W.; Binns, Ian C.; Meadows, Lee; Hermann, Ronald S.; Benus, Matthew J.

    2016-01-01

    Science and religion are two indisputably profound and durable cultural forces with a complex history of interaction. As ASTE members are aware, these interactions often manifest themselves in classrooms and in the surrounding communities. In this essay, we encourage science teacher educators to broaden their perspectives of science-religion…

  2. Expanding the Reach of the Coastal Ocean Science Classroom to Teachers through Teleducation

    Science.gov (United States)

    Macko, S.; Szuba, T.

    2007-12-01

    In a first of its kind connectivity, using high speed internet connections, a summer class in Oceanography was live, interactively broadcast (teleducation) to Arcadia High School on the Eastern Shore of Virginia, allowing teachers in the Accomack County School District to receive university credit without leaving their home classrooms 250 miles from UVA. This project was an outreach and education program with a partner in the K-12 schools on the Eastern Shore of Virginia. It endeavored to build a community knowledgeable of the importance the ocean plays daily in our lives, and our own impact on the ocean. By establishing teleducation linkages with the Eastern Shore High Schools we were rigorously testing the live-Internet-based classroom with earth science teachers enabling them to remotely participate in University of Virginia classes in Oceanography. The classes were designed on a faculty development basis or to allow the teachers to acquire NSTA certification in Earth Science Education. While not without small problems of interruptions in connectivity or the occasional transmission of hardcopies of materials, the approach was seen to be extremely successful. The ability to reach school districts and teachers that are in more remote locations and with fewer resources is clearly supported by this venture. Currently we are planning to link multiple classrooms in the next iteration of this work, intending to offer the expanded classroom in more distant college-based classrooms where Ocean Sciences is a desired portion of the curriculum, but is presently only occasionally offered owing to limited resources.

  3. The Flipped Classroom: Fertile Ground for Nursing Education Research.

    Science.gov (United States)

    Bernard, Jean S

    2015-07-16

    In the flipped classroom (FC) students view pre-recorded lectures or complete pre-class assignments to learn foundational concepts. Class time involves problem-solving and application activities that cultivate higher-level cognitive skills. A systematic, analytical literature review was conducted to explore the FC's current state of the science within higher education. Examination of this model's definition and measures of student performance, student and faculty perceptions revealed an ill-defined educational approach. Few studies confirmed FC effectiveness; many lacked rigorous design, randomized samples, or control of extraneous variables. Few researchers conducted longitudinal studies to determine sufficiently trends related to FC practice. This study proves relevant to nurse educators transitioning from traditional teaching paradigms to learner-centered models, and provides insight from faculty teaching across disciplines around the world. It reveals pertinent findings and identifies current knowledge gaps that call for further inquiry.

  4. Mapping Science in Discourse-based Inquiry Classrooms

    Science.gov (United States)

    Yeneayhu, Demeke Gesesse

    Abstract The purpose of this study was to investigate how discourse-based inquiry science lessons provided opportunities for students to develop a network of semantic relations among core ideas and concepts in science. It was a naturalistic inquiry classroom lessons observation study on three science teachers--- a middle school science teacher and two high school physics teachers in an urban school district located in the Western New York region. Discourse and thematic analysis drawn from the theory of Systemic Functional Linguistics were utilized as guiding framework and analysis tools. Analysis of the pre-observation and post-observation interviews of the participant teachers revealed that all of the three teachers participated in at least one inquiry-based science teaching teacher professional development program and they all thought their classroom teaching practice was inquiry-based. Analysis of their classroom lesson videos that each participant teacher taught on a specific science topic revealed that the middle school teacher was found to be a traditional teacher-dominated classroom whereas the two high school physics teachers' classroom teaching approach was found to be discourse-based inquiry. One of the physics teachers who taught on a topic of Magnetic Interaction used relatively structured and guided-inquiry classroom investigations. The other physics teacher who taught on a topic of Color Mixing utilized open-ended classroom investigations where the students planned and executed the series of classroom science investigations with minimal guidance from the teacher. The traditional teacher-based classroom communicative pattern was found to be dominated by Triadic Dialogue and most of the science thematics were jointly developed by the teacher and the students, but the students' role was limited to providing responses to the teacher's series questions. In the guided-inquiry classroom, the common communicative pattern was found to be True Dialogue and most

  5. Learning to write in science: A study of English language learners' writing experience in sixth-grade science classrooms

    Science.gov (United States)

    Qi, Yang

    , inconsistency of verb tense, and overuse of reiterating thematic patterns and everyday conjunctions to structure and organize their writing. Thematic analysis of teacher interviews and classroom observations revealed that the teachers (a) held different expectations for English language learners than mainstream students, (b) rarely provided explicit instruction on science writing, and (c) did not see themselves as having a shared responsibility of teaching writing in their subject area, despite acknowledgement of the essential role that writing plays in promoting scientific literacy. These findings provide a snapshot of the writing experience that sixth-grade English language learners had in their science classrooms. They suggest that the ELLs needed language and literacy support in science learning, but such support was largely absent in the science classrooms. The implications of the findings for science teaching and teacher education, along with the limitations of the study, are discussed.

  6. Scientific Participation at the Poles: K-12 Teachers in Polar Science for Careers and Classrooms

    Science.gov (United States)

    Crowley, S.; Warburton, J.

    2012-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the polar regions. PolarTREC highlights the importance of involving teachers in scientific research in regards to their careers as educators and their ability to engage students in the direct experience of science. To date, PolarTREC has placed over 90 teachers with research teams in the Arctic and Antarctic. Published results of our program evaluation quantify the effect of the field experience on the teachers' use of the real scientific process in the classroom, the improvement in science content taught in classrooms, and the use of non-fiction texts (real data and science papers) as primary learning tools for students. Teachers and students both report an increase of STEM literacy in the classroom content, confidence in science education, as well as a markedly broadened outlook of science as essential to their future. Research conducted with science teams affirms that they are achieving broader impacts when PolarTREC teachers are involved in their expeditions. Additionally, they reported that these teachers making vital contributions to the success of the scientific project.

  7. Teaching Environmental Health Science for Informed Citizenship in the Science Classroom and Afterschool Clubs

    Science.gov (United States)

    Keselman, Alla; Levin, Daniel M.; Hundal, Savreen; Kramer, Judy F.; Matzkin, Karen; Dutcher, Gale

    2013-01-01

    In the era of growing concerns about human-induced climate change and sustainable development, it is important for the schools to prepare students for meaningful engagement with environmental policies that will determine the future of our society. To do this, educators need to face a number of challenges. These include deciding on the science knowledge and skills needed for informed citizenship, identifying teaching practices for fostering such knowledge and skills, and finding ways to implement new practices into the tightly packed existing curriculum. This paper describes two collaborative efforts between the U.S. National Library of Medicine (NLM) and University of Maryland College of Education that attempt to meet these challenges. The focus of both projects is on helping students develop information seeking and evaluation and argumentation skills, and applying them to complex socio-scientific issues that have bearing on students’ daily lives. The first effort involves co-designing an afterschool environmental health club curriculum with an interdisciplinary team of middle school teachers. The second effort is the development and implementation of a week-long school drinking water quality debate activity in a high school environmental science classroom. Both projects center on Tox Town, an NLM web resource that introduces students to environmental health issues in everyday environments. The paper describes successes and challenges of environmental health curriculum development, including teachers’ and researchers’ perception of contextual constraints in the club and classroom setting, tensions inherent in co-design, and students’ experience with socio-scientific argumentation. PMID:24382985

  8. Reviews Book: Extended Project Student Guide Book: My Inventions Book: ASE Guide to Research in Science Education Classroom Video: The Science of Starlight Software: SPARKvue Book: The Geek Manifesto Ebook: A Big Ball of Fire Apps

    Science.gov (United States)

    2014-05-01

    WE RECOMMEND Level 3 Extended Project Student Guide A non-specialist, generally useful and nicely put together guide to project work ASE Guide to Research in Science Education Few words wasted in this handy introduction and reference The Science of Starlight Slow but steady DVD covers useful ground SPARKvue Impressive software now available as an app WORTH A LOOK My Inventions and Other Writings Science, engineering, autobiography, visions and psychic phenomena mixed in a strange but revealing concoction The Geek Manifesto: Why Science Matters More enthusiasm than science, but a good motivator and interesting A Big Ball of Fire: Your questions about the Sun answered Free iTunes download made by and for students goes down well APPS Collider visualises LHC experiments ... Science Museum app enhances school trips ... useful information for the Cambridge Science Festival

  9. Science Teacher Beliefs and Classroom Practice Related to Constructivism in Different School Settings

    Science.gov (United States)

    Savasci, Funda; Berlin, Donna F.

    2012-01-01

    Science teacher beliefs and classroom practice related to constructivism and factors that may influence classroom practice were examined in this cross-case study. Data from four science teachers in two schools included interviews, demographic questionnaire, Classroom Learning Environment Survey (preferred/perceived), and classroom observations and…

  10. Science Education: The New Humanity?

    Science.gov (United States)

    Douglas, John H.

    1973-01-01

    Summarizes science education trends, problems, and controversies at the elementary, secondary, and higher education levels beginning with the Physical Science Study Committee course, and discusses the present status concerning the application of the Fourth Revolution to the education system. (CC)

  11. Revising laboratory work: sociological perspectives on the science classroom

    Science.gov (United States)

    Jobér, Anna

    2017-09-01

    This study uses sociological perspectives to analyse one of the core practices in science education: schoolchildren's and students' laboratory work. Applying an ethnographic approach to the laboratory work done by pupils at a Swedish compulsory school, data were generated through observations, field notes, interviews, and a questionnaire. The pupils, ages 14 and 15, were observed as they took a 5-week physics unit (specifically, mechanics). The analysis shows that the episodes of laboratory work could be filled with curiosity and exciting challenges; however, another picture emerged when sociological concepts and notions were applied to what is a very common way of working in the classroom. Laboratory work is characterised as a social activity that is expected to be organised as a group activity. This entails groups becoming, to some extent, `safe havens' for the pupils. On the other hand, this way of working in groups required pupils to subject to the groups and the peer effect, sometimes undermining their chances to learn and perform better. In addition, the practice of working in groups when doing laboratory work left some pupils and the teacher blaming themselves, even though the outcome of the learning situation was a result of a complex interplay of social processes. This article suggests a stronger emphasis on the contradictions and consequences of the science subjects, which are strongly influenced by their socio-historical legacy.

  12. Technology-Supported Learning Environments in Science Classrooms in India

    Science.gov (United States)

    Gupta, Adit; Fisher, Darrell

    2012-01-01

    The adoption of technology has created a major impact in the field of education at all levels. Technology-supported classroom learning environments, involving modern information and communication technologies, are also entering the Indian educational system in general and the schools in Jammu region (Jammu & Kashmir State, India) in…

  13. Evaluating Educational Technologies: Interactive White Boards and Tablet Computers in the EFL Classroom

    OpenAIRE

    NFOR, Samuel

    2018-01-01

    One of the objectives outlined in "Trends and Development in Education, Science and Technology Policies": MEXT 2011 by the Ministry of Education, Culture, Sports, Science and Technology of Japan is for all elementary and junior high students to use electronic versions of printed textbooks in the coming years. Students will use digital textbooks on tablet personal computers in classrooms with interactive whiteboards (IWB). This paper considers IWB and tablet computers (tablets) technologies fo...

  14. Classroom Diversification: A Strategic View of Educational Productivity

    Science.gov (United States)

    Lopez, Omar S.

    2007-01-01

    This article advances a theory of educational productivity based on a paradigm of classroom diversification that defines a strategic view of the education production process. The paradigm's underlying premise is that classroom student performance, and the instructional interactions that produce such outcomes, depend on economies derived from the…

  15. Shared-Reading Volume in Early Childhood Special Education Classrooms

    Science.gov (United States)

    Dynia, Jaclyn M.; Justice, Laura M.

    2015-01-01

    This study describes book reading practices occurring in early childhood special education (ECSE) classrooms in comparison to early childhood education (ECE) classrooms. Reading logs submitted by 19 ECSE teachers and 13 ECE teachers over one academic year included all books read in whole class settings; these logs were analyzed to assess the…

  16. A cultural study of a science classroom and graphing calculator-based technology

    Science.gov (United States)

    Casey, Dennis Alan

    Social, political, and technological events of the past two decades have had considerable bearing on science education. While sociological studies of scientists at work have seriously questioned traditional histories of science, national and state educational systemic reform initiatives have been enacted, stressing standards and accountability. Recently, powerful instructional technologies have become part of the landscape of the classroom. One example, graphing calculator-based technology, has found its way from commercial and domestic applications into the pedagogy of science and math education. The purpose of this study was to investigate the culture of an "alternative" science classroom and how it functions with graphing calculator-based technology. Using ethnographic methods, a case study of one secondary, team-taught, Environmental/Physical Science (EPS) classroom was conducted. Nearly half of the 23 students were identified as students with special education needs. Over a four-month period, field data was gathered from written observations, videotaped interactions, audio taped interviews, and document analyses to determine how technology was used and what meaning it had for the participants. Analysis indicated that the technology helped to keep students from getting frustrated with handling data and graphs. In a relatively short period of time, students were able to gather data, produce graphs, and to use inscriptions in meaningful classroom discussions. In addition, teachers used the technology as a means to involve and motivate students to want to learn science. By employing pedagogical skills and by utilizing a technology that might not otherwise be readily available to these students, an environment of appreciation, trust, and respect was fostered. Further, the use of technology by these teachers served to expand students' social capital---the benefits that come from an individual's social contacts, social skills, and social resources.

  17. Classroom Management in Foreign Language Education: An Exploratory Review

    Directory of Open Access Journals (Sweden)

    Diego Fernando Macías

    2018-01-01

    Full Text Available This review examines studies in the area of classroom management in foreign language education. It is organized into three large areas: The first area focuses on the distinctive characteristics of foreign language instruction that are more likely to impact classroom management in foreign language classes. The second area provides a description of classroom management issues that foreign language teachers usually encounter in their practice; and the third area centers on the different alternatives to reduce the negative impact of classroom management on foreign language classes. Conclusions suggest a need for more research particularly on the relationship between classroom management and aspects such as target language use and teaching methods.

  18. Approaching multidimensional forms of knowledge through Personal Meaning Mapping in science integrating teaching outside the classroom

    DEFF Research Database (Denmark)

    Hartmeyer, Rikke; Bolling, Mads; Bentsen, Peter

    2017-01-01

    knowledge dimensions is important, especially in science teaching outside the classroom, where “hands-on” approaches and experiments are often part of teaching and require procedural knowledge, among other things. Therefore, this study investigates PMM as a method for exploring specific knowledge dimensions......Current research points to Personal Meaning Mapping (PMM) as a method useful in investigating students’ prior and current science knowledge. However, studies investigating PMM as a method for exploring specific knowledge dimensions are lacking. Ensuring that students are able to access specific...... in formal science education integrating teaching outside the classroom. We applied a case study design involving two schools and four sixth-grade classes. Data were collected from six students in each class who constructed personal meaning maps and were interviewed immediately after natural science...

  19. Online and classroom tools for Climate Change Education

    Science.gov (United States)

    Samenow, J. P.; Scott, K.

    2004-12-01

    EPA's Office of Atmospheric Programs has developed unique tools for educating students about the science of global warming and on actions that help address the issue. These tools have been highly successful and used in hundreds of classrooms across the country. EPA's Global Warming Kids' Site features interactive web-based animations for educating children, grades 4-8, about climate change. The animations illustrate how human activities likely influence the climate system through processes such as the greenhouse effect and carbon and water cycles. The pages also contain interactive quizzes. See: http://www.epa.gov/globalwarming/kids/animations.html For advanced high school and college students, EPA is nearing completion on the development of interactive visualizations of the emissions and climate scenarios featured in the Intergovernmental Panel on Climate Change's Third Assessment Report. These visualizations allow students to choose a scenario and see how emissions, the climate and the earth's surface change over time. The Global Warming Wheelcard Classroom Activity Kit is designed to help teachers of middle school students introduce the concept of human induced global warming in the context of how rates of energy usage can influence the increase or eventual slowing of climate change. The Climate Change, Wildlife, and Wildlands Toolkit for Teachers and Interpreters was produced in a partnership among three agencies - EPA, US Fish and Wildlife Service and the National Park Service (NPS). Both classroom teachers and outdoor interpreters find it useful in conveying information about climate change science and impacts to their students and visitors. The development of the toolkit led to a larger program between EPA and NPS that assists parks in inventorying their emissions, creating action plans, and talking to the public about what they are doing - a "lead by example" type program that the two agencies hope to replicate in other venues in the coming year.

  20. Do science coaches promote inquiry-based instruction in the elementary science classroom?

    Science.gov (United States)

    Wicker, Rosemary Knight

    The South Carolina Mathematics and Science Coaching Initiative established a school-based science coaching model that was effective in improving instruction by increasing the level of inquiry-based instruction in elementary science classrooms. Classroom learning environment data from both teacher groups indicated considerable differences in the quality of inquiry instruction for those classrooms of teachers supported by a science coach. All essential features of inquiry were demonstrated more frequently and at a higher level of open-ended inquiry in classrooms with the support of a science coach than were demonstrated in classrooms without a science coach. However, from teacher observations and interviews, it was determined that elementary schoolteacher practice of having students evaluate conclusions and connect them to current scientific knowledge was often neglected. Teachers with support of a science coach reported changes in inquiry-based instruction that were statistically significant. This mixed ethnographic study also suggested that the Mathematics and Science Coaching Initiative Theory of Action for Instructional Improvement was an effective model when examining the work of science coaches. All components of effective school infrastructure were positively impacted by a variety of science coaching strategies intended to promote inquiry. Professional development for competent teachers, implementation of researched-based curriculum, and instructional materials support were areas highly impacted by the work of science coaches.

  1. Supporting new science teachers in pursuing socially just science education

    Science.gov (United States)

    Ruggirello, Rachel; Flohr, Linda

    2017-10-01

    This forum explores contradictions that arose within the partnership between Teach for America (TFA) and a university teacher education program. TFA is an alternate route teacher preparation program that places individuals into K-12 classrooms in low-income school districts after participating in an intense summer training program and provides them with ongoing support. This forum is a conversation about the challenges we faced as new science teachers in the TFA program and in the Peace Corps program. We both entered the teaching field with science degrees and very little formal education in science education. In these programs we worked in a community very different from the one we had experienced as students. These experiences allow us to address many of the issues that were discussed in the original paper, namely teaching in an unfamiliar community amid challenges that many teachers face in the first few years of teaching. We consider how these challenges may be amplified for teachers who come to teaching through an alternate route and may not have as much pedagogical training as a more traditional teacher education program provides. The forum expands on the ideas presented in the original paper to consider the importance of perspectives on socially just science education. There is often a disconnect between what is taught in teacher education programs and what teachers actually experience in urban classrooms and this can be amplified when the training received through alternate route provides a different framework as well. This forum urges universities and alternate route programs to continue to find ways to authentically partner using practical strategies that bring together the philosophies and goals of all stakeholders in order to better prepare teachers to partner with their students to achieve their science learning goals.

  2. Earth System Science Education Interdisciplinary Partnerships

    Science.gov (United States)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  3. The book of science mysteries classroom science activities to support student enquiry-based learning

    CERN Document Server

    McOwan, Peter; Olivotto, Cristina

    2015-01-01

    In this booklet, you will be introduced to an exciting new way to teach science in your classroom. The TEMI project (Teaching Enquiry with Mysteries Incorporated) is an EU-funded project that brings together experts in teacher training from across Europe to help you introduce enquiry-based learning successfully in the classroom and improve student engagement and skills.

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 5. A Public Experiment in the History of Science Naked Eye Visibility of the Transit of Venus. Nirupama Raghavan. Classroom Volume 9 Issue 5 May 2004 pp 72-78 ...

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    ... Resonance – Journal of Science Education; Volume 10; Issue 1. MacWilliams Identities? Madhu Sudan. Classroom Volume 10 Issue 1 January 2005 pp 74-82 ... Author Affiliations. Madhu Sudan1. Department of Electrical Engineering and Computer Science Massachussetts Institute of Technology, MA 02139-4307, USA ...

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 9. The Concept of Experiment in Science. Samir Roy. Classroom Volume 1 Issue 9 September 1996 pp 72-74. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/09/0072-0074. Author Affiliations.

  7. Improving Student Writing: Methods You Can Use in Science and Engineering Classrooms

    Science.gov (United States)

    Hitt, S. J.; Bright, K.

    2013-12-01

    Many educators in the fields of science and engineering assure their students that writing is an important and necessary part of their work. According to David Lindsay, in Scientific Writing=Thinking in Words, 99% of scientists agree that writing is an integral part of their jobs. However, only 5% of those same scientists have ever had formal instruction in scientific writing, and those who are also educators may then feel unconfident in teaching this skill to their students (2). Additionally, making time for writing instruction in courses that are already full of technical content can cause it to be hastily and/or peremptorily included. These situations may be some of the contributing factors to the prevailing attitude of frustration that pervades the conversation about writing in science and engineering classrooms. This presentation provides a summary of past, present, and ongoing Writing Center research on effective writing tutoring in order to give science and engineering educators integrated approaches for working with student writers in their disciplines. From creating assignments, providing instruction, guiding revisions, facilitating peer review, and using assessments, we offer a comprehensive approach to getting your students motivated to improve their writing. Our new research study focuses on developing student writing resources and support in science and engineering institutions, with the goal of utilizing cross-disciplinary knowledge that can be used by the various constituencies responsible for improving the effectiveness of writing among student engineers and scientists. We will will draw upon recent findings in the study of the rhetoric and compositional pedagogy and apply them to the specific needs of the science and engineering classroom. The fields of communication, journalism, social sciences, rhetoric, technical writing, and philosophy of science have begun to integrate these findings into classroom practice, and we will show how these can also

  8. Hal in the Classroom: Science Fiction Films.

    Science.gov (United States)

    Amelio, Ralph J.

    The articles in this book provide political, social, sociological, psychological, sexual, mythical, literary, and filmic approaches to the study of science fiction film. "Journey into Science Fiction" by W. Johnson and "The Imagination of Disaster" by S. Sontag treat broadly the essentials of science fiction films. "For the Future: The Science…

  9. Building "Science Capital" in the Classroom

    Science.gov (United States)

    Nomikou, Effrosyni; Archer, Louise; King, Heather

    2017-01-01

    In this article we share insights from our ongoing research on the concept of "science capital"--a term that refers to an individual's science-related resources and dispositions. We have been working in collaboration with secondary teachers in England to explore the applications of the concept in science teaching practice. Underpinned by…

  10. Laboratory Notebooks in the Science Classroom

    Science.gov (United States)

    Roberson, Christine; Lankford, Deanna

    2010-01-01

    Lab notebooks provide students with authentic science experiences as they become active, practicing scientists. Teachers gain insight into students' understanding of science content and processes, while students create a lasting personal resource. This article provides high school science teachers with guidelines for implementing lab notebooks in…

  11. A Theoretical Understanding of the Literature on Student Voice in the Science Classroom

    Science.gov (United States)

    Laux, Katie

    2018-01-01

    Background: Incorporating student voice into the science classroom has the potential to positively impact science teaching and learning. However, students are rarely consulted on school and classroom matters. This literature review examines the effects of including student voice in the science classroom. Purpose: The purpose of this literature…

  12. An Interpersonal Approach to Classroom Management: Strategies for Improving Student Engagement. Classroom Insights from Educational Psychology

    Science.gov (United States)

    Davis, Heather A.; Summers, Jessica J.; Miller, Lauren M.

    2012-01-01

    Like having a hidden camera in other teachers' classrooms, An Interpersonal Approach to Classroom Management engages you from the start by contrasting how two teachers respond differently to common situations. The authors expertly bridge the gap between educational psychology and peer and student-teacher management from the perspectives of student…

  13. Collaborative CPD and inquiry-based science in the classroom

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    on the teaching of science and on collaboration. Qualitative data obtained by following the same teacher teaching Science & Technology from 4th to 6th grade are used to discuss changes in her classroom practice; in particular concerning inquiry-based methods shown in earlier QUEST-research to be understood......Continuous Professional Development (CPD) is crucial for reforming science teaching, but more knowledge is needed about how to embed CPD in teachers’ daily work. The Danish QUEST-project is a long-term collaborative CPD-project designed informed by research and with activities changing rhythmically...... between seminars, individual trials in own classroom, and collaborative activities in the science-team at local schools. The QUEST research is aimed at understanding the relation between individual and social changes. In this study, quantitative data are used to compare the perceived effect from QUEST...

  14. Cultivating characters (moral value) through internalization strategy in science classroom

    Science.gov (United States)

    Ibrahim, M.; Abadi

    2018-01-01

    It is still in a crucial debate that characters play an important learning outcome to be realized by design. So far, most people think that characters were reached as nurturance effect with the assumption that students who are knowledgeable and skillful will have good characters automatically. Lately, obtained evidence that this assumption is not true. Characters should be taught deliberately or by design. This study was designed to culture elementary school students’ characters through science classroom. The teaching-learning process was conducted to facilitate and bridge the students from the known (concrete images: Science phenomena) to the unknown (abstract ideas: characters: care, and tolerance. Characters were observed five weeks before and after the intervention. Data were analyzed from observation of 24 students in internalization strategy-based courses. Qualitative and quantitative data suggested that the internalization strategy that use of science phenomena to represent abstract ideas (characters) in science classroom positively cultivating characters.

  15. Promoting Pre-college Science Education

    Science.gov (United States)

    Lee, R. L.

    1999-11-01

    The Fusion Education Program, with support from DOE, continues to promote pre-college science education for students and teachers using multiple approaches. An important part of our program is direct scientist-student interaction. Our ``Scientist in a Classroom'' program allows students to interact with scientists and engage in plasma science activities in the students' classroom. More than 1000 students from 11 schools have participated in this exciting program. Also, this year more than 800 students and teachers have visited the DIII--D facility and interacted with scientists to cover a broad range of technical and educational issues. Teacher-scientist interaction is imperative in professional development and each year more than 100 teachers attend workshops produced by the fusion education team. We also participate in unique learning opportunities. Members of the team, in collaboration with the San Diego County Office of Education, held a pioneering Internet-based Physics Olympiad for American and Siberian students. Our teamwork with educators helps shape material that is grade appropriate, relevant, and stimulates thinking in educators and students.

  16. Students' Perceptions and Emotions Toward Learning in a Flipped General Science Classroom

    Science.gov (United States)

    Jeong, Jin Su; González-Gómez, David; Cañada-Cañada, Florentina

    2016-10-01

    Recently, the inverted instruction methodologies are gaining attentions in higher educations by claiming that flipping the classroom engages more effectively students with the learning process. Besides, students' perceptions and emotions involved in their learning process must be assessed in order to gauge the usability of this relatively new instruction methodology, since it is vital in the educational formation. For this reason, this study intends to evaluate the students' perceptions and emotions when a flipped classroom setting is used as instruction methodology. This research was conducted in a general science course, sophomore of the Primary Education bachelor degree in the Training Teaching School of the University of Extremadura (Spain). The results show that the students have the overall positive perceptions to a flipped classroom setting. Particularly, over 80 % of them considered that the course was a valuable learning experience. They also found this course more interactive and were willing to have more courses following a flipped model. According to the students' emotions toward a flipped classroom course, the highest scores were given to the positive emotions, being fun and enthusiasm along with keyword frequency test. Then, the lowest scores were corresponded to negative emotions, being boredom and fear. Therefore, the students attending to a flipped course demonstrated to have more positive and less negative emotions. The results obtained in this study allow drawing a promising tendency about the students' perceptions and emotions toward the flipped classroom methodology and will contribute to fully frame this relatively new instruction methodology.

  17. Inclusive Education Policy in the Hong Kong Primary Music Classroom

    Science.gov (United States)

    Wong, Marina Wai-yee; Chik, Maria Pik-yuk

    2016-01-01

    An education reform policy and inclusive education policy have been implemented in Hong Kong for over a decade. As more students with special educational needs have entered the mainstream education system under these policies, Hong Kong's primary music classrooms offer a site where three policies interact--the education reform policy entitled…

  18. Designing Computer-Supported Complex Systems Curricula for the Next Generation Science Standards in High School Science Classrooms

    Directory of Open Access Journals (Sweden)

    Susan A. Yoon

    2016-12-01

    Full Text Available We present a curriculum and instruction framework for computer-supported teaching and learning about complex systems in high school science classrooms. This work responds to a need in K-12 science education research and practice for the articulation of design features for classroom instruction that can address the Next Generation Science Standards (NGSS recently launched in the USA. We outline the features of the framework, including curricular relevance, cognitively rich pedagogies, computational tools for teaching and learning, and the development of content expertise, and provide examples of how the framework is translated into practice. We follow this up with evidence from a preliminary study conducted with 10 teachers and 361 students, aimed at understanding the extent to which students learned from the activities. Results demonstrated gains in students’ complex systems understanding and biology content knowledge. In interviews, students identified influences of various aspects of the curriculum and instruction framework on their learning.

  19. Intelligent Design in the Public School Science Classroom

    Science.gov (United States)

    Hickey, Wesley D.

    2013-01-01

    The ongoing battle to insert intelligent causes into the science classrooms has been met with political approval and scientific rejection. Administrators in the United States need to be aware of the law related to creationism and intelligent design in order to lead in local curricular battles. Although unlikely to appease the ID proponents, there…

  20. Fostering Critical Thinking Practices at Primary Science Classrooms in Nepal

    Science.gov (United States)

    Acharya, Kamal Prasad

    2016-01-01

    This article examines the socio-cultural activities that have direct and indirect impacts on critical thinking practices in primary science classrooms and what kinds of teachers' activities help to foster the development of critical thinking practices in children. Meanwhile, the constructivist and the socio-cultural theoretical dimensions have…

  1. Continuing Professional Development and Learning in Primary Science Classrooms

    Science.gov (United States)

    Fraser, Christine A.

    2010-01-01

    This article explores the effects of continuing professional development (CPD) on teachers' and pupils' experiences of learning and teaching science in primary classrooms. During 2006-2007, quantitative and qualitative data were elicited from two primary teachers in Scotland using questionnaires, semi-structured interviews and video-stimulated…

  2. The Effectiveness of a Technology-Enhanced Flipped Science Classroom

    Science.gov (United States)

    Sezer, Baris

    2017-01-01

    This study examined the effect on the learning and motivation of students of a flipped classroom environment enriched with technology. A mixed research design using a pretest or posttest experimental model, combined with qualitative data, was conducted in a public middle school in Turkey for 2 weeks (three class hours) within a science course.…

  3. Backyard Botany: Using GPS Technology in the Science Classroom

    Science.gov (United States)

    March, Kathryn A.

    2012-01-01

    Global Positioning System (GPS) technology can be used to connect students to the natural world and improve their skills in observation, identification, and classification. Using GPS devices in the classroom increases student interest in science, encourages team-building skills, and improves biology content knowledge. Additionally, it helps…

  4. Research on same-gender grouping in eighth-grade science classrooms

    Science.gov (United States)

    Friend, Jennifer Ingrid

    classroom climate for male or female students. There is evidence in the literature to support further investigations in gender differences in science education to address the unique needs of male and female students in order to create gains in student science achievement and to encourage positive attitudes toward science.

  5. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    Science.gov (United States)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-05-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized problem-based learning (PBL) which was performed as an iterative process during two cycles. A total of 23 and 29 prospective teachers in each cycle performed team activities. A PBL-based ST ethics education program for the science classroom setting was effective in enhancing participants' perceptions of ethics and education in ST. These perceptions motivated prospective science teachers to develop and implement ST ethics education in their future classrooms. The change in the prospective teachers' perceptions of ethical issues and the need for ethics education was greater when the topic was controversial.

  6. Reforming Science Education: Part II. Utilizing Kieran Egan's Educational Metatheory

    Science.gov (United States)

    Schulz, Roland M.

    2009-04-01

    This paper is the second of two parts and continues the conversation which had called for a shift in the conceptual focus of science education towards philosophy of education, with the requirement to develop a discipline-specific “philosophy” of science education. In Part I, conflicting conceptions of science literacy were identified with disparate “visions” tied to competing research programs as well as school-based curricular paradigms. The impasse in the goals of science education and thereto, the contending views of science literacy, were themselves associated with three underlying fundamental aims of education (knowledge-itself; personal development; socialization) which, it was argued, usually undercut the potential of each other. During periods of “crisis-talk” and throughout science educational history these three aims have repeatedly attempted to assert themselves. The inability of science education research to affect long-term change in classrooms was correlated not only to the failure to reach a consensus on the aims (due to competing programs and to the educational ideologies of their social groups), but especially to the failure of developing true educational theories (largely neglected since Hirst). Such theories, especially metatheories, could serve to reinforce science education’s growing sense of academic autonomy and independence from socio-economic demands. In Part II, I offer as a suggestion Egan’s cultural-linguistic theory as a metatheory to help resolve the impasse. I hope to make reformers familiar with his important ideas in general, and more specifically, to show how they can complement HPS rationales and reinforce the work of those researchers who have emphasized the value of narrative in learning science.

  7. One-to-one iPad technology in the middle school mathematics and science classrooms

    Science.gov (United States)

    Bixler, Sharon G.

    Science, technology, engineering, and mathematics (STEM) education has become an emphasized component of PreK-12 education in the United States. The US is struggling to produce enough science, mathematics, and technology experts to meet its national and global needs, and the mean scores of science and mathematics students are not meeting the expected levels desired by our leaders (Hossain & Robinson, 2011). In an effort to improve achievement scores in mathematics and science, school districts must consider many components that can contribute to the development of a classroom where students are engaged and growing academically. Computer technology (CT) for student use is a popular avenue for school districts to pursue in their goal to attain higher achievement. The purpose of this study is to examine the use of iPads in a one-to-one setting, where every student has his own device 24/7, to determine the effects, if any, on academic achievement in the areas of mathematics and science. This comparison study used hierarchical linear modeling (HLM) to examine three middle schools in a private school district. Two of the schools have implemented a one-to-one iPad program with their sixth through eighth grades and the third school uses computers on limited occasions in the classroom and in a computer lab setting. The questions addressed were what effect, if any, do the implementation of a one-to-one iPad program and a teacher's perception of his use of constructivist teaching strategies have on student academic achievement in the mathematics and science middle school classrooms. The research showed that although the program helped promote the use of constructivist activities through the use of technology, the one-to-one iPad initiative had no effect on academic achievement in the middle school mathematics and science classrooms.

  8. Science education ahead?

    Science.gov (United States)

    1999-01-01

    In spite of the achievements and successes of science education in recent years, certain problems undoubtedly remain. Firstly the content taught at secondary level has largely remained unchanged from what had been originally intended to meet the needs of those who would go on to become scientists. Secondly the curriculum is overloaded with factual content rather than emphasizing applications of scientific knowledge and skills and the connections between science and technology. Thirdly the curriculum does not relate to the needs and interests of the pupils. A recent report entitled Beyond 2000: Science Education for the Future, derived from a series of seminars funded by the Nuffield Foundation, attempts to address these issues by setting out clear aims and describing new approaches to achieve them. Joint editors of the report are Robin Millar of the University of York and Jonathan Osborne of King's College London. The recommendations are that the curriculum should contain a clear statement of its aims, with the 5 - 16 science curriculum seen as enhancing general `scientific literacy'. At key stage 4 there should be more differentiation between the literacy elements and those designed for the early stages of a specialist training in science; up to the end of key stage 3 a common curriculum is still appropriate. The curriculum should be presented clearly and simply, following on from the statement of aims, and should provide young people with an understanding of some key `ideas about science'. A wide variety of teaching methods and approaches should be encouraged, and the assessment approaches for reporting on students' performance should focus on their ability to understand and interpret information as well as their knowledge and understanding of scientific ideas. The last three recommendations in the report cover the incorporation of aspects of technology and the applications of science into the curriculum, with no substantial change overall in the short term but a

  9. Turkish Preservice Science Teachers' Socioscientific Issues-Based Teaching Practices in Middle School Science Classrooms

    Science.gov (United States)

    Genel, Abdulkadir; Topçu, Mustafa Sami

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle…

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Onion Plant as an Educational Tool for Phylogenetic Studies: Molecular Analysis and a New Phylogeny? Shilpa Pathak Amita Akolkar Bakhtaver S Mahajan. Classroom Volume 7 Issue 3 March 2002 pp 66-79 ...

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. Chromatography – An Educational Tool. Rekha Rajiv Vartak. Classroom Volume 6 Issue 5 May 2001 pp 83-91. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/05/0083-0091 ...

  12. Science Education - Deja Vu Revised.

    Science.gov (United States)

    Walsh, John

    1982-01-01

    Summarizes views expressed and issues raised at the National Convocation on Precollege Education in Mathematics and Science and another meeting to establish a coalition of affiliates for science and mathematics education. (DC)

  13. Does the Flipped Classroom Improve Learning in Graduate Medical Education?

    Science.gov (United States)

    Riddell, Jeff; Jhun, Paul; Fung, Cha-Chi; Comes, James; Sawtelle, Stacy; Tabatabai, Ramin; Joseph, Daniel; Shoenberger, Jan; Chen, Esther; Fee, Christopher; Swadron, Stuart P

    2017-08-01

    The flipped classroom model for didactic education has recently gained popularity in medical education; however, there is a paucity of performance data showing its effectiveness for knowledge gain in graduate medical education. We assessed whether a flipped classroom module improves knowledge gain compared with a standard lecture. We conducted a randomized crossover study in 3 emergency medicine residency programs. Participants were randomized to receive a 50-minute lecture from an expert educator on one subject and a flipped classroom module on the other. The flipped classroom included a 20-minute at-home video and 30 minutes of in-class case discussion. The 2 subjects addressed were headache and acute low back pain. A pretest, immediate posttest, and 90-day retention test were given for each subject. Of 82 eligible residents, 73 completed both modules. For the low back pain module, mean test scores were not significantly different between the lecture and flipped classroom formats. For the headache module, there were significant differences in performance for a given test date between the flipped classroom and the lecture format. However, differences between groups were less than 1 of 10 examination items, making it difficult to assign educational importance to the differences. In this crossover study comparing a single flipped classroom module with a standard lecture, we found mixed statistical results for performance measured by multiple-choice questions. As the differences were small, the flipped classroom and lecture were essentially equivalent.

  14. Teacher characteristics, social classroom relationships, and children's social, emotional, and behavioral classroom adjustment in special education.

    Science.gov (United States)

    Breeman, L D; Wubbels, T; van Lier, P A C; Verhulst, F C; van der Ende, J; Maras, A; Hopman, J A B; Tick, N T

    2015-02-01

    The goal of this study was to explore relations between teacher characteristics (i.e., competence and wellbeing); social classroom relationships (i.e., teacher-child and peer interactions); and children's social, emotional, and behavioral classroom adjustment. These relations were explored at both the individual and classroom levels among 414 children with emotional and behavioral disorders placed in special education. Two models were specified. In the first model, children's classroom adjustment was regressed on social relationships and teacher characteristics. In the second model, reversed links were examined by regressing teacher characteristics on social relationships and children's adjustment. Results of model 1 showed that, at the individual level, better social and emotional adjustment of children was predicted by higher levels of teacher-child closeness and better behavioral adjustment was predicted by both positive teacher-child and peer interactions. At the classroom level, positive social relationships were predicted by higher levels of teacher competence, which in turn were associated with lower classroom levels of social problems. Higher levels of teacher wellbeing were directly associated with classroom adaptive and maladaptive child outcomes. Results of model 2 showed that, at the individual and classroom levels, only the emotional and behavioral problems of children predicted social classroom relationships. At the classroom level, teacher competence was best predicted by positive teacher-child relationships and teacher wellbeing was best predicted by classroom levels of prosocial behavior. We discuss the importance of positive teacher-child and peer interactions for children placed in special education and suggest ways of improving classroom processes by targeting teacher competence. Copyright © 2014 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  15. Science on a Sphere and Data in the Classroom: A Marriage Between Limitless Learning Experiences.

    Science.gov (United States)

    Zepecki, S., III; Dean, A. F.; Pisut, D.

    2017-12-01

    NOAA and other agencies have contributed significantly to the creation and distribution of educational materials to enhance the public understanding of the interconnectedness of the Earth processes and human activities. Intended for two different learning audiences, Science on a Sphere and Data in the Classroom are both educational tools used to enhance understanding of our world and how human activity influences change. Recently, NOAA has undertaken the task of marrying Data in the Classroom's NGSS aligned curriculum, which includes topics such as El Niño, sea level rise, and coral bleaching, with Science on a Sphere's Earth and space data visualization exhibits. This partnership allows for the fluidity of NOAA's data-driven learning materials, and fosters the homogeneity of formal and informal learning experiences for varied audiences.

  16. Understanding adolescent student perceptions of science education

    Science.gov (United States)

    Ebert, Ellen Kress

    This study used the Relevance of Science Education (ROSE) survey (Sjoberg & Schreiner, 2004) to examine topics of interest and perspectives of secondary science students in a large school district in the southwestern U.S. A situated learning perspective was used to frame the project. The research questions of this study focused on (a) perceptions students have about themselves and their science classroom and how these beliefs may influence their participation in the community of practice of science; (b) consideration of how a future science classroom where the curriculum is framed by the Next Generation Science Standards might foster students' beliefs and perceptions about science education and their legitimate peripheral participation in the community of practice of science; and (c) reflecting on their school science interests and perspectives, what can be inferred about students' identities as future scientists or STEM field professionals? Data were collected from 515 second year science students during a 4-week period in May of 2012 using a Web-based survey. Data were disaggregated by gender and ethnicity and analyzed descriptively and by statistical comparison between groups. Findings for Research Question 1 indicated that boys and girls showed statistically significant differences in scientific topics of interest. There were no statistical differences between ethnic groups although. For Research Question 2, it was determined that participants reported an increase in their interest when they deemed the context of the content to be personally relevant. Results for Research Question 3 showed that participants do not see themselves as youthful scientists or as becoming scientists. While participants value the importance of science in their lives and think all students should take science, they do not aspire to careers in science. Based on this study, a need for potential future work has been identified in three areas: (a) exploration of the perspectives and

  17. Making Learning Interesting and Its Application to the Science Classroom

    Science.gov (United States)

    Jack, Brady Michael; Lin, Huann-shyang

    2017-01-01

    Generations of students are graduating from secondary school disinterested in post-secondary study of science or pursuing careers in science-related fields beyond formal education. We propose that destabilising such disinterest among future students requires science educators to begin listening to secondary school students regarding their views of…

  18. Findings from a Pre-Kindergarten Classroom: Making the Case for STEM in Early Childhood Education

    Science.gov (United States)

    Tippett, Christine D.; Milford, Todd M.

    2017-01-01

    Science, technology, engineering, and mathematics (STEM) in early childhood education is an area currently given little attention in the literature, which is unfortunate since young children are natural scientists and engineers. Here, we outline our mixed-methods design-based research investigation of a pre-kindergarten (Pre-K) classroom where two…

  19. Sensory Science Education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2018-01-01

    little note of the body-mind interactions we have with the material world. Utilizing examples from primary schools, it is argued that a sensory pedagogy in science requires a deliberate sensitization and validation of the senses’ presence and that a sensor pedagogy approach may reveal the unique ways...... in how we all experience the world. Troubling science education pedagogy is therefore also a reconceptualization of who we are and how we make sense of the world and the acceptance that the body-mind is present, imbalanced and complex....

  20. The effects of professional development on science teaching practices and classroom culture

    Science.gov (United States)

    Supovitz, Jonathan A.; Turner, Herbert M.

    2000-11-01

    The current science education reform movement emphasizes the importance of professional development as a means of improving student science achievement. Reformers have developed a vision for professional development based upon intensive and sustained training around concrete tasks that is focused on subject-matter knowledge, connected to specific standards for student performance, and embedded in a systemic context. Using data from a National Science Foundation Teacher Enhancement program called the Local Systemic Change initiative, this study employs hierarchical linear modeling to examine the relationship between professional development and the reformers' vision of teaching practice. The findings indicate that the quantity of professional development in which teachers participate is strongly linked with both inquiry-based teaching practice and investigative classroom culture. At the individual level, teachers' content preparation also has a powerful influence on teaching practice and classroom culture. At the school level, school socioeconomic status was found to influence practice more substantially than either principal supportiveness or available resources.

  1. Controversial Issues in the Science Classroom

    Science.gov (United States)

    Owens, David C.; Sadler, Troy D.; Zeidler, Dana L.

    2018-01-01

    As the partisan divide becomes more toxic to civil discourse, the role of science in that conversation also suffers from collateral damage, becoming suspect at best, and marginalized at worse, in terms of its contribution to resolving issues rooted in science having national and global significance. The authors suggest ameliorating that damage by…

  2. Classroom-based science research at the introductory level: changes in career choices and attitude.

    Science.gov (United States)

    Harrison, Melinda; Dunbar, David; Ratmansky, Lisa; Boyd, Kimberly; Lopatto, David

    2011-01-01

    Our study, focused on classroom-based research at the introductory level and using the Phage Genomics course as the model, shows evidence that first-year students doing research learn the process of science as well as how scientists practice science. A preliminary but notable outcome of our work, which is based on a small sample, is the change in student interest in considering different career choices such as graduate education and science in general. This is particularly notable, as previous research has described research internships as clarifying or confirming rather than changing undergraduates' decisions to pursue graduate education. We hypothesize that our results differ from previous studies of the impact of engaging in research because the students in our study are still in the early stages of their undergraduate careers. Our work builds upon the classroom-based research movement and should be viewed as encouraging to the Vision and Change in Undergraduate Biology Education movement advocated by the American Association for the Advancement of Science, the National Science Foundation, and other undergraduate education stakeholders.

  3. Crowdfunding for Elementary Science Educators

    Science.gov (United States)

    Reese, Jessica; Miller, Kurtz

    2017-01-01

    The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…

  4. Science in the Elementary School Classroom: Portraits of Action Research.

    Science.gov (United States)

    McDonald, Jane B., Ed.; Gilmer, Penny J., Ed.

    Teacher knowledge and skills are critical elements in the student learning process. Action research serves as an increasingly popular technique to engage teachers in educational change in classrooms. This document focuses on action research reports of elementary school teachers. Chapters include: (1) "First Graders' Beliefs and Perceptions of…

  5. Teacher and student perspectives on motivation within the high school science classroom

    Science.gov (United States)

    Pickens, Melanie Turnure

    The purpose of this study was to investigate teacher and student perspectives on the motivation of high school science students and to explore specific motivational strategies used by teachers as they attempt to enhance student motivation. Four science teachers took part in an initial audio-taped interview, classroom observations with debriefing conversations, and a final audio-taped interview to discuss findings and allow member checking for data triangulation and interpretation. Participating teachers also took part in a final focus group interview. Student participants from each teacher's class were given a Likert style anonymous survey on their views about motivation and learning, motivation in science class, and specific motivational strategies that emerged in their current science class. This study focused on effective teaching strategies for motivation commonly used by the four teachers and on specific teaching strategies used by two of these four teachers in different tracks of science classes. The intent was to determine not only what strategies worked well for all types of science classes, but also what specific motivational approaches were being used in high and low tracked science classes and the similarities and differences between them. This approach provided insight into the differences in motivating tracked students, with the hope that other educators in specific tracks might use such pedagogies to improve motivation in their own science classrooms. Results from this study showed that science teachers effectively motivate their students in the following ways: Questioning students to engage them in the lesson, exhibiting enthusiasm in lesson presentations, promoting a non-threatening environment, incorporating hands-on activities to help learn the lesson concepts, using a variety of activities, believing that students can achieve, and building caring relationships in the classroom. Specific to the higher tracked classroom, effective motivational

  6. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    Science.gov (United States)

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  7. Classroom Management in Foreign Language Education: An Exploratory Review

    Science.gov (United States)

    Macías, Diego Fernando

    2018-01-01

    This review examines studies in the area of classroom management in foreign language education. It is organized into three large areas: The first area focuses on the distinctive characteristics of foreign language instruction that are more likely to impact classroom management in foreign language classes. The second area provides a description of…

  8. Classroom Carbon Dioxide Concentration, School Attendance, and Educational Attainment

    Science.gov (United States)

    Gaihre, Santosh; Semple, Sean; Miller, Janice; Fielding, Shona; Turner, Steve

    2014-01-01

    Background: We tested the hypothesis that classroom carbon dioxide (CO[subscript 2]) concentration is inversely related to child school attendance and educational attainment. Methods: Concentrations of CO[subscript 2] were measured over a 3-5?day period in 60 naturally ventilated classrooms of primary school children in Scotland. Concentrations of…

  9. Flipped Classroom: Effects on Education for the Case of Economics

    Science.gov (United States)

    Kurihara, Yutaka

    2016-01-01

    The notion of the flipped classroom has been received much attention in the literature as it may increase learning outcomes and learning effectiveness elementary and secondary education as well as university learning. In the author's class on international finance (economics) features a blended flipped classroom and lecture; questionnaires were…

  10. Science Fiction in the Political Science Classroom: A Comment

    Science.gov (United States)

    Landers, Clifford E.

    1977-01-01

    Science fiction can be used for introducing and analyzing political concepts at the undergraduate level for either a specialized theory-oriented course such as Political Science Fiction or an Introduction to Political Science course. (Author/RM)

  11. Re-Envisioning the Archaic Higher Education Learning Environment: Implementation Processes for Flipped Classrooms

    Science.gov (United States)

    Rabidoux, Salena; Rottmann, Amy

    2018-01-01

    Flipped classrooms are often utilized in PK-12 classrooms; however, there is also a growing trend of flipped classrooms in higher education. This paper presents the benefits and limitations of implementing flipped classrooms in higher education as well as resources for integrating a flipped classroom design to instruction. The various technology…

  12. Finding Meaningful Roles for Scientists in science Education Reform

    Science.gov (United States)

    Evans, Brenda

    Successful efforts to achieve reform in science education require the active and purposeful engagement of professional scientists. Working as partners with teachers, school administrators, science educators, parents, and other stakeholders, scientists can make important contributions to the improvement of science teaching and learning in pre-college classrooms. The world of a practicing university, corporate, or government scientist may seem far removed from that of students in an elementary classroom. However, the science knowledge and understanding of all future scientists and scientifically literate citizens begin with their introduction to scientific concepts and phenomena in childhood and the early grades. Science education is the responsibility of the entire scientific community and is not solely the responsibility of teachers and other professional educators. Scientists can serve many roles in science education reform including the following: (1) Science Content Resource, (2) Career Role Model, (3) Interpreter of Science (4) Validator for the Importance of Learning Science and Mathematics, (5) Champion of Real World Connections and Value of Science, (6) Experience and Access to Funding Sources, (7) Link for Community and Business Support, (8) Political Supporter. Special programs have been developed to assist scientists and engineers to be effective partners and advocates of science education reform. We will discuss the rationale, organization, and results of some of these partnership development programs.

  13. Classroom Interaction in Regular and Special Education Middle Primary Classrooms in the United Arab Emirates

    Science.gov (United States)

    Dukmak, Samir

    2010-01-01

    Samir Dukmak is an assistant professor in the Department of Special Education in the Faculty of Education at the United Arab Emirates University. The research reported in this article investigated the frequency, types of and reasons for student-initiated interactions in both regular and special education classrooms in the United Arab Emirates…

  14. Classroom Demonstrations in Materials Science/Engineering.

    Science.gov (United States)

    Hirschhorn, J. S.; And Others

    Examples are given of demonstrations used at the University of Wisconsin in a materials science course for nontechnical students. Topics include crystal models, thermal properties, light, and corrosion. (MLH)

  15. Classroom management, student-teacher relationships and quality in education

    DEFF Research Database (Denmark)

    Christensen, Mette Vedsgaard

    Knowledge about classroom management is crucial for both teachers’ and students’ well-being and educational success. Studies have indicated that teaching and learning cannot take place effectively in poorly managed classrooms (Jones & Jones, 2012; Marzano, Marzano & Pickering, 2003), and research...... classroom management strategies and teacher-student relations, and by adjusting and applying insights from theory in pedagogical practice, we have introduced new ways of managing learning environments....... unanimously concludes that the competence to establish and maintain good teacher-student relations is a central teacher competence (Nordenbo et al., 2008;Cornelius Whiite, 2007; Mitchell, 2008; Hattie, 2009).This paper presents the findings from recent research and development projects concerning classroom...

  16. Teaching Climate Science in Non-traditional Classrooms

    Science.gov (United States)

    Strybos, J.

    2015-12-01

    San Antonio College is the oldest, largest and centrally-located campus of Alamo Colleges, a network of five community colleges based around San Antonio, Texas with a headcount enrollment of approximately 20,000 students. The student population is diverse in ethnicity, age and income; and the Colleges understand that they play a salient role in educating its students on the foreseen impacts of climate change. This presentation will discuss the key investment Alamo Colleges has adopted to incorporate sustainability and climate science into non-traditional classrooms. The established courses that cover climate-related course material have historically had low enrollments. One of the most significant challenges is informing the student population of the value of this class both in their academic career and in their personal lives. By hosting these lessons in hands-on simulations and demonstrations that are accessible and understandable to students of any age, and pursuing any major, we have found an exciting way to teach all students about climate change and identify solutions. San Antonio College (SAC) hosts the Bill R. Sinkin Eco Centro Community Center, completed in early 2014, that serves as an environmental hub for Alamo Colleges' staff and students as well as the San Antonio community. The center actively engages staff and faculty during training days in sustainability by presenting information on Eco Centro, personal sustainability habits, and inviting faculty to bring their classes for a tour and sustainability primer for students. The Centro has hosted professors from diverse disciplines that include Architecture, Psychology, Engineering, Science, English, Fine Arts, and International Studies to bring their classes to center to learn about energy, water conservation, landscaping, and green building. Additionally, Eco Centro encourages and assists students with research projects, including a solar-hydroponic project currently under development with the support

  17. Modelling Spark Integration in Science Classroom

    Directory of Open Access Journals (Sweden)

    Marie Paz E. Morales

    2014-02-01

    Full Text Available The study critically explored how a PASCO-designed technology (SPARK ScienceLearning System is meaningfully integrated into the teaching of selected topics in Earth and Environmental Science. It highlights on modelling the effectiveness of using the SPARK Learning System as a primary tool in learning science that leads to learning and achievement of the students. Data and observation gathered and correlation of the ability of the technology to develop high intrinsic motivation to student achievement were used to design framework on how to meaningfully integrate SPARK ScienceLearning System in teaching Earth and Environmental Science. Research instruments used in this study were adopted from standardized questionnaires available from literature. Achievement test and evaluation form were developed and validated for the purpose of deducing data needed for the study. Interviews were done to delve into the deeper thoughts and emotions of the respondents. Data from the interviews served to validate all numerical data culled from this study. Cross-case analysis of the data was done to reveal some recurring themes, problems and benefits derived by the students in using the SPARK Science Learning System to further establish its effectiveness in the curriculum as a forerunner to the shift towards the 21st Century Learning.

  18. Flipped Higher Education Classroom: An Application in Environmental Education Course in Primary Education

    Science.gov (United States)

    Yilmaz, Özkan

    2017-01-01

    Usage of technology in educational settings is becoming a standard for 21st century's learners. Flipped classroom presents an entirely new learning environment based on technology for students, thus requiring different research for establishing effective learning and teaching. This paper aimed to explore usability of flipped classroom in higher…

  19. Urban science education: examining current issues through a historical lens

    Science.gov (United States)

    McLaughlin, Cheryl A.

    2014-12-01

    This paper reviews and synthesizes urban science education studies published between 2000 and 2013 with a view to identifying current challenges faced by both teachers and students in urban classrooms. Additionally, this paper considers the historical events that have shaped the conditions, bureaucracies, and interactions of urban institutions. When the findings from these urban science education studies were consolidated with the historical overview provided, it was revealed that the basic design and regulatory policies of urban schools have not substantively changed since their establishment in the nineteenth century. Teachers in urban science classrooms continue to face issues of inequality, poverty, and social injustice as they struggle to meet the needs of an increasingly diverse student population. Furthermore, persistent concerns of conflicting Discourses, cultural dissonance, and oppression create formidable barriers to science learning. Despite the many modifications in structure and organization, urban students are still subjugated and marginalized in systems that emphasize control and order over high-quality science education.

  20. Assessment Strategies for Implementing Ngss in K12 Earth System Science Classrooms

    Science.gov (United States)

    McAuliffe, C.

    2016-12-01

    Several science education researchers have led assessment efforts that provide strategies particularly useful for evaluating the threedimensional learning that is central to NGSS (DeBarger, A. H., Penuel, W. R., Harris, C. J., Kennedy, C. K., 2016; Knight, A. M. & McNeill, K. L., 2015; McNeill, K. L., KatshSinger, R. & Pelletier, P., 2015; McNeill K.L., et.al., 2015; McNeill, K.L., & Krajcik, J.S., 2011; Penuel, W., 2016). One of the basic premises of these researchers is that, "Assessment is a practice of argument from evidence based on what students say, do, and write" and that "the classroom is the richest place to gather evidence of what students know (Penuel, W., 2016). The implementation of the NGSS in Earth System Science provides a unique opportunity for geoscience education researchers to study student learning and contribute to the development of this research as well as for geoscience educators to apply these approaches and strategies in their own work with K12 inservice and preservice educators. DeBarger, A. H., Penuel, W. R., Harris, C. J., Kennedy, C. K. (2016). Building an Assessment Argument to Design and Use Next Generation Science Assessments in Efficacy Studies of Curriculum Interventions. American†Journal†of†Evaluation†37(2) 174192Æ Knight, A. M. & McNeill, K. L. (2015). Comparing students' individual written and collaborative oral socioscientific arguments. International Journal of Environmental and Science Education.10(5), 23647. McNeill, K. L., KatshSinger, R. & Pelletier, P. (2015). Assessing science practices-Moving your class along a continuum. Science Scope. McNeill, K.L., & Krajcik, J.S. (2011). Supporting Grade 5-8 Students in Constructing Explanations in Science: The Claim, Evidence, and Reasoning Framework for Talk and Writing. Upper Saddle River, New Jersey: Pearson. Penuel, W. (2016). Classroom Assessment Strategies for NGSS Earth and Space Sciences. Implementing†the†NGSS†Webinar†Series, February 11, 2016.

  1. Is Religious Education Compatible with Science Education?

    Science.gov (United States)

    Mahner, Martin; Bunge, Mario

    1996-01-01

    Addresses the problem of the compatibility of science and religion, and its bearing on science and religious education, challenges the popular view that science and religion are compatible or complementary. Discusses differences at the doctrinal, metaphysical, methodological, and attitudinal levels. Argues that religious education should be kept…

  2. Cosmic Times: Astronomy History and Science for the Classroom

    Science.gov (United States)

    Lochner, James C.; Mattson, B.

    2008-05-01

    Cosmic Times is a series of curriculum support materials and classroom activities for upper middle school and high school students which teach the nature of science by exploring the history of our understanding of the universe during the past 100 years. Starting with the confirmation of Einstein's theory of gravity in 1919 to the current conundrum posed by the discovery of dark energy, Cosmic Times examines the discoveries, the theories, and the people involved in this changing [understanding] of the universe. Cosmic Times takes the form of 6 posters, each resembling the front page of a newspaper from a particular time in this history with articles describing the discoveries. Each poster is accompanied by 4-5 classroom lessons which enable students to examine the science concepts behind the discoveries, develop techniques to improve science literacy, and investigate the nature of science using historical examples. Cosmic Times directly connects with the IYA theme of Astronomy in the Classroom, as well as the general theme of the impact of astronomy history. Cosmic Times has been developed with a freelance writer to write the articles for the posters, a group of teachers to develop the lessons, and evaluator to provide testing of the materials with a group of rural teachers in underserved communities. This poster presentation previews the Cosmic Times materials, which are posted on http://cosmictimes.gsfc.nasa.gov/ as they become available. Cosmic Times is funded in part via a NASA IDEAS grant.

  3. Leveraging Current Initiatives to Bring Earth and Space Science into Elementary and Early Childhood Classrooms: NGSS in the Context of the Classroom Technology Push

    Science.gov (United States)

    Pacheco-Guffrey, H. A.

    2016-12-01

    Classroom teachers face many challenges today such as new standards, the moving targets of high stakes tests and teacher evaluations, inconsistent/insufficient access to resources and evolving education policies. Science education in the K-5 context is even more complex. NGSS can be intimidating, especially to K-5 educators with little science background. High stakes science tests are slow to catch up with newly drafted state level science standards, leaving teachers unsure about what to change and when to implement updated standards. Amid all this change, many schools are also piloting new technology programs. Though exciting, tech initiatives can also be overwhelming to teachers who are already overburdened. A practical way to support teachers in science while remaining mindful of these stressors is to design and share resources that leverage other K-5 school initiatives. This is often done by integrating writing or math into science learning to meet Common Core requirements. This presentation will suggest a method for bringing Earth and space science learning into elementary / early childhood classrooms by utilizing the current push for tablet technology. The goal is to make science integration reasonable by linking it to technology programs that are in their early stages. The roles and uses of K-5 Earth and space science apps will be examined in this presentation. These apps will be linked to NGSS standards as well as to the science and engineering practices. To complement the app resources, two support frameworks will also be shared. They are designed to help educators consider new technologies in the context of their own classrooms and lessons. The SAMR Model (Puentadura, 2012) is a conceptual framework that helps teachers think critically about the means and purposes of integrating technology into existing lessons. A practical framework created by the author will also be shared. It is designed to help teachers identify and address the important logistical

  4. Girls Doing Science: A Case Study of Science Literacy in All-Female Middle Grade Classrooms

    Science.gov (United States)

    Faller, Susan Elisabeth

    In the face of low adolescent literacy rates (NCES, 2012), concerns about the nation's prospects of remaining competitive in science and technology (Hill, Corbett, & St. Rose, 2010), a persistent gender gap in science (NCES, 2012; Reilly, 2012), and the continued rollout of college- and career-ready standards, there is a need to focus on adolescent girls' science literacy. Such science literacy involves not only general knowledge about science, but also the ability to engage in the advanced reading and writing practices fundamental to doing science (Norris & Phillips, 2003). In this thesis, I present three articles with findings that respond to this need. They are the results of a multiple-case embedded (Yin, 2009) study that I conducted over the course of 7 months in four science classrooms (grades 5 through 8; 50 students) taught by a single teacher in a small all-female middle school. I collected in-depth data focused on science literacy from multiple sources, including (a) fieldnotes (Emerson, Fretz & Shaw, 2011), (b) videorecorded classroom observations (102 classes, 113 hours, recorded on 29 days), (c) a survey of all students, (d) semi-structured interviews with the subsample of 12 focal students (ranging from 18 to 37 minutes) and (e) photographs of classroom artifacts and student work. In the first article, I provide a window into standard literacy practices in science classrooms by examining the reading and writing genres to which students are exposed. In the second article, I examine how a teacher's language and instructional practices within her classrooms, and popular images of science from the world beyond their classrooms might shape adolescent girls' science identities. Finally, in the third article, I explore different aspects of science identity using the words of three case study students. Taken together, these studies fill gaps in the literature by investigating science literacy in an understudied context, all-female classrooms. In addition

  5. Primary Science Education in China

    Science.gov (United States)

    Pook, Gayle

    2013-01-01

    Consider the extent to which primary science teaching has evolved since it became a core subject in England with the introduction of the National Curriculum in 1988, and the pace at which theory-driven classroom practice has advanced. It is no wonder that, given the recent economic restructuring and boom in technological development in China,…

  6. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  7. University Students' Perceptions of Their Science Classrooms

    Science.gov (United States)

    Kaya, Osman Nafiz; Kilic, Ziya; Akdeniz, Ali Riza

    2004-01-01

    The purpose of this study was to investigate the dimensions of the university students' perceptions of their science classes and whether or not the students' perceptions differ significantly as regards to the gender and grade level in six main categories namely; (1) pedagogical strategies, (2) faculty interest in teaching, (3) students interest…

  8. Blogging in the Political Science Classroom

    Science.gov (United States)

    Lawrence, Christopher N.; Dion, Michelle L.

    2010-01-01

    Weblogs (or blogs), as a form of communication on the Internet, have recently risen in prominence but may be poorly understood by both faculty and students. This article explains how blogs differ from other online communication tools and how political science faculty can make use of blogs in their classes. The focus is on using blogs as part of…

  9. Engaging Nature of Science to Preservice Teachers through Inquiry-Based Classroom

    Science.gov (United States)

    Nuangchalerm, Prasart

    2013-01-01

    Inquiry-based classroom is widely distributed in the school science based on its useful and effective instruction. Science teachers are key elements allowing students to have scientific inquiry. If teachers understand and imply inquiry-based learning into science classroom, students will learn science as scientific inquiry and understand nature of…

  10. The transfer of learning process: From an elementary science methods course to classroom instruction

    Science.gov (United States)

    Carter, Nina Leann

    The purpose of this qualitative multiple-case study was to explore the transfer of learning process in student teachers. This was carried out by focusing on information learned from an elementary science methods and how it was transferred into classroom instruction during student teaching. Participants were a purposeful sampling of twelve elementary education student teachers attending a public university in north Mississippi. Factors that impacted the transfer of learning during lesson planning and implementation were sought. The process of planning and implementing a ten-day science instructional unit during student teaching was examined through lesson plan documentation, in-depth individual interviews, and two focus group interviews. Narratives were created to describe the participants' experiences as well as how they plan for instruction and consider science pedagogical content knowledge (PCK). Categories and themes were then used to build explanations applying to the research questions. The themes identified were Understanding of Science PCK, Minimalism, Consistency in the Teacher Education Program, and Emphasis on Science Content. The data suggested that the participants lack in their understanding of science PCK, took a minimalistic approach to incorporating science into their ten-day instructional units, experienced inconsistencies in the teacher education program, and encountered a lack of emphasis on science content in their field experience placements. The themes assisted in recognizing areas in the elementary science methods courses, student teaching field placements, and university supervision in need of modification.

  11. An Integrative Review of Flipped Classroom Teaching Models in Nursing Education.

    Science.gov (United States)

    Njie-Carr, Veronica P S; Ludeman, Emilie; Lee, Mei Ching; Dordunoo, Dzifa; Trocky, Nina M; Jenkins, Louise S

    Nursing care is changing dramatically given the need for students to address complex and multiple patient comorbidities. Students experience difficulties applying knowledge gained from didactic instruction to make important clinical decisions for optimal patient care. To optimize nursing education pedagogy, innovative teaching strategies are required to prepare future nurses for practice. This integrative review synthesized the state of the science on flipped classroom models from 13 empirical studies published through May 2016. The purpose of the review was to evaluate studies conducted on flipped classroom models among nursing students using a validated framework by Whittemore and Knafl. Multiple academic databases were searched, ranging in scope including PubMed, Embase (Elsevier), CINAHL (Ebsco), Scopus, Web of Science, and Google Scholar, resulting in 95 unique records. After screening and full-text reviews, 82 papers were removed. Thirteen empirical studies were included in the final analysis and results provided (a) design and process information on flipped classroom models in nursing education, (b) a summary of the state of the evidence to inform the implementation of flipped classrooms, and (c) a foundation to build future research in this area of nursing education. To develop sound evidence-based teaching strategies, rigorous scientific methods are needed to inform the implementation of flipped classroom approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. SciNews: Incorporating Science Current Events in 21st Century Classrooms

    Science.gov (United States)

    DiMaggio, E.

    2011-12-01

    Middle school students are instructed with the aid of textbooks, lectures, and activities to teach topics that satisfy state standards. However, teaching materials created to convey standard-aligned science concepts often leave students asking how the content relates to their lives and why they should be learning it. Conveying relevance is important for student learning and retention, especially in science where abstract concepts can often be incorrectly perceived as irrelevant. One way to create an educational link between classroom content and everyday life is through the use of scientific current events. Students read, hear, and watch media coverage of natural events (such as the 2011 earthquake and tsunami in Japan), but do not necessarily relate the scientific information from media sources to classroom studies. Taking advantage of these brief 'teachable moments'--when student interest is high--provides a valuable opportunity to make classroom-to-everyday life associations and to incorporate inquiry based learning. To address this need, I create pre-packaged current event materials for middle to high school teachers that align to state standards, and which are short, effective, and easy to implement in the classroom. Each lesson takes approximately 15-30 minutes to implement, allowing teachers time to facilitate brief but meaningful discussions. I assemble materials within approximately one week of the regional or global science event, consisting of short slide shows, maps, videos, pictures, and real-time data. I use a listserv to send biweekly emails to subscribed instructors containing the current event topic and a link to download the materials. All materials are hosted on the Arizona State University Education Outreach SciNews website (http://sese.asu.edu/teacher-resources) and are archived. Currently, 285 educators subscribe to the SciNews listserv, representing 36 states and 19 countries. In order to assess the effectiveness and usefulness of Sci

  13. Education in space science

    Science.gov (United States)

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  14. Classroom

    Indian Academy of Sciences (India)

    daily life, learning science concepts often involves confronting natural discrepant ... practice applying new ideas; and, if necessary, provide them wi th remedial ... have been suggested in science education research literature, as avenues ...

  15. Urban science classrooms and new possibilities: on intersubjectivity and grammar in the third space

    Science.gov (United States)

    Emdin, Christopher

    2009-03-01

    In this article I explore research in urban science education inspired by the work of Kris Gutierrez in a paper based on her 2005 Scribner Award. It addresses key points in Gutierrez's work by exploring theoretical frameworks for research and approaches to teaching and research that expand the discourse on the agency of urban youth in corporate school settings. The work serves as an overview of under-discussed approaches and theoretical frameworks to consider in teaching and conducting research with marginalized urban youth in urban science classrooms.

  16. Establishing Mathematics for Teaching within Classroom Interactions in Teacher Education

    Science.gov (United States)

    Ryve, Andreas; Nilsson, Per; Mason, John

    2012-01-01

    Teacher educators' processes of establishing "mathematics for teaching" in teacher education programs have been recognized as an important area for further research. In this study, we examine how two teacher educators establish and make explicit features of mathematics for teaching within classroom interactions. The study shows how the…

  17. Interchangeable Positions in Interaction Sequences in Science Classrooms

    Directory of Open Access Journals (Sweden)

    Carol Rees

    2017-03-01

    Full Text Available Triadic dialogue, the Initiation, Response, Evaluation sequence typical of teacher /student interactions in classrooms, has long been identified as a barrier to students’ access to learning, including science learning. A large body of research on the subject has over the years led to projects and policies aimed at increasing opportunities for students to learn through interactive dialogue in classrooms. However, the triadic dialogue pattern continues to dominate, even when teachers intend changing this. Prior quantitative research on the subject has focused on identifying independent variables such as style of teacher questioning that have an impact, while qualitative researchers have worked to interpret the use of dialogue within the whole context of work in the classroom. A recent paper offers an alternative way to view the triadic dialogue pattern and its origin; the triadic dialogue pattern is an irreducible social phenomenon that arises in a particular situation regardless of the identity of the players who inhabit the roles in the turn-taking sequence (Roth & Gardner, 2012. According to this perspective, alternative patterns of dialogue would exist which are alternative irreducible social phenomena that arise in association with different situations. The aim of this paper is to examine as precisely as possible, the characteristics of dialogue patterns in a seventh-eighth grade classroom during science inquiry, and the precise situations from which these dialogue patterns emerge, regardless of the staffing (teacher or students in the turn-taking sequence. Three different patterns were identified each predominating in a particular situation. This fine-grained analysis could offer valuable insights into ways to support teachers working to alter the kinds of dialogue patterns that arise in their classrooms.

  18. Dialogic classroom talk in early childhood education

    NARCIS (Netherlands)

    van der Veen, Chiel

    2017-01-01

    In the majority of classrooms, the interaction among teachers and children can still be characterized as being predominantly monologic in nature. Classroom conversations are overly teacher-steered, and mainly focused on the recitation of factual knowledge. This gives children only few opportunities

  19. Education & Technology: Reflections on Computing in Classrooms.

    Science.gov (United States)

    Fisher, Charles, Ed.; Dwyer, David C., Ed.; Yocam, Keith, Ed.

    This volume examines learning in the age of technology, describes changing practices in technology-rich classrooms, and proposes new ways to support teachers as they incorporate technology into their work. It commemorates the eleventh anniversary of the Apple Classrooms of Tomorrow (ACOT) Project, when Apple Computer, Inc., in partnership with a…

  20. Meteorites for K-12 Classrooms: NASA Meteorite Educational Materials

    Science.gov (United States)

    Lindstrom, M.; Allen, J.

    1995-09-01

    The fall of a new meteorite is an event that catches the interest of the public in matters of science. The threat of a huge impact like last year's comet Shoemaker-Levy 9 gives us all reason to evaluate such potential risks. NASA's meteorite educational materials use our natural interest in rocks from space to present classroom activities on planetary science. The meteorite educational package includes a meteorite sample disk, a teachers's guide and a slide set. The sample disk is a lucite disk containing chips of six different kinds of meteorites (3 chondrites, achondrite, iron, stony-iron). EXPLORING METEORITE MYSTERIES is a teacher's guide with background information and 19 hands-on or heads-on activities for grades 4-12. It was prepared in a partnership of planetary scientists and teachers. The slide set consists of 48 slides with captions to be used with the activities. The materials will be available in Fall 1995. Teachers may obtain a loan of the whole package from NASA Teacher Resource Centers; researchers may borrow them from the JSC meteorite curator. The booklet is available separately from the same sources, and the slide set will be available from NASA CORE. EXPLORING METEORITE MYSTERIES is an interdisciplinary planetary science unit which teaches basic science concepts and techniques together with math, reading, writing and social studies The activities are done in a variety of different teaching styles which emphasize observation, experimentation and critical thinking. The activities are ideal for middle schools where teaming makes interdisciplinary units desireable, but most of the activities can be easily modified for grade levels from upper elementary through high school. Meteorites are a natural subject for interdisciplinary teaching because their study involves all fields of science and offers fascinating historical accounts and possibilities for creative expression. Topics covered in EXPLORING METEORITE MYSTERES are centered around basic

  1. Children's Attitudes and Classroom Interaction in an Intergenerational Education Program

    Science.gov (United States)

    Dunham, Charlotte Chorn; Casadonte, Dominick

    2009-01-01

    This research reports findings from an intergenerational science program, Project Serve, which placed senior volunteers in elementary and junior high science classrooms to assist teachers and augment instruction. Items from the Children's View of Aging survey (Newman, 1997; Newman & Faux, 1997) were administered before and after the project with…

  2. Discipline-Based Philosophy of Education and Classroom Teaching

    Science.gov (United States)

    Matthews, Michael R.

    2014-01-01

    This article concentrates on the necessity for teachers in just one discipline area, namely, science, having philosophical competence and using it to inform their professional life--in their classroom teaching, assessing and institutional engagements--in other words, having a philosophy of science teaching. This group of questions and issues might…

  3. Making connections: Exploring student agency in a science classroom in India

    Science.gov (United States)

    Sharma, Ajay

    India has been a free country for more than half a century now. In this time, the state has succeeded to a large extent in providing universal access to at least elementary education to all the citizens. However, the quality of education provided in state-run schools remains far removed from the ideals endorsed in policy documents. The vast majority of Indian poor, especially in rural areas, depend upon state-run schools for access to education. However, the low quality of education provided in these schools militates against their hopes and efforts for securing a better future through education. Undergirded by concerns over the raw deal students of government run schools get in rural India, this study is an ethnographic exploration of science learning in a rural middle school classroom in India. The study was conducted in the government middle school at the village Rajkheda, in the Hoshangabad district of the state of Madhya Pradesh, India. The study focused on the nature and scope of student participation in a middle school science classroom of rural school in India. Taking a socio-cultural perspective, it explored student participation in science classroom as engagement in a socioculturally mediated dialogue with the natural and the social world. Thus, two parallel yet intersecting themes run through the narrative this study presents. On one hand, it focuses on students' efforts to both learn and survive science as taught in that school. While on the other, it details the nature of their engagement with and knowledge of their immediate material world. The study shows that through active engagement with their local material and social world, students of the 8th grade had acquired an extensive, useful and situated funds of experiential knowledge that enabled them to enact their agency in the material world around them. This knowledge revealed itself differently in different contexts. Their knowledge representations about school science and the material world were

  4. The Achievement Gap between Science Classrooms and Historic Inequalities

    Science.gov (United States)

    Howie, Sarah; Scherman, Vanessa

    2008-01-01

    In the past politics deprived many African children (in particular) in South Africa the opportunity of achieving quality education. This was most especially true in subjects such as mathematics and science. In this research the science teacher-level data from Third International Mathematics and Science Study 1999 (TIMSS'99) were analysed with a…

  5. Earth System Science Education Modules

    Science.gov (United States)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  6. Social justice pedagogies and scientific knowledge: Remaking citizenship in the non-science classroom

    Science.gov (United States)

    Lehr, Jane L.

    This dissertation contributes to efforts to rethink the meanings of democracy, scientific literacy, and non-scientist citizenship in the United States. Beginning with questions that emerged from action research and exploring the socio-political forces that shape educational practices, it shows why non-science educators who teach for social justice must first recognize formal science education as a primary site of training for (future) non-scientist citizens and then prepare to intervene in the dominant model of scientifically literate citizenship offered by formal science education. This model of citizenship defines (and limits) appropriate behavior for non-scientist citizens as acquiescing to the authority of science and the state by actively demarcating science from non-science, experts from non-experts, and the rational from the irrational. To question scientific authority is to be scientifically illiterate. This vision of 'acquiescent democracy' seeks to end challenges to the authority of science and the state by ensuring that scientific knowledge is privileged in all personal and public decision-making practices, producing a situation in which it becomes natural for non-scientist citizens to enroll scientific knowledge to naturalize oppression within our schools and society. It suggests that feminist and equity-oriented science educators, by themselves, are unable or unwilling to challenge certain assumptions in the dominant model of scientifically literate citizenship. Therefore, it is the responsibility of non-science educators who teach for social justice to articulate oppositional models of non-scientist citizenship and democracy in their classrooms and to challenge the naturalized authority of scientific knowledge in all aspects of our lives. It demonstrates how research in the field of Science & Technology Studies can serve as one resource in our efforts to intervene in the dominant model of scientifically literate citizenship and to support a model of

  7. Feyerabend on Science and Education

    Science.gov (United States)

    Kidd, Ian James

    2013-01-01

    This article offers a sympathetic interpretation of Paul Feyerabend's remarks on science and education. I present a formative episode in the development of his educational ideas--the "Berkeley experience"--and describe how it affected his views on the place of science within modern education. It emerges that Feyerabend arrived at a…

  8. Fermilab Education Office: Science Adventures

    Science.gov (United States)

    Search The Education Office: Science Adventures Adventure Catalog Search for Adventures Calendar Class Facebook Group. Contact: Science Adventures Registrar, Education Office Fermilab, MS 777, P.O. Box 500 it again." Opportunities for Instructors The Education Office has openings for instructors who

  9. Virtual Classroom Instruction and Academic Performance of Educational Technology Students in Distance Education, Enugu State

    Science.gov (United States)

    Akpan, Sylvester J.; Etim, Paulinus J.; Udom, Stella Ogechi

    2016-01-01

    The virtual classroom and distance education have created new teaching pedagogy. This study was carried out to investigate Virtual Classroom Instruction on Academic Performance of Educational Technology Students in Distance Education, Enugu State. The population for this study was limited to the Students in National Open University, Enugu study…

  10. Cultural politics: Linguistic identity and its role as gatekeeper in the science classroom

    Science.gov (United States)

    Hilton-Brown, Bryan Anthony

    This dissertation investigated how participation in the cultural practices of science classrooms creates intrapersonal conflict for ethnic minority students. Grounded in research perspectives of cultural anthropology, sociocultural studies of science education, and critical pedagogy, this study examined the cultural tensions encountered by minority students as they assimilate into the culture of the science classroom. Classroom interaction was viewed from the perspective of instructional congruence---the active incorporation of students' culture into science pedagogy. Ogbu's notion of "oppositional identity", Fordham's "fictive kinship", Bahktin's "antidialogics", and Freire's "critical consciousness" were brought together to examine how members of marginalized cultures develop non-normative behaviors as a means of cultural resistance. Choice of genre for public discourse was seen as a political act, representing students' own cultural affiliations. Conducted in a diverse Southern Californian high school with an annual population of over 3,900 students, this study merged ethnographic research, action research, and sociolinguistic discourse analysis. Post hoc analysis of videotaped classroom activities, focus group interviews, and samples of student work revealed students' discursive behavior to shift as a product of the context of their discursive exchanges. In whole class discussions students explained their understanding of complex phenomena to classmates, while in small group discussions they favored brief exchanges of group data. Four domains of discursive identities were identified: Opposition Status, Maintenance Status, Incorporation Status, and Proficiency Status. Students demonstrating Opposition Status avoided use of science discourse. Those students who demonstrated Maintenance Status were committed to maintaining their own discursive behavior. Incorporation Status students were characterized by an active attempt to incorporate science discourse into

  11. Meaningful Engagement in Scientific Practices: How Classroom Communities Develop Authentic Epistemologies for Science

    Science.gov (United States)

    Krist, Christina Rae

    Recent reforms in science education, based on decades of learning research, emphasize engaging students in science and engineering practices as the means to develop and refine disciplinary ideas. These reforms advocate an epistemic shift in how school science is done: from students learning about science ideas to students figuring out core science ideas. This shift is challenging to implement: how do we bring the goals and practices of a discipline into classroom communities in meaningful ways that go beyond simply following rote scientific procedures? In this dissertation, I investigate how classroom communities learn to engage meaningfully in scientific practices, characterizing their engagement as a process of epistemic learning. I take a situated perspective that defines learning as shifts in how members engage in communities of practice. I examine students' epistemic learning as a function of their participation in a classroom community of scientific practice along two dimensions: what they do, or the practical epistemic heuristics they use to guide how they build knowledge; and who they are, or how ownership and authorship of ideas is negotiated and affectively marked through interaction. I focus on a cohort of students as they move from 6th to 8 th grade. I analyze three science units, one from each grade level, to look at the epistemic heuristics implicit in student and teacher talk and how the use of those heuristics shifts over time. In addition, I examine one anomalous 8th grade class to look at how students and the teacher position themselves and each other with respect to the ideas in their classroom and how that positioning supports epistemic learning. Taken together, these analyses demonstrate how students' engagement in scientific practices evolves in terms of what they do and who they are in relation to the knowledge and ideas in their classroom over time. I propose a model for epistemic learning that articulates how classroom communities develop

  12. Teaching controversial issues in the secondary school science classroom

    Science.gov (United States)

    van Rooy, Wilhelmina

    1993-12-01

    A sample of fourteen secondary school biology teachers chosen from twelve schools were interviewed. The purpose was to determine their views on how controversial issues in science might be handled in the secondary school science classroom and whether the issues of surrogacy and human embryo experimentation were suitable controversial issues for discussion in schools. In general, teachers indicated that controversial issues deserve a more prominent place in the science curriculum because they have the potential to foster thinking, learning, and interest in science. The issues of surrogacy and human embryo experimentation were seen as appropriate contexts for learning, provided that teachers were well informed and sensitive to both the students and to the school environment.

  13. Mapping classroom experiences through the eyes of enlace students: The development of science literate identities

    Science.gov (United States)

    Oemig, Paulo Andreas

    The culture of a science classroom favors a particular speech community, thus membership requires students becoming bilingual and bicultural at the same time. The complexity of learning science rests in that it not only possesses a unique lexicon and discourse, but it ultimately entails a way of knowing. My dissertation examined the academic engagement and perceptions of a group (N=30) of high school students regarding their science literate practices. These students were participating in an Engaging Latino Communities for Education (ENLACE) program whose purpose is to increase Latino high school graduation rates and assist them with college entrance requirements. At the time of the study, 19 students were enrolled in different science classes to fulfill the science requirements for graduation. The primary research question: What kind of science classroom learning environment supports science literate identities for Latino/a students? was addressed through a convergent parallel mixed research design (Creswell & Plano Clark, 2011). Over the course of an academic semester I interviewed all 30 students arranged in focus groups and observed in their science classes. ENLACE students expressed interest in science when it was taught through hands-on activities or experiments. Students also stressed the importance of having teachers who made an effort to get to know them as persons and not just as students. Students felt more engaged in science when they perceived their teachers respected them for their experiences and knowledge. Findings strongly suggest students will be more interested in science when they have opportunities to learn through contextualized practices. Science literate identities can be promoted when inquiry serves as a vehicle for students to engage in the language of the discipline in all its modalities. Inquiry-based activities, when carefully planned and implemented, can provide meaningful spaces for students to construct knowledge, evaluate claims

  14. Producing and Consuming the Controversial--A Social Media Perspective on Political Conversations in the Social Science Classroom

    Science.gov (United States)

    Andersson, Erik

    2016-01-01

    Teachers find it difficult to conduct political controversial conversations in the social science classroom and due to an increased use of social media in educational settings new challenges and possibilities are raised. The use of social media causes fundamental changes to the role of the learner who becomes a producer and consumer--a…

  15. Correction Notice: Tools for Citizen-Science Recruitment and Student Engagement in Your Research and in Your Classroom

    Directory of Open Access Journals (Sweden)

    JMBE Production Editor

    2016-05-01

    Full Text Available Correction for Sarah E. Council and Julie E. Horvath, “Tools for Citizen-Science Recruitment and Student Engagement in Your Research and in Your Classroom,” which appeared in the Journal of Microbiology & Biology Education, volume 17, number 1, March 2016, pages 38–40.

  16. An Integrative Review of In-Class Activities That Enable Active Learning in College Science Classroom Settings

    Science.gov (United States)

    Arthurs, Leilani A.; Kreager, Bailey Zo

    2017-01-01

    Engaging students in active learning is linked to positive learning outcomes. This study aims to synthesise the peer-reviewed literature about "active learning" in college science classroom settings. Using the methodology of an integrative literature review, 337 articles archived in the Educational Resources Information Center (ERIC) are…

  17. The Role of Science Teachers' Beliefs in International Classrooms

    DEFF Research Database (Denmark)

    for educators. Within each of these areas there are specific explorations that examine important areas such as, the roles of beliefs in teaching and learning, the impact of beliefs on student achievement, and ways in which beliefs are connected to teacher actions in the classroom. Throughout all...... of these discussions, there is a focus on international perspectives. Those reading this book can use the research presented to consider how to confront, challenge, and cultivate beliefs during the teacher professional development process....

  18. Hierarchical Effects of School-, Classroom-, and Student-Level Factors on the Science Performance of Eighth-Grade Taiwanese Students

    Science.gov (United States)

    Tsai, Liang-Ting; Yang, Chih-Chien

    2015-05-01

    This study was conducted to understand the effect of student-, classroom-, and school-level factors on the science performance of 8th-grade Taiwanese students in the Trends in International Mathematics and Science Study (TIMSS) 2011 by using multilevel analysis. A total of 5,042 students from 153 classrooms of 150 schools participated in the TIMSS 2011 study, in which they were required to complete questionnaires. A 3-level multilevel analysis was used to assess the influence of factors at 3 levels on the science performance of 8th-grade Taiwanese students. The results showed that the provision of education resources at home, teachers' level of education, and school climate were the strongest predictor of science performance at the student, classroom, and school level, respectively. It was concluded that the science performance of 8th-grade Taiwanese students is driven largely by individual factors. Classroom-level factors accounted for a smaller proportion of the total variance in science performance than did school-level factors.

  19. Supporting Communication and Argumentation in Urban Science Education: Hip-Hop, the Battle, and the Cypher

    Science.gov (United States)

    Emdin, Christopher

    2011-01-01

    This paper is based on an exploration of communication and argumentation in urban science classrooms, and provides a description of the role that Hip-hop based education plays in supporting these major components of science education. The paper is intended to both support, and critique conventional uses of hip-hop based education, and provide…

  20. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Milind G Watve. Articles written in Resonance – Journal of Science Education. Volume 1 Issue 8 August 1996 pp 34-42 General Article. Questioning a Dogma - Do Bacteria Know When and to Mutate ? Milind G Watve Neelima M Deshpande · More Details Fulltext PDF. Volume 1 Issue 10 October 1996 pp 78-81 Classroom.

  1. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 3. Preparing for the Transit of Venus. N Rathnasree Sanat Kumar. Classroom Volume 9 Issue 3 March 2004 pp 65-75. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/03/0065-0075. Keywords.

  2. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 5. What is 'Natural' in Natural Selection? Abhijeet S Bardapurkar. Classroom Volume 18 Issue 5 May 2013 pp 475-482. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/018/05/0475-0482 ...

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 3. Method for the Drawing of Newman Projections: Understanding Newman Projections with the Help of Hands. Syed R Hussaini. Classroom Volume 17 Issue 3 March 2012 pp 291-294 ...

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Converting Chair-like Transition States into Zig-Zag Projections: A Method of Drawing Stereochemical Structures. Syed R Hussaini. Classroom Volume 19 Issue 9 September 2014 pp 846-850 ...

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 8. n-Dimensional Cube and Simplex: A Glimpse into the Concept of Multi- Dimensional Spaces. G S S Murthy. Classroom Volume 12 Issue 8 August 2007 pp 76-81 ...

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 5. Transit of Venus: Quantitative Observing with Simple Equipment. N Rathnasree Pritpal Kaur. Classroom Volume 17 Issue 5 May 2012 pp 497-504. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 11. Learning Earthquake Design and Construction – 8. What is the Seismic Design Philosophy for Buildings? C V R Murty. Classroom Volume 9 Issue 11 November 2004 pp 89-93 ...

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Teaching and Learning Genetics With Drosophila. H A Ranganath M T Tanuja. Classroom Volume 4 Issue 9 September 1999 pp 95-104. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 4. Interconversion of Fischer and Zig-Zag Projections - Learning Stereochemistry with the Help of Hands. Syed R Hussaini. Classroom Volume 15 Issue 4 April 2010 pp 351-354 ...

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Learning Earthquake Design and Construction – 6. How Architectural Features Affect Building During Earthquakes? C V R Murty. Classroom Volume 9 Issue 10 October 2004 pp 82-85 ...

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 1. Learning Earthquake Design and Construction – 12. How do Brick Masonry Houses Behave during Earthquakes? C V R Murty. Classroom Volume 10 Issue 1 January 2005 pp 88-90 ...

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Special Relativity – An Exoteric Narrative. S R Madhu Rao. Classroom Volume 3 Issue 5 May 1998 pp 63-72. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/003/05/0063-0072. Author Affiliations.

  13. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 3. Bessels contain Continued Fractions of Progressions. B Sury. Classroom Volume 10 Issue 3 March 2005 pp 80-87. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/010/03/0080-0087. Keywords.

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 4. Motion of a Tiny Tool Thrown by an Astronaut towards another Astronaut inside a Spinning Space Vehicle in a State of Free Fall Revisited. S N Maitra. Classroom Volume 15 Issue 4 April 2010 pp 355-362 ...

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 1. International Physics Olympiad'98 – 1. Experiments. Saikat Guha. Classroom Volume 5 Issue 1 January 2000 pp 83-92. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/01/0083-0092 ...

  16. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 6. Determination of Lifetimes of Carbocations in Aqueous Solution by Azide Clock: A Simple Physical-Organic Chemistry Experiment. V Jagannadham. Classroom Volume 12 Issue 6 June 2007 pp 76-82 ...

  17. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Project Lifescape – An Invitation. Madhav Gadgil. Classroom Volume 4 Issue 8 August 1999 pp 80-90. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/004/08/0080-0090. Author Affiliations.

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 1. Project Lifescape – Diseases:Paddy. R J Ranjit Daniels. Classroom Volume 5 Issue 1 January 2000 pp 93-100. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/01/0093-0100 ...

  19. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 4. Project Lifescape – Freshwater Fishes: Catfishes. R J Ranjit Daniels. Classroom Volume 5 Issue 4 April 2000 pp 97-107. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/04/0097-0107 ...

  20. Life Science Teachers' Decision Making on Sex Education

    Science.gov (United States)

    Gill, Puneet Singh

    2013-01-01

    The desires of young people and especially young bodies are constructed at the intersections of policies that set the parameters of sex education policies, the embodied experiences of students in classrooms, and the way bodies are discussed in the complex language of science. Moreover, more research points to the lack of scientifically and…

  1. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 4. A Divine Surprise: The Golden Mean and the Round-off Error. Sushan Konar. Classroom Volume 11 Issue 4 April 2006 ... Author Affiliations. Sushan Konar1. Physics and Meteorology Indian Institute of Technology Khoragpur 721 302, India.

  2. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 11. One Two Three - Infinity: A Critical Appraisal. Rakesh Popli. Classroom Volume 2 Issue 11 November 1997 pp ... Author Affiliations. Rakesh Popli1. Department of Applied Physics, Birla Institute of Technology, Mesra, Ranchi 835 215, India.

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 2. The Three Colour Problem. Dinoj Surendran. Classroom Volume 4 Issue 2 February 1999 pp 76-81. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/004/02/0076-0081. Author Affiliations.

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 8. A Student Experiment on Photochromism. Arati Tripathi S V Eswaran. Classroom Volume 6 Issue 8 August 2001 pp 90-92. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/08/0090-0092 ...

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 3. Project Lifescape - 11 Hunter Plants. Dipanjan Ghosh. Classroom Volume 8 ... Author Affiliations. Dipanjan Ghosh1. Centre of Advanced Study Department of Botany Calcutta University 35, Ballygunge Circular Road Calcutta 700019, India.

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 4. An Appreciation of Free Radical Chemistry – 3. Free Radicals in Diseases and Health. G Nagendrappa. Classroom Volume 10 Issue 4 April 2005 pp 65-74. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. On How to Arrange Infinitely many Marriages! B Sury. Classroom Volume 6 Issue 2 February 2001 pp 71-73. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/02/0071-0073. Author Affiliations.

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 5. Rotational Rectification of an Alternating Magnetic Field. N Kumar. Classroom Volume 18 Issue 5 May 2013 pp 458-467. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/018/05/0458-0467 ...

  9. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. Which way does the Flame Point? Jaywant H Arakeri. Classroom Volume 6 Issue 5 May 2001 pp 79-82. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/05/0079-0082. Author Affiliations.

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 4. On Teaching the Theory of Evolution. Rajkumar Radder. Classroom Volume 11 Issue 4 April 2006 pp 100-105. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/011/04/0100-0105. Keywords.

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 7. Teaching Chemistry through Riddles. Mala Das Sharma. Classroom Volume 9 Issue 7 July 2004 pp 74-76. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/07/0074-0076. Author Affiliations.

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 10. Minimizing the Time of Travel for a Long-distance Train Journey: A Model. S N Maitra. Classroom Volume 8 Issue 10 October 2003 pp 85-86. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 7. Inverting Matrices Constructed from Roots of Unity. A John Wilson. Classroom Volume 11 Issue 7 July 2006 pp 70-76. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/011/07/0070-0076 ...

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 6. Head-on Collision of Two Balls Revisited. Umapati Pattar A W Joshi. Classroom Volume 7 Issue 6 June 2002 pp 67-77. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/06/0067-0077 ...

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 6. Simple Trigonometric Identities and Basic Calculus Leading to Interesting Series. R Govindaraj. Classroom Volume 12 Issue 6 June 2007 pp 67-70. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 3. Learning Earthquake Design and Construction 16. How to make Stone Masonry Buildings Earthquake Resistant? C V R Murty. Classroom Volume 10 Issue 3 March 2005 pp 92-95 ...

  17. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 2. Learning Earthquake Design and Construction 14. Why are Horizontal Bands Necessary in Masonry Buildings? C V R Murty. Classroom Volume 10 Issue 2 February 2005 pp 83-85 ...

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    ... Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 3. Two-Dimensional Collision – at Higher Secondary Level. A W Joshi Vijayshri. Classroom Volume 11 Issue 3 March 2006 pp 69- ...

  19. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 8. Differential Scanning Calorimetry: Fundamental Overview. Kevin Lukas Peter K LeMaire. Classroom Volume 14 Issue 8 August 2009 pp 807-817. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Academic language use in science education in Kindergarten

    NARCIS (Netherlands)

    Menninga, Astrid; van Dijk, Marijn; Wetzels, Anna; Steenbeek, Henderien; van Geert, Paul

    2015-01-01

    This study aims at gaining insight into the academic language use of teachers and their pupils in science education in Kindergarten. Using videotaped classroom observations of a video feedback coaching intervention study (Author Citation, 2012), teachers’ (intervention n = 5, controls n = 5) and

  1. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 8. Learning Earthquake Design and Construction – 1. What causes Earthquakes? C V R Murty. Classroom Volume 9 Issue 8 August 2004 pp 75-78. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 12. Learning Earthquake Design and Construction – 10. How Flexibility of Buildings Affects their Earthquake Response. C V R Murty. Classroom Volume 9 Issue 12 December 2004 pp 74-77 ...

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 9. Learning Earthquake Design and Construction – 4. Where are the Seismic Zones in India? C V R Murty. Classroom Volume 9 Issue 9 September 2004 pp 83-87. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 12. Learning Earthquake Design and Construction – 9. How to Make Buildings Ductile for Good Seismic Performance? C V R Murty. Classroom Volume 9 Issue 12 December 2004 pp 70-73 ...

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 8. Learning Earthquake Design and Construction – 2. How the Ground Shakes! C V R Murty. Classroom Volume 9 Issue 8 August 2004 pp 79-82. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 4. Learning Earthquake Design and Construction - 17. How do Earthquakes Affect Reinforced Concrete Buildings? C V R Murty. Classroom Volume 10 Issue 4 April 2005 pp 83-86 ...

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 10. Learning Earthquake Design and Construction – Why are Short Columns more Damaged During Earthquakes? C V R Murty. Classroom Volume 10 Issue 10 October 2005 pp 88-91 ...

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 9. Issue front cover thumbnail Issue back cover thumbnail. Volume 9, Issue 9. September 2004, pages 1-98 ... More Details Fulltext PDF. pp 79-83 Classroom. Learning Earthquake Design and Construction – 3. What are Magnitude and Intensity?

  9. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 6. Learning Earthquake Design and Construction – How do Columns in RC Buildings Resist Earthquakes? C V R Murty. Classroom Volume 10 Issue 6 June 2005 pp 78-81 ...

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 1. Impressions of the 37th IMO 96. Ajay C Ramdoss. Classroom Volume 2 Issue 1 January 1997 pp 60-64. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/002/01/0060-0064. Author Affiliations.

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 2. Matrix Magic: Spin Half Systems. Kovid Goyal. Classroom Volume 8 Issue 2 February 2003 pp 76-79. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/008/02/0076-0079. Keywords. Quantum ...

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 12. The Inveterate Tinkerer 10. Analog ComputingWith Soap Films. Chirag Kalelkar. Classroom Volume 22 Issue 12 December 2017 pp 1213-1218 ... Keywords. Plateau border, catenoid, motorway problem, analog computer.

  13. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. On Fermat's Two-Square Theorem. Shailesh A Shirali. Classroom Volume 2 Issue 3 March 1997 pp 69-73. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/002/03/0069-0073. Author Affiliations.

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 2. Sum of Powers of Natural Numbers using Integration. N Marikannan V Ravichandran. Classroom Volume 8 Issue 2 February 2003 pp 80-84. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 11. A Direct Experimental Proof of Displacement Current. G S Sanyal Ajay Chakrabarty. Classroom Volume 13 Issue 11 November 2008 pp 1065-1073. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Urban Science Education: Examining Current Issues through a Historical Lens

    Science.gov (United States)

    McLaughlin, Cheryl A.

    2014-01-01

    This paper reviews and synthesizes urban science education studies published between 2000 and 2013 with a view to identifying current challenges faced by both teachers and students in urban classrooms. Additionally, this paper considers the historical events that have shaped the conditions, bureaucracies, and interactions of urban institutions.…

  17. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 4. The Analogue of Potentiometer for Current: Zero Resistance Ammeter (ZRA). Sachin Nayak. Classroom Volume 18 Issue 4 April 2013 pp 378-386. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Dialogical argumentation in elementary science classrooms

    Science.gov (United States)

    Kim, Mijung; Roth, Wolff-Michael

    2018-02-01

    To understand students' argumentation abilities, there have been practices that focus on counting and analyzing argumentation schemes such as claim, evidence, warrant, backing, and rebuttal. This analytic approach does not address the dynamics of epistemic criteria of children's reasoning and decision-making in dialogical situations. The common approach also does not address the practice of argumentation in lower elementary grades (K-3) because these children do not master the structure of argumentation and, therefore, are considered not ready for processing argumentative discourse. There is thus little research focusing on lower elementary school students' argumentation in school science. This study, drawing on the societal-historical approach by L. S. Vygotsky, explored children's argumentation as social relations by investigating the genesis of evidence-related practices (especially burden of proof) in second- and third-grade children. The findings show (a) students' capacity for connecting claim and evidence/responding to the burden of proof and critical move varies and (b) that teachers play a significant role to emphasize the importance of evidence but experience difficulties removing children's favored ideas during the turn taking of argumentative dialogue. The findings on the nature of dialogical reasoning and teacher's role provide further insights about discussions on pedagogical approaches to children's reasoning and argumentation.

  19. Professional Vision of Classroom Management and Learning Support in Science Classrooms--Does Professional Vision Differ across General and Content-Specific Classroom Interactions?

    Science.gov (United States)

    Steffensky, Mirjam; Gold, Bernadette; Holdynski, Manfred; Möller, Kornelia

    2015-01-01

    The present study investigates the internal structure of professional vision of in-service teachers and student teachers with respect to classroom management and learning support in primary science lessons. Classroom management (including monitoring, managing momentum, and rules and routines) and learning support (including cognitive activation…

  20. The value of storytelling in the science classroom

    Science.gov (United States)

    Isabelle, Aaron David

    The "traditional science classroom" asks students, "What do we know in science?," and ignores the question, "How do we know what we know?" The purpose of this research is to combine the powerful structure of narrative with the history of science in junior high school science classrooms. This study investigates whether history-of-science-based stories have advantages over traditional, lecture-style presentations. The storytelling approach aims to present science concepts in a meaningful and memorable context and in a coherent and connected manner. The research program employed parallel curricula: science concepts were taught through novel stories and through lectures, at different times, to eight different groups of seventh and eighth grade students at Holy Name Junior High School in Worcester, Massachusetts. Students were assessed with pre- and post-tests and through individual interviews: Before, immediately after, and two weeks after the lessons, students were given short-answer questionnaires. Two weeks after each lesson, individual interviews were also conducted with a sampling of the students. The questionnaires were coded according to a clear set of written standards and the interviews were transformed into concept maps. Student learning and retention levels, gender differences, and alternate conceptions were quantitatively analyzed. The results reveal that the students who were taught through stories learned the science concepts, on the average, 21% better and retained close to 48% more than the students who were taught through traditional lessons. Fewer alternate conceptions were expressed after story lessons than after lectures. Investigation of gender differences in learning science through the two methods revealed that boys profited more than girls did from the story lessons. The union of narrative with the history of science in the form of story lessons seems natural since the spatiotemporal structure of a narrative mirrors the unfolding of actions in

  1. Teaching and nature: Middle school science teachers' relationship with nature in personal and classroom contexts

    Science.gov (United States)

    Ball, Nadine Butcher

    2000-10-01

    This qualitative study describes three middle-school science teachers' relationship-with-nature in personal and classroom contexts. Participating teachers had more than 7 years experience and were deemed exemplary practitioners by others. Interview data about personal context focused on photographs the teacher took representing her/his relationship-with-nature in daily life. Interview data for classroom context explored classroom events during three or more researcher observations. Transcripts were analyzed using a multiple-readings approach to data reduction (Gilligan, Brown & Rogers, 1990; Miles & Huberman, 1994, p. 14, 141). Readings generated categorical information focused on portrayals of: nature; self; and relationship-with-nature. Categorical data were synthesized into personal and teaching case portraits for each teacher, and cross case themes identified. Participants indicated the portraits accurately represented who they saw themselves to be. Additional readings identified sub-stories by plot and theme. Narrative data were clustered to highlight elements of practice with implications for the relationship-with-nature lived in the classroom. These individual-scale moments were compared with cultural-scale distinctions between anthropocentric and ecological world views. Cross case themes included dimensions of exemplary middle-school science teaching important to teacher education and development, including an expanded conception of knowing and skillful use of student experience. Categorical analysis revealed each teacher had a unique organizing theme influencing their interpretation of personal and classroom events, and that nature is experienced differently in personal as opposed to teaching contexts. Narrative analysis highlights teachers' stories of classroom pets, dissection, and student dissent, illustrating an interplay between conceptual distinctions and personal dimensions during moments of teacher decision making. Results suggest teachers

  2. Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course

    Science.gov (United States)

    Avard, Margaret

    2009-01-01

    In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…

  3. [Re]considering queer theories and science education

    Science.gov (United States)

    Fifield, Steve; Letts, Will

    2014-06-01

    We take Mattias Lundin's Inviting queer ideas into the science classroom: studying sexual education from a queer perspective as a point of departure to explore some enduring issues related to the use of queer theories to interrogate science education and its practices. We consider the uneasy, polygamous relationship between gay and lesbian studies and queer theories; the border surveillance that characterizes so much of science [education]; the alluring call of binaries and binary thinking; the `all' within the catchcry `science for all'; and the need to better engage the fullness of science and the curriculum, in addition to noting silences around diverse sexes, sexualities, and desires. We catalogue some of the challenges that persist in this work, and offer thoughts about how to work with and against them to enact a more just and compelling science education.

  4. GLOBAL EDUCATION: WHAT TEACHERS CAN DO IN THE CLASSROOMS

    Directory of Open Access Journals (Sweden)

    Julia Eka Rini

    1999-01-01

    Full Text Available This article will give examples of what teachers of second language can do to implement global education, especially peace and environmental education in the classrooms in university level. This is an attempt to give a new meaning to the same materials used in the classrooms. Besides enabling the students to acquire and use a second language, teachers can make the students aware of the importance of environment. Moreover, teachers can initiate to spread peace in the small world of a classroom and a chain reaction is expected to happen from this small world to the bigger world outside the classroom. The skill and content courses used as examples here are taken from the ones used at English Department at Petra Christian University.

  5. From classroom to online teaching: experiences in improving statistics education

    Directory of Open Access Journals (Sweden)

    Anne Porter

    2003-01-01

    Full Text Available This study used reflective practitioner methodology to investigate how to improve the quality of statistical education. During the study, this methodology, curricula, pedagogical practices, assessment and a framework for learning to learn statistics were all developed as means of improving the quality of statistical education. Also documented was the move from being a classroom teacher of statistics to a teacher who is developing learning resources for online delivery to students. For a classroom teacher, flexible delivery has meant drawing on the sights, sounds, movement, quiet and live shows. By contrast, the online teacher feels the constraints of translating activity based programs to technologically based programs. As more students have chosen to rely on online materials rather than classroom activities, the focus of improving quality has been extended to the enrichment of online resources, so that the learning experience is not second to that of the classroom.

  6. The Effects of "Live Virtual Classroom" on Students' Achievement and Students' Opinions about "Live Virtual Classroom" at Distance Education

    Science.gov (United States)

    Yilmaz, Ozgur

    2015-01-01

    This study was performed to investigate the effects of live virtual classroom on students' achievement and to determine students' opinions about the live virtual physics classroom at distance learning. 63 second-year Distance Computer Education & Instructional Technology students enrolled in this study. At the live virtual physics classroom,…

  7. Ways to prepare future teachers to teach science in multicultural classrooms

    Science.gov (United States)

    Billingsley, Berry

    2016-06-01

    Roussel De Carvalho uses the notion of superdiversity to draw attention to some of the pedagogical implications of teaching science in multicultural schools in cosmopolitan cities such as London. De Carvalho makes the case that if superdiverse classrooms exist then Science Initial Teacher Education has a role to play in helping future science teachers to become more knowledgeable and reflective about how to teach school students with a range of worldviews and religious beliefs. The aim of this paper is to take that proposition a step further by considering what the aims and content of a session in teacher education might be. The focus is on helping future teachers develop strategies to teach school students to think critically about the nature of science and what it means to have a scientific worldview. The paper draws on data gathered during an interview study with 28 students at five secondary schools in England. The data was analysed to discover students' perceptions of science and their perceptions of the way that science responds to big questions about being human. The findings are used to inform a set of three strategies that teachers could use to help young people progress in their understanding of the nature of science. These strategies together with the conceptual framework that underpins them are used to develop a perspective on what kinds of pedagogical content knowledge teacher education might usefully provide.

  8. Action methods in the classroom: creative strategies for nursing education.

    Science.gov (United States)

    McLaughlin, Dorcas E; Freed, Patricia E; Tadych, Rita A

    2006-01-01

    Nursing education recognizes the need for a framework of experiential learning that supports the development of professional roles. Action methods, originated by Jacob L. Moreno (1953), can be readily adapted to any nursing classroom to create the conditions under which students learn and practice professional nursing roles. While nurse faculty can learn to use action methods, they may not fully comprehend their theoretical underpinnings or may believe they are only used in therapy. This article explores Moreno's ideas related to psychodrama and sociodrama applied in classroom settings, and presents many examples and tips for classroom teachers who wish to incorporate action methods into their classes.

  9. Incorporating Science News Into Middle School Curricula: Current Events in the 21st Century Classroom

    Science.gov (United States)

    Dimaggio, E.

    2010-12-01

    Middle school students are instructed with the aid of textbooks, lectures, and activities to teach topics that satisfy state standards. However, teaching materials created to convey standard-aligned science concepts often leave students asking how the content relates to their lives and why they should be learning it. Conveying relevance, especially in science when abstract concepts can often be incorrectly perceived as irrelevant, is important for student learning and retention. One way to create an educational link between classroom content and everyday life is through the use of scientific current events. Students read, hear, and watch media coverage of natural events (such as the Haiti or Chile earthquakes in 2010), but do not necessarily relate the scientific information from media sources to classroom studies. Taking advantage of these brief ‘teachable moments’-when student interest is high- provides a valuable opportunity to make classroom-to-everyday life associations and to incorporate inquiry based learning. To address this need, we are creating pre-packaged current event materials for middle school teachers in Arizona that align to state standards and which are short, effective, and easy to implement in the classroom. Each lesson takes approximately 15 minutes to implement, allowing teachers time to facilitate brief but meaningful discussions. Materials are assembled within approximately one week of the regional or global science event (e.g., volcanic eruptions, earthquakes) and may include a short slide show, maps, videos, pictures, and real-time data. A listserv is used to send biweekly emails to subscribed instructors. The email contains the current event topic, specific Arizona science standards addressed, and a link to download the materials. All materials are hosted on the Arizona State University Education Outreach website and are archived. Early implementation efforts have been received positively by participating teachers. In one case

  10. Literacy Strategies in the Science Classroom The Influence of Teacher Cognitive Resources on Implementation

    Science.gov (United States)

    Mawyer, Kirsten Kamaile Noelani

    Scientific literacy is at the heart of science reform (AAAS, 1989; 1993: NRC, 1996). These initiatives advocate inquiry-based science education reform that promotes scientific literacy as the prerequisite ability to both understand and apply fundamental scientific ideas to real-world problems and issues involving science, technology, society and the environment. It has been argued that literacy, the very ability to read and write, is foundational to western science and is essential for the attainment of scientific literacy and the reform of science education in this country (Norris & Phillips, 2004). With this wave of reform comes the need to study initiatives that seek to support science teachers, as they take on the task of becoming teachers of literacy in the secondary science classroom. This qualitative research examines one such initiative that supports and guides teachers implementing literacy strategies designed to help students develop reading skills that will allow them to read closely, effectively, and with greater comprehension of texts in the context of science. The goal of this study is to gather data as teachers learn about literacy strategies through supports built into curricular materials, professional development, and implementation in the classroom. In particular, this research follows four secondary science teachers implementing literacy strategies as they enact a yearlong earth and environmental science course comprised of two different reform science curricula. The findings of this research suggest teacher's development of teacher cognitive resources bearing on Teaching & Design can be dynamic or static. They also suggest that the development of pedagogical design capacity (PDC) can be either underdeveloped or emergent. This study contributes to current understandings of the participatory relationship between curricular resources and teacher cognitive resources that reflects the design decision of teachers. In particular, it introduces a

  11. Student Engagement in a Computer Rich Science Classroom

    Science.gov (United States)

    Hunter, Jeffrey C.

    The purpose of this study was to examine the student lived experience when using computers in a rural science classroom. The overarching question the project sought to examine was: How do rural students relate to computers as a learning tool in comparison to a traditional science classroom? Participant data were collected using a pre-study survey, Experience Sampling during class and post-study interviews. Students want to use computers in their classrooms. Students shared that they overwhelmingly (75%) preferred a computer rich classroom to a traditional classroom (25%). Students reported a higher level of engagement in classes that use technology/computers (83%) versus those that do not use computers (17%). A computer rich classroom increased student control and motivation as reflected by a participant who shared; "by using computers I was more motivated to get the work done" (Maggie, April 25, 2014, survey). The researcher explored a rural school environment. Rural populations represent a large number of students and appear to be underrepresented in current research. The participants, tenth grade Biology students, were sampled in a traditional teacher led class without computers for one week followed by a week using computers daily. Data supported that there is a new gap that separates students, a device divide. This divide separates those who have access to devices that are robust enough to do high level class work from those who do not. Although cellular phones have reduced the number of students who cannot access the Internet, they may have created a false feeling that access to a computer is no longer necessary at home. As this study shows, although most students have Internet access, fewer have access to a device that enables them to complete rigorous class work at home. Participants received little or no training at school in proper, safe use of a computer and the Internet. It is clear that the majorities of students are self-taught or receive guidance

  12. Systems approach to managing educational quality in the engineering classroom

    Science.gov (United States)

    Grygoryev, Kostyantyn

    Today's competitive environment in post-secondary education requires universities to demonstrate the quality of their programs in order to attract financing, and student and academic talent. Despite significant efforts devoted to improving the quality of higher education, systematic, continuous performance measurement and management still have not reached the level where educational outputs and outcomes are actually produced---the classroom. An engineering classroom is a complex environment in which educational inputs are transformed by educational processes into educational outputs and outcomes. By treating a classroom as a system, one can apply tools such as Structural Equation Modeling, Statistical Process Control, and System Dynamics in order to discover cause-and-effect relationships among the classroom variables, control the classroom processes, and evaluate the effect of changes to the course organization, content, and delivery, on educational processes and outcomes. Quality improvement is best achieved through the continuous, systematic application of efforts and resources. Improving classroom processes and outcomes is an iterative process that starts with identifying opportunities for improvement, designing the action plan, implementing the changes, and evaluating their effects. Once the desired objectives are achieved, the quality improvement cycle may start again. The goal of this research was to improve the educational processes and outcomes in an undergraduate engineering management course taught at the University of Alberta. The author was involved with the course, first, as a teaching assistant, and, then, as a primary instructor. The data collected from the course over four years were used to create, first, a static and, then, a dynamic model of a classroom system. By using model output and qualitative feedback from students, changes to the course organization and content were introduced. These changes led to a lower perceived course workload and

  13. Cultivation of science identity through authentic science in an urban high school classroom

    Science.gov (United States)

    Chapman, Angela; Feldman, Allan

    2017-06-01

    This study examined how a contextually based authentic science experience affected the science identities of urban high school students who have been marginalized during their K-12 science education. We examined students' perceptions of the intervention as an authentic science experience, how the experience influenced their science identity, as well as their perceptions about who can do science. We found that the students believed the experience to be one of authentic science, that their science identity was positively influenced by participation in the experience, and that they demonstrated a shift in perceptions from stereotypical to more diverse views of scientists. Implications for science education are discussed.

  14. The Counter Terrorist Classroom: Religion, Education, and Security

    Science.gov (United States)

    Gearon, Liam

    2013-01-01

    The article identifies international cases--from the United States, Europe, and the United Nations--of an emergent interface of religion, education, and security. This is manifest in the uses of religion in education to counter religious extremism, the notional "counter terrorist classroom." To avoid an over-association of extremism with…

  15. "Being" a Critical Multicultural Pedagogue in the Art Education Classroom

    Science.gov (United States)

    Acuff, Joni Boyd

    2018-01-01

    Art educators continuously struggle to understand what multiculturalism "looks like" in the art classroom. This has resulted in multicultural art education becoming superficial, in which art teachers guide students through art projects like creating African masks, Native American dream catchers, Aboriginal totems, and sand paintings, all…

  16. Classroom performance of children with cochlear implants in mainstream education.

    NARCIS (Netherlands)

    Damen, G.W.J.A.; Oever-Goltstein, M.H. van den; Langereis, M.C.; Chute, P.M.; Mylanus, E.A.M.

    2006-01-01

    OBJECTIVES: We compared classroom performance of children with a cochlear implant (CI) with that of their normal-hearing peers in mainstream education. METHODS: Thirty-two CI children in mainstream education, congenitally or prelingually deaf, participated in this study, as did 37 hearing

  17. Working towards inclusive education in South African classrooms ...

    African Journals Online (AJOL)

    This article gives an overview of the problems facing the educational front in South Africa in this regard and discusses three instruments that have been developed during the last eighteen months to empower teachers to meet the needs of all learners in their classrooms. (South African Journal of Education: 2001 21(4): ...

  18. The Global Classroom and the Educational Challenge of Cultural Diversity

    Science.gov (United States)

    Moyer, Sonja S.

    2010-01-01

    Change in education is not going away; instead, it seems to be increasing exponentially. Technology has been the catalyst, and the changes with the greatest impact on education are the location and size of the classroom. The challenges associated with these changes involve working with students from potentially an unlimited number of countries and…

  19. Challenge Activities for the Physical Education Classroom: Considerations

    Science.gov (United States)

    McKenzie, Emily; Tapps, Tyler; Fink, Kevin; Symonds, Matthew L.

    2018-01-01

    The purpose of this article is to provide physical education teachers with the tools to develop and implement challenge course-like activities in their physical education classes. The article also covers environmental considerations for teachers who have the desire to create a challenge-based classroom setting in order to reach a wider and more…

  20. Primary Connections: Simulating the Classroom in Initial Teacher Education

    Science.gov (United States)

    Hume, Anne Christine

    2012-01-01

    The challenge of preparing novice primary teachers for teaching in an educational environment, where science education has low status and many teachers have limited science content knowledge and lack the confidence to teach science, is great. This paper reports on an innovation involving a sustained simulation in an undergraduate science education…

  1. Creating a Dialogic Environment for Transformative Science Teaching Practices: Towards an Inclusive Education for Science

    Science.gov (United States)

    Reynaga-Peña, Cristina G.; Sandoval-Ríos, Marisol; Torres-Frías, José; López-Suero, Carolina; Lozano Garza, Adrián; Dessens Félix, Maribel; González Maitland, Marcelino; Ibanez, Jorge G.

    2018-01-01

    This paper focuses on the design and application of a teacher training strategy to promote the inclusive education of students with disabilities in the science classroom, through the creation of adult learning environments grounded on the principles of dialogic learning. Participants of the workshop proposal consisted of a group of twelve teachers…

  2. Inventing Creativity: An Exploration of the Pedagogy of Ingenuity in Science Classrooms

    Science.gov (United States)

    Meyer, Allison Antink; Lederman, Norman G.

    2013-01-01

    Concerns with the ability of U.S. classrooms to develop learners who will become the next generation of innovators, particularly given the present climate of standardized testing, warrants a closer look at creativity in science classrooms. The present study explored these concerns associated with teachers' classroom practice by addressing the…

  3. Artificial Intelligence and Science Education.

    Science.gov (United States)

    Good, Ron

    1987-01-01

    Defines artificial intelligence (AI) in relation to intelligent computer-assisted instruction (ICAI) and science education. Provides a brief background of AI work, examples of expert systems, examples of ICAI work, and addresses problems facing AI workers that have implications for science education. Proposes a revised model of the Karplus/Renner…

  4. Fermilab Friends for Science Education | Welcome

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Fermilab Friends for Science Education photo Fermilab Friends for Science Education supports innovative science education programs at Fermilab. Its mission is to: Enhance the quality of precollege science education in

  5. Reforming Science and Mathematics Education

    Science.gov (United States)

    Lagowski, J. J.

    1995-09-01

    , for example, the various SSI's statements of "good educational practice." Most SSI's began their initiatives by establishing clear goals for what students should know and be able to do, reflecting the emergence of a national consensus for broad standards for just about every aspect of the educational process. The concerned persons in each SSI--policy-makers, educators, mathematicians, and scientists--have not necessarily reached the same conclusions about what children should learn or even what efforts are needed to put the necessary changes in place, but they are focused on common goals as expressed locally. The recent national dialogues about goals and standards have provided the basis for a remarkably consistent image of what states--at least the SSI states--consider good educational practice. The differences that do occur across states reflect variations in demographics, geography, resources, values, and educational structure. All the states with SSI's, regardless of their primary strategy, have address the professional development of teachers. Collectively, the SSI's reported that professional development services were provided to more than 50,000 teachers during the past year, which is approximately eight percent of the public school teachers in the participating states. The number of teachers participating varied by grade level and subject matter. Some states, for example, reported reaching more than one in every five middle-school mathematics teachers, but only one in every 20 high-school mathematics teachers. Focusing SSI resources on the professional development of classroom teachers implies changing their skill levels, knowledge, and beliefs. Attitudes and perceptions of administrators also changed in the process. The challenge lies in developing a strategy that provides on-going, in-depth professional development that reaches a significant portion of those who teach mathematics and the sciences. Not only must an effective development model(s), be provided

  6. Learning Science through Talking Science in Elementary Classroom

    Science.gov (United States)

    Tank, Kristina Maruyama; Coffino, Kara

    2014-01-01

    Elementary students in grade two make sense of science ideas and knowledge through their contextual experiences. Mattis Lundin and Britt Jakobson find in their research that early grade students have sophisticated understandings of human anatomy and physiology. In order to understand what students' know about human body and various systems,…

  7. A Sense of Place in the Science Classroom

    Science.gov (United States)

    Membiela, Pedro; DePalma, Renee; Pazos, Mercedes Suarez

    2011-01-01

    Place-based science education engages with the laboratories of complex reality where natural processes combine with social practice, going beyond the physical world, to encompass the meanings and sense of attachment local residents feel for places. This brief report describes how a university science methods class in a primary teacher training…

  8. The attitudes of classroom teacher candidates towards physical education lesson

    Directory of Open Access Journals (Sweden)

    Gönül Tekkurşun Demir

    2017-12-01

    Full Text Available Aim: It is aimed to determine the attitudes of the 2nd, 3rd, and 4th grade classroom teacher candidates towards the physical education lesson according to various variables. Material and Methods: For the current study, the screening method, one of the quantitative research models, was used. The research consists of 2nd, 3rd, and 4th grade, totally164 university students, 106 (%64,6 females, 58 (%35,4 males, attending Uşak University, Classroom Teaching Program in 2016-2017 academic year. The first-grade students were not included in this research, because the physical education and play teaching lessons are given to classroom student candidates in the second-grade at Uşak University, Classroom Teaching Program. “Personal information form" and “Physical Education Lesson Attitude Scale for Classroom Teacher Candidates" were used as data collection tools. Before analysis, the data were evaluated using the values of Skewness and Skewness (normal distribution of the data and Levene (equality of variance tests. In the analysis of the data; frequency, arithmetic mean, standard deviation; t-test, ANOVA and Pearson Correlation test were used. Results: When examined the total score of the teacher candidates obtained from Physical Education Lesson Attitude Scale for Classroom Teacher Candidates and age variable by the Pearson Moment Correlation analysis, it was found that there was a statistically significant negative relationship between the received scores at low level. It was determined that the attitudes of the classroom teacher candidates towards the physical education lessons did not show any significant difference according to the gender variable, but there was a significant difference when examined their class levels. While no significant difference was found in the attitudes of the classroom teacher candidates, who played and did not play sports in their past life, towards physical education lessons, no significant difference was found

  9. The Multicultural Science Framework: Research on Innovative Two-Way Immersion Science Classrooms.

    Science.gov (United States)

    Hadi-Tabassum, Samina

    2000-01-01

    Reviews the different approaches to multicultural science teaching that have emerged in the past decade, focusing on the Spanish-English two-way immersion classroom, which meets the needs of Spanish speakers learning English and introduces students to the idea of collaboration across languages and cultures. Two urban two-way immersion classrooms…

  10. The Social Science Teacher. 1972. Collected Conference Papers: Social Science Concepts Classroom Methods.

    Science.gov (United States)

    Noble, Pat, Ed.; And Others

    Papers in this publication are collected from a conference on social science concepts and classroom methods which focused on the theories of Jerome Bruner. The first article, entitled "Jerome Bruner," outlines four of Bruner's themes--structure, readiness, intuition, and interest--which relate to cognitive learning. Three…

  11. Is Christian Education Compatible With Science Education?

    Science.gov (United States)

    Martin, Michael

    Science education and Christian education are not compatible if by Christian education one means teaching someone to be a Christian. One goal of science education is to give students factual knowledge. Even when there is no actual conflict of this knowledge with the dogmas of Christianity, there exists the potential for conflict. Another goal of science education is to teach students to have the propensity to be sensitive to evidence: to hold beliefs tentatively in light of evidence and to reject these beliefs in the light of new evidence if rejection is warranted by this evidence. This propensity conflicts with one way in which beliefs are often taught in Christian education: namely as fundamental dogmas, rather than as subject to revision in the light of the evidence.

  12. Real-world experiences of nuclear science in the classroom - What an individual can do

    International Nuclear Information System (INIS)

    Fox, M.R.

    1991-01-01

    Experience is showing that the public has yet to learn about the natural world, radiation, risk analysis, and energy, as well as other issues. This has occurred during a time in which the quality of education has declined in the US. As a former college professor who is married to a schoolteacher, the author realized that the two observations are linked. A communications gap has developed between science and the schools. Scientists perceive that once scientific advancements have taken place, new curriculum materials for schools automatically adapt to include these advancements. Teachers' schedules are typically so filled during and after school that new curriculum material is slowed in being introduced in the classroom. Thus, the question becomes, how do we bridge the gulf between scientists and the classroom? Scientists can be helpful to teachers in many ways. This paper is a summary of some of the activities and lessons learned in strengthening teacher-scientist relationships

  13. Factors Affecting the Implementation of Argument in the Elementary Science Classroom. A Longitudinal Case Study

    Science.gov (United States)

    Martin, Anita M.; Hand, Brian

    2009-01-01

    This longitudinal case study describes the factors that affect an experienced teacher’s attempt to shift her pedagogical practices in order to implement embedded elements of argument into her science classroom. Research data was accumulated over 2 years through video recordings of science classes. The Reformed Teacher Observation Protocol (RTOP) is an instrument designed to quantify changes in classroom environments as related to reform as defined by the National Research Council ( National science education standards. Washington, DC: National Academy Press, 1996b) and the National Research Council ( Fulfilling the promise: Biology education in the nation’s schools, Washington, DC: National Academy Press, 1990) and was used to analyze videotaped science lessons. Analysis of the data shows that there was a significant shift in the areas of teacher questioning, and student voice. Several levels of subsequent analysis were completed related to teacher questioning and student voice. The data suggests a relationship between these areas and the implementation of scientific argument. Results indicate that the teacher moved from a traditional, teacher-centered, didactic teaching style to instructional practices that allowed the focus and direction of the lesson to be affected by student voice. This was accomplished by a change in teacher questioning that included a shift from factual recall to more divergent questioning patterns allowing for increased student voice. As student voice increased, students began to investigate ideas, make statements or claims and to support these claims with strong evidence. Finally, students were observed refuting claims in the form of rebuttals. This study informs professional development related to experienced teachers in that it highlights pedagogical issues involved in implementing embedded elements of argument in the elementary classroom.

  14. Flipped classroom: a bridge towards new challenges in elementary education

    Directory of Open Access Journals (Sweden)

    Gonzalo Llanos García

    2017-09-01

    Full Text Available In the last years, the educational stage in Spain has been characterized by an evident transformation with regards to the methodology to apply in classrooms of the different educational stages. The lack of motivation largely of the students invites to restructure an educational system anchored in the time. There is a need to adapt the contents and the methods of transmission, following the new reality that surrounds to the students of the present. In this sense, the information and communications technology (ICT, aims to be an instrument of transmission and engine of change towards new bridges of learning. In particular, the flipped classroom model consists of inverting the way of explaining the educational contents that transform the figure of the teacher and the student. This work proposes a methodology to implement the flipped classroom model in the area of elementary education. In this way, the education and the ICT are merged in transforming the classroom in an environment that incites to be creative, to enhance collaborative working practices, to establish discussion, and to encourage to think about.

  15. Naturalized Philosophy of Science and Natural Science Education.

    Science.gov (United States)

    Siegel, Harvey

    1993-01-01

    Reviews the philosophical controversy concerning naturalism, and investigates the role it might play in the science classroom. Argues that science students can benefit from explicit study of this controversy and from explicit consideration of the extent to which philosophy of science can be studied naturalistically. (PR)

  16. Multicultural Science Education and Curriculum Materials

    Science.gov (United States)

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  17. Signs of taste for science: a methodology for studying the constitution of interest in the science classroom

    Science.gov (United States)

    Anderhag, P.; Wickman, P.-O.; Hamza, K. M.

    2015-06-01

    In this paper we present a methodological approach for analyzing the transformation of interest in science through classroom talk and action. To this end, we use the construct of taste for science as a social and communicative operationalization, or proxy, to the more psychologically oriented construct of interest. To gain a taste for science as part of school science activities means developing habits of performing and valuing certain distinctions about ways to talk, act and be that are jointly construed as belonging in the school science classroom. In this view, to learn science is not only about learning the curriculum content, but also about learning a normative and aesthetic content in terms of habits of distinguishing and valuing. The approach thus complements previous studies on students' interest in science, by making it possible to analyze how taste for science is constituted, moment-by-moment, through talk and action in the science classroom. In developing the method, we supplement theoretical constructs coming from pragmatism and Pierre Bourdieu with empirical data from a lower secondary science classroom. The application of the method to this classroom demonstrates the potential that the approach has for analyzing how conceptual, normative, and aesthetic distinctions within the science classroom interact in the constitution of taste for, and thereby potentially also in the development of interest in science among students.

  18. Ethiopian Journal of Education and Sciences

    African Journals Online (AJOL)

    The Ethiopian Journal of Education and Sciences focuses on publishing articles relating to education and sciences. It publishes ... The objective is to create forum for researchers in education and sciences. ... AJOL African Journals Online.

  19. Multicultural education, pragmatism, and the goals of science teaching

    Science.gov (United States)

    El-Hani, Charbel Niño; Mortimer, Eduardo Fleury

    2007-07-01

    In this paper, we offer an intermediate position in the multiculturalism/universalism debate, drawing upon Cobern and Loving's epistemological pluralism, pragmatist philosophies, Southerland's defense of instructional multicultural science education, and the conceptual profile model. An important element in this position is the proposal that understanding is the proper goal of science education. Our commitment to this proposal is explained in terms of a defense of an ethics of coexistence for dealing with cultural differences, according to which social argumentative processes—including those in science education—should be marked by dialogue and confrontation of arguments in the search of possible solutions, and an effort to (co-)live with differences if a negotiated solution is not reached. To understand the discourses at stake is, in our view, a key requirement for the coexistence of arguments and discourses, and the science classroom is the privileged space for promoting an understanding of the scientific discourse in particular. We argue for "inclusion" of students' culturally grounded ideas in science education, but in a sense that avoids curricular multicultural science education, and, thus, any attempt to broaden the definition of "science" so that ideas from other ways of knowing might be simply treated as science contents. Science teachers should always take in due account the diversity of students' worldviews, giving them room in argumentative processes in science classrooms, but should never lose from sight the necessity of stimulating students to understand scientific ideas. This view is grounded on a distinction between the goals of science education and the nature of science instruction, and demands a discussion about how learning is to take place in culturally sensitive science education, and about communicative approaches that might be more productive in science classrooms organized as we propose here. We employ the conceptual profile model to

  20. Enrichment of Science Education Using Real-time Data Streams

    Science.gov (United States)

    McDonnell, J. M.; de Luca, M. P.

    2002-12-01

    For the past six years, Rutgers Marine and Coastal Sciences (RMCS) has capitalized on human interest and fascination with the ocean by using the marine environment as an entry point to develop interest and capability in understanding science. This natural interest has been used as a springboard to encourage educators and their students to use the marine environment as a focal point to develop basic skills in reading, writing, math, problem-solving, and critical thinking. With the selection of model science programs and the development of collaborative school projects and Internet connections, RMCS has provided a common ground for scientists and educators to create interesting and meaningful science learning experiences for classroom application. Student exposure to the nature of scientific inquiry also prepares them to be informed decision-makers and citizens. Technology serves as an educational tool, and its usefulness is determined by the quality of the curriculum content and instructional strategy it helps to employ. In light of this, educational issues such as curriculum reform, professional development, assessment, and equity must be addressed as they relate to technology. Efforts have been made by a number of organizations to use technology to bring ocean science education into the K-12 classroom. RMCS has used he Internet to increase (1) communication and collaboration among students and teacher, (2) the range of resources available to students, and (3) opportunities for students and educators to present their ideas and opinions. Technology-based educational activities will be described.

  1. Science Education on the Internet: Conference for Developers of OnLine Curricula ''Learning Strategies for Science Education Websites''; FINAL

    International Nuclear Information System (INIS)

    Gesteland, Raymond F.; Dart, Dorothy S.; Logan, Jennifer; Stark, Louisa

    2000-01-01

    Internet-based science education programs are coming of age. Educators now look seriously to the Internet as a source of accessible classroom materials, and they are finding many high-quality online science programs. Beyond providing solid curriculum, these programs have many advantages. They provide materials that are far more current than what textbooks offer and are more accessible to disadvantaged and rural population. Students can engage in inquiry-based learning online through interactive and virtual activities, accessing databases, tracking nature occurrences in real time, joining online science communities and conversing with scientists

  2. The effects of student-level and classroom-level factors on elementary students' science achievement in five countries

    Science.gov (United States)

    Kaya, Sibel

    needed. For all the countries investigated, with the exception of Singapore, the between-class variance was much smaller than the within-class variance. Japan had the smallest variation in science achievement among classrooms which indicates the homogeneity across classrooms in Japan. Increasing awareness and knowledge of gender neutral instructional techniques, providing a non-threatening, rich and supportive environment for both genders in classrooms by elementary teachers are to be encouraged. To improve students' self beliefs about science, it is recommended that teachers model science activities and accommodate students' needs and abilities (Bandura, 1997; Britner & Pajares, 2006). Schools and teachers are recommended to develop a successful home-school partnership for improved student learning and positive attitudes toward science (Eccles & Harold, 1996; Epstein & Salinas, 2004). Furthermore, developing a knowledge base for teachers regarding the influences of classroom and school composition is highlighted (Honig, Kahne, & McLaughlin, 2001; Murrel, 2001). At the classroom- and school-level, policy efforts could focus on the distribution of educational resources (Condron & Roscigno, 2003; Goesling, 2003) to compensate for poor family background.

  3. Using Virtual Reality to Bring Ocean Science Field Experiences to the Classroom and Beyond

    Science.gov (United States)

    Waite, A. J.; Rosenberg, A.; Frehm, V.; Gravinese, P.; Jackson, J.; Killingsworth, S.; Williams, C.

    2017-12-01

    While still in its infancy, the application of virtual reality (VR) technology to classroom education provides unparalleled opportunities to transport students to otherwise inaccessible localities and increase awareness of and engagement in STEAM fields. Here we share VR programming in development by the ANGARI Foundation, a 501(c)(3) nonprofit committed to advancing ocean science research and education. ANGARI Foundation's series of thematic VR films features the research of ocean scientists from onboard the Foundation's research vessel, R/V ANGARI. The films are developed and produced through an iterative process between expedition scientists, the film production team, and ANGARI staff and Educator Council members. Upon completion of filming, the K-12 and informal educators of ANGARI's Educator Council work with ANGARI staff and affiliated scientists to develop and implement standards-aligned (e.g. Next Generation Science Standards and International Baccalaureate) lesson plans for the classroom. The goal of ANGARI Foundation's VR films is to immerse broad audiences in the marine environment, while actively engaging them in the at-sea scientific methods of expert scientists, ultimately increasing knowledge of our oceans and promoting their conservation. The foundation's VR films and developed lessons are made available for free to the public via YouTube and www.ANGARI.org. While South Florida educators may request that ANGARI Foundation visit their classrooms and bring the necessary headsets to run the experience, the Foundation is also partnering with VR hardware companies to facilitate the acquisition and adoption of VR headsets by schools in the U.S. and abroad. In this presentation we will share our most recent VR film that highlights coral reef ecosystems and the Florida Reef Tract, taking an interdisciplinary approach to investigating how it has changed over time and the issues and opportunities it currently faces. We will also discuss classroom

  4. Hanny and the Mystery of the Voorwerp: Citizen Science in the Classroom

    Science.gov (United States)

    Costello, K.; Reilly, E.; Bracey, G.; Gay, P.

    2012-08-01

    The highly engaging graphic comic Hanny and the Mystery of the Voorwerp is the focus of an eight-day educational unit geared to middle level students. Activities in the unit link national astronomy standards to the citizen science Zooniverse website through tutorials that lead to analysis of real data online. NASA resources are also included in the unit. The content of the session focused on the terminology and concepts - galaxy formation, types and characteristics of galaxies, use of spectral analysis - needed to classify galaxies. Use of citizen science projects as tools to teach inquiry in the classroom was the primary focus of the workshop. The session included a hands-on experiment taken from the unit, including a NASA spectral analysis activity called "What's the Frequency, Roy G Biv?" In addition, presenters demonstrated the galaxy classification tools found in the "Galaxy Zoo" project at the Zooniverse citizen science website.

  5. Science and religion: implications for science educators

    Science.gov (United States)

    Reiss, Michael J.

    2010-03-01

    A religious perspective on life shapes how and what those with such a perspective learn in science; for some students a religious perspective can hinder learning in science. For such reasons Staver's article is to be welcomed as it proposes a new way of resolving the widely perceived discord between science and religion. Staver notes that Western thinking has traditionally postulated the existence and comprehensibility of a world that is external to and independent of human consciousness. This has led to a conception of truth, truth as correspondence, in which our knowledge corresponds to the facts in this external world. Staver rejects such a conception, preferring the conception of truth as coherence in which the links are between and among independent knowledge claims themselves rather than between a knowledge claim and reality. Staver then proposes constructivism as a vehicle potentially capable of resolving the tension between religion and science. My contention is that the resolution between science and religion that Staver proposes comes at too great a cost—both to science and to religion. Instead I defend a different version of constructivism where humans are seen as capable of generating models of reality that do provide richer and more meaningful understandings of reality, over time and with respect both to science and to religion. I argue that scientific knowledge is a subset of religious knowledge and explore the implications of this for science education in general and when teaching about evolution in particular.

  6. Classroom

    Indian Academy of Sciences (India)

    sharing personal experiences and viewpoints on matters related to teaching and learning science. ... living organisms present in the vicinity of any educational institution ... diversity at species and higher taxonomic levels, evolution of diversity ...

  7. Professionalism Prevails in Adult Education ESL Classrooms

    Science.gov (United States)

    Brown, Megan C.; Bywater, Kathleen

    2010-01-01

    The purpose of this report is to explore the issue of professionalism of adult education ESL educators and uncover any inequities. The arc of this exploration describes the history of adult education, the current state of adult education ESL professionals, and the direction in which ESL adult educators appear to be heading. The results illustrate…

  8. Pre-Service Secondary Science and Mathematics Teachers' Classroom Management Styles in Turkey

    Science.gov (United States)

    Yilmaz, Kursad

    2009-01-01

    The aim of this study is to determine Pre-service secondary science and mathematics teachers' classroom management styles in Turkey. In addition, differences in pre-service secondary science and mathematics teachers' classroom management styles by gender, and field of study were examined. In the study, the survey model was employed. The research…

  9. The Relationship between Teachers' Knowledge and Beliefs about Science and Inquiry and Their Classroom Practices

    Science.gov (United States)

    Saad, Rayana; BouJaoude, Saouma

    2012-01-01

    The purpose of this study was to investigate relationships between teachers' attitudes toward science, knowledge and beliefs about inquiry, and science classroom teaching practices. Specifically, the study addressed three questions: What are teachers' beliefs and knowledge about inquiry? What are teachers' teaching related classroom practices? Do…

  10. Teaching the content in context: Preparing "highly qualified" and "high quality" teachers for instruction in underserved secondary science classrooms

    Science.gov (United States)

    Tolbert, Sara E.

    2011-12-01

    placements---in particular, the extent to which their cooperating teachers gave them the autonomy and planning time to design and implement their own activities and lessons. While the "integrated approach" to diversity and equity in science teacher education was, overall, successful in helping preservice teachers' move closer toward developing the beliefs, knowledge, and practices necessary for effective instruction in underserved classrooms, suggestions are given for increasing the effectiveness of the "integrated approach," particularly in the context of a one-year credentialing program.

  11. Strategies for Effective Implementation of Science Models into 6-9 Grade Classrooms on Climate, Weather, and Energy Topics

    Science.gov (United States)

    Yarker, M. B.; Stanier, C. O.; Forbes, C.; Park, S.

    2011-12-01

    As atmospheric scientists, we depend on Numerical Weather Prediction (NWP) models. We use them to predict weather patterns, to understand external forcing on the atmosphere, and as evidence to make claims about atmospheric phenomenon. Therefore, it is important that we adequately prepare atmospheric science students to use computer models. However, the public should also be aware of what models are in order to understand scientific claims about atmospheric issues, such as climate change. Although familiar with weather forecasts on television and the Internet, the general public does not understand the process of using computer models to generate a weather and climate forecasts. As a result, the public often misunderstands claims scientists make about their daily weather as well as the state of climate change. Since computer models are the best method we have to forecast the future of our climate, scientific models and modeling should be a topic covered in K-12 classrooms as part of a comprehensive science curriculum. According to the National Science Education Standards, teachers are encouraged to science models into the classroom as a way to aid in the understanding of the nature of science. However, there is very little description of what constitutes a science model, so the term is often associated with scale models. Therefore, teachers often use drawings or scale representations of physical entities, such as DNA, the solar system, or bacteria. In other words, models used in classrooms are often used as visual representations, but the purpose of science models is often overlooked. The implementation of a model-based curriculum in the science classroom can be an effective way to prepare students to think critically, problem solve, and make informed decisions as a contributing member of society. However, there are few resources available to help teachers implement science models into the science curriculum effectively. Therefore, this research project looks at

  12. What is `Agency'? Perspectives in Science Education Research

    Science.gov (United States)

    Arnold, Jenny; Clarke, David John

    2014-03-01

    The contemporary interest in researching student agency in science education reflects concerns about the relevance of schooling and a shift in science education towards understanding learning in science as a complex social activity. The purpose of this article is to identify problems confronting the science education community in the development of this new research agenda and to argue that there is a need for research in science education that attends to agency as a social practice. Despite increasing interest in student agency in educational research, the term 'agency' has lacked explicit operationalisation and, across the varied approaches, such as critical ethnography, ethnographies of communication, discourse analysis and symbolic interactionism, there has been a lack of coherence in its research usage. There has also been argument concerning the validity of the use of the term 'agency' in science education research. This article attempts to structure the variety of definitions of 'student agency' in science education research, identifies problems in the research related to assigning intentionality to research participants and argues that agency is a kind of discursive practice. The article also draws attention to the need for researchers to be explicit in the assumptions they rely upon in their interpretations of social worlds. Drawing upon the discursive turn in the social sciences, a definition of agency is provided, that accommodates the discursive practices of both individuals and the various functional social groups from whose activities classroom practice is constituted. The article contributes to building a focused research agenda concerned with understanding and promoting student agency in science.

  13. Reaching the Future Teachers in Your Classroom: New Directions in Pre-Service Education

    Science.gov (United States)

    Grier, Jennifer A.; Ruberg, L.

    2006-09-01

    We will present results and progress from initiatives seeking to improve the experiences of future teachers in college level science classes. A future teacher (pre-service teacher) is inspired to teach science based on personal experiences with college science classes. The most critical opportunity to make a real difference in science education in schools comes when the teachers themselves are first being educated. Given the difficulties in identifying future teachers and the wide variations in their needs, how can we best help future teachers in training? What critical thinking skills are most important for them to absorb from their exposure to science as undergraduates and graduate students? What teaching and learning experiences can we offer that will help science teachers in training confidently assess the relationship between evidence and explanations and then bring that understanding and experience effectively into their own classroom? Recent initiatives in pre-service education have identified several key strategies for improving teacher preparation at the post-secondary level: - Using a constructivist approach to teach physical science concepts and guided inquiry - Knowing common misconceptions about key scientific concepts that students bring to college-level science classrooms - Applying documented strategies for identifying and addressing student misconceptions; and - Knowing how to select and adapt curriculum materials based on common preconceptions held by students. The challenge of reaching these outcomes is complex and cannot be addressed with simple solutions. Teaching strategies that help prepare future teachers include modeling effective teaching of science, understanding the relationship between student/teacher misconceptions, designing and implementing evaluation and assessment, appropriate use of technology tools, and tapping into the existing community of learners to provide ongoing education opportunities and support as the pre

  14. Social Media in the Science Classroom: Using Instagram With Young Women to Incorporate Visual Literacy and Youth Culture

    Science.gov (United States)

    Serpagli, Lauren Paola

    The purpose of this study is to explore the impact that a digital, picture sharing platform, specifically Instagram, can have on the learning experience in the biology classroom. Students are surrounded by a societal culture inundated with technology, including smart phones and social media, and science educators need to find ways to harness the popularity of these tools in the classroom. The theoretical frameworks guiding this study are Culturally Relevant Pedagogy (CRP), Digital Visual Literacy, and a Critical Feminism. To understand the many ways of social media, specifically Instagram, could influence science content understanding in the classroom, the research methodology used was a connective ethnography. This approach allowed for analysis for the creation of the dual-setting of the classroom and the digital platform and the emerging culture that resulted. As Instagram was used as the virtual component of the classroom, this gave rise to a new identity for the classroom, one in which a digital culture was established. Instagram served as an extension of the classroom space that was not limited by time, location, or teacher availability. The participants in this study were female high school biology students in New York City. An Instagram profile was created for the course and used in different ways: To post homework reminders, lab pictures, biology memes, current events, and discoveries, thereby exposing students to science in "nontraditional" ways. Students discussed their reactions and feelings of the uses and effectiveness of Instagram in the class and made suggestions for future applications through questionnaires, focus groups, and individual interviews. Findings reveal Instagram to ease access for review and reminders, integrate teenage culture into learning, and serve as an effective supplement tool to traditional classroom instruction. One chief goal of this research project was to help educators increase their understanding of the role that social

  15. Exploring Science Educators' Cosmological Worldviews through the Binoculars of an Argumentation Framework

    Science.gov (United States)

    Ogunniyi, M. B.

    2011-01-01

    The mandate of the new South African curriculum for educators to enact a science-indigenous knowledge curriculum in their classrooms is not only challenging to their cosmological beliefs, it is equally challenging to their instructional practices. This is because science educators (teachers) in South Africa have been schooled largely in western…

  16. Developing a Material-Dialogic Approach to Pedagogy to Guide Science Teacher Education

    Science.gov (United States)

    Hetherington, Lindsay; Wegerif, Rupert

    2018-01-01

    Dialogic pedagogy is being promoted in science teacher education but the literature on dialogic pedagogy tends to focus on explicit voices, and so runs the risk of overlooking the important role that material objects often play in science education. In this paper we use the findings of a teacher survey and classroom case study to argue that there…

  17. Revisiting the silence of Asian immigrant students: The negotiation of Korean immigrant students' identities in science classrooms

    Science.gov (United States)

    Ryu, Minjung

    This dissertation is a study about Korean immigrant students' identities, including academic identities related to science learning and identities along various social dimensions. I explore how Korean immigrant students participate in science classrooms and how they enact and negotiate their identities in their classroom discursive participation. My dissertation is motivated by the increasing attention in educational research to the intersectionality between science learning and various dimensions of identities (e.g., gender, race, ethnicity, social networks) and a dearth of such research addressing Asian immigrant students. Asian immigrant students are stereotyped as quiet and successful learners, particularly in science and mathematics classes, and their success is often explained by cultural differences. I confront this static and oversimplified notion of cultural differences and Asians' academic success and examine the intersectionality between science learning and identities of Asian immigrant students, with the specific case of Korean immigrants. Drawing upon cultural historical and sociolinguistic perspectives of identity, I propose a theoretical framework that underscores multiple levels of contexts (macro level, meso level, personal, and micro level contexts) in understanding and analyzing students' identities. Based on a year-long ethnographic study in two high school Advanced Placement Biology classes in a public high school, I present the meso level contexts of the focal school and biology classes, and in-depth analyses of three focal students. The findings illustrate: (1) how meso level contexts play a critical role in these students' identities and science classroom participation, (2) how the meso level contexts are reinterpreted and have different meanings to different students depending on their personal contexts, and (3) how students negotiated their positions to achieve certain identity goals. I discuss the implications of the findings for the

  18. Influences on teachers' curricular choices in project-based science classrooms

    Science.gov (United States)

    Laba, Karen Anne

    This descriptive research will present two case studies of experienced science teachers using project-based curricula in all or part of their secondary life science/biology courses. The purpose of this study is to reveal the underlying relationships between teachers' conceptions of the nature of science, their understanding of their role as science teachers and their expectations for appropriate and worthwhile student learning, and to describe the influence of these factors on their curricular choices within the project-based framework. Using a modification of Hewson, Kerby and Cook's (1995) Conceptions of Teaching Science protocol as a model, teachers' beliefs and intentions are classified and examined to identify organizing themes. Comparisons between teachers' beliefs and the actions they take in their project-based classroom are used to reveal relationships among the choices that result in students' learning experiences. Finally, the curricula presented by these two exemplary teachers are compared with the teaching standards and content goals defined in the National Science Education Standards (NRC, 1996). Recommendations for the application of the case study perspective of the evolution of learning experiences to reform efforts are offered to practitioners, policy makers, curriculum developers and teacher educators.

  19. A phenomenological study on middle-school science teachers' perspectives on utilization of technology in the science classroom and its effect on their pedagogy

    Science.gov (United States)

    Rajbanshi, Roshani

    With access to technology and expectation by the mainstream, the use of technology in the classroom has become essential these days. However, the problem in science education is that with classrooms filled with technological equipment, the teaching style is didactic, and teachers employ traditional teacher-centered methods in the classroom. In addition, results of international assessments indicate that students' science learning needs to be improved. The purpose of this study is to analyze and document the lived experience of middle-school science teachers and their use of technology in personal, professional lives as well as in their classroom and to describe the phenomenon of middle-school science teachers' technological beliefs for integration of digital devices or technology as an instructional delivery tool, knowledge construction tool and learning tool. For this study, technology is defined as digital devices such as computer, laptops, digital camera, iPad that are used in the science classroom as an instructional delivery tool, as a learning tool, and as a knowledge construction tool. Constructivism is the lens, the theoretical framework that guides this qualitative phenomenological research. Observation, interview, personal journal, photo elicitation, and journal reflection are used as methods of data collection. Data was analyzed based on a constructivist theoretical framework to construct knowledge and draw conclusion. MAXQDA, a qualitative analysis software, was also used to analyze the data. The findings indicate that middle-school science teachers use technology in various ways to engage and motivate students in science learning; however, there are multiple factors that influence teachers' technology use in the class. In conclusion, teacher, students, and technology are the three sides of the triangle where technology acts as the third side or the bridge to connect teachers' content knowledge to students through the tool with which students are

  20. Teaching neuroscience to science teachers: facilitating the translation of inquiry-based teaching instruction to the classroom.

    Science.gov (United States)

    Roehrig, G H; Michlin, M; Schmitt, L; MacNabb, C; Dubinsky, J M

    2012-01-01

    In science education, inquiry-based approaches to teaching and learning provide a framework for students to building critical-thinking and problem-solving skills. Teacher professional development has been an ongoing focus for promoting such educational reforms. However, despite a strong consensus regarding best practices for professional development, relatively little systematic research has documented classroom changes consequent to these experiences. This paper reports on the impact of sustained, multiyear professional development in a program that combined neuroscience content and knowledge of the neurobiology of learning with inquiry-based pedagogy on teachers' inquiry-based practices. Classroom observations demonstrated the value of multiyear professional development in solidifying adoption of inquiry-based practices and cultivating progressive yearly growth in the cognitive environment of impacted classrooms.

  1. Classroom Preschool Science Learning: The Learner, Instructional Tools, and Peer-Learning Assignments

    Science.gov (United States)

    Reuter, Jamie M.

    The recent decades have seen an increased focus on improving early science education. Goals include helping young children learn about pertinent concepts in science, and fostering early scientific reasoning and inquiry skills (e.g., NRC 2007, 2012, 2015). However, there is still much to learn about what constitutes appropriate frameworks that blend science education with developmentally appropriate learning environments. An important goal for the construction of early science is a better understanding of appropriate learning experiences and expectations for preschool children. This dissertation examines some of these concerns by focusing on three dimensions of science learning in the preschool classroom: (1) the learner; (2) instructional tools and pedagogy; and (3) the social context of learning with peers. In terms of the learner, the dissertation examines some dimensions of preschool children's scientific reasoning skills in the context of potentially relevant, developing general reasoning abilities. As young children undergo rapid cognitive changes during the preschool years, it is important to explore how these may influence scientific thinking. Two features of cognitive functioning have been carefully studied: (1) the demonstration of an epistemic awareness through an emerging theory of mind, and (2) the rapid improvement in executive functioning capacity. Both continue to develop through childhood and adolescence, but changes in early childhood are especially striking and have been neglected as regards their potential role in scientific thinking. The question is whether such skills relate to young children's capacity for scientific thinking. Another goal was to determine whether simple physics diagrams serve as effective instructional tools in supporting preschool children's scientific thinking. Specifically, in activities involving predicting and checking in scientific contexts, the question is whether such diagrams facilitate children's ability to

  2. Interacting with a Suite of Educative Features: Elementary Science Teachers' Use of Educative Curriculum Materials

    Science.gov (United States)

    Arias, Anna Maria; Bismack, Amber Schultz; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2016-01-01

    New reform documents underscore the importance of learning both the practices and content of science. This integration of practices and content requires sophisticated teaching that does not often happen in elementary classrooms. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited…

  3. Assessing Bilingual Knowledge Organization in Secondary Science Classrooms =

    Science.gov (United States)

    Wu, Jason S.

    Improving outcomes for English language learners (ELLs) in secondary science remains an area of high need. The purpose of this study is to investigate bilingual knowledge organization in secondary science classrooms. This study involved thirty-nine bilingual students in three biology classes at a public high school in The Bronx, New York City. Methods included an in-class survey on language use, a science content and English proficiency exam, and bilingual free-recalls. Fourteen students participated in bilingual free-recalls which involved a semi-structured process of oral recall of information learned in science class. Free-recall was conducted in both English and Spanish and analyzed using flow-map methods. Novel methods were developed to quantify and visualize the elaboration and mobilization of ideas shared across languages. It was found that bilingual narratives displayed similar levels of organizational complexity across languages, though English recalls tended to be longer. English proficiency was correlated with narrative complexity in English. There was a high degree of elaboration on concepts shared across languages. Finally, higher Spanish proficiency correlated well with greater overlapping elaboration across languages. These findings are discussed in light of current cognitive theory before presenting the study's limitations and future directions of research.

  4. Undergraduate-driven interventions to increase representation in science classrooms

    Science.gov (United States)

    Freilich, M.; Aluthge, D.; Bryant, R. M.; Knox, B.; McAdams, J.; Plummer, A.; Schlottman, N.; Stanley, Z.; Suglia, E.; Watson-Daniels, J.

    2014-12-01

    Recognizing that racial, ethnic, and gender underrepresentation in science classrooms persists despite intervention programs and institutional commitments to diversity, a group of undergraduates from a variety of backgrounds and academic disciplines came together for a group independent study to (a) study the theoretical foundations of the current practice of science and of programs meant to increase diversity, (b) utilize the experiences of course participants and our peers to better understand the drivers of underrepresentation, and (c) design and implement interventions at Brown University. We will present on individual and small group projects designed by course members in collaboration with faculty. The projects emerged from an exploration of literature in history, philosophy, and sociology of science, as well as an examination of anthropological and psychological studies. We also evaluated the effectiveness of top-down and bottom-up approaches that have already been attempted in developing our projects. They focus on the specific problems faced by underrepresented minorities, women, LGBTQ+ people, and well-represented minorities. We will share experiences of faculty-student collaboration and engaged scholarship focused on representation in science and discuss student-designed interventions.

  5. Educating English Learners: What Every Classroom Teacher Needs to Know

    Science.gov (United States)

    Nutta, Joyce W.; Strebel, Carine; Mokhtari, Kouider; Mihai, Florin M.; Crevecoeur-Bryant, Edwidge

    2014-01-01

    In "Educating English Learners," Joyce W. Nutta and her colleagues offer practical tools for helping schools and teachers successfully integrate English learners into mainstream classrooms. Drawing on the One Plus model presented in their award-winning book, "Preparing Every Teacher to Reach English Learners," the authors now…

  6. Identifying Learning Preferences in Vocational Education and Training Classroom Settings

    Science.gov (United States)

    Smith, Peter J.

    2006-01-01

    This research was designed to assess whether teachers and trainers of vocational learners noted and valued differences in individual learning preferences and, if so, how those differences were observed in natural classroom, workshop or other formal learning settings. Data were collected from six vocational education and training (VET) learning…

  7. Classroom instruction versus roadside training in traffic safety education

    NARCIS (Netherlands)

    van Schagen, I; Rothengatter, J.A.

    1997-01-01

    This study compares the effectiveness of different approaches to training complex cognitive and psychomotor skills within the framework of road safety education for primary school children. A method involving roadside behavioral training, a classroom instruction method and a method combining these

  8. Implementing the Flipped Classroom in Teacher Education: Evidence from Turkey

    Science.gov (United States)

    Kurt, Gökçe

    2017-01-01

    The flipped classroom, a form of blended learning, is an emerging instructional strategy reversing a traditional lecture-based teaching model to improve the quality and efficiency of the teaching and learning process. The present article reports a study that focused on the implementation of the flipped approach in a higher education institution in…

  9. On the Tropical Rainfall Measuring Mission (TRMM): Bringing NASA's Earth System Science Program to the Classroom

    Science.gov (United States)

    Shepherd, J. Marshall

    1998-01-01

    The Tropical Rainfall Measuring Mission is the first mission dedicated to measuring tropical and subtropical rainfall using a variety of remote sensing instrumentation, including the first spaceborne rain-measuring radar. Since the energy released when tropical rainfall occurs is a primary "fuel" supply for the weather and climate "engine"; improvements in computer models which predict future weather and climate states may depend on better measurements of global tropical rainfall and its energy. In support of the STANYS conference theme of Education and Space, this presentation focuses on one aspect of NASA's Earth Systems Science Program. We seek to present an overview of the TRMM mission. This overview will discuss the scientific motivation for TRMM, the TRMM instrument package, and recent images from tropical rainfall systems and hurricanes. The presentation also targets educational components of the TRMM mission in the areas of weather, mathematics, technology, and geography that can be used by secondary school/high school educators in the classroom.

  10. DLESE Teaching Boxes: Earth System Science Resources And Strategies For Using Data In The Classroom

    Science.gov (United States)

    Olds, S. E.; Weingroff, M.

    2005-12-01

    The DLESE Teaching Box project is both a professional development opportunity and an educational resource development project providing a pedagogic context that support teachers' use of data in the classroom. As a professional development opportunity, it is designed to augment teachers' science content knowledge, enhance their use of inquiry teaching strategies, and increase their confidence and facility with using digital libraries and online learning resources. Teams of educators, scientists, and instructional designers work together during a three part Teaching Box Development Workshop series to create Teaching Boxes on Earth system science topics. The resulting Teaching Boxes use Earth system science conceptual frameworks as their core and contain inquiry-based lessons which model scientific inquiry and process by focusing on the gathering and analysis of evidence. These lines of evidence employ an Earth systems approach to show how processes across multiple spheres, for example, how the biosphere, atmosphere, and geosphere interact in a complex Earth process. Each Teaching Box has interconnected lessons that provide 3-6 weeks of instruction, incorporate National and California science standards, and offer guidance on teaching pathways through the materials. They contain up-to-date digital materials including archived and real-time data sets, simulations, images, lesson plans, and other resources available through DLESE, NSDL, and the participating scientific institutions. Background information provided within the Box supports teacher learning and guides them to facilitate student access to the tools and techniques of authentic, modern science. In developing Teaching Boxes, DLESE adds value to existing educational resources by helping teachers more effectively interpret their use in a variety of standards-based classroom settings. In the past twelve months we have had over 100 requests for Teaching Box products from teachers and curriculum developers from

  11. Teacher-student interaction in contemporary science classrooms: is participation still a question of gender?†

    Science.gov (United States)

    Eliasson, Nina; Sørensen, Helene; Göran Karlsson, Karl

    2016-07-01

    We show that boys still have a greater access to the space for interaction in science classrooms, which is unexpected since in Sweden today girls perform better in these subjects than boys. Results from video-recorded verbal communication, referred to here as interaction, show that the distribution of teacher-student interaction in the final year of lower secondary school follows the same patterns as in the 1980s. The interaction space for all kinds of talk continues to be distributed according to the two-thirds rule for communication in science classrooms as described by previous research. We also show that the overall interaction space in science classrooms has increased for both boys and girls when talk about science alone is considered. Another finding which follows old patterns is that male teachers still address boys more often than girls. This holds true both for general talk and for talk about science. If a more even distribution of teacher-student interaction is desirable, these results once again need to be considered. More research needs to be undertaken before the association between girls' attitudes and interest in science in terms of future career choice and the opportunity to participate in teacher-student interaction is more clearly understood. Research conducted at Mid Sweden University, Department of Science Education and Mathematics.

  12. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. May 2012 Volume 17 Number 5. SERIES ARTICLES. 436 Dawn of Science. The Quest for Power. T Padmanabhan. GENERAL ARTICLES. 441 Bernoulli Runs Using 'Book Cricket' to Evaluate. Cricketers. Anand Ramalingam. 454 Wilhelm Ostwald, the Father of Physical Chemistry.

  13. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. February 2012 Volume 17 Number 2. SERIES ARTICLES. 106 Dawn of Science. Calculus is Developed in Kerala. T Padmanabhan. GENERAL ARTICLES. 117 Willis H Carrier: Father of Air Conditioning. R V Simha. 139 Refrigerants For Vapour Compression Refrigeration. Systems.

  14. Educational activities for neutron sciences

    International Nuclear Information System (INIS)

    Hiraka, Haruhiro; Ohoyama, Kenji; Iwasa, Kazuaki

    2011-01-01

    Since now we have several world-leading neutron science facilities in Japan, enlightenment activities for introducing neutron sciences, for example, to young people is an indispensable issue. Hereafter, we will report present status of the activities based on collaborations between universities and neutron facilities. A few suggestions for future educational activity of JSNS are also shown. (author)

  15. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    Science.gov (United States)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  16. Struggles with learning about scientific models in a middle school science classroom

    Science.gov (United States)

    Loper, Suzanna Jane

    Two important goals in science education are teaching students about the nature of science and teaching students to do scientific inquiry. Learning about scientific models is central to both of these endeavors, but studies have shown that students have very flawed and limited understandings of the nature and purposes of scientific models (Carey & Smith, 1993; Grosslight, Unger, & Jay, 1991; Lederman, 1992). In this dissertation I investigate the processes of teaching and learning about scientific models in an 8th grade classroom in an urban middle school. In order to do so, I examine recordings of student and teacher talk about models across a period of two months in which students completed two independent inquiry projects, using the Inquiry Island software and curriculum (Eslinger, 2004; Shimoda, White, & Frederiksen, 2002; White, Shimoda, & Frederiksen, 2000). My analysis draws on video records of small-group work and whole-class interactions, as well as on students' written work. I find that in this classroom, students struggled to understand the nature and purpose of scientific models. I analyze episodes in the classroom talk in which models appeared to be a source of trouble or confusion, and describe the ways in which the teacher attempted to respond to these troubles. I find that in many cases students appeared to be able to produce scientific models of the proper form, yet still struggled with displaying an understanding of what a model was, or of the functions of models in scientific research. I propose directions for further research and curriculum development in order to build on these findings. In particular, I argue, we need to design ways to help students engage in scientific modeling as a social and communicative practice, and to find ways to build from their everyday reasoning and argumentation practices. My research also reinforces the importance of looking at classroom talk, not just pre- and post-assessments, in order to understand teaching and

  17. Student perception of writing in the science classroom

    Science.gov (United States)

    Deakin, Kathleen J.

    This study examines factors that shape four student's perceptions of writing tasks in their science classroom. This qualitative retrospective interview study focuses on four students concurrently enrolled in honors English and honors biology. This research employs a phenomenological perspective on writing, examining whether the writing strategies students acquire in the Language Arts classroom manifest in the content areas. I also adopt Bandura's theoretical perspective on self-efficacy as well as Hillock's notion of writing as inquiry and meaning making. This study concludes that students need ample opportunity to generate content and language that will help reveal a purpose and genre for writing tasks in the content areas. Although all four students approached the writing tasks differently in this study, the tasks set before them were opportunities for replication rather than inquiry Through the case studies of four students as well as current research on content writing, this project works to inform all content area teachers about student perceptions of writing in the content areas.

  18. The third space: The use of self-study to examine the culture of a science classroom

    Science.gov (United States)

    Magee, Dashia M.

    Science educators are in the position to create bridges between their students and the world of science (Aikenhead, 1996, 1999). This connection has often been described as the third space (Bhabha, 1994; Moje, Collazo, Carrillo, & Marx, 2001; Wallace, 2004), which is represented as a combination or a meeting of the students' world and the world of science. In this study, I examined my role in creating the third space through the use of self-study. Self-study is a form of research, educators use to understand their practice (Austin & Senese, 2004; Loughran, 2004; Northfield & Loughran, 1996). It is a means of describing, analyzing, and interpreting a teacher's actions within his or her classroom (Tidwell, 2002). The focal point of this self-study is to understand my actions found within my past and present teaching experiences and the underlying beliefs that are expressed through those actions. In this self-study, I collected data from my life history, classroom observations, and member check interview. My life history described my influences that shaped my philosophy of teaching and learning, while the classroom observations provided a means of understanding my interactions with the science curriculum and my English Language Learner (ELL) students. And finally, a member check focus group interview occurred to confirm the results occurring in the classroom observations. Once the data were collected, I used grounded theory methods to analyze my results and answer the research questions. This self-study became the means of exploring my philosophy of teaching and learning and my teaching practices as they occurred in an ELL science classroom. I examined my own practice through a comparison between my past experiences and my current teaching situation and through this exploration, I identified my actions and the beliefs associated with those actions as they informed my teaching practices.

  19. Bringing Science out of the Lab into the Classroom

    Science.gov (United States)

    2006-03-01

    Science is moving more rapidly than ever; one groundbreaking discovery chases the next at an incredible speed. School teachers have trouble keeping up with the pace, and many pupils call science classes "boring". Today, Europe's major research organisations launch Science in School, the first international, multidisciplinary journal for innovative science teaching, to provide a platform for communication between science teachers, practising scientists and other stakeholders in science education. ESO PR Photo 12/06 ESO PR Photo 12/06 First Issue! "Science is becoming increasingly international and interdisciplinary," says Eleanor Hayes, editor of the journal. "The most exciting development of the day may happen anywhere in any field: students may suddenly want to talk about a discovery on Mars, a medical breakthrough or a natural disaster. On such days it would be a shame not to put the textbooks aside and to capitalise on that curiosity." Published by EIROforum, a partnership between Europe's seven largest intergovernmental research organisations, Science in School will bridge the gap between the worlds of research and schools. One extremely powerful tool to achieve this is the journal's web-based discussion forum that will establish a direct dialogue between science teachers and researchers across national and subject boundaries. Science in School will appear quarterly online and in print and will feature news about the latest scientific discoveries, teaching materials, interviews with inspiring teachers and scientists, reviews of books, films and websites, suggestions for class trips, training opportunities and many other useful resources for science teachers. Contributors to the first issue include the world-renowned neurologist and author Oliver Sachs, and scientists and teachers from nine countries. "We urgently need to engage young people in science. This is why the research community and the European Commission are committed to outreach and education

  20. Advancing Pre-college Science and Mathematics Education

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Rick [General Atomics, San Diego, CA (United States)

    2015-05-06

    With support from the US Department of Energy, Office of Science, Fusion Energy Sciences, and General Atomics, an educational and outreach program primarily for grades G6-G13 was developed using the basic science of plasma and fusion as the content foundation. The program period was 1994 - 2015 and provided many students and teachers unique experiences such as a visit to the DIII-D National Fusion Facility to tour the nation’s premiere tokamak facility or to interact with interesting and informative demonstration equipment and have the opportunity to increase their understanding of a wide range of scientific content, including states of matter, the electromagnetic spectrum, radiation & radioactivity, and much more. Engaging activities were developed for classroom-size audiences, many made by teachers in Build-it Day workshops. Scientist and engineer team members visited classrooms, participated in science expositions, held workshops, produced informational handouts in paper, video, online, and gaming-CD format. Participants could interact with team members from different institutions and countries and gain a wider view of the world of science and engineering educational and career possibilities. In addition, multiple science stage shows were presented to audiences of up to 700 persons in a formal theatre setting over a several day period at Science & Technology Education Partnership (STEP) Conferences. Annually repeated participation by team members in various classroom and public venue events allowed for the development of excellent interactive skills when working with students, teachers, and educational administrative staff members. We believe this program has had a positive impact in science understanding and the role of the Department of Energy in fusion research on thousands of students, teachers, and members of the general public through various interactive venues.