WorldWideScience

Sample records for science domains including

  1. Preserving the positive functions of the public domain in science

    Directory of Open Access Journals (Sweden)

    Pamela Samuelson

    2003-11-01

    Full Text Available Science has advanced in part because data and scientific methodologies have traditionally not been subject to intellectual property protection. In recent years, intellectual property has played a greater role in scientific work. While intellectual property rights may have a positive role to play in some fields of science, so does the public domain. This paper will discuss some of the positive functions of the public domain and ways in which certain legal developments may negatively impact the public domain. It suggests some steps that scientists can take to preserve the positive functions of the public domain for science.

  2. Biology as an Integrating Natural Science Domain

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 3. Biology as an Integrating Natural Science Domain: A Proposal for BSc (Hons) in Integrated Biology. Kambadur Muralidhar. Classroom Volume 13 Issue 3 March 2008 pp 272-276 ...

  3. The Effects of Item Format and Cognitive Domain on Students' Science Performance in TIMSS 2011

    Science.gov (United States)

    Liou, Pey-Yan; Bulut, Okan

    2017-12-01

    The purpose of this study was to examine eighth-grade students' science performance in terms of two test design components, item format, and cognitive domain. The portion of Taiwanese data came from the 2011 administration of the Trends in International Mathematics and Science Study (TIMSS), one of the major international large-scale assessments in science. The item difficulty analysis was initially applied to show the proportion of correct items. A regression-based cumulative link mixed modeling (CLMM) approach was further utilized to estimate the impact of item format, cognitive domain, and their interaction on the students' science scores. The results of the proportion-correct statistics showed that constructed-response items were more difficult than multiple-choice items, and that the reasoning cognitive domain items were more difficult compared to the items in the applying and knowing domains. In terms of the CLMM results, students tended to obtain higher scores when answering constructed-response items as well as items in the applying cognitive domain. When the two predictors and the interaction term were included together, the directions and magnitudes of the predictors on student science performance changed substantially. Plausible explanations for the complex nature of the effects of the two test-design predictors on student science performance are discussed. The results provide practical, empirical-based evidence for test developers, teachers, and stakeholders to be aware of the differential function of item format, cognitive domain, and their interaction in students' science performance.

  4. Web Syndication Approaches for Sharing Primary Data in "Small Science" Domains

    Directory of Open Access Journals (Sweden)

    Eric C Kansa

    2010-06-01

    Full Text Available In some areas of science, sophisticated web services and semantics underlie "cyberinfrastructure". However, in "small science" domains, especially in field sciences such as archaeology, conservation, and public health, datasets often resist standardization. Publishing data in the small sciences should embrace this diversity rather than attempt to corral research into "universal" (domain standards. A growing ecosystem of increasingly powerful Web syndication based approaches for sharing data on the public Web can offer a viable approach. Atom Feed based services can be used with scientific collections to identify and create linkages across different datasets, even across disciplinary boundaries without shared domain standards.

  5. The effectivenes of science domain-based science learning integrated with local potency

    Science.gov (United States)

    Kurniawati, Arifah Putri; Prasetyo, Zuhdan Kun; Wilujeng, Insih; Suryadarma, I. Gusti Putu

    2017-08-01

    This research aimed to determine the significant effect of science domain-based science learning integrated with local potency toward science process skills. The research method used was a quasi-experimental design with nonequivalent control group design. The population of this research was all students of class VII SMP Negeri 1 Muntilan. The sample of this research was selected through cluster random sampling, namely class VII B as an experiment class (24 students) and class VII C as a control class (24 students). This research used a test instrument that was adapted from Agus Dwianto's research. The aspect of science process skills in this research was observation, classification, interpretation and communication. The analysis of data used the one factor anova at 0,05 significance level and normalized gain score. The significance level result of science process skills with one factor anova is 0,000. It shows that the significance level < alpha (0,05). It means that there was significant effect of science domain-based science learning integrated with local potency toward science learning process skills. The results of analysis show that the normalized gain score are 0,29 (low category) in control class and 0,67 (medium category) in experiment class.

  6. Data Stewardship in the Ocean Sciences Needs to Include Physical Samples

    Science.gov (United States)

    Carter, M.; Lehnert, K.

    2016-02-01

    Across the Ocean Sciences, research involves the collection and study of samples collected above, at, and below the seafloor, including but not limited to rocks, sediments, fluids, gases, and living organisms. Many domains in the Earth Sciences have recently expressed the need for better discovery, access, and sharing of scientific samples and collections (EarthCube End-User Domain workshops, 2012 and 2013, http://earthcube.org/info/about/end-user-workshops), as has the US government (OSTP Memo, March 2014). iSamples (Internet of Samples in the Earth Sciences) is a Research Coordination Network within the EarthCube program that aims to advance the use of innovative cyberinfrastructure to support and advance the utility of physical samples and sample collections for science and ensure reproducibility of sample-based data and research results. iSamples strives to build, grow, and foster a new community of practice, in which domain scientists, curators of sample repositories and collections, computer and information scientists, software developers and technology innovators engage in and collaborate on defining, articulating, and addressing the needs and challenges of physical samples as a critical component of digital data infrastructure. A primary goal of iSamples is to deliver a community-endorsed set of best practices and standards for the registration, description, identification, and citation of physical specimens and define an actionable plan for implementation. iSamples conducted a broad community survey about sample sharing and has created 5 different working groups to address the different challenges of developing the internet of samples - from metadata schemas and unique identifiers to an architecture for a shared cyberinfrastructure to manage collections, to digitization of existing collections, to education, and ultimately to establishing the physical infrastructure that will ensure preservation and access of the physical samples. Repositories that curate

  7. Cultural-Historical Activity Theory and Domain Analysis: Metatheoretical Implications for Information Science

    Science.gov (United States)

    Wang, Lin

    2013-01-01

    Background: Cultural-historical activity theory is an important theory in modern psychology. In recent years, it has drawn more attention from related disciplines including information science. Argument: This paper argues that activity theory and domain analysis which uses the theory as one of its bases could bring about some important…

  8. Coordinated Multi-layer Multi-domain Optical Network (COMMON) for Large-Scale Science Applications (COMMON)

    Energy Technology Data Exchange (ETDEWEB)

    Vokkarane, Vinod [University of Massachusetts

    2013-09-01

    We intend to implement a Coordinated Multi-layer Multi-domain Optical Network (COMMON) Framework for Large-scale Science Applications. In the COMMON project, specific problems to be addressed include 1) anycast/multicast/manycast request provisioning, 2) deployable OSCARS enhancements, 3) multi-layer, multi-domain quality of service (QoS), and 4) multi-layer, multidomain path survivability. In what follows, we outline the progress in the above categories (Year 1, 2, and 3 deliverables).

  9. Handbook of Coherent-Domain Optical Methods Biomedical Diagnostics, Environmental Monitoring, and Materials Science

    CERN Document Server

    2013-01-01

    This Handbook provides comprehensive coverage of laser and coherent-domain methods as applied to biomedicine, environmental monitoring, and materials science. Worldwide leaders in these fields describe the fundamentals of light interaction with random media and present an overview of basic research. The latest results on coherent and polarization properties of light scattered by random media, including tissues and blood, speckles formation in multiple scattering media, and other non-destructive interactions of coherent light with rough surfaces and tissues, allow the reader to understand the principles and applications of coherent diagnostic techniques. The expanded second edition has been thoroughly updated with particular emphasis on novel coherent-domain techniques and their applications in medicine and environmental science. Volume 1 describes state-of-the-art methods of coherent and polarization optical imaging, tomography and spectroscopy; diffusion wave spectroscopy; elastic, quasi-elastic and inelasti...

  10. Visualizing the nuclear science and technology knowledge domain

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Bruno Mattos Souza de Souza; Honaiser, Eduardo H.R. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil)]. E-mails: brunomelo@ieee.org; ehonaiser@yahoo.com.br

    2007-07-01

    In this paper, a knowledge domain visualization approach is applied to the nuclear science and technology fields. A so-called concept density map based on the abstracts of the papers presented at the ICONE 14 is constructed. The concept map provides an overview of the nuclear science and technology fields by visualizing the associations between their main concepts. To analyze recent developments the concept map is compared with a concept map based on abstracts of earlier ICONE meetings. The analysis presented in the paper provides insight into the structure of the nuclear science and technology fields and into the most significant developments carried out during the last few years. (author)

  11. A Dedicated Space Observatory For Time-domain Solar System Science

    Science.gov (United States)

    Wong, Michael H.; Ádámkovics, M.; Benecchi, S.; Bjoraker, G.; Clarke, J. T.; de Pater, I.; Hendrix, A. R.; Marchis, F.; McGrath, M.; Noll, K.; Rages, K. A.; Retherford, K.; Smith, E. H.; Strange, N. J.

    2009-09-01

    Time-variable phenomena with scales ranging from minutes to decades have led to a large fraction of recent advances in many aspects of solar system science. We present the scientific motivation for a dedicated space observatory for solar system science. This facility will ideally conduct repeated imaging and spectroscopic observations over a period of 10 years or more. It will execute a selection of long-term projects with interleaved scheduling, resulting in the acquisition of data sets with consistent calibration, long baselines, and optimized sampling intervals. A sparse aperture telescope would be an ideal configuration for the mission, trading decreased sensitivity for reduced payload mass, while preserving spatial resolution. Ultraviolet capability is essential, especially once the Hubble Space Telescope retires. Specific investigations will include volcanism and cryovolcanism (on targets including Io, Titan, Venus, Mars, and Enceladus); zonal flow, vortices, and storm evolution on the giant planets; seasonal cycles in planetary atmospheres; mutual events and orbit determination of multiple small solar system bodies; auroral activity and solar wind interactions; and cometary evolution. The mission will produce a wealth of data products--such as multi-year time-lapse movies of planetary atmospheres--with significant education and public outreach potential. Existing and planned ground- and space-based facilities are not suitable for these time-domain optimized planetary dynamics studies for numerous reasons, including: oversubscription by astrophysical users, field-of-regard limitations, sensitive detector saturation limits that preclude bright planetary targets, and limited mission duration. The abstract author list is a preliminary group of scientists who have shown interest in prior presentations on this topic; interested parties may contact the lead author by 1 September to sign the associated Planetary Science Decadal Survey white paper or by 1 October to

  12. Integrating Intelligent Systems Domain Knowledge Into the Earth Science Curricula

    Science.gov (United States)

    Güereque, M.; Pennington, D. D.; Pierce, S. A.

    2017-12-01

    High-volume heterogeneous datasets are becoming ubiquitous, migrating to center stage over the last ten years and transcending the boundaries of computationally intensive disciplines into the mainstream, becoming a fundamental part of every science discipline. Despite the fact that large datasets are now pervasive across industries and academic disciplines, the array of skills is generally absent from earth science programs. This has left the bulk of the student population without access to curricula that systematically teach appropriate intelligent-systems skills, creating a void for skill sets that should be universal given their need and marketability. While some guidance regarding appropriate computational thinking and pedagogy is appearing, there exist few examples where these have been specifically designed and tested within the earth science domain. Furthermore, best practices from learning science have not yet been widely tested for developing intelligent systems-thinking skills. This research developed and tested evidence based computational skill modules that target this deficit with the intention of informing the earth science community as it continues to incorporate intelligent systems techniques and reasoning into its research and classrooms.

  13. Incursions from the epicentre: Southern theory, social science, and the global HIV research domain.

    Science.gov (United States)

    Hodes, Rebecca; Morrell, Robert

    2018-03-01

    Research about HIV constitutes a global domain of academic knowledge. The patterns that structure this domain reflect inequalities in the production and dissemination of knowledge, as well as broader inequalities in geopolitics. Conventional metrics for assessing the value and impact of academic research reveal that "Northern" research remains dominant, while "Southern" research remains peripheral. Southern theory provides a framework for greater critical engagement with knowledge produced by researchers within the global South. With a focus on HIV social science, we show that investigators working in and from Africa have produced and disseminated knowledge fundamental to the global domain of HIV research, and argue that their epistemological contribution may be understood within the framework of Southern theory. Through repurposing a bibliometrical measure of citation count, we constitute a new archive of highly cited social science research. With a focus on South Africa, we situate this archive within changing historical contexts, connecting research findings to developments in medicine, health sciences and politics. We focus on two key themes in the evolution of HIV knowledge: (1) the significance of context and locality - the "setting" of HIV research; and (2) sex, race and risk - changing ideas about the social determinants of HIV transmission.

  14. Colil: a database and search service for citation contexts in the life sciences domain.

    Science.gov (United States)

    Fujiwara, Toyofumi; Yamamoto, Yasunori

    2015-01-01

    To promote research activities in a particular research area, it is important to efficiently identify current research trends, advances, and issues in that area. Although review papers in the research area can suffice for this purpose in general, researchers are not necessarily able to obtain these papers from research aspects of their interests at the time they are required. Therefore, the utilization of the citation contexts of papers in a research area has been considered as another approach. However, there are few search services to retrieve citation contexts in the life sciences domain; furthermore, efficiently obtaining citation contexts is becoming difficult due to the large volume and rapid growth of life sciences papers. Here, we introduce the Colil (Comments on Literature in Literature) database to store citation contexts in the life sciences domain. By using the Resource Description Framework (RDF) and a newly compiled vocabulary, we built the Colil database and made it available through the SPARQL endpoint. In addition, we developed a web-based search service called Colil that searches for a cited paper in the Colil database and then returns a list of citation contexts for it along with papers relevant to it based on co-citations. The citation contexts in the Colil database were extracted from full-text papers of the PubMed Central Open Access Subset (PMC-OAS), which includes 545,147 papers indexed in PubMed. These papers are distributed across 3,171 journals and cite 5,136,741 unique papers that correspond to approximately 25 % of total PubMed entries. By utilizing Colil, researchers can easily refer to a set of citation contexts and relevant papers based on co-citations for a target paper. Colil helps researchers to comprehend life sciences papers in a research area more efficiently and makes their biological research more efficient.

  15. Validation of the Domains of Creativity Scale for Nigerian Preservice Science, Technology, and Mathematics Teachers

    Science.gov (United States)

    Awofala, Adeneye O. A.; Fatade, Alfred O.

    2015-01-01

    Introduction: Investigation into the factor structure of Domains of Creativity Scale has been on for sometimes now. The purpose of this study was to test the validity of the Kaufman Domains of Creativity Scale on Nigerian preservice science, technology, and mathematics teachers. Method: Exploratory and confirmatory factor analyses were performed…

  16. Clinton administration budget includes mixed bag for science

    Science.gov (United States)

    Showstack, Randy

    The $1,766 trillion federal budget proposal that the Clinton Administration rolled out on February 1—which promises to protect Social Security and Medicare and work within mandated budget caps—generally provides favorable news for federally funded science research and development.Within the 17% ($592 billion) of the federal budget earmarked for discretionary spending, the Administration's budget proposal increases funding for nondefense research and development for the seventh year in a row. This includes increased funding for a number of science accounts and money for a series of new science initiatives.

  17. Surgical data science: The new knowledge domain

    Science.gov (United States)

    Vedula, S. Swaroop; Hager, Gregory D.

    2017-01-01

    Healthcare in general, and surgery/interventional care in particular, is evolving through rapid advances in technology and increasing complexity of care with the goal of maximizing quality and value of care. While innovations in diagnostic and therapeutic technologies have driven past improvements in quality of surgical care, future transformation in care will be enabled by data. Conventional methodologies, such as registry studies, are limited in their scope for discovery and research, extent and complexity of data, breadth of analytic techniques, and translation or integration of research findings into patient care. We foresee the emergence of Surgical/Interventional Data Science (SDS) as a key element to addressing these limitations and creating a sustainable path toward evidence-based improvement of interventional healthcare pathways. SDS will create tools to measure, model and quantify the pathways or processes within the context of patient health states or outcomes, and use information gained to inform healthcare decisions, guidelines, best practices, policy, and training, thereby improving the safety and quality of healthcare and its value. Data is pervasive throughout the surgical care pathway; thus, SDS can impact various aspects of care including prevention, diagnosis, intervention, or post-operative recovery. Existing literature already provides preliminary results suggesting how a data science approach to surgical decision-making could more accurately predict severe complications using complex data from pre-, intra-, and post-operative contexts, how it could support intra-operative decision-making using both existing knowledge and continuous data streams throughout the surgical care pathway, and how it could enable effective collaboration between human care providers and intelligent technologies. In addition, SDS is poised to play a central role in surgical education, for example, through objective assessments, automated virtual coaching, and robot

  18. Surgical data science: The new knowledge domain.

    Science.gov (United States)

    Vedula, S Swaroop; Hager, Gregory D

    2017-04-01

    Healthcare in general, and surgery/interventional care in particular, is evolving through rapid advances in technology and increasing complexity of care with the goal of maximizing quality and value of care. While innovations in diagnostic and therapeutic technologies have driven past improvements in quality of surgical care, future transformation in care will be enabled by data. Conventional methodologies, such as registry studies, are limited in their scope for discovery and research, extent and complexity of data, breadth of analytic techniques, and translation or integration of research findings into patient care. We foresee the emergence of Surgical/Interventional Data Science (SDS) as a key element to addressing these limitations and creating a sustainable path toward evidence-based improvement of interventional healthcare pathways. SDS will create tools to measure, model and quantify the pathways or processes within the context of patient health states or outcomes, and use information gained to inform healthcare decisions, guidelines, best practices, policy, and training, thereby improving the safety and quality of healthcare and its value. Data is pervasive throughout the surgical care pathway; thus, SDS can impact various aspects of care including prevention, diagnosis, intervention, or post-operative recovery. Existing literature already provides preliminary results suggesting how a data science approach to surgical decision-making could more accurately predict severe complications using complex data from pre-, intra-, and post-operative contexts, how it could support intra-operative decision-making using both existing knowledge and continuous data streams throughout the surgical care pathway, and how it could enable effective collaboration between human care providers and intelligent technologies. In addition, SDS is poised to play a central role in surgical education, for example, through objective assessments, automated virtual coaching, and robot

  19. Surgical data science: the new knowledge domain

    Directory of Open Access Journals (Sweden)

    Vedula S. Swaroop

    2017-04-01

    Full Text Available Healthcare in general, and surgery/interventional care in particular, is evolving through rapid advances in technology and increasing complexity of care, with the goal of maximizing the quality and value of care. Whereas innovations in diagnostic and therapeutic technologies have driven past improvements in the quality of surgical care, future transformation in care will be enabled by data. Conventional methodologies, such as registry studies, are limited in their scope for discovery and research, extent and complexity of data, breadth of analytical techniques, and translation or integration of research findings into patient care. We foresee the emergence of surgical/interventional data science (SDS as a key element to addressing these limitations and creating a sustainable path toward evidence-based improvement of interventional healthcare pathways. SDS will create tools to measure, model, and quantify the pathways or processes within the context of patient health states or outcomes and use information gained to inform healthcare decisions, guidelines, best practices, policy, and training, thereby improving the safety and quality of healthcare and its value. Data are pervasive throughout the surgical care pathway; thus, SDS can impact various aspects of care, including prevention, diagnosis, intervention, or postoperative recovery. The existing literature already provides preliminary results, suggesting how a data science approach to surgical decision-making could more accurately predict severe complications using complex data from preoperative, intraoperative, and postoperative contexts, how it could support intraoperative decision-making using both existing knowledge and continuous data streams throughout the surgical care pathway, and how it could enable effective collaboration between human care providers and intelligent technologies. In addition, SDS is poised to play a central role in surgical education, for example, through objective

  20. Domain analysis

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2017-01-01

    The domain-analytic approach to knowledge organization (KO) (and to the broader field of library and information science, LIS) is outlined. The article reviews the discussions and proposals on the definition of domains, and provides an example of a domain-analytic study in the field of art studies....... Varieties of domain analysis as well as criticism and controversies are presented and discussed....

  1. KNIME for reproducible cross-domain analysis of life science data.

    Science.gov (United States)

    Fillbrunn, Alexander; Dietz, Christian; Pfeuffer, Julianus; Rahn, René; Landrum, Gregory A; Berthold, Michael R

    2017-11-10

    Experiments in the life sciences often involve tools from a variety of domains such as mass spectrometry, next generation sequencing, or image processing. Passing the data between those tools often involves complex scripts for controlling data flow, data transformation, and statistical analysis. Such scripts are not only prone to be platform dependent, they also tend to grow as the experiment progresses and are seldomly well documented, a fact that hinders the reproducibility of the experiment. Workflow systems such as KNIME Analytics Platform aim to solve these problems by providing a platform for connecting tools graphically and guaranteeing the same results on different operating systems. As an open source software, KNIME allows scientists and programmers to provide their own extensions to the scientific community. In this review paper we present selected extensions from the life sciences that simplify data exploration, analysis, and visualization and are interoperable due to KNIME's unified data model. Additionally, we name other workflow systems that are commonly used in the life sciences and highlight their similarities and differences to KNIME. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. What's in a Domain: Understanding How Students Approach Questioning in History and Science

    Science.gov (United States)

    Portnoy, Lindsay Blau; Rabinowitz, Mitchell

    2014-01-01

    How students ask questions as they learn has implications for understanding, retention, and problem solving. The current research investigates the influence of domain, age, and previous experience with content on the ways students approach questioning across history and science texts. In 3 experiments, 3rd-, 8th-, and 10th-grade students in large…

  3. A Comparison of Student Teachers' Beliefs from Four Different Science Teaching Domains Using a Mixed Methods Design

    Science.gov (United States)

    Markic, Silvija; Eilks, Ingo

    2012-01-01

    The study presented in this paper integrates data from four combined research studies, which are both qualitative and quantitative in nature. The studies describe freshman science student teachers' beliefs about teaching and learning. These freshmen intend to become teachers in Germany in one of four science teaching domains (secondary biology,…

  4. Finding Relevance, Competence, and Enjoyment: The Development of Domain Identification and Interest in First-Year Science Majors

    Science.gov (United States)

    Ruff, Chloe

    2016-01-01

    The purpose of this qualitative study was to examine how first-year college students perceive their development of domain identification with, and interest in, their prospective science major during their initial year of college. Four themes emerged from the coding and analysis of interviews with eight first-year science students: Self-Definition…

  5. A Comparison of Student Teachers' Beliefs from Four Different Science Teaching Domains Using a Mixed Methods Design

    Science.gov (United States)

    Markic, Silvija; Eilks, Ingo

    2012-03-01

    The study presented in this paper integrates data from four combined research studies, which are both qualitative and quantitative in nature. The studies describe freshman science student teachers' beliefs about teaching and learning. These freshmen intend to become teachers in Germany in one of four science teaching domains (secondary biology, chemistry, and physics, respectively, as well as primary school science). The qualitative data from the first study are based on student teachers' drawings of themselves in teaching situations. It was formulated using Grounded Theory to test three scales: Beliefs about Classroom Organisation, Beliefs about Teaching Objectives, and Epistemological Beliefs. Three further quantitative studies give insight into student teachers' curricular beliefs, their beliefs about the nature of science itself, and about the student- and/or teacher-centredness of science teaching. This paper describes a design to integrate all these data within a mixed methods framework. The aim of the current study is to describe a broad, triangulated picture of freshman science student teachers' beliefs about teaching and learning within their respective science teaching domain. The study reveals clear tendencies between the sub-groups. The results suggest that freshman chemistry and-even more pronouncedly-freshman physics student teachers profess quite traditional beliefs about science teaching and learning. Biology and primary school student teachers express beliefs about their subjects which are more in line with modern educational theory. The mixed methods approach towards the student teachers' beliefs is reflected upon and implications for science education and science teacher education are discussed.

  6. History and Philosophy of Science as a Guide to Understanding Nature of Science

    Directory of Open Access Journals (Sweden)

    Mansoor Niaz

    2016-06-01

    Full Text Available Nature of science (NOS is considered to be a controversial topic by historians, philosophers of science and science educators. It is paradoxical that we all teach science and still have difficulties in understanding what science is and how it develops and progresses. A major obstacle in understanding NOS is that science is primarily ‘unnatural’, that is it cannot be learned by a simple observation of phenomena. In most parts of the world history and philosophy of science are ‘inside’ science content and as such can guide our understanding of NOS. However, some science educators consider the ‘historical turn’ as dated and hence neglect the historical approach and instead emphasize the model based naturalist view of science. The objective of this presentation is to show that the historical approach is very much a part of teaching science and actually complements naturalism. Understanding NOS generally requires two aspects of science: Domain general and domain specific. In the classroom this can be illustrated by discussing the atomic models developed in the early 20th century which constitute the domain specific aspect of NOS. This can then lead to an understanding of the tentative nature of science that is a domain general aspect of NOS. A review of the literature in science education reveals three views (among others of understanding NOS: a Consensus view: It attempts to include only those domain-general NOS aspects that are the least controversial (Lederman, Abd-El-Khalick; b Family resemblance view: Based on the ideas of Wittgenstein, this view promotes science as a cognitive system (Irzik, Nola; c Integrated view: this view postulates that both domain general and domain specific aspects of NOS are not dichotomous but rather need to be integrated and are essential if we want students to understand ‘science in the making’ (Niaz. The following framework helps to facilitate integration: i Elaboration of a theoretical framework

  7. Reflections of Science Teachers in a Professional Development Intervention to Improve Their Ability to Teach for the Affective Domain

    Science.gov (United States)

    Buma, Anastasia Malong

    2018-01-01

    This paper reports on key aspects of a short in-service programme improving science teachers' pedagogical content knowledge to teach for the affective domain. The affective domain refers to outcomes that involve changes in feelings, values, appreciation, interests, motivations or attitudes that might result from a learning experience. The…

  8. Connecting art and science: An interdisciplinary strategy and its impact on the affective domain of community college human anatomy students

    Science.gov (United States)

    Petti, Kevin

    Educational objectives are often described within the framework of a three-domain taxonomy: cognitive, affective and psychomotor. While most of the research on educational objectives has focused on the cognitive domain, the research that has been conducted on the affective domain, which speaks to emotions, attitudes, and values, has identified a number of positive outcomes. One approach to enhancing the affective domain is that of interdisciplinary education. Science education research in the realm of interdisciplinary education and affective outcomes is limited; especially research conducted on community college students of human anatomy. This project investigated the relationship between an interdisciplinary teaching strategy and the affective domain in science education by utilizing an interdisciplinary lecture in a human anatomy class. Subjects were anatomy students in a California community college who listened to a one-hour lecture describing the cultural, historical and scientific significance of selected pieces of art depicting human dissection in European medieval and Renaissance universities. The focus was on how these renderings represent the state of anatomy education during their respective eras. After listening to the lecture, subjects were administered a 35-question survey that was composed of 14 demographic questions and 21 Likert-style statements that asked respondents to rate the extent to which the intervention influenced their affective domain. Descriptive statistics were then used to determine which component of the affective domain was most influenced, and multiple regression analysis was used to examine the extent to which individual differences along the affective continuum were explained by select demographic measures such as gender, race/ethnicity, education level, and previous exposure to science courses. Results indicate that the interdisciplinary intervention had a positive impact on every component of the affective domain hierarchy

  9. Student Motivation in Science Subjects in Tanzania, Including Students' Voices

    Science.gov (United States)

    Mkimbili, Selina Thomas; Ødegaard, Marianne

    2017-12-01

    Fostering and maintaining students' interest in science is an important aspect of improving science learning. The focus of this paper is to listen to and reflect on students' voices regarding the sources of motivation for science subjects among students in community secondary schools with contextual challenges in Tanzania. We conducted a group-interview study of 46 Form 3 and Form 4 Tanzanian secondary school students. The study findings reveal that the major contextual challenges to student motivation for science in the studied schools are limited resources and students' insufficient competence in the language of instruction. Our results also reveal ways to enhance student motivation for science in schools with contextual challenges; these techniques include the use of questioning techniques and discourse, students' investigations and practical work using locally available materials, study tours, more integration of classroom science into students' daily lives and the use of real-life examples in science teaching. Also we noted that students' contemporary life, culture and familiar language can be utilised as a useful resource in facilitating meaningful learning in science in the school. Students suggested that, to make science interesting to a majority of students in a Tanzanian context, science education needs to be inclusive of students' experiences, culture and contemporary daily lives. Also, science teaching and learning in the classroom need to involve learners' voices.

  10. Integrating art into science education: a survey of science teachers' practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-07-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science teachers (n = 66). A pedagogical model for science teachers' art integration emerged from a qualitative content analysis conducted on examples of art integration. In the model, art integration is characterised as integration through content and activities. Whilst the links in the content were facilitated either directly between concepts and ideas or indirectly through themes or artefacts, the integration through activity often connected an activity in one domain and a concept, idea or artefact in the other domain with the exception of some activities that could belong to both domains. Moreover, the examples of art integration in everyday classroom did not include expression of emotions often associated with art. In addition, quantitative part of the survey confirmed that integration is infrequent in all mapped areas. The findings of this study have implications for science teacher education that should offer opportunities for more consistent art integration.

  11. Nature of Science or Nature of the Sciences?

    Science.gov (United States)

    Schizas, Dimitrios; Psillos, Dimitris; Stamou, George

    2016-01-01

    The present essay examines the emerging issue of domain-general versus domain-specific nature of science (NOS) understandings from a perspective that illuminates the value of domain-specific philosophies of science for the growth and development of the NOS educational field. Under the assumption that individual sciences do have their own…

  12. Teacher perspectives on science literacy in multilingual classrooms –multidisciplinary explorations

    DEFF Research Database (Denmark)

    Hajer, Maaike; Nielsen, Birgitte Lund; Tytler, Russell

    using Clarke & Hollingworth (2002) (referred to as C&H) model for analyzing teacher development as connections between teachers personal domain of knowledge and beliefs, practice domain of experimenting in the classroom, domain of consequence including salient student outcomes and the external domain...... that requires multidisciplinary cooperation. The Swedish Science and Literacy Teaching (SALT)project focuses on the questions How do science teachers address literacy skills in classes with secondary students in a multilingual classroom? and How can an explicit focus on literacy development become an integrated...... part of science teachers’ practice and thinking? The multidisciplinary team includes expertise in applied linguistics (text analysis, second language teaching), science pedagogy and teacher professional development. Having gathered the SALT data, the challenge in this phase is in the analysis. How can...

  13. Learning Science: Some Insights from Cognitive Science

    Science.gov (United States)

    Matthews, P. S. C.

    Theories of teaching and learning, including those associated with constructivism, often make no overt reference to an underlying assumption that they make; that is, human cognition depends on domain-free, general-purpose processing by the brain. This assumption is shown to be incompatible with evidence from studies of children's early learning. Rather, cognition is modular in nature, and often domain-specific. Recognition of modularity requires a re-evaluation of some aspects of current accounts of learning science. Especially, children's ideas in science are sometimes triggered rather than learned. It is in the nature of triggered conceptual structures that they are not necessarily expressible in language, and that they may not be susceptible to change by later learning.

  14. Office Staff | About IASc | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Office Staff. Office EPABX: +91-80-2266 1200. Change in email domain name. The domain part of the email address of all email addresses used by the office of Indian Academy of Sciences, including those of the staff, the journals, various programmes, and Current Science, has changed from 'ias.ernet.in' (or ...

  15. Assessing Data Quality in Emergent Domains of Earth Sciences

    Science.gov (United States)

    Darch, P. T.; Borgman, C.

    2016-12-01

    interpret. Incentive structures, including prospects for journal publication, often favor new data over reanalyzing extant datasets. Assessing data quality in emergent domains is extremely difficult and will require adaptations in infrastructure, culture, and incentives.

  16. Contact details | About IASc | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Contact. Change in email domain name. The domain part of the email address of all email addresses used by the office of Indian Academy of Sciences, including those of the staff, the journals, various programmes, and Current Science, has changed from 'ias.ernet.in' (or 'academy.ias.ernet.in') to 'ias.ac.in'. Thus, for ...

  17. Valeriu Bologa's studies on the history of science.

    Science.gov (United States)

    Bârsu, Cristian

    2016-01-01

    History of science is a vast and complex domain, comprising many sub-domains, such as: the history of medicine, history of chemistry, history of physics etc. Different specialists in these sub-domains, trying to reach the general and integrative understanding of the history of science, succeeded only after they acquired a rich scientific experience in their fields of activity. One of the scientists who had interesting papers on the history of science was Valeriu Bologa (1892-1971). He was the first Romanian professor of history of medicine. Our paper presents some milestones regarding his preoccupations on the history of science. The aim of our study is to prove that, although he was primarily a historian of medicine, he surpassed this framework, proving to be a skillful historian of science. The topics of his works on the history of science included: the value of the unity of science, the ethical aspects of science during centuries, the interferences between the history of science and the history of medicine etc.

  18. Argumentation to Foster Pre-Service Science Teachers' Knowledge, Competency, and Attitude on the Domains of Chemical Literacy of Acids and Bases

    Science.gov (United States)

    Cigdemoglu, C.; Arslan, H. O.; Cam, A.

    2017-01-01

    Argumentative practices have the potential to contribute to scientific literacy. However, these practices are not widely incorporated in science classrooms and so their effect on the domains of literacy is still not revealed. Therefore, this study proposes to reveal the effect of argumentation on the three domains of chemical literacy related to…

  19. Information Science: Science or Social Science?

    OpenAIRE

    Sreeramana Aithal; Paul P.K.,; Bhuimali A.

    2017-01-01

    Collection, selection, processing, management, and dissemination of information are the main and ultimate role of Information Science and similar studies such as Information Studies, Information Management, Library Science, and Communication Science and so on. However, Information Science deals with some different characteristics than these subjects. Information Science is most interdisciplinary Science combines with so many knowledge clusters and domains. Information Science is a broad disci...

  20. "helix Nebula - the Science Cloud", a European Science Driven Cross-Domain Initiative Implemented in via AN Active Ppp Set-Up

    Science.gov (United States)

    Lengert, W.; Mondon, E.; Bégin, M. E.; Ferrer, M.; Vallois, F.; DelaMar, J.

    2015-12-01

    Helix Nebula, a European science cross-domain initiative building on an active PPP, is aiming to implement the concept of an open science commons[1] while using a cloud hybrid model[2] as the proposed implementation solution. This approach allows leveraging and merging of complementary data intensive Earth Science disciplines (e.g. instrumentation[3] and modeling), without introducing significant changes in the contributors' operational set-up. Considering the seamless integration with life-science (e.g. EMBL), scientific exploitation of meteorological, climate, and Earth Observation data and models open an enormous potential for new big data science. The work of Helix Nebula has shown that is it feasible to interoperate publicly funded infrastructures, such as EGI [5] and GEANT [6], with commercial cloud services. Such hybrid systems are in the interest of the existing users of publicly funded infrastructures and funding agencies because they will provide "freedom and choice" over the type of computing resources to be consumed and the manner in which they can be obtained. But to offer such freedom and choice across a spectrum of suppliers, various issues such as intellectual property, legal responsibility, service quality agreements and related issues need to be addressed. Finding solutions to these issues is one of the goals of the Helix Nebula initiative. [1] http://www.egi.eu/news-and-media/publications/OpenScienceCommons_v3.pdf [2] http://www.helix-nebula.eu/events/towards-the-european-open-science-cloud [3] e.g. https://sentinel.esa.int/web/sentinel/sentinel-data-access [5] http://www.egi.eu/ [6] http://www.geant.net/

  1. Pharmaceutical HIV prevention technologies in the UK: six domains for social science research.

    Science.gov (United States)

    Keogh, Peter; Dodds, Catherine

    2015-01-01

    The development of pharmaceutical HIV prevention technologies (PPTs) over the last five years has generated intense interest from a range of stakeholders. There are concerns that these clinical and pharmaceutical interventions are proceeding with insufficient input of the social sciences. Hence key questions around implementation and evaluation remain unexplored whilst biomedical HIV prevention remains insufficiently critiqued or theorised from sociological as well as other social science perspectives. This paper presents the results of an expert symposium held in the UK to explore and build consensus on the role of the social sciences in researching and evaluating PPTs in this context. The symposium brought together UK social scientists from a variety of backgrounds. A position paper was produced and distributed in advance of the symposium and revised in the light this consultation phase. These exchanges and the emerging structure of this paper formed the basis for symposium panel presentations and break-out sessions. Recordings of all sessions were used to further refine the document which was also redrafted in light of ongoing comments from symposium participants. Six domains of enquiry for the social sciences were identified and discussed: self, identity and personal narrative; intimacy, risk and sex; communities, resistance and activism; systems, structures and institutions; economic considerations and analyses; and evaluation and outcomes. These are discussed in depth alongside overarching consensus points for social science research in this area as it moves forward.

  2. Using design science in educational technology research projects

    Directory of Open Access Journals (Sweden)

    Susan M. Chard

    2017-12-01

    Full Text Available Design science is a research paradigm where the development and evaluation of a technology artefact is a key contribution. Design science is used in many domains and this paper draws on those domains to formulate a generic structure for design science research suitable for educational technology research projects. The paper includes guidelines for writing proposals using the design science research methodology for educational technology research and presents a generic research report structure. The paper presents ethical issues to consider in design science research being conducted in educational settings and contributes guidelines for assessment when the research contribution involves the creation of a technology artefact.

  3. Enhancing visuospatial performance through video game training to increase learning in visuospatial science domains.

    Science.gov (United States)

    Sanchez, Christopher A

    2012-02-01

    Although previous research has demonstrated that performance on visuospatial assessments can be enhanced through relevant experience, an unaddressed question is whether such experience also produces a similar increase in target domains (such as science learning) where visuospatial abilities are directly relevant for performance. In the present study, participants completed either spatial or nonspatial training via interaction with video games and were then asked to read and learn about the geologic topic of plate tectonics. Results replicate the benefit of playing appropriate video games in enhancing visuospatial performance and demonstrate that this facilitation also manifests itself in learning science topics that are visuospatial in nature. This novel result suggests that visuospatial training not only can impact performance on measures of spatial functioning, but also can affect performance in content areas in which these abilities are utilized.

  4. Valeriu Bologa’s studies on the history of science

    Science.gov (United States)

    BÂRSU, CRISTIAN

    2016-01-01

    History of science is a vast and complex domain, comprising many sub-domains, such as: the history of medicine, history of chemistry, history of physics etc. Different specialists in these sub-domains, trying to reach the general and integrative understanding of the history of science, succeeded only after they acquired a rich scientific experience in their fields of activity. One of the scientists who had interesting papers on the history of science was Valeriu Bologa (1892–1971). He was the first Romanian professor of history of medicine. Our paper presents some milestones regarding his preoccupations on the history of science. The aim of our study is to prove that, although he was primarily a historian of medicine, he surpassed this framework, proving to be a skillful historian of science. The topics of his works on the history of science included: the value of the unity of science, the ethical aspects of science during centuries, the interferences between the history of science and the history of medicine etc. PMID:27547069

  5. User interfaces for computational science: A domain specific language for OOMMF embedded in Python

    Science.gov (United States)

    Beg, Marijan; Pepper, Ryan A.; Fangohr, Hans

    2017-05-01

    Computer simulations are used widely across the engineering and science disciplines, including in the research and development of magnetic devices using computational micromagnetics. In this work, we identify and review different approaches to configuring simulation runs: (i) the re-compilation of source code, (ii) the use of configuration files, (iii) the graphical user interface, and (iv) embedding the simulation specification in an existing programming language to express the computational problem. We identify the advantages and disadvantages of different approaches and discuss their implications on effectiveness and reproducibility of computational studies and results. Following on from this, we design and describe a domain specific language for micromagnetics that is embedded in the Python language, and allows users to define the micromagnetic simulations they want to carry out in a flexible way. We have implemented this micromagnetic simulation description language together with a computational backend that executes the simulation task using the Object Oriented MicroMagnetic Framework (OOMMF). We illustrate the use of this Python interface for OOMMF by solving the micromagnetic standard problem 4. All the code is publicly available and is open source.

  6. Defining Tobacco Regulatory Science Competencies.

    Science.gov (United States)

    Wipfli, Heather L; Berman, Micah; Hanson, Kacey; Kelder, Steven; Solis, Amy; Villanti, Andrea C; Ribeiro, Carla M P; Meissner, Helen I; Anderson, Roger

    2017-02-01

    In 2013, the National Institutes of Health and the Food and Drug Administration funded a network of 14 Tobacco Centers of Regulatory Science (TCORS) with a mission that included research and training. A cross-TCORS Panel was established to define tobacco regulatory science (TRS) competencies to help harmonize and guide their emerging educational programs. The purpose of this paper is to describe the Panel's work to develop core TRS domains and competencies. The Panel developed the list of domains and competencies using a semistructured Delphi method divided into four phases occurring between November 2013 and August 2015. The final proposed list included a total of 51 competencies across six core domains and 28 competencies across five specialized domains. There is a need for continued discussion to establish the utility of the proposed set of competencies for emerging TRS curricula and to identify the best strategies for incorporating these competencies into TRS training programs. Given the field's broad multidisciplinary nature, further experience is needed to refine the core domains that should be covered in TRS training programs versus knowledge obtained in more specialized programs. Regulatory science to inform the regulation of tobacco products is an emerging field. The paper provides an initial list of core and specialized domains and competencies to be used in developing curricula for new and emerging training programs aimed at preparing a new cohort of scientists to conduct critical TRS research. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Design and development of semantic web-based system for computer science domain-specific information retrieval

    Directory of Open Access Journals (Sweden)

    Ritika Bansal

    2016-09-01

    Full Text Available In semantic web-based system, the concept of ontology is used to search results by contextual meaning of input query instead of keyword matching. From the research literature, there seems to be a need for a tool which can provide an easy interface for complex queries in natural language that can retrieve the domain-specific information from the ontology. This research paper proposes an IRSCSD system (Information retrieval system for computer science domain as a solution. This system offers advanced querying and browsing of structured data with search results automatically aggregated and rendered directly in a consistent user-interface, thus reducing the manual effort of users. So, the main objective of this research is design and development of semantic web-based system for integrating ontology towards domain-specific retrieval support. Methodology followed is a piecemeal research which involves the following stages. First Stage involves the designing of framework for semantic web-based system. Second stage builds the prototype for the framework using Protégé tool. Third Stage deals with the natural language query conversion into SPARQL query language using Python-based QUEPY framework. Fourth Stage involves firing of converted SPARQL queries to the ontology through Apache's Jena API to fetch the results. Lastly, evaluation of the prototype has been done in order to ensure its efficiency and usability. Thus, this research paper throws light on framework development for semantic web-based system that assists in efficient retrieval of domain-specific information, natural language query interpretation into semantic web language, creation of domain-specific ontology and its mapping with related ontology. This research paper also provides approaches and metrics for ontology evaluation on prototype ontology developed to study the performance based on accessibility of required domain-related information.

  8. AFSPC Innovation and Science and Technology Outreach to Industry and Academia

    Science.gov (United States)

    Sanchez, Merri J.; Dills, Anthony N.; Chandler, Faith

    2016-01-01

    The U.S. Air Force is taking a strategic approach to ensuring that we are at the cutting edge of science and technology. This includes fostering game-changing approaches and technologies that are balanced with operational needs. The security of the Nation requires a constant pursuit of science, technical agility, and a rapid adoption of innovation. This includes pursuits of game-changing technologies and domains that perhaps we cannot even imagine today. This paper highlights the Air Force Space Command (AFSPC) collaboration and outreach to other government agencies, military and national laboratories, industry, and academia on long term science and technology challenges. In particular we discuss the development of the AFSPC Long Term Science and Technology Challenges that include both space and cyberspace operations within a multi-domain environment and the subsequent Innovation Summits.

  9. .Gov Domains API

    Data.gov (United States)

    General Services Administration — This dataset offers the list of all .gov domains, including state, local, and tribal .gov domains. It does not include .mil domains, or other federal domains outside...

  10. S3QL: A distributed domain specific language for controlled semantic integration of life sciences data

    Directory of Open Access Journals (Sweden)

    de Lencastre Hermínia

    2011-07-01

    Full Text Available Abstract Background The value and usefulness of data increases when it is explicitly interlinked with related data. This is the core principle of Linked Data. For life sciences researchers, harnessing the power of Linked Data to improve biological discovery is still challenged by a need to keep pace with rapidly evolving domains and requirements for collaboration and control as well as with the reference semantic web ontologies and standards. Knowledge organization systems (KOSs can provide an abstraction for publishing biological discoveries as Linked Data without complicating transactions with contextual minutia such as provenance and access control. We have previously described the Simple Sloppy Semantic Database (S3DB as an efficient model for creating knowledge organization systems using Linked Data best practices with explicit distinction between domain and instantiation and support for a permission control mechanism that automatically migrates between the two. In this report we present a domain specific language, the S3DB query language (S3QL, to operate on its underlying core model and facilitate management of Linked Data. Results Reflecting the data driven nature of our approach, S3QL has been implemented as an application programming interface for S3DB systems hosting biomedical data, and its syntax was subsequently generalized beyond the S3DB core model. This achievement is illustrated with the assembly of an S3QL query to manage entities from the Simple Knowledge Organization System. The illustrative use cases include gastrointestinal clinical trials, genomic characterization of cancer by The Cancer Genome Atlas (TCGA and molecular epidemiology of infectious diseases. Conclusions S3QL was found to provide a convenient mechanism to represent context for interoperation between public and private datasets hosted at biomedical research institutions and linked data formalisms.

  11. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

    Science.gov (United States)

    Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

    2015-10-01

    We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

  12. Effect of levels of inquiry model of science teaching on scientific literacy domain attitudes

    Science.gov (United States)

    Achmad, Maulana; Suhandi, Andi

    2017-05-01

    The aim of this research was to obtain an overview of the increase scientific literacy attitudes domain in high school students as the effects of the Levels of Inquiry (LOI) model of science teaching. This research using a quasi-experimental methods and randomizedpretest-posttest control group design. The subject of this research was students of grade X in a senior high school in Purwakarta and it consists of two classes who were divided into experimental class (30 students) and control class (30 students). While experimental class was taught LOIand control class was taught Interactive Lecture Demonstration (ILD). Data were collected using an attitude scale scientific literacy test which is based on the Likert scale. Data were analyzed using normality test, homogeneity test, and t-test to the value of N-gain attitude of scientific literacy scale test. The result of percentage average N-gain experimental class and control are 49 and 31 that classified into medium improvement category. Based on the results of hypothesis testing on the N-gain value obtained by the Sig.(One-tailed) 0.000 < 0.050, it means that H1 was accepted. The results showed that scientific literacy domain attitude of students who got learning by LOI is higher than students who got learning by ILD. It can be concluded that the effect of LOI is better to improve scientific literacy domain attitudes significantly.

  13. User interfaces for computational science: A domain specific language for OOMMF embedded in Python

    Directory of Open Access Journals (Sweden)

    Marijan Beg

    2017-05-01

    Full Text Available Computer simulations are used widely across the engineering and science disciplines, including in the research and development of magnetic devices using computational micromagnetics. In this work, we identify and review different approaches to configuring simulation runs: (i the re-compilation of source code, (ii the use of configuration files, (iii the graphical user interface, and (iv embedding the simulation specification in an existing programming language to express the computational problem. We identify the advantages and disadvantages of different approaches and discuss their implications on effectiveness and reproducibility of computational studies and results. Following on from this, we design and describe a domain specific language for micromagnetics that is embedded in the Python language, and allows users to define the micromagnetic simulations they want to carry out in a flexible way. We have implemented this micromagnetic simulation description language together with a computational backend that executes the simulation task using the Object Oriented MicroMagnetic Framework (OOMMF. We illustrate the use of this Python interface for OOMMF by solving the micromagnetic standard problem 4. All the code is publicly available and is open source.

  14. Femtochemistry and femtobiology ultrafast dynamics in molecular science

    CERN Document Server

    Douhal, Abderrazzak

    2002-01-01

    This book contains important contributions from top international scientists on the-state-of-the-art of femtochemistry and femtobiology at the beginning of the new millennium. It consists of reviews and papers on ultrafast dynamics in molecular science.The coverage of topics highlights several important features of molecular science from the viewpoint of structure (space domain) and dynamics (time domain). First of all, the book presents the latest developments, such as experimental techniques for understanding ultrafast processes in gas, condensed and complex systems, including biological mol

  15. Association of Academic Performance with Outcome Expectations and Its Domains in Nursing and Midwifery Students at Kermanshah University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Sepideh Bakhtiari

    2014-09-01

    Full Text Available Introduction: Outcome expectation is considered as a basic and significant variable in education. It is a cognitive-motivational component that takes the individual into account as an active and sensible decision-maker. The present study was conducted to investigate the correlation of outcome expectations with academic performance of students of nursing and midwifery in Kermanshah University of Medical Sciences. Methods: In this descriptive cross-sectional study, the sample size included 218 nursing and midwifery students selected through convenient random sampling method. The instrument for data collection was the questionnaire of “outcome expectations of career decision-making and discovery targets”, which comprised of 13 questions in three domains of future orientation, job satisfaction and personal expectations. The questionnaires were coded after being completed and the obtained data were fed into SPSS-16 software and analyzed by descriptive statistics, t-test, Kolmogrov-Smirnov, ANOVA and Mann-Whitney tests. Results: The findings indicated no statistically significant difference between place of living (dormitory or home and outcome expectations along with its domains (39.4% and 60-6%. However, a significant correlation was reported between discipline, gender, admittance year and academic performance of the students (p0.05. Conclusion: The findings of this study indicated a positively positive significant relationship between students’ academic performance and outcome expectations along with its domains.

  16. Does "science" make you moral? The effects of priming science on moral judgments and behavior.

    Science.gov (United States)

    Ma-Kellams, Christine; Blascovich, Jim

    2013-01-01

    Previous work has noted that science stands as an ideological force insofar as the answers it offers to a variety of fundamental questions and concerns; as such, those who pursue scientific inquiry have been shown to be concerned with the moral and social ramifications of their scientific endeavors. No studies to date have directly investigated the links between exposure to science and moral or prosocial behaviors. Across four studies, both naturalistic measures of science exposure and experimental primes of science led to increased adherence to moral norms and more morally normative behaviors across domains. Study 1 (n = 36) tested the natural correlation between exposure to science and likelihood of enforcing moral norms. Studies 2 (n = 49), 3 (n = 52), and 4 (n = 43) manipulated thoughts about science and examined the causal impact of such thoughts on imagined and actual moral behavior. Across studies, thinking about science had a moralizing effect on a broad array of domains, including interpersonal violations (Studies 1, 2), prosocial intentions (Study 3), and economic exploitation (Study 4). These studies demonstrated the morally normative effects of lay notions of science. Thinking about science leads individuals to endorse more stringent moral norms and exhibit more morally normative behavior. These studies are the first of their kind to systematically and empirically test the relationship between science and morality. The present findings speak to this question and elucidate the value-laden outcomes of the notion of science.

  17. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Pramana – Journal of Physics; Volume 70; Issue 1 ..... The domain part of the email address of all email addresses used by the office of Indian Academy of Sciences, including those of the staff, the journals, various programmes, and Current Science, has ... Please take note of this change.

  18. Structural Dynamics of the GW182 Silencing Domain Including its RNA Recognition motif (RRM) Revealed by Hydrogen-Deuterium Exchange Mass Spectrometry

    Science.gov (United States)

    Cieplak-Rotowska, Maja K.; Tarnowski, Krzysztof; Rubin, Marcin; Fabian, Marc R.; Sonenberg, Nahum; Dadlez, Michal; Niedzwiecka, Anna

    2018-01-01

    The human GW182 protein plays an essential role in micro(mi)RNA-dependent gene silencing. miRNA silencing is mediated, in part, by a GW182 C-terminal region called the silencing domain, which interacts with the poly(A) binding protein and the CCR4-NOT deadenylase complex to repress protein synthesis. Structural studies of this GW182 fragment are challenging due to its predicted intrinsically disordered character, except for its RRM domain. However, detailed insights into the properties of proteins containing disordered regions can be provided by hydrogen-deuterium exchange mass spectrometry (HDX/MS). In this work, we applied HDX/MS to define the structural state of the GW182 silencing domain. HDX/MS analysis revealed that this domain is clearly divided into a natively unstructured part, including the CCR4-NOT interacting motif 1, and a distinct RRM domain. The GW182 RRM has a very dynamic structure, since water molecules can penetrate the whole domain in 2 h. The finding of this high structural dynamics sheds new light on the RRM structure. Though this domain is one of the most frequently occurring canonical protein domains in eukaryotes, these results are - to our knowledge - the first HDX/MS characteristics of an RRM. The HDX/MS studies show also that the α2 helix of the RRM can display EX1 behavior after a freezing-thawing cycle. This means that the RRM structure is sensitive to environmental conditions and can change its conformation, which suggests that the state of the RRM containing proteins should be checked by HDX/MS in regard of the conformational uniformity. [Figure not available: see fulltext.

  19. Citizen science can improve conservation science, natural resource management, and environmental protection

    Science.gov (United States)

    McKinley, Duncan C.; Miller-Rushing, Abe J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Cook-Patton, Susan; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake F.; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2017-01-01

    Citizen science has advanced science for hundreds of years, contributed to many peer-reviewed articles, and informed land management decisions and policies across the United States. Over the last 10 years, citizen science has grown immensely in the United States and many other countries. Here, we show how citizen science is a powerful tool for tackling many of the challenges faced in the field of conservation biology. We describe the two interwoven paths by which citizen science can improve conservation efforts, natural resource management, and environmental protection. The first path includes building scientific knowledge, while the other path involves informing policy and encouraging public action. We explore how citizen science is currently used and describe the investments needed to create a citizen science program. We find that:Citizen science already contributes substantially to many domains of science, including conservation, natural resource, and environmental science. Citizen science informs natural resource management, environmental protection, and policymaking and fosters public input and engagement.Many types of projects can benefit from citizen science, but one must be careful to match the needs for science and public involvement with the right type of citizen science project and the right method of public participation.Citizen science is a rigorous process of scientific discovery, indistinguishable from conventional science apart from the participation of volunteers. When properly designed, carried out, and evaluated, citizen science can provide sound science, efficiently generate high-quality data, and help solve problems.

  20. A review on wind-driven rain research in building science

    NARCIS (Netherlands)

    Blocken, B.J.E.; Carmeliet, J.E.

    2004-01-01

    Wind-driven rain (WDR) or driving rain is rain that is given a horizontal velocity component by the wind. WDR research is of importance in a number of research areas including earth sciences, meteorology and building science. Research methods and results are exchangeable between these domains but no

  1. Sampling Approaches for Multi-Domain Internet Performance Measurement Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Calyam, Prasad

    2014-09-15

    The next-generation of high-performance networks being developed in DOE communities are critical for supporting current and emerging data-intensive science applications. The goal of this project is to investigate multi-domain network status sampling techniques and tools to measure/analyze performance, and thereby provide “network awareness” to end-users and network operators in DOE communities. We leverage the infrastructure and datasets available through perfSONAR, which is a multi-domain measurement framework that has been widely deployed in high-performance computing and networking communities; the DOE community is a core developer and the largest adopter of perfSONAR. Our investigations include development of semantic scheduling algorithms, measurement federation policies, and tools to sample multi-domain and multi-layer network status within perfSONAR deployments. We validate our algorithms and policies with end-to-end measurement analysis tools for various monitoring objectives such as network weather forecasting, anomaly detection, and fault-diagnosis. In addition, we develop a multi-domain architecture for an enterprise-specific perfSONAR deployment that can implement monitoring-objective based sampling and that adheres to any domain-specific measurement policies.

  2. Science of science.

    Science.gov (United States)

    Fortunato, Santo; Bergstrom, Carl T; Börner, Katy; Evans, James A; Helbing, Dirk; Milojević, Staša; Petersen, Alexander M; Radicchi, Filippo; Sinatra, Roberta; Uzzi, Brian; Vespignani, Alessandro; Waltman, Ludo; Wang, Dashun; Barabási, Albert-László

    2018-03-02

    Identifying fundamental drivers of science and developing predictive models to capture its evolution are instrumental for the design of policies that can improve the scientific enterprise-for example, through enhanced career paths for scientists, better performance evaluation for organizations hosting research, discovery of novel effective funding vehicles, and even identification of promising regions along the scientific frontier. The science of science uses large-scale data on the production of science to search for universal and domain-specific patterns. Here, we review recent developments in this transdisciplinary field. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Semiotics, Information Science, Documents and Computers.

    Science.gov (United States)

    Warner, Julian

    1990-01-01

    Discusses the relationship and value of semiotics to the established domains of information science. Highlights include documentation; computer operations; the language of computing; automata theory; linguistics; speech and writing; and the written language as a unifying principle for the document and the computer. (93 references) (LRW)

  4. Simplicity and Specificity in Language: Domain-General Biases Have Domain-Specific Effects

    Science.gov (United States)

    Culbertson, Jennifer; Kirby, Simon

    2016-01-01

    The extent to which the linguistic system—its architecture, the representations it operates on, the constraints it is subject to—is specific to language has broad implications for cognitive science and its relation to evolutionary biology. Importantly, a given property of the linguistic system can be “specific” to the domain of language in several ways. For example, if the property evolved by natural selection under the pressure of the linguistic function it serves then the property is domain-specific in the sense that its design is tailored for language. Equally though, if that property evolved to serve a different function or if that property is domain-general, it may nevertheless interact with the linguistic system in a way that is unique. This gives a second sense in which a property can be thought of as specific to language. An evolutionary approach to the language faculty might at first blush appear to favor domain-specificity in the first sense, with individual properties of the language faculty being specifically linguistic adaptations. However, we argue that interactions between learning, culture, and biological evolution mean any domain-specific adaptations that evolve will take the form of weak biases rather than hard constraints. Turning to the latter sense of domain-specificity, we highlight a very general bias, simplicity, which operates widely in cognition and yet interacts with linguistic representations in domain-specific ways. PMID:26793132

  5. Toward Knowledge Systems for Sustainability Science

    Science.gov (United States)

    Zaks, D. P.; Jahn, M.

    2011-12-01

    Managing ecosystems for the outcomes of agricultural productivity and resilience will require fundamentally different knowledge management systems. In the industrial paradigm of the 20th century, land was considered an open, unconstrained system managed for maximum yield. While dramatic increases in yield occurred in some crops and locations, unintended but often foreseeable consequences emerged. While productivity remains a key objective, we must develop analytic systems that can identify better management options for the full range of monetized and non-monetized inputs, outputs and outcomes that are captured in the following framing question: How much valued service (e.g. food, materials, energy) can we draw from a landscape while maintaining adequate levels of other valued or necessary services (e.g. biodiversity, water, climate regulation, cultural services) including the long-term productivity of the land? This question is placed within our contemporary framing of valued services, but structured to illuminate the shifts required to achieve long-term sufficiency and planetary resilience. This framing also highlights the need for fundamentally new knowledge systems including information management infrastructures, which effectively support decision-making on landscapes. The purpose of this initiative by authors from diverse fields across government and academic science is to call attention to the need for a vision and investment in sustainability science for landscape management. Substantially enhanced capabilities are needed to compare and integrate information from diverse sources, collected over time that link choices made to meet our needs from landscapes to both short and long term consequences. To further the goal of an information infrastructure for sustainability science, three distinct but interlocking domains are best distinguished: 1) a domain of data, information and knowledge assets; 2) a domain that houses relevant models and tools in a curated

  6. Improving the performance of DomainDiscovery of protein domain boundary assignment using inter-domain linker index

    Directory of Open Access Journals (Sweden)

    Zomaya Albert Y

    2006-12-01

    Full Text Available Abstract Background Knowledge of protein domain boundaries is critical for the characterisation and understanding of protein function. The ability to identify domains without the knowledge of the structure – by using sequence information only – is an essential step in many types of protein analyses. In this present study, we demonstrate that the performance of DomainDiscovery is improved significantly by including the inter-domain linker index value for domain identification from sequence-based information. Improved DomainDiscovery uses a Support Vector Machine (SVM approach and a unique training dataset built on the principle of consensus among experts in defining domains in protein structure. The SVM was trained using a PSSM (Position Specific Scoring Matrix, secondary structure, solvent accessibility information and inter-domain linker index to detect possible domain boundaries for a target sequence. Results Improved DomainDiscovery is compared with other methods by benchmarking against a structurally non-redundant dataset and also CASP5 targets. Improved DomainDiscovery achieves 70% accuracy for domain boundary identification in multi-domains proteins. Conclusion Improved DomainDiscovery compares favourably to the performance of other methods and excels in the identification of domain boundaries for multi-domain proteins as a result of introducing support vector machine with benchmark_2 dataset.

  7. (The Ethics of) Teaching Science and Ethics: A Collaborative Proposal.

    Science.gov (United States)

    Kabasenche, William P

    2014-12-01

    I offer a normative argument for a collaborative approach to teaching ethical issues in the sciences. Teaching science ethics requires expertise in at least two knowledge domains-the relevant science(s) and philosophical ethics. Accomplishing the aims of ethics education, while ensuring that science ethics discussions remain grounded in the best empirical science, can generally best be done through collaboration between a scientist and an ethicist. Ethics as a discipline is in danger of being misrepresented or distorted if presented by someone who lacks appropriate disciplinary training and experience. While there are exceptions, I take philosophy to be the most appropriate disciplinary domain in which to gain training in ethics teaching. Science students, who must be prepared to engage with many science ethics issues, are poorly served if their education includes a misrepresentation of ethics or specific issues. Students are less well prepared to engage specific issues in science ethics if they lack an appreciation of the resources the discipline of ethics provides. My collaborative proposal looks at a variety of ways scientists and ethicists might collaborate in the classroom to foster good science ethics education.

  8. SAXS analysis of a soluble cytosolic NgBR construct including extracellular and transmembrane domains.

    Directory of Open Access Journals (Sweden)

    Joshua Holcomb

    Full Text Available The Nogo-B receptor (NgBR is involved in oncogenic Ras signaling through directly binding to farnesylated Ras. It recruits farnesylated Ras to the non-lipid-raft membrane for interaction with downstream effectors. However, the cytosolic domain of NgBR itself is only partially folded. The lack of several conserved secondary structural elements makes this domain unlikely to form a complete farnesyl binding pocket. We find that inclusion of the extracellular and transmembrane domains that contain additional conserved residues to the cytosolic region results in a well folded protein with a similar size and shape to the E.coli cis-isoprenyl transferase (UPPs. Small Angle X-ray Scattering (SAXS analysis reveals the radius of gyration (Rg of our NgBR construct to be 18.2 Å with a maximum particle dimension (Dmax of 61.0 Å. Ab initio shape modeling returns a globular molecular envelope with an estimated molecular weight of 23.0 kD closely correlated with the calculated molecular weight. Both Kratky plot and pair distribution function of NgBR scattering reveal a bell shaped peak which is characteristic of a single globularly folded protein. In addition, circular dichroism (CD analysis reveals that our construct has the secondary structure contents similar to the UPPs. However, this result does not agree with the currently accepted topological orientation of NgBR which might partition this construct into three separate domains. This discrepancy suggests another possible NgBR topology and lends insight into a potential molecular basis of how NgBR facilitates farnesylated Ras recruitment.

  9. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Design of fair surfaces over irregular domains is a fundamental problem in computer-aided geometric design (CAGD), and has applications in engineering sciences (in aircraft, automobile, ship science etc.). In the design of fair surfaces over irregular domains defined over scattered data, it was widely accepted till recently ...

  10. Effects of the Sports on the Personality Traits and the Domains of Creativity

    Science.gov (United States)

    Top, Elif; Akil, Mustafa

    2018-01-01

    The present study investigated the correlation between the personality traits of the university students who were engaged in sports and the ones who were not engaged in sports, and their domains of creativity. A total number of 593 students studying in the faculty of sports sciences and in other departments were included the study. As the data…

  11. A Comparative Analysis of Numbers and Biology Content Domains between Turkey and the USA

    Science.gov (United States)

    Incikabi, Lutfi; Ozgelen, Sinan; Tjoe, Hartono

    2012-01-01

    This study aimed to compare Mathematics and Science programs focusing on TIMSS content domains of Numbers and Biology that produced the largest achievement gap among students from Turkey and the USA. Specifically, it utilized the content analysis method within Turkish and New York State (NYS) frameworks. The procedures of study included matching…

  12. Technique for designing a domain ontology

    OpenAIRE

    Palagin, A. V.; Petrenko, N. G.; Malakhov, K. S.

    2018-01-01

    The article describes the technique for designing a domain ontology, shows the flowchart of algorithm design and example of constructing a fragment of the ontology of the subject area of Computer Science is considered.

  13. Web portal on environmental sciences "ATMOS''

    Directory of Open Access Journals (Sweden)

    E. P. Gordov

    2006-01-01

    Full Text Available The developed under INTAS grant web portal ATMOS (http://atmos.iao.ru and http://atmos.scert.ru makes available to the international research community, environmental managers, and the interested public, a bilingual information source for the domain of Atmospheric Physics and Chemistry, and the related application domain of air quality assessment and management. It offers access to integrated thematic information, experimental data, analytical tools and models, case studies, and related information and educational resources compiled, structured, and edited by the partners into a coherent and consistent thematic information resource. While offering the usual components of a thematic site such as link collections, user group registration, discussion forum, news section etc., the site is distinguished by its scientific information services and tools: on-line models and analytical tools, and data collections and case studies together with tutorial material. The portal is organized as a set of interrelated scientific sites, which addressed basic branches of Atmospheric Sciences and Climate Modeling as well as the applied domains of Air Quality Assessment and Management, Modeling, and Environmental Impact Assessment. Each scientific site is open for external access information-computational system realized by means of Internet technologies. The main basic science topics are devoted to Atmospheric Chemistry, Atmospheric Spectroscopy and Radiation, Atmospheric Aerosols, Atmospheric Dynamics and Atmospheric Models, including climate models. The portal ATMOS reflects current tendency of Environmental Sciences transformation into exact (quantitative sciences and is quite effective example of modern Information Technologies and Environmental Sciences integration. It makes the portal both an auxiliary instrument to support interdisciplinary projects of regional environment and extensive educational resource in this important domain.

  14. Security Techniques for Prevention of Rank Manipulation in Social Tagging Services including Robotic Domains

    Directory of Open Access Journals (Sweden)

    Okkyung Choi

    2014-01-01

    Full Text Available With smartphone distribution becoming common and robotic applications on the rise, social tagging services for various applications including robotic domains have advanced significantly. Though social tagging plays an important role when users are finding the exact information through web search, reliability and semantic relation between web contents and tags are not considered. Spams are making ill use of this aspect and put irrelevant tags deliberately on contents and induce users to advertise contents when they click items of search results. Therefore, this study proposes a detection method for tag-ranking manipulation to solve the problem of the existing methods which cannot guarantee the reliability of tagging. Similarity is measured for ranking the grade of registered tag on the contents, and weighted values of each tag are measured by means of synonym relevance, frequency, and semantic distances between tags. Lastly, experimental evaluation results are provided and its efficiency and accuracy are verified through them.

  15. Security techniques for prevention of rank manipulation in social tagging services including robotic domains.

    Science.gov (United States)

    Choi, Okkyung; Jung, Hanyoung; Moon, Seungbin

    2014-01-01

    With smartphone distribution becoming common and robotic applications on the rise, social tagging services for various applications including robotic domains have advanced significantly. Though social tagging plays an important role when users are finding the exact information through web search, reliability and semantic relation between web contents and tags are not considered. Spams are making ill use of this aspect and put irrelevant tags deliberately on contents and induce users to advertise contents when they click items of search results. Therefore, this study proposes a detection method for tag-ranking manipulation to solve the problem of the existing methods which cannot guarantee the reliability of tagging. Similarity is measured for ranking the grade of registered tag on the contents, and weighted values of each tag are measured by means of synonym relevance, frequency, and semantic distances between tags. Lastly, experimental evaluation results are provided and its efficiency and accuracy are verified through them.

  16. Information Science Roles in the Emerging Field of Data Science

    Directory of Open Access Journals (Sweden)

    Gary Marchionini

    2016-06-01

    Full Text Available The article discusses how data science emerges from information science,statistics, computer science, and knowledge domain. Schools of information stand as meaningful and substantive entities that are critical to the education of scholars and practitioners who work across a wide range of enterprises. Data science is but one emerging field that will benefit from information school engagement.

  17. The public understanding of nanotechnology in the food domain: the hidden role of views on science, technology, and nature.

    Science.gov (United States)

    Vandermoere, Frederic; Blanchemanche, Sandrine; Bieberstein, Andrea; Marette, Stephan; Roosen, Jutta

    2011-03-01

    In spite of great expectations about the potential of nanotechnology, this study shows that people are rather ambiguous and pessimistic about nanotechnology applications in the food domain. Our findings are drawn from a survey of public perceptions about nanotechnology food and nanotechnology food packaging (N = 752). Multinomial logistic regression analyses further reveal that knowledge about food risks and nanotechnology significantly influences people's views about nanotechnology food packaging. However, knowledge variables were unrelated to support for nanofood, suggesting that an increase in people's knowledge might not be sufficient to bridge the gap between the excitement some business leaders in the food sector have and the restraint of the public. Additionally, opposition to nanofood was not related to the use of heuristics but to trust in governmental agencies. Furthermore, the results indicate that public perceptions of nanoscience in the food domain significantly relate to views on science, technology, and nature.

  18. Achievement of Serbian eighth grade students in science

    Directory of Open Access Journals (Sweden)

    Antonijević Radovan

    2006-01-01

    Full Text Available The paper considers the main results and some educational implications of the TIMSS 2003 assessment conducted in Serbia in the fields of the science achievement of Serbian eighth grade students and the science curriculum context of their achievement. There were 4264 students in the sample. It was confirmed that Serbian eighth graders had made average scale score of 468 points in the science, and with this achievement they are placed in the zone of the top of low international benchmarking level, very close to the point of intermediate benchmark. The average science achievement of the Serbian eighth graders is somewhat below the general international science achievement. The best results were achieved in the science content domain of "chemistry", and the lower results in the content domain of "environmental science". Across the defined science cognitive domains, it was confirmed that the Serbian students had achieved the best results in cognitive domain of "factual knowledge" and weaker results in "reasoning and analysis". The achieved results raise many questions about contents of the science curriculum in Serbia, its overall quality and basic characteristics of its implementation. These results can be eligibly used to improve the science curricula and teaching in Serbian primary school. .

  19. Accumulating Data to Optimally Predict Obesity Treatment (ADOPT) Core Measures: Behavioral Domain.

    Science.gov (United States)

    Lytle, Leslie A; Nicastro, Holly L; Roberts, Susan B; Evans, Mary; Jakicic, John M; Laposky, Aaron D; Loria, Catherine M

    2018-04-01

    The ability to identify and measure behaviors that are related to weight loss and the prevention of weight regain is crucial to understanding the variability in response to obesity treatment and the development of tailored treatments. The overarching goal of the Accumulating Data to Optimally Predict obesity Treatment (ADOPT) Core Measures Project is to provide obesity researchers with guidance on a set of constructs and measures that are related to weight control and that span and integrate obesity-related behavioral, biological, environmental, and psychosocial domains. This article describes how the behavioral domain subgroup identified the initial list of high-priority constructs and measures to be included, and it describes practical considerations for assessing the following four behavioral areas: eating, activity, sleep, and self-monitoring of weight. Challenges and considerations for advancing the science related to weight loss and maintenance behaviors are also discussed. Assessing a set of core behavioral measures in combination with those from other ADOPT domains is critical to improve our understanding of individual variability in response to adult obesity treatment. The selection of behavioral measures is based on the current science, although there continues to be much work needed in this field. © 2018 The Obesity Society.

  20. Web of Science use in published research and review papers 1997-2017: a selective, dynamic, cross-domain, content-based analysis.

    Science.gov (United States)

    Li, Kai; Rollins, Jason; Yan, Erjia

    2018-01-01

    Clarivate Analytics's Web of Science (WoS) is the world's leading scientific citation search and analytical information platform. It is used as both a research tool supporting a broad array of scientific tasks across diverse knowledge domains as well as a dataset for large-scale data-intensive studies. WoS has been used in thousands of published academic studies over the past 20 years. It is also the most enduring commercial legacy of Eugene Garfield. Despite the central position WoS holds in contemporary research, the quantitative impact of WoS has not been previously examined by rigorous scientific studies. To better understand how this key piece of Eugene Garfield's heritage has contributed to science, we investigated the ways in which WoS (and associated products and features) is mentioned in a sample of 19,478 English-language research and review papers published between 1997 and 2017, as indexed in WoS databases. We offered descriptive analyses of the distribution of the papers across countries, institutions and knowledge domains. We also used natural language processingtechniques to identify the verbs and nouns in the abstracts of these papers that are grammatically connected to WoS-related phrases. This is the first study to empirically investigate the documentation of the use of the WoS platform in published academic papers in both scientometric and linguistic terms.

  1. Data Provenance and Data Management in eScience

    CERN Document Server

    Bai, Quan; Giugni, Stephen; Williamson, Darrell; Taylor, John

    2013-01-01

    eScience allows scientific research to be carried out in highly distributed environments. The complex nature of the interactions in an eScience infrastructure, which often involves a range of instruments, data, models, applications, people and computational facilities, suggests there is a need for data provenance and data management (DPDM). The W3C Provenance Working Group defines the provenance of a resource as a “record that describes entities and processes involved in producing and delivering or otherwise influencing that resource”. It has been widely recognised that provenance is a critical issue to enable sharing, trust, authentication and reproducibility of eScience process.   Data Provenance and Data Management in eScience identifies the gaps between DPDM foundations and their practice within eScience domains including clinical trials, bioinformatics and radio astronomy. The book covers important aspects of fundamental research in DPDM including provenance representation and querying. It also expl...

  2. The SHOCT domain: a widespread domain under-represented in model organisms.

    Directory of Open Access Journals (Sweden)

    Ruth Y Eberhardt

    Full Text Available We have identified a new protein domain, which we have named the SHOCT domain (Short C-terminal domain. This domain is widespread in bacteria with over a thousand examples. But we found it is missing from the most commonly studied model organisms, despite being present in closely related species. It's predominantly C-terminal location, co-occurrence with numerous other domains and short size is reminiscent of the Gram-positive anchor motif, however it is present in a much wider range of species. We suggest several hypotheses about the function of SHOCT, including oligomerisation and nucleic acid binding. Our initial experiments do not support its role as an oligomerisation domain.

  3. AERIS: An Integrated Domain Information System for Aerospace Science and Technology

    Science.gov (United States)

    Hatua, Sudip Ranjan; Madalli, Devika P.

    2011-01-01

    Purpose: The purpose of this paper is to discuss the methodology in building an integrated domain information system with illustrations that provide proof of concept. Design/methodology/approach: The present work studies the usual search engine approach to information and its pitfalls. A methodology was adopted for construction of a domain-based…

  4. Low statistical power in biomedical science: a review of three human research domains

    Science.gov (United States)

    Dumas-Mallet, Estelle; Button, Katherine S.; Boraud, Thomas; Gonon, Francois

    2017-01-01

    Studies with low statistical power increase the likelihood that a statistically significant finding represents a false positive result. We conducted a review of meta-analyses of studies investigating the association of biological, environmental or cognitive parameters with neurological, psychiatric and somatic diseases, excluding treatment studies, in order to estimate the average statistical power across these domains. Taking the effect size indicated by a meta-analysis as the best estimate of the likely true effect size, and assuming a threshold for declaring statistical significance of 5%, we found that approximately 50% of studies have statistical power in the 0–10% or 11–20% range, well below the minimum of 80% that is often considered conventional. Studies with low statistical power appear to be common in the biomedical sciences, at least in the specific subject areas captured by our search strategy. However, we also observe evidence that this depends in part on research methodology, with candidate gene studies showing very low average power and studies using cognitive/behavioural measures showing high average power. This warrants further investigation. PMID:28386409

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Naveen Kumar. Articles written in Journal of Earth System Science. Volume 118 Issue 5 October 2009 pp 539-549. Analytical solutions of one-dimensional advection–diffusion equation with variable coefficients in a finite domain · Atul Kumar Dilip Kumar Jaiswal Naveen ...

  6. Work flows in life science

    NARCIS (Netherlands)

    Wassink, I.

    2010-01-01

    The introduction of computer science technology in the life science domain has resulted in a new life science discipline called bioinformatics. Bioinformaticians are biologists who know how to apply computer science technology to perform computer based experiments, also known as in-silico or dry lab

  7. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences. A R Aithal. Articles written in Proceedings – Mathematical Sciences. Volume 115 Issue 1 February 2005 pp 93-102. On Two Functionals Connected to the Laplacian in a Class of Doubly Connected Domains in Space-Forms · M H C Anisa A R Aithal · More Details ...

  8. Behavioural domain knowledge transfer for autonomous agents

    CSIR Research Space (South Africa)

    Rosman, Benjamin S

    2014-11-01

    Full Text Available , and Behavior Transfer in Autonomous Robots, AAAI 2014 Fall Symposium Series, 13-15 November 2014 Behavioural Domain Knowledge Transfer for Autonomous Agents Benjamin Rosman Mobile Intelligent Autonomous Systems Modelling and Digital Science Council...

  9. Insights into function of PSI domains from structure of the Met receptor PSI domain

    International Nuclear Information System (INIS)

    Kozlov, Guennadi; Perreault, Audrey; Schrag, Joseph D.; Park, Morag; Cygler, Miroslaw; Gehring, Kalle; Ekiel, Irena

    2004-01-01

    PSI domains are cysteine-rich modules found in extracellular fragments of hundreds of signaling proteins, including plexins, semaphorins, integrins, and attractins. Here, we report the solution structure of the PSI domain from the human Met receptor, a receptor tyrosine kinase critical for proliferation, motility, and differentiation. The structure represents a cysteine knot with short regions of secondary structure including a three-stranded antiparallel β-sheet and two α-helices. All eight cysteines are involved in disulfide bonds with the pattern consistent with that for the PSI domain from Sema4D. Comparison with the Sema4D structure identifies a structurally conserved core comprising the N-terminal half of the PSI domain. Interestingly, this part links adjacent SEMA and immunoglobulin domains in the Sema4D structure, suggesting that the PSI domain serves as a wedge between propeller and immunoglobulin domains and is responsible for the correct positioning of the ligand-binding site of the receptor

  10. Elementary teachers' knowledge and practices in teaching science to English language learners

    Science.gov (United States)

    Santau, Alexandra O.

    Efforts to improve education---more concretely science education---by creating fundamental shifts in standards for students and teachers have been launched by educators and policy makers in recent years. The new standards for science instruction address improvements in student learning, program development, assessment, and professional development for teachers, with the goal to prepare US students for the academic demands of the 21st century. The study examined teachers' knowledge and practices in science instruction with English language learning (ELL) students. It also examined relationships among key domains of science instruction with ELL students, as well as profiles of teaching practices. The four domains included: (1) teachers' knowledge of science content, (2) teaching practices to promote scientific understanding, (3) teaching practices to promote scientific inquiry, and (4) teaching practices to support English language development during science instruction. The study was part of a larger 5-year research and development intervention aimed at promoting science and literacy achievement of ELL students in urban elementary schools. The study involved 32 third grade, 21 fourth grade, and 17 fifth grade teachers participating in the first-year implementation of the intervention. Based on teachers' questionnaire responses, classroom observation ratings, and post-observation interviews, results indicated that (1) teachers' knowledge and practices were within the bounds of the intervention, but short of reform-oriented practices and (2) relationships among the four domains existed, especially at grade 5. These findings can provide insights for professional development and future research, along with accountability policies.

  11. Applying Nano technology to Human Health: Revolution in Biomedical Sciences

    International Nuclear Information System (INIS)

    Shrivastava, S.; Dash, D.

    2009-01-01

    Recent research on bio systems at the nano scale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, necrophorum engineering, and developing a sustainable environment. Nano bio systems research is a priority in many countries and its relevance within nano technology is expected to increase in the future. The realisation that the nano scale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nano medical research. The present review explores the significance of nano science and latest nano technologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas

  12. Introduction to cognition in science and technology.

    Science.gov (United States)

    Gorman, Michael E

    2009-10-01

    Cognitive studies of science and technology have had a long history of largely independent research projects that have appeared in multiple outlets, but rarely together. The emergence of a new International Society for Psychology of Science and Technology suggests that this is a good time to put some of the latest work in this area into topiCS in a way that will both acquaint readers with the cutting edge in this domain and also give them a hint of its history. One core theme includes how scientists, inventors, and engineers represent and solve problems; another, related theme is the extent to which they distribute and share cognition. Methodologies include fine-grained studies of historical records, protocols of working scientists, observations and comparisons of engineering science laboratories, and computational simulations designed both to serve as research tools and also to improve scientific problem-solving. The series of articles will conclude with the Associate Editor's suggestions for future research. Copyright © 2009 Cognitive Science Society, Inc.

  13. History, philosophy and science teaching new perspectives

    CERN Document Server

    2018-01-01

    This anthology opens new perspectives in the domain of history, philosophy, and science teaching research. Its four sections are: first, science, culture and education; second, the teaching and learning of science; third, curriculum development and justification; and fourth, indoctrination. The first group of essays deal with the neglected topic of science education and the Enlightenment tradition. These essays show that many core commitments of modern science education have their roots in this tradition, and consequently all can benefit from a more informed awareness of its strengths and weaknesses. Other essays address research on leaning and teaching from the perspectives of social epistemology and educational psychology. Included here is the first ever English translation of Ernst Mach’s most influential 1890 paper on ‘The Psychological and Logical Moment in Natural Science Teaching’. This paper launched the influential Machian tradition in education. Other essays address concrete cases of the ...

  14. Computational Science Research in Support of Petascale Electromagnetic Modeling

    International Nuclear Information System (INIS)

    Lee, L.-Q.

    2008-01-01

    Computational science research components were vital parts of the SciDAC-1 accelerator project and are continuing to play a critical role in newly-funded SciDAC-2 accelerator project, the Community Petascale Project for Accelerator Science and Simulation (ComPASS). Recent advances and achievements in the area of computational science research in support of petascale electromagnetic modeling for accelerator design analysis are presented, which include shape determination of superconducting RF cavities, mesh-based multilevel preconditioner in solving highly-indefinite linear systems, moving window using h- or p- refinement for time-domain short-range wakefield calculations, and improved scalable application I/O

  15. Computational Science: Ensuring America's Competitiveness

    National Research Council Canada - National Science Library

    Reed, Daniel A; Bajcsy, Ruzena; Fernandez, Manuel A; Griffiths, Jose-Marie; Mott, Randall D; Dongarra, J. J; Johnson, Chris R; Inouye, Alan S; Miner, William; Matzke, Martha K; Ponick, Terry L

    2005-01-01

    Computational science is now indispensable to the solution of complex problems in every sector, from traditional science and engineering domains to such key areas as national security, public health...

  16. A Research Agenda and Vision for Data Science

    Science.gov (United States)

    Mattmann, C. A.

    2014-12-01

    Big Data has emerged as a first-class citizen in the research community spanning disciplines in the domain sciences - Astronomy is pushing velocity with new ground-based instruments such as the Square Kilometre Array (SKA) and its unprecedented data rates (700 TB/sec!); Earth-science is pushing the boundaries of volume with increasing experiments in the international Intergovernmental Panel on Climate Change (IPCC) and climate modeling and remote sensing communities increasing the size of the total archives into the Exabytes scale; airborne missions from NASA such as the JPL Airborne Snow Observatory (ASO) is increasing both its velocity and decreasing the overall turnaround time required to receive products and to make them available to water managers and decision makers. Proteomics and the computational biology community are sequencing genomes and providing near real time answers to clinicians, researchers, and ultimately to patients, helping to process and understand and create diagnoses. Data complexity is on the rise, and the norm is no longer 100s of metadata attributes, but thousands to hundreds of thousands, including complex interrelationships between data and metadata and knowledge. I published a vision for data science in Nature 2013 that encapsulates four thrust areas and foci that I believe the computer science, Big Data, and data science communities need to attack over the next decade to make fundamental progress in the data volume, velocity and complexity challenges arising from the domain sciences such as those described above. These areas include: (1) rapid and unobtrusive algorithm integration; (2) intelligent and automatic data movement; (3) automated and rapid extraction text, metadata and language from heterogeneous file formats; and (4) participation and people power via open source communities. In this talk I will revisit these four areas and describe current progress; future work and challenges ahead as we move forward in this exciting age

  17. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  18. Supramolecular Pharmaceutical Sciences: A Novel Concept Combining Pharmaceutical Sciences and Supramolecular Chemistry with a Focus on Cyclodextrin-Based Supermolecules.

    Science.gov (United States)

    Higashi, Taishi; Iohara, Daisuke; Motoyama, Keiichi; Arima, Hidetoshi

    2018-01-01

    Supramolecular chemistry is an extremely useful and important domain for understanding pharmaceutical sciences because various physiological reactions and drug activities are based on supramolecular chemistry. However, it is not a major domain in the pharmaceutical field. In this review, we propose a new concept in pharmaceutical sciences termed "supramolecular pharmaceutical sciences," which combines pharmaceutical sciences and supramolecular chemistry. This concept could be useful for developing new ideas, methods, hypotheses, strategies, materials, and mechanisms in pharmaceutical sciences. Herein, we focus on cyclodextrin (CyD)-based supermolecules, because CyDs have been used not only as pharmaceutical excipients or active pharmaceutical ingredients but also as components of supermolecules.

  19. A Logic for Inclusion of Administrative Domains and Administrators in Multi-domain Authorization

    Science.gov (United States)

    Iranmanesh, Zeinab; Amini, Morteza; Jalili, Rasool

    Authorization policies for an administrative domain or a composition of multiple domains in multi-domain environments are determined by either one administrator or multiple administrators' cooperation. Several logic-based models for multi-domain environments' authorization have been proposed; however, they have not considered administrators and administrative domains in policies' representation. In this paper, we propose the syntax, proof theory, and semantics of a logic for multi-domain authorization policies including administrators and administrative domains. Considering administrators in policies provides the possibility of presenting composite administration having applicability in many collaborative applications. Indeed, administrators and administrative domains stated in policies can be used in authorization. The presented logic is based on modal logic and utilizes two calculi named the calculus of administrative domains and the calculus of administrators. It is also proved that the logic is sound. A case study is presented signifying the logic application in practical projects.

  20. Including plasma and fusion topics in the science education in school

    International Nuclear Information System (INIS)

    Kado, Shinichiro

    2015-01-01

    Yutori education (more relaxed education policy) started with the revision of the Courses of Study to introduce 'five-day week system' in 1989, continued with the reduction of the content of school lessons by 30% in 1998, and ended with the introduction of the New Courses of Study in 2011. Focusing on science education, especially in the topics of plasma and nuclear fusion, the modality of the education system in Japan is discussed considering the transition of academic performance based on the Program for International Student Assessment (PISA) in comparison with the examples in other countries. Particularly, the issues with high school textbooks are pointed out from the assessment of current textbooks, and the significance and the need for including the topic of 'plasma' in them are stated. Lastly, in order to make the general public acknowledged with plasma and nuclear fusion, it is suggested to include them also in junior high school textbooks, by briefly mentioning the terms related to plasma, solar wind, aurora phenomenon, and nuclear fusion energy. (S.K.)

  1. Data and Network Science for Noisy Heterogeneous Systems

    Science.gov (United States)

    Rider, Andrew Kent

    2013-01-01

    Data in many growing fields has an underlying network structure that can be taken advantage of. In this dissertation we apply data and network science to problems in the domains of systems biology and healthcare. Data challenges in these fields include noisy, heterogeneous data, and a lack of ground truth. The primary thesis of this work is that…

  2. Does science education need the history of science?

    Science.gov (United States)

    Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K

    2008-06-01

    This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.

  3. Globalization and Science Education

    Science.gov (United States)

    Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won

    2013-06-01

    Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.

  4. Effects of multi-domain interventions in (prefrail elderly on frailty, functional, and cognitive status: a systematic review

    Directory of Open Access Journals (Sweden)

    Dedeyne L

    2017-05-01

    Full Text Available Lenore Dedeyne,1 Mieke Deschodt,2–4 Sabine Verschueren,5 Jos Tournoy,1,3 Evelien Gielen1,3 1Department of Clinical and Experimental Medicine, 2Department of Public Health and Primary Care, KU Leuven – University of Leuven, Leuven, Belgium; 3Department of Geriatric Medicine, University Hospitals Leuven, Leuven, Belgium; 4Department of Public Health, Institute of Nursing Science, University of Basel, Basel, Switzerland; 5Department of Rehabilitation Sciences, KU Leuven – University of Leuven, Heverlee, Belgium Background: Frailty is an aging syndrome caused by exceeding a threshold of decline across multiple organ systems leading to a decreased resistance to stressors. Treatment for frailty focuses on multi-domain interventions to target multiple affected functions in order to decrease the adverse outcomes of frailty. No systematic reviews on the effectiveness of multi-domain interventions exist in a well-defined frail population. Objectives: This systematic review aimed to determine the effect of multi-domain compared to mono-domain interventions on frailty status and score, cognition, muscle mass, strength and power, functional and social outcomes in (prefrail elderly (≥65 years. It included interventions targeting two or more domains (physical exercise, nutritional, pharmacological, psychological, or social interventions in participants defined as (prefrail by an operationalized frailty definition. Methods: The databases PubMed, EMBASE, CINAHL, PEDro, CENTRAL, and the Cochrane Central register of Controlled Trials were searched from inception until September 14, 2016. Additional articles were searched by citation search, author search, and reference lists of relevant articles. The protocol for this review was registered on PROSPERO (CRD42016032905. Results: Twelve studies were included, reporting a large diversity of interventions in terms of content, duration, and follow-up period. Overall, multi-domain interventions tended to be more

  5. The Science of Sex Differences in Science and Mathematics

    Science.gov (United States)

    Halpern, Diane F.; Benbow, Camilla P.; Geary, David C.; Gur, Ruben C.; Hyde, Janet Shibley; Gernsbacher, Morton Ann

    2014-01-01

    Summary Amid ongoing public speculation about the reasons for sex differences in careers in science and mathematics, we present a consensus statement that is based on the best available scientific evidence. Sex differences in science and math achievement and ability are smaller for the mid-range of the abilities distribution than they are for those with the highest levels of achievement and ability. Males are more variable on most measures of quantitative and visuospatial ability, which necessarily results in more males at both high- and low-ability extremes; the reasons why males are often more variable remain elusive. Successful careers in math and science require many types of cognitive abilities. Females tend to excel in verbal abilities, with large differences between females and males found when assessments include writing samples. High-level achievement in science and math requires the ability to communicate effectively and comprehend abstract ideas, so the female advantage in writing should be helpful in all academic domains. Males outperform females on most measures of visuospatial abilities, which have been implicated as contributing to sex differences on standardized exams in mathematics and science. An evolutionary account of sex differences in mathematics and science supports the conclusion that, although sex differences in math and science performance have not directly evolved, they could be indirectly related to differences in interests and specific brain and cognitive systems. We review the brain basis for sex differences in science and mathematics, describe consistent effects, and identify numerous possible correlates. Experience alters brain structures and functioning, so causal statements about brain differences and success in math and science are circular. A wide range of sociocultural forces contribute to sex differences in mathematics and science achievement and ability—including the effects of family, neighborhood, peer, and school

  6. Supporting Mechanistic Reasoning in Domain-Specific Contexts

    Science.gov (United States)

    Weinberg, Paul J.

    2017-01-01

    Mechanistic reasoning is an epistemic practice central within science, technology, engineering, and mathematics disciplines. Although there has been some work on mechanistic reasoning in the research literature and standards documents, much of this work targets domain-general characterizations of mechanistic reasoning; this study provides…

  7. Domain Specific Language for Modeling Waste Management Systems

    DEFF Research Database (Denmark)

    Zarrin, Bahram

    environmental technologies i.e. solid waste management systems. Flow-based programming is used to support concurrent execution of the processes, and provides a model-integration language for composing processes from homogeneous or heterogeneous domains. And a domain-specific language is used to define atomic......In order to develop sustainable waste management systems with considering life cycle perspective, scientists and domain experts in environmental science require readily applicable tools for modeling and evaluating the life cycle impacts of the waste management systems. Practice has proved...... a domain specific language for modeling of waste-management systems on the basis of our framework. We evaluate the language by providing a set of case studies. The contributions of this thesis are; addressing separation of concerns in Flow-based programming and providing the formal specification of its...

  8. Applying Nanotechnology to Human Health: Revolution in Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Siddhartha Shrivastava

    2009-01-01

    Full Text Available Recent research on biosystems at the nanoscale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, neuromorphic engineering, and developing a sustainable environment. Nanobiosystems research is a priority in many countries and its relevance within nanotechnology is expected to increase in the future. The realisation that the nanoscale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nanomedical research. The present review explores the significance of nanoscience and latest nanotechnologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas.

  9. A Review of Domain Modelling and Domain Imaging Techniques in Ferroelectric Crystals

    Directory of Open Access Journals (Sweden)

    John E. Huber

    2011-02-01

    Full Text Available The present paper reviews models of domain structure in ferroelectric crystals, thin films and bulk materials. Common crystal structures in ferroelectric materials are described and the theory of compatible domain patterns is introduced. Applications to multi-rank laminates are presented. Alternative models employing phase-field and related techniques are reviewed. The paper then presents methods of observing ferroelectric domain structure, including optical, polarized light, scanning electron microscopy, X-ray and neutron diffraction, atomic force microscopy and piezo-force microscopy. Use of more than one technique for unambiguous identification of the domain structure is also described.

  10. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  11. Investigating Omani Science Teachers' Attitudes towards Teaching Science: The Role of Gender and Teaching Experiences

    Science.gov (United States)

    Ambusaidi, Abdullah; Al-Farei, Khalid

    2017-01-01

    A 30-item questionnaire was designed to determine Omani science teachers' attitudes toward teaching science and whether or not these attitudes differ according to gender and teaching experiences of teachers. The questionnaire items were divided into 3 domains: classroom preparation, managing hands-on science, and development appropriateness. The…

  12. An EarthCube Roadmap for Cross-Domain Interoperability in the Geosciences: Governance Aspects

    Science.gov (United States)

    Zaslavsky, I.; Couch, A.; Richard, S. M.; Valentine, D. W.; Stocks, K.; Murphy, P.; Lehnert, K. A.

    2012-12-01

    The goal of cross-domain interoperability is to enable reuse of data and models outside the original context in which these data and models are collected and used and to facilitate analysis and modeling of physical processes that are not confined to disciplinary or jurisdictional boundaries. A new research initiative of the U.S. National Science Foundation, called EarthCube, is developing a roadmap to address challenges of interoperability in the earth sciences and create a blueprint for community-guided cyberinfrastructure accessible to a broad range of geoscience researchers and students. Infrastructure readiness for cross-domain interoperability encompasses the capabilities that need to be in place for such secondary or derivative-use of information to be both scientifically sound and technically feasible. In this initial assessment we consider the following four basic infrastructure components that need to be present to enable cross-domain interoperability in the geosciences: metadata catalogs (at the appropriate community defined granularity) that provide standard discovery services over datasets, data access services, models and other resources of the domain; vocabularies that support unambiguous interpretation of domain resources and metadata; services used to access data repositories and other resources including models, visualizations and workflows; and formal information models that define structure and semantics of the information returned on service requests. General standards for these components have been proposed; they form the backbone of large scale integration activities in the geosciences. By utilizing these standards, EarthCube research designs can take advantage of data discovery across disciplines using the commonality in key data characteristics related to shared models of spatial features, time measurements, and observations. Data can be discovered via federated catalogs and linked nomenclatures from neighboring domains, while standard data

  13. EVEREST: Creating a Virtual Research Environment for Earth Science

    Science.gov (United States)

    Glaves, H.

    2017-12-01

    There is an increasing trend towards researchers working together using common resources whilst being geographically dispersed. The EVER-EST project is developing a range of both generic and domain specific technologies, tailored to the needs of Earth Science (ES) communities, to create a virtual research environment (VRE) that supports this type of dynamic collaborative research. The EVER-EST VRE provides a suite of services to overcome the existing barriers to sharing of Earth Science data and information allowing researchers to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, and with other domains beyond the Earth Sciences. Researchers will be able to seamlessly manage both the data and the scientific methods applied in their observations and modelling that lead to results that need to be attributable, validated and shared both within their communities and more widely in the form of scholarly communications.To ensure that the EVER-EST VRE meets the specific needs of the Earth Science domain, it is being developed and validated in consultation with four pre-selected virtual research communities (VRC) that include ocean observing, natural hazards, land monitoring and volcanic risk management. The requirements of these individual VRCs for data, software, best practice and community interaction are used to customise the VRE platform This user-centric approach allows the EVER-EST infrastructure to be assessed in terms of its capability to satisfy the heterogeneous needs of Earth Science communities for more effective collaboration, greater efficiency and increasingly innovative research. EVER-EST is a three year project funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no 674907.

  14. Opioid Prescribing After Curative-Intent Surgery: A Qualitative Study Using the Theoretical Domains Framework.

    Science.gov (United States)

    Lee, Jay S; Parashar, Vartika; Miller, Jacquelyn B; Bremmer, Samantha M; Vu, Joceline V; Waljee, Jennifer F; Dossett, Lesly A

    2018-07-01

    Excessive opioid prescribing is common after curative-intent surgery, but little is known about what factors influence prescribing behaviors among surgeons. To identify targets for intervention, we performed a qualitative study of opioid prescribing after curative-intent surgery using the Theoretical Domains Framework, a well-established implementation science method for identifying factors influencing healthcare provider behavior. Prior to data collection, we constructed a semi-structured interview guide to explore decision making for opioid prescribing. We then conducted interviews with surgical oncology providers at a single comprehensive cancer center. Interviews were recorded, transcribed verbatim, then independently coded by two investigators using the Theoretical Domains Framework to identify theoretical domains relevant to opioid prescribing. Relevant domains were then linked to behavior models to select targeted interventions likely to improve opioid prescribing. Twenty-one subjects were interviewed from November 2016 to May 2017, including attending surgeons, resident surgeons, physician assistants, and nurses. Five theoretical domains emerged as relevant to opioid prescribing: environmental context and resources; social influences; beliefs about consequences; social/professional role and identity; and goals. Using these domains, three interventions were identified as likely to change opioid prescribing behavior: (1) enablement (deploy nurses during preoperative visits to counsel patients on opioid use); (2) environmental restructuring (provide on-screen prompts with normative data on the quantity of opioid prescribed); and (3) education (provide prescribing guidelines). Key determinants of opioid prescribing behavior after curative-intent surgery include environmental and social factors. Interventions targeting these factors are likely to improve opioid prescribing in surgical oncology.

  15. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    CERN Document Server

    Topolov, Vitaly

    2012-01-01

    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  16. A Model of Inter and Multi Disciplinary Domains, and their Mutual Interactions

    Directory of Open Access Journals (Sweden)

    Ophir Dan

    2014-02-01

    Full Text Available The Melvil Dewey Decimal Classification system maps the human knowledge domains into a library classification decimal system, which means that the knowledge is discretized. The domains are countable similarly to how Cantor proved the countability of the fractions' domain. The debate about the "inter-" and "multi-" disciplinary domains may also be extended into "sub-domains" or from another point of view – into "super-domains". However, Science and Technology has rapidly developed after it was classified. If at the beginning, two decimal digits were enough to classify the world's knowledge into a knowledge domain, today we need more digits – about five. This means we are able to display about a million domains of knowledge. The decimal point indicates the sub-division in the zooming-in; the number of such decimal points is unlimited. Thus, the number of hierarchical levels in the knowledge-tree is unlimited. The maximal level is unreachable since it propagates in time. This intriguing issue raises doubts whether the tree is the most appropriate structure in the current state of the knowledge classification. However, I believe that the knowledge tree is a convenient way of expressing various connections between the knowledge domains. There are other models such as multi-level graph-networks that approximate closer to reality. These models can be further visualized by graph diagrams. The knowledge diagram is more complicated, considering the interaction between science and industry relative to each domain. The model of reality might be compared to the object-oriented programming languages approximating reality in order to construct more naturally computer programs that can model the world. The mutual correspondence of the knowledge domains is dynamic. Some examples of relatively new domains are as follows: biotechnology, bioinformatics, nanotechnology, integro-differential equations, data warehouse, data mining, requirements engineering, micro

  17. SKILL OF TEACHER CANDIDATES IN INTEGRATING THE CONCEPT OF SCIENCE WITH LOCAL WISDOM

    Directory of Open Access Journals (Sweden)

    Parmin -

    2015-11-01

    Full Text Available Learning science is not limited to reviewing the concepts, but strengthens the identity of a nation that has a diversity of cultures. Science learning objectives that have been set in Indonesia, including the student is able to apply the science wisely, to maintain and preserve the cultural survival. The study aims to measure students' ability to relate concepts of science with local knowledge to use mind maps compiled individually. The results showed that 85% of teacher candidates are able to determine the relationship of science and local knowledge correctly. The ability to link the two domains, through the literature review, observation and interviews.

  18. Computer science and operations research

    CERN Document Server

    Balci, Osman

    1992-01-01

    The interface of Operation Research and Computer Science - although elusive to a precise definition - has been a fertile area of both methodological and applied research. The papers in this book, written by experts in their respective fields, convey the current state-of-the-art in this interface across a broad spectrum of research domains which include optimization techniques, linear programming, interior point algorithms, networks, computer graphics in operations research, parallel algorithms and implementations, planning and scheduling, genetic algorithms, heuristic search techniques and dat

  19. The randomised controlled trial design: unrecognized opportunities for health sciences librarianship.

    Science.gov (United States)

    Eldredge, Jonathan D

    2003-06-01

    to describe the essential components of the Randomised Controlled Trial (RCT) and its major variations; to describe less conventional applications of the RCT design found in the health sciences literature with potential relevance to health sciences librarianship; to discuss the limited number of RCTs within health sciences librarianship. narrative review supported to a limited extent with PubMed and Library Literature database searches consistent with specific search parameters. In addition, more systematic methods, including handsearching of specific journals, to identify health sciences librarianship RCTs. While many RCTs within the health sciences follow more conventional patterns, some RCTs assume certain unique features. Selected examples illustrate the adaptations of this experimental design to answering questions of possible relevance to health sciences librarians. The author offers several strategies for controlling bias in library and informatics applications of the RCT and acknowledges the potential of the electronic era in providing many opportunities to utilize the blinding aspects of RCTs. RCTs within health sciences librarianship inhabit a limited number of subject domains such as education. This limited scope offers both advantages and disadvantages for making Evidence-Based Librarianship (EBL) a reality. The RCT design offers the potential to answer far more EBL questions than have been addressed by the design to date. Librarians need only extend their horizons through use of the versatile RCT design into new subject domains to facilitate making EBL a reality.

  20. {cross-disciplinary} Data CyberInfrastructure: A Different Approach to Developing Collaborative Earth and Environmental Science Research Platforms

    Science.gov (United States)

    Lenhardt, W. C.; Krishnamurthy, A.; Blanton, B.; Conway, M.; Coposky, J.; Castillo, C.; Idaszak, R.

    2017-12-01

    An integrated science cyberinfrastructure platform is fast becoming a norm in science, particularly where access to distributed resources, access to compute, data management tools, and collaboration tools are accessible to the end-user scientist without the need to spin up these services on their own. There platforms have various types of labels ranging from data commons to science-as-a-service. They tend to share common features, as outlined above. What tends to distinguish these platforms, however, is their affinity for particular domains, NanoHub - nanomaterials, iPlant - plant biology, Hydroshare - hydrology, and so on. The challenge still remains how to enable these platforms to be more easily adopted for use by other domains. This paper will provide an overview of RENCI's approach to creating a science platform that can be more easily adopted by new communities while also endeavoring to accelerate their research. At RENCI, we started with Hydroshare, but have now worked to generalize the methodology for application to other domains. This new effort is called xDCi, or {cross-disciplinary} Data CyberInfrastructure. We have adopted a broader approach to the challenge of domain adoption and includes two key elements in addition to the technology component. The first of these is how development is operationalized. RENCI implements a DevOps model of continuous development and deployment. This greatly increases the speed by which a new platform can come online and be refined to meet domain needs. DevOps also allows for migration over time, i.e. sustainability. The second element is a concierge model. In addition to the technical elements, and the more responsive development process, RENCI also supports domain adoption of the platform by providing a concierge service— dedicated expertise- in the following areas, Information Technology, Sustainable Software, Data Science, and Sustainability. The success of the RENCI methodology is illustrated by the adoption of the

  1. A new science infrastruture: the grid

    International Nuclear Information System (INIS)

    Sun Gongxing

    2003-01-01

    As the depth and scale of science reserch growing, it's requirement of computing power will become bigger and bigger, as well as the global collaboration is being enhanced. therefore, integration and sharing of all available resources among the participating organizations is required, including computing, storage, networks, even human resource and intelligant instruments. Grid technology is developed for the goal mentioned above, and could become an infrastructure the future science research and engineering. As a global computing technology, there are a lot of key technologies to be addressed. In the paper, grid architecture and secure infrastructure and application domains and tools will be described, at last we will give the grid prospect in the future. (authors)

  2. Human-computer interface incorporating personal and application domains

    Science.gov (United States)

    Anderson, Thomas G [Albuquerque, NM

    2011-03-29

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  3. Science of Cyber Security as a System of Models and Problems

    OpenAIRE

    Kott, Alexander

    2015-01-01

    Terms like "Science of Cyber" or "Cyber Science" have been appearing in literature with growing frequency, and influential organizations initiated research initiatives toward developing such a science even though it is not clearly defined. We propose to define the domain of the science of cyber security by noting the most salient artifact within cyber security -- malicious software -- and defining the domain as comprised of phenomena that involve malicious software (as well as legitimate soft...

  4. Predicting detection performance with model observers: Fourier domain or spatial domain?

    Science.gov (United States)

    Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia

    2016-02-27

    The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images.

  5. Science Achievement in TIMSS Cognitive Domains Based on Learning Styles

    Science.gov (United States)

    Kablan, Zeynel; Kaya, Sibel

    2013-01-01

    Problem Statement: The interest in raising levels of achievement in math and science has led to a focus on investigating the factors that shape achievement in these subjects. Understanding how different learning styles might influence science achievement may guide educators in their efforts to raise achievement. This study is an attempt to examine…

  6. COGNITIVE SCIENCE DAN COGNITIVE DEVELOPMENT DALAM PEMROSESAN INFORMASI (INFORMATION PROCESSING PADAANAK

    Directory of Open Access Journals (Sweden)

    Ellen Prima

    2017-03-01

    Full Text Available Cognitive science is a science which studies how human mental processes to influence one’s behavior. Principal major issue that needs to be known in the understanding of cognitive science and their development is related to how the initial state of cognitive science itself, the mind is adapted, the development process starting from the concrete to the abstract, the conceptual nature of the change, the difference between learning and development, format representation of the underlying changes in development, the role of implicit and explicit cognitions in the development, the role of the association and the rules in the development, the universal development, cognitive domain and how to influence the development of brain structure. There are three difference in the cognitive domain of the most common sense that domain as a module, as the domain of expertise, and domain as a model of mind.   Ilmu kognitif adalah suatu pengetahuan yang mempelajari tentang bagaimana proses mental manusia dalam mempengaruhi perilaku seseorang. Pokok pembahasan utama yang perlu diketahui dalam memahami ilmu kognitif dan perkembangannya yaitu terkait dengan bagaimana keadaan awal dari ilmu kognitif itu sendiri, pikiran yang teradaptasi, proses perkembangan mulai dari hal yang kongkrit sampai dengan abstrak, sifat konseptual dalam perubahan, perbedaan antara belajar dan pengembangan, format representasi yang mendasari perubahan dalam perkembangan, peran kognisi implisit dan eksplisit dalam perkembangan, peran asosiasi dan aturan dalam perkembangan, perkembangan secara universal, domain kognitif dan bagaimana struktur otak mempengaruhi perkembangan. Ada tiga perbedaan domain kognitif dari indera yang paling umum yaitu domain sebagai modul, domain sebagai bidang keahlian, dan domain sebagai model pikiran.

  7. Inter-disciplinarity in sport sciences: The neuroscience example.

    Science.gov (United States)

    Fargier, Patrick; Collet, Christian; Moran, Aidan; Massarelli, Raphaël

    2017-02-01

    Sport science is a relatively recent domain of research born from the interactions of different disciplines related to sport. According to the European College of sport science ( http://sport-science.org ): "scientific excellence in sport science is based on disciplinary competence embedded in the understanding that its essence lies in its multi- and interdisciplinary character". In this respect, the scientific domain of neuroscience has been developed within such a framework. Influenced by the apparent homogeneity of this scientific domain, the present paper reviews three important research topics in sport from a neuroscientific perspective. These topics concern the relationship between mind and motor action, the effects of cognition on motor performance, and the study of certain mental states (such as the "flow" effect, see below) and motor control issues to understand, for example, the neural substrates of the vertical squat jump. Based on the few extensive examples shown in this review, we argue that by adopting an interdisciplinary paradigm, sport science can emulate neuroscience in becoming a mono-discipline.

  8. Constructing a Cross-Domain Resource Inventory: Key Components and Results of the EarthCube CINERGI Project.

    Science.gov (United States)

    Zaslavsky, I.; Richard, S. M.; Malik, T.; Hsu, L.; Gupta, A.; Grethe, J. S.; Valentine, D. W., Jr.; Lehnert, K. A.; Bermudez, L. E.; Ozyurt, I. B.; Whitenack, T.; Schachne, A.; Giliarini, A.

    2015-12-01

    While many geoscience-related repositories and data discovery portals exist, finding information about available resources remains a pervasive problem, especially when searching across multiple domains and catalogs. Inconsistent and incomplete metadata descriptions, disparate access protocols and semantic differences across domains, and troves of unstructured or poorly structured information which is hard to discover and use are major hindrances toward discovery, while metadata compilation and curation remain manual and time-consuming. We report on methodology, main results and lessons learned from an ongoing effort to develop a geoscience-wide catalog of information resources, with consistent metadata descriptions, traceable provenance, and automated metadata enhancement. Developing such a catalog is the central goal of CINERGI (Community Inventory of EarthCube Resources for Geoscience Interoperability), an EarthCube building block project (earthcube.org/group/cinergi). The key novel technical contributions of the projects include: a) development of a metadata enhancement pipeline and a set of document enhancers to automatically improve various aspects of metadata descriptions, including keyword assignment and definition of spatial extents; b) Community Resource Viewers: online applications for crowdsourcing community resource registry development, curation and search, and channeling metadata to the unified CINERGI inventory, c) metadata provenance, validation and annotation services, d) user interfaces for advanced resource discovery; and e) geoscience-wide ontology and machine learning to support automated semantic tagging and faceted search across domains. We demonstrate these CINERGI components in three types of user scenarios: (1) improving existing metadata descriptions maintained by government and academic data facilities, (2) supporting work of several EarthCube Research Coordination Network projects in assembling information resources for their domains

  9. The Analysis of High School Students' Conceptions of Learning in Different Domains

    Science.gov (United States)

    Sadi, Özlem

    2015-01-01

    The purpose of this study is to investigate whether or not conceptions of learning diverge in different science domains by identifying high school students' conceptions of learning in physics, chemistry and biology. The Conceptions of Learning Science (COLS) questionnaire was adapted for physics (Conceptions of Learning Physics, COLP), chemistry…

  10. Innovative curriculum: Integrating the bio-behavioral and social science principles across the LifeStages in basic science years.

    Science.gov (United States)

    Lele Mookerjee, Anuradha; Fischer, Bradford D; Cavanaugh, Susan; Rajput, Vijay

    2018-05-20

    Behavioral and social science integration in clinical practice improves health outcomes across the life stages. The medical school curriculum requires an integration of the behavioral and social science principles in early medical education. We developed and delivered a four-week course entitled "LifeStages" to the first year medical students. The learning objectives of the bio-behavioral and social science principles along with the cultural, economic, political, and ethical parameters were integrated across the lifespan in the curriculum matrix. We focused on the following major domains: Growth and Brain Development; Sexuality, Hormones and Gender; Sleep; Cognitive and Emotional Development; Mobility, Exercise, Injury and Safety; Nutrition, Diet and Lifestyle; Stress and coping skills, Domestic Violence; Substance Use Disorders; Pain, Illness and Suffering; End of Life, Ethics and Death along with Intergenerational issues and Family Dynamics. Collaboration from the clinical and biomedical science departments led to the dynamic delivery of the course learning objectives and content. The faculty developed and led a scholarly discussion, using the case of a multi-racial, multi-generational family during Active Learning Group (ALG) sessions. The assessment in the LifeStages course involved multiple assessment tools: including the holistic assessment by the faculty facilitator inside ALGs, a Team-Based Learning (TBL) exercise, multiple choice questions and Team Work Assessment during which the students had to create a clinical case on a LifeStages domain along with the facilitators guide and learning objectives.

  11. Science and technology from global and historical perspectives

    CERN Document Server

    Karagözoğlu, Bahattin

    2017-01-01

    This book provides science and technology ethos to a literate person. It starts with a rather detailed treatment of basic concepts in human values, educational status and domains of education, development of science and technology and their contributions to the welfare of society. It describes ways and means of scientific progresses and technological advancements with their historical perspectives including scientific viewpoints of contributing scientists and technologists. The technical, social, and cultural dimensions are surveyed in relation to acquisition and application of science, and advantages and hindrances of technological developments. Science and Technology is currently taught as a college course in many universities with the intention to introduce topics from a global historical perspective so that the reader shall stretch his/her vision by mapping the past to the future. The book can also serve as a primary reference for such courses.

  12. A Probabilistic Graphical Model to Detect Chromosomal Domains

    Science.gov (United States)

    Heermann, Dieter; Hofmann, Andreas; Weber, Eva

    To understand the nature of a cell, one needs to understand the structure of its genome. For this purpose, experimental techniques such as Hi-C detecting chromosomal contacts are used to probe the three-dimensional genomic structure. These experiments yield topological information, consistently showing a hierarchical subdivision of the genome into self-interacting domains across many organisms. Current methods for detecting these domains using the Hi-C contact matrix, i.e. a doubly-stochastic matrix, are mostly based on the assumption that the domains are distinct, thus non-overlapping. For overcoming this simplification and for being able to unravel a possible nested domain structure, we developed a probabilistic graphical model that makes no a priori assumptions on the domain structure. Within this approach, the Hi-C contact matrix is analyzed using an Ising like probabilistic graphical model whose coupling constant is proportional to each lattice point (entry in the contact matrix). The results show clear boundaries between identified domains and the background. These domain boundaries are dependent on the coupling constant, so that one matrix yields several clusters of different sizes, which show the self-interaction of the genome on different scales. This work was supported by a Grant from the International Human Frontier Science Program Organization (RGP0014/2014).

  13. University of Washington's eScience Institute Promotes New Training and Career Pathways in Data Science

    Science.gov (United States)

    Stone, S.; Parker, M. S.; Howe, B.; Lazowska, E.

    2015-12-01

    Rapid advances in technology are transforming nearly every field from "data-poor" to "data-rich." The ability to extract knowledge from this abundance of data is the cornerstone of 21st century discovery. At the University of Washington eScience Institute, our mission is to engage researchers across disciplines in developing and applying advanced computational methods and tools to real world problems in data-intensive discovery. Our research team consists of individuals with diverse backgrounds in domain sciences such as astronomy, oceanography and geology, with complementary expertise in advanced statistical and computational techniques such as data management, visualization, and machine learning. Two key elements are necessary to foster careers in data science: individuals with cross-disciplinary training in both method and domain sciences, and career paths emphasizing alternative metrics for advancement. We see persistent and deep-rooted challenges for the career paths of people whose skills, activities and work patterns don't fit neatly into the traditional roles and success metrics of academia. To address these challenges the eScience Institute has developed training programs and established new career opportunities for data-intensive research in academia. Our graduate students and post-docs have mentors in both a methodology and an application field. They also participate in coursework and tutorials to advance technical skill and foster community. Professional Data Scientist positions were created to support research independence while encouraging the development and adoption of domain-specific tools and techniques. The eScience Institute also supports the appointment of faculty who are innovators in developing and applying data science methodologies to advance their field of discovery. Our ultimate goal is to create a supportive environment for data science in academia and to establish global recognition for data-intensive discovery across all fields.

  14. Efficient Time-Domain Ray-Tracing Technique for the Analysis of Ultra-Wideband Indoor Environments including Lossy Materials and Multiple Effects

    Directory of Open Access Journals (Sweden)

    F. Saez de Adana

    2009-01-01

    Full Text Available This paper presents an efficient application of the Time-Domain Uniform Theory of Diffraction (TD-UTD for the analysis of Ultra-Wideband (UWB mobile communications for indoor environments. The classical TD-UTD formulation is modified to include the contribution of lossy materials and multiple-ray interactions with the environment. The electromagnetic analysis is combined with a ray-tracing acceleration technique to treat realistic and complex environments. The validity of this method is tested with measurements performed inside the Polytechnic building of the University of Alcala and shows good performance of the model for the analysis of UWB propagation.

  15. Preferred SH3 domain partners of ADAM metalloproteases include shared and ADAM-specific SH3 interactions.

    Directory of Open Access Journals (Sweden)

    Iivari Kleino

    Full Text Available A disintegrin and metalloproteinases (ADAMs constitute a protein family essential for extracellular signaling and regulation of cell adhesion. Catalytic activity of ADAMs and their predicted potential for Src-homology 3 (SH3 domain binding show a strong correlation. Here we present a comprehensive characterization of SH3 binding capacity and preferences of the catalytically active ADAMs 8, 9, 10, 12, 15, 17, and 19. Our results revealed several novel interactions, and also confirmed many previously reported ones. Many of the identified SH3 interaction partners were shared by several ADAMs, whereas some were ADAM-specific. Most of the ADAM-interacting SH3 proteins were adapter proteins or kinases, typically associated with sorting and endocytosis. Novel SH3 interactions revealed in this study include TOCA1 and CIP4 as preferred partners of ADAM8, and RIMBP1 as a partner of ADAM19. Our results suggest that common as well as distinct mechanisms are involved in regulation and execution of ADAM signaling, and provide a useful framework for addressing the pathways that connect ADAMs to normal and aberrant cell behavior.

  16. Big Data analytics in the Geo-Spatial Domain

    NARCIS (Netherlands)

    R.A. Goncalves (Romulo); M.G. Ivanova (Milena); M.L. Kersten (Martin); H. Scholten; S. Zlatanova; F. Alvanaki (Foteini); P. Nourian (Pirouz); E. Dias

    2014-01-01

    htmlabstractBig data collections in many scientific domains have inherently rich spatial and geo-spatial features. Spatial location is among the core aspects of data in Earth observation sciences, astronomy, and seismology to name a few. The goal of our project is to design an efficient data

  17. Emulsion Science Basic Principles

    CERN Document Server

    Leal-Calderon, Fernando; Schmitt, Véronique

    2007-01-01

    Emulsions are generally made out of two immiscible fluids like oil and water, one being dispersed in the second in the presence of surface-active compounds.They are used as intermediate or end products in a huge range of areas including the food, chemical, cosmetic, pharmaceutical, paint, and coating industries. Besides the broad domain of technological interest, emulsions are raising a variety of fundamental questions at the frontier between physics and chemistry. This book aims to give an overview of the most recent advances in emulsion science. The basic principles, covering aspects of emulsions from their preparation to their destruction, are presented in close relation to both the fundamental physics and the applications of these materials. The book is intended to help scientists and engineers in formulating new materials by giving them the basics of emulsion science.

  18. Planning for Planetary Science Mission Including Resource Prospecting, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in computer-aided mission planning can enhance mission operations and science return for surface missions to Mars, the Moon, and beyond. While the...

  19. Reshaping clinical science: Introduction to the Special Issue on Psychophysiology and the NIMH Research Domain Criteria (RDoC) initiative.

    Science.gov (United States)

    Patrick, Christopher J; Hajcak, Greg

    2016-03-01

    The National Institute of Mental Health's (NIMH) Research Domain Criteria (RDoC) initiative seeks to establish new dimensional conceptions of mental health problems, through the investigation of clinically relevant "process" constructs that have neurobiological as well as psychological referents. This special issue provides a detailed overview of the RDoC framework by NIMH officials Michael Kozak and Bruce Cuthbert, and spotlights RDoC-oriented investigative efforts by leading psychophysiological research groups as examples of how clinical science might be reshaped through application of RDoC principles. Accompanying commentaries highlight key aspects of the work by each group, and discuss reported methods/findings in relation to promises and challenges of the RDoC initiative more broadly. © 2016 Society for Psychophysiological Research.

  20. Building a Data Science capability for USGS water research and communication

    Science.gov (United States)

    Appling, A.; Read, E. K.

    2015-12-01

    Interpreting and communicating water issues in an era of exponentially increasing information requires a blend of domain expertise, computational proficiency, and communication skills. The USGS Office of Water Information has established a Data Science team to meet these needs, providing challenging careers for diverse domain scientists and innovators in the fields of information technology and data visualization. Here, we detail the experience of building a Data Science capability as a bridging element between traditional water resources analyses and modern computing tools and data management techniques. This approach includes four major components: 1) building reusable research tools, 2) documenting data-intensive research approaches in peer reviewed journals, 3) communicating complex water resources issues with interactive web visualizations, and 4) offering training programs for our peers in scientific computing. These components collectively improve the efficiency, transparency, and reproducibility of USGS data analyses and scientific workflows.

  1. Creativity as Action: Findings from Five Creative Domains

    Directory of Open Access Journals (Sweden)

    Vlad eGlaveanu

    2013-04-01

    Full Text Available The present paper outlines an action theory of creativity and substantiates this approach by investigating creative expression in five different domains. We propose an action framework for the analysis of creative acts built on the assumption that creativity is a relational, inter-subjective phenomenon. This framework, drawing extensively from the work of Dewey (1934 on art as experience, is used to derive a coding frame for the analysis of interview material. The article reports findings from the analysis of 60 interviews with recognised French creators in five creative domains: art, design, science, scriptwriting, and music. Results point to complex models of action and inter-action specific for each domain and also to interesting patterns of similarity and differences between domains. These findings highlight the fact that creative action takes place not ‘inside’ individual creators but ‘in between’ actors and their environment. Implications for the field of educational psychology are discussed.

  2. Escalation of the Space Domain

    Science.gov (United States)

    2015-04-01

    vision of Arnold and other Air Force pioneers. Manned flight becomes the domain of NASA , and the United States shelves the idea of an aircraft-like...are similar in nature and application to those seen in science fiction moves or on television (i.e., Star Trek ) that can provide direct kinetic...Space, Infobase Publishing, New York: NY, 2011, pg. 12. 45 Ibid., pg. 12. 46 “Whom Gods Destroy.” Star Trek (original television series), Season 3

  3. Chemical Shift Assignments of the C-terminal Eps15 Homology Domain-3 EH Domain*

    Science.gov (United States)

    Caplan, Steve; Sorgen, Paul L.

    2013-01-01

    The C-terminal Eps15 homology (EH) domain 3 (EHD3) belongs to a eukaryotic family of endocytic regulatory proteins and is involved in the recycling of various receptors from the early endosome to the endocytic recycling compartment or in retrograde transport from the endosomes to the Golgi. EH domains are highly conserved in the EHD family and function as protein-protein interaction units that bind to Asn-Pro-Phe (NPF) motif-containing proteins. The EH domain of EHD1 was the first C-terminal EH domain from the EHD family to be solved by NMR. The differences observed between this domain and proteins with N-terminal EH domains helped describe a mechanism for the differential binding of NPF-containing proteins. Here, structural studies were expanded to include the EHD3 EH domain. While the EHD1 and EHD3 EH domains are highly homologous, they have different protein partners. A comparison of these structures will help determine the selectivity in protein binding between the EHD family members and lead to a better understanding of their unique roles in endocytic regulation. PMID:23754701

  4. Research Into the Role of Students’ Affective Domain While Learning Geology in Field Environments

    Science.gov (United States)

    Elkins, J.

    2009-12-01

    Existing research programs in field-based geocognition include assessment of cognitive, psychomotor, and affective domains. Assessment of the affective domain often involves the use of instruments and techniques uncommon to the geosciences. Research regarding the affective domain also commonly results in the collection and production of qualitative data that is difficult for geoscientists to analyze due to their lack of familiarity with these data sets. However, important information about students’ affective responses to learning in field environments can be obtained by using these methods. My research program focuses on data produced by students’ affective responses to field-based learning environments, primarily among students at the introductory level. For this research I developed a Likert-scale Novelty Space Survey, which presents student ‘novelty space’ (Orion and Hofstien, 1993) as a polygon; the larger the polygons, the more novelty students are experiencing. The axises for these polygons correspond to novelty domains involving geographic, social, cognitive, and psychological factors. In addition to the Novelty Space Survey, data which I have collected/generated includes focus group interviews on the role of recreational experiences in geology field programs. I have also collected data concerning the motivating factors that cause students to take photographs on field trips. The results of these studies give insight to the emotional responses students have to learning in the field and are important considerations for practitioners of teaching in these environments. Collaborative investigations among research programs that cross university departments and include multiple institutions is critical at this point in development of geocognition as a field due to unfamiliarity with cognitive science methodology by practitioners teaching geosciences and the dynamic nature of field work by cognitive scientists. However, combining the efforts of cognitive

  5. Thinking forensics: Cognitive science for forensic practitioners.

    Science.gov (United States)

    Edmond, Gary; Towler, Alice; Growns, Bethany; Ribeiro, Gianni; Found, Bryan; White, David; Ballantyne, Kaye; Searston, Rachel A; Thompson, Matthew B; Tangen, Jason M; Kemp, Richard I; Martire, Kristy

    2017-03-01

    Human factors and their implications for forensic science have attracted increasing levels of interest across criminal justice communities in recent years. Initial interest centred on cognitive biases, but has since expanded such that knowledge from psychology and cognitive science is slowly infiltrating forensic practices more broadly. This article highlights a series of important findings and insights of relevance to forensic practitioners. These include research on human perception, memory, context information, expertise, decision-making, communication, experience, verification, confidence, and feedback. The aim of this article is to sensitise forensic practitioners (and lawyers and judges) to a range of potentially significant issues, and encourage them to engage with research in these domains so that they may adapt procedures to improve performance, mitigate risks and reduce errors. Doing so will reduce the divide between forensic practitioners and research scientists as well as improve the value and utility of forensic science evidence. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  6. Domains and naïve theories.

    Science.gov (United States)

    Gelman, Susan A; Noles, Nicholaus S

    2011-09-01

    Human cognition entails domain-specific cognitive processes that influence memory, attention, categorization, problem-solving, reasoning, and knowledge organization. This article examines domain-specific causal theories, which are of particular interest for permitting an examination of how knowledge structures change over time. We first describe the properties of commonsense theories, and how commonsense theories differ from scientific theories, illustrating with children's classification of biological and nonbiological kinds. We next consider the implications of domain-specificity for broader issues regarding cognitive development and conceptual change. We then examine the extent to which domain-specific theories interact, and how people reconcile competing causal frameworks. Future directions for research include examining how different content domains interact, the nature of theory change, the role of context (including culture, language, and social interaction) in inducing different frameworks, and the neural bases for domain-specific reasoning. WIREs Cogni Sci 2011 2 490-502 DOI: 10.1002/wcs.124 This article is categorized under: Psychology > Reasoning and Decision Making. Copyright © 2010 John Wiley & Sons, Ltd.

  7. Science Education for Environmental Awareness: Approaches to Integrating Cognitive and Affective Domains

    Science.gov (United States)

    Littledyke, Michael

    2008-01-01

    Science education has an important part in developing understanding of concepts that underpin environmental issues, leading potentially to pro-environmental behaviour. However, science is commonly perceived negatively, leading to inappropriate and negative models of science that do not connect to people's experiences. The article argues that the…

  8. The Chicago Consensus on Sustainable Food Systems Science.

    Science.gov (United States)

    Drewnowski, Adam

    2017-01-01

    As participants at the Ecosystem Inception Meeting convened by the Global Dairy Platform and held in Chicago in June 2016, we have identified some concepts as central to the study of food systems science. Following the definition developed by the Food and Agriculture Organization for sustainable diets, the food supply needs to provide foods that are healthy and safe, affordable, culturally acceptable, and with low impact on the environment. Therefore, the four main domains of sustainable food systems science can be described as health, economics, society, and the environment. Food systems science needs to embrace and engage with all relevant allied disciplines that may include environmental health sciences, epidemiology, geography, history, sociology, anthropology, business, and political science. Research and training in food systems science, both domestic and international, would benefit from a set of competencies, from more extensive research networks, and from more public-private engagement. This document builds on major advances in the area of food system research, training, and practice, already achieved by individuals, institutions, foundations, and local and national governments.

  9. The Chicago Consensus on Sustainable Food Systems Science

    Directory of Open Access Journals (Sweden)

    Adam Drewnowski

    2018-04-01

    Full Text Available As participants at the Ecosystem Inception Meeting convened by the Global Dairy Platform and held in Chicago in June 2016, we have identified some concepts as central to the study of food systems science. Following the definition developed by the Food and Agriculture Organization for sustainable diets, the food supply needs to provide foods that are healthy and safe, affordable, culturally acceptable, and with low impact on the environment. Therefore, the four main domains of sustainable food systems science can be described as health, economics, society, and the environment. Food systems science needs to embrace and engage with all relevant allied disciplines that may include environmental health sciences, epidemiology, geography, history, sociology, anthropology, business, and political science. Research and training in food systems science, both domestic and international, would benefit from a set of competencies, from more extensive research networks, and from more public–private engagement. This document builds on major advances in the area of food system research, training, and practice, already achieved by individuals, institutions, foundations, and local and national governments.

  10. Domain switching in single-phase multiferroics

    Science.gov (United States)

    Jia, Tingting; Cheng, Zhenxiang; Zhao, Hongyang; Kimura, Hideo

    2018-06-01

    Multiferroics are a time-honoured research subject by reason for their tremendous application potential in the information industry, such as in multi-state information storage devices and new types of sensors. An outburst of studies on multiferroicity has been witnessed in the 21st century, although this field has a long research history since the 19th century. Multiferroicity has now become one of the hottest research topics in condensed matter physics and materials science. Numerous efforts have been made to investigate the cross-coupling phenomena among ferroic orders such as ferroelectricity, (anti-)ferromagnetism, and ferroelasticity, especially the coupling between electric and magnetic orderings that would account for the magnetoelectric (ME) effect in multiferroic materials. The magnetoelectric properties and coupling behavior of single phase multiferroics are dominated by their domain structures. It was also noted that, however, the multiferroic materials exhibit very complicated domain structures. Studies on domain structure characterization and domain switching are a crucial step in the exploration of approaches to the control and manipulation of magnetic (electric) properties using an electric (magnetic) field or other means. In this review, following a concise outline of our current basic knowledge on the magnetoelectric (ME) effect, we summarize some important research activities on domain switching in single-phase multiferroic materials in the form of single crystals and thin films, especially domain switching behavior involving strain and the related physics in the last decade. We also introduce recent developments in characterization techniques for domain structures of ferroelectric or multiferroic materials, which have significantly advanced our understanding of domain switching dynamics and interactions. The effects of a series of issues such as electric field, magnetic field, and stress effects on domain switching are been discussed as well. It

  11. Young Women, Sports, and Science

    Science.gov (United States)

    Hanson, Sandra L.

    2007-01-01

    This article examines young women's access to two traditionally male domains, sport and science, from two perspectives. The structural approach suggests that sport and science are stratified by gender and have historically been chilly climates for women. The Critical approach argues that structure and agency are important in understanding sources…

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 3. Evaluation of regional fracture properties for groundwater development using hydrolithostructural domain approach in variably fractured hard rocks of Purulia district, West Bengal, India. Tapas Acharya Rajesh Prasad S Chakrabarti. Volume 123 Issue ...

  13. Systemics, Communication and Knowledge: Shifts of Perspective and the Need for Requirements in Second-Order Science

    Directory of Open Access Journals (Sweden)

    Thomas J. Marlowe

    2013-12-01

    Full Text Available The systemic view of second-order science emphasizes the interaction of observer and observed, but tacitly assumes a single observer, or at least a unity of observer perspective. But experience in multiple domains, including software engineering, decision science, health sciences, co-creation and Living Labs, knowledge management, community development and government policy has emphasized the multiplicity of goals and perspectives across stakeholders. We look at the issues that arise when multiple views are incorporated, and propose a toolkit for addressing those issues.

  14. Mitos da didática das ciências acerca dos motivos para incluir a Natureza da Ciência no ensino das ciências Science Education myths about the reasons to include the Nature of Science in science teaching

    Directory of Open Access Journals (Sweden)

    J. A. Acevedo

    2005-04-01

    Full Text Available Em certas situações, a Didática das Ciências transmite como mitos algumas crenças que não estão suficientemente sustentadas pela investigação que ela própria produz. Este artigo mostra dois desses mitos relacionados com os motivos que se costumam apontar para incluir a Natureza da Ciência no ensino das ciências, como sejam a suposta relação entre a prática docente e as crenças sobre a Natureza da Ciência, e a crença de que a sua compreensão é um fator chave na hora de tomar melhores decisões cívicas em questões tecnocientíficas de interesse social. A análise que se apresenta realizou-se mediante a revisão de diversos resultados de investigações procedentes da própria Didática das Ciências e também da Psicologia das Decisões. A conclusão aponta para considerar que outros fatores influenciam mais, tornando muito menos lineares essas hipotéticas relações do que alguns especialistas pensam e mais complexa a problemática abordada.In some situations Science Education transmits as myths various beliefs as myths that are not enough sustained by the research in its own domain. This paper shows two of these myths related to the reasons usually pointed in orderfor includinge the Nature of Science in science teaching:, such as the supposed relationship between the educational practice and the beliefs about the Nature of Science, and also the belief that its understanding of the Nature of Science is a key factor in when making better civicdecisions as citizens in technical socioscientific oscientific issues. with social interest The analysis was carried out by means of athe review of several results from the own Science Education Research, and also from the Psychology of Decisions. The conclusion seems to be clear: other factors are of a greater influence, making those hypothetical relations much less linear than some experts wcould think, and making the questions much more complex. the presented question.

  15. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 6. Utilization of LVO 2 − species (L2- is a tridentate ONS donor) as an inorganic analogue of carboxylate group: A journey to a new domain of coordination chemistry. Satyabrata Samanta Subodh Kanti Dutta Muktimoy Chaudhury. Volume 118 Issue 6 ...

  16. A pseudospectral collocation time-domain method for diffractive optics

    DEFF Research Database (Denmark)

    Dinesen, P.G.; Hesthaven, J.S.; Lynov, Jens-Peter

    2000-01-01

    We present a pseudospectral method for the analysis of diffractive optical elements. The method computes a direct time-domain solution of Maxwell's equations and is applied to solving wave propagation in 2D diffractive optical elements. (C) 2000 IMACS. Published by Elsevier Science B.V. All rights...

  17. Increasing the usability of climate science in political decision-making

    Directory of Open Access Journals (Sweden)

    Emily R. Newsom

    2016-09-01

    Full Text Available Abstract As climate-science graduate students at the University of Washington, we had the opportunity to engage in a political process focused on implementing legislation to reduce greenhouse gas emissions in Washington State. Our insights gained from this rare, first-hand, experience may be particularly relevant to other climate scientists. We argue that inflexible research goals within the United States climate-science community limit the relevance of the knowledge our community creates. The mismatch between climate-science research and the information needs of policy makers, while widely acknowledged in certain domains, has yet to be fully appreciated within many earth science disciplines. Broadening the climate-science training of graduate students to include education on the uses of climate information outside of academic settings would both inform and motivate new research directions, and engender validation of non-traditional research within disciplinary cultures.

  18. The Philosophy of Information as an Underlying and Unifying Theory of Information Science

    Science.gov (United States)

    Tomic, Taeda

    2010-01-01

    Introduction: Philosophical analyses of theoretical principles underlying these sub-domains reveal philosophy of information as underlying meta-theory of information science. Method: Conceptual research on the knowledge sub-domains in information science and philosophy and analysis of their mutual connection. Analysis: Similarities between…

  19. KEJAHATAN NAMA DOMAIN BERKAITAN DENGAN MEREK

    Directory of Open Access Journals (Sweden)

    Muhammad Nizar

    2018-02-01

    Full Text Available Indonesia already has an ITE Law governing domain names in general terms and on certain provisions in chapter VI, but the regulation of domain name crimes is not regulated in the ITE Law as mandated in the academic draft of the ITE Bill. The absence of regulation of domain name norm in the ITE Law creates problems with registrant of domain name (registrant which deliberately register the domain name is bad faith. The characteristic of a crime in a domain name relating to the mark is that the registered domain name has an equation in essence with another party’s well-known brand, the act of doing so by exploiting a reputation for well-known or previously commercially valuable names as domain names for addresses for sites (websites it manages. The Prosecutor may include articles of the KUHP in filing his indictment before the Court during the absence of special regulatory provisions concerning domain name crime.

  20. The Internet of Samples in the Earth Sciences (iSamples)

    Science.gov (United States)

    Carter, M. R.; Lehnert, K. A.

    2015-12-01

    Across most Earth Science disciplines, research depends on the availability of samples collected above, at, and beneath Earth's surface, on the moon and in space, or generated in experiments. Many domains in the Earth Sciences have recently expressed the need for better discovery, access, and sharing of scientific samples and collections (EarthCube End-User Domain workshops, 2012 and 2013, http://earthcube.org/info/about/end-user-workshops), as has the US government (OSTP Memo, March 2014). The Internet of Samples in the Earth Sciences (iSamples) is an initiative funded as a Research Coordination Network (RCN) within the EarthCube program to address this need. iSamples aims to advance the use of innovative cyberinfrastructure to connect physical samples and sample collections across the Earth Sciences with digital data infrastructures to revolutionize their utility for science. iSamples strives to build, grow, and foster a new community of practice, in which domain scientists, curators of sample repositories and collections, computer and information scientists, software developers and technology innovators engage in and collaborate on defining, articulating, and addressing the needs and challenges of physical samples as a critical component of digital data infrastructure. A primary goal of iSamples is to deliver a community-endorsed set of best practices and standards for the registration, description, identification, and citation of physical specimens and define an actionable plan for implementation. iSamples conducted a broad community survey about sample sharing and has created 5 different working groups to address the different challenges of developing the internet of samples - from metadata schemas and unique identifiers to an architecture of a shared cyberinfrastructure for collections, to digitization of existing collections, to education, and ultimately to establishing the physical infrastructure that will ensure preservation and access of the physical

  1. UV--Visible observations with HST in the JWST North Ecliptic Pole Time-Domain Field

    Science.gov (United States)

    Jansen, Rolf A.; Windhorst, Rogier; Grogin, Norman; Koekemoer, Anton; Royle, Patricia; Hathi, Nimish; Jones, Victoria; Cohen, Seth; Ashcraft, Teresa; Willmer, Christopher; Conselice, Christopher; White, Cameron; Frye, Brenda; HST-GO-15278 team; and the Webb Medium Deep Fields IDS GTO team.

    2018-01-01

    We report the first results from a UV–Visible HST imaging survey of the JWST North Ecliptic Pole (NEP) Time-Domain Field (TDF). Using CVZ and near-CVZ opportunities we observed the first two out of nine tiles with WFC3/UVIS in F275W and with ACS/WFC in F435W and F606W. Over the course of the next 13 months, this survey is designed to provide near-contiguous 3-filter coverage of the central r ≤ 5‧ of this new community field for time-domain science with JWST. The JWST NEP TDF is located within JWST's northern Continuous Viewing Zone, will span ~14‧ in diameter (~10‧ with NIRISS coverage), is devoid of sources bright enough to saturate the NIRCam detectors, has low Galactic foreground extinction, and will be roughly circular in shape (initially sampled during Cycle 1 at 4 distinct orientations with JWST/NIRCam — the JWST “windmill”). NIRISS slitless grism spectroscopy will be taken in parallel, overlapping an alternate NIRCam orientation. This is the only region in the sky where JWST can observe a clean extragalactic deep survey field of this size at arbitrary cadence or at arbitrary orientation. This will crucially enable a wide range of new and exciting time-domain science, including high redshift transient searches and monitoring (e.g., SNe), variability studies from Active Galactic Nuclei to brown dwarf atmospheres, as well as proper motions of extreme scattered Kuiper Belt and Oort Cloud Objects, and of nearby Galactic brown dwarfs, low-mass stars, and ultracool white dwarfs. Ancillary data across the electromagnetic spectrum will exist for this field when JWST science operations commence in the second half of 2019. This includes deep (mAB ~ 26 mag) wide-field (~23‧×25‧) Ugriz photometry of this field and its surroundings from LBT/LBC and Subaru/HSC, JHK from MMT/MMIRS, VLA 3 GHz and VLBA 4.5 GHz radio observations, and Chandra/ACIS X-ray images. Proposals for (sub)mm observations and spectroscopy to mAB ~ 24 mag are pending.

  2. Analyzing the Use of Concept Maps in Computer Science: A Systematic Mapping Study

    Science.gov (United States)

    dos Santos, Vinicius; de Souza, Érica F.; Felizardo, Katia R; Vijaykumar, Nandamudi L.

    2017-01-01

    Context: concept Maps (CMs) enable the creation of a schematic representation of a domain knowledge. For this reason, CMs have been applied in different research areas, including Computer Science. Objective: the objective of this paper is to present the results of a systematic mapping study conducted to collect and evaluate existing research on…

  3. AN INTELLIGENT CONVERSATION AGENT FOR HEALTH CARE DOMAIN

    Directory of Open Access Journals (Sweden)

    K. Karpagam

    2014-04-01

    Full Text Available Human Computer Interaction is one of the pervasive application areas of computer science to develop with multimodal interaction for information sharings. The conversation agent acts as the major core area for developing interfaces between a system and user with applied AI for proper responses. In this paper, the interactive system plays a vital role in improving knowledge in the domain of health through the intelligent interface between machine and human with text and speech. The primary aim is to enrich the knowledge and help the user in the domain of health using conversation agent to offer immediate response with human companion feel.

  4. Provenance Challenges for Earth Science Dataset Publication

    Science.gov (United States)

    Tilmes, Curt

    2011-01-01

    Modern science is increasingly dependent on computational analysis of very large data sets. Organizing, referencing, publishing those data has become a complex problem. Published research that depends on such data often fails to cite the data in sufficient detail to allow an independent scientist to reproduce the original experiments and analyses. This paper explores some of the challenges related to data identification, equivalence and reproducibility in the domain of data intensive scientific processing. It will use the example of Earth Science satellite data, but the challenges also apply to other domains.

  5. Image reconstruction by domain-transform manifold learning

    Science.gov (United States)

    Zhu, Bo; Liu, Jeremiah Z.; Cauley, Stephen F.; Rosen, Bruce R.; Rosen, Matthew S.

    2018-03-01

    Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction—automated transform by manifold approximation (AUTOMAP)—which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development

  6. Time domain contact model for tyre/road interaction including nonlinear contact stiffness due to small-scale roughness

    Science.gov (United States)

    Andersson, P. B. U.; Kropp, W.

    2008-11-01

    Rolling resistance, traction, wear, excitation of vibrations, and noise generation are all attributes to consider in optimisation of the interaction between automotive tyres and wearing courses of roads. The key to understand and describe the interaction is to include a wide range of length scales in the description of the contact geometry. This means including scales on the order of micrometres that have been neglected in previous tyre/road interaction models. A time domain contact model for the tyre/road interaction that includes interfacial details is presented. The contact geometry is discretised into multiple elements forming pairs of matching points. The dynamic response of the tyre is calculated by convolving the contact forces with pre-calculated Green's functions. The smaller-length scales are included by using constitutive interfacial relations, i.e. by using nonlinear contact springs, for each pair of contact elements. The method is presented for normal (out-of-plane) contact and a method for assessing the stiffness of the nonlinear springs based on detailed geometry and elastic data of the tread is suggested. The governing equations of the nonlinear contact problem are solved with the Newton-Raphson iterative scheme. Relations between force, indentation, and contact stiffness are calculated for a single tread block in contact with a road surface. The calculated results have the same character as results from measurements found in literature. Comparison to traditional contact formulations shows that the effect of the small-scale roughness is large; the contact stiffness is only up to half of the stiffness that would result if contact is made over the whole element directly to the bulk of the tread. It is concluded that the suggested contact formulation is a suitable model to include more details of the contact interface. Further, the presented result for the tread block in contact with the road is a suitable input for a global tyre/road interaction model

  7. The Data Science Landscape

    Science.gov (United States)

    Mentzel, C.

    2017-12-01

    Modern scientific data continue to increase in volume, variety, and velocity, and though the hype of big data has subsided, its usefulness for scientific discovery has only just begun. Harnessing these data for new insights, more efficient decision making, and other mission critical uses requires a combination of skills and expertise, often labeled data science. Data science can be thought of as a combination of statistics, computation and the domain from which the data relate, and so is a true interdisciplinary pursuit. Though it has reaped large benefits in companies able to afford the high cost of the severely limited talent pool, it suffers from lack of support in mission driven organizations. Not purely in any one historical field, data science is proving difficult to find a home in traditional university academic departments and other research organizations. The landscape of data science efforts, from academia, industry and government, can be characterized as nascent, enthusiastic, uneven, and highly competitive. Part of the challenge in documenting these trends is the lack of agreement about what data science is, and who is a data scientist. Defining these terms too closely and too early runs the risk of cutting off a tremendous amount of productive creativity, but waiting too long leaves many people without a sustainable career, and many organizations without the necessary skills to gain value from their data. This talk will explore the landscape of data science efforts in the US, including how organizations are building and sustaining data science teams.

  8. A Systems Approach to Biometrics in the Military Domain.

    Science.gov (United States)

    Wilson, Lauren; Gahan, Michelle; Lennard, Chris; Robertson, James

    2018-02-21

    Forensic biometrics is the application of forensic science principles to physical and behavioral characteristics. Forensic biometrics is a secondary sub-system in the forensic science "system of systems," which describes forensic science as a sub-system in the larger criminal justice, law enforcement, intelligence, and military system. The purpose of this paper is to discuss biometrics in the military domain and integration into the wider forensic science system of systems. The holistic system thinking methodology was applied to the U.S. biometric system to map it to the system of systems framework. The U.S. biometric system is used as a case study to help guide other countries to develop military biometric systems that are integrated and interoperable at the whole-of-government level. The aim is to provide the system of systems framework for agencies to consider for proactive design of biometric systems. © 2018 American Academy of Forensic Sciences.

  9. Taxonomies of Educational Objective Domain

    OpenAIRE

    Eman Ghanem Nayef; Nik Rosila Nik Yaacob; Hairul Nizam Ismail

    2013-01-01

    This paper highlights an effort to study the educational objective domain taxonomies including Bloom’s taxonomy, Lorin Anderson’s taxonomy, and Wilson’s taxonomy. In this study a comparison among these three taxonomies have been done. Results show that Bloom’s taxonomy is more suitable as an analysis tool to Educational Objective domain.

  10. EH domain of EHD1

    Energy Technology Data Exchange (ETDEWEB)

    Kieken, Fabien; Jovic, Marko; Naslavsky, Naava; Caplan, Steve, E-mail: scaplan@unmc.edu; Sorgen, Paul L. [University of Nebraska Medical Center, Department of Biochemistry and Molecular Biology and Eppley Cancer Center (United States)], E-mail: psorgen@unmc.edu

    2007-12-15

    EHD1 is a member of the mammalian C-terminal Eps15 homology domain (EH) containing protein family, and regulates the recycling of various receptors from the endocytic recycling compartment to the plasma membrane. The EH domain of EHD1 binds to proteins containing either an Asn-Pro-Phe or Asp-Pro-Phe motif, and plays an important role in the subcellular localization and function of EHD1. Thus far, the structures of five N-terminal EH domains from other proteins have been solved, but to date, the structure of the EH domains from the four C-terminal EHD family paralogs remains unknown. In this study, we have assigned the 133 C-terminal residues of EHD1, which includes the EH domain, and solved its solution structure. While the overall structure resembles that of the second of the three N-terminal Eps15 EH domains, potentially significant differences in surface charge and the structure of the tripeptide-binding pocket are discussed.

  11. EH domain of EHD1

    International Nuclear Information System (INIS)

    Kieken, Fabien; Jovic, Marko; Naslavsky, Naava; Caplan, Steve; Sorgen, Paul L.

    2007-01-01

    EHD1 is a member of the mammalian C-terminal Eps15 homology domain (EH) containing protein family, and regulates the recycling of various receptors from the endocytic recycling compartment to the plasma membrane. The EH domain of EHD1 binds to proteins containing either an Asn-Pro-Phe or Asp-Pro-Phe motif, and plays an important role in the subcellular localization and function of EHD1. Thus far, the structures of five N-terminal EH domains from other proteins have been solved, but to date, the structure of the EH domains from the four C-terminal EHD family paralogs remains unknown. In this study, we have assigned the 133 C-terminal residues of EHD1, which includes the EH domain, and solved its solution structure. While the overall structure resembles that of the second of the three N-terminal Eps15 EH domains, potentially significant differences in surface charge and the structure of the tripeptide-binding pocket are discussed

  12. Towards a Conceptual Design of a Cross-Domain Integrative Information System for the Geosciences

    Science.gov (United States)

    Zaslavsky, I.; Richard, S. M.; Valentine, D. W.; Malik, T.; Gupta, A.

    2013-12-01

    As geoscientists increasingly focus on studying processes that span multiple research domains, there is an increased need for cross-domain interoperability solutions that can scale to the entire geosciences, bridging information and knowledge systems, models, software tools, as well as connecting researchers and organization. Creating a community-driven cyberinfrastructure (CI) to address the grand challenges of integrative Earth science research and education is the focus of EarthCube, a new research initiative of the U.S. National Science Foundation. We are approaching EarthCube design as a complex socio-technical system of systems, in which communication between various domain subsystems, people and organizations enables more comprehensive, data-intensive research designs and knowledge sharing. In particular, we focus on integrating 'traditional' layered CI components - including information sources, catalogs, vocabularies, services, analysis and modeling tools - with CI components supporting scholarly communication, self-organization and social networking (e.g. research profiles, Q&A systems, annotations), in a manner that follows and enhances existing patterns of data, information and knowledge exchange within and across geoscience domains. We describe an initial architecture design focused on enabling the CI to (a) provide an environment for scientifically sound information and software discovery and reuse; (b) evolve by factoring in the impact of maturing movements like linked data, 'big data', and social collaborations, as well as experience from work on large information systems in other domains; (c) handle the ever increasing volume, complexity and diversity of geoscience information; (d) incorporate new information and analytical requirements, tools, and techniques, and emerging types of earth observations and models; (e) accommodate different ideas and approaches to research and data stewardship; (f) be responsive to the existing and anticipated needs

  13. (The Ethics of Teaching Science and Ethics: A Collaborative Proposal

    Directory of Open Access Journals (Sweden)

    William P. Kabasenche

    2014-10-01

    Full Text Available I offer a normative argument for a collaborative approach to teaching ethical issues in the sciences. Teaching science ethics requires expertise in at least two knowledge domains—the relevant science(s and philosophical ethics. Accomplishing the aims of ethics education, while ensuring that science ethics discussions remain grounded in the best empirical science, can generally best be done through collaboration between a scientist and an ethicist. Ethics as a discipline is in danger of being misrepresented or distorted if presented by someone who lacks appropriate disciplinary training and experience. While there are exceptions, I take philosophy to be the most appropriate disciplinary domain in which to gain training in ethics teaching. Science students, who must be prepared to engage with many science ethics issues, are poorly served if their education includes a misrepresentation of ethics or specific issues. Students are less well prepared to engage specific issues in science ethics if they lack an appreciation of the resources the discipline of ethics provides. My collaborative proposal looks at a variety of ways scientists and ethicists might collaborate in the classroom to foster good science ethics education.

  14. Analysis of Nature of Science Included in Recent Popular Writing Using Text Mining Techniques

    Science.gov (United States)

    Jiang, Feng; McComas, William F.

    2014-01-01

    This study examined the inclusion of nature of science (NOS) in popular science writing to determine whether it could serve supplementary resource for teaching NOS and to evaluate the accuracy of text mining and classification as a viable research tool in science education research. Four groups of documents published from 2001 to 2010 were…

  15. Beyond cross-domain learning: Multiple-domain nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan; Gao, Xin

    2014-01-01

    Traditional cross-domain learning methods transfer learning from a source domain to a target domain. In this paper, we propose the multiple-domain learning problem for several equally treated domains. The multiple-domain learning problem assumes that samples from different domains have different distributions, but share the same feature and class label spaces. Each domain could be a target domain, while also be a source domain for other domains. A novel multiple-domain representation method is proposed for the multiple-domain learning problem. This method is based on nonnegative matrix factorization (NMF), and tries to learn a basis matrix and coding vectors for samples, so that the domain distribution mismatch among different domains will be reduced under an extended variation of the maximum mean discrepancy (MMD) criterion. The novel algorithm - multiple-domain NMF (MDNMF) - was evaluated on two challenging multiple-domain learning problems - multiple user spam email detection and multiple-domain glioma diagnosis. The effectiveness of the proposed algorithm is experimentally verified. © 2013 Elsevier Ltd. All rights reserved.

  16. Beyond cross-domain learning: Multiple-domain nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-02-01

    Traditional cross-domain learning methods transfer learning from a source domain to a target domain. In this paper, we propose the multiple-domain learning problem for several equally treated domains. The multiple-domain learning problem assumes that samples from different domains have different distributions, but share the same feature and class label spaces. Each domain could be a target domain, while also be a source domain for other domains. A novel multiple-domain representation method is proposed for the multiple-domain learning problem. This method is based on nonnegative matrix factorization (NMF), and tries to learn a basis matrix and coding vectors for samples, so that the domain distribution mismatch among different domains will be reduced under an extended variation of the maximum mean discrepancy (MMD) criterion. The novel algorithm - multiple-domain NMF (MDNMF) - was evaluated on two challenging multiple-domain learning problems - multiple user spam email detection and multiple-domain glioma diagnosis. The effectiveness of the proposed algorithm is experimentally verified. © 2013 Elsevier Ltd. All rights reserved.

  17. GUM2DFT—a software tool for uncertainty evaluation of transient signals in the frequency domain

    International Nuclear Information System (INIS)

    Eichstädt, S; Wilkens, V

    2016-01-01

    The Fourier transform and its counterpart for discrete time signals, the discrete Fourier transform (DFT), are common tools in measurement science and application. Although almost every scientific software package offers ready-to-use implementations of the DFT, the propagation of uncertainties in line with the guide to the expression of uncertainty in measurement (GUM) is typically neglected. This is of particular importance in dynamic metrology, when input estimation is carried out by deconvolution in the frequency domain. To this end, we present the new open-source software tool GUM2DFT, which utilizes closed formulas for the efficient propagation of uncertainties for the application of the DFT, inverse DFT and input estimation in the frequency domain. It handles different frequency domain representations, accounts for autocorrelation and takes advantage of the symmetry inherent in the DFT result for real-valued time domain signals. All tools are presented in terms of examples which form part of the software package. GUM2DFT will foster GUM-compliant evaluation of uncertainty in a DFT-based analysis and enable metrologists to include uncertainty evaluations in their routine work. (paper)

  18. Secondary Science Teachers' and Students' Involvement in a Primary School Community of Science Practice: How It Changed Their Practices and Interest in Science

    Science.gov (United States)

    Forbes, Anne; Skamp, Keith

    2016-02-01

    MyScience is a primary science education initiative in which being in a community of practice is integral to the learning process. In this initiative, stakeholder groups—primary teachers, primary students and mentors—interact around the `domain' of `investigating scientifically'. This paper builds on three earlier publications and interprets the findings of the views of four secondary science teachers and five year 9 secondary science students who were first-timer participants—as mentors—in MyScience. Perceptions of these mentors' interactions with primary students were analysed using attributes associated with both `communities of practice' and the `nature of science'. Findings reveal that participation in MyScience changed secondary science teachers' views and practices about how to approach the teaching of science in secondary school and fostered primary-secondary links. Year 9 students positively changed their views about secondary school science and confidence in science through participation as mentors. Implications for secondary science teaching and learning through participation in primary school community of science practice settings are discussed.

  19. Distributed execution of aggregated multi domain workflows using an agent framework

    NARCIS (Netherlands)

    Zhao, Z.; Belloum, A.; de Laat, C.; Adriaans, P.; Hertzberger, B.; Zhang, L.J.; Watson, T.J.; Yang, J.; Hung, P.C.K.

    2007-01-01

    In e-Science, meaningful experiment processes and workflow engines emerge as important scientific resources. A complex experiment often involves services and processes developed in different scientific domains. Aggregating different workflows into one meta workflow avoids unnecessary rewriting of

  20. Marrying Content and Process in Computer Science Education

    Science.gov (United States)

    Zendler, A.; Spannagel, C.; Klaudt, D.

    2011-01-01

    Constructivist approaches to computer science education emphasize that as well as knowledge, thinking skills and processes are involved in active knowledge construction. K-12 computer science curricula must not be based on fashions and trends, but on contents and processes that are observable in various domains of computer science, that can be…

  1. A frequency domain linearized Navier-Stokes method including acoustic damping by eddy viscosity using RANS

    Science.gov (United States)

    Holmberg, Andreas; Kierkegaard, Axel; Weng, Chenyang

    2015-06-01

    In this paper, a method for including damping of acoustic energy in regions of strong turbulence is derived for a linearized Navier-Stokes method in the frequency domain. The proposed method is validated and analyzed in 2D only, although the formulation is fully presented in 3D. The result is applied in a study of the linear interaction between the acoustic and the hydrodynamic field in a 2D T-junction, subject to grazing flow at Mach 0.1. Part of the acoustic energy at the upstream edge of the junction is shed as harmonically oscillating disturbances, which are conveyed across the shear layer over the junction, where they interact with the acoustic field. As the acoustic waves travel in regions of strong shear, there is a need to include the interaction between the background turbulence and the acoustic field. For this purpose, the oscillation of the background turbulence Reynold's stress, due to the acoustic field, is modeled using an eddy Newtonian model assumption. The time averaged flow is first solved for using RANS along with a k-ε turbulence model. The spatially varying turbulent eddy viscosity is then added to the spatially invariant kinematic viscosity in the acoustic set of equations. The response of the 2D T-junction to an incident acoustic field is analyzed via a plane wave scattering matrix model, and the result is compared to experimental data for a T-junction of rectangular ducts. A strong improvement in the agreement between calculation and experimental data is found when the modification proposed in this paper is implemented. Discrepancies remaining are likely due to inaccuracies in the selected turbulence model, which is known to produce large errors e.g. for flows with significant rotation, which the grazing flow across the T-junction certainly is. A natural next step is therefore to test the proposed methodology together with more sophisticated turbulence models.

  2. Science gateways for distributed computing infrastructures development framework and exploitation by scientific user communities

    CERN Document Server

    Kacsuk, Péter

    2014-01-01

    The book describes the science gateway building technology developed in the SCI-BUS European project and its adoption and customization method, by which user communities, such as biologists, chemists, and astrophysicists, can build customized, domain-specific science gateways. Many aspects of the core technology are explained in detail, including its workflow capability, job submission mechanism to various grids and clouds, and its data transfer mechanisms among several distributed infrastructures. The book will be useful for scientific researchers and IT professionals engaged in the develop

  3. Science of Learning Is Learning of Science: Why We Need a Dialectical Approach to Science Education Research

    Science.gov (United States)

    Roth, Wolff-Michael

    2012-01-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed…

  4. Optimizing Resources for Trustworthiness and Scientific Impact of Domain Repositories

    Science.gov (United States)

    Lehnert, K.

    2017-12-01

    Domain repositories, i.e. data archives tied to specific scientific communities, are widely recognized and trusted by their user communities for ensuring a high level of data quality, enhancing data value, access, and reuse through a unique combination of disciplinary and digital curation expertise. Their data services are guided by the practices and values of the specific community they serve and designed to support the advancement of their science. Domain repositories need to meet user expectations for scientific utility in order to be successful, but they also need to fulfill the requirements for trustworthy repository services to be acknowledged by scientists, funders, and publishers as a reliable facility that curates and preserves data following international standards. Domain repositories therefore need to carefully plan and balance investments to optimize the scientific impact of their data services and user satisfaction on the one hand, while maintaining a reliable and robust operation of the repository infrastructure on the other hand. Staying abreast of evolving repository standards to certify as a trustworthy repository and conducting a regular self-assessment and certification alone requires resources that compete with the demands for improving data holdings or usability of systems. The Interdisciplinary Earth Data Alliance (IEDA), a data facility funded by the US National Science Foundation, operates repositories for geochemical, marine Geoscience, and Antarctic research data, while also maintaining data products (global syntheses) and data visualization and analysis tools that are of high value for the science community and have demonstrated considerable scientific impact. Balancing the investments in the growth and utility of the syntheses with resources required for certifcation of IEDA's repository services has been challenging, and a major self-assessment effort has been difficult to accommodate. IEDA is exploring a partnership model to share

  5. Assessment of Patient Safety Friendly Hospital Initiative in Three Hospitals Affiliated to Tehran University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Firoozeh Bairami

    2016-01-01

    Full Text Available Introduction: The aim of this study was to assess the status of patient safety in three hospitals, affiliated to Tehran University of Medical Sciences, based on the critical standards of Patient Safety Friendly Hospital Initiative (PSFHI. Materials and Methods:In this cross-sectional study, conducted in 2014, we used PSFHI assessment tool to evaluate the status of patient safety in three hospitals, affiliated to Tehran University of Medical Sciences; these general referral hospitals were selected purposefully. PSFHI assessment tool is comprised of 140 patient safety standards in five domains, categorized in 24 sub-domains. The five major domains include leadership and management, patient and public involvement, safe evidence-based clinical practices, safe environment, and lifelong learning. Results: All three hospitals met more than 70% of the critical standards. The highest score in critical standards (> 80% was related to the domain of leadership and management in all hospitals. The average score in the domain of safe evidence-based clinical practices was 70% in the studied hospitals. Finally, all the hospitals met 50% of the critical standards in the domains of patient and public involvement and safe environment. Conclusion: Based on the findings, PSFHI is a suitable program for meeting patient safety goals. The selected hospitals in this survey all had a high managerial commitment to patient safety; therefore, they could obtain high scores on critical standards.

  6. Domains and domain loss

    DEFF Research Database (Denmark)

    Haberland, Hartmut

    2005-01-01

    politicians and in the media, especially in the discussion whether some languages undergo ‘domain loss’ vis-à-vis powerful international languages like English. An objection that has been raised here is that domains, as originally conceived, are parameters of language choice and not properties of languages...

  7. Advances in Cross-Cutting Ideas for Computational Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Evans, Katherine J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Caldwell, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hoffman, Forrest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Charles [Univ. of Texas, Austin, TX (United States); Kerstin, Van Dam [Brookhaven National Lab. (BNL), Upton, NY (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martin, Daniel F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ostrouchov, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tuminaro, Raymond [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Paul [Univ. of California, Davis, CA (United States); Wild, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-01

    This report presents results from the DOE-sponsored workshop titled, ``Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1) process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for

  8. Advances in Cross-Cutting Ideas for Computational Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Ng, E.; Evans, K.; Caldwell, P.; Hoffman, F.; Jackson, C.; Van Dam, K.; Leung, R.; Martin, D.; Ostrouchov, G.; Tuminaro, R.; Ullrich, P.; Wild, S.; Williams, S.

    2017-01-01

    This report presents results from the DOE-sponsored workshop titled, Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1) process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for enabling

  9. Introduction to semantic e-Science in biomedicine

    Directory of Open Access Journals (Sweden)

    Wang Yimin

    2007-05-01

    Full Text Available Abstract The Semantic Web technologies provide enhanced capabilities that allow data and the meaning of the data to be shared and reused across application, enterprise, and community boundaries, better enabling integrative research and more effective knowledge discovery. This special issue is intended to give an introduction of the state-of-the-art of Semantic Web technologies and describe how such technologies would be used to build the e-Science infrastructure for biomedical communities. Six papers have been selected and included, featuring different approaches and experiences in a variety of biomedical domains.

  10. Korea's Contribution to Radiological Research Included in Science Citation Index Expanded, 1986-2010

    International Nuclear Information System (INIS)

    Ku, You Jin; Yoon, Dae Young; Lim, Kyoung Ja; Baek, Sora; Seo, Young Lan; Yun, Eun Joo; Choi, Chul Soon; Bae, Sang Hoon; Lee, Hyun; Ju, Young Su

    2012-01-01

    To evaluate scientific papers published by Korean radiologists in the Science Citation Index Expanded (SCIE) radiology journals, between 1986 and 2010. The Institute for Scientific Information Web of Knowledge-Web of Science (SCIE) database was searched for all articles published by Korean radiologists, in SCIE radiology journals, between 1986 and 2010. We performed the analysis by typing 'Korea' and 'radiol' in the address section and selecting the subject area of 'Radiology, Nuclear Medicine, and Medical Imaging' with the use of the general search function of the software. Analyzed parameters included the total number of publications, document types, journals, and institutions. In addition, we analyzed where Korea ranks, compared to other countries, in terms of the number of published articles. All these data were analyzed according to five time periods: 1986-1990, 1991-1995, 1996-2000, 2001-2005, and 2006-2010. Overall, 4974 papers were published by Korean radiologists, in 99 different SCIE journals, between 1986 and 2010, of which 4237 (85.2%) were article-type papers. Of the total 115395 articles, worldwide, published in radiology journals, Korea's share was 3.7%, with an upward trend over time (p < 0.005). The journal with the highest number of articles was the American Journal of Roentgenology (n 565, 13.3%). The institution which produced the highest number of publications was Seoul National University (n = 932, 22.0%). The number of scientific articles published by Korean radiologists in the SCIE radiology journals has increased significantly between 1986 and 2010. Korea was ranked 4th among countries contributing to radiology research during the last 5 years.

  11. Supporting students' learning in the domain of computer science

    Science.gov (United States)

    Gasparinatou, Alexandra; Grigoriadou, Maria

    2011-03-01

    Previous studies have shown that students with low knowledge understand and learn better from more cohesive texts, whereas high-knowledge students have been shown to learn better from texts of lower cohesion. This study examines whether high-knowledge readers in computer science benefit from a text of low cohesion. Undergraduate students (n = 65) read one of four versions of a text concerning Local Network Topologies, orthogonally varying local and global cohesion. Participants' comprehension was examined through free-recall measure, text-based, bridging-inference, elaborative-inference, problem-solving questions and a sorting task. The results indicated that high-knowledge readers benefited from the low-cohesion text. The interaction of text cohesion and knowledge was reliable for the sorting activity, for elaborative-inference and for problem-solving questions. Although high-knowledge readers performed better in text-based and in bridging-inference questions with the low-cohesion text, the interaction of text cohesion and knowledge was not reliable. The results suggest a more complex view of when and for whom textual cohesion affects comprehension and consequently learning in computer science.

  12. Improvement on a science curriculum including experimental demonstration of environmental radioactivity for secondary school students

    International Nuclear Information System (INIS)

    Watanabe, Kenji; Matsubara, Shizuo; Aiba, Yoshio; Eriguchi, Hiroshi; Kiyota, Saburo; Takeyama, Tetsuji.

    1988-01-01

    A science curriculum previously prepared for teaching environmental radioactivity was modified on the basis of the results of trial instructions in secondary schools. The main subject of the revised curriculum is an understanding of the natural radioactivity through the experimental demonstration about air-borne β and γ ray emitters. The other subjects included are the radioactive decay, the biological effects of radiation, the concept of risk-benefit balance (acceptable level) and the peaceful uses of nuclear energy and radiation. The work sheets and reference data prepared as learning materials are in two levels corresponding to the ability of students for this curriculum. (author)

  13. Clinical education stressors in medical trainees in Shahid Sadoughi University of Medical Sciences, Yazd

    Directory of Open Access Journals (Sweden)

    MAHDIEH MOMAYYEZI

    2016-01-01

    Full Text Available Introduction: Stress is an important factor in the educational process. Teaching and learning are stressful processes. This stress can affect one’s ability and change his/her performance. The purpose of this study was to investigate stressors of clinical education from the perspective of medical students in Yazd University of Medical Sciences. Methods: This descriptive-analytic study was conducted in Yazd University of Medical Science during year 2014-2015. The sample size was 170 medical students who were selected randomly. The data were collected by a questionnaire including four components: interpersonal relationship, educational environment, clinical experience and the unpleasant emotions. A significance level of 0.05 was considered for analysis. The statistical analyses included descriptive statistics, ANOVA and T-tests, using SPSS software, version 14. Results: The results showed that the highest domain score belonged to interpersonal relationship (3.33±0.3 followed by unpleasant emotions domain (3.3±0.3. The lowest domain score of clinical education stressors was educational environment (3.12±0.1. The results showed that the mean score of interpersonal relationship domain was more in women than in men (p<0.05. Conclusion: The relationship between teachers and students is an effective factor in all dimensions of clinical education stressors. So proper measures such as the promotion of scientific awareness of teachers and educational staff about factors that lead to stress and the best way to communicate with students should be taken to reduce the students’ stress.

  14. Factors That Influence the Difficulty of Science Words

    Science.gov (United States)

    Cervetti, Gina N.; Hiebert, Elfrieda H.; Pearson, P. David; McClung, Nicola A.

    2015-01-01

    This study examines, within the domain of science, the characteristics of words that predict word knowledge and word learning. The authors identified a set of word characteristics--length, part of speech, polysemy, frequency, morphological frequency, domain specificity, and concreteness--that, based on earlier research, were prime candidates to…

  15. [Bogdan Suchodolski--initiator and editor-in-chief of the publication History of Polish Science].

    Science.gov (United States)

    Kuźnicka, Barbara; Kuźnicki, Leszek

    2011-01-01

    Among numerous and distinguished author's and editorial works of Bogdan Suchodolski a particular value presents a publication in eight volumes entitled 'History of Polish Science' (including two biographical and bibliographic volumes), which was published in the years 1970-1992 on Professor's own initiative and edited by himself. This is the first synthesis of the history of science in Poland, from the beginning of the Middle Ages till the present time (to 1952). In the conception of the initiator and editor the work presents the development of scientific thought and achievements of the scholars in relation to national culture and in connexions with the trends in science in the world. 'History of Polish Science' is the work written by several dozen authors, representing different domains of the knowledge. Scientific, organizational and editorial patronate was possible by dint of History of Science and Technology Establishment of Polish Academy of Sciences (presently the Institute for the History of Science of Polish Academy of Sciences), which was managed by Bogdan Suchodolski.

  16. Academic Self-Concept: Modeling and Measuring for Science

    Science.gov (United States)

    Hardy, Graham

    2014-08-01

    In this study, the author developed a model to describe academic self-concept (ASC) in science and validated an instrument for its measurement. Unlike previous models of science ASC, which envisage science as a homogenous single global construct, this model took a multidimensional view by conceiving science self-concept as possessing distinctive facets including conceptual and procedural elements. In the first part of the study, data were collected from 1,483 students attending eight secondary schools in England, through the use of a newly devised Secondary Self-Concept Science Instrument, and structural equation modeling was employed to test and validate a model. In the second part of the study, the data were analysed within the new self-concept framework to examine learners' ASC profiles across the domains of science, with particular attention paid to age- and gender-related differences. The study found that the proposed science self-concept model exhibited robust measures of fit and construct validity, which were shown to be invariant across gender and age subgroups. The self-concept profiles were heterogeneous in nature with the component relating to self-concept in physics, being surprisingly positive in comparison to other aspects of science. This outcome is in stark contrast to data reported elsewhere and raises important issues about the nature of young learners' self-conceptions about science. The paper concludes with an analysis of the potential utility of the self-concept measurement instrument as a pedagogical device for science educators and learners of science.

  17. State of science: human factors and ergonomics in healthcare.

    Science.gov (United States)

    Hignett, Sue; Carayon, Pascale; Buckle, Peter; Catchpole, Ken

    2013-01-01

    The past decade has seen an increase in the application of human factors and ergonomics (HFE) techniques to healthcare delivery in a broad range of contexts (domains, locations and environments). This paper provides a state of science commentary using four examples of HFE in healthcare to review and discuss analytical and implementation challenges and to identify future issues for HFE. The examples include two domain areas (occupational ergonomics and surgical safety) to illustrate a traditional application of HFE and the area that has probably received the most research attention. The other two examples show how systems and design have been addressed in healthcare with theoretical approaches for organisational and socio-technical systems and design for patient safety. Future opportunities are identified to develop and embed HFE systems thinking in healthcare including new theoretical models and long-term collaborative partnerships. HFE can contribute to systems and design initiatives for both patients and clinicians to improve everyday performance and safety, and help to reduce and control spiralling healthcare costs. There has been an increase in the application of HFE techniques to healthcare delivery in the past 10 years. This paper provides a state of science commentary using four illustrative examples (occupational ergonomics, design for patient safety, surgical safety and organisational and socio-technical systems) to review and discuss analytical and implementation challenges and identify future issues for HFE.

  18. Progress towards the development of SH2 domain inhibitors.

    Science.gov (United States)

    Kraskouskaya, Dziyana; Duodu, Eugenia; Arpin, Carolynn C; Gunning, Patrick T

    2013-04-21

    Src homology 2 (SH2) domains are 100 amino acid modular units, which recognize and bind to tyrosyl-phosphorylated peptide sequences on their target proteins, and thereby mediate intracellular protein-protein interactions. This review summarizes the progress towards the development of synthetic agents that disrupt the function of the SH2 domains in different proteins as well as the clinical relevance of targeting a specific SH2 domain. Since 1986, SH2 domains have been identified in over 110 human proteins, including kinases, transcription factors, and adaptor proteins. A number of these proteins are over-activated in many diseases, including cancer, and their function is highly dependent on their SH2 domain. Thus, inhibition of a protein's function through disrupting that of its SH2 domain has emerged as a promising approach towards the development of novel therapeutic modalities. Although targeting the SH2 domain is a challenging task in molecular recognition, the progress reported here demonstrates the feasibility of such an approach.

  19. Hydrology Domain Cyberinfrastructures: Successes, Challenges, and Opportunities

    Science.gov (United States)

    Horsburgh, J. S.

    2015-12-01

    Anticipated changes to climate, human population, land use, and urban form will alter the hydrology and availability of water within the water systems on which the world's population relies. Understanding the effects of these changes will be paramount in sustainably managing water resources, as well as maintaining associated capacity to provide ecosystem services (e.g., regulating flooding, maintaining instream flow during dry periods, cycling nutrients, and maintaining water quality). It will require better information characterizing both natural and human mediated hydrologic systems and enhanced ability to generate, manage, store, analyze, and share growing volumes of observational data. Over the past several years, a number of hydrology domain cyberinfrastructures have emerged or are currently under development that are focused on providing integrated access to and analysis of data for cross-domain synthesis studies. These include the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Hydrologic Information System (HIS), the Critical Zone Observatory Information System (CZOData), HyroShare, the BiG CZ software system, and others. These systems have focused on sharing, integrating, and analyzing hydrologic observations data. This presentation will describe commonalities and differences in the cyberinfrastructure approaches used by these projects and will highlight successes and lessons learned in addressing the challenges of big and complex data. It will also identify new challenges and opportunities for next generation cyberinfrastructure and a next generation of cyber-savvy scientists and engineers as developers and users.

  20. Updating the Psoriatic Arthritis (PsA) Core Domain Set

    DEFF Research Database (Denmark)

    Orbai, Ana-Maria; de Wit, Maarten; Mease, Philip J

    2017-01-01

    OBJECTIVE: To include the patient perspective in accordance with the Outcome Measures in Rheumatology (OMERACT) Filter 2.0 in the updated Psoriatic Arthritis (PsA) Core Domain Set for randomized controlled trials (RCT) and longitudinal observational studies (LOS). METHODS: At OMERACT 2016, research...... conducted to update the PsA Core Domain Set was presented and discussed in breakout groups. The updated PsA Core Domain Set was voted on and endorsed by OMERACT participants. RESULTS: We conducted a systematic literature review of domains measured in PsA RCT and LOS, and identified 24 domains. We conducted...... and breakout groups at OMERACT 2016 in which findings were presented and discussed. The updated PsA Core Domain Set endorsed with 90% agreement by OMERACT 2016 participants included musculoskeletal disease activity, skin disease activity, fatigue, pain, patient's global assessment, physical function, health...

  1. Work-domain knowledge in usability evaluation

    DEFF Research Database (Denmark)

    Følstad, Asbjørn; Hornbæk, Kasper

    2010-01-01

    Usability evaluation helps to determine whether interactive systems support users in their work tasks. However, knowledge about those tasks and, more generally, about the work-domain is difficult to bring to bear on the processes and outcome of usability evaluation. One way to include such work......-domain knowledge might be Cooperative Usability Testing, an evaluation method that consists of (a) interaction phases, similar to classic usability testing, and (b) interpretation phases, where the test participant and the moderator discuss incidents and experiences from the interaction phases. We have studied...... whether such interpretation phases improve the relevance of usability evaluations in the development of work-domain specific systems. The study included two development cases. We conclude that the interpretation phases generate additional insight and redesign suggestions related to observed usability...

  2. Susan Loucks-Horsley learning model in light pollution theme: based on a new taxonomy for science education

    Science.gov (United States)

    Liliawati, W.; Utama, J. A.; Fauziah, H.

    2016-08-01

    The curriculum in Indonesia recommended that science teachers in the elementary and intermediate schools should have interdisciplinary ability in science. However, integrated learning still has not been implemented optimally. This research is designing and applying integrated learning with Susan Loucks-Horsley model in light pollution theme. It can be showed how the student's achievements based on new taxonomy of science education with five domains: knowing & understanding, science process skill, creativity, attitudinal and connecting & applying. This research use mixed methods with concurrent embedded design. The subject is grade 8 of junior high school students in Bandung as many as 27 students. The Instrument have been employed has 28 questions test mastery of concepts, observations sheet and moral dilemma test. The result shows that integrated learning with model Susan Loucks-Horsley is able to increase student's achievement and positive characters on light pollution theme. As the results are the average normalized gain of knowing and understanding domain reach in lower category, the average percentage of science process skill domain reach in good category, the average percentage of creativity and connecting domain reach respectively in good category and attitudinal domain the average percentage is over 75% in moral knowing and moral feeling.

  3. Handbook of coherent domain optical methods biomedical diagnostics, environmental and material science

    CERN Document Server

    2004-01-01

    For the first time in one set of books, coherent-domain optical methods are discussed in the framework of various applications, which are characterized by a strong light scattering. A few chapters describe basic research containing the updated results on coherent and polarized light non-destructive interactions with a scattering medium, in particular, diffraction, interference, and speckle formation at multiple scattering. These chapters allow for understanding coherent-domain diagnostic techniques presented in later chapters. A large portion of Volume I is dedicated to analysis of various aspects of optical coherence tomography (OCT) - a very new and growing field of coherent optics. Two chapters on laser scanning confocal microscopy give insight to recent extraordinary results on in vivo imaging and compare the possibilities and achievements of confocol, excitation multiphoton, and OCT microscopy. This two volume reference contains descriptions of holography, interferometry and optical heterodyning techniqu...

  4. Atomic resolution imaging of ferroelectric domains

    International Nuclear Information System (INIS)

    Bursill, L.A.

    1997-01-01

    Electron optical principles involved in obtaining atomic resolution images of ferroelectric domains are reviewed, including the methods available to obtain meaningful interpretation and analysis of the image detail in terms of the atomic structures. Recent work is concerned with establishing the relationship between the essentially static chemical nanodomains and the spatial and temporal fluctuations of the nanoscale polar domains present in the relaxor class of materials, including lead scandium tantalate (PST) and lead magnesium niobate (PMN). Correct interpretation of the images required use of Next Nearest Neighbour Ising model simulations for the chemical domain textures upon which we must superimpose the polar domain textures; an introduction to this work is presented. A thorough analysis of the atomic scale chemical inhomogeneities, based upon the HRTEM results, has lead to an improved formulation of the theory of the dielectric response of PMN and PST, which is capable to predict the observed temperature and frequency dependence. HRTEM may be combined with solid state and statistical physics principles to provide a deeper understanding of structure/property relationships. 15 refs., 6 figs

  5. Interest in science: a RIASEC-based analysis of students' interests

    Science.gov (United States)

    Dierks, Pay O.; Höffler, Tim N.; Blankenburg, Janet S.; Peters, Heide; Parchmann, Ilka

    2016-01-01

    Considering the reported lack of interest in the STEM-domain and the consequential difficulties in recruiting talented and interested young academics, the development of effective enrichment measures is indispensable. This requires a precise picture of students' interests. The paper presents an approach to characterize interest profiles in explicitly science-related activities. Adapting Holland's RIASEC-model, an instrument was developed and tested which allows the description of interest in activities along Holland's dimensions (and a seventh dimension networking) within the confined science domain. The findings of a study with N = 247 students (age cohorts 12-19 years) uncovered interest differences for the environments school, enrichment, and (prospective) vocation. The mutual importance of the performed activity and the environment the activity is performed in is confirmed by a cross-classified model. Contrasting different subgroups revealed multiple results, e.g., girls showed more interest in artistic and social activities within the science domain. High achieving students showed more interest in science-related activities in all dimensions. In conclusion, using our adapted model, students' interest structure can be described in a differentiated manner. This could lay the foundation for further analyses of students' interest profiles and thereby contribute to future development of effective and congruent enrichment measures, thus enhancing interest in science.

  6. An introduction to cluster science

    CERN Document Server

    Dinh, Phuong Mai; Suraud, Eric

    2013-01-01

    Filling the need for a solid textbook, this short primer in cluster science is ideal for a one-semester lecture for advanced undergraduate students. It is based on a series of lectures given by the well-established and recognized authors for the past ten years. The book covers both the basics of the domain as well as up-to-date developments. It can be divided roughly into two parts. The first three chapters introduce basic concepts of cluster science. Chapter 1 provides a general introduction, complemented by chapter 2 on experimental and chapter 3 on theoretical aspects. The second half of the book is devoted to a systematic presentation of free cluster properties, and to a thorough discussion of the impact of clusters in other domains of science. These explicitly worked-out links between cluster physics and other research areas are unique both in terms of fundamental aspects and of applications, and cannot be found elsewhere in the literature. Also suitable for researchers outside of the field looking for...

  7. Influence of Physical Activities to Science Performance

    Directory of Open Access Journals (Sweden)

    RS Wilson DR. Constantino

    2017-11-01

    Full Text Available This study explored the physical activities of fifth and sixth graders that projected correlations to science performance and how these physical activities may be utilized for classroom purposes in the context of science-related play activities. Descriptive survey correlational design directed the data collection and analysis of the physical activities of purposively selected 133 fifth and sixth graders. Primarily, the study used a researcher-developed and validated instrument (Physical Activity Questionnaire [PAQ], and standard instruments: Philippine National Physical Activity Guide (PNPAG and General Physical Activity Questionnaire (GPAQ. The latter classified the physical activities into five domains which directed the interpretation of the participants‟ responses. The Pearson-r Moment of Correlation described the level of correlation of the frequency of engagement to physical activities (limited to local and localized activities and the science grade of the respondents. Results show that each of the physical activity domains showed specific correlations to science performance of the respondents. For further research, enrichment of the relationship of the physical activities and the science performance may focus on possible moderating variables like economic status, and time allotment for physical activities.

  8. Proceedings for Lunch and Learn: Making science fun and exciting through social media

    Energy Technology Data Exchange (ETDEWEB)

    Biron, Lauren [Fermilab; Haffner, Julie [CERN; Nellist, Clara [Paris, IN2P3; Cowern, Dianna; Marsollier, Arnaud [CERN

    2017-02-07

    Social media channels are vital for outreach and offer huge opportunities for scientists to directly engage with the public using nontraditional methods – including lots of creativity and humor. The physics community’s presence is growing more significant, and this session (designed for early career researchers) provided a lively discussion with experts in the domain. We covered how to best use social media to raise public awareness of science, share excitement and progress, and cultivate support from followers. We also discussed some of the thornier issues in social media, such as capturing the complexity of both the scientific process and the science itself.

  9. Proceedings for Lunch and Learn: Making science fun and exciting through social media

    CERN Document Server

    Biron, Lauren; Nellist, Clara; Cowern, Dianna; Marsollier, Arnaud

    2017-01-01

    Social media channels are vital for outreach and offer huge opportunities for scientists to directly engage with the public using nontraditional methods – including lots of creativity and humor. The physics community’s presence is growing more significant, and this session (designed for early career researchers) provided a lively discussion with experts in the domain. We covered how to best use social media to raise public awareness of science, share excitement and progress, and cultivate support from followers. We also discussed some of the thornier issues in social media, such as capturing the complexity of both the scientific process and the science itself.

  10. The naturalism of the sciences.

    Science.gov (United States)

    Dawes, Gregory W; Smith, Tiddy

    2018-02-01

    The sciences are characterized by what is sometimes called a "methodological naturalism," which disregards talk of divine agency. In response to those who argue that this reflects a dogmatic materialism, a number of philosophers have offered a pragmatic defense. The naturalism of the sciences, they argue, is provisional and defeasible: it is justified by the fact that unsuccessful theistic explanations have been superseded by successful natural ones. But this defense is inconsistent with the history of the sciences. The sciences have always exhibited what we call a domain naturalism. They have never invoked divine agency, but have always focused on the causal structure of the natural world. It is not the case, therefore, that the sciences once employed theistic explanations and then abandoned them. The naturalism of the sciences is as old as science itself. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Thundercloud: Domain specific information security training for the smart grid

    Science.gov (United States)

    Stites, Joseph

    In this paper, we describe a cloud-based virtual smart grid test bed: ThunderCloud, which is intended to be used for domain-specific security training applicable to the smart grid environment. The test bed consists of virtual machines connected using a virtual internal network. ThunderCloud is remotely accessible, allowing students to undergo educational exercises online. We also describe a series of practical exercises that we have developed for providing the domain-specific training using ThunderCloud. The training exercises and attacks are designed to be realistic and to reflect known vulnerabilities and attacks reported in the smart grid environment. We were able to use ThunderCloud to offer practical domain-specific security training for smart grid environment to computer science students at little or no cost to the department and no risk to any real networks or systems.

  12. The relationship between emotional intelligence and academic stress in students of medical sciences.

    Science.gov (United States)

    Miri, Mohammad Reza; Kermani, Tayyebe; Khoshbakht, Hoda; Moodi, Mitra

    2013-01-01

    Emotional intelligence (EI) theory provides a view about predicting effective factors in people's lives whether in education or profession. According to earlier studies, people who have higher emotional skills are more successful in many of life aspects :e.g., reaction to stress and controlling stress situations. Since students are the future of society, this study was carried out to evaluate the relationship between EI and education stress in the students of Birjand University of Medical Sciences (BUMS). In this cross-sectional study, 260 students were selected by proportional sampling in four faculties: Medicine, Nursing and Midwifery, Paramedical Sciences, and Health. Data were collected using two questionnaires: The standardized EI Shering's (33 questions, five domains) and the Student-Life Stress Inventory (57 questions, nine domains). The obtained data were analyzed by independent t-test, Pearson's correlation coefficient, and linear regression at the significant level of α = 0.05. Totally, 65.8% of participants were females and 31.1% were males. The educational level of the participants included Associate's degree (44.6%) Bachelor's degree in science (31.2%), and medical science (23.1%). There was no significant correlation between EI scores and educational stress in students. But there was a significant relationship between EI with sex (P = 0.02) and mean of EI scores with three domains of academic stress: Personal favorites (P = 0.004), reaction to stressors (P = 0.002), and performance in stressful situations (P = 0.001). Although EI growth in different individuals can promote their success, it cannot decrease academic stress by itself which was particularly significant in females. Therefore, other causes of stress such as individual differences must be taken into consideration.

  13. A current perspective on medical informatics and health sciences librarianship.

    Science.gov (United States)

    Perry, Gerald J; Roderer, Nancy K; Assar, Soraya

    2005-04-01

    The article offers a current perspective on medical informatics and health sciences librarianship. The authors: (1) discuss how definitions of medical informatics have changed in relation to health sciences librarianship and the broader domain of information science; (2) compare the missions of health sciences librarianship and health sciences informatics, reviewing the characteristics of both disciplines; (3) propose a new definition of health sciences informatics; (4) consider the research agendas of both disciplines and the possibility that they have merged; and (5) conclude with some comments about actions and roles for health sciences librarians to flourish in the biomedical information environment of today and tomorrow. Boundaries are disappearing between the sources and types of and uses for health information managed by informaticians and librarians. Definitions of the professional domains of each have been impacted by these changes in information. Evolving definitions reflect the increasingly overlapping research agendas of both disciplines. Professionals in these disciplines are increasingly functioning collaboratively as "boundary spanners," incorporating human factors that unite technology with health care delivery.

  14. The Use of Mobile Learning in Science: A Systematic Review

    Science.gov (United States)

    Crompton, Helen; Burke, Diane; Gregory, Kristen H.; Gräbe, Catharina

    2016-04-01

    The use of mobile learning in education is growing at an exponential rate. To best understand how mobile learning is being used, it is crucial to gain a collective understanding of the research that has taken place. This systematic review reveals the trends in mobile learning in science with a comprehensive analysis and synthesis of studies from the year 2000 onward. Major findings include that most of the studies focused on designing systems for mobile learning, followed by a combination of evaluating the effects of mobile learning and investigating the affective domain during mobile learning. The majority of the studies were conducted in the area of life sciences in informal, elementary (5-11 years) settings. Mobile devices were used in this strand of science easily within informal environments with real-world connections. A variety of research methods were employed, providing a rich research perspective. As the use of mobile learning continues to grow, further research regarding the use of mobile technologies in all areas and levels of science learning will help science educators to expand their ability to embrace these technologies.

  15. PUBLIC DOMAIN PROTECTION. USES AND REUSES OF PUBLIC DOMAIN WORKS

    Directory of Open Access Journals (Sweden)

    Monica Adriana LUPAȘCU

    2015-07-01

    Full Text Available This study tries to highlight the necessity of an awareness of the right of access to the public domain, particularly using the example of works whose protection period has expired, as well as the ones which the law considers to be excluded from protection. Such works are used not only by large libraries from around the world, but also by rights holders, via different means of use, including incorporations into original works or adaptations. However, the reuse that follows these uses often only remains at the level of concept, as the notion of the public’s right of access to public domain works is not substantiated, nor is the notion of the correct or legal use of such works.

  16. Convergence of Wachspress coordinates: from polygons to curved domains

    KAUST Repository

    Kosinka, Jiří

    2014-08-08

    Given a smooth, strictly convex planar domain, we investigate point-wise convergence of the sequence of Wachspress coordinates defined over finer and finer inscribed polygonal approximations of the domain. Based on a relation between the discrete Wachspress case and the limit smooth case given by the Wachspress kernel defined by Warren et al., we show that the corresponding sequences of Wachspress interpolants and mappings converge as 𝓞(h2) for a sampling step size h of the boundary curve of the domain as h → 0. Several examples are shown to numerically validate the results and to visualise the behaviour of discrete interpolants and mappings as they converge to their smooth counterparts. Empirically, the same convergence order is observed also for mean value coordinates. Moreover, our numerical tests suggest that the convergence of interpolants and mappings is uniform both in the Wachspress and mean value cases. © 2014 Springer Science+Business Media New York.

  17. Convergence of Wachspress coordinates: from polygons to curved domains

    KAUST Repository

    Kosinka, Jiří ; Barton, Michael

    2014-01-01

    Given a smooth, strictly convex planar domain, we investigate point-wise convergence of the sequence of Wachspress coordinates defined over finer and finer inscribed polygonal approximations of the domain. Based on a relation between the discrete Wachspress case and the limit smooth case given by the Wachspress kernel defined by Warren et al., we show that the corresponding sequences of Wachspress interpolants and mappings converge as 𝓞(h2) for a sampling step size h of the boundary curve of the domain as h → 0. Several examples are shown to numerically validate the results and to visualise the behaviour of discrete interpolants and mappings as they converge to their smooth counterparts. Empirically, the same convergence order is observed also for mean value coordinates. Moreover, our numerical tests suggest that the convergence of interpolants and mappings is uniform both in the Wachspress and mean value cases. © 2014 Springer Science+Business Media New York.

  18. Disentangling Intensity from Breadth of Science Interest: What Predicts Learning Behaviors?

    Science.gov (United States)

    Bathgate, Meghan; Schunn, Christian

    2016-01-01

    Overall interest in science has been argued to drive learner participation and engagement. However, there are other important aspects of interest such as breadth of interest within a science domain (e.g., biology, earth science). We demonstrate that intensity of science interest is separable from topic breadth using surveys from a sample of 600…

  19. Amino acids 16-275 of minute virus of mice NS1 include a domain that specifically binds (ACCA)2-3-containing DNA.

    Science.gov (United States)

    Mouw, M; Pintel, D J

    1998-11-10

    GST-NS1 purified from Escherichia coli and insect cells binds double-strand DNA in an (ACCA)2-3-dependent fashion under similar ionic conditions, independent of the presence of anti-NS1 antisera or exogenously supplied ATP and interacts with single-strand DNA and RNA in a sequence-independent manner. An amino-terminal domain (amino acids 1-275) of NS1 [GST-NS1(1-275)], representing 41% of the full-length NS1 molecule, includes a domain that binds double-strand DNA in a sequence-specific manner at levels comparable to full-length GST-NS1, as well as single-strand DNA and RNA in a sequence-independent manner. The deletion of 15 additional amino-terminal amino acids yielded a molecule [GST-NS1(1-275)] that maintained (ACCA)2-3-specific double-strand DNA binding; however, this molecule was more sensitive to increasing ionic conditions than full-length GST-NS1 and GST-NS1(1-275) and could not be demonstrated to bind single-strand nucleic acids. A quantitative filter binding assay showed that E. coli- and baculovirus-expressed GST-NS1 and E. coli GST-NS1(1-275) specifically bound double-strand DNA with similar equilibrium kinetics [as measured by their apparent equilibrium DNA binding constants (KD)], whereas GST-NS1(16-275) bound 4- to 8-fold less well. Copyright 1998 Academic Press.

  20. How do students navigate and learn from nonlinear science texts: Can metanavigation support promote science learning?

    Science.gov (United States)

    Stylianou, Agni

    2003-06-01

    Digital texts which are based on hypertext and hypermedia technologies are now being used to support science learning. Hypertext offers certain opportunities for learning as well as difficulties that challenge readers to become metacognitively aware of their navigation decisions in order to trade both meaning and structure while reading. The goal of this study was to investigate whether supporting sixth grade students to monitor and regulate their navigation behavior while reading from hypertext would lead to better navigation and learning. Metanavigation support in the form of prompts was provided to groups of students who used a hypertext system called CoMPASS to complete a design challenge. The metanavigation prompts aimed at encouraging students to understand the affordances of the navigational aids in CoMPASS and use them to guide their navigation. The study was conducted in a real classroom setting during the implementation of CoMPASS in sixth grade science classes. Multiple sources of group and individual data were collected and analyzed. Measures included student's individual performance in a pre-science knowledge test, the Metacognitive Awareness of Reading Strategies Inventory (MARSI), a reading comprehension test and a concept map test. Process measures included log file information that captured group navigation paths during the use of CoMPASS. The results suggested that providing metanavigation support enabled the groups to make coherent transitions among the text units. Findings also revealed that reading comprehension, presence of metanavigation support and prior domain knowledge significantly predicted students' individual understanding of science. Implications for hypertext design and literacy research fields are discussed.

  1. Scientific Literacy and Student Attitudes: Perspectives from PISA 2006 science

    Science.gov (United States)

    Bybee, Rodger; McCrae, Barry

    2011-01-01

    International assessments provide important knowledge about science education and help inform decisions about policies, programmes, and practices in participating countries. In 2006, science was the primary domain for the Programme for International Student Assessment (PISA), supported by the Organisation for Economic Cooperation and Development (OECD) and conducted by the Australian Council for Educational Research (ACER). Compared to the school curriculum orientation of Trends in International Math and Science Study (TIMSS), PISA provides a perspective that emphasises the application of knowledge to science and technology-related life situations. The orientation of PISA includes both knowledge and attitudes as these contribute to students' competencies that are central to scientific literacy. In addition to students' knowledge and competencies, the 2006 PISA survey gathered data on students' interest in science, support for scientific enquiry, and responsibility towards resources and environments. The survey used both a non-contextualised student questionnaire and contextualised questions. The latter is an innovative approach which embedded attitudinal questions at the conclusion of about two-thirds of the test units. The results presented in this article make connections between students' attitudes and interests in science and scientific literacy.

  2. Health domains and race in generic preference-based health-related quality of life instruments in the United States literature

    Directory of Open Access Journals (Sweden)

    Claudia Cristina de Aguiar Pereira

    2010-12-01

    Full Text Available Race differences in health have been extensively analyzed and documented in the literature, especially between African Americans or blacks and whites in the United States. Despite the vast literature in the area, the majority of studies that explore the relationship between race and health use outcomes such as self-rated health, mortality or morbidity, and disability, but very few use Health-Related Quality of Life (HRQoL measures and their domains or dimensions. This narrative review aims to provide a better understanding of the relationship between race and health domains that are commonly used in preference-based HRQoL measures. We investigated the literature on race, physical health, mental health, pain and discomfort, cognition, neurologic spectrum domains, dexterity, ambulation, vitality and social functioning domains. We conducted a literature search and review using the key words race and the health domain of interest, using medical and social sciences databases, such as MEDLINE/Pubmed, Web of Science, and the Google Scholar portal.The majority of the studies identified in the literature show that African Americans or blacks in the United States tend to have lower scores than whites throughout a variety of health domains found in preference-based HRQoL measures. This review also emphasizes the scarcity of studies that investigate some health domains, such as social functioning, dexterity, vitality and neurologic spectrum domains, and therefore we identify the need for more studies focusing on race and measures that address such domains.

  3. Assessing readiness of cyberinfrastructure resources for cross-domain interoperability: a view from an NSF EarthCube roadmap

    Science.gov (United States)

    Zaslavsky, Ilya; Couch, Alva; Richard, Stephen; Valentine, David; Lehnert, Kerstin; Stocks, Karen; Murphy, Philip

    2013-04-01

    EarthCube is a new research initiative of the U.S. National Science Foundation, with the mission to develop community-guided cyberinfrastructure integrating data, models and other resources across geoscience disciplines. Analysis and modeling of physical processes that are not confined to disciplinary or jurisdictional boundaries, requires that data and models can be re-used outside the original context in which they are collected or developed. Infrastructure readiness for cross-domain interoperability encompasses the capabilities that need to be in place to enable such information re-use and ensure that it is both scientifically sound and technically feasible. In an ideal cross-domain information integration scenario, resources can be discovered via federated catalogs and linked nomenclatures from neighboring domains, while standard data services can be used to transparently compile composite data products and to integrate information using commonality in key data characteristics related to shared models of spatial features, time measurements, and observations. The main premise of the cross-domain readiness assessment is that when accessing domain resources from another domain, a user expects to be able to discover these resources, interpret them, retrieve the information, and integrate it with other data. Documentation of the resource must be sufficient for a user in a different context to determine fitness for use, and establish trust in scientific soundness. As part of an EarthCube roadmap focused on cross-domain interoperability, we explored a number of approaches to cyberinfrastructure readiness assessment, addressing both readiness of existing resources, and readiness of processes that enable cross-domain communication and information exchange across disciplinary boundaries. Our initial assessment considers basic infrastructure components required to enable cross-domain interoperability in the geosciences. These components, and the evaluation metrics

  4. Genetic Basis of Positive and Negative Symptom Domains in Schizophrenia.

    Science.gov (United States)

    Xavier, Rose Mary; Vorderstrasse, Allison

    2017-10-01

    Schizophrenia is a highly heritable disorder, the genetic etiology of which has been well established. Yet despite significant advances in genetics research, the pathophysiological mechanisms of this disorder largely remain unknown. This gap has been attributed to the complexity of the polygenic disorder, which has a heterogeneous clinical profile. Examining the genetic basis of schizophrenia subphenotypes, such as those based on particular symptoms, is thus a useful strategy for decoding the underlying mechanisms. This review of literature examines the recent advances (from 2011) in genetic exploration of positive and negative symptoms in schizophrenia. We searched electronic databases PubMed, Web of Science, and Cumulative Index to Nursing and Allied Health Literature using key words schizophrenia, symptoms, positive symptoms, negative symptoms, cognition, genetics, genes, genetic predisposition, and genotype in various combinations. We identified 115 articles, which are included in the review. Evidence from these studies, most of which are genetic association studies, identifies shared and unique gene associations for the symptom domains. Genes associated with neurotransmitter systems and neuronal development/maintenance primarily constitute the shared associations. Needed are studies that examine the genetic basis of specific symptoms within the broader domains in addition to functional mechanisms. Such investigations are critical to developing precision treatment and care for individuals afflicted with schizophrenia.

  5. Susan Loucks-Horsley learning model in light pollution theme: based on a new taxonomy for science education

    International Nuclear Information System (INIS)

    Liliawati, W; Utama, J A; Fauziah, H

    2016-01-01

    The curriculum in Indonesia recommended that science teachers in the elementary and intermediate schools should have interdisciplinary ability in science. However, integrated learning still has not been implemented optimally. This research is designing and applying integrated learning with Susan Loucks-Horsley model in light pollution theme. It can be showed how the student's achievements based on new taxonomy of science education with five domains: knowing and understanding, science process skill, creativity, attitudinal and connecting and applying. This research use mixed methods with concurrent embedded design. The subject is grade 8 of junior high school students in Bandung as many as 27 students. The Instrument have been employed has 28 questions test mastery of concepts, observations sheet and moral dilemma test. The result shows that integrated learning with model Susan Loucks-Horsley is able to increase student's achievement and positive characters on light pollution theme. As the results are the average normalized gain of knowing and understanding domain reach in lower category, the average percentage of science process skill domain reach in good category, the average percentage of creativity and connecting domain reach respectively in good category and attitudinal domain the average percentage is over 75% in moral knowing and moral feeling. (paper)

  6. The science of science outreach: methods to maximise audience engagement

    Science.gov (United States)

    Adamson, Kathryn; Lane, Timothy

    2016-04-01

    Effective public engagement relies on a clear understanding of public audiences; their existing knowledge base and their learning preferences. Scientific content that is effective in academic spheres is not necessarily popular in the public domain. This may be due to content (e.g. beginner level to advanced terminology); presentation style (graphical, text, multimedia); audience demographic (children to adults); and entertainment value. Over the last few years, there has been a major expansion in the quantity and quality of science outreach material. For scientists, the production of outreach material, in any form, is the first giant leap to disseminating their knowledge to broader audiences. However, there is also a need to evaluate the performance of outreach material, so that its content and delivery style can be tailored and maximised for the target audience. We examine the Google Analytics data for climate science outreach website Climatica over a 12 month period in 2015. The site publishes regular posts, which take the form of short written articles, graphics, videos, or teaching resources, on all aspects of climate science. The site is publicised via social media including Twitter and Facebook. In particular, we assess website performance, in terms of website visits and post engagement. These are examined in the context of: post topic, post style, social media engagement, and the timing of post publication/advertisement. The findings of this investigation are used to explore audience preferences and mechanisms for future post development to maximise the use of this web resource.

  7. Visualization in medicine and life sciences III towards making an impact

    CERN Document Server

    Hamann, Bernd; Hege, Hans-Christian

    2016-01-01

    The book discusses novel visualization techniques driven by the needs in medicine and life sciences as well as new application areas and challenges for visualization within these fields. It presents ideas and concepts for visual analysis of data from scientific studies of living organs or to the delivery of healthcare. Target scientific domains include the entire field of biology at all scales - from genes and proteins to organs and populations - as well as interdisciplinary research based on technological advances such as bioinformatics, biomedicine, biochemistry, or biophysics. Moreover, they comprise the field of medicine and the application of science and technology to healthcare problems. This book does not only present basic research pushing the state of the art in the field of visualization, but it also documents the impact in the fields of medicine and life sciences.

  8. Normative Ethics Does Not Need a Foundation : It Needs More Science

    NARCIS (Netherlands)

    Quintelier, Katinka; van Speybroeck, Linda; Braeckman, Johan

    2011-01-01

    The impact of science on ethics forms since long the subject of intense debate. Although there is a growing consensus that science can describe morality and explain its evolutionary origins, there is less consensus about the ability of science to provide input to the normative domain of ethics.

  9. PHYSICAL SCIENCE TEACHERS’ PERCEPTIONS OF AN ADVANCED CERTIFICATE IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Sarah Bansilal

    2016-04-01

    Full Text Available Advanced Certificate in Education programmes was offered by many South African universities to provide opportunities for teachers to upgrade their positions. The purpose of the study was to explore Physical Science teachers’ perceptions of their professional development. In this study we considered three domains of professional development which are content knowledge, pedagogic content knowledge and teacher beliefs and attitudes. This study used a mixed method approach using the form of an embedded design. The study was conducted with 156 students enrolled in an ACE Physical Science programme. The teachers stated that their content knowledge and pedagogic content knowledge had not only improved, but also their engagement with actual laboratories, and conducting experiments contributed to their teaching experiences. Hence, their self-confidence of physical science teaching evolved. The authors recommend that the ACE programme should also include a mentoring system with teaching practicum via school leadership and subject advisers.

  10. Structure of the Escherichia coli RNA polymerase α subunit C-terminal domain

    International Nuclear Information System (INIS)

    Lara-González, Samuel; Birktoft, Jens J.; Lawson, Catherine L.

    2010-01-01

    The crystal structure of the dimethyllysine derivative of the E. coli RNA polymerase α subunit C-terminal domain is reported at 2.0 Å resolution. The α subunit C-terminal domain (αCTD) of RNA polymerase (RNAP) is a key element in transcription activation in Escherichia coli, possessing determinants responsible for the interaction of RNAP with DNA and with transcription factors. Here, the crystal structure of E. coli αCTD (α subunit residues 245–329) determined to 2.0 Å resolution is reported. Crystals were obtained after reductive methylation of the recombinantly expressed domain. The crystals belonged to space group P2 1 and possessed both pseudo-translational symmetry and pseudo-merohedral twinning. The refined coordinate model (R factor = 0.193, R free = 0.236) has improved geometry compared with prior lower resolution determinations of the αCTD structure [Jeon et al. (1995 ▶), Science, 270, 1495–1497; Benoff et al. (2002 ▶), Science, 297, 1562–1566]. An extensive dimerization interface formed primarily by N- and C-terminal residues is also observed. The new coordinates will facilitate the improved modeling of αCTD-containing multi-component complexes visualized at lower resolution using X-ray crystallography and electron-microscopy reconstruction

  11. The relationship between affect and constructivism as viewed by middle school science teachers

    Science.gov (United States)

    Black, Denise L.

    The purpose of this research was to examine middle school science teachers' perceptions of their students' affective behaviors at each level of the affective domain (receiving, responding, valuing, organization, characterization of value system), perceptions of the usefulness of constructivism as a curricular theory, and constructivist teaching strategies. This study investigated the relationship between affect and constructivism to determine if constructivist strategies can predict levels of affective behavior. Affect is a broad generalization that includes elements (i.e., interests, attitudes, values, emotions, and feelings). The importance of this research relates to enhancing learning, increasing achievement, participatory democracy, and facilitating understanding of science, as well as promoting the development of higher order thinking skills. A nonexperimental, descriptive research design was used to determine the relationship between affect and constructivism. A total of 111 middle school teachers participated in this study. Three instruments were used in this study: Taxonomy of Affective Behavior (TAB), Survey of Science Instruction (SSI), and a short demographic survey. Statistical significance obtained from one-sample t-tests provided evidence that teachers were aware that the affective domain was a viable construct. Statistical evidence of one-sample t-tests provided evidence that teachers perceived constructivism was useful to teach science to middle school students. Pearson product moment correlations results indicated statistically significant relationships between perceptions of constructivism and associated constructivist teaching strategies. Stepwise multiple linear regression analysis revealed a relationship between affect and constructivism. Teacher responses indicated they felt constrained from implementing constructivism due to an emphasis on testing. Colleges of education, curriculum specialists, science teachers, and school districts may

  12. Accumulating Data to Optimally Predict Obesity Treatment (ADOPT) Core Measures: Psychosocial Domain.

    Science.gov (United States)

    Sutin, Angelina R; Boutelle, Kerri; Czajkowski, Susan M; Epel, Elissa S; Green, Paige A; Hunter, Christine M; Rice, Elise L; Williams, David M; Young-Hyman, Deborah; Rothman, Alexander J

    2018-04-01

    Within the Accumulating Data to Optimally Predict obesity Treatment (ADOPT) Core Measures Project, the psychosocial domain addresses how psychosocial processes underlie the influence of obesity treatment strategies on weight loss and weight maintenance. The subgroup for the psychosocial domain identified an initial list of high-priority constructs and measures that ranged from relatively stable characteristics about the person (cognitive function, personality) to dynamic characteristics that may change over time (motivation, affect). This paper describes (a) how the psychosocial domain fits into the broader model of weight loss and weight maintenance as conceptualized by ADOPT; (b) the guiding principles used to select constructs and measures for recommendation; (c) the high-priority constructs recommended for inclusion; (d) domain-specific issues for advancing the science; and (e) recommendations for future research. The inclusion of similar measures across trials will help to better identify how psychosocial factors mediate and moderate the weight loss and weight maintenance process, facilitate research into dynamic interactions with factors in the other ADOPT domains, and ultimately improve the design and delivery of effective interventions. © 2018 The Obesity Society.

  13. Domain analysis of computational science - Fifty years of a scientific computing group

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M.

    2010-02-23

    I employed bibliometric- and historical-methods to study the domain of the Scientific Computing group at Brookhaven National Laboratory (BNL) for an extended period of fifty years, from 1958 to 2007. I noted and confirmed the growing emergence of interdisciplinarity within the group. I also identified a strong, consistent mathematics and physics orientation within it.

  14. The BRCT domain is a phospho-protein binding domain.

    Science.gov (United States)

    Yu, Xiaochun; Chini, Claudia Christiano Silva; He, Miao; Mer, Georges; Chen, Junjie

    2003-10-24

    The carboxyl-terminal domain (BRCT) of the Breast Cancer Gene 1 (BRCA1) protein is an evolutionarily conserved module that exists in a large number of proteins from prokaryotes to eukaryotes. Although most BRCT domain-containing proteins participate in DNA-damage checkpoint or DNA-repair pathways, or both, the function of the BRCT domain is not fully understood. We show that the BRCA1 BRCT domain directly interacts with phosphorylated BRCA1-Associated Carboxyl-terminal Helicase (BACH1). This specific interaction between BRCA1 and phosphorylated BACH1 is cell cycle regulated and is required for DNA damage-induced checkpoint control during the transition from G2 to M phase of the cell cycle. Further, we show that two other BRCT domains interact with their respective physiological partners in a phosphorylation-dependent manner. Thirteen additional BRCT domains also preferentially bind phospho-peptides rather than nonphosphorylated control peptides. These data imply that the BRCT domain is a phospho-protein binding domain involved in cell cycle control.

  15. Monopoles, vortices, domain walls and D-branes: The rules of interaction

    International Nuclear Information System (INIS)

    Sakai, Norisuke; Tong, David

    2005-01-01

    Non-abelian gauge theories in the Higgs phase admit a startling variety of BPS solitons. These include domain walls, vortex strings, confined monopoles threaded on vortex strings, vortex strings ending on domain walls, monopoles threaded on strings ending on domain walls, and more. After presenting a self-contained review of these objects, including several new results on the dynamics of domain walls, we go on to examine the possible interactions of solitons of various types. We point out the existence of a classical binding energy when the string ends on the domain wall which can be thought of as a BPS boojum with negative mass. We present an index theorem for domain walls in non-abelian gauge theories. We also answer questions such as: Which strings can end on which walls? What happens when monopoles pass through domain walls? What happens when domain walls pass through each other? (author)

  16. Open Data and Open Science for better Research in the Geo and Space Domain

    Science.gov (United States)

    Ritschel, B.; Seelus, C.; Neher, G.; Iyemori, T.; Koyama, Y.; Yatagai, A. I.; Murayama, Y.; King, T. A.; Hughes, S.; Fung, S. F.; Galkin, I. A.; Hapgood, M. A.; Belehaki, A.

    2015-12-01

    catalog based on semantical interoperability including the transparent access to data in relational data bases. References: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/207772/Open_Data_Charter.pdfhttp://www.openscience.org/blog/wp-content/uploads/2013/06/OpenSciencePoster.pdf

  17. 75 FR 16514 - Bayer Material Science, LLC, Formally Known as Sheffield Plastics, Including On-Site Leased...

    Science.gov (United States)

    2010-04-01

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-71,045] Bayer Material Science... January 8th, 2010, applicable to workers of Bayer Material Science, LLC, formally known as Sheffield... polycarbonate film products. Information shows that Bayer Material Science, LLC was formally known as Sheffield...

  18. Identification of hierarchy of dynamic domains in proteins: comparison of HDWA and HCCP techniques

    Directory of Open Access Journals (Sweden)

    Yesylevskyy S. O.

    2010-07-01

    Full Text Available Aim. There are several techniques for the identification of hierarchy of dynamic domains in proteins. The goal of this work is to compare systematically two recently developed techniques, HCCP and HDWA,on a set of proteins from diverse structural classes. Methods. HDWA and HCCP techniques are used. The HDWA technique is designed to identify hierarchically organized dynamic domains in proteins using the Molecular Dynamics (MD trajectories, while HCCP utilizes the normal modes of simplified elastic network models. Results. It is shown that the dynamic domains found by HDWA are consistent with the domains identified by HCCP and other techniques. At the same time HDWA identifies flexible mobile loops of proteins correctly, which is hard to achieve with other model-based domain identification techniques. Conclusion. HDWA is shown to be a powerful method of analysis of MD trajectories, which can be used in various areas of protein science.

  19. Science of learning is learning of science: why we need a dialectical approach to science education research

    Science.gov (United States)

    Roth, Wolff-Michael

    2012-06-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed in the other. Even more interestingly, the scientists studying science learning rarely consider their own learning in relation to the phenomena they study. A dialectical, reflexive approach to learning, however, would theorize the movement of an educational science (its learning and development) as a special and general case—subject matter and method—of the phenomenon of learning (in/of) science. In the dialectical approach to the study of science learning, therefore, subject matter, method, and theory fall together. This allows for a perspective in which not only disparate fields of study—school science learning and learning in everyday life—are integrated but also where the progress in the science of science learning coincides with its topic. Following the articulation of a contradictory situation on comparing learning in different settings, I describe the dialectical approach. As a way of providing a concrete example, I then trace the historical movement of my own research group as it simultaneously and alternately studied science learning in formal and informal settings. I conclude by recommending cultural-historical, dialectical approaches to learning and interaction analysis as a context for fruitful interdisciplinary research on science learning within and across different settings.

  20. Characteristics of Abductive Inquiry in Earth Science: An Undergraduate Case Study

    Science.gov (United States)

    Oh, Phil Seok

    2011-01-01

    The goal of this case study was to describe characteristic features of abductive inquiry learning activities in the domain of earth science. Participants were undergraduate junior and senior students who were enrolled in an earth science education course offered for preservice secondary science teachers at a university in Korea. The undergraduate…

  1. Informatics to support the IOM social and behavioral domains and measures.

    Science.gov (United States)

    Hripcsak, George; Forrest, Christopher B; Brennan, Patricia Flatley; Stead, William W

    2015-07-01

    Consistent collection and use of social and behavioral determinants of health can improve clinical care, prevention and general health, patient satisfaction, research, and public health. A recent Institute of Medicine committee defined a panel of 11 domains and 12 measures to be included in electronic health records. Incorporating the panel into practice creates a number of informatics research opportunities as well as challenges. The informatics issues revolve around standardization, efficient collection and review, decision support, and support for research. The informatics community can aid the effort by simultaneously optimizing the collection of the selected measures while also partnering with social science researchers to develop and validate new sources of information about social and behavioral determinants of health. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  2. [On Georges Canguilhem's "What does a scientific ideology mean?" and on French-German contributions on science and ideology in the last forty years].

    Science.gov (United States)

    Debru, Claude

    2010-06-01

    This paper is based on Canguilhem's text on the concept of scientific ideology, which he introduced in 1969. We describe Canguilhem's attempts at designing a methodological framework for the history of science including the status of kinds of knowledge related to science, like scientific ideologies preceding particular scientific domains (like ideologies about inheritance before Mendel, or Spencer's universal evolutionary laws preceding Darwin). This attempt at picturing the relationships between science and ideology is compared with Jürgen Habermas's book Technology and Science as 'Ideology' in 1968. The philosphical issue of human normativity provides the framework of this discussion.

  3. Understanding the factors that influence high science achievers' academic choices and intent to pursue or opt out of the hard sciences

    Science.gov (United States)

    Quihuis, Gisell

    Drawing on Eccles and her colleagues' Expectancy-Value model of academic behavior and choice, this dissertation study set out to serve three purposes: (1) to understand how high achieving high school students who aspire to science college degrees compare, in terms of motivational beliefs and social experiences, with other high achievers who do not aspire to science college degrees; (2) to understand why some high school students who excel in the hard sciences are unsure about pursuing a science degree in college; and (3) to examine whether gender differences in motivational beliefs and social experiences found in previous research on math (see Eccles 1984) exist for science among high achieving high school students. Survey and interview data showed that gender differences previously found in Eccles' research on math exist for science among a select group of high achieving high school students. Yet, these gender differences did not explain students' aspirations for science. Motivation, classroom perceptions, science engagement, as well as other science-related experiences at home and school, including parent and teacher influences, were also important factors associated with students' aspirations for science. Results and implications for this study are encouraging because they suggest that both parents and educators can help more high achievers become interested in science. Parents can expose their children, male and female alike, to science at home early on in their childhood and teachers can help students sustain and further develop an interest in science at school. In this manner, both parents and teachers can work together as a team to encourage more high achievers to aspire to science degrees in their future. Lastly, it is important to note that this study found Eccles' model of motivation and choice helpful in understanding not only gender differences in math and the hard sciences, but also aspiration differences that cut across gender among students

  4. Professional Networks in the Life Sciences: Linking the Linked

    Directory of Open Access Journals (Sweden)

    Thomas S. Deisboeck

    2010-08-01

    Full Text Available The world wide web has furthered the emergence of a multitude of online expert communities. Continued progress on many of the remaining complex scientific questions requires a wide ranging expertise spectrum with access to a variety of distinct data types. Moving beyond peer-to-peer to community-to-community interaction is therefore one of the biggest challenges for global interdisciplinary Life Sciences research, including that of cancer. Cross-domain data query, access, and retrieval will be important innovation areas to enable and facilitate this interaction in the coming years.

  5. Inferring domain-domain interactions from protein-protein interactions with formal concept analysis.

    Directory of Open Access Journals (Sweden)

    Susan Khor

    Full Text Available Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains.

  6. Inferring Domain-Domain Interactions from Protein-Protein Interactions with Formal Concept Analysis

    Science.gov (United States)

    Khor, Susan

    2014-01-01

    Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains. PMID:24586450

  7. ZP Domain Proteins in the Abalone Egg Coat Include a Paralog of VERL under Positive Selection That Binds Lysin and 18-kDa Sperm Proteins

    Science.gov (United States)

    Aagaard, Jan E.; Vacquier, Victor D.; MacCoss, Michael J.; Swanson, Willie J.

    2010-01-01

    Identifying fertilization molecules is key to our understanding of reproductive biology, yet only a few examples of interacting sperm and egg proteins are known. One of the best characterized comes from the invertebrate archeogastropod abalone (Haliotis spp.), where sperm lysin mediates passage through the protective egg vitelline envelope (VE) by binding to the VE protein vitelline envelope receptor for lysin (VERL). Rapid adaptive divergence of abalone lysin and VERL are an example of positive selection on interacting fertilization proteins contributing to reproductive isolation. Previously, we characterized a subset of the abalone VE proteins that share a structural feature, the zona pellucida (ZP) domain, which is common to VERL and the egg envelopes of vertebrates. Here, we use additional expressed sequence tag sequencing and shotgun proteomics to characterize this family of proteins in the abalone egg VE. We expand 3-fold the number of known ZP domain proteins present within the VE (now 30 in total) and identify a paralog of VERL (vitelline envelope zona pellucida domain protein [VEZP] 14) that contains a putative lysin-binding motif. We find that, like VERL, the divergence of VEZP14 among abalone species is driven by positive selection on the lysin-binding motif alone and that these paralogous egg VE proteins bind a similar set of sperm proteins including a rapidly evolving 18-kDa paralog of lysin, which may mediate sperm–egg fusion. This work identifies an egg coat paralog of VERL under positive selection and the candidate sperm proteins with which it may interact during abalone fertilization. PMID:19767347

  8. Science Literacy Project, August 2006 - August 2008

    Energy Technology Data Exchange (ETDEWEB)

    Nasseh, Bizhan [Ball State Univ., Muncie, IN (United States)

    2008-08-01

    Ball State University (BSU) was the recipient of a U.S. Department of Energy award to develop educational games teaching science and math. The Science Media Program will merge Ball State University’s nationally recognized capabilities in education, technology, and communication to develop new, interactive, game-based media for the teaching and learning of science and scientific principles for K-12 students. BSU established a team of educators, researchers, scientists, animators, designers, technology specialists, and hired a professional media developer company (Outside Source Design) from Indianapolis. After six months discussions and assessments the project team selected the following 8 games in Math, Physics, Chemistry, and Biology, 2 from each discipline. The assembled teams were innovative and unique. This new model of development and production included a process that integrated all needed knowledge and expertise for the development of high quality science and math games for K-12 students. This new model has potential to be used by others for the development of the educational games. The uniqueness of the model is to integrate domain experts’ knowledge with researchers/quality control group, and combine a professional development team from the game development company with the academic game development team from Computer Science and Art departments at Ball State University. The developed games went through feasibility tests with selected students for improvement before use in the research activities.

  9. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications

    Science.gov (United States)

    Sun, Enwei; Cao, Wenwu

    2014-01-01

    In the past decade, domain engineered relaxor-PT ferroelectric single crystals, including (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-PT) and (1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3 (PIN-PMN-PT), with compositions near the morphotropic phase boundary (MPB) have triggered a revolution in electromechanical devices owing to their giant piezoelectric properties and ultra-high electromechanical coupling factors. Compared to traditional PbZr1-xTixO3 (PZT) ceramics, the piezoelectric coefficient d33 is increased by a factor of 5 and the electromechanical coupling factor k33 is increased from 90%. Many emerging rich physical phenomena, such as charged domain walls, multi-phase coexistence, domain pattern symmetries, etc., have posed challenging fundamental questions for scientists. The superior electromechanical properties of these domain engineered single crystals have prompted the design of a new generation electromechanical devices, including sensors, transducers, actuators and other electromechanical devices, with greatly improved performance. It took less than 7 years from the discovery of larger size PMN-PT single crystals to the commercial production of the high-end ultrasonic imaging probe “PureWave”. The speed of development is unprecedented, and the research collaboration between academia and industrial engineers on this topic is truly intriguing. It is also exciting to see that these relaxor-PT single crystals are being used to replace traditional PZT piezoceramics in many new fields outside of medical imaging. The new ternary PIN-PMN-PT single crystals, particularly the ones with Mn-doping, have laid a solid foundation for innovations in high power acoustic projectors and ultrasonic motors, hinting another revolution in underwater SONARs and miniature actuation devices. This article intends to provide a comprehensive review on the development of relaxor-PT single crystals, spanning material discovery, crystal growth

  10. Second-Order Science of Interdisciplinary Research

    DEFF Research Database (Denmark)

    Alrøe, Hugo Fjelsted; Noe, Egon

    2014-01-01

    require and challenge interdisciplinarity. Problem: The conventional methods of interdisciplinary research fall short in the case of wicked problems because they remain first-order science. Our aim is to present workable methods and research designs for doing second-order science in domains where...... there are many different scientific knowledges on any complex problem. Method: We synthesize and elaborate a framework for second-order science in interdisciplinary research based on a number of earlier publications, experiences from large interdisciplinary research projects, and a perspectivist theory...... of science. Results: The second-order polyocular framework for interdisciplinary research is characterized by five principles. Second-order science of interdisciplinary research must: 1. draw on the observations of first-order perspectives, 2. address a shared dynamical object, 3. establish a shared problem...

  11. The Dynamic Interdependence of Developmental Domains across Emerging Adulthood

    Science.gov (United States)

    Sneed, Joel R.; Hamagami, Fumiaki; McArdle, John J.; Cohen, Patricia; Chen, Henian

    2007-01-01

    Emerging adulthood is a period in which profound role changes take place across a number of life domains including finance, romance, and residence. On the basis of dynamic systems theory, change in one domain should be related to change in another domain, because the concept of development according to this approach is a relational one. To…

  12. Using context to improve protein domain identification

    Directory of Open Access Journals (Sweden)

    Llinás Manuel

    2011-03-01

    Full Text Available Abstract Background Identifying domains in protein sequences is an important step in protein structural and functional annotation. Existing domain recognition methods typically evaluate each domain prediction independently of the rest. However, the majority of proteins are multidomain, and pairwise domain co-occurrences are highly specific and non-transitive. Results Here, we demonstrate how to exploit domain co-occurrence to boost weak domain predictions that appear in previously observed combinations, while penalizing higher confidence domains if such combinations have never been observed. Our framework, Domain Prediction Using Context (dPUC, incorporates pairwise "context" scores between domains, along with traditional domain scores and thresholds, and improves domain prediction across a variety of organisms from bacteria to protozoa and metazoa. Among the genomes we tested, dPUC is most successful at improving predictions for the poorly-annotated malaria parasite Plasmodium falciparum, for which over 38% of the genome is currently unannotated. Our approach enables high-confidence annotations in this organism and the identification of orthologs to many core machinery proteins conserved in all eukaryotes, including those involved in ribosomal assembly and other RNA processing events, which surprisingly had not been previously known. Conclusions Overall, our results demonstrate that this new context-based approach will provide significant improvements in domain and function prediction, especially for poorly understood genomes for which the need for additional annotations is greatest. Source code for the algorithm is available under a GPL open source license at http://compbio.cs.princeton.edu/dpuc/. Pre-computed results for our test organisms and a web server are also available at that location.

  13. Gender, Families, and Science: Influences on Early Science Training and Career Choices

    Science.gov (United States)

    Hanson, Sandra L.

    This research examines the effects of gender and a number of family experiences on young people's chances of going into postsecondary science training and science occupations in the years immediately following high school. Data came from the nationally representative, longitudinal High School and Beyond survey. Results show that gender plays a significant role in choices involving early science training and occupations - especially training. Amongst young men and women with comparable resources and qualifications, young women are less likely to make the science choice. The family experiences and expectations examined here are not a major factor in understanding gender differences in access to science training and occupations. Although much of the literature describes the domains of science and of family as being at odds, results from this research suggest that family experiences play a rather minimal role in predicting who will enter science training or occupations in the early post-high school years. When family variables do have an effect, they are not always negative and the nature of the effect varies by the time in the life cycle that the family variable is measured, by type of family experience (orientation vs. procreation), by outcome (science major vs. science occupation), and by gender.

  14. The consequences of chronic stereotype threat: domain disidentification and abandonment.

    Science.gov (United States)

    Woodcock, Anna; Hernandez, Paul R; Estrada, Mica; Schultz, P Wesley

    2012-10-01

    Stereotype threat impairs performance across many domains. Despite a wealth of research, the long-term consequences of chronic stereotype threat have received little empirical attention. Beyond the immediate impact on performance, the experience of chronic stereotype threat is hypothesized to lead to domain disidentification and eventual domain abandonment. Stereotype threat is 1 explanation why African Americans and Hispanic/Latino(a)s "leak" from each juncture of the academic scientific pipeline in disproportionately greater numbers than their White and Asian counterparts. Using structural equation modeling, we tested the stereotype threat-disidentification hypothesis across 3 academic years with a national longitudinal panel of undergraduate minority science students. Experience of stereotype threat was associated with scientific disidentification, which in turn predicted a significant decline in the intention to pursue a scientific career. Race/ethnicity moderated this effect, whereby the effect was evident for Hispanic/Latino(a) students but not for all African American students. We discuss findings in terms of understanding chronic stereotype threat.

  15. Development of an instrument to measure student attitudes toward science fairs

    Science.gov (United States)

    Huddleston, Claudia A.

    Science fairs are woven into the very fabric of science instruction in the United States and in other countries. Even though thousands of students participate in science fairs every year, no instrument to measure student attitudes toward partaking in this hands-on learning experience has been fully developed and available for school administrators and teachers to assess the perceived value that current students attribute to participation in science fairs. Therefore, the purpose of this study was to continue the development and refinement of an instrument that measured student attitudes towards science fairs based on an unpublished instrument created by Michael (2005). The instrument developed and tested using 110 students at two different middle schools in southwest Virginia. The instrument consisted of 45 questions. After applying a principal component factor analysis, the instrument was reduced to two domains, enjoyment and value. The internal consistency of the instrument was calculated using Cronbach's alpha and showed good internal consistency of .89 between the two domains. Further analysis was conducted using a Pearson product-moment test and showed a significant positive correlation between enjoyment and value (r = .78). Demographic information was explored concerning the domains using a series of statistical tests, and results revealed no significant differences among race and science fair category. However, a significant difference was found among gender and students who won awards and those who did not. The conclusion was that further development and refinement of the instrument should be conducted.

  16. Mainstream web standards now support science data too

    Science.gov (United States)

    Richard, S. M.; Cox, S. J. D.; Janowicz, K.; Fox, P. A.

    2017-12-01

    The science community has developed many models and ontologies for representation of scientific data and knowledge. In some cases these have been built as part of coordinated frameworks. For example, the biomedical communities OBO Foundry federates applications covering various aspects of life sciences, which are united through reference to a common foundational ontology (BFO). The SWEET ontology, originally developed at NASA and now governed through ESIP, is a single large unified ontology for earth and environmental sciences. On a smaller scale, GeoSciML provides a UML and corresponding XML representation of geological mapping and observation data. Some of the key concepts related to scientific data and observations have recently been incorporated into domain-neutral mainstream ontologies developed by the World Wide Web consortium through their Spatial Data on the Web working group (SDWWG). OWL-Time has been enhanced to support temporal reference systems needed for science, and has been deployed in a linked data representation of the International Chronostratigraphic Chart. The Semantic Sensor Network ontology has been extended to cover samples and sampling, including relationships between samples. Gridded data and time-series is supported by applications of the statistical data-cube ontology (QB) for earth observations (the EO-QB profile) and spatio-temporal data (QB4ST). These standard ontologies and encodings can be used directly for science data, or can provide a bridge to specialized domain ontologies. There are a number of advantages in alignment with the W3C standards. The W3C vocabularies use discipline-neutral language and thus support cross-disciplinary applications directly without complex mappings. The W3C vocabularies are already aligned with the core ontologies that are the building blocks of the semantic web. The W3C vocabularies are each tightly scoped thus encouraging good practices in the combination of complementary small ontologies. The W3C

  17. Science Mapping: A Systematic Review of the Literature

    Directory of Open Access Journals (Sweden)

    Chaomei Chen

    2017-03-01

    Full Text Available Purpose: We present a systematic review of the literature concerning major aspects of science mapping to serve two primary purposes: First, to demonstrate the use of a science mapping approach to perform the review so that researchers may apply the procedure to the review of a scientific domain of their own interest, and second, to identify major areas of research activities concerning science mapping, intellectual milestones in the development of key specialties, evolutionary stages of major specialties involved, and the dynamics of transitions from one specialty to another. Design/methodology/approach: We first introduce a theoretical framework of the evolution of a scientific specialty. Then we demonstrate a generic search strategy that can be used to construct a representative dataset of bibliographic records of a domain of research. Next, progressively synthesized co-citation networks are constructed and visualized to aid visual analytic studies of the domain’s structural and dynamic patterns and trends. Finally, trajectories of citations made by particular types of authors and articles are presented to illustrate the predictive potential of the analytic approach. Findings: The evolution of the science mapping research involves the development of a number of interrelated specialties. Four major specialties are discussed in detail in terms of four evolutionary stages: conceptualization, tool construction, application, and codification. Underlying connections between major specialties are also explored. The predictive analysis demonstrates citations trajectories of potentially transformative contributions. Research limitations: The systematic review is primarily guided by citation patterns in the dataset retrieved from the literature. The scope of the data is limited by the source of the retrieval, i.e. the Web of Science, and the composite query used. An iterative query refinement is possible if one would like to improve the data quality

  18. Activator Gcn4 employs multiple segments of Med15/Gal11, including the KIX domain, to recruit mediator to target genes in vivo.

    Science.gov (United States)

    Jedidi, Iness; Zhang, Fan; Qiu, Hongfang; Stahl, Stephen J; Palmer, Ira; Kaufman, Joshua D; Nadaud, Philippe S; Mukherjee, Sujoy; Wingfield, Paul T; Jaroniec, Christopher P; Hinnebusch, Alan G

    2010-01-22

    Mediator is a multisubunit coactivator required for initiation by RNA polymerase II. The Mediator tail subdomain, containing Med15/Gal11, is a target of the activator Gcn4 in vivo, critical for recruitment of native Mediator or the Mediator tail subdomain present in sin4Delta cells. Although several Gal11 segments were previously shown to bind Gcn4 in vitro, the importance of these interactions for recruitment of Mediator and transcriptional activation by Gcn4 in cells was unknown. We show that interaction of Gcn4 with the Mediator tail in vitro and recruitment of this subcomplex and intact Mediator to the ARG1 promoter in vivo involve additive contributions from three different segments in the N terminus of Gal11. These include the KIX domain, which is a critical target of other activators, and a region that shares a conserved motif (B-box) with mammalian coactivator SRC-1, and we establish that B-box is a critical determinant of Mediator recruitment by Gcn4. We further demonstrate that Gcn4 binds to the Gal11 KIX domain directly and, by NMR chemical shift analysis combined with mutational studies, we identify the likely binding site for Gcn4 on the KIX surface. Gcn4 is distinctive in relying on comparable contributions from multiple segments of Gal11 for efficient recruitment of Mediator in vivo.

  19. Science and Scientific Curiosity in Pre-School--The Teacher's Point of View

    Science.gov (United States)

    Spektor-Levy, Ornit; Baruch, Yael Kesner; Mevarech, Zemira

    2013-01-01

    Nowadays, early science education is well-accepted by researchers, education professionals and policy makers. Overall, teachers' attitudes and conceptions toward the science subject domain and science education influence their ways of teaching and engagement. However, there is a lack of research regarding factors that affect this engagement in…

  20. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response.

    Science.gov (United States)

    Reinhardt, H Christian; Yaffe, Michael B

    2013-09-01

    Coordinated progression through the cell cycle is a complex challenge for eukaryotic cells. Following genotoxic stress, diverse molecular signals must be integrated to establish checkpoints specific for each cell cycle stage, allowing time for various types of DNA repair. Phospho-Ser/Thr-binding domains have emerged as crucial regulators of cell cycle progression and DNA damage signalling. Such domains include 14-3-3 proteins, WW domains, Polo-box domains (in PLK1), WD40 repeats (including those in the E3 ligase SCF(βTrCP)), BRCT domains (including those in BRCA1) and FHA domains (such as in CHK2 and MDC1). Progress has been made in our understanding of the motif (or motifs) that these phospho-Ser/Thr-binding domains connect with on their targets and how these interactions influence the cell cycle and DNA damage response.

  1. Coupling parallel adaptive mesh refinement with a nonoverlapping domain decomposition solver

    Czech Academy of Sciences Publication Activity Database

    Kůs, Pavel; Šístek, Jakub

    2017-01-01

    Roč. 110, August (2017), s. 34-54 ISSN 0965-9978 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : adaptive mesh refinement * parallel algorithms * domain decomposition Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 3.000, year: 2016 http://www.sciencedirect.com/science/article/pii/S0965997816305737

  2. Coupling parallel adaptive mesh refinement with a nonoverlapping domain decomposition solver

    Czech Academy of Sciences Publication Activity Database

    Kůs, Pavel; Šístek, Jakub

    2017-01-01

    Roč. 110, August (2017), s. 34-54 ISSN 0965-9978 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : adaptive mesh refinement * parallel algorithms * domain decomposition Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 3.000, year: 2016 http://www.sciencedirect.com/science/ article /pii/S0965997816305737

  3. Applications of Nuclear Science for Stewardship Science

    International Nuclear Information System (INIS)

    Cizewski, Jolie A

    2013-01-01

    Stewardship science is research important to national security interests that include stockpile stewardship science, homeland security, nuclear forensics, and non-proliferation. To help address challenges in stewardship science and workforce development, the Stewardship Science Academic Alliances (SSAA) was inaugurated ten years ago by the National Nuclear Security Administration of the U. S. Department of Energy. The goal was to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper presents an overview of recent research in low-energy nuclear science supported by the Stewardship Science Academic Alliances and the applications of this research to stewardship science.

  4. Theoretical domains: a heuristic for teaching behavioral theory in HIV/STD prevention courses.

    Science.gov (United States)

    Dolcini, M Margaret; Canin, Lisa; Gandelman, Alice; Skolnik, Heidi

    2004-10-01

    The HIV/STD epidemics have broadened the need for better behavioral intervention programs and highlighted the importance of providing training in behavioral theory to frontline program practitioners. However, there is a lack of effective methods for teaching theoretical concepts to people who may not have a background in behavioral science. This article presents a solution to this challenge by introducing a new heuristic for teaching theory and for placing individual theories/models in a broader context. Using a broad framework, we identify five domains that influence behavior: risk appraisal, self-perceptions, emotions and arousal, relationships and social influence, and environmental and structural factors. Each domain is described, and a brief overview of supporting literature is provided. Following the presentation of domains, we discuss course structure and activities.

  5. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics

    DEFF Research Database (Denmark)

    D’Angelo, Francesco; Mics, Zoltán; Bonn, Mischa

    2014-01-01

    -domain spectrometer employing air-photonics for the generation and detection of single-cycle sub-50 fs THz transients. The time domain measurements provide direct access to both the absorption and refractive index spectra. The polymers LDPE and TOPAS® demonstrate negligible absorption and spectrally-flat refractive...... index across the entire spectroscopy window, revealing the high potential of these polymers for applications in THz photonics such as ultra-broadband polymer-based dielectric mirrors, waveguides, and fibers. Resonant high-frequency polar vibrational modes are observed and assigned in polymers PA6...... and PTFE, and their dielectric functions in the complete frequency window 2-15 THz are theoretically reproduced. Our results demonstrate the potential of ultrabroadband air-photonics-based THz time domain spectroscopy as a valuable analytic tool for materials science....

  6. Building Real World Domain-Specific Social Network Websites as a Capstone Project

    Science.gov (United States)

    Yue, Kwok-Bun; De Silva, Dilhar; Kim, Dan; Aktepe, Mirac; Nagle, Stewart; Boerger, Chris; Jain, Anubha; Verma, Sunny

    2009-01-01

    This paper describes our experience of using Content Management Software (CMS), specifically Joomla, to build a real world domain-specific social network site (SNS) as a capstone project for graduate information systems and computer science students. As Web 2.0 technologies become increasingly important in driving business application development,…

  7. Cross-Domain Semi-Supervised Learning Using Feature Formulation.

    Science.gov (United States)

    Xingquan Zhu

    2011-12-01

    Semi-Supervised Learning (SSL) traditionally makes use of unlabeled samples by including them into the training set through an automated labeling process. Such a primitive Semi-Supervised Learning (pSSL) approach suffers from a number of disadvantages including false labeling and incapable of utilizing out-of-domain samples. In this paper, we propose a formative Semi-Supervised Learning (fSSL) framework which explores hidden features between labeled and unlabeled samples to achieve semi-supervised learning. fSSL regards that both labeled and unlabeled samples are generated from some hidden concepts with labeling information partially observable for some samples. The key of the fSSL is to recover the hidden concepts, and take them as new features to link labeled and unlabeled samples for semi-supervised learning. Because unlabeled samples are only used to generate new features, but not to be explicitly included in the training set like pSSL does, fSSL overcomes the inherent disadvantages of the traditional pSSL methods, especially for samples not within the same domain as the labeled instances. Experimental results and comparisons demonstrate that fSSL significantly outperforms pSSL-based methods for both within-domain and cross-domain semi-supervised learning.

  8. Domain-General Factors Influencing Numerical and Arithmetic Processing

    Directory of Open Access Journals (Sweden)

    André Knops

    2017-12-01

    Full Text Available This special issue contains 18 articles that address the question how numerical processes interact with domain-general factors. We start the editorial with a discussion of how to define domain-general versus domain-specific factors and then discuss the contributions to this special issue grouped into two core numerical domains that are subject to domain-general influences (see Figure 1. The first group of contributions addresses the question how numbers interact with spatial factors. The second group of contributions is concerned with factors that determine and predict arithmetic understanding, performance and development. This special issue shows that domain-general (Table 1a as well as domain-specific (Table 1b abilities influence numerical and arithmetic performance virtually at all levels and make it clear that for the field of numerical cognition a sole focus on one or several domain-specific factors like the approximate number system or spatial-numerical associations is not sufficient. Vice versa, in most studies that included domain-general and domain-specific variables, domain-specific numerical variables predicted arithmetic performance above and beyond domain-general variables. Therefore, a sole focus on domain-general aspects such as, for example, working memory, to explain, predict and foster arithmetic learning is also not sufficient. Based on the articles in this special issue we conclude that both domain-general and domain-specific factors contribute to numerical cognition. But the how, why and when of their contribution still needs to be better understood. We hope that this special issue may be helpful to readers in constraining future theory and model building about the interplay of domain-specific and domain-general factors.

  9. C-terminal domains of bacterial proteases: structure, function and the biotechnological applications.

    Science.gov (United States)

    Huang, J; Wu, C; Liu, D; Yang, X; Wu, R; Zhang, J; Ma, C; He, H

    2017-01-01

    C-terminal domains widely exist in the C-terminal region of multidomain proteases. As a β-sandwich domain in multidomain protease, the C-terminal domain plays an important role in proteolysis including regulation of the secretory process, anchoring and swelling the substrate molecule, presenting as an inhibitor for the preprotease and adapting the protein structural flexibility and stability. In this review, the diversity, structural characteristics and biological function of C-terminal protease domains are described. Furthermore, the application prospects of C-terminal domains, including polycystic kidney disease, prepeptidase C-terminal and collagen-binding domain, in the area of medicine and biological artificial materials are also discussed. © 2016 The Society for Applied Microbiology.

  10. Guerilla Science: Outreach at music and art festival

    Science.gov (United States)

    Rosin, Mark

    2012-10-01

    Guerilla Science a non-profit science education organization that, since 2007, has brought live events to unconventional venues for science, such as music festivals, art galleries, banquets, department stores and theaters. Guerilla Science sets science free by taking it out of the lab and into the traditional domains of the arts. By producing events that mix science with art, music and play, they create unique opportunities for adult audiences to experience science in unorthodox ways, such as interactive events, games, live experiments, demonstrations and performances by academics, artists, musicians, actors, and professional science communicators. Much of Guerilla Science's work has focused on astrophysical and terrestrial plasmas, and this presentation will provide an overview of Guerilla Science's work in this area. Guerilla Science has produced over twenty events, receiving international media coverage, and directly reached over fifteen thousand members of the public.

  11. The YARHG domain: an extracellular domain in search of a function.

    Directory of Open Access Journals (Sweden)

    Penny Coggill

    Full Text Available We have identified a new bacterial protein domain that we hypothesise binds to peptidoglycan. This domain is called the YARHG domain after the most highly conserved sequence-segment. The domain is found in the extracellular space and is likely to be composed of four alpha-helices. The domain is found associated with protein kinase domains, suggesting it is associated with signalling in some bacteria. The domain is also found associated with three different families of peptidases. The large number of different domains that are found associated with YARHG suggests that it is a useful functional module that nature has recombined multiple times.

  12. Self-assembled domain structures: From micro- to nanoscale

    Directory of Open Access Journals (Sweden)

    Vladimir Shur

    2015-06-01

    Full Text Available The recent achievements in studying the self-assembled evolution of micro- and nanoscale domain structures in uniaxial single crystalline ferroelectrics lithium niobate and lithium tantalate have been reviewed. The results obtained by visualization of static domain patterns and kinetics of the domain structure by different methods from common optical microscopy to more sophisticated scanning probe microscopy, scanning electron microscopy and confocal Raman microscopy, have been discussed. The kinetic approach based on various nucleation processes similar to the first-order phase transition was used for explanation of the domain structure evolution scenarios. The main mechanisms of self-assembling for nonequilibrium switching conditions caused by screening ineffectiveness including correlated nucleation, domain growth anisotropy, and domain–domain interaction have been considered. The formation of variety of self-assembled domain patterns such as fractal-type, finger and web structures, broad domain boundaries, and dendrites have been revealed at each of all five stages of domain structure evolution during polarization reversal. The possible applications of self-assembling for micro- and nanodomain engineering were reviewed briefly. The review covers mostly the results published by our research group.

  13. Claude Grignon, Claude Kordon, Sciences de l'homme et sciences de la nature. Essais d'épistémologie comparée

    OpenAIRE

    Rogel, Thierry

    2011-01-01

    Cet ouvrage est composé d'un ensemble de contributions faites au cours du séminaire « Sciences de l'homme et sciences de la nature » qui s'est tenu à la Maison des Sciences de l'Homme de 2003 à 2007. Ce séminaire portait sur les questions de l'unité des sciences et de la scientificité des « sciences de l'homme ». Les domaines abordés sont multiples et couvrent un large spectre de sciences - mathématiques, physique, chimie, cosmologie, archéologie, biologie, épidémiologie, économie, sociologie...

  14. Contested Domains of Science and Science Learning in Contemporary Native American Communities: Three Case Studies from a National Science Foundation grant titled, "Archaeology Pathways for Native Learners"

    Science.gov (United States)

    Parent, Nancy Brossard

    This dissertation provides a critical analysis of three informal science education partnerships that resulted from a 2003-2006 National Science Foundation grant titled, "Archaeology Pathways for Native Learners" (ESI-0307858), hosted by the Mashantucket Pequot Museum and Research Center. This dissertation is designed to contribute to understandings of learning processes that occur within and at the intersection of diverse worldviews and knowledge systems, by drawing upon experiences derived from three disparate contexts: 1) The Navajo Nation Museum in Window Rock, Arizona; 2) The A:shiwi A:wan Museum and Heritage Center on the Zuni Reservation in Zuni, New Mexico; and 3) Science learning camps at the Mashantucket Pequot Museum and Research Center for Native youth of southern New England. While informal science education is increasingly moving toward decolonizing and cross-cutting institutional boundaries of learning through critical thinking and real-world applications, the construction of "science" (even within diverse contexts) continues to be framed within a homogenous, predominantly Euro-American perspective. This study analyzes the language of Western science employed in these partnerships, with particular attention to the use of Western/Native binaries that shape perceptions of Native peoples and communities, real or imagined. Connections are drawn to broader nation-state interests in education, science, and the global economy. The role of educational evaluation in these case studies is also critically analyzed, by questioning the ways in which it is constructed, conducted, and evaluated for the purposes of informing future projects and subsequent funding. This study unpacks problems of the dominant language of "expert" knowledge embedded in Western science discourse, and highlights the possibilities of indigenous knowledge systems that can inform Western science frameworks of education and evaluation. Ultimately, this study suggests that research

  15. Scalable Domain Decomposition Preconditioners for Heterogeneous Elliptic Problems

    Directory of Open Access Journals (Sweden)

    Pierre Jolivet

    2014-01-01

    Full Text Available Domain decomposition methods are, alongside multigrid methods, one of the dominant paradigms in contemporary large-scale partial differential equation simulation. In this paper, a lightweight implementation of a theoretically and numerically scalable preconditioner is presented in the context of overlapping methods. The performance of this work is assessed by numerical simulations executed on thousands of cores, for solving various highly heterogeneous elliptic problems in both 2D and 3D with billions of degrees of freedom. Such problems arise in computational science and engineering, in solid and fluid mechanics. While focusing on overlapping domain decomposition methods might seem too restrictive, it will be shown how this work can be applied to a variety of other methods, such as non-overlapping methods and abstract deflation based preconditioners. It is also presented how multilevel preconditioners can be used to avoid communication during an iterative process such as a Krylov method.

  16. Heuristic and algorithmic processing in English, mathematics, and science education.

    Science.gov (United States)

    Sharps, Matthew J; Hess, Adam B; Price-Sharps, Jana L; Teh, Jane

    2008-01-01

    Many college students experience difficulties in basic academic skills. Recent research suggests that much of this difficulty may lie in heuristic competency--the ability to use and successfully manage general cognitive strategies. In the present study, the authors evaluated this possibility. They compared participants' performance on a practice California Basic Educational Skills Test and on a series of questions in the natural sciences with heuristic and algorithmic performance on a series of mathematics and reading comprehension exercises. Heuristic competency in mathematics was associated with better scores in science and mathematics. Verbal and algorithmic skills were associated with better reading comprehension. These results indicate the importance of including heuristic training in educational contexts and highlight the importance of a relatively domain-specific approach to questions of cognition in higher education.

  17. Analyzing Earth Science Research Networking through Visualizations

    Science.gov (United States)

    Hasnain, S.; Stephan, R.; Narock, T.

    2017-12-01

    Using D3.js we visualize collaboration amongst several geophysical science organizations, such as the American Geophysical Union (AGU) and the Federation of Earth Science Information Partners (ESIP). We look at historical trends in Earth Science research topics, cross-domain collaboration, and topics of interest to the general population. The visualization techniques used provide an effective way for non-experts to easily explore distributed and heterogeneous Big Data. Analysis of these visualizations provides stakeholders with insights into optimizing meetings, performing impact evaluation, structuring outreach efforts, and identifying new opportunities for collaboration.

  18. Perlindungan Merek Terdaftar Dari Kejahatan Dunia Maya Melalui Pembatasan Pendaftaran Nama Domain

    Directory of Open Access Journals (Sweden)

    Setia Dharma

    2015-05-01

    Full Text Available Abstract: The Protection of Registered Trademark of Cyber Crime Through The Restriction of The Domain Name Registration. The progress of science and technology has implications for the progress of the current trading method. It is not only done conventionally but also carried out through cyberspace. Trading in the virtual world requires the use of a domain name (cyber squatting as a differentiator between one company with other companies. Law No. 11 Year 2008 on Information and Electronic Transactions regulate the use of domain names and emphasize the element of good faith in the implementation. In practice, there is a breach of the domain name registration is a crime which is the trademark or name that has a commercial value. This paper is going to examine aspects of protection-registered trademark of cyber crime through the restriction of the domain name registration and implementation of good faith. Abstrak: Perlindungan Merek Terdaftar Dari Kejahatan Dunia Maya Melalui Pembatasan Pendaftaran Nama Domain. Kemajuan ilmu dan teknologi membawa implikasi pada kemajuan metode perdagangan yang saat ini bukan hanya dilakukan secara konvensional, namun juga dilakukan melalui dunia maya. Perdagangan dalam dunia maya mensyaratkan penggunaan nama domain (cyber squatting sebagai pembeda antara satu perusahaan dengan perusahaan yang lainnya. Undang-Undang No. 11 Tahun 2008 Tentang Informasi dan Transaksi elektronik mengatur penggunaan nama domain tersebut dan menekankan unsur iktikad baik dalam pelaksanaannya. Prakteknya, terdapat pelanggaran nama domain tersebut yang merupakan merupakan kejahatan pendaftaran merek dagang atau nama yang memiliki nilai komersial. Tulisan ini hendak mengkaji aspek perlindungan merek terdaftar dari kejahatan dunia maya melalui pembatasan pendaftaran nama domain dan pelaksanaan iktikad baik. DOI: 10.15408/jch.v1i2.1463

  19. Mathematics and Science Learning Opportunities in Preschool Classrooms

    Science.gov (United States)

    Piasta, Shayne B.; Pelatti, Christina Yeager; Miller, Heather Lynnine

    2014-01-01

    Research findings The present study observed and coded instruction in 65 preschool classrooms to examine (a) overall amounts and (b) types of mathematics and science learning opportunities experienced by preschool children as well as (c) the extent to which these opportunities were associated with classroom and program characteristics. Results indicated that children were afforded an average of 24 and 26 minutes of mathematics and science learning opportunities, respectively, corresponding to spending approximately 25% of total instructional time in each domain. Considerable variability existed, however, in the amounts and types of mathematics and science opportunities provided to children in their classrooms; to some extent, this variability was associated with teachers’ years of experience, teachers’ levels of education, and the socioeconomic status of children served in the program. Practice/policy Although results suggest greater integration of mathematics and science in preschool classrooms than previously established, there was considerable diversity in the amounts and types of learning opportunities provided in preschool classrooms. Affording mathematics and science experiences to all preschool children, as outlined in professional and state standards, may require additional professional development aimed at increasing preschool teachers’ understanding and implementation of learning opportunities in these two domains in their classrooms. PMID:25489205

  20. Power to the People! Meta-algorithmic modelling in applied data science

    NARCIS (Netherlands)

    Spruit, M.; Jagesar, R.

    2016-01-01

    This position paper first defines the research field of applied data science at the intersection of domain expertise, data mining, and engineering capabilities, with particular attention to analytical applications. We then propose a meta-algorithmic approach for applied data science with societal

  1. Cloud computing and services science

    NARCIS (Netherlands)

    Ivanov, Ivan; van Sinderen, Marten J.; Shishkov, Boris

    2012-01-01

    This book is essentially a collection of the best papers of the International Conference on Cloud Computing and Services Science (CLOSER), which was held in Noordwijkerhout, The Netherlands on May 7–9, 2011. The conference addressed technology trends in the domain of cloud computing in relation to a

  2. Useful and Usable Climate Science: Frameworks for Bridging the Social and Physical domains.

    Science.gov (United States)

    Buja, L.

    2016-12-01

    Society is transforming the Earth's system in unprecedented ways, often with significant variations across space and time. In turn, the impacts of climate change on the human system vary dramatically due to differences in cultural, socioeconomic, institutional, and physical processes at the local level. The Climate Science and Applications Program (CSAP) at the National Center for Atmospheric Research in Boulder Colorado addresses societal vulnerability, impacts and adaptation to climate change through the development of frameworks and methods for analyzing current and future vulnerability, and integrated analyses of climate impacts and adaptation at local, regional and global scales. CSAP relies heavily on GIS-based scientific data and knowledge systems to bridge social and physical science approaches in its five focus areas: Governance of inter-linked natural and managed resource systems. The role of urban areas in driving emissions of climate change Weather, climate and global human health, GIS-based science data & knowledge systems. Regional Climate Science and Services for Adaptation Advanced methodologies and frameworks for assessing current and future risks to environmental hazards through the integration of physical and social science models, research results, and remote sensing data are presented in the context of recent national and international projects on climate change and food/water security, urban carbon emissions, metropolitan extreme heat and global health. In addition, innovative CSAP international capacity building programs teaching interdisciplinary approaches for using geospatial technologies to integrate multi-scale spatial information of weather, climate change into important sectors such as disaster reduction, agriculture, tourism and society for decision-making are discussed.

  3. Lipid domain morphologies in phosphatidylcholine-ceramide monolayers

    DEFF Research Database (Denmark)

    Karttunen, Mikko; Haataja, Mikko P; Säily, Matti

    2009-01-01

    of ceramide from 2 to 24 carbon atoms (Cer2 to Cer24). Fluid Cer2, Cer6, and Cer8/DMPC mixtures were miscible at all surface pressures. Longer ceramides, however, formed surface pressure-dependent immiscible mixtures with DMPC. The domain morphology under fluorescence microscopy after including a trace amount...... of fluorescent NBD-phosphatidylcholine into DMPC/Cer mixtures was found to be very sensitive to the N-acyl chain length. Shorter ceramides (Cer10-Cer14) formed flower-like (seaweed) domains, whereas longer ceramides (N-acyl chain length>14 carbon atoms) formed round and regular domains. We attribute...

  4. Hurricane Sandy science plan: impacts of storm surge, including disturbed estuarine and bay hydrology

    Science.gov (United States)

    Caskie, Sarah A.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry • Impacts to coastal beaches and barriers

  5. Same but not alike: Structure, flexibility and energetics of domains in multi-domain proteins are influenced by the presence of other domains.

    Science.gov (United States)

    Vishwanath, Sneha; de Brevern, Alexandre G; Srinivasan, Narayanaswamy

    2018-02-01

    The majority of the proteins encoded in the genomes of eukaryotes contain more than one domain. Reasons for high prevalence of multi-domain proteins in various organisms have been attributed to higher stability and functional and folding advantages over single-domain proteins. Despite these advantages, many proteins are composed of only one domain while their homologous domains are part of multi-domain proteins. In the study presented here, differences in the properties of protein domains in single-domain and multi-domain systems and their influence on functions are discussed. We studied 20 pairs of identical protein domains, which were crystallized in two forms (a) tethered to other proteins domains and (b) tethered to fewer protein domains than (a) or not tethered to any protein domain. Results suggest that tethering of domains in multi-domain proteins influences the structural, dynamic and energetic properties of the constituent protein domains. 50% of the protein domain pairs show significant structural deviations while 90% of the protein domain pairs show differences in dynamics and 12% of the residues show differences in the energetics. To gain further insights on the influence of tethering on the function of the domains, 4 pairs of homologous protein domains, where one of them is a full-length single-domain protein and the other protein domain is a part of a multi-domain protein, were studied. Analyses showed that identical and structurally equivalent functional residues show differential dynamics in homologous protein domains; though comparable dynamics between in-silico generated chimera protein and multi-domain proteins were observed. From these observations, the differences observed in the functions of homologous proteins could be attributed to the presence of tethered domain. Overall, we conclude that tethered domains in multi-domain proteins not only provide stability or folding advantages but also influence pathways resulting in differences in

  6. Clickstream data yields high-resolution maps of science.

    Science.gov (United States)

    Bollen, Johan; Van de Sompel, Herbert; Hagberg, Aric; Bettencourt, Luis; Chute, Ryan; Rodriguez, Marko A; Balakireva, Lyudmila

    2009-01-01

    Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantages of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science. Over the course of 2007 and 2008, we collected nearly 1 billion user interactions recorded by the scholarly web portals of some of the most significant publishers, aggregators and institutional consortia. The resulting reference data set covers a significant part of world-wide use of scholarly web portals in 2006, and provides a balanced coverage of the humanities, social sciences, and natural sciences. A journal clickstream model, i.e. a first-order Markov chain, was extracted from the sequences of user interactions in the logs. The clickstream model was validated by comparing it to the Getty Research Institute's Architecture and Art Thesaurus. The resulting model was visualized as a journal network that outlines the relationships between various scientific domains and clarifies the connection of the social sciences and humanities to the natural sciences. Maps of science resulting from large-scale clickstream data provide a detailed, contemporary view of scientific activity and correct the underrepresentation of the social sciences and humanities that is commonly found in citation data.

  7. Automated Scoring of Constructed-Response Science Items: Prospects and Obstacles

    Science.gov (United States)

    Liu, Ou Lydia; Brew, Chris; Blackmore, John; Gerard, Libby; Madhok, Jacquie; Linn, Marcia C.

    2014-01-01

    Content-based automated scoring has been applied in a variety of science domains. However, many prior applications involved simplified scoring rubrics without considering rubrics representing multiple levels of understanding. This study tested a concept-based scoring tool for content-based scoring, c-rater™, for four science items with rubrics…

  8. Astronautics and aeronautics, 1973: Chronology of science, technology and policy. [including artificial satellites, space probes, and manned space flights

    Science.gov (United States)

    1975-01-01

    A brief chronological account is presented of key events of the year in aerospace sciences. Dates, actions, hardware, persons, scientific discoveries are recorded along with plans, decisions, achievements and preliminary evaluations of results. Samples of public reaction and social impact are included. Sources are identified and an index is provided to aid in tracing related events through the year. The index also serves as a glossary of acronyms and abbreviations.

  9. Framework for Processing Citizens Science Data for Applications to NASA Earth Science Missions

    Science.gov (United States)

    Teng, William; Albayrak, Arif

    2017-01-01

    Citizen science (or crowdsourcing) has drawn much high-level recent and ongoing interest and support. It is poised to be applied, beyond the by-now fairly familiar use of, e.g., Twitter for natural hazards monitoring, to science research, such as augmenting the validation of NASA earth science mission data. This interest and support is seen in the 2014 National Plan for Civil Earth Observations, the 2015 White House forum on citizen science and crowdsourcing, the ongoing Senate Bill 2013 (Crowdsourcing and Citizen Science Act of 2015), the recent (August 2016) Open Geospatial Consortium (OGC) call for public participation in its newly-established Citizen Science Domain Working Group, and NASA's initiation of a new Citizen Science for Earth Systems Program (along with its first citizen science-focused solicitation for proposals). Over the past several years, we have been exploring the feasibility of extracting from the Twitter data stream useful information for application to NASA precipitation research, with both "passive" and "active" participation by the twitterers. The Twitter database, which recently passed its tenth anniversary, is potentially a rich source of real-time and historical global information for science applications. The time-varying set of "precipitation" tweets can be thought of as an organic network of rain gauges, potentially providing a widespread view of precipitation occurrence. The validation of satellite precipitation estimates is challenging, because many regions lack data or access to data, especially outside of the U.S. and in remote and developing areas. Mining the Twitter stream could augment these validation programs and, potentially, help tune existing algorithms. Our ongoing work, though exploratory, has resulted in key components for processing and managing tweets, including the capabilities to filter the Twitter stream in real time, to extract location information, to filter for exact phrases, and to plot tweet distributions. The

  10. Attentional selection in visual perception, memory and action: a quest for cross-domain integration.

    Science.gov (United States)

    Schneider, Werner X; Einhäuser, Wolfgang; Horstmann, Gernot

    2013-10-19

    For decades, the cognitive and neural sciences have benefitted greatly from a separation of mind and brain into distinct functional domains. The tremendous success of this approach notwithstanding, it is self-evident that such a view is incomplete. Goal-directed behaviour of an organism requires the joint functioning of perception, memory and sensorimotor control. A prime candidate for achieving integration across these functional domains are attentional processes. Consequently, this Theme Issue brings together studies of attentional selection from many fields, both experimental and theoretical, that are united in their quest to find overreaching integrative principles of attention between perception, memory and action. In all domains, attention is understood as combination of competition and priority control ('bias'), with the task as a decisive driving factor to ensure coherent goal-directed behaviour and cognition. Using vision as the predominant model system for attentional selection, many studies of this Theme Issue focus special emphasis on eye movements as a selection process that is both a fundamental action and serves a key function in perception. The Theme Issue spans a wide range of methods, from measuring human behaviour in the real word to recordings of single neurons in the non-human primate brain. We firmly believe that combining such a breadth in approaches is necessary not only for attentional selection, but also to take the next decisive step in all of the cognitive and neural sciences: to understand cognition and behaviour beyond isolated domains.

  11. Attentional selection in visual perception, memory and action: a quest for cross-domain integration

    Science.gov (United States)

    Schneider, Werner X.; Einhäuser, Wolfgang; Horstmann, Gernot

    2013-01-01

    For decades, the cognitive and neural sciences have benefitted greatly from a separation of mind and brain into distinct functional domains. The tremendous success of this approach notwithstanding, it is self-evident that such a view is incomplete. Goal-directed behaviour of an organism requires the joint functioning of perception, memory and sensorimotor control. A prime candidate for achieving integration across these functional domains are attentional processes. Consequently, this Theme Issue brings together studies of attentional selection from many fields, both experimental and theoretical, that are united in their quest to find overreaching integrative principles of attention between perception, memory and action. In all domains, attention is understood as combination of competition and priority control (‘bias’), with the task as a decisive driving factor to ensure coherent goal-directed behaviour and cognition. Using vision as the predominant model system for attentional selection, many studies of this Theme Issue focus special emphasis on eye movements as a selection process that is both a fundamental action and serves a key function in perception. The Theme Issue spans a wide range of methods, from measuring human behaviour in the real word to recordings of single neurons in the non-human primate brain. We firmly believe that combining such a breadth in approaches is necessary not only for attentional selection, but also to take the next decisive step in all of the cognitive and neural sciences: to understand cognition and behaviour beyond isolated domains. PMID:24018715

  12. A case for Sandia investment in complex adaptive systems science and technology.

    Energy Technology Data Exchange (ETDEWEB)

    Colbaugh, Richard; Tsao, Jeffrey Yeenien; Johnson, Curtis Martin; Backus, George A.; Brown, Theresa Jean; Jones, Katherine A.

    2012-05-01

    This white paper makes a case for Sandia National Laboratories investments in complex adaptive systems science and technology (S&T) -- investments that could enable higher-value-added and more-robustly-engineered solutions to challenges of importance to Sandia's national security mission and to the nation. Complex adaptive systems are ubiquitous in Sandia's national security mission areas. We often ignore the adaptive complexity of these systems by narrowing our 'aperture of concern' to systems or subsystems with a limited range of function exposed to a limited range of environments over limited periods of time. But by widening our aperture of concern we could increase our impact considerably. To do so, the science and technology of complex adaptive systems must mature considerably. Despite an explosion of interest outside of Sandia, however, that science and technology is still in its youth. What has been missing is contact with real (rather than model) systems and real domain-area detail. With its center-of-gravity as an engineering laboratory, Sandia's has made considerable progress applying existing science and technology to real complex adaptive systems. It has focused much less, however, on advancing the science and technology itself. But its close contact with real systems and real domain-area detail represents a powerful strength with which to help complex adaptive systems science and technology mature. Sandia is thus both a prime beneficiary of, as well as potentially a prime contributor to, complex adaptive systems science and technology. Building a productive program in complex adaptive systems science and technology at Sandia will not be trivial, but a credible path can be envisioned: in the short run, continue to apply existing science and technology to real domain-area complex adaptive systems; in the medium run, jump-start the creation of new science and technology capability through Sandia's Laboratory Directed Research

  13. The Pan-STARRS Data Processing and Science Analysis Software Systems

    International Nuclear Information System (INIS)

    Heasley, J. N.

    2008-01-01

    The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) will use gigapixel CCD cameras on multiaperture telescopes to survey the sky in the visible and infrared bands. A single telescope system (PS1) has been deployed on Maui, and a four-telescope system (PS4) will be sited on Mauna Kea on the Big Island of Hawaii. These systems will survey the sky repeatedly and will generate petabytes of image data and catalogs of billions of stars and galaxies. Each set of images will be combined to create a very sensitive multicolor image of the sky, and differences between images will provide for a massive database of 'time domain astronomy' including the study of moving objects and transient or variable objects. All data from PS1 will be put into the public domain following its 3.5 year survey. The project faces formidable challenges in processing the image data in near real time and making the catalog data accessible via relational databases. In this talk, I describe the software systems developed by the Pan-STARRS project and how these core systems will be augmented by an assortment of science 'servers' being developed by astronomers in the PS1 Science Consortium.

  14. Students' Regulation of Their Emotions in a Science Classroom

    Science.gov (United States)

    Tomas, Louisa; Rigano, Donna; Ritchie, Stephen M.

    2016-01-01

    Research aimed at understanding the role of the affective domain in student learning in classrooms has undergone a recent resurgence due to the need to understand students' affective response to science instruction. In a case study of a year 8 science class in North Queensland, students worked in small groups to write, film, edit, and produce…

  15. Expanding Talent Search Procedures by Including Measures of Spatial Ability: CTY's Spatial Test Battery

    Science.gov (United States)

    Stumpf, Heinrich; Mills, Carol J.; Brody, Linda E.; Baxley, Philip G.

    2013-01-01

    The importance of spatial ability for success in a variety of domains, particularly in science, technology, engineering, and mathematics (STEM), is widely acknowledged. Yet, students with high spatial ability are rarely identified, as Talent Searches for academically talented students focus on identifying high mathematical and verbal abilities.…

  16. Gravitational waves from domain walls and their implications

    Directory of Open Access Journals (Sweden)

    Kazunori Nakayama

    2017-07-01

    Full Text Available We evaluate the impact of domain-wall annihilation on the currently ongoing and planned gravitational wave experiments, including a case in which domain walls experience a frictional force due to interactions with the ambient plasma. We show the sensitivity reach in terms of physical parameters, namely, the wall tension and the annihilation temperature. We find that a Higgs portal scalar, which stabilizes the Higgs potential at high energy scales, can form domain walls whose annihilation produces a large amount of gravitational waves within the reach of the advanced LIGO experiment (O5. Domain wall annihilation can also generate baryon asymmetry if the scalar is coupled to either SU(2L gauge fields or the (B−L current. This is a variant of spontaneous baryogenesis, but it naturally avoids the isocurvature constraint due to the scaling behavior of the domain-wall evolution. We delineate the parameter space where the domain-wall baryogenesis works successfully and discuss its implications for the gravitational wave experiments.

  17. Inquiry-based Science Education Competence of Primary School Teachers: A Delphi Study

    NARCIS (Netherlands)

    Alake-Tuenter, E.; Biemans, H.J.A.; Tobi, H.; Mulder, M.

    2013-01-01

    Earlier, extracted inquiry-based science teaching competency elements and domains from the international literature were compared to the United States' National Science Teaching Standards. The present Delphi study aimed to validate the findings for the Netherlands, where such standards are lacking.

  18. Science in the Maori-Medium Curriculum: Assessment of Policy Outcomes in Putaiao Education

    Science.gov (United States)

    Stewart, Georgina

    2011-01-01

    This second research paper on science education in Maori-medium school contexts complements an earlier article published in this journal (Stewart, 2005). Science and science education are related domains in society and in state schooling in which there have always been particularly large discrepancies in participation and achievement by Maori. In…

  19. The Specificity Principle in Acculturation Science

    Science.gov (United States)

    Bornstein, Marc H.

    2016-01-01

    The Specificity Principle in Acculturation Science asserts that specific setting conditions of specific people at specific times moderate specific domains in acculturation by specific processes. Our understanding of acculturation depends critically on what is studied where, in whom, how, and when. This article defines, explains, and illustrates the Specificity Principle in Acculturation Science. Research hypotheses about acculturation can be more adequately tested, inconsistencies and discrepancies in the acculturation literature can be satisfactorily resolved, acculturation interventions can be tailored to be more successful, and acculturation policies can be brought to new levels of effectiveness if the specificity principle that governs acculturation science is more widely recognized. PMID:28073331

  20. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid

    2014-01-01

    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  1. Joining RDC data from flexible protein domains

    International Nuclear Information System (INIS)

    Sgheri, Luca

    2010-01-01

    We study the inverse problem of determining the conformational freedom of two protein domains from residual dipolar coupling (RDC) measurements. For each paramagnetic ion attached to one of the domains we obtain a magnetic susceptibility tensor χ from the RDC of couples of atoms of that domain, and a mean paramagnetic susceptibility tensor χ-bar from the RDC of couples of atoms of the other domain. The latter is an integral average of rotations of χ which depends on the conformational freedom of the two domains. In this paper we consider the case when we have data from paramagnetic ions attached separately to each of the domains. We prove that in this case not all the elements of χ and χ-bar are independent. We derive the mathematical equations for the compatibility of the measurements and show how these relations can be used in the presence of noisy data to determine a compatible set of χ and χ-bar with an unconstrained minimization. If available, information about the shape of the noise can be included in the target function. We show that in this case the compatible set obtained has a reduced error with respect to the noisy data

  2. Large-scale Labeled Datasets to Fuel Earth Science Deep Learning Applications

    Science.gov (United States)

    Maskey, M.; Ramachandran, R.; Miller, J.

    2017-12-01

    Deep learning has revolutionized computer vision and natural language processing with various algorithms scaled using high-performance computing. However, generic large-scale labeled datasets such as the ImageNet are the fuel that drives the impressive accuracy of deep learning results. Large-scale labeled datasets already exist in domains such as medical science, but creating them in the Earth science domain is a challenge. While there are ways to apply deep learning using limited labeled datasets, there is a need in the Earth sciences for creating large-scale labeled datasets for benchmarking and scaling deep learning applications. At the NASA Marshall Space Flight Center, we are using deep learning for a variety of Earth science applications where we have encountered the need for large-scale labeled datasets. We will discuss our approaches for creating such datasets and why these datasets are just as valuable as deep learning algorithms. We will also describe successful usage of these large-scale labeled datasets with our deep learning based applications.

  3. An Open and Holistic Approach for Geo and Space Sciences

    Science.gov (United States)

    Ritschel, Bernd; Seelus, Christoph; Neher, Günther; Toshihiko, Iyemori; Yatagai, Akiyo; Koyama, Yukinobu; Murayama, Yasuhiro; King, Todd; Hughes, Steve; Fung, Shing; Galkin, Ivan; Hapgood, Mike; Belehaki, Anna

    2016-04-01

    Geo and space sciences thus far have been very successful, even often an open, cross-domain and holistic approach did not play an essential role. But this situation is changing rapidly. The research focus is shifting into more complex, non-linear and multi-domain specified phenomena, such as e.g. climate change or space environment. This kind of phenomena only can be understood step by step using the holistic idea. So, what is necessary for a successful cross-domain and holistic approach in geo and space sciences? Research and science in general become more and more dependent from a rich fundus of multi-domain data sources, related context information and the use of highly advanced technologies in data processing. Such buzzword phrases as Big Data and Deep Learning are reflecting this development. Big Data also addresses the real exponential growing of data and information produced by measurements or simulations. Deep Learning technology may help to detect new patterns and relationships in data describing high sophisticated natural phenomena. And further on, we should not forget science and humanities are only two sides of the same medal in the continuing human process of knowledge discovery. The concept of Open Data or in particular the open access to scientific data is addressing the free and open availability of -at least publicly founded and generated- data. The open availability of data covers the free use, reuse and redistribution of data which have been established with the formation of World Data Centers already more than 50 years ago. So, we should not forget, the foundation for open data is the responsibility of the individual scientist up until the big science institutions and organizations for a sustainable management of data. Other challenges are discovering and collecting the appropriate data, and preferably all of them or at least the majority of the right data. Therefore a network of individual or even better institutional catalog-based and at least

  4. Domain Engineering

    Science.gov (United States)

    Bjørner, Dines

    Before software can be designed we must know its requirements. Before requirements can be expressed we must understand the domain. So it follows, from our dogma, that we must first establish precise descriptions of domains; then, from such descriptions, “derive” at least domain and interface requirements; and from those and machine requirements design the software, or, more generally, the computing systems.

  5. Library Research: A Domain Comparison of Two Library Journals

    Science.gov (United States)

    Davies, Karen; Thiele, Jennifer

    2013-01-01

    Research articles published by the "Community & Junior College Libraries" journal and the "College & Undergraduate Libraries" journal were analyzed to determine their domain. The discussion includes a comparison of past domain studies with the current research. The researchers found the majority of articles (52%) in the…

  6. ANALYSIS OF STUDENTS’ DECISION MAKING TO SOLVE SCIENCE REASONING TEST OF TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY (TIMSS

    Directory of Open Access Journals (Sweden)

    N. Novianawati

    2015-04-01

    Full Text Available This study aims to determine students’ decision making strategy to answer TIMSS science reasoning test in cognitive reasoning domain. This research is quantitative descriptive research. The result shows that students tend to use compensatory strategy for decision making in solving multiple-choice questions and use rational category to answer essay questions. The result shows that more than half of students have been able to answer the questions TIMSS science tests correctly.

  7. Applying design thinking concepts to rejuvenate the discipline of operations research/ management science

    CSIR Research Space (South Africa)

    Viljoen, NM

    2009-10-01

    Full Text Available problems, thereby bridging the gap between Management Science and Management Consulting. Instead of flogging the proponents of the Management Science domain for losing touch with reality through their “mathematical masturbation" (Ackoff [1]), Corbett...

  8. Big Biomedical data as the key resource for discovery science

    Energy Technology Data Exchange (ETDEWEB)

    Toga, Arthur W.; Foster, Ian; Kesselman, Carl; Madduri, Ravi; Chard, Kyle; Deutsch, Eric W.; Price, Nathan D.; Glusman, Gustavo; Heavner, Benjamin D.; Dinov, Ivo D.; Ames, Joseph; Van Horn, John; Kramer, Roger; Hood, Leroy

    2015-07-21

    Modern biomedical data collection is generating exponentially more data in a multitude of formats. This flood of complex data poses significant opportunities to discover and understand the critical interplay among such diverse domains as genomics, proteomics, metabolomics, and phenomics, including imaging, biometrics, and clinical data. The Big Data for Discovery Science Center is taking an “-ome to home” approach to discover linkages between these disparate data sources by mining existing databases of proteomic and genomic data, brain images, and clinical assessments. In support of this work, the authors developed new technological capabilities that make it easy for researchers to manage, aggregate, manipulate, integrate, and model large amounts of distributed data. Guided by biological domain expertise, the Center’s computational resources and software will reveal relationships and patterns, aiding researchers in identifying biomarkers for the most confounding conditions and diseases, such as Parkinson’s and Alzheimer’s.

  9. SH3 domain tyrosine phosphorylation--sites, role and evolution.

    Directory of Open Access Journals (Sweden)

    Zuzana Tatárová

    Full Text Available BACKGROUND: SH3 domains are eukaryotic protein domains that participate in a plethora of cellular processes including signal transduction, proliferation, and cellular movement. Several studies indicate that tyrosine phosphorylation could play a significant role in the regulation of SH3 domains. RESULTS: To explore the incidence of the tyrosine phosphorylation within SH3 domains we queried the PhosphoSite Plus database of phosphorylation sites. Over 100 tyrosine phosphorylations occurring on 20 different SH3 domain positions were identified. The tyrosine corresponding to c-Src Tyr-90 was by far the most frequently identified SH3 domain phosphorylation site. A comparison of sequences around this tyrosine led to delineation of a preferred sequence motif ALYD(Y/F. This motif is present in about 15% of human SH3 domains and is structurally well conserved. We further observed that tyrosine phosphorylation is more abundant than serine or threonine phosphorylation within SH3 domains and other adaptor domains, such as SH2 or WW domains. Tyrosine phosphorylation could represent an important regulatory mechanism of adaptor domains. CONCLUSIONS: While tyrosine phosphorylation typically promotes signaling protein interactions via SH2 or PTB domains, its role in SH3 domains is the opposite - it blocks or prevents interactions. The regulatory function of tyrosine phosphorylation is most likely achieved by the phosphate moiety and its charge interfering with binding of polyproline helices of SH3 domain interacting partners.

  10. Establishing a core domain set to measure rheumatoid arthritis flares

    DEFF Research Database (Denmark)

    Bykerk, Vivian P; Lie, Elisabeth; Bartlett, Susan J

    2014-01-01

    OBJECTIVE: The OMERACT Rheumatoid Arthritis (RA) Flare Group (FG) is developing a data-driven, patient-inclusive, consensus-based RA flare definition for use in clinical trials, longterm observational studies, and clinical practice. At OMERACT 11, we sought endorsement of a proposed core domain set...... to measure RA flare. METHODS: Patient and healthcare professional (HCP) qualitative studies, focus groups, and literature review, followed by patient and HCP Delphi exercises including combined Delphi consensus at Outcome Measures in Rheumatology 10 (OMERACT 10), identified potential domains to measure flare...... Filter 2.0 methodology. RESULTS: A pre-meeting combined Delphi exercise for defining flare identified 9 domains as important (>70% consensus from patients or HCP). Four new patient-reported domains beyond those included in the RA disease activity core set were proposed for inclusion (fatigue...

  11. Organizing to Understand: How to Operate Effectively in the Human Domain

    Science.gov (United States)

    2015-05-21

    was both entering and creating when it overthrew Saddam Hussein and dismantled the Iraqi government and security forces. The research examines the...sponsored initiative to help tactical and operational level commanders understand the human terrain, the “social, ethnographic , cultural, economic, and...as an intelligence function within TRADOC “as the primary and enduring social science-based human domain research , analysis, and training capability

  12. Patterns in Parent-Child Conversations about Animals at a Marine Science Center

    Science.gov (United States)

    Rigney, Jennifer C.; Callanan, Maureen A.

    2011-01-01

    Parent-child conversations are a potential source of children's developing understanding of the biological domain. We investigated patterns in parent-child conversations that may inform children about biological domain boundaries. At a marine science center exhibit, we compared parent-child talk about typical sea animals with faces (fish) with…

  13. Research trends in nuclear science and technology in India

    International Nuclear Information System (INIS)

    Sagar, Anil; Kademani, B.S.; Bhanumurthy, K.

    2010-01-01

    The present study is aimed at analysing the growth of Indian publications in nuclear science and technology. International Nuclear Information System (INIS) database is used as a tool to analyse the focused areas of this field for the period 2000-2009. Journal Citation Report 2008 (Science Edition) is used for eliciting information related to journal impact factors. The database contained a total of 29763 publications covered by all the channels of communication during the period and the study is limited only to 17309 publications published in journals. The study analyses the broad features of Indian Nuclear Science and Technology focusing on its publication growth characteristics, percentage of publications published in India and other countries, India's position among other countries in the world and position among countries in the Asian region, domain-wise publications and activity, domain-wise collaboration, national and international collaboration with impact factor comparison, institutions active in the field, quality of research output and the journals preferred for publication by the Indian scientists. (author)

  14. Connecting Knowledge Domains : An Approach to Concept Learning in Primary Science and Technology Education

    NARCIS (Netherlands)

    Koski, M.

    2014-01-01

    In order to understand our dependency on technology and the possible loss of control that comes with it, it is necessary for people to understand the nature of technology as well as its roots in science. Learning basic science and technology concepts should be a part of primary education since it

  15. A decision science approach for integrating social science in climate and energy solutions

    Science.gov (United States)

    Wong-Parodi, Gabrielle; Krishnamurti, Tamar; Davis, Alex; Schwartz, Daniel; Fischhoff, Baruch

    2016-06-01

    The social and behavioural sciences are critical for informing climate- and energy-related policies. We describe a decision science approach to applying those sciences. It has three stages: formal analysis of decisions, characterizing how well-informed actors should view them; descriptive research, examining how people actually behave in such circumstances; and interventions, informed by formal analysis and descriptive research, designed to create attractive options and help decision-makers choose among them. Each stage requires collaboration with technical experts (for example, climate scientists, geologists, power systems engineers and regulatory analysts), as well as continuing engagement with decision-makers. We illustrate the approach with examples from our own research in three domains related to mitigating climate change or adapting to its effects: preparing for sea-level rise, adopting smart grid technologies in homes, and investing in energy efficiency for office buildings. The decision science approach can facilitate creating climate- and energy-related policies that are behaviourally informed, realistic and respectful of the people whom they seek to aid.

  16. Dynamics of domain wall driven by spin-transfer torque

    International Nuclear Information System (INIS)

    Chureemart, P.; Evans, R. F. L.; Chantrell, R. W.

    2011-01-01

    Spin-torque switching of magnetic devices offers new technological possibilities for data storage and integrated circuits. We have investigated domain-wall motion in a ferromagnetic thin film driven by a spin-polarized current using an atomistic spin model with a modified Landau-Lifshitz-Gilbert equation including the effect of the spin-transfer torque. The presence of the spin-transfer torque is shown to create an out-of-plane domain wall, in contrast to the external-field-driven case where an in-plane wall is found. We have investigated the effect of the spin torque on domain-wall displacement, domain-wall velocity, and domain-wall width, as well as the equilibration time in the presence of the spin-transfer torque. We have shown that the minimum spin-current density, regarded as the critical value for domain-wall motion, decreases with increasing temperature.

  17. Clickstream Data Yields High-Resolution Maps of Science

    Science.gov (United States)

    Bollen, Johan; Van de Sompel, Herbert; Rodriguez, Marko A.; Balakireva, Lyudmila

    2009-01-01

    Background Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantages of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science. Methodology Over the course of 2007 and 2008, we collected nearly 1 billion user interactions recorded by the scholarly web portals of some of the most significant publishers, aggregators and institutional consortia. The resulting reference data set covers a significant part of world-wide use of scholarly web portals in 2006, and provides a balanced coverage of the humanities, social sciences, and natural sciences. A journal clickstream model, i.e. a first-order Markov chain, was extracted from the sequences of user interactions in the logs. The clickstream model was validated by comparing it to the Getty Research Institute's Architecture and Art Thesaurus. The resulting model was visualized as a journal network that outlines the relationships between various scientific domains and clarifies the connection of the social sciences and humanities to the natural sciences. Conclusions Maps of science resulting from large-scale clickstream data provide a detailed, contemporary view of scientific activity and correct the underrepresentation of the social sciences and humanities that is commonly found in citation data. PMID:19277205

  18. Clickstream data yields high-resolution maps of science.

    Directory of Open Access Journals (Sweden)

    Johan Bollen

    Full Text Available BACKGROUND: Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams that are issued by a variety of users across many different domains. Given these advantages of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science. METHODOLOGY: Over the course of 2007 and 2008, we collected nearly 1 billion user interactions recorded by the scholarly web portals of some of the most significant publishers, aggregators and institutional consortia. The resulting reference data set covers a significant part of world-wide use of scholarly web portals in 2006, and provides a balanced coverage of the humanities, social sciences, and natural sciences. A journal clickstream model, i.e. a first-order Markov chain, was extracted from the sequences of user interactions in the logs. The clickstream model was validated by comparing it to the Getty Research Institute's Architecture and Art Thesaurus. The resulting model was visualized as a journal network that outlines the relationships between various scientific domains and clarifies the connection of the social sciences and humanities to the natural sciences. CONCLUSIONS: Maps of science resulting from large-scale clickstream data provide a detailed, contemporary view of scientific activity and correct the underrepresentation of the social sciences and humanities that is commonly found in citation data.

  19. Bregmanized Domain Decomposition for Image Restoration

    KAUST Repository

    Langer, Andreas

    2012-05-22

    Computational problems of large-scale data are gaining attention recently due to better hardware and hence, higher dimensionality of images and data sets acquired in applications. In the last couple of years non-smooth minimization problems such as total variation minimization became increasingly important for the solution of these tasks. While being favorable due to the improved enhancement of images compared to smooth imaging approaches, non-smooth minimization problems typically scale badly with the dimension of the data. Hence, for large imaging problems solved by total variation minimization domain decomposition algorithms have been proposed, aiming to split one large problem into N > 1 smaller problems which can be solved on parallel CPUs. The N subproblems constitute constrained minimization problems, where the constraint enforces the support of the minimizer to be the respective subdomain. In this paper we discuss a fast computational algorithm to solve domain decomposition for total variation minimization. In particular, we accelerate the computation of the subproblems by nested Bregman iterations. We propose a Bregmanized Operator Splitting-Split Bregman (BOS-SB) algorithm, which enforces the restriction onto the respective subdomain by a Bregman iteration that is subsequently solved by a Split Bregman strategy. The computational performance of this new approach is discussed for its application to image inpainting and image deblurring. It turns out that the proposed new solution technique is up to three times faster than the iterative algorithm currently used in domain decomposition methods for total variation minimization. © Springer Science+Business Media, LLC 2012.

  20. Les caractéristiques de la terminologie des sciences relatives à la famille du point de vue de l’extraction terminologique

    Directory of Open Access Journals (Sweden)

    Ágoston Nagy

    2013-12-01

    Full Text Available Nagy, Á.: The Characteristics of Terminology of Sciences in relation to Family from point of view of Terminological Extraction According to Eugen Wüster, terms are lexical units that belong to a scientific domain where they are connected to a concept that they denote; therefore, terms have to have a precise definition. In the term extraction process, terms can mainly be recognised by morphosyntactic patterns: for example, noun+noun is a typical term pattern in French (e.g. navigateur web. One of the aims of this article is to find the typical term patterns and their frequency in the domain of social sciences. For this reason, three articles were chosen as corpus in the social sciences domain with the criterion that they include frequently the words famille ’family’ and/or individu ’individual’. In the three articles, all terms were manually annotated. The other aim of this article is to compare the frequencies of the term patterns in social sciences with the results of previous research on terms of a corpus of computer science. The further aim of this analysis is to determine whether an automatic term extractor fine-tuned for texts on computer science could also be used on a corpus of social sciences. In order to achieve this goal, problematic patterns – like adjectives preceding the nominal head in a term – are also examined. The results showed that the IT corpus followed the same tendency as the corpus on human sciences; however, juxtaposed nouns are less frequent in the latter which prefers the noun-adjective sequence. Concerning the problematic patterns, the two corpora did not show important differences: their presence is minimal in both (~7%. So the same rule-based extractor could work well on both corpora; however, psychological and sociological terms are more frequently used in common language, which makes statistical filtering more difficult.

  1. High-capacity method for hiding data in the discrete cosine transform domain

    Science.gov (United States)

    Qazanfari, Kazem; Safabakhsh, Reza

    2013-10-01

    Steganography is the art and science of hiding data in different media such as texts, audios, images, and videos. Data hiding techniques are generally divided into two groups: spatial and frequency domain techniques. Spatial domain methods generally have low security and, as a result, are less attractive to researchers. Discrete cosine transform (DCT) is the most common transform domain used in steganography and JPEG compression. Since a large number of the DCT coefficients of JPEG images are zero, the capacity of DCT domain-based steganography methods is not very high. We present a high-capacity method for hiding messages in the DCT domain. We describe the method in two classes where the receiver has and where the receiver does not have the cover image. In each class, we consider three cases for each coefficient. By considering n coefficients, there are 3n different situations. The method embeds ⌊log2 3n⌋ bits in these n coefficients. We show that the maximum reachable capacity by our method is 58% higher than the other general steganography methods. Experimental results show that the histogram-based steganalysis methods cannot detect the stego images produced by the proposed method while the capacity is increased significantly.

  2. Educator Preparedness to Teach Environmental Science in Secondary Schools

    Science.gov (United States)

    Guillory, Linus Joseph, Jr.

    2012-01-01

    This study assesses the environmental proficiency of Texas life science educators certified from 2003 to 2011 by analyzing their TExES 138 8-12 exam results in domains V and VI. The sample consisted of all the individuals that took and passed the TExES 138 life science 8-12 exam. During this period, approximately 41% of the individuals who took…

  3. Development of Computer Science Disciplines - A Social Network Analysis Approach

    OpenAIRE

    Pham, Manh Cuong; Klamma, Ralf; Jarke, Matthias

    2011-01-01

    In contrast to many other scientific disciplines, computer science considers conference publications. Conferences have the advantage of providing fast publication of papers and of bringing researchers together to present and discuss the paper with peers. Previous work on knowledge mapping focused on the map of all sciences or a particular domain based on ISI published JCR (Journal Citation Report). Although this data covers most of important journals, it lacks computer science conference and ...

  4. Individual motivation and threat indicators of collaboration readiness in scientific knowledge producing teams: a scoping review and domain analysis

    Directory of Open Access Journals (Sweden)

    Gaetano R. Lotrecchiano

    2016-05-01

    Full Text Available This paper identifies a gap in the team science literature that considers intrapersonal indicators of collaboration as motivations and threats to participating in collaborative knowledge producing teams (KPTs. Through a scoping review process, over 150 resources were consulted to organize 6 domains of motivation and threat to collaboration in KPTs: Resource Acquisition, Advancing Science, Building Relationships, Knowledge Transfer, Recognition and Reward, and Maintenance of Beliefs. Findings show how domains vary in their presentation of depth and diversity of motivation and threat indicators as well as their relationship with each other within and across domains. The findings of 51 indicators resulting from the review provide a psychosocial framework for which to establish a hierarchy of collaborative reasoning for individual engagement in KPTs thus allowing for further research into the mechanism of collaborative engagement. The indicators serve as a preliminary step in establishing a protocol for testing of the psychometric properties of intrapersonal measures of collaboration readiness.

  5. Recombinant spider silk genetically functionalized with affinity domains.

    Science.gov (United States)

    Jansson, Ronnie; Thatikonda, Naresh; Lindberg, Diana; Rising, Anna; Johansson, Jan; Nygren, Per-Åke; Hedhammar, My

    2014-05-12

    Functionalization of biocompatible materials for presentation of active protein domains is an area of growing interest. Herein, we describe a strategy for functionalization of recombinant spider silk via gene fusion to affinity domains of broad biotechnological use. Four affinity domains of different origin and structure; the IgG-binding domains Z and C2, the albumin-binding domain ABD, and the biotin-binding domain M4, were all successfully produced as soluble silk fusion proteins under nondenaturing purification conditions. Silk films and fibers produced from the fusion proteins were demonstrated to be chemically and thermally stable. Still, the bioactive domains are concluded to be folded and accessible, since their respective targets could be selectively captured from complex samples, including rabbit serum and human plasma. Interestingly, materials produced from mixtures of two different silk fusion proteins displayed combined binding properties, suggesting that tailor-made materials with desired stoichiometry and surface distributions of several binding domains can be produced. Further, use of the IgG binding ability as a general mean for presentation of desired biomolecules could be demonstrated for a human vascular endothelial growth factor (hVEGF) model system, via a first capture of anti-VEGF IgG to silk containing the Z-domain, followed by incubation with hVEGF. Taken together, this study demonstrates the potential of recombinant silk, genetically functionalized with affinity domains, for construction of biomaterials capable of presentation of almost any desired biomolecule.

  6. Drug-domain interaction networks in myocardial infarction.

    Science.gov (United States)

    Wang, Haiying; Zheng, Huiru; Azuaje, Francisco; Zhao, Xing-Ming

    2013-09-01

    It has been well recognized that the pace of the development of new drugs and therapeutic interventions lags far behind biological knowledge discovery. Network-based approaches have emerged as a promising alternative to accelerate the discovery of new safe and effective drugs. Based on the integration of several biological resources including two recently published datasets i.e., Drug-target interactions in myocardial infarction (My-DTome) and drug-domain interaction network, this paper reports the association between drugs and protein domains in the context of myocardial infarction (MI). A MI drug-domain interaction network, My-DDome, was firstly constructed, followed by topological analysis and functional characterization of the network. The results show that My-DDome has a very clear modular structure, where drugs interacting with the same domain(s) within each module tend to have similar therapeutic effects. Moreover it has been found that drugs acting on blood and blood forming organs (ATC code B) and sensory organs (ATC code S) are significantly enriched in My-DDome (p drugs, their known targets, and seemingly unrelated proteins can be revealed.

  7. Domain decomposition method for solving elliptic problems in unbounded domains

    International Nuclear Information System (INIS)

    Khoromskij, B.N.; Mazurkevich, G.E.; Zhidkov, E.P.

    1991-01-01

    Computational aspects of the box domain decomposition (DD) method for solving boundary value problems in an unbounded domain are discussed. A new variant of the DD-method for elliptic problems in unbounded domains is suggested. It is based on the partitioning of an unbounded domain adapted to the given asymptotic decay of an unknown function at infinity. The comparison of computational expenditures is given for boundary integral method and the suggested DD-algorithm. 29 refs.; 2 figs.; 2 tabs

  8. Functional and topological characteristics of mammalian regulatory domains

    Science.gov (United States)

    Symmons, Orsolya; Uslu, Veli Vural; Tsujimura, Taro; Ruf, Sandra; Nassari, Sonya; Schwarzer, Wibke; Ettwiller, Laurence; Spitz, François

    2014-01-01

    Long-range regulatory interactions play an important role in shaping gene-expression programs. However, the genomic features that organize these activities are still poorly characterized. We conducted a large operational analysis to chart the distribution of gene regulatory activities along the mouse genome, using hundreds of insertions of a regulatory sensor. We found that enhancers distribute their activities along broad regions and not in a gene-centric manner, defining large regulatory domains. Remarkably, these domains correlate strongly with the recently described TADs, which partition the genome into distinct self-interacting blocks. Different features, including specific repeats and CTCF-binding sites, correlate with the transition zones separating regulatory domains, and may help to further organize promiscuously distributed regulatory influences within large domains. These findings support a model of genomic organization where TADs confine regulatory activities to specific but large regulatory domains, contributing to the establishment of specific gene expression profiles. PMID:24398455

  9. Time-Domain Simulation of RF Couplers

    International Nuclear Information System (INIS)

    Smithe, David; Carlsson, Johan; Austin, Travis

    2009-01-01

    We have developed a finite-difference time-domain (FDTD) fluid-like approach to integrated plasma-and-coupler simulation [1], and show how it can be used to model LH and ICRF couplers in the MST and larger tokamaks.[2] This approach permits very accurate 3-D representation of coupler geometry, and easily includes non-axi-symmetry in vessel wall, magnetic equilibrium, and plasma density. The plasma is integrated with the FDTD Maxwell solver in an implicit solve that steps over electron time-scales, and permits tenuous plasma in the coupler itself, without any need to distinguish or interface between different regions of vacuum and/or plasma. The FDTD algorithm is also generalized to incorporate a time-domain sheath potential [3] on metal structures within the simulation, to look for situations where the sheath potential might generate local sputtering opportunities. Benchmarking of the time-domain sheath algorithm has been reported in the references. Finally, the time-domain software [4] permits the use of particles, either as field diagnostic (test particles) or to self-consistently compute plasma current from the applied RF power.

  10. Exploring lecturers' views of first-year health science students' misconceptions in biomedical domains.

    Science.gov (United States)

    Badenhorst, Elmi; Mamede, Sílvia; Hartman, Nadia; Schmidt, Henk G

    2015-05-01

    Research has indicated that misconceptions hamper the process of knowledge construction. Misconceptions are defined as persistent ideas not supported by current scientific views. Few studies have explored how misconceptions develop when first year health students conceptually move between anatomy and physiology to construct coherent knowledge about the human body. This explorative study analysed lecturers' perceptions of first-year health science students' misconceptions in anatomy and physiology to gain a deeper understanding of how and why misconceptions could potentially arise, by attempting to link sources of misconceptions with four schools of thought, namely theories on concept formation, complexity, constructivism and conceptual change. This was a qualitative study where ten lecturers involved in teaching anatomy and physiology in the health science curricula at the University of Cape Town were interviewed to explore perceptions of students' misconceptions. Analytical induction was used to uncover categories within the interview data by using a coding system. A deeper analysis was done to identify emerging themes that begins to explore a theoretical understanding of why and how misconceptions arise. Nine sources of misconceptions were identified, including misconceptions related to language, perception, three dimensional thinking, causal reasoning, curricula design, learning styles and moving between macro and micro levels. The sources of misconceptions were then grouped together to assist educators with finding educational interventions to overcome potential misconceptions. This explorative study is an attempt in theory building to understand what is at the core of biomedical misconceptions. Misconceptions identified in this study hold implications for educators as not all students have the required building blocks and cognitive skills to successfully navigate their way through biomedical courses. Theoretical insight into the sources of misconceptions can

  11. Quantifying water flow and retention in an unsaturated fracture-facial domain

    Science.gov (United States)

    Nimmo, John R.; Malek-Mohammadi, Siamak

    2015-01-01

    Hydrologically significant flow and storage of water occur in macropores and fractures that are only partially filled. To accommodate such processes in flow models, we propose a three-domain framework. Two of the domains correspond to water flow and water storage in a fracture-facial region, in addition to the third domain of matrix water. The fracture-facial region, typically within a fraction of a millimeter of the fracture wall, includes a flowing phase whose fullness is determined by the availability and flux of preferentially flowing water, and a static storage portion whose fullness is determined by the local matric potential. The flow domain can be modeled with the source-responsive preferential flow model, and the roughness-storage domain can be modeled with capillary relations applied on the fracture-facial area. The matrix domain is treated using traditional unsaturated flow theory. We tested the model with application to the hydrology of the Chalk formation in southern England, coherently linking hydrologic information including recharge estimates, streamflow, water table fluctuation, imaging by electron microscopy, and surface roughness. The quantitative consistency of the three-domain matrix-microcavity-film model with this body of diverse data supports the hypothesized distinctions and active mechanisms of the three domains and establishes the usefulness of this framework.

  12. Seeding science success: Relations of secondary students' science self-concepts and motivation with aspirations and achievement

    Science.gov (United States)

    Chandrasena, Wanasinghe Durayalage

    This research comprises three inter-related synergistic studies. Study 1 aims to develop a psychometrically sound tool to measure secondary students' science self-concepts, motivation, and aspirations in biology, chemistry, earth and environmental methodology to explicate students' and teachers' views, practices, and personal experiences, to identify the barriers to undertaking science for secondary students and to provide rich insights into the relations of secondary students' science self-concepts and motivation with their aspirations and achievement. Study 3 will detect additional issues that may not necessarily be identifiable from the quantitative findings of Study 2. The psychometric properties of the newly developed instrument demonstrated that students' science self-concepts were domain specific, while science motivation and science aspirations were not. Students' self-concepts in general science, chemistry, and physics were stronger for males than females. Students' self-concepts in general science and biology became stronger for students in higher years of secondary schooling. Students' science motivation did not vary across gender and year levels. Though students' science aspirations did not vary across gender, they became stronger with age. In general, students' science self-concepts and science motivation were positively related to science aspirations and science achievement. Specifically, students' year level, biology self-concept, and physics self concept predicted their science and career aspirations. Biology self-concept predicted teacher ratings of students' achievement, and students' general science self-concepts predicted their achievement according to students' ratings. Students' year level and intrinsic motivation in science were predictors of their science aspirations, and intrinsic motivation was a greater significant predictor of students' achievement, according to student ratings. Based upon students' and teachers' perceptions, the

  13. Korea's Contribution to Radiological Research Included in Science Citation Index Expanded, 1986-2010

    Energy Technology Data Exchange (ETDEWEB)

    Ku, You Jin; Yoon, Dae Young; Lim, Kyoung Ja; Baek, Sora; Seo, Young Lan; Yun, Eun Joo; Choi, Chul Soon; Bae, Sang Hoon [Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of); Lee, Hyun; Ju, Young Su [Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang (Korea, Republic of)

    2012-09-15

    To evaluate scientific papers published by Korean radiologists in the Science Citation Index Expanded (SCIE) radiology journals, between 1986 and 2010. The Institute for Scientific Information Web of Knowledge-Web of Science (SCIE) database was searched for all articles published by Korean radiologists, in SCIE radiology journals, between 1986 and 2010. We performed the analysis by typing 'Korea' and 'radiol' in the address section and selecting the subject area of 'Radiology, Nuclear Medicine, and Medical Imaging' with the use of the general search function of the software. Analyzed parameters included the total number of publications, document types, journals, and institutions. In addition, we analyzed where Korea ranks, compared to other countries, in terms of the number of published articles. All these data were analyzed according to five time periods: 1986-1990, 1991-1995, 1996-2000, 2001-2005, and 2006-2010. Overall, 4974 papers were published by Korean radiologists, in 99 different SCIE journals, between 1986 and 2010, of which 4237 (85.2%) were article-type papers. Of the total 115395 articles, worldwide, published in radiology journals, Korea's share was 3.7%, with an upward trend over time (p < 0.005). The journal with the highest number of articles was the American Journal of Roentgenology (n 565, 13.3%). The institution which produced the highest number of publications was Seoul National University (n = 932, 22.0%). The number of scientific articles published by Korean radiologists in the SCIE radiology journals has increased significantly between 1986 and 2010. Korea was ranked 4th among countries contributing to radiology research during the last 5 years.

  14. QMRAcatch: Microbial Quality Simulation of Water Resources including Infection Risk Assessment.

    Science.gov (United States)

    Schijven, Jack; Derx, Julia; de Roda Husman, Ana Maria; Blaschke, Alfred Paul; Farnleitner, Andreas H

    2015-09-01

    Given the complex hydrologic dynamics of water catchments and conflicts between nature protection and public water supply, models may help to understand catchment dynamics and evaluate contamination scenarios and may support best environmental practices and water safety management. A catchment model can be an educative tool for investigating water quality and for communication between parties with different interests in the catchment. This article introduces an interactive computational tool, QMRAcatch, that was developed to simulate concentrations in water resources of , a human-associated microbial source tracking (MST) marker, enterovirus, norovirus, , and as target microorganisms and viruses (TMVs). The model domain encompasses a main river with wastewater discharges and a floodplain with a floodplain river. Diffuse agricultural sources of TMVs that discharge into the main river are not included in this stage of development. The floodplain river is fed by the main river and may flood the plain. Discharged TMVs in the river are subject to dilution and temperature-dependent degradation. River travel times are calculated using the Manning-Gauckler-Strickler formula. Fecal deposits from wildlife, birds, and visitors in the floodplain are resuspended in flood water, runoff to the floodplain river, or infiltrate groundwater. Fecal indicator and MST marker data facilitate calibration. Infection risks from exposure to the pathogenic TMVs by swimming or drinking water consumption are calculated, and the required pathogen removal by treatment to meet a health-based quality target can be determined. Applicability of QMRAcatch is demonstrated by calibrating the tool for a study site at the River Danube near Vienna, Austria, using field TMV data, including a sensitivity analysis and evaluation of the model outcomes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Nuclear science and technology education and training in Indonesia

    International Nuclear Information System (INIS)

    Karsono

    2007-01-01

    Deployment of nuclear technology requires adequate nuclear infrastructure which includes governmental infrastructure, science and technology infrastructure, education and training infrastructure, and industrial infrastructure. Governmental infrastructure in nuclear, i.e. BATAN (the National Nuclear Energy Agency) and BAPETEN (the Nuclear Energy Control Agency), need adequate number of qualified manpower with general and specific knowledge of nuclear. Science and technology infrastructure is mainly contained in the R and D institutes, education and training centers, scientific academies and professional associations, and national industry. The effectiveness of this infrastructure mainly depends on the quality of the manpower, in addition to the funding and available facilities. Development of human resource needed for research, development, and utilization of nuclear technology in the country needs special attention. Since the national industry is still in its infant stage, the strategy for HRD (human resource development) in the nuclear field addresses the needs of the following: BATAN for its research and development, promotion, and training; BAPETEN for its regulatory functions and training; users of nuclear technology in industry, medicine, agriculture, research, and other areas; radiation safety officers in organizations or institutions licensed to use radioactive materials; the education sector, especially lecturers and teachers, in tertiary and secondary education. Nuclear science and technology is a multidisciplinary and a highly specialized subject. It includes areas such as nuclear and reactor physics, thermal hydraulics, chemistry, material science, radiation protection, nuclear safety, health science, and radioactive waste management. Therefore, a broad nuclear education is absolutely essential to master the wide areas of science and technology used in the nuclear domain. The universities and other institutions of higher education are the only

  16. Domain-to-domain coupling in voltage-sensing phosphatase.

    Science.gov (United States)

    Sakata, Souhei; Matsuda, Makoto; Kawanabe, Akira; Okamura, Yasushi

    2017-01-01

    Voltage-sensing phosphatase (VSP) consists of a transmembrane voltage sensor and a cytoplasmic enzyme region. The enzyme region contains the phosphatase and C2 domains, is structurally similar to the tumor suppressor phosphatase PTEN, and catalyzes the dephosphorylation of phosphoinositides. The transmembrane voltage sensor is connected to the phosphatase through a short linker region, and phosphatase activity is induced upon membrane depolarization. Although the detailed molecular characteristics of the voltage sensor domain and the enzyme region have been revealed, little is known how these two regions are coupled. In addition, it is important to know whether mechanism for coupling between the voltage sensor domain and downstream effector function is shared among other voltage sensor domain-containing proteins. Recent studies in which specific amino acid sites were genetically labeled using a fluorescent unnatural amino acid have enabled detection of the local structural changes in the cytoplasmic region of Ciona intestinalis VSP that occur with a change in membrane potential. The results of those studies provide novel insight into how the enzyme activity of the cytoplasmic region of VSP is regulated by the voltage sensor domain.

  17. Structural Studies of the SET Domain from RIZ1 Tumor Suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Briknarova, Klara; Zhou, Xinliang; Satterthwait, Arnold C.; Hoyt, David W.; Ely, Kathryn R.; Huang, Shi

    2008-02-15

    Histone lysine methyltransferases (HKMTs) are involved in regulation of chromatin structure, and, as such, are important for longterm gene activation and repression that is associated with cell memory and establishment of cell-type specific transcriptional programs. Most HKMTs contain a SET domain, which is responsible for their catalytic activity. RIZ1 is a transcription regulator and tumor suppressor that catalyzes methylation of lysine 9 of histone H3 and contains a rather distinct SET domain. Similar SET domains, sometimes refererred to as PR (PRDI-BF1 and RIZ1 homology) domains, are also found in other proteins including Blimp-1/PRDI-BF1, MDS1-EVI1 and Meisetz. We determined the solution structure of the PR domain from RIZ1 and characterized its interaction with S-adenosyl homocysteine (SAH) and a peptide from histone H3. Despite low sequence identity with canonical SET domains, the PR domain displays a typical SET fold including a pseudo-knot at the C-terminus. The N-flanking sequence of RIZ1 PR domain adopts a novel conformation and interacts closely with the SET fold. The C-flanking sequence contains an α-helix that exhibits higher mobility than the SET fold and points away from the protein face that harbors active site in other SET domains. Residues that interact with the methylation cofactor in SET domains are not conserved in RIZ1 or other PR domains, and the SET fold of RIZ1 does not bind SAH. However, the PR domain of RIZ1 interacts specifically with a synthetic peptide comprising residues 1-20 of histone H3.

  18. Real science at the petascale.

    Science.gov (United States)

    Saksena, Radhika S; Boghosian, Bruce; Fazendeiro, Luis; Kenway, Owain A; Manos, Steven; Mazzeo, Marco D; Sadiq, S Kashif; Suter, James L; Wright, David; Coveney, Peter V

    2009-06-28

    We describe computational science research that uses petascale resources to achieve scientific results at unprecedented scales and resolution. The applications span a wide range of domains, from investigation of fundamental problems in turbulence through computational materials science research to biomedical applications at the forefront of HIV/AIDS research and cerebrovascular haemodynamics. This work was mainly performed on the US TeraGrid 'petascale' resource, Ranger, at Texas Advanced Computing Center, in the first half of 2008 when it was the largest computing system in the world available for open scientific research. We have sought to use this petascale supercomputer optimally across application domains and scales, exploiting the excellent parallel scaling performance found on up to at least 32 768 cores for certain of our codes in the so-called 'capability computing' category as well as high-throughput intermediate-scale jobs for ensemble simulations in the 32-512 core range. Furthermore, this activity provides evidence that conventional parallel programming with MPI should be successful at the petascale in the short to medium term. We also report on the parallel performance of some of our codes on up to 65 636 cores on the IBM Blue Gene/P system at the Argonne Leadership Computing Facility, which has recently been named the fastest supercomputer in the world for open science.

  19. Direct time-domain techniques for transient radiation and scattering

    International Nuclear Information System (INIS)

    Miller, E.K.; Landt, J.A.

    1976-01-01

    A tutorial introduction to transient electromagnetics, focusing on direct time-domain techniques, is presented. Physical, mathematical, numerical, and experimental aspects of time-domain methods, with emphasis on wire objects excited as antennas or scatters are examined. Numerous computed examples illustrate the characteristics of direct time-domain procedures, especially where they may offer advantages over procedures in the more familiar frequency domain. These advantages include greater solution efficiency for many types of problems, the ability to handle nonlinearities, improved physical insight and interpretability, availability of wide-band information from a single calculation, and the possibility of isolating interactions among various parts of an object using time-range gating

  20. MIT domain of Vps4 is a Ca2+-dependent phosphoinositide-binding domain.

    Science.gov (United States)

    Iwaya, Naoko; Takasu, Hirotoshi; Goda, Natsuko; Shirakawa, Masahiro; Tanaka, Toshiki; Hamada, Daizo; Hiroaki, Hidekazu

    2013-05-01

    The microtubule interacting and trafficking (MIT) domain is a small protein module that is conserved in proteins of diverged function, such as Vps4, spastin and sorting nexin 15 (SNX15). The molecular function of the MIT domain is protein-protein interaction, in which the domain recognizes peptides containing MIT-interacting motifs. Recently, we identified an evolutionarily related domain, 'variant' MIT domain at the N-terminal region of the microtubule severing enzyme katanin p60. We found that the domain was responsible for binding to microtubules and Ca(2+). Here, we have examined whether the authentic MIT domains also bind Ca(2+). We found that the loop between the first and second α-helices of the MIT domain binds a Ca(2+) ion. Furthermore, the MIT domains derived from Vps4b and SNX15a showed phosphoinositide-binding activities in a Ca(2+)-dependent manner. We propose that the MIT domain is a novel membrane-associating domain involved in endosomal trafficking.

  1. Interlocked chiral/polar domain walls and large optical rotation in Ni3TeO6

    Directory of Open Access Journals (Sweden)

    Xueyun Wang

    2015-07-01

    Full Text Available Chirality, i.e., handedness, pervades much of modern science from elementary particles, DNA-based biology to molecular chemistry; however, most of the chirality-relevant materials have been based on complex molecules. Here, we report inorganic single-crystalline Ni3TeO6, forming in a corundum-related R3 structure with both chirality and polarity. These chiral Ni3TeO6 single crystals exhibit a large optical specific rotation (α—1355° dm−1 cm3 g−1. We demonstrate, for the first time, that in Ni3TeO6, chiral and polar domains form an intriguing domain pattern, resembling a radiation warning sign, which stems from interlocked chiral and polar domain walls through lowering of the wall energy.

  2. Sex, grade, and course differences in attitudes that are related to cognitive performance in secondary science

    Science.gov (United States)

    Levin, James; Seymour Fowler, H.

    The purpose of this study was to collect and analyze data on sexual differences in secondary school students' attitudes towards science. Attitudinal differences were also analyzed for the independent variables of science programs and grade levels. Data were collected from 988 students using a modified version of the Fennema-Sherman Mathematics Attitude Scales to represent attitudes toward science. Reliabilities of the modified science subscales were all high ( > 0.83). Multivariate analysis of variance (MANOVA) was used to analyze the data for the main and interaction effects of the independent variables of sex (male, female), grade level (10th, 11th, 12th), and science program (advanced placement, academic, general, terminal). Significant differences (p Scale, Science as a Male Domain Scale, and Teacher Scale. Although not significant, males evidenced more positive attitudes on all the remaining five subscales. Eleventh graders evidenced significantly more positive attitudes than tenth graders on all but the Effectance Motivation Scale. Students in 11th grade had more positive attitudes than 12th-grade students on all scales but Science as a Male Domain Scale; however, these differences were not significant. Tenth graders differed significantly from 12th graders on three subscales; Science Usefulness Scale, Confidence in Learning Science Scale, and Teacher Scale. Positive attitudes decreased from advanced placement to terminal programs. Academic students did not differ significantly from general students except on the Father Scale; however, they were significantly different (more positive) from the terminal students for all subscales. General students were also significantly different from terminal students except on the three subscales of Attitudes Toward Success in Science, Science as a Male Domain, and Effectance Motivation.

  3. Society, reality and STEM-education : challenging contributions to ‘science as practice’

    NARCIS (Netherlands)

    Taconis, R.; Pepin, B.

    2017-01-01

    Connecting school science and mathematics to real-life is a key issue in STEM education. This symposium presents four studies on ‘realistic’ STEM-education from various STEM-domains that all involve ‘science as practice’. Key issues addressed are: How can students’ understanding and appreciation of

  4. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  5. Perspective: Materials Informatics and Big Data: Realization of the Fourth Paradigm of Science in Materials Science

    Science.gov (United States)

    2016-08-17

    algorithm Bagging29 Ensembling Builds multiple models on bootstrapped training data subsets to improve model stability by reducing variance Random subspace30...36 053208-6 A. Agrawal and A. Choudhary APL Mater. 4, 053208 (2016) domains like business and marketing,51–53 healthcare,54–60 climate science,61–63

  6. Sequential unfolding of the two-domain protein Pseudomonas stutzeri cytochrome c(4)

    DEFF Research Database (Denmark)

    Andersen, Niels Højmark; Jensen, Thomas Jon; Nørgaard, Allan

    2002-01-01

    F stutzeri cytochrome c. is a di-haem protein, composed of two globular domains each with His-Met coordinated haem. and a hydrogen bond network between the domains. The domain foldings are highly symmetric but with specific differences including structural differences of ligand coordination, and ...

  7. The Measurement and Role of Ecological Resilience Systems Theory Across Domain-Specific Outcomes: The Domain-Specific Resilient Systems Scales.

    Science.gov (United States)

    Maltby, John; Day, Liz; Hall, Sophie S; Chivers, Sally

    2017-10-01

    Research suggests that trait resilience may be best understood within an ecological resilient systems theory, comprising engineering, ecological, and adaptive capacity resilience. However, there is no evidence as to how this theory translates to specific life domains. Data from two samples (the United States, n = 1,278; the United Kingdom, n = 211) facilitated five studies that introduce the Domain-Specific Resilient Systems Scales for assessing ecological resilient systems theory within work, health, marriage, friendships, and education. The Domain-Specific Resilient Systems Scales are found to predict unique variance in job satisfaction, lower job burnout, quality-of-life following illness, marriage commitment, and educational engagement, while controlling for factors including sex, age, personality, cognitive ability, and trait resilience. The findings also suggest a distinction between the three resilience dimensions in terms of the types of systems to which they contribute. Engineering resilience may contribute most to life domains where an established system needs to be maintained, for example, one's health. Ecological resilience may contribute most to life domains where the system needs sustainability in terms of present and future goal orientation, for example, one's work. Adaptive Capacity may contribute most to life domains where the system needs to be retained, preventing it from reaching a crisis state, for example, work burnout.

  8. Building Scalable Knowledge Graphs for Earth Science

    Science.gov (United States)

    Ramachandran, R.; Maskey, M.; Gatlin, P. N.; Zhang, J.; Duan, X.; Bugbee, K.; Christopher, S. A.; Miller, J. J.

    2017-12-01

    Estimates indicate that the world's information will grow by 800% in the next five years. In any given field, a single researcher or a team of researchers cannot keep up with this rate of knowledge expansion without the help of cognitive systems. Cognitive computing, defined as the use of information technology to augment human cognition, can help tackle large systemic problems. Knowledge graphs, one of the foundational components of cognitive systems, link key entities in a specific domain with other entities via relationships. Researchers could mine these graphs to make probabilistic recommendations and to infer new knowledge. At this point, however, there is a dearth of tools to generate scalable Knowledge graphs using existing corpus of scientific literature for Earth science research. Our project is currently developing an end-to-end automated methodology for incrementally constructing Knowledge graphs for Earth Science. Semantic Entity Recognition (SER) is one of the key steps in this methodology. SER for Earth Science uses external resources (including metadata catalogs and controlled vocabulary) as references to guide entity extraction and recognition (i.e., labeling) from unstructured text, in order to build a large training set to seed the subsequent auto-learning component in our algorithm. Results from several SER experiments will be presented as well as lessons learned.

  9. Preservice science teachers' experiences with repeated, guided inquiry

    Science.gov (United States)

    Slack, Amy B.

    The purpose of this study was to examine preservice science teachers' experiences with repeated scientific inquiry (SI) activities. The National Science Education Standards (National Research Council, 1996) stress students should understand and possess the abilities to do SI. For students to meet these standards, science teachers must understand and be able to perform SI; however, previous research demonstrated that many teachers have naive understandings in this area. Teacher preparation programs provide an opportunity to facilitate the development of inquiry understandings and abilities. In this study, preservice science teachers had experiences with two inquiry activities that were repeated three times each. The research questions for this study were (a) How do preservice science teachers' describe their experiences with repeated, guided inquiry activities? (b) What are preservice science teachers' understandings and abilities of SI? This study was conducted at a large, urban university in the southeastern United States. The 5 participants had bachelor's degrees in science and were enrolled in a graduate science education methods course. The researcher was one of the course instructors but did not lead the activities. Case study methodology was used. Data was collected from a demographic survey, an open-ended questionnaire with follow-up interviews, the researcher's observations, participants' lab notes, personal interviews, and participants' journals. Data were coded and analyzed through chronological data matrices to identify patterns in participants' experiences. The five domains identified in this study were understandings of SI, abilities to conduct SI, personal feelings about the experience, science content knowledge, and classroom implications. Through analysis of themes identified within each domain, the four conclusions made about these preservice teachers' experiences with SI were that the experience increased their abilities to conduct inquiry

  10. Conversion of Dielectric Data from the Time Domain to the Frequency Domain

    Directory of Open Access Journals (Sweden)

    Vladimir Durman

    2005-01-01

    Full Text Available Polarisation and conduction processes in dielectric systems can be identified by the time domain or the frequency domain measurements. If the systems is a linear one, the results of the time domain measurements can be transformed into the frequency domain, and vice versa. Commonly, the time domain data of the absorption conductivity are transformed into the frequency domain data of the dielectric susceptibility. In practice, the relaxation are mainly evaluated by the frequency domain data. In the time domain, the absorption current measurement were prefered up to now. Recent methods are based on the recovery voltage measurements. In this paper a new method of the recovery data conversion from the time the frequency domain is proposed. The method is based on the analysis of the recovery voltage transient based on the Maxwell equation for the current density in a dielectric. Unlike the previous published solutions, the Laplace fransform was used to derive a formula suitable for practical purposes. the proposed procedure allows also calculating of the insulation resistance and separating the polarisation and conduction losses.

  11. Everyday science & science every day: Science-related talk & activities across settings

    Science.gov (United States)

    Zimmerman, Heather

    To understand the development of science-related thinking, acting, and learning in middle childhood, I studied youth in schools, homes, and other neighborhood settings over a three-year period. The research goal was to analyze how multiple everyday experiences influence children's participation in science-related practices and their thinking about science and scientists. Ethnographic and interaction analysis methodologies were to study the cognition and social interactions of the children as they participated in activities with peers, family, and teachers (n=128). Interviews and participant self-documentation protocols elucidated the participants' understandings of science. An Everyday Expertise (Bell et al., 2006) theoretical framework was employed to study the development of science understandings on three analytical planes: individual learner, social groups, and societal/community resources. Findings came from a cross-case analysis of urban science learners and from two within-case analyses of girls' science-related practices as they transitioned from elementary to middle school. Results included: (1) children participated actively in science across settings---including in their homes as well as in schools, (2) children's interests in science were not always aligned to the school science content, pedagogy, or school structures for participation, yet children found ways to engage with science despite these differences through crafting multiple pathways into science, (3) urban parents were active supporters of STEM-related learning environments through brokering access to social and material resources, (4) the youth often found science in their daily activities that formal education did not make use of, and (5) children's involvement with science-related practices can be developed into design principles to reach youth in culturally relevant ways.

  12. Application of wavelet transform for PDZ domain classification.

    Directory of Open Access Journals (Sweden)

    Khaled Daqrouq

    Full Text Available PDZ domains have been identified as part of an array of signaling proteins that are often unrelated, except for the well-conserved structural PDZ domain they contain. These domains have been linked to many disease processes including common Avian influenza, as well as very rare conditions such as Fraser and Usher syndromes. Historically, based on the interactions and the nature of bonds they form, PDZ domains have most often been classified into one of three classes (class I, class II and others - class III, that is directly dependent on their binding partner. In this study, we report on three unique feature extraction approaches based on the bigram and trigram occurrence and existence rearrangements within the domain's primary amino acid sequences in assisting PDZ domain classification. Wavelet packet transform (WPT and Shannon entropy denoted by wavelet entropy (WE feature extraction methods were proposed. Using 115 unique human and mouse PDZ domains, the existence rearrangement approach yielded a high recognition rate (78.34%, which outperformed our occurrence rearrangements based method. The recognition rate was (81.41% with validation technique. The method reported for PDZ domain classification from primary sequences proved to be an encouraging approach for obtaining consistent classification results. We anticipate that by increasing the database size, we can further improve feature extraction and correct classification.

  13. Activities and Accomplishments in Various Domains: Relationships with Creative Personality and Creative Motivation in Adolescence

    Science.gov (United States)

    Hong, Eunsook; Peng, Yun; O'Neil, Harold F., Jr.

    2014-01-01

    This study examined relationships between five personal traits and adolescents' creative activities and accomplishments in five domains--music, visual arts, creative writing, science, and technology. Participants were 439 tenth graders (220 males and 219 females) in China. The relationships were examined using confirmatory factor analysis.…

  14. An Ethically Ambitious Higher Education Data Science

    Science.gov (United States)

    Stevens, Mitchell L.

    2014-01-01

    The new data sciences of education bring substantial legal, political, and ethical questions about the management of information about learners. This piece provides a synoptic view of recent scholarly discussion in this domain and calls for a proactive approach to the ethics of learning research.

  15. Cross Domain Deterrence: Livermore Technical Report, 2014-2016

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Peter D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bahney, Ben [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matarazzo, Celeste [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Markey, Michael [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pearl, Jonathan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-03

    Lawrence Livermore National Laboratory (LLNL) is an original collaborator on the project titled “Deterring Complex Threats: The Effects of Asymmetry, Interdependence, and Multi-polarity on International Strategy,” (CDD Project) led by the UC Institute on Global Conflict and Cooperation at UCSD under PIs Jon Lindsay and Erik Gartzke , and funded through the DoD Minerva Research Initiative. In addition to participating in workshops and facilitating interaction among UC social scientists, LLNL is leading the computational modeling effort and assisting with empirical case studies to probe the viability of analytic, modeling and data analysis concepts. This report summarizes LLNL work on the CDD Project to date, primarily in Project Years 1-2, corresponding to Federal fiscal year 2015. LLNL brings two unique domains of expertise to bear on this Project: (1) access to scientific expertise on the technical dimensions of emerging threat technology, and (2) high performance computing (HPC) expertise, required for analyzing the complexity of bargaining interactions in the envisioned threat models. In addition, we have a small group of researchers trained as social scientists who are intimately familiar with the International Relations research. We find that pairing simulation scientists, who are typically trained in computer science, with domain experts, social scientists in this case, is the most effective route to developing powerful new simulation tools capable of representing domain concepts accurately and answering challenging questions in the field.

  16. Generating Dynamic Persistence in the Time Domain

    Science.gov (United States)

    Guerrero, A.; Smith, L. A.; Smith, L. A.; Kaplan, D. T.

    2001-12-01

    Many dynamical systems present long-range correlations. Physically, these systems vary from biological to economical, including geological or urban systems. Important geophysical candidates for this type of behaviour include weather (or climate) and earthquake sequences. Persistence is characterised by slowly decaying correlation function; that, in theory, never dies out. The Persistence exponent reflects the degree of memory in the system and much effort has been expended creating and analysing methods that successfully estimate this parameter and model data that exhibits persistence. The most widely used methods for generating long correlated time series are not dynamical systems in the time domain, but instead are derived from a given spectral density. Little attention has been drawn to modelling persistence in the time domain. The time domain approach has the advantage that an observation at certain time can be calculated using previous observations which is particularly suitable when investigating the predictability of a long memory process. We will describe two of these methods in the time domain. One is a traditional approach using fractional ARIMA (autoregressive and moving average) models; the second uses a novel approach to extending a given series using random Fourier basis functions. The statistical quality of the two methods is compared, and they are contrasted with weather data which shows, reportedly, persistence. The suitability of this approach both for estimating predictability and for making predictions is discussed.

  17. Secondary School Students' Understanding of Science and Their Socioscientific Reasoning

    Science.gov (United States)

    Karahan, Engin; Roehrig, Gillian

    2017-08-01

    Research in socioscientific issue (SSI)-based interventions is relatively new (Sadler in Journal of Research in Science Teaching 41:513-536, 2004; Zeidler et al. in Journal of Research in Science Teaching 46:74-101, 2009), and there is a need for understanding more about the effects of SSI-based learning environments (Sadler in Journal of Research in Science Teaching 41:513-536, 2004). Lee and Witz (International Journal of Science Education 31:931-960, 2009) highlighted the need for detailed case studies that would focus on how students respond to teachers' practices of teaching SSI. This study presents case studies that investigated the development of secondary school students' science understanding and their socioscientific reasoning within SSI-based learning environments. A multiple case study with embedded units of analysis was implemented for this research because of the contextual differences for each case. The findings of the study revealed that students' understanding of science, including scientific method, social and cultural influences on science, and scientific bias, was strongly influenced by their experiences in SSI-based learning environments. Furthermore, multidimensional SSI-based science classes resulted in students having multiple reasoning modes, such as ethical and economic reasoning, compared to data-driven SSI-based science classes. In addition to portraying how participants presented complexity, perspectives, inquiry, and skepticism as aspects of socioscientific reasoning (Sadler et al. in Research in Science Education 37:371-391, 2007), this study proposes the inclusion of three additional aspects for the socioscientific reasoning theoretical construct: (1) identification of social domains affecting the SSI, (2) using cost and benefit analysis for evaluation of claims, and (3) understanding that SSIs and scientific studies around them are context-bound.

  18. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components

    Science.gov (United States)

    Bonte, M. H. A.; de Boer, A.; Liebregts, R.

    2007-04-01

    This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the commercial vehicle business and was implemented in combination with Finite Element software to predict and analyse fatigue failure in the frequency domain.

  19. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    Science.gov (United States)

    Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  20. Big Data and Data Science: Opportunities and Challenges of iSchools

    Directory of Open Access Journals (Sweden)

    Il-Yeol Song

    2017-08-01

    Full Text Available Due to the recent explosion of big data, our society has been rapidly going through digital transformation and entering a new world with numerous eye-opening developments. These new trends impact the society and future jobs, and thus student careers. At the heart of this digital transformation is data science, the discipline that makes sense of big data. With many rapidly emerging digital challenges ahead of us, this article discusses perspectives on iSchools’ opportunities and suggestions in data science education. We argue that iSchools should empower their students with “information computing” disciplines, which we define as the ability to solve problems and create values, information, and knowledge using tools in application domains. As specific approaches to enforcing information computing disciplines in data science education, we suggest the three foci of user-based, tool-based, and application-based. These three foci will serve to differentiate the data science education of iSchools from that of computer science or business schools. We present a layered Data Science Education Framework (DSEF with building blocks that include the three pillars of data science (people, technology, and data, computational thinking, data-driven paradigms, and data science lifecycles. Data science courses built on the top of this framework should thus be executed with user-based, tool-based, and application-based approaches. This framework will help our students think about data science problems from the big picture perspective and foster appropriate problem-solving skills in conjunction with broad perspectives of data science lifecycles. We hope the DSEF discussed in this article will help fellow iSchools in their design of new data science curricula.

  1. Teacher-Made Tactile Science Materials with Critical and Creative Thinking Activities for Learners Including Those with Visual Impairments

    Science.gov (United States)

    Teske, Jolene K.; Gray, Phyllis; Kuhn, Mason A.; Clausen, Courtney K.; Smith, Latisha L.; Alsubia, Sukainah A.; Ghayoorad, Maryam; Rule, Audrey C.; Schneider, Jean Suchsland

    2014-01-01

    Gifted students with visual impairments are twice exceptional learners and may not evidence their advanced science aptitudes without appropriate accommodations for learning science. However, effective tactile science teaching materials may be easily made. Recent research has shown that when tactile materials are used with "all" students…

  2. Exploiting Untapped Information Resources in Earth Science

    Science.gov (United States)

    Ramachandran, R.; Fox, P. A.; Kempler, S.; Maskey, M.

    2015-12-01

    One of the continuing challenges in any Earth science investigation is the amount of time and effort required for data preparation before analysis can begin. Current Earth science data and information systems have their own shortcomings. For example, the current data search systems are designed with the assumption that researchers find data primarily by metadata searches on instrument or geophysical keywords, assuming that users have sufficient knowledge of the domain vocabulary to be able to effectively utilize the search catalogs. These systems lack support for new or interdisciplinary researchers who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. There is clearly a need to innovate and evolve current data and information systems in order to improve data discovery and exploration capabilities to substantially reduce the data preparation time and effort. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. The challenge for any organization is to recognize, identify and effectively utilize the dark data stores in their institutional repositories to better serve their stakeholders. NASA Earth science metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and pre-generated images. With the addition of emerging semantic technologies, such catalogs can be fully utilized beyond their original design intent of supporting current search functionality. In this presentation, we will describe our approach of exploiting these information resources to provide novel data discovery and exploration pathways to science and education communities

  3. Weak solutions to the full Navier-Stokes-Fourier system with slip boundary conditions in time dependent domains

    Czech Academy of Sciences Publication Activity Database

    Kreml, Ondřej; Mácha, Václav; Nečasová, Šárka; Wróblewska-Kamińska, A.

    2018-01-01

    Roč. 109, January (2018), s. 67-92 ISSN 0021-7824 R&D Projects: GA ČR GA13-00522S; GA MŠk(CZ) 7AMB16PL060 Institutional support: RVO:67985840 Keywords : compressible Navier–Stokes–Fourier equations * time-varying domain * slip boundary conditions Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.802, year: 2016 http://www. science direct.com/ science /article/pii/S0021782417301381?via%3Dihub

  4. Social Work Science and Knowledge Utilization

    Science.gov (United States)

    Marsh, Jeanne C.; Reed, Martena

    2016-01-01

    Objective: This article advances understanding of social work science by examining the content and methods of highly utilized or cited journal articles in social work. Methods: A data base of the 100 most frequently cited articles from 79 social work journals was coded and categorized into three primary domains: content, research versus…

  5. Concrete domains

    OpenAIRE

    Kahn, G.; Plotkin, G.D.

    1993-01-01

    This paper introduces the theory of a particular kind of computation domains called concrete domains. The purpose of this theory is to find a satisfactory framework for the notions of coroutine computation and sequentiality of evaluation.

  6. David Adler Lectureship Award in the Field of Materials Physics: Racetrack Memory - a high-performance, storage class memory using magnetic domain-walls manipulated by current

    Science.gov (United States)

    Parkin, Stuart

    2012-02-01

    Racetrack Memory is a novel high-performance, non-volatile storage-class memory in which magnetic domains are used to store information in a ``magnetic racetrack'' [1]. The magnetic racetrack promises a solid state memory with storage capacities and cost rivaling that of magnetic disk drives but with much improved performance and reliability: a ``hard disk on a chip''. The magnetic racetrack is comprised of a magnetic nanowire in which a series of magnetic domain walls are shifted to and fro along the wire using nanosecond-long pulses of spin polarized current [2]. We have demonstrated the underlying physics that makes Racetrack Memory possible [3,4] and all the basic functions - creation, and manipulation of a train of domain walls and their detection. The physics underlying the current induced dynamics of domain walls will also be discussed. In particular, we show that the domain walls respond as if they have mass, leading to significant inertial driven motion of the domain walls over long times after the current pulses are switched off [3]. We also demonstrate that in perpendicularly magnetized nanowires there are two independent current driving mechanisms: one derived from bulk spin-dependent scattering that drives the domain walls in the direction of electron flow, and a second interfacial mechanism that can drive the domain walls either along or against the electron flow, depending on subtle changes in the nanowire structure. Finally, we demonstrate thermally induced spin currents are large enough that they can be used to manipulate domain walls. [4pt] [1] S.S.P. Parkin, US Patent 6,834,005 (2004); S.S.P. Parkin et al., Science 320, 190 (2008); S.S.P. Parkin, Scientific American (June 2009). [0pt] [2] M. Hayashi, L. Thomas, R. Moriya, C. Rettner and S.S.P. Parkin, Science 320, 209 (2008). [0pt] [3] L. Thomas, R. Moriya, C. Rettner and S.S.P. Parkin, Science 330, 1810 (2010). [0pt] [4] X. Jiang et al. Nat. Comm. 1:25 (2010) and Nano Lett. 11, 96 (2011).

  7. From scenarios to domain models: processes and representations

    Science.gov (United States)

    Haddock, Gail; Harbison, Karan

    1994-03-01

    The domain specific software architectures (DSSA) community has defined a philosophy for the development of complex systems. This philosophy improves productivity and efficiency by increasing the user's role in the definition of requirements, increasing the systems engineer's role in the reuse of components, and decreasing the software engineer's role to the development of new components and component modifications only. The scenario-based engineering process (SEP), the first instantiation of the DSSA philosophy, has been adopted by the next generation controller project. It is also the chosen methodology of the trauma care information management system project, and the surrogate semi-autonomous vehicle project. SEP uses scenarios from the user to create domain models and define the system's requirements. Domain knowledge is obtained from a variety of sources including experts, documents, and videos. This knowledge is analyzed using three techniques: scenario analysis, task analysis, and object-oriented analysis. Scenario analysis results in formal representations of selected scenarios. Task analysis of the scenario representations results in descriptions of tasks necessary for object-oriented analysis and also subtasks necessary for functional system analysis. Object-oriented analysis of task descriptions produces domain models and system requirements. This paper examines the representations that support the DSSA philosophy, including reference requirements, reference architectures, and domain models. The processes used to create and use the representations are explained through use of the scenario-based engineering process. Selected examples are taken from the next generation controller project.

  8. Teachers’ Professional Development in Context-based Chemistry Education : Strategies to Support Teachers in Developing Domain-specific Expertise

    NARCIS (Netherlands)

    Dolfing, R.

    2013-01-01

    The international trend of redesigning science curricula in terms of meaningful context-based programmes, involves a tremendous change in teachers’ practices. The successful implementation of such new curricula requires that teachers develop new domain-specific expertise in teaching innovative

  9. Classification and Lineage Tracing of SH2 Domains Throughout Eukaryotes.

    Science.gov (United States)

    Liu, Bernard A

    2017-01-01

    Today there exists a rapidly expanding number of sequenced genomes. Cataloging protein interaction domains such as the Src Homology 2 (SH2) domain across these various genomes can be accomplished with ease due to existing algorithms and predictions models. An evolutionary analysis of SH2 domains provides a step towards understanding how SH2 proteins integrated with existing signaling networks to position phosphotyrosine signaling as a crucial driver of robust cellular communication networks in metazoans. However organizing and tracing SH2 domain across organisms and understanding their evolutionary trajectory remains a challenge. This chapter describes several methodologies towards analyzing the evolutionary trajectory of SH2 domains including a global SH2 domain classification system, which facilitates annotation of new SH2 sequences essential for tracing the lineage of SH2 domains throughout eukaryote evolution. This classification utilizes a combination of sequence homology, protein domain architecture and the boundary positions between introns and exons within the SH2 domain or genes encoding these domains. Discrete SH2 families can then be traced across various genomes to provide insight into its origins. Furthermore, additional methods for examining potential mechanisms for divergence of SH2 domains from structural changes to alterations in the protein domain content and genome duplication will be discussed. Therefore a better understanding of SH2 domain evolution may enhance our insight into the emergence of phosphotyrosine signaling and the expansion of protein interaction domains.

  10. (including travel dates) Proposed itinerary

    Indian Academy of Sciences (India)

    Ashok

    31 July to 22 August 2012 (including travel dates). Proposed itinerary: Arrival in Bangalore on 1 August. 1-5 August: Bangalore, Karnataka. Suggested institutions: Indian Institute of Science, Bangalore. St Johns Medical College & Hospital, Bangalore. Jawaharlal Nehru Centre, Bangalore. 6-8 August: Chennai, TN.

  11. Enabling Data Intensive Science through Service Oriented Science: Virtual Laboratories and Science Gateways

    Science.gov (United States)

    Lescinsky, D. T.; Wyborn, L. A.; Evans, B. J. K.; Allen, C.; Fraser, R.; Rankine, T.

    2014-12-01

    We present collaborative work on a generic, modular infrastructure for virtual laboratories (VLs, similar to science gateways) that combine online access to data, scientific code, and computing resources as services that support multiple data intensive scientific computing needs across a wide range of science disciplines. We are leveraging access to 10+ PB of earth science data on Lustre filesystems at Australia's National Computational Infrastructure (NCI) Research Data Storage Infrastructure (RDSI) node, co-located with NCI's 1.2 PFlop Raijin supercomputer and a 3000 CPU core research cloud. The development, maintenance and sustainability of VLs is best accomplished through modularisation and standardisation of interfaces between components. Our approach has been to break up tightly-coupled, specialised application packages into modules, with identified best techniques and algorithms repackaged either as data services or scientific tools that are accessible across domains. The data services can be used to manipulate, visualise and transform multiple data types whilst the scientific tools can be used in concert with multiple scientific codes. We are currently designing a scalable generic infrastructure that will handle scientific code as modularised services and thereby enable the rapid/easy deployment of new codes or versions of codes. The goal is to build open source libraries/collections of scientific tools, scripts and modelling codes that can be combined in specially designed deployments. Additional services in development include: provenance, publication of results, monitoring, workflow tools, etc. The generic VL infrastructure will be hosted at NCI, but can access alternative computing infrastructures (i.e., public/private cloud, HPC).The Virtual Geophysics Laboratory (VGL) was developed as a pilot project to demonstrate the underlying technology. This base is now being redesigned and generalised to develop a Virtual Hazards Impact and Risk Laboratory

  12. Stories we live, identities we build: how are elementary teachers' science identities shaped by their lived experiences?

    Science.gov (United States)

    Avraamidou, Lucy

    2018-02-01

    The aim of this multiple case study was to uncover a series of critical events and experiences related to the formation of the science identities of four beginning elementary female teachers, through a life-history approach and a conceptualization of teacher identity as lived experience. Grounded within the theoretical framework of Figured Worlds, the study used qualitative, interpretive methods for data collection (interviews, biographies, teaching philosophies) and analysis. The analysis shed light on the ways in which various experiences situated within different Figured Worlds (science, family and childhood, schooling, out-of-school, university, professional) impacted the participants' identity trajectories. The findings provided three main insights that contribute to science identity research and have implications for elementary teacher preparation: (a) science teacher identity is multidimensional and extends beyond cognitive domains of becoming to include affective dimensions; (b) science teacher identity is relational, linked and shaped by various other constructs or sub-identities; (c) place and time, defined as a space with meaning created by experiences, and science teacher identity are inextricably bound to one another.

  13. Feature-level domain adaptation

    DEFF Research Database (Denmark)

    Kouw, Wouter M.; Van Der Maaten, Laurens J P; Krijthe, Jesse H.

    2016-01-01

    -level domain adaptation (flda), that models the dependence between the two domains by means of a feature-level transfer model that is trained to describe the transfer from source to target domain. Subsequently, we train a domain-adapted classifier by minimizing the expected loss under the resulting transfer...... modeled via a dropout distribution, which allows the classiffier to adapt to differences in the marginal probability of features in the source and the target domain. Our experiments on several real-world problems show that flda performs on par with state-of-the-art domainadaptation techniques.......Domain adaptation is the supervised learning setting in which the training and test data are sampled from different distributions: training data is sampled from a source domain, whilst test data is sampled from a target domain. This paper proposes and studies an approach, called feature...

  14. Teachers' Perceptions of Infusion of Values in Science Lessons: a Qualitative Study

    Science.gov (United States)

    Kumarassamy, Jayanthy; Koh, Caroline

    2017-06-01

    Much has been written and debated on the importance of including moral, character or values education in school curricula. In line with this, teachers' views with regard to values education have often been sought. However, a search into the literature on values in science education has revealed little on this domain. In an attempt to close this gap, this study explored the views of teachers with regard to values infusion in the teaching of science. The aim was to investigate teachers' perceptions on two broad areas: (i) how values were infused or addressed in lower secondary science and (ii) how values-infused science lessons influenced their students' dispositions and actions. The participants who took part in the interviews were lower secondary science teachers teaching Grade 8 in selected Singapore and New Delhi schools. The findings showed that values inherent in the discipline of science, such as validity, fairness, honesty, rigour, predominated in the lessons conducted by the teachers in both contexts. Furthermore, in Singapore, equal numbers of teachers made references to values upheld and practised by scientists and values arising from the interplay between people and scientific processes and products. In New Delhi however, the emphasis was higher on the latter category of values than on the former. Generally, in both contexts, values infusion in science lessons was not planned but occurred spontaneously as values issues surfaced in class. Teachers in both Singapore and New Delhi used strategies such as questioning, discussion, activities and direct instructions to carry out values infusion, although they experienced challenges that included content and time constraints, lack of student readiness and of teacher competency. Nevertheless, the teachers interviewed perceived that values in science lessons brought about changes in students' personal attributes, affect and behaviour, such as greater interest and prosocial engagement.

  15. Thermal-driven evolution of magnetic domain structures in ultrathin films

    Czech Academy of Sciences Publication Activity Database

    Zablotskyy, Vitaliy A.; Maziewski, A.; Polyakova, T.

    2006-01-01

    Roč. 112, - (2006), s. 101-108 ISSN 1012-0394. [International School on Physics and Chemistry of Condensed Matter /17./ and International Symposium on Physics in Material Science /5./. Bialoweza, 21.06.2005-29.06.2005] EU Projects: European Commission(XE) 3177 - NANOMAG- LAB Grant - others:PSCSR(PL) 4T11B00624 Institutional research plan: CEZ:AV0Z10100520 Keywords : ultrathin magnetic films * magnetic domain * phase transitions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.493, year: 2005

  16. Public status toward radiation and irradiated potatoes at 'Youngster's Science Festival' in several cities including Tokyo, Osaka, and Hiroshima, Japan

    International Nuclear Information System (INIS)

    Furuta, Masakazu; Hayashi, Toshio; Kakefu, Tomohisa; Nishihara, Hideaki

    2000-01-01

    'Youngster's Science Festival' has been held in several big cities in various districts in Japan for the purpose of induction of young students' interests in science and scientific experiments. On the basis of the survey results from the participants of the 'Radiation Fair' in Osaka, Japan, which was presented at the last IMRP, we expanded the area of survey and distributed questionnaires to the visitors of the above event to inquire their status toward radiation and irradiated products including irradiated potatoes. The survey results indicated the same trends as that of the 'Radiation Fair' survey. That is, more than half of the older visitors (16 years old and upward) indicated that they recognized the word of 'radiation' when they were at elementary school and the most significant sources of this information were school lessons and the mass media. We will discuss the relationship between consumer's image toward radiation and the description of radiation related topic in school textbooks. (author)

  17. Human Factors Science: Brief History and Applications to Healthcare.

    Science.gov (United States)

    Parker, Sarah Henrickson

    2015-12-01

    This section will define the science of human factors, its origins, its impact on safety in other domains, and its impact and potential for impact on patient safety. Copyright © 2015 Mosby, Inc. All rights reserved.

  18. CONCERNING THE ADVANCED SCIENCE IN HIGH PERFORMANCE SPORT

    Directory of Open Access Journals (Sweden)

    Gagea Adrian

    2010-04-01

    Full Text Available The advanced sciences are based on the most recent huge increasing of technology and on interdisciplinary commencement of great interest topics, as top sport is considering. The main problem in top sport seems to be the obtaining high sport’s performance in as short as possible time, having great efficiency and minimum risks.The cell-engineering domain, in which the author of this paper has a modest contribution, is a means of genetic control for human performance, including sport, gene expression, molecular interactions within the cell, intracellular signalling, cell mechanics and motility etc.The domain of Psyche, of controlling feelings and manifestations, is also, on the focus of top sport interest, especially for the reason that, from inside of this domain, is feasible to accede at the biological reserves unavoidable in normal conditions, but avoidable in emergency or surviving situations. The new knowledge about energetic metabolism, about the rotation of ATP molecules, or coming out from scientifically experiments of association of nutrients or of reconsidering the recovery stimulants after effort, are providing, also, very useful information for top sport practitioners.It is not to disregard the contribution of the new information about the human physical limits, biomechanics, tactics of doing and controls the physical effort by means of sensorial biofeedback or theperformance’s advantages coming from new high-minded techniques and materials of sport accessories

  19. PREFACE: Domain wall dynamics in nanostructures Domain wall dynamics in nanostructures

    Science.gov (United States)

    Marrows, C. H.; Meier, G.

    2012-01-01

    Domain structures in magnetic materials are ubiquitous and have been studied for decades. The walls that separate them are topological defects in the magnetic order parameter and have a wide variety of complex forms. In general, their investigation is difficult in bulk materials since only the domain structure on the surface of a specimen is visible. Cutting the sample to reveal the interior causes a rearrangement of the domains into a new form. As with many other areas of magnetism, the study of domain wall physics has been revitalised by the advent of nanotechnology. The ability to fabricate nanoscale structures has permitted the formation of simplified and controlled domain patterns; the development of advanced microscopy methods has permitted them to be imaged and then modelled; subjecting them to ultrashort field and current pulses has permitted their dynamics to be explored. The latest results from all of these advances are described in this special issue. Not only has this led to results of great scientific beauty, but also to concepts of great applicability to future information technologies. In this issue the reader will find the latest results for these domain wall dynamics and the high-speed processes of topological structures such as domain walls and magnetic vortices. These dynamics can be driven by the application of magnetic fields, or by flowing currents through spintronic devices using the novel physics of spin-transfer torque. This complexity has been studied using a wide variety of experimental techniques at the edge of the spatial and temporal resolution currently available, and can be described using sophisticated analytical theory and computational modelling. As a result, the dynamics can be engineered to give rise to finely controlled memory and logic devices with new functionality. Moreover, the field is moving to study not only the conventional transition metal ferromagnets, but also complex heterostructures, novel magnets and even other

  20. Time-domain modeling of electromagnetic diffusion with a frequency-domain code

    NARCIS (Netherlands)

    Mulder, W.A.; Wirianto, M.; Slob, E.C.

    2007-01-01

    We modeled time-domain EM measurements of induction currents for marine and land applications with a frequency-domain code. An analysis of the computational complexity of a number of numerical methods shows that frequency-domain modeling followed by a Fourier transform is an attractive choice if a

  1. Including an Exam P/1 Prep Course in a Growing Actuarial Science Program

    Science.gov (United States)

    Wakefield, Thomas P.

    2014-01-01

    The purpose of this article is to describe the actuarial science program at our university and the development of a course to enhance students' problem solving skills while preparing them for Exam P/1 of the Society of Actuaries (SOA) and the Casualty Actuary Society (CAS). The Exam P/1 prep course, formally titled Mathematical Foundations of…

  2. Collaboration, Interdisciplinarity, and the Epistemology of Contemporary Science

    DEFF Research Database (Denmark)

    Andersen, Hanne

    2016-01-01

    shall provide a new account of the structure and development of contemporary science based on analyses of, first, cognitive resources and their relations to domains, and second of the distribution of cognitive resources among collaborators and the epistemic dependence that this distribution implies...

  3. `INCLUDING' Partnerships to Build Authentic Research Into K-12 Science Education

    Science.gov (United States)

    Turrin, M.; Lev, E.; Newton, R.; Xu, C.

    2017-12-01

    Opportunities for authentic research experiences have been shown effective for recruiting and retaining students in STEM fields. Meaningful research experiences entail significant time in project design, modeling ethical practice, providing training, instruction, and ongoing guidance. We propose that in order to be sustainable, a new instructional paradigm is needed, one that shifts from being top-weighted in instruction to a distributed weight model. This model relies on partnerships where everyone has buy-in and reaps rewards, establishing broadened networks for support, and adjusting the mentoring model. We use our successful Secondary School Field Research Program as a model for this new paradigm. For over a decade this program has provided authentic geoscience field research for an expanding group of predominantly inner city high school youth from communities underrepresented in the sciences. The program has shifted the balance with returning participants now serving as undergraduate mentors for the high school student `researchers', providing much of the ongoing training, instruction, guidance and feedback needed. But in order to be sustainable and impactful we need to broaden our base. A recent NSF-INCLUDES pilot project has allowed us to expand this model, linking schools, informal education non-profits, other academic institutions, community partners and private funding agencies into geographically organized `clusters'. Starting with a tiered mentoring model with scientists as consultants, teachers as team members, undergraduates as team leaders and high school students as researchers, each cluster will customize its program to reflect the needs and strengths of the team. To be successful each organization must identify how the program fits their organizational goals, the resources they can contribute and what they need back. Widening the partnership base spreads institutional commitments for research scientists, research locations and lab space

  4. Defining the Relationship of Student Achievement Between STEM Subjects Through Canonical Correlation Analysis of 2011 Trends in International Mathematics and Science Study (TIMSS) Data

    Science.gov (United States)

    O'Neal, Melissa Jean

    Canonical correlation analysis was used to analyze data from Trends in International Mathematics and Science Study (TIMSS) 2011 achievement databases encompassing information from fourth/eighth grades. Student achievement in life science/biology was correlated with achievement in mathematics and other sciences across three analytical areas: mathematics and science student performance, achievement in cognitive domains, and achievement in content domains. Strong correlations between student achievement in life science/biology with achievement in mathematics and overall science occurred for both high- and low-performing education systems. Hence, partial emphases on the inter-subject connections did not always lead to a better student learning outcome in STEM education. In addition, student achievement in life science/biology was positively correlated with achievement in mathematics and science cognitive domains; these patterns held true for correlations of life science/biology with mathematics as well as other sciences. The importance of linking student learning experiences between and within STEM domains to support high performance on TIMSS assessments was indicated by correlations of moderate strength (57 TIMSS assessments was indicated by correlations of moderate strength (57 mathematics, and other sciences. At the eighth grade level, students who built increasing levels of cognitive complexity upon firm foundations were prepared for successful learning throughout their educational careers. The results from this investigation promote a holistic design of school learning opportunities to improve student achievement in life science/biology and other science, technology, engineering, and mathematics (STEM) subjects at the elementary and middle school levels. While the curriculum can vary from combined STEM subjects to separated mathematics or science courses, both professional learning communities (PLC) for teachers and problem-based learning (PBL) for learners can be

  5. Spatial Thinking in Atmospheric Science Education

    Science.gov (United States)

    McNeal, P. M.; Petcovic, H. L.; Ellis, T. D.

    2016-12-01

    Atmospheric science is a STEM discipline that involves the visualization of three-dimensional processes from two-dimensional maps, interpretation of computer-generated graphics and hand plotting of isopleths. Thus, atmospheric science draws heavily upon spatial thinking. Research has shown that spatial thinking ability can be a predictor of early success in STEM disciplines and substantial evidence demonstrates that spatial thinking ability is improved through various interventions. Therefore, identification of the spatial thinking skills and cognitive processes used in atmospheric science is the first step toward development of instructional strategies that target these skills and scaffold the learning of students in atmospheric science courses. A pilot study of expert and novice meteorologists identified mental animation and disembedding as key spatial skills used in the interpretation of multiple weather charts and images. Using this as a starting point, we investigated how these spatial skills, together with expertise, domain specific knowledge, and working memory capacity affect the ability to produce an accurate forecast. Participants completed a meteorology concept inventory, experience questionnaire and psychometric tests of spatial thinking ability and working memory capacity prior to completing a forecasting task. A quantitative analysis of the collected data investigated the effect of the predictor variables on the outcome task. A think-aloud protocol with individual participants provided a qualitative look at processes such as task decomposition, rule-based reasoning and the formation of mental models in an attempt to understand how individuals process this complex data and describe outcomes of particular meteorological scenarios. With our preliminary results we aim to inform atmospheric science education from a cognitive science perspective. The results point to a need to collaborate with the atmospheric science community broadly, such that multiple

  6. Separated matter and antimatter domains with vanishing domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Dolgov, A.D.; Godunov, S.I.; Rudenko, A.S.; Tkachev, I.I., E-mail: dolgov@fe.infn.it, E-mail: sgodunov@itep.ru, E-mail: a.s.rudenko@inp.nsk.su, E-mail: tkachev@ms2.inr.ac.ru [Physics Department and Laboratory of Cosmology and Elementary Particle Physics, Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090 (Russian Federation)

    2015-10-01

    We present a model of spontaneous (or dynamical) C and CP violation where it is possible to generate domains of matter and antimatter separated by cosmologically large distances. Such C(CP) violation existed only in the early universe and later it disappeared with the only trace of generated baryonic and/or antibaryonic domains. So the problem of domain walls in this model does not exist. These features are achieved through a postulated form of interaction between inflaton and a new scalar field, realizing short time C(CP) violation.

  7. Modulation of catalytic activity in multi-domain protein tyrosine phosphatases.

    Directory of Open Access Journals (Sweden)

    Lalima L Madan

    Full Text Available Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1 domains, while the membrane-distal (D2 domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A. While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.

  8. ICSU and the Challanges of Data and Information Management for International Science

    Directory of Open Access Journals (Sweden)

    Peter Fox

    2013-01-01

    Full Text Available The International Council for Science (ICSU vision explicitly recognises the value of data and information to science and particularly emphasises the urgent requirement for universal and equitable access to high quality scientific data and information. A universal public domain for scientific data and information will be transformative for both science and society. Over the last several years, two ad-hoc ICSU committees, the Strategic Committee on Information and Data (SCID and the Strategic Coordinating Committee on Information and Data (SCCID, produced key reports that make 5 and 14 recommendations respectively aimed at improving universal and equitable access to data and information for science and providing direction for key international scientific bodies, such as the Committee on Data for Science and Technology (CODATA as well as a newly ratified (by ICSU in 2008 formation of the World Data System. This contribution outlines the framing context for both committees based on the changed world scene for scientific data conduct in the 21st century. We include details on the relevant recommendations and important consequences for the worldwide community of data providers and consumers, ultimately leading to a conclusion, and avenues for advancement that must be carried to the many thousands of data scientists world-wide.

  9. THE TIME-DOMAIN SPECTROSCOPIC SURVEY: UNDERSTANDING THE OPTICALLY VARIABLE SKY WITH SEQUELS IN SDSS-III

    International Nuclear Information System (INIS)

    Ruan, John J.; Anderson, Scott F.; Davenport, James R. A.; Green, Paul J.; Morganson, Eric; Eracleous, Michael; Brandt, William N.; Myers, Adam D.; Badenes, Carles; Bershady, Matthew A.; Chambers, Kenneth C.; Flewelling, Heather; Kaiser, Nick; Dawson, Kyle S.; Heckman, Timothy M.; Isler, Jedidah C.; Kneib, Jean-Paul; MacLeod, Chelsea L.; Ross, Nicholas P.; Paris, Isabelle

    2016-01-01

    The Time-Domain Spectroscopic Survey (TDSS) is an SDSS-IV eBOSS subproject primarily aimed at obtaining identification spectra of ∼220,000 optically variable objects systematically selected from SDSS/Pan-STARRS1 multi-epoch imaging. We present a preview of the science enabled by TDSS, based on TDSS spectra taken over ∼320 deg 2 of sky as part of the SEQUELS survey in SDSS-III, which is in part a pilot survey for eBOSS in SDSS-IV. Using the 15,746 TDSS-selected single-epoch spectra of photometrically variable objects in SEQUELS, we determine the demographics of our variability-selected sample and investigate the unique spectral characteristics inherent in samples selected by variability. We show that variability-based selection of quasars complements color-based selection by selecting additional redder quasars and mitigates redshift biases to produce a smooth quasar redshift distribution over a wide range of redshifts. The resulting quasar sample contains systematically higher fractions of blazars and broad absorption line quasars than from color-selected samples. Similarly, we show that M dwarfs in the TDSS-selected stellar sample have systematically higher chromospheric active fractions than the underlying M-dwarf population based on their H α emission. TDSS also contains a large number of RR Lyrae and eclipsing binary stars with main-sequence colors, including a few composite-spectrum binaries. Finally, our visual inspection of TDSS spectra uncovers a significant number of peculiar spectra, and we highlight a few cases of these interesting objects. With a factor of ∼15 more spectra, the main TDSS survey in SDSS-IV will leverage the lessons learned from these early results for a variety of time-domain science applications.

  10. A protein domain interaction interface database: InterPare

    Directory of Open Access Journals (Sweden)

    Lee Jungsul

    2005-08-01

    Full Text Available Abstract Background Most proteins function by interacting with other molecules. Their interaction interfaces are highly conserved throughout evolution to avoid undesirable interactions that lead to fatal disorders in cells. Rational drug discovery includes computational methods to identify the interaction sites of lead compounds to the target molecules. Identifying and classifying protein interaction interfaces on a large scale can help researchers discover drug targets more efficiently. Description We introduce a large-scale protein domain interaction interface database called InterPare http://interpare.net. It contains both inter-chain (between chains interfaces and intra-chain (within chain interfaces. InterPare uses three methods to detect interfaces: 1 the geometric distance method for checking the distance between atoms that belong to different domains, 2 Accessible Surface Area (ASA, a method for detecting the buried region of a protein that is detached from a solvent when forming multimers or complexes, and 3 the Voronoi diagram, a computational geometry method that uses a mathematical definition of interface regions. InterPare includes visualization tools to display protein interior, surface, and interaction interfaces. It also provides statistics such as the amino acid propensities of queried protein according to its interior, surface, and interface region. The atom coordinates that belong to interface, surface, and interior regions can be downloaded from the website. Conclusion InterPare is an open and public database server for protein interaction interface information. It contains the large-scale interface data for proteins whose 3D-structures are known. As of November 2004, there were 10,583 (Geometric distance, 10,431 (ASA, and 11,010 (Voronoi diagram entries in the Protein Data Bank (PDB containing interfaces, according to the above three methods. In the case of the geometric distance method, there are 31,620 inter-chain domain-domain

  11. Individual negative symptoms and domains - Relevance for assessment, pathomechanisms and treatment.

    Science.gov (United States)

    Kaiser, Stefan; Lyne, John; Agartz, Ingrid; Clarke, Mary; Mørch-Johnsen, Lynn; Faerden, Ann

    2017-08-01

    The negative symptoms of schizophrenia can be divided into two domains. Avolition/apathy includes the individual symptoms of avolition, asociality and anhedonia. Diminished expression includes blunted affect and alogia. Until now, causes and treatment of negative symptoms have remained a major challenge, which is partially related to the focus on negative symptoms as a broad entity. Here, we propose that negative symptoms may become more tractable when the different domains and individual symptoms are taken into account. There is now increasing evidence that the relationship with clinical variables - in particular outcome - differs between the domains of avolition/apathy and diminished expression. Regarding models of negative symptom formation, those relevant to avolition/apathy are now converging on processes underlying goal-directed behavior and dysfunctions of the reward system. In contrast, models of the diminished expression domains are only beginning to emerge. The aim of this article is to review the specific clinical, behavioral and neural correlates of individual symptoms and domains as a better understanding of these areas may facilitate specific treatment approaches. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Various Political and Social Challenges Including Wars and Displacement in Empowering Women and Girls in Science

    Directory of Open Access Journals (Sweden)

    Nilüfer Narli

    2016-02-01

    Full Text Available Poor gender ratio in science and engineering has been a global concern, despite growing number of female scientists in the world. Women’s empowerment in science is key to achieve human progress and dignity and directly related to accomplishing SDG 16: "Promote peaceful and inclusive societies for sustainable development, provide access to justice for all and build effective, accountable and inclusive institutions at all levels". What are the challenges that hinder women and girls’ progress in science? Added to several challenges discussed below, wars and displaced population create obstacles for female education and women’s advancement in science and technology. There are some challenges that have prevailed for the last two decades (e.g. economic insecurity and new challenges that are the results of the new forms wars, civil wars and extremism (e.g., large scale armed conflicts that involves state and non-state actors which have produced large numbers of displaced women in the Middle East who lost their jobs and isolated elsewhere, many young displaced females and refugees and who have no access to formal education and who face health risks in conflict and displacement settings, and new forms of gender discrimination produced by religious extremism.......

  13. Domain Walls and Matter-Antimatter Domains in the Early Universe

    Directory of Open Access Journals (Sweden)

    Dolgov A.D.

    2017-01-01

    Full Text Available We suggest a scenario of spontaneous (or dynamical C and CP violation according to which it is possible to generate domains of matter and antimatter separated by cosmologically large distances. Such C(CP violation existed only in the early universe and later it disappeared with the only trace of generated matter and antimatter domains. So this scenario does not suffer from the problem of domain walls. According to this scenario the width of the domain wall should grow exponentially to prevent annihilation at the domain boundaries. Though there is a classical result obtained by Basu and Vilenkin that the width of the wall tends to the one of the stationary solution (constant physical width. That is why we considered thick domain walls in a de Sitter universe following paper by Basu and Vilenkin. However, we were interested not only in stationary solutions found therein, but also investigated the general case of domain wall evolution with time. When the wall thickness parameter, δ0 , is smaller than H−1/2 where H is the Hubble parameter in de Sitter space-time, then the stationary solutions exist, and initial field configurations tend with time to the stationary ones. However, there are no stationary solutions for δ0>H−1/2 We have calculated numerically the rate of the wall expansion in this case and have found that the width of the wall grows exponentially fast for δ0≫H−1 An explanation for the critical value δ0c=H−1/2 is also proposed.

  14. Islam and Science

    Science.gov (United States)

    Salam, Abdus

    The following sections are included: * The Holy Quran and Science * Modem Science, A Greco- Islamic Legacy * The Decline of Sciences in Islam * The Limitations of Science * Faith and Science * The Present Picture of Sciences in the Islamic Countries * Renaissance of Sciences in Islam * Steps Needed for Building up Sciences in the Islamic Countries * Science Education * Science Foundations in Islam * Technology in Our Countries * Concluding Remarks * REFERENCES

  15. Teacher-student interactions and domain-specific motivation: The relationship between students' perceptions of teacher interpersonal behavior and motivation in middle school science

    Science.gov (United States)

    Smart, Julie Brockman

    2009-11-01

    -student interactions during the quantitative phase described the most instances of teacher cooperative behaviors, such as teacher helpfulness and understanding. Conversely, students reporting low motivation and low perceptions of teacher-student interactions described the most instances of teacher oppositional behavior, such as harsh and impatient behaviors. An in-depth description of categories and subcategories is also provided. This study concludes with an interpretive analysis of quantitative and qualitative results considered both separately and together. Implications for middle grades science education are discussed, including recommendations for behavior management, scaffolding students' transition to middle school, making explicit connections to science careers, and providing opportunities for small successes within the science classroom. Implications for science teacher education, limitations of the study, and future research directions are also discussed.

  16. A domain specific language for performance portable molecular dynamics algorithms

    Science.gov (United States)

    Saunders, William Robert; Grant, James; Müller, Eike Hermann

    2018-03-01

    Developers of Molecular Dynamics (MD) codes face significant challenges when adapting existing simulation packages to new hardware. In a continuously diversifying hardware landscape it becomes increasingly difficult for scientists to be experts both in their own domain (physics/chemistry/biology) and specialists in the low level parallelisation and optimisation of their codes. To address this challenge, we describe a "Separation of Concerns" approach for the development of parallel and optimised MD codes: the science specialist writes code at a high abstraction level in a domain specific language (DSL), which is then translated into efficient computer code by a scientific programmer. In a related context, an abstraction for the solution of partial differential equations with grid based methods has recently been implemented in the (Py)OP2 library. Inspired by this approach, we develop a Python code generation system for molecular dynamics simulations on different parallel architectures, including massively parallel distributed memory systems and GPUs. We demonstrate the efficiency of the auto-generated code by studying its performance and scalability on different hardware and compare it to other state-of-the-art simulation packages. With growing data volumes the extraction of physically meaningful information from the simulation becomes increasingly challenging and requires equally efficient implementations. A particular advantage of our approach is the easy expression of such analysis algorithms. We consider two popular methods for deducing the crystalline structure of a material from the local environment of each atom, show how they can be expressed in our abstraction and implement them in the code generation framework.

  17. A role for chromatin topology in imprinted domain regulation.

    Science.gov (United States)

    MacDonald, William A; Sachani, Saqib S; White, Carlee R; Mann, Mellissa R W

    2016-02-01

    Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.

  18. Modelling of Context: Designing Mobile Systems from Domain-Dependent Models

    DEFF Research Database (Denmark)

    Nielsen, Peter Axel; Stage, Jan

    2009-01-01

    Modelling of domain-dependent aspects is a key prerequisite for the design of software for mobile systems. Most mobile systems include a more or less advanced model of selected aspects of the domain in which they are used. This paper discusses the creation of such a model and its relevance for te...

  19. An Ontology Driven Information Architecture for Big Data and Diverse Domains

    Science.gov (United States)

    Hughes, John S.; Crichton, Dan; Hardman, Sean; Joyner, Ron; Ramirez, Paul

    2013-04-01

    The Planetary Data System's has just released the PDS4 system for first use. Its architecture is comprised of three principle parts, an ontology that captures knowledge from the planetary science domain, a federated registry/repository system for product identification, versioning, tracking, and storage, and a REST-based service layer for search, retrieval, and distribution. An ontology modeling tool is used to prescriptively capture product definitions that adhere to object-oriented principles and that are compliant with specific registry, archive, and data dictionary reference models. The resulting information model is product centric, allowing all information to be packaged into products and tracked in the registry. The flexibility required in a diverse domain is provided through the use of object-oriented extensions and a hierarchical governance scheme with common, discipline, and mission levels. Finally all PDS4 data standards are generated or derived from the information model. The federated registry provides identification, versioning, and tracking functionality across federated repositories and is configured for deployment using configuration files generated from the ontology. Finally a REST-based service layer provides for metadata harvest, product transformation, packaging, and search, and portal hosting. A model driven architecture allows the data and software engineering teams to develop in parallel with minimal team interaction. The resulting software remains relatively stable as the domain evolves. Finally the development of a single shared ontology promotes interoperability and data correlation and helps meet the expectations of modern scientists for science data discovery, access and use. This presentation will provide an overview of PDS4 focusing on the data standards, how they were developed, how they are now being used, and will present some of the lessons learned while developing in a diverse scientific community. Copyright 2013 California

  20. A Delphi Study on Technology Enhanced Learning (TEL) Applied on Computer Science (CS) Skills

    Science.gov (United States)

    Porta, Marcela; Mas-Machuca, Marta; Martinez-Costa, Carme; Maillet, Katherine

    2012-01-01

    Technology Enhanced Learning (TEL) is a new pedagogical domain aiming to study the usage of information and communication technologies to support teaching and learning. The following study investigated how this domain is used to increase technical skills in Computer Science (CS). A Delphi method was applied, using three-rounds of online survey…

  1. A study of the border between the domains of production and acquisition of knowledge in higher education

    DEFF Research Database (Denmark)

    Busch, Henrik

    2001-01-01

    This paper focuses on a common feature of most undergraduate studies in science - the pronounced border between the domains of production and acquisition of knowledge. Under¬graduate students' learning activities and settings are characterized by little inter¬action with the community of practicing...... scientists. Based on ongoing ethnographic field work, certain aspects of this division between the two domains are discussed from an educational point of view. A case study is presented and leads to considerations about undergraduate students' access to the culture of practicing physicists....

  2. Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report. Appendix

    Science.gov (United States)

    Achieve, Inc., 2010

    2010-01-01

    This appendix accompanies the report "Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report," a study conducted by Achieve to compare the science standards of 10 countries. This appendix includes the following: (1) PISA and TIMSS Assessment Rankings; (2) Courses and…

  3. Collaboration Expertise in Medicine - No Evidence for Cross-Domain Application from a Memory Retrieval Study.

    Directory of Open Access Journals (Sweden)

    Jan Kiesewetter

    Full Text Available Is there evidence for expertise on collaboration and, if so, is there evidence for cross-domain application? Recall of stimuli was used to measure so-called internal collaboration scripts of novices and experts in two studies. Internal collaboration scripts refer to an individual's knowledge about how to interact with others in a social situation. METHOD—Ten collaboration experts and ten novices of the content domain social science were presented with four pictures of people involved in collaborative activities. The recall texts were coded, distinguishing between superficial and collaboration script information. RESULTS—Experts recalled significantly more collaboration script information (M = 25.20; SD = 5.88 than did novices (M = 13.80; SD = 4.47. Differences in superficial information were not found.Study 2 tested whether the differences found in Study 1 could be replicated. Furthermore, the cross-domain application of internal collaboration scripts was explored. METHOD—Twenty collaboration experts and 20 novices of the content domain medicine were presented with four pictures and four videos of their content domain and a video and picture of another content domain. All stimuli showed collaborative activities typical for the respective content domains. RESULTS—As in Study 1, experts recalled significantly more collaboration script information of their content domain (M = 71.65; SD = 33.23 than did novices (M = 54.25; SD = 15.01. For the novices, no differences were found for the superficial information nor for the retrieval of collaboration script information recalled after the other content domain stimuli.There is evidence for expertise on collaboration in memory tasks. The results show that experts hold substantially more collaboration script information than did novices. Furthermore, the differences between collaboration novices and collaboration experts occurred only in their own content domain, indicating that internal

  4. Collaboration Expertise in Medicine - No Evidence for Cross-Domain Application from a Memory Retrieval Study.

    Science.gov (United States)

    Kiesewetter, Jan; Fischer, Frank; Fischer, Martin R

    2016-01-01

    Is there evidence for expertise on collaboration and, if so, is there evidence for cross-domain application? Recall of stimuli was used to measure so-called internal collaboration scripts of novices and experts in two studies. Internal collaboration scripts refer to an individual's knowledge about how to interact with others in a social situation. METHOD— Ten collaboration experts and ten novices of the content domain social science were presented with four pictures of people involved in collaborative activities. The recall texts were coded, distinguishing between superficial and collaboration script information. RESULTS— Experts recalled significantly more collaboration script information (M = 25.20; SD = 5.88) than did novices (M = 13.80; SD = 4.47). Differences in superficial information were not found. Study 2 tested whether the differences found in Study 1 could be replicated. Furthermore, the cross-domain application of internal collaboration scripts was explored. METHOD— Twenty collaboration experts and 20 novices of the content domain medicine were presented with four pictures and four videos of their content domain and a video and picture of another content domain. All stimuli showed collaborative activities typical for the respective content domains. RESULTS— As in Study 1, experts recalled significantly more collaboration script information of their content domain (M = 71.65; SD = 33.23) than did novices (M = 54.25; SD = 15.01). For the novices, no differences were found for the superficial information nor for the retrieval of collaboration script information recalled after the other content domain stimuli. There is evidence for expertise on collaboration in memory tasks. The results show that experts hold substantially more collaboration script information than did novices. Furthermore, the differences between collaboration novices and collaboration experts occurred only in their own content domain, indicating that internal collaboration scripts

  5. Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data

    Science.gov (United States)

    Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.

    2014-12-01

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.

  6. Axion-dilaton domain walls and fake supergravity

    International Nuclear Information System (INIS)

    Sonner, Julian; Townsend, Paul K

    2007-01-01

    Dynamical systems methods are used to investigate domain-wall solutions of a two-parameter family of models in which gravity is coupled to an axion and to a dilaton with an exponential potential of either sign. A complete global analysis is presented for (i) constant axion and (ii) flat walls, including a study of bifurcations and a new exact domain-wall solution with non-constant axion. We reconsider 'fake-supergravity' issues in light of these results. We show, by example, how domain walls determine multi-valued superpotentials that branch at stationary points that are not stationary points of the potential, and we apply this result to potentials with anti-de Sitter vacua. We also show by example that 'adapted' truncation to a single-scalar model may be inconsistent, and we propose a 'generalized' fake-supergravity formalism that applies in some such cases

  7. Using the Five Domains Model to Assess the Adverse Impacts of Husbandry, Veterinary, and Equitation Interventions on Horse Welfare

    Science.gov (United States)

    McGreevy, Paul; Berger, Jeannine; de Brauwere, Nic; Doherty, Orla; Harrison, Anna; Fiedler, Julie; Jones, Claudia; McDonnell, Sue; McLean, Andrew; Nakonechny, Lindsay; Preshaw, Liane; Tzioumis, Vicky; Webster, John; Wolfensohn, Sarah; Yeates, James; Jones, Bidda

    2018-01-01

    Simple Summary Using an adaptation of the domain-based welfare assessment model, a panel of horse welfare professionals (with professional expertise in psychology, equitation science, veterinary science, education, welfare, equestrian coaching, advocacy, and community engagement) assessed the perceived harms, if any, resulting from 116 interventions that are commonly applied to horses. Scores for Domain 5 (the integrated mental impact) gathered after extensive discussion during a four-day workshop aligned well with overall impact scores assigned by the same panellists individually before the workshop, although some rankings changed after workshop participation. Domain 4 (Behaviour) had the strongest association with Domain 5, whilst Domain 1 (Nutrition) had the weakest association with Domain 5, implying that the panellists considered commonly applied nutritional interventions to have less of a bearing on subjective mental state than commonly applied behavioural restrictions. The workshop defined each intervention, and stated assumptions around each, resulting in a set of exemplar procedures that could be used in future equine welfare assessments. Abstract The aim of this study was to conduct a series of paper-based exercises in order to assess the negative (adverse) welfare impacts, if any, of common interventions on domestic horses across a broad range of different contexts of equine care and training. An international panel (with professional expertise in psychology, equitation science, veterinary science, education, welfare, equestrian coaching, advocacy, and community engagement; n = 16) met over a four-day period to define and assess these interventions, using an adaptation of the domain-based assessment model. The interventions were considered within 14 contexts: C1 Weaning; C2 Diet; C3 Housing; C4 Foundation training; C5 Ill-health and veterinary interventions (chiefly medical); C6 Ill-health and veterinary interventions (chiefly surgical); C7 Elective

  8. iPfam: a database of protein family and domain interactions found in the Protein Data Bank.

    Science.gov (United States)

    Finn, Robert D; Miller, Benjamin L; Clements, Jody; Bateman, Alex

    2014-01-01

    The database iPfam, available at http://ipfam.org, catalogues Pfam domain interactions based on known 3D structures that are found in the Protein Data Bank, providing interaction data at the molecular level. Previously, the iPfam domain-domain interaction data was integrated within the Pfam database and website, but it has now been migrated to a separate database. This allows for independent development, improving data access and giving clearer separation between the protein family and interactions datasets. In addition to domain-domain interactions, iPfam has been expanded to include interaction data for domain bound small molecule ligands. Functional annotations are provided from source databases, supplemented by the incorporation of Wikipedia articles where available. iPfam (version 1.0) contains >9500 domain-domain and 15 500 domain-ligand interactions. The new website provides access to this data in a variety of ways, including interactive visualizations of the interaction data.

  9. DPP6 domains responsible for its localization and function.

    Science.gov (United States)

    Lin, Lin; Long, Laura K; Hatch, Michael M; Hoffman, Dax A

    2014-11-14

    Dipeptidyl peptidase-like protein 6 (DPP6) is an auxiliary subunit of the Kv4 family of voltage-gated K(+) channels known to enhance channel surface expression and potently accelerate their kinetics. DPP6 is a single transmembrane protein, which is structurally remarkable for its large extracellular domain. Included in this domain is a cysteine-rich motif, the function of which is unknown. Here we show that this cysteine-rich domain of DPP6 is required for its export from the ER and expression on the cell surface. Disulfide bridges formed at C349/C356 and C465/C468 of the cysteine-rich domain are necessary for the enhancement of Kv4.2 channel surface expression but not its interaction with Kv4.2 subunits. The short intracellular N-terminal and transmembrane domains of DPP6 associates with and accelerates the recovery from inactivation of Kv4.2, but the entire extracellular domain is necessary to enhance Kv4.2 surface expression and stabilization. Our findings show that the cysteine-rich domain of DPP6 plays an important role in protein folding of DPP6 that is required for transport of DPP6/Kv4.2 complexes out of the ER. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Progress report - Physical and Environmental Sciences - Physics Division, 1996 January 1 to December 31

    International Nuclear Information System (INIS)

    Powell, B.M.

    1997-04-01

    This document is the last Progress Report for the Neutron and Condensed Matter Science Branch, at Chalk River Labs of Atomic Energy of Canada Limited. The materials science program continued to include measurements of stress as a major component, but the determination of phase diagrams for specific alloys was also a prominent activity. Studies were made of two types of unusual magnetic materials. The magnetic properties of several oxide pyrochlore were investigated and spin waves were measured in the magnetic semiconductor, chalcopyrite. The crystal structures of the deuterated anti fluorite were determined and the reorientation of the ammonium ion was refined in detail. Differential scanning calorimetry measurements were used to investigate whether spontaneous phase separation into chiral domains occurs for mixtures of DPPC of opposite chirality. A new Neutron Velocity Selector was commissioned

  11. Progress report - Physical and Environmental Sciences - Physics Division, 1996 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Powell, B.M. (ed.)

    1997-04-01

    This document is the last Progress Report for the Neutron and Condensed Matter Science Branch, at Chalk River Labs of Atomic Energy of Canada Limited. The materials science program continued to include measurements of stress as a major component, but the determination of phase diagrams for specific alloys was also a prominent activity. Studies were made of two types of unusual magnetic materials. The magnetic properties of several oxide pyrochlore were investigated and spin waves were measured in the magnetic semiconductor, chalcopyrite. The crystal structures of the deuterated anti fluorite were determined and the reorientation of the ammonium ion was refined in detail. Differential scanning calorimetry measurements were used to investigate whether spontaneous phase separation into chiral domains occurs for mixtures of DPPC of opposite chirality. A new Neutron Velocity Selector was commissioned.

  12. Thermodynamic Data Rescue and Informatics for Deep Carbon Science

    Science.gov (United States)

    Zhong, H.; Ma, X.; Prabhu, A.; Eleish, A.; Pan, F.; Parsons, M. A.; Ghiorso, M. S.; West, P.; Zednik, S.; Erickson, J. S.; Chen, Y.; Wang, H.; Fox, P. A.

    2017-12-01

    A large number of legacy datasets are contained in geoscience literature published between 1930 and 1980 and not expressed external to the publication text in digitized formats. Extracting, organizing, and reusing these "dark" datasets is highly valuable for many within the Earth and planetary science community. As a part of the Deep Carbon Observatory (DCO) data legacy missions, the DCO Data Science Team and Extreme Physics and Chemistry community identified thermodynamic datasets related to carbon, or more specifically datasets about the enthalpy and entropy of chemicals, as a proof of principle analysis. The data science team endeavored to develop a semi-automatic workflow, which includes identifying relevant publications, extracting contained datasets using OCR methods, collaborative reviewing, and registering the datasets via the DCO Data Portal where the 'Linked Data' feature of the data portal provides a mechanism for connecting rescued datasets beyond their individual data sources, to research domains, DCO Communities, and more, making data discovery and retrieval more effective.To date, the team has successfully rescued, deposited and registered additional datasets from publications with thermodynamic sources. These datasets contain 3 main types of data: (1) heat content or enthalpy data determined for a given compound as a function of temperature using high-temperature calorimetry, (2) heat content or enthalpy data determined for a given compound as a function of temperature using adiabatic calorimetry, and (3) direct determination of heat capacity of a compound as a function of temperature using differential scanning calorimetry. The data science team integrated these datasets and delivered a spectrum of data analytics including visualizations, which will lead to a comprehensive characterization of the thermodynamics of carbon and carbon-related materials.

  13. Actes des 5èmes Journées Scientifiques du GDR3544 Sciences du Bois. Journées Annuelles du GDR 3544 Sciences du Bois

    OpenAIRE

    CHAPLAIN, Myriam; CARE, Sabine; GRIL, Joseph

    2016-01-01

    Le Groupement de Recherche en Sciences du bois (GDR3544 Sciences du Bois) a été créé en 2012 par le CNRS et renouvelé en 2016 pour 5 ans. La mission de ce groupement est : (1) de structurer la recherche sur le bois en France pour lui donner une visibilité nationale, (2) de contribuer au développement de la formation en sciences du bois et (3) de servir de relai aux réseaux internationaux de sciences du bois. Les 5èmes journées annuelles du GDR Bois ont été organisées à Bordeaux, au domaine du...

  14. Core outcome domains for clinical trials in non-specific low back pain.

    Science.gov (United States)

    Chiarotto, Alessandro; Deyo, Richard A; Terwee, Caroline B; Boers, Maarten; Buchbinder, Rachelle; Corbin, Terry P; Costa, Leonardo O P; Foster, Nadine E; Grotle, Margreth; Koes, Bart W; Kovacs, Francisco M; Lin, Chung-Wei Christine; Maher, Chris G; Pearson, Adam M; Peul, Wilco C; Schoene, Mark L; Turk, Dennis C; van Tulder, Maurits W; Ostelo, Raymond W

    2015-06-01

    Inconsistent reporting of outcomes in clinical trials of patients with non-specific low back pain (NSLBP) hinders comparison of findings and the reliability of systematic reviews. A core outcome set (COS) can address this issue as it defines a minimum set of outcomes that should be reported in all clinical trials. In 1998, Deyo et al. recommended a standardized set of outcomes for LBP clinical research. The aim of this study was to update these recommendations by determining which outcome domains should be included in a COS for clinical trials in NSLBP. An International Steering Committee established the methodology to develop this COS. The OMERACT Filter 2.0 framework was used to draw a list of potential core domains that were presented in a Delphi study. Researchers, care providers and patients were invited to participate in three Delphi rounds and were asked to judge which domains were core. A priori criteria for consensus were established before each round and were analysed together with arguments provided by panellists on importance, overlap, aggregation and/or addition of potential core domains. The Steering Committee discussed the final results and made final decisions. A set of 280 experts was invited to participate in the Delphi; response rates in the three rounds were 52, 50 and 45%. Of 41 potential core domains presented in the first round, 13 had sufficient support to be presented for rating in the third round. Overall consensus was reached for the inclusion of three domains in this COS: 'physical functioning', 'pain intensity' and 'health-related quality of life'. Consensus on 'physical functioning' and 'pain intensity' was consistent across all stakeholders, 'health-related quality of life' was not supported by the patients, and all the other domains were not supported by two or more groups of stakeholders. Weighting all possible argumentations, the Steering Committee decided to include in the COS the three domains that reached overall consensus and

  15. The EPOS Vision for the Open Science Cloud

    Science.gov (United States)

    Jeffery, Keith; Harrison, Matt; Cocco, Massimo

    2016-04-01

    Cloud computing offers dynamic elastic scalability for data processing on demand. For much research activity, demand for computing is uneven over time and so CLOUD computing offers both cost-effectiveness and capacity advantages. However, as reported repeatedly by the EC Cloud Expert Group, there are barriers to the uptake of Cloud Computing: (1) security and privacy; (2) interoperability (avoidance of lock-in); (3) lack of appropriate systems development environments for application programmers to characterise their applications to allow CLOUD middleware to optimize their deployment and execution. From CERN, the Helix-Nebula group has proposed the architecture for the European Open Science Cloud. They are discussing with other e-Infrastructure groups such as EGI (GRIDs), EUDAT (data curation), AARC (network authentication and authorisation) and also with the EIROFORUM group of 'international treaty' RIs (Research Infrastructures) and the ESFRI (European Strategic Forum for Research Infrastructures) RIs including EPOS. Many of these RIs are either e-RIs (electronic-RIs) or have an e-RI interface for access and use. The EPOS architecture is centred on a portal: ICS (Integrated Core Services). The architectural design already allows for access to e-RIs (which may include any or all of data, software, users and resources such as computers or instruments). Those within any one domain (subject area) of EPOS are considered within the TCS (Thematic Core Services). Those outside, or available across multiple domains of EPOS, are ICS-d (Integrated Core Services-Distributed) since the intention is that they will be used by any or all of the TCS via the ICS. Another such service type is CES (Computational Earth Science); effectively an ICS-d specializing in high performance computation, analytics, simulation or visualization offered by a TCS for others to use. Already discussions are underway between EPOS and EGI, EUDAT, AARC and Helix-Nebula for those offerings to be

  16. Database of ligand-induced domain movements in enzymes

    Directory of Open Access Journals (Sweden)

    Hayward Steven

    2009-03-01

    Full Text Available Abstract Background Conformational change induced by the binding of a substrate or coenzyme is a poorly understood stage in the process of enzyme catalysed reactions. For enzymes that exhibit a domain movement, the conformational change can be clearly characterized and therefore the opportunity exists to gain an understanding of the mechanisms involved. The development of the non-redundant database of protein domain movements contains examples of ligand-induced domain movements in enzymes, but this valuable data has remained unexploited. Description The domain movements in the non-redundant database of protein domain movements are those found by applying the DynDom program to pairs of crystallographic structures contained in Protein Data Bank files. For each pair of structures cross-checking ligands in their Protein Data Bank files with the KEGG-LIGAND database and using methods that search for ligands that contact the enzyme in one conformation but not the other, the non-redundant database of protein domain movements was refined down to a set of 203 enzymes where a domain movement is apparently triggered by the binding of a functional ligand. For these cases, ligand binding information, including hydrogen bonds and salt-bridges between the ligand and specific residues on the enzyme is presented in the context of dynamical information such as the regions that form the dynamic domains, the hinge bending residues, and the hinge axes. Conclusion The presentation at a single website of data on interactions between a ligand and specific residues on the enzyme alongside data on the movement that these interactions induce, should lead to new insights into the mechanisms of these enzymes in particular, and help in trying to understand the general process of ligand-induced domain closure in enzymes. The website can be found at: http://www.cmp.uea.ac.uk/dyndom/enzymeList.do

  17. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    Science.gov (United States)

    Riedinger, Kelly; Marbach-Ad, Gili; McGinnis, J. Randy; Hestness, Emily; Pease, Rebecca

    2011-01-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching…

  18. Domain Decomposition Solvers for Frequency-Domain Finite Element Equations

    KAUST Repository

    Copeland, Dylan

    2010-10-05

    The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.

  19. Domain Decomposition Solvers for Frequency-Domain Finite Element Equations

    KAUST Repository

    Copeland, Dylan; Kolmbauer, Michael; Langer, Ulrich

    2010-01-01

    The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.

  20. Developing a taxonomy for the science of improvement in public health.

    Science.gov (United States)

    Riley, William; Lownik, Beth; Halverson, Paul; Parrotta, Carmen; Godsall, Jonathan R; Gyllstrom, Elizabeth; Gearin, Kimberly J; Mays, Glen

    2012-11-01

    Quality improvement (QI) methods have been used for almost a decade in public health departments to increase effectiveness and efficiency. Although results are rapidly accumulating, the evidence for the science of improvement is shallow and limited. To advance the use and effectiveness of QI in public health, it is important to develop a science of improvement using practice-based research to build an evidence base for QI projects. This purpose of this study is to advance the science of improvement in public health departments with 3 objectives: (1) establish a taxonomy of QI projects in public health, (2) categorize QI projects undertaken in health departments using the taxonomy, and (3) create an opportunity modes and effects analysis. This study is a qualitative analysis of archival data from 2 separate large databases consisting of 51 QI projects undertaken in public health departments over the last 5 years. The study involves 2 separate QI collaboratives. One includes Minnesota health departments; the other is a national collaborative. We propose a standardized case definition, common metrics, and a taxonomy of QI projects to begin building the evidence base for QI in public health and to advance the science of continuous quality improvement. All projects created an aim statement and used metrics while 53% used a specific QI model with an average of 3.25 QI techniques per project. Approximately 40% of the projects incorporated a process control methodology, and 60% of the projects identified the process from beginning to end, while 11 of 12 PHAB (Public Health Accreditation Board) domains were included. The findings provide a baseline for QI taxonomy to operationalize a science of improvement for public health departments.

  1. What's in a Domain: Understanding How Students Approach Questioning in History and Science

    Science.gov (United States)

    Portnoy, Lindsay Blau

    2013-01-01

    During their education, students are presented with information across a variety of academic domains. How students ask questions as they learn has implications for understanding, retention, and problem solving. The current research investigates the influence of age and prior knowledge on the ways students approach questioning across history and…

  2. Cellulose binding domain fusion proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  3. PENGATURAN PASSING OFF DALAM PENGGUNAAN DOMAIN NAME TERKAIT DENGAN MEREK

    Directory of Open Access Journals (Sweden)

    Herti Yunita Putri

    2016-09-01

    Full Text Available In cyber world we often hear about domain name’s term. Domain name is a unique name to identify the server computer’s name like a web server or email server on a computer network or Internet. Passing off also make causes confusion in using merk from a famous brand or merk on the goods and services. Selected domain name in the internet media often creates the similar domain name with the other parties. This similar domain name are often used by people who are not responsible to take advantages of the domain name for themself. This can be caused by the presence of competition from Internet media business. This things called passing off. This research is a normative juridical research with a qualitative analysis. The legal materials include primary legal, secondary law and tertiary legal materials. Collection technique applied is literary study. Legal materials were analyzed to see the argument implementation of the definition of merk, the definition of domain name, definition of passing off, passing off in use related by merk and domain name and the rules of law in Indonesia related by merk, domain name and passing off. Big wishes in the future it can assist as a basic reference and legal considerations which are useful in Indonesian law practice. There are two passing off related to the merk and domain name, called Crybersquatting and Tiposquatting. Domain name rules are not regulated clearly in merk regulation named Act No. 15 of 2001. It regulated in PP 24 Year 1993 about The Class List of Goods or Services In Merk, Telecommunications are included in the goods or services in merk. Domain name are regulated in UDRP (Uniform Dispute Resolution Policy with competent institutions called ICANN (Internet Corporation for Assigned Names and Numbers. Dalam dunia maya (cyber world, kita sering mendengar istilah domain name. Domain name adalah nama unik yang diberikan untuk mengidentifikasi nama server komputer seperti web server atau email server di

  4. Domain shape instabilities and dendrite domain growth in uniaxial ferroelectrics

    Science.gov (United States)

    Shur, Vladimir Ya.; Akhmatkhanov, Andrey R.

    2018-01-01

    The effects of domain wall shape instabilities and the formation of nanodomains in front of moving walls obtained in various uniaxial ferroelectrics are discussed. Special attention is paid to the formation of self-assembled nanoscale and dendrite domain structures under highly non-equilibrium switching conditions. All obtained results are considered in the framework of the unified kinetic approach to domain structure evolution based on the analogy with first-order phase transformation. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  5. The Domain Five Observation Instrument: A Competency-Based Coach Evaluation Tool

    Science.gov (United States)

    Shangraw, Rebecca

    2017-01-01

    The Domain Five Observation Instrument (DFOI) is a competency-based observation instrument recommended for sport leaders or researchers who wish to evaluate coaches' instructional behaviors. The DFOI includes 10 behavior categories and four timed categories that encompass 34 observable instructional benchmarks outlined in domain five of the…

  6. Microresonator-Based Optical Frequency Combs: A Time Domain Perspective

    Science.gov (United States)

    2016-04-19

    AFRL-AFOSR-VA-TR-2016-0165 (BRI) Microresonator-Based Optical Frequency Combs: A Time Domain Perspective Andrew Weiner PURDUE UNIVERSITY 401 SOUTH...Optical Frequency Combs: A Time Domain Perspective 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0236 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data

  7. Creativity and innovation among science and art a discussion of the two cultures

    CERN Document Server

    2015-01-01

    This edited book will address creativity and innovation among the two cultures of science and art. Disciplines within science and art include: medicine (neurology), music therapy, art therapy, physics, chemistry, engineering, music, improvisation, education and aesthetics. This book will be the first of its kind to appeal to a broad audience of students, scholars, scientists, professionals, practitioners (physicians, psychologists, counsellors and social workers), musicians, artists, educators and administrators. In order to understand creativity and innovation across fields, the approach is multidisciplinary. While there is overlap across disciplines, unique domain specific traits exist in each field and are also discussed in addition to similarities. This book engages the reader with the comparison of similarities and differences through dialog across disciplines. Authors of each chapter address creativity and innovation from their own distinct perspective. Each chapter is transdisciplinary in approach.  T...

  8. The imagework method in health and social science research.

    Science.gov (United States)

    Edgar, I R

    1999-03-01

    Existing alongside the traditional forms of qualitative social science research, there is a set of potential research methods that derive from experiential groupwork and the humanistic human potential movement and are only slightly used by researchers. Social science research has barely begun to use these powerful strategies that were developed originally for personal and group change but that are potentially applicable to the research domain. This article will locate these methods within the qualitative research domain and propose a novel view of their value. The study of the actual and potential use of one of these methods, imagework, will be the particular focus of this article. References to the use of artwork, sculpting, psychodrama, gestalt, and dreamwork will also be made. The hypothesis underpinning the author's approach is that experiential research methods such as imagework can elicit implicit knowledge and self-identifies of respondents in a way that other methods cannot.

  9. Jahn-teller domains and magnetic domains in Mn2FeO4

    NARCIS (Netherlands)

    Kub, J.; Brabers, V.A.M.; Novák, P.; Gemperle, R.; Simsova, J.

    2000-01-01

    Elastic (Jahn–Teller) domains and magnetic domains in the tetragonal spinel Mn2FeO4 were studied using X-ray double-crystal topography, X-ray diffractometry and the colloid-SEM method. The Jahn–Teller domains of the measured samples are tetragonal with the [0 0 1] c-axis alternating perpendicularly

  10. The extended-domain-eigenfunction method for solving elliptic boundary value problems with annular domains

    Energy Technology Data Exchange (ETDEWEB)

    Aarao, J; Bradshaw-Hajek, B H; Miklavcic, S J; Ward, D A, E-mail: Stan.Miklavcic@unisa.edu.a [School of Mathematics and Statistics, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2010-05-07

    Standard analytical solutions to elliptic boundary value problems on asymmetric domains are rarely, if ever, obtainable. In this paper, we propose a solution technique wherein we embed the original domain into one with simple boundaries where the classical eigenfunction solution approach can be used. The solution in the larger domain, when restricted to the original domain, is then the solution of the original boundary value problem. We call this the extended-domain-eigenfunction method. To illustrate the method's strength and scope, we apply it to Laplace's equation on an annular-like domain.

  11. The sciences of science communication.

    Science.gov (United States)

    Fischhoff, Baruch

    2013-08-20

    The May 2012 Sackler Colloquium on "The Science of Science Communication" brought together scientists with research to communicate and scientists whose research could facilitate that communication. The latter include decision scientists who can identify the scientific results that an audience needs to know, from among all of the scientific results that it would be nice to know; behavioral scientists who can design ways to convey those results and then evaluate the success of those attempts; and social scientists who can create the channels needed for trustworthy communications. This overview offers an introduction to these communication sciences and their roles in science-based communication programs.

  12. Between-Domain Relations of Students’ Academic Emotions and Their Judgments of School Domain Similarity

    Directory of Open Access Journals (Sweden)

    Thomas eGoetz

    2014-10-01

    Full Text Available With the aim to deepen our understanding of the between-domain relations of academic emotions, a series of three studies was conducted. We theorized that between-domain relations of trait (i.e., habitual emotions reflected students’ judgments of domain similarities, whereas between-domain relations of state (i.e., momentary emotions did not. This supposition was based on the accessibility model of emotional self-report, according to which individuals’ beliefs tend to strongly impact trait, but not state emotions. The aim of Study 1 (interviews; N = 40; 8th and 11th graders was to gather salient characteristics of academic domains from students’ perspective. In Study 2 (N=1709; 8th and 11th graders the 13 characteristics identified in Study 1 were assessed along with academic emotions in four different domains (mathematics, physics, German, and English using a questionnaire-based trait assessment. With respect to the same domains, state emotions were assessed in Study 3 (N = 121; 8th and 11th graders by employing an experience sampling approach. In line with our initial assumptions, between-domain relations of trait but not state academic emotions reflected between-domain relations of domain characteristics. Implications for research and practice are discussed.

  13. Between-domain relations of students' academic emotions and their judgments of school domain similarity

    Science.gov (United States)

    Goetz, Thomas; Haag, Ludwig; Lipnevich, Anastasiya A.; Keller, Melanie M.; Frenzel, Anne C.; Collier, Antonie P. M.

    2014-01-01

    With the aim to deepen our understanding of the between-domain relations of academic emotions, a series of three studies was conducted. We theorized that between-domain relations of trait (i.e., habitual) emotions reflected students' judgments of domain similarities, whereas between-domain relations of state (i.e., momentary) emotions did not. This supposition was based on the accessibility model of emotional self-report, according to which individuals' beliefs tend to strongly impact trait, but not state emotions. The aim of Study 1 (interviews; N = 40; 8th and 11th graders) was to gather salient characteristics of academic domains from students' perspective. In Study 2 (N = 1709; 8th and 11th graders) the 13 characteristics identified in Study 1 were assessed along with academic emotions in four different domains (mathematics, physics, German, and English) using a questionnaire-based trait assessment. With respect to the same domains, state emotions were assessed in Study 3 (N = 121; 8th and 11th graders) by employing an experience sampling approach. In line with our initial assumptions, between-domain relations of trait but not state academic emotions reflected between-domain relations of domain characteristics. Implications for research and practice are discussed. PMID:25374547

  14. Expansion of protein domain repeats.

    Directory of Open Access Journals (Sweden)

    Asa K Björklund

    2006-08-01

    Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.

  15. [Philosophy of science for psychiatric practice].

    Science.gov (United States)

    Ralston, A S G

    2010-01-01

    The prevailing view is that psychiatry has its roots in two separate methodologies: the natural sciences and the social sciences. It is assumed that these are separate domains, each with its own way of knowing. Psychiatric and psychological theories are based mainly on one or other of these two types of science; this leads to a ongoing dualism in psychiatry, which some people regard as problematical. This article aims to make a methodological contribution to the scientific and philosophical foundations of psychiatry. This philosophical and theoretical dichotomy is criticized in this article in the light of recent developments in the philosophy of science, and two methods are introduced which offer an alternative analysis: values-based practice and actor-network theory. Brief examples are given which demonstrate that a combination of these two methods can be productive for psychiatry. Values-based practice and actor-network theory provide a way of resolving the stalemate in the conflict between the physical sciences and the sciences of the mind, a conflict that is dominated by professionals. In addition these two new methods empower the professionals by not deriving legitimacy from the false image of a dichotomous science, but from a normative sense of professionalism.

  16. A hybrid method combining the Time-Domain Method of Moments, the Time-Domain Uniform Theory of Diffraction and the FDTD

    Directory of Open Access Journals (Sweden)

    A. Becker

    2007-06-01

    Full Text Available In this paper a hybrid method combining the Time-Domain Method of Moments (TD-MoM, the Time-Domain Uniform Theory of Diffraction (TD-UTD and the Finite-Difference Time-Domain Method (FDTD is presented. When applying this new hybrid method, thin-wire antennas are modeled with the TD-MoM, inhomogeneous bodies are modelled with the FDTD and large perfectly conducting plates are modelled with the TD-UTD. All inhomogeneous bodies are enclosed in a so-called FDTD-volume and the thin-wire antennas can be embedded into this volume or can lie outside. The latter avoids the simulation of white space between antennas and inhomogeneous bodies. If the antennas are positioned into the FDTD-volume, their discretization does not need to agree with the grid of the FDTD. By using the TD-UTD large perfectly conducting plates can be considered efficiently in the solution-procedure. Thus this hybrid method allows time-domain simulations of problems including very different classes of objects, applying the respective most appropriate numerical techniques to every object.

  17. Big biomedical data as the key resource for discovery science.

    Science.gov (United States)

    Toga, Arthur W; Foster, Ian; Kesselman, Carl; Madduri, Ravi; Chard, Kyle; Deutsch, Eric W; Price, Nathan D; Glusman, Gustavo; Heavner, Benjamin D; Dinov, Ivo D; Ames, Joseph; Van Horn, John; Kramer, Roger; Hood, Leroy

    2015-11-01

    Modern biomedical data collection is generating exponentially more data in a multitude of formats. This flood of complex data poses significant opportunities to discover and understand the critical interplay among such diverse domains as genomics, proteomics, metabolomics, and phenomics, including imaging, biometrics, and clinical data. The Big Data for Discovery Science Center is taking an "-ome to home" approach to discover linkages between these disparate data sources by mining existing databases of proteomic and genomic data, brain images, and clinical assessments. In support of this work, the authors developed new technological capabilities that make it easy for researchers to manage, aggregate, manipulate, integrate, and model large amounts of distributed data. Guided by biological domain expertise, the Center's computational resources and software will reveal relationships and patterns, aiding researchers in identifying biomarkers for the most confounding conditions and diseases, such as Parkinson's and Alzheimer's. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. The Historical Origins and Economic Logic of 'Open Science'

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Modern "big science" projects, such as the LHC experiments in physics that are being prepared to run at CERN, embody the distinctive ethos of cooperation and mechanisms of coordination among distributed groups of researchers that are characteristic of 'open science'. Much has been written about the institutions of open science, their supporting social norms, and their effectiveness in generating additions to the stock of reliable knowledge. But from where have these institutions and their supporting ethos come? How robust can we assume them to be in the face of the recent trends for universities and research institutes in some domains of science to seek to appropriate the benefits of new discoveries and inventions by asserting intellectual property claims? A search for the historical origins of the institutions of open science throws some new light on these issues, and the answers may offer some lessons for contemporary science and technology policy-making.

  19. Children's Oncology Group's 2013 blueprint for research: behavioral science.

    Science.gov (United States)

    Noll, Robert B; Patel, Sunita K; Embry, Leanne; Hardy, Kristina K; Pelletier, Wendy; Annett, Robert D; Patenaude, Andrea; Lown, E Anne; Sands, Stephen A; Barakat, Lamia P

    2013-06-01

    Behavioral science has long played a central role in pediatric oncology clinical service and research. Early work focused on symptom relief related to side effects of chemotherapy and pain management related to invasive medical procedures. As survival rates improved, the focused has shifted to examination of the psychosocial impact, during and after treatment, of pediatric cancer and its treatment on children and their families. The success of the clinical trials networks related to survivorship highlights an even more critical role in numerous domains of psychosocial research and care. Within the cooperative group setting, the field of behavioral science includes psychologists, social workers, physicians, nurses, and parent advisors. The research agenda of this group of experts needs to focus on utilization of psychometrically robust measures to evaluate the impact of treatment on children with cancer and their families during and after treatment ends. Over the next 5 years, the field of behavioral science will need to develop and implement initiatives to expand use of standardized neurocognitive and behavior batteries; increase assessment of neurocognition using technology; early identification of at-risk children/families; establish standards for evidence-based psychosocial care; and leverage linkages with the broader behavioral health pediatric oncology community to translate empirically supported research clinical trials care to practice. Copyright © 2012 Wiley Periodicals, Inc.

  20. Interoperable domain models : The ISO land administration domain model LADM and its external classes

    NARCIS (Netherlands)

    Lemmen, C.H.J.; Van Oosterom, P.J.M.; Uitermark, H.T.; Zevenbergen, J.A.; Cooper, A.K.

    2011-01-01

    This paper provides a brief overview of one of the first spatial domain standards: a standard for the domain of Land Administration (LA). This standard is in the draft stage of development now (May 2011). The development of domain standards is a logical follow up after domain-independent standards,

  1. Identifying Relevant Anti-Science Perceptions to Improve Science-Based Communication: The Negative Perceptions of Science Scale

    Directory of Open Access Journals (Sweden)

    Melanie Morgan

    2018-04-01

    Full Text Available Science communicators and scholars have struggled to understand what appears to be increasingly frequent endorsement of a wide range of anti-science beliefs and a corresponding reduction of trust in science. A common explanation for this issue is a lack of science literacy/knowledge among the general public (Funk et al. 2015. However, other possible explanations have been advanced, including conflict with alternative belief systems and other contextual factors, and even cultural factors (Gauchat 2008; Kahan 2015 that are not necessarily due to knowledge deficits. One of the challenges is that there are limited tools available to measure a range of possible underlying negative perceptions of science that could provide a more nuanced framework within which to improve communication around important scientific topics. This project describes two studies detailing the development and validation of the Negative Perceptions of Science Scale (NPSS, a multi-dimensional instrument that taps into several distinct sets of negative science perceptions: Science as Corrupt, Science as Complex, Science as Heretical, and Science as Limited. Evidence for the reliability and validity of the NPSS is described. The sub-dimensions of the NPSS are associated with a range of specific anti-science beliefs across a broad set of topic areas above and beyond that explained by demographics (including education, sex, age, and income, political, and religious ideology. Implications for these findings for improving science communication and science-related message tailoring are discussed.

  2. Functional Pathways of Social Support for Mental Health in Work and Family Domains Among Chinese Scientific and Technological Professionals.

    Science.gov (United States)

    Gan, Yiqun; Gan, Tingting; Chen, Zhiyan; Miao, Miao; Zhang, Kan

    2015-10-01

    This study investigated the role of social support in the complex pattern of associations among stressors, work-family interferences and depression in the domains of work and family. A questionnaire was administered to a nationwide sample of 11,419 Chinese science and technology professionals. Several structural equation models were specified to determine whether social support functioned as a predictor or a mediator. Using Mplus 5.0, we compared the moderation model, the independence model, the antecedent model and the mediation model. The results revealed that the relationship between work-family interference and social support was domain specific. The independence model fit the data best in the work domain. Both the moderation model and the antecedent model fit the family domain data equally well. The current study was conducted to answer the need for comprehensive investigations of cultural uniqueness in the antecedents of work-family interference. The domain specificity, i.e. the multiple channels of the functions of support in the family domain and not in the work domain, ensures that this study is unique and culturally specific. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Time-domain SFG spectroscopy using mid-IR pulse shaping: practical and intrinsic advantages.

    Science.gov (United States)

    Laaser, Jennifer E; Xiong, Wei; Zanni, Martin T

    2011-03-24

    Sum-frequency generation (SFG) spectroscopy is a ubiquitous tool in the surface sciences. It provides infrared transition frequencies and line shapes that probe the structure and environment of molecules at interfaces. In this article, we apply techniques learned from the multidimensional spectroscopy community to SFG spectroscopy. We implement balanced heterodyne detection to remove scatter and the local oscillator background. Heterodyning also separates the resonant and nonresonant signals by acquiring both the real and imaginary parts of the spectrum. We utilize mid-IR pulse shaping to control the phase and delay of the mid-IR pump pulse. Pulse shaping allows phase cycling for data collection in the rotating frame and additional background subtraction. We also demonstrate time-domain data collection, which is a Fourier transform technique, and has many advantages in signal throughput, frequency resolution, and line shape accuracy over existing frequency domain methods. To demonstrate time-domain SFG spectroscopy, we study an aryl isocyanide on gold, and find that the system has an inhomogeneous structural distribution, in agreement with computational results, but which was not resolved by previous frequency-domain SFG studies. The ability to rapidly and actively manipulate the mid-IR pulse in an SFG pules sequence makes possible new experiments and more accurate spectra. © 2011 American Chemical Society

  4. Frequency-domain elastic full waveform inversion using encoded simultaneous sources

    Science.gov (United States)

    Jeong, W.; Son, W.; Pyun, S.; Min, D.

    2011-12-01

    Currently, numerous studies have endeavored to develop robust full waveform inversion and migration algorithms. These processes require enormous computational costs, because of the number of sources in the survey. To avoid this problem, the phase encoding technique for prestack migration was proposed by Romero (2000) and Krebs et al. (2009) proposed the encoded simultaneous-source inversion technique in the time domain. On the other hand, Ben-Hadj-Ali et al. (2011) demonstrated the robustness of the frequency-domain full waveform inversion with simultaneous sources for noisy data changing the source assembling. Although several studies on simultaneous-source inversion tried to estimate P- wave velocity based on the acoustic wave equation, seismic migration and waveform inversion based on the elastic wave equations are required to obtain more reliable subsurface information. In this study, we propose a 2-D frequency-domain elastic full waveform inversion technique using phase encoding methods. In our algorithm, the random phase encoding method is employed to calculate the gradients of the elastic parameters, source signature estimation and the diagonal entries of approximate Hessian matrix. The crosstalk for the estimated source signature and the diagonal entries of approximate Hessian matrix are suppressed with iteration as for the gradients. Our 2-D frequency-domain elastic waveform inversion algorithm is composed using the back-propagation technique and the conjugate-gradient method. Source signature is estimated using the full Newton method. We compare the simultaneous-source inversion with the conventional waveform inversion for synthetic data sets of the Marmousi-2 model. The inverted results obtained by simultaneous sources are comparable to those obtained by individual sources, and source signature is successfully estimated in simultaneous source technique. Comparing the inverted results using the pseudo Hessian matrix with previous inversion results

  5. Towards the Implementation of First-Order Temporal Resolution:the Expanding Domain Case

    OpenAIRE

    Konev, B; Dixon, C; Degtyarev, A; Fisher, M; Hustadt, U

    2003-01-01

    First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments. In this paper, we develop a clausal resolution method for the monodic fragment of first-order temporal logic over expanding domains. We first define a normal form for monodic formulae and th...

  6. Question Asking in the Science Classroom: Teacher Attitudes and Practices

    Science.gov (United States)

    Eshach, Haim; Dor-Ziderman, Yair; Yefroimsky, Yana

    2014-02-01

    Despite the wide agreement among educators that classroom learning and teaching processes can gain much from student and teacher questions, their potential is not fully utilized. Adopting the view that reporting both teachers' (of varying age groups) views and actual classroom practices is necessary for obtaining a more complete view of the phenomena at hand, the present study closely examines both cognitive and affective domains of: (a) teachers' views (via interviews) concerning: (1) importance and roles of teacher and student questions, (2) teacher responses, and (3) planning and teacher training; and (b) teachers' actual practices (via classroom observations) concerning: (1) number and (2) level of teacher and student questions, as well as (3) teachers' responses to questions. The data were collected from 3 elementary, 3 middle, and 3 high school science teachers and their respective classroom students. The findings lay out a wide view of classroom questioning and teachers' responses, and relate what actually occurs in classes to teachers' stated views. Some of the study's main conclusions are that a gap exists between how science researchers and teachers view the role of teacher questions: the former highlight the cognitive domain, while the latter emphasize the affective domain.

  7. Broadening Participation Not Border Protection: How Universities Can Support Women in Computer Science

    Science.gov (United States)

    Michell, Dee; Szorenyi, Anna; Falkner, Katrina; Szabo, Claudia

    2017-01-01

    Computer science, like technology in general, is seen as a masculine field and the under-representation of women an intransigent problem. In this paper, we argue that the cultural belief in Australia that computer science is a domain for men results in many girls and women being chased away from that field as part of a border protection campaign…

  8. THE TIME-DOMAIN SPECTROSCOPIC SURVEY: UNDERSTANDING THE OPTICALLY VARIABLE SKY WITH SEQUELS IN SDSS-III

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, John J.; Anderson, Scott F.; Davenport, James R. A. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Green, Paul J.; Morganson, Eric [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Eracleous, Michael; Brandt, William N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Myers, Adam D. [Department of Physics and Astronomy 3905, University of Wyoming, 1000 E. University, Laramie, WY 82071 (United States); Badenes, Carles [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT-PACC), University of Pittsburgh (United States); Bershady, Matthew A. [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter Street, Madison, WI 53706 (United States); Chambers, Kenneth C.; Flewelling, Heather; Kaiser, Nick [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Heckman, Timothy M. [Center for Astrophysical Sciences, Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Isler, Jedidah C. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Kneib, Jean-Paul [Laboratoire d’astrophysique, Ecole Polytechnique Fédérale de Lausanne Observatoire de Sauverny, 1290 Versoix (Switzerland); MacLeod, Chelsea L.; Ross, Nicholas P. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Paris, Isabelle, E-mail: jruan@astro.washington.edu [INAF—Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-34131 Trieste (Italy); and others

    2016-07-10

    The Time-Domain Spectroscopic Survey (TDSS) is an SDSS-IV eBOSS subproject primarily aimed at obtaining identification spectra of ∼220,000 optically variable objects systematically selected from SDSS/Pan-STARRS1 multi-epoch imaging. We present a preview of the science enabled by TDSS, based on TDSS spectra taken over ∼320 deg{sup 2} of sky as part of the SEQUELS survey in SDSS-III, which is in part a pilot survey for eBOSS in SDSS-IV. Using the 15,746 TDSS-selected single-epoch spectra of photometrically variable objects in SEQUELS, we determine the demographics of our variability-selected sample and investigate the unique spectral characteristics inherent in samples selected by variability. We show that variability-based selection of quasars complements color-based selection by selecting additional redder quasars and mitigates redshift biases to produce a smooth quasar redshift distribution over a wide range of redshifts. The resulting quasar sample contains systematically higher fractions of blazars and broad absorption line quasars than from color-selected samples. Similarly, we show that M dwarfs in the TDSS-selected stellar sample have systematically higher chromospheric active fractions than the underlying M-dwarf population based on their H α emission. TDSS also contains a large number of RR Lyrae and eclipsing binary stars with main-sequence colors, including a few composite-spectrum binaries. Finally, our visual inspection of TDSS spectra uncovers a significant number of peculiar spectra, and we highlight a few cases of these interesting objects. With a factor of ∼15 more spectra, the main TDSS survey in SDSS-IV will leverage the lessons learned from these early results for a variety of time-domain science applications.

  9. Medical laboratory science and nursing students' perception of academic learning environment in a Philippine university using Dundee Ready Educational Environment Measure (DREEM).

    Science.gov (United States)

    Barcelo, Jonathan M

    2016-01-01

    This study aimed to compare the perception of the academic learning environment between medical laboratory science students and nursing students at Saint Louis University, Baguio City, Philippines. A cross-sectional survey research design was used to measure the perceptions of the participants. A total of 341 students from the Department of Medical Laboratory Science, School of Natural Sciences, and the School of Nursing answered the Dundee Ready Education Environment Measure (DREEM) instrument from April to May 2016. Responses were compared according to course of study, gender, and year level. The total mean DREEM scores of the medical laboratory science students and nursing students did not differ significantly when grouped according to course of study, gender, or year level. Medical laboratory science students had significantly lower mean scores in the sub-domains 'perception of learning' and 'perception of teaching.' Male medical laboratory science students had significantly lower mean scores in the sub-domain 'perception of learning' among second year students. Medical laboratory science students had significantly lower mean scores in the sub-domain 'perception of learning.' Nursing students identified 7 problem areas, most of which were related to their instructors. Medical laboratory science and nursing students viewed their academic learning environment as 'more positive than negative.' However, the relationship of the nursing instructors to their students needs improvement.

  10. Learning Science and the Science of Learning. Science Educators' Essay Collection.

    Science.gov (United States)

    Bybee, Rodger W., Ed.

    This yearbook addresses critical issues in science learning and teaching. Contents are divided into four sections: (1) "How Do Students Learn Science?"; (2) "Designing Curriculum for Student Learning"; (3) "Teaching That Enhances Student Learning"; and (4) "Assessing Student Learning." Papers include: (1) "How Students Learn and How Teachers…

  11. Structural mapping of the coiled-coil domain of a bacterial condensin and comparative analyses across all domains of life suggest conserved features of SMC proteins.

    Science.gov (United States)

    Waldman, Vincent M; Stanage, Tyler H; Mims, Alexandra; Norden, Ian S; Oakley, Martha G

    2015-06-01

    The structural maintenance of chromosomes (SMC) proteins form the cores of multisubunit complexes that are required for the segregation and global organization of chromosomes in all domains of life. These proteins share a common domain structure in which N- and C- terminal regions pack against one another to form a globular ATPase domain. This "head" domain is connected to a central, globular, "hinge" or dimerization domain by a long, antiparallel coiled coil. To date, most efforts for structural characterization of SMC proteins have focused on the globular domains. Recently, however, we developed a method to map interstrand interactions in the 50-nm coiled-coil domain of MukB, the divergent SMC protein found in γ-proteobacteria. Here, we apply that technique to map the structure of the Bacillus subtilis SMC (BsSMC) coiled-coil domain. We find that, in contrast to the relatively complicated coiled-coil domain of MukB, the BsSMC domain is nearly continuous, with only two detectable coiled-coil interruptions. Near the middle of the domain is a break in coiled-coil structure in which there are three more residues on the C-terminal strand than on the N-terminal strand. Close to the head domain, there is a second break with a significantly longer insertion on the same strand. These results provide an experience base that allows an informed interpretation of the output of coiled-coil prediction algorithms for this family of proteins. A comparison of such predictions suggests that these coiled-coil deviations are highly conserved across SMC types in a wide variety of organisms, including humans. © 2015 Wiley Periodicals, Inc.

  12. Domain architecture conservation in orthologs

    Science.gov (United States)

    2011-01-01

    Background As orthologous proteins are expected to retain function more often than other homologs, they are often used for functional annotation transfer between species. However, ortholog identification methods do not take into account changes in domain architecture, which are likely to modify a protein's function. By domain architecture we refer to the sequential arrangement of domains along a protein sequence. To assess the level of domain architecture conservation among orthologs, we carried out a large-scale study of such events between human and 40 other species spanning the entire evolutionary range. We designed a score to measure domain architecture similarity and used it to analyze differences in domain architecture conservation between orthologs and paralogs relative to the conservation of primary sequence. We also statistically characterized the extents of different types of domain swapping events across pairs of orthologs and paralogs. Results The analysis shows that orthologs exhibit greater domain architecture conservation than paralogous homologs, even when differences in average sequence divergence are compensated for, for homologs that have diverged beyond a certain threshold. We interpret this as an indication of a stronger selective pressure on orthologs than paralogs to retain the domain architecture required for the proteins to perform a specific function. In general, orthologs as well as the closest paralogous homologs have very similar domain architectures, even at large evolutionary separation. The most common domain architecture changes observed in both ortholog and paralog pairs involved insertion/deletion of new domains, while domain shuffling and segment duplication/deletion were very infrequent. Conclusions On the whole, our results support the hypothesis that function conservation between orthologs demands higher domain architecture conservation than other types of homologs, relative to primary sequence conservation. This supports the

  13. Effects of sub-domain structure on initial magnetization curve and domain size distribution of stacked media

    International Nuclear Information System (INIS)

    Sato, S.; Kumagai, S.; Sugita, R.

    2015-01-01

    In this paper, in order to confirm the sub-domain structure in stacked media demagnetized with in-plane field, initial magnetization curves and magnetic domain size distribution were investigated. Both experimental and simulation results showed that an initial magnetization curve for the medium demagnetized with in-plane field (MDI) initially rose faster than that for the medium demagnetized with perpendicular field (MDP). It is inferred that this is because the MDI has a larger number of domain walls than the MDP due to the existence of the sub-domains, resulting in an increase in the probability of domain wall motion. Dispersion of domain size for the MDI was larger than that for the MDP. This is because sub-domains are formed not only inside the domain but also at the domain boundary region, and they change the position of the domain boundary to affect the domain size. - Highlights: • An initial magnetization curve for MDI initially rose faster than that for MDP. • Dispersion of domain size for the MDI was larger than that for the MDP. • Experimental and simulation results can be explained by existence of sub-domains

  14. Differences in Judgments of Creativity: How Do Academic Domain, Personality, and Self-Reported Creativity Influence Novice Judges’ Evaluations of Creative Productions?

    Directory of Open Access Journals (Sweden)

    Mei Tan

    2015-09-01

    Full Text Available Intelligence assessment is often viewed as a narrow and ever-narrowing field, defined (as per IQ by the measurement of finely distinguished cognitive processes. It is instructive, however, to remember that other, broader conceptions of intelligence exist and might usefully be considered for a comprehensive assessment of intellectual functioning. This article invokes a more holistic, systems theory of intelligence—the theory of successful intelligence—and examines the possibility of including in intelligence assessment a similarly holistic measure of creativity. The time and costs of production-based assessments of creativity are generally considered prohibitive. Such barriers may be mitigated by applying the consensual assessment technique using novice raters. To investigate further this possibility, we explored the question: how much do demographic factors such as age and gender and psychological factors such as domain-specific expertise, personality or self-perceived creativity affect novices’ unidimensional ratings of creativity? Fifty-one novice judges from three undergraduate programs, majoring in three disparate expertise domains (i.e., visual art, psychology and computer science rated 40 child-generated Lego creatures for creativity. Results showed no differences in creativity ratings based on the expertise domains of the judges. However, judges’ personality and self-perception of their own everyday creativity appeared to influence the way they scored the creatures for creativity.

  15. A Research-Based Science Teacher Education Program for a Competitive Tomorrow

    Science.gov (United States)

    Clary, R. M.; Hamil, B.; Beard, D. J.; Chevalier, D.; Dunne, J.; Saebo, S.

    2009-12-01

    A united commitment between the College of Education and the College of Arts and Sciences at Mississippi State University, in partnership with local high-need school districts, has the goal of increasing the number of highly qualified science teachers through authentic science research experiences. The departments of Geosciences, Biological Sciences, Chemistry, and Physics offer undergraduate pre-service teachers laboratory experiences in science research laboratories, including 1) paleontological investigations of Cretaceous environments, 2) NMR studies of the conformation of tachykinin peptides, 3) FHA domains as regulators of cell signaling in plants, 4) intermediate energy nuclear physics studies, and 5) computational studies of cyclic ketene acetals. Coordinated by the Department of Curriculum and Instruction, these research experiences involve extensive laboratory training in which the pre-teacher participants matriculate through a superior education curriculum prior to administrating their individual classrooms. Participants gain valuable experience in 1) performing literature searches and reviews; 2) planning research projects; 3) recording data; 4) presenting laboratory results effectively; and 5) writing professional scientific manuscripts. The research experience is available to pre-service teachers who are science education majors with a declared second major in a science (i.e., geology, biology, physics, or chemistry). Students are employed part-time in various science university laboratories, with work schedules arranged around their individual course loads. While the focus of this endeavor is upon undergraduate pre-service teachers, the researchers also target practicing science teachers from the local high-need school districts. A summer workshop provides practicing science teachers with a summative laboratory experience in several scientific disciplines. Practicing teachers also are provided lesson plans and ideas to transform their classrooms into

  16. Thermomagnetic Stability in Pseudo Single Domain Grains

    Science.gov (United States)

    Nagy, Lesleis; Williams, Wyn; Muxworthy, Adrian; Fabian, Karl; Conbhuí, Pádraig Ó.

    2016-04-01

    The reliability of paleomagnetic remanences are well understood for fine grains of magnetite that are single-domain (SD, uniformly magnetized). In particular Néel's theory [1] outlined the thermal energies required to block and unblock magnetic remanences. This lead to determination of thermal stability for magnetization in fine grains as outlined in Pullaiah et. al. [2] and a comprehensive understanding of SD paleomagnetic recordings. It has been known for some time that single domain magnetite is possible only in the grain size range 30 - 80nm, which may only account for a small fraction of the grain size distribution in any rock sample. Indeed rocks are often dominated by grains in the pseudo single domain (PSD) size range, at approximately 80 - 1000nm. Toward the top end of this range multi-domain features begin to dominate. In order to determine thermomagnetic stability in PSD grains we need to identify the energy barriers between all possible pairs of local energy minima (LEM) domain states as a function of both temperature and grain size. We have attempted to do this using the nudged elastic band (NEB) method [3] which searches for minimum energy paths between any given pair of LEM states. Using this technique we have determined, for the first time, complete thermomagnetic stability curves for PSD magnetite. The work presented is at a preliminary stage. However it can be shown that PSD grains of magnetite with simple geometries (e.g. cubes or cuboctahedra) have very few low energy transition paths and the stability is likely to be similar to that observed for SD grains (as expected form experimental observations). The results will provide a basis for a much more rigorous understanding of the fidelity of paleomagnetic signals in assemblages of PSD grains and their ability to retain ancient recordings of the geomagnetic field. References: [1] Néel, Louis. "Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres

  17. Proportional Reasoning Ability and Concepts of Scale: Surface Area to Volume Relationships in Science

    Science.gov (United States)

    Taylor, Amy; Jones, Gail

    2009-01-01

    The "National Science Education Standards" emphasise teaching unifying concepts and processes such as basic functions of living organisms, the living environment, and scale. Scale influences science processes and phenomena across the domains. One of the big ideas of scale is that of surface area to volume. This study explored whether or not there…

  18. Perspectives on Open Science and scientific data sharing:an interdisciplinary workshop.

    Science.gov (United States)

    Destro Bisol, Giovanni; Anagnostou, Paolo; Capocasa, Marco; Bencivelli, Silvia; Cerroni, Andrea; Contreras, Jorge; Enke, Neela; Fantini, Bernardino; Greco, Pietro; Heeney, Catherine; Luzi, Daniela; Manghi, Paolo; Mascalzoni, Deborah; Molloy, Jennifer; Parenti, Fabio; Wicherts, Jelte; Boulton, Geoffrey

    2014-01-01

    Looking at Open Science and Open Data from a broad perspective. This is the idea behind "Scientific data sharing: an interdisciplinary workshop", an initiative designed to foster dialogue between scholars from different scientific domains which was organized by the Istituto Italiano di Antropologia in Anagni, Italy, 2-4 September 2013.We here report summaries of the presentations and discussions at the meeting. They deal with four sets of issues: (i) setting a common framework, a general discussion of open data principles, values and opportunities; (ii) insights into scientific practices, a view of the way in which the open data movement is developing in a variety of scientific domains (biology, psychology, epidemiology and archaeology); (iii) a case study of human genomics, which was a trail-blazer in data sharing, and which encapsulates the tension that can occur between large-scale data sharing and one of the boundaries of openness, the protection of individual data; (iv) open science and the public, based on a round table discussion about the public communication of science and the societal implications of open science. There were three proposals for the planning of further interdisciplinary initiatives on open science. Firstly, there is a need to integrate top-down initiatives by governments, institutions and journals with bottom-up approaches from the scientific community. Secondly, more should be done to popularize the societal benefits of open science, not only in providing the evidence needed by citizens to draw their own conclusions on scientific issues that are of concern to them, but also explaining the direct benefits of data sharing in areas such as the control of infectious disease. Finally, introducing arguments from social sciences and humanities in the educational dissemination of open data may help students become more profoundly engaged with Open Science and look at science from a broader perspective.

  19. Ultra-short time sciences. From the atto-second to the peta-watts

    International Nuclear Information System (INIS)

    2000-01-01

    This book presents the recent advances in the scientific and technical domains linked with ultra-short time physics. It deals first with the conceptual and technological aspects of ultra-intense and ultra-brief lasers. Then, it describes the different domains of research (atoms, molecules and aggregates; gaseous phase dynamics using the pump-probe technique; femto-chemistry in dense phase; condensed matter; plasma physics; consistent control; aerosols; functional femto-biology) and the different domains of application (medical diagnosis; ophthalmology; telecommunications; technological and industrial developments). A last part is devoted to the teaching of ultra-short time sciences. (J.S.)

  20. Discrete thoughts essays on mathematics, science, and philosophy

    CERN Document Server

    Kac, Mark; Schwartz, Jacob T

    1992-01-01

    This is a volume of essays and reviews that delightfully explore mathematics in all its moods — from the light and the witty, and humorous to serious, rational, and cerebral. Topics include: logic, combinatorics, statistics, economics, artificial intelligence, computer science, and applications of mathematics broadly. You will also find history and philosophy covered, including discussion of the work of Ulam, Kant, Heidegger among others. "...these papers reflect on mathematics and its influence on human society. They can help the specialist to notice what is going on around him, and they may lead educated people from other domains to a better understanding of mathematics. Many of these papers can advise educators how to form a modern mathematics education, which develops approved ideas and institutions...I admire the stimulating perspectives of the authors."---American Mathematical Society "‘Mathematicians, like Proust and everyone else, are at their best when writing about their first love’ … They a...

  1. Effective elements of school health promotion across behavioral domains: a systematic review of reviews

    Directory of Open Access Journals (Sweden)

    Peters Louk WH

    2009-06-01

    Full Text Available Abstract Background Most school health education programs focus on a single behavioral domain. Integrative programs that address multiple behaviors may be more efficient, but only if the elements of change are similar for these behaviors. The objective of this study was to examine which effective elements of school health education are similar across three particular behavioral domains. Methods A systematic review of reviews of the effectiveness of school-based health promotion programs was conducted for the domains of substance abuse, sexual behavior, and nutrition. The literature search spanned the time period between 1995 and October 2006 and included three databases, websites of review centers and backward search. Fifty-five reviews and meta-analyses met predetermined relevance and publication criteria and were included. Data was extracted by one reviewer and checked by a second reviewer. A standardized data extraction form was used, with detailed attention to effective elements pertaining to program goals, development, content, methods, facilitator, components and intensity. Two assessors rated the quality of reviews as strong, moderate or weak. We included only strong and moderate reviews in two types of analysis: one based on interpretation of conflicting results, the other on a specific vote-counting rule. Results Thirty six reviews were rated strong, 6 moderate, and 13 weak. A multitude of effective elements was identified in the included reviews and many elements were similar for two or more domains. In both types of analysis, five elements with evidence from strong reviews were found to be similar for all three domains: use of theory; addressing social influences, especially social norms; addressing cognitive-behavioral skills; training of facilitators; and multiple components. Two additional elements had positive results in all domains with the rule-based method of analysis, but had inconclusive results in at least one domain with

  2. Exploring science through science fiction

    CERN Document Server

    Luokkala, Barry B

    2014-01-01

    How does Einstein’s description of space and time compare with Dr. Who? Can James Bond really escape from an armor-plated railroad car by cutting through the floor with a laser concealed in a wristwatch? What would it take to create a fully-intelligent android, such as Star Trek’s Commander Data? How might we discover intelligent civilizations on other planets in the galaxy? Is human teleportation possible? Will our technological society ever reach the point at which it becomes lawful to discriminate on the basis of genetic information, as in the movie GATTACA? Exploring Science Through Science Fiction addresses these and other interesting questions, using science fiction as a springboard for discussing fundamental science concepts and cutting-edge science research. The book is designed as a primary text for a college-level course which should appeal to students in the fine arts and humanities as well as to science and engineering students. It includes references to original research papers, landmark scie...

  3. Conceptualising forensic science and forensic reconstruction. Part II: The critical interaction between research, policy/law and practice.

    Science.gov (United States)

    Morgan, R M

    2017-11-01

    This paper builds on the FoRTE conceptual model presented in part I to address the forms of knowledge that are integral to the four components of the model. Articulating the different forms of knowledge within effective forensic reconstructions is valuable. It enables a nuanced approach to the development and use of evidence bases to underpin decision-making at every stage of a forensic reconstruction by enabling transparency in the reporting of inferences. It also enables appropriate methods to be developed to ensure quality and validity. It is recognised that the domains of practice, research, and policy/law intersect to form the nexus where forensic science is situated. Each domain has a distinctive infrastructure that influences the production and application of different forms of knowledge in forensic science. The channels that can enable the interaction between these domains, enhance the impact of research in theory and practice, increase access to research findings, and support quality are presented. The particular strengths within the different domains to deliver problem solving forensic reconstructions are thereby identified and articulated. It is argued that a conceptual understanding of forensic reconstruction that draws on the full range of both explicit and tacit forms of knowledge, and incorporates the strengths of the different domains pertinent to forensic science, offers a pathway to harness the full value of trace evidence for context sensitive, problem-solving forensic applications. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.

  4. Fido, a novel AMPylation domain common to fic, doc, and AvrB.

    Directory of Open Access Journals (Sweden)

    Lisa N Kinch

    2009-06-01

    Full Text Available The Vibrio parahaemolyticus type III secreted effector VopS contains a fic domain that covalently modifies Rho GTPase threonine with AMP to inhibit downstream signaling events in host cells. The VopS fic domain includes a conserved sequence motif (HPFx[D/E]GN[G/K]R that contributes to AMPylation. Fic domains are found in a variety of species, including bacteria, a few archaea, and metazoan eukaryotes.We show that the AMPylation activity extends to a eukaryotic fic domain in Drosophila melanogaster CG9523, and use sequence and structure based computational methods to identify related domains in doc toxins and the type III effector AvrB. The conserved sequence motif that contributes to AMPylation unites fic with doc. Although AvrB lacks this motif, its structure reveals a similar topology to the fic and doc folds. AvrB binds to a peptide fragment of its host virulence target in a similar manner as fic binds peptide substrate. AvrB also orients a phosphate group from a bound ADP ligand near the peptide-binding site and in a similar position as a bound fic phosphate.The demonstrated eukaryotic fic domain AMPylation activity suggests that the VopS effector has exploited a novel host posttranslational modification. Fic domain-related structures give insight to the AMPylation active site and to the VopS fic domain interaction with its host GTPase target. These results suggest that fic, doc, and AvrB stem from a common ancestor that has evolved to AMPylate protein substrates.

  5. How to Motivate Science Teachers to Use Science Experiments

    Directory of Open Access Journals (Sweden)

    Josef Trna

    2012-10-01

    Full Text Available A science experiment is the core tool in science education. This study describes the science teachers' professional competence to implement science experiments in teaching/learning science. The main objective is the motivation of science teachers to use science experiments. The presented research tries to answer questions aimed at the science teachers' skills to use science experiments in teaching/learning science. The research discovered the following facts: science teachers do not include science experiments in teaching/learning in a suitable way; are not able to choose science experiments corresponding to the teaching phase; prefer teachers' demonstration of science experiments; are not able to improvise with the aids; use only a few experiments. The important research result is that an important motivational tool for science teachers is the creation of simple experiments. Examples of motivational simple experiments used into teachers' training for increasing their own creativity and motivation are presented.

  6. Theoretical Methods of Domain Structures in Ultrathin Ferroelectric Films: A Review

    Directory of Open Access Journals (Sweden)

    Jianyi Liu

    2014-09-01

    Full Text Available This review covers methods and recent developments of the theoretical study of domain structures in ultrathin ferroelectric films. The review begins with an introduction to some basic concepts and theories (e.g., polarization and its modern theory, ferroelectric phase transition, domain formation, and finite size effects, etc. that are relevant to the study of domain structures in ultrathin ferroelectric films. Basic techniques and recent progress of a variety of important approaches for domain structure simulation, including first-principles calculation, molecular dynamics, Monte Carlo simulation, effective Hamiltonian approach and phase field modeling, as well as multiscale simulation are then elaborated. For each approach, its important features and relative merits over other approaches for modeling domain structures in ultrathin ferroelectric films are discussed. Finally, we review recent theoretical studies on some important issues of domain structures in ultrathin ferroelectric films, with an emphasis on the effects of interfacial electrostatics, boundary conditions and external loads.

  7. Time-domain Green's Function Method for three-dimensional nonlinear subsonic flows

    Science.gov (United States)

    Tseng, K.; Morino, L.

    1978-01-01

    The Green's Function Method for linearized 3D unsteady potential flow (embedded in the computer code SOUSSA P) is extended to include the time-domain analysis as well as the nonlinear term retained in the transonic small disturbance equation. The differential-delay equations in time, as obtained by applying the Green's Function Method (in a generalized sense) and the finite-element technique to the transonic equation, are solved directly in the time domain. Comparisons are made with both linearized frequency-domain calculations and existing nonlinear results.

  8. The framing of scientific domains

    DEFF Research Database (Denmark)

    Dam Christensen, Hans

    2014-01-01

    domains, and UNISIST helps understanding this navigation. Design/methodology/approach The UNISIST models are tentatively applied to the domain of art history at three stages, respectively two modern, partially overlapping domains, as well as an outline of an art historical domain anno c1820...

  9. Protein domain organisation: adding order.

    Science.gov (United States)

    Kummerfeld, Sarah K; Teichmann, Sarah A

    2009-01-29

    Domains are the building blocks of proteins. During evolution, they have been duplicated, fused and recombined, to produce proteins with novel structures and functions. Structural and genome-scale studies have shown that pairs or groups of domains observed together in a protein are almost always found in only one N to C terminal order and are the result of a single recombination event that has been propagated by duplication of the multi-domain unit. Previous studies of domain organisation have used graph theory to represent the co-occurrence of domains within proteins. We build on this approach by adding directionality to the graphs and connecting nodes based on their relative order in the protein. Most of the time, the linear order of domains is conserved. However, using the directed graph representation we have identified non-linear features of domain organization that are over-represented in genomes. Recognising these patterns and unravelling how they have arisen may allow us to understand the functional relationships between domains and understand how the protein repertoire has evolved. We identify groups of domains that are not linearly conserved, but instead have been shuffled during evolution so that they occur in multiple different orders. We consider 192 genomes across all three kingdoms of life and use domain and protein annotation to understand their functional significance. To identify these features and assess their statistical significance, we represent the linear order of domains in proteins as a directed graph and apply graph theoretical methods. We describe two higher-order patterns of domain organisation: clusters and bi-directionally associated domain pairs and explore their functional importance and phylogenetic conservation. Taking into account the order of domains, we have derived a novel picture of global protein organization. We found that all genomes have a higher than expected degree of clustering and more domain pairs in forward and

  10. Protein domain organisation: adding order

    Directory of Open Access Journals (Sweden)

    Kummerfeld Sarah K

    2009-01-01

    Full Text Available Abstract Background Domains are the building blocks of proteins. During evolution, they have been duplicated, fused and recombined, to produce proteins with novel structures and functions. Structural and genome-scale studies have shown that pairs or groups of domains observed together in a protein are almost always found in only one N to C terminal order and are the result of a single recombination event that has been propagated by duplication of the multi-domain unit. Previous studies of domain organisation have used graph theory to represent the co-occurrence of domains within proteins. We build on this approach by adding directionality to the graphs and connecting nodes based on their relative order in the protein. Most of the time, the linear order of domains is conserved. However, using the directed graph representation we have identified non-linear features of domain organization that are over-represented in genomes. Recognising these patterns and unravelling how they have arisen may allow us to understand the functional relationships between domains and understand how the protein repertoire has evolved. Results We identify groups of domains that are not linearly conserved, but instead have been shuffled during evolution so that they occur in multiple different orders. We consider 192 genomes across all three kingdoms of life and use domain and protein annotation to understand their functional significance. To identify these features and assess their statistical significance, we represent the linear order of domains in proteins as a directed graph and apply graph theoretical methods. We describe two higher-order patterns of domain organisation: clusters and bi-directionally associated domain pairs and explore their functional importance and phylogenetic conservation. Conclusion Taking into account the order of domains, we have derived a novel picture of global protein organization. We found that all genomes have a higher than expected

  11. The Open Science Grid – Support for Multi-Disciplinary Team Science – the Adolescent Years

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    As it enters adolescence the Open Science Grid (OSG) is bringing a maturing fabric of Distributed High Throughput Computing (DHTC) services that supports an expanding HEP community to an increasingly diverse spectrum of domain scientists. Working closely with researchers on campuses throughout the US and in collaboration with national cyberinfrastructure initiatives, we transform their computing environment through new concepts, advanced tools and deep experience. We discuss examples of these including: the pilot-job overlay concepts and technologies now in use throughout OSG and delivering 1.4 Million CPU hours/day; the role of campus infrastructures- built out from concepts of sharing across multiple local faculty clusters (made good use of already by many of the HEP Tier-2 sites in the US); the work towards the use of clouds and access to high throughput parallel (multi-core and GPU) compute resources; and the progress we are making towards meeting the data management and access needs of non-HEP communiti...

  12. Implications of the Next Generation Science Standards for Earth and Space Sciences

    Science.gov (United States)

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Huff, K.; Lopez, R. E.; Messina, P.; Speranza, P.; Matthews, T.; Childress, J.

    2012-12-01

    The Next Generation Science Standards (NGSS), due to be released in 2013, set a new direction for K-12 science education in America. These standards will put forth significant changes for Earth and space sciences. The NGSS are based upon the recommendations of the National Research Council's 2011 report "A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas." The standards are being written by a large group of authors who represent many different constituencies, including 26 participating states, in a process led by Achieve, Inc. The standards encourage innovative ways to teach science at the K-12 level, including enhanced integration between the content, practices, and crosscutting ideas of science and greater assimilation among the sciences and engineering, and among the sciences, mathematics, and English language arts. The NGSS presents a greater emphasis on Earth and space sciences than in previous standards, recommending a year at both the middle and high school levels. The new standards also present a greater emphasis on areas of direct impact between humans and the Earth system, including climate change, natural hazards, resource management, and sustainability.

  13. The Advanced Gamma-ray Imaging System (AGIS): Extragalactic Science

    Science.gov (United States)

    Coppi, Paolo S.; Extragalactic Science Working Group; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a proposed next-generation array of Cherenkov telescopes, will provide an unprecedented view of the high energy universe. We discuss how AGIS, with its larger effective area, improved angular resolution, lower threshold, and an order of magnitude increase in sensitivity, impacts the extragalactic science possible in the very high energy domain. Likely source classes detectable by AGIS include AGN, GRBs, clusters, star-forming galaxies, and possibly the cascade radiation surrounding powerful cosmic accelerators. AGIS should see many of the sources discovered by Fermi. With its better sensitivity and angular resolution, AGIS then becomes a key instrument for identifying and characterizing Fermi survey sources, the majority of which will have limited Fermi photon statistics and localizations.

  14. ATP binding to p97/VCP D1 domain regulates selective recruitment of adaptors to its proximal N-domain.

    Directory of Open Access Journals (Sweden)

    Wei Sheng Chia

    Full Text Available p97/Valosin-containing protein (VCP is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD. It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell.

  15. ATP binding to p97/VCP D1 domain regulates selective recruitment of adaptors to its proximal N-domain.

    Science.gov (United States)

    Chia, Wei Sheng; Chia, Diana Xueqi; Rao, Feng; Bar Nun, Shoshana; Geifman Shochat, Susana

    2012-01-01

    p97/Valosin-containing protein (VCP) is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD). It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell.

  16. Shape of isolated domains in lithium tantalate single crystals at elevated temperatures

    International Nuclear Information System (INIS)

    Shur, V. Ya.; Akhmatkhanov, A. R.; Baturin, I. S.; Chezganov, D. S.; Lobov, A. I.; Smirnov, M. M.

    2013-01-01

    The shape of isolated domains has been investigated in congruent lithium tantalate (CLT) single crystals at elevated temperatures and analyzed in terms of kinetic approach. The obtained temperature dependence of the growing domain shape in CLT including circular shape at temperatures above 190 °C has been attributed to increase of relative input of isotropic ionic conductivity. The observed nonstop wall motion and independent domain growth after merging in CLT as opposed to stoichiometric lithium tantalate have been attributed to difference in wall orientation. The computer simulation has confirmed applicability of the kinetic approach to the domain shape explanation

  17. Resource Unavailability (RU) Per Domain Behavior

    NARCIS (Netherlands)

    Karagiannis, Georgios; Westberg, L.; Bader, A.; Tschofenig, Hannes; Tschofenig, H.

    2006-01-01

    This draft specifies a Per Domain Behavior that provides the ability to Diffserv nodes located outside Diffserv domain(s), e.g., receiver or other Diffserv enabled router to detect when the resources provided by the Diffserv domain(s) are not available. The unavailability of resources in the domain

  18. Harnessing implementation science to improve care quality and patient safety: a systematic review of targeted literature.

    Science.gov (United States)

    Braithwaite, Jeffrey; Marks, Danielle; Taylor, Natalie

    2014-06-01

    Getting greater levels of evidence into practice is a key problem for health systems, compounded by the volume of research produced. Implementation science aims to improve the adoption and spread of research evidence. A linked problem is how to enhance quality of care and patient safety based on evidence when care settings are complex adaptive systems. Our research question was: according to the implementation science literature, which common implementation factors are associated with improving the quality and safety of care for patients? We conducted a targeted search of key journals to examine implementation science in the quality and safety domain applying PRISMA procedures. Fifty-seven out of 466 references retrieved were considered relevant following the application of exclusion criteria. Included articles were subjected to content analysis. Three reviewers extracted and documented key characteristics of the papers. Grounded theory was used to distil key features of the literature to derive emergent success factors. Eight success factors of implementation emerged: preparing for change, capacity for implementation-people, capacity for implementation-setting, types of implementation, resources, leverage, desirable implementation enabling features, and sustainability. Obstacles in implementation are the mirror image of these: for example, when people fail to prepare, have insufficient capacity for implementation or when the setting is resistant to change, then care quality is at risk, and patient safety can be compromised. This review of key studies in the quality and safety literature discusses the current state-of-play of implementation science applied to these domains. © The Author 2014. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  19. Measuring the Value of AI in Space Science and Exploration

    Science.gov (United States)

    Blair, B.; Parr, J.; Diamond, B.; Pittman, B.; Rasky, D.

    2017-10-01

    FDL is tackling knowledge gaps useful to the space program by forming small teams of industrial partners, cutting-edge AI researchers and space science domain experts, and tasking them to solve problems that are important to NASA as well as humanity's future.

  20. The Cultural Argument for Understanding Nature of Science. A Chance to Reflect on Similarities and Differences Between Science and Humanities

    Science.gov (United States)

    Reiners, Christiane S.; Bliersbach, Markus; Marniok, Karl

    2017-07-01

    Understanding Nature of Science (NOS) is a central component of scientific literacy, which is agreed upon internationally, and consequently has been a major educational goal for many years all over the globe. In order to justify the promotion of an adequate understanding of NOS, educators have developed several arguments, among them the cultural argument. But what is behind this argument? In order to answer this question, C. P. Snow's vision of two cultures was used as a starting point. In his famous Rede Lecture from 1959, he complained about a wide gap between the arts and humanities on the one hand and sciences on the other hand. While the representatives of the humanities refer to themselves as real intellectuals, the scientists felt rather ignored as a culture, despite the fact that their achievements had been so important for Western society. Thus, Snow argued that as these intellectual cultures were completely different from each other, a mutual understanding was impossible. The first European Regional IHPST Conference took up the cultural view on science again. Thus, the topic of the conference "Science as Culture in the European Context" encouraged us to look at the two cultures and to figure out possibilities to bridge the gap between them in chemistry teacher education. For this reason, we put together three studies—one theoretical and two independent research projects (one dealing with creativity in science, the other with scientific laws and theories) which contribute to our main research field (promoting an understanding of NOS)—in order to address the cultural argument for understanding science from an educational point of view. Among the consented tenets of what understanding NOS implies in an educational context, there are aspects which are associated mainly with the humanities, like the tentativeness of knowledge, creativity, and social tradition, whereas others seem to have a domain-specific meaning, like empirical evidence, theories and laws

  1. U-Science (Invited)

    Science.gov (United States)

    Borne, K. D.

    2009-12-01

    The emergence of e-Science over the past decade as a paradigm for Internet-based science was an inevitable evolution of science that built upon the web protocols and access patterns that were prevalent at that time, including Web Services, XML-based information exchange, machine-to-machine communication, service registries, the Grid, and distributed data. We now see a major shift in web behavior patterns to social networks, user-provided content (e.g., tags and annotations), ubiquitous devices, user-centric experiences, and user-led activities. The inevitable accrual of these social networking patterns and protocols by scientists and science projects leads to U-Science as a new paradigm for online scientific research (i.e., ubiquitous, user-led, untethered, You-centered science). U-Science applications include components from semantic e-science (ontologies, taxonomies, folksonomies, tagging, annotations, and classification systems), which is much more than Web 2.0-based science (Wikis, blogs, and online environments like Second Life). Among the best examples of U-Science are Citizen Science projects, including Galaxy Zoo, Stardust@Home, Project Budburst, Volksdata, CoCoRaHS (the Community Collaborative Rain, Hail and Snow network), and projects utilizing Volunteer Geographic Information (VGI). There are also scientist-led projects for scientists that engage a wider community in building knowledge through user-provided content. Among the semantic-based U-Science projects for scientists are those that specifically enable user-based annotation of scientific results in databases. These include the Heliophysics Knowledgebase, BioDAS, WikiProteins, The Entity Describer, and eventually AstroDAS. Such collaborative tagging of scientific data addresses several petascale data challenges for scientists: how to find the most relevant data, how to reuse those data, how to integrate data from multiple sources, how to mine and discover new knowledge in large databases, how to

  2. Large Synoptic Survey Telescope: From Science Drivers to Reference Design

    Energy Technology Data Exchange (ETDEWEB)

    Ivezic, Z.; Axelrod, T.; Brandt, W.N.; Burke, D.L.; Claver, C.F.; Connolly, A.; Cook, K.H.; Gee, P.; Gilmore, D.K.; Jacoby, S.H.; Jones, R.L.; Kahn, S.M.; Kantor, J.P.; Krabbendam, V.; Lupton, R.H.; Monet, D.G.; Pinto, P.A.; Saha, A.; Schalk, T.L.; Schneider, D.P.; Strauss, Michael A.; /Washington U., Seattle, Astron. Dept. /LSST Corp. /Penn State U., Astron. Astrophys. /KIPAC, Menlo Park /NOAO, Tucson /LLNL, Livermore /UC, Davis /Princeton U., Astrophys. Sci. Dept. /Naval Observ., Flagstaff /Arizona U., Astron. Dept. - Steward Observ. /UC, Santa Cruz /Harvard U. /Johns Hopkins U. /Illinois U., Urbana

    2011-10-14

    In the history of astronomy, major advances in our understanding of the Universe have come from dramatic improvements in our ability to accurately measure astronomical quantities. Aided by rapid progress in information technology, current sky surveys are changing the way we view and study the Universe. Next-generation surveys will maintain this revolutionary progress. We focus here on the most ambitious survey currently planned in the visible band, the Large Synoptic Survey Telescope (LSST). LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: constraining dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. It will be a large, wide-field ground-based system designed to obtain multiple images covering the sky that is visible from Cerro Pachon in Northern Chile. The current baseline design, with an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg{sup 2} field of view, and a 3,200 Megapixel camera, will allow about 10,000 square degrees of sky to be covered using pairs of 15-second exposures in two photometric bands every three nights on average. The system is designed to yield high image quality, as well as superb astrometric and photometric accuracy. The survey area will include 30,000 deg{sup 2} with {delta} < +34.5{sup o}, and will be imaged multiple times in six bands, ugrizy, covering the wavelength range 320-1050 nm. About 90% of the observing time will be devoted to a deep-wide-fast survey mode which will observe a 20,000 deg{sup 2} region about 1000 times in the six bands during the anticipated 10 years of operation. These data will result in databases including 10 billion galaxies and a similar number of stars, and will serve the majority of science programs. The remaining 10% of the observing time will be allocated to special programs such as Very Deep and Very Fast time domain surveys. We describe how the

  3. Large Synoptic Survey Telescope: From science drivers to reference design

    Directory of Open Access Journals (Sweden)

    Ivezić Ž.

    2008-01-01

    Full Text Available In the history of astronomy, major advances in our understanding of the Universe have come from dramatic improvements in our ability to accurately measure astronomical quantities. Aided by rapid progress in information technology, current sky surveys are changing the way we view and study the Universe. Next- generation surveys will maintain this revolutionary progress. We focus here on the most ambitious survey currently planned in the visible band, the Large Synoptic Survey Telescope (LSST. LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: constraining dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. It will be a large, wide-field ground-based system designed to obtain multiple images covering the sky that is visible from Cerro Pachon in Northern Chile. The current baseline design, with an 8.4 m (6.5 m effective primary mirror, a 9.6 deg2 field of view, and a 3,200 Megapixel camera, will allow about 10,000 square degrees of sky to be covered using pairs of 15-second exposures in two photometric bands every three nights on average. The system is designed to yield high image quality, as well as superb astrometric and photometric accuracy. The survey area will include 30,000 deg2 with δ < +34.5◦ , and will be imaged multiple times in six bands, ugrizy, covering the wavelength range 320-1050 nm. About 90% of the observing time will be devoted to a deep- wide-fast survey mode which will observe a 20,000 deg2 region about 1000 times in the six bands during the anticipated 10 years of operation. These data will result in databases including 10 billion galaxies and a similar number of stars, and will serve the majority of science programs. The remaining 10% of the observing time will be allocated to special programs such as Very Deep and Very Fast time domain surveys. We describe how the LSST

  4. Large Synoptic Survey Telescope: From Science Drivers To Reference Design

    Directory of Open Access Journals (Sweden)

    Ivezić, Ž.

    2008-06-01

    Full Text Available In the history of astronomy, major advances in our understanding of the Universe have come from dramatic improvements in our ability to accurately measure astronomical quantities. Aided by rapid progress in information technology, current sky surveys are changing the way we view and study the Universe. Next-generation surveys will maintain this revolutionary progress. We focus here on the most ambitious survey currently planned in the visible band, the Large Synoptic Survey Telescope (LSST. LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: constraining dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. It will be a large, wide-field ground-based system designed to obtain multiple images covering the sky that is visible from Cerro Pach'{o}n in Northern Chile. The current baseline design, with an 8.4, m (6.5, m effective primary mirror, a 9.6 deg$^2$ field of view, and a 3,200 Megapixel camera, will allow about 10,000 square degrees of sky to be covered using pairs of 15-second exposures in two photometric bands every three nights on average. The system is designed to yield high image quality, as well as superb astrometric and photometric accuracy. The survey area will include 30,000 deg$^2$ with $delta<+34.5^circ$, and will be imaged multiple times in six bands, $ugrizy$, covering the wavelength range 320--1050 nm. About 90\\% of the observing time will be devoted to a deep-wide-fast survey mode which will observe a 20,000 deg$^2$ region about 1000 times in the six bands during the anticipated 10 years of operation. These data will result in databases including 10 billion galaxies and a similar number of stars, and will serve the majority of science programs. The remaining 10\\% of the observing time will be allocated to special programs such as Very Deep and Very Fast time domain surveys. We

  5. Examining the relationship between school district size and science achievement in Texas including rural school administrator perceptions of challenges and solutions

    Science.gov (United States)

    Mann, Matthew James

    Rural and small schools have almost one-third of all public school enrollment in America, yet typically have the fewest financial and research based resources. Educational models have been developed with either the urban or suburban school in mind, and the rural school is often left with no other alternative except this paradigm. Rural based educational resources are rare and the ability to access these resources for rural school districts almost non-existent. Federal and state based education agencies provide some rural educational based programs, but have had virtually no success in answering rural school issues. With federal and state interest in science initiatives, the challenge that rural schools face weigh in. To align with that focus, this study examined Texas middle school student achievement in science and its relationship with school district enrollment size. This study involved a sequential transformative mixed methodology with the quantitative phase driving the second qualitative portion. The quantitative research was a non-experimental causal-comparative study conducted to determine whether there is a significant difference between student achievement on the 2010 Texas Assessment of Knowledge and Skills 8 th grade science results and school district enrollment size. The school districts were distributed into four categories by size including: a) small districts (32-550); b) medium districts (551-1500); c) large districts (1501-6000); and d) mega-sized districts (6001-202,773). A one-way analysis of variance (ANOVA) was conducted to compare the district averages from the 2010 TAKS 8th grade science assessment results and the four district enrollment groups. The second phase of the study was qualitative utilizing constructivism and critical theory to identify the issues facing rural and small school administrators concerning science based curriculum and development. These themes and issues were sought through a case study method and through use of semi

  6. Is psychological science a-cultural?

    Science.gov (United States)

    Gone, Joseph P

    2011-07-01

    The history of psychological science, as it has intersected with ethnoracial, cultural, and other marginalized domains of group difference, is replete with disinterest, dismissal, or denigration of these diverse forms of psychological experience. This has led some to wonder whether psychological science is a-cultural, or even anti-cultural in orientation. Assessment of this provocative proposition first requires exploration of three composite questions: (1) What is culture?, (2) What is science?, and (3) What is psychological science? Based on brief consideration of these composite questions--which are remarkably complex in their own right--I argue that psychological science is not, has never been, and indeed cannot in principle be a-cultural. Instead, like all forms of knowing, psychological science emerges at particular historical moments to achieve particular goals that are motivated by particular interests. Throughout much of the history of psychological science, these goals and interests were tied to ideologically suspect agendas that contemporary psychologists are right to repudiate. The interesting question becomes whether psychology's knowledge practices can be disentangled from this earlier ideological contamination to furnish the discipline with viable methods. I propose that psychological science can in fact be so disentangled; nevertheless, the resulting methods are never adopted or deployed outside of culturally constituted interests, objectives, and motivations, thereby requiring ongoing critical engagement with the subtexts of disciplinary knowledge production. In fact, there seem to be important ways in which psychology's scientific aspirations hobble disciplinary inquiry into the human condition that has motivated multicultural psychologists to consider alternative paradigms of inquiry.

  7. Life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Day, L. (ed.)

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs. (MHB)

  8. Life sciences

    International Nuclear Information System (INIS)

    Day, L.

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs

  9. Effects of domain knowledge, working memory capacity, and age on cognitive performance: an investigation of the knowledge-is-power hypothesis.

    Science.gov (United States)

    Hambrick, David Z; Engle, Randall W

    2002-06-01

    Domain knowledge facilitates performance in many cognitive tasks. However, very little is known about the interplay between domain knowledge and factors that are believed to reflect general, and relatively stable, characteristics of the individual. The primary goal of this study was to investigate the interplay between domain knowledge and one such factor: working memory capacity. Adults from wide ranges of working memory capacity, age, and knowledge about the game of baseball listened to, and then answered questions about, simulated radio broadcasts of baseball games. There was a strong facilitative effect of preexisting knowledge of baseball on memory performance, particularly for information judged to be directly relevant to the baseball games. However, there was a positive effect of working memory capacity on memory performance as well, and there was no indication that domain knowledge attenuated this effect. That is, working memory capacity contributed to memory performance even at high levels of domain knowledge. Similarly, there was no evidence that domain knowledge attenuated age-related differences (favoring young adults) in memory performance. We discuss implications of the results for understanding proficiency in cognitive domains from an individual-differences perspective. Copyright 2001 Elsevier Science (USA).

  10. Recovering protein-protein and domain-domain interactions from aggregation of IP-MS proteomics of coregulator complexes.

    Directory of Open Access Journals (Sweden)

    Amin R Mazloom

    2011-12-01

    Full Text Available Coregulator proteins (CoRegs are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP followed by mass spectrometry (MS applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/.

  11. Fort Collins Science Center fiscal year 2010 science accomplishments

    Science.gov (United States)

    Wilson, Juliette T.

    2011-01-01

    The scientists and technical professionals at the U.S. Geological Survey (USGS), Fort Collins Science Center (FORT), apply their diverse ecological, socioeconomic, and technological expertise to investigate complicated ecological problems confronting managers of the Nation's biological resources. FORT works closely with U.S. Department of the Interior (DOI) agency scientists, the academic community, other USGS science centers, and many other partners to provide critical information needed to help answer complex natural-resource management questions. In Fiscal Year 2010 (FY10), FORT's scientific and technical professionals conducted ongoing, expanded, and new research vital to the science needs and management goals of DOI, other Federal and State agencies, and nongovernmental organizations in the areas of aquatic systems and fisheries, climate change, data and information integration and management, invasive species, science support, security and technology, status and trends of biological resources (including the socioeconomic aspects), terrestrial and freshwater ecosystems, and wildlife resources, including threatened and endangered species. This report presents selected FORT science accomplishments for FY10 by the specific USGS mission area or science program with which each task is most closely associated, though there is considerable overlap. The report also includes all FORT publications and other products published in FY10, as well as staff accomplishments, appointments, committee assignments, and invited presentations.

  12. Full waveform inversion in the frequency domain using classified time-domain residual wavefields

    Science.gov (United States)

    Son, Woohyun; Koo, Nam-Hyung; Kim, Byoung-Yeop; Lee, Ho-Young; Joo, Yonghwan

    2017-04-01

    We perform the acoustic full waveform inversion in the frequency domain using residual wavefields that have been separated in the time domain. We sort the residual wavefields in the time domain according to the order of absolute amplitudes. Then, the residual wavefields are separated into several groups in the time domain. To analyze the characteristics of the residual wavefields, we compare the residual wavefields of conventional method with those of our residual separation method. From the residual analysis, the amplitude spectrum obtained from the trace before separation appears to have little energy at the lower frequency bands. However, the amplitude spectrum obtained from our strategy is regularized by the separation process, which means that the low-frequency components are emphasized. Therefore, our method helps to emphasize low-frequency components of residual wavefields. Then, we generate the frequency-domain residual wavefields by taking the Fourier transform of the separated time-domain residual wavefields. With these wavefields, we perform the gradient-based full waveform inversion in the frequency domain using back-propagation technique. Through a comparison of gradient directions, we confirm that our separation method can better describe the sub-salt image than the conventional approach. The proposed method is tested on the SEG/EAGE salt-dome model. The inversion results show that our algorithm is better than the conventional gradient based waveform inversion in the frequency domain, especially for deeper parts of the velocity model.

  13. Apoplastic domains and sub-domains in the shoots of etiolated corn seedlings

    Science.gov (United States)

    Epel, B. L.; Bandurski, R. S.

    1990-01-01

    Light Green, an apoplastic probe, was applied to the cut mesocotyl base or to the cut coleoptile apex of etiolated seedlings of Zea mays L. cv. Silver Queen. Probe transport was measured and its tissue distribution determined. In the mesocotyl, there is an apoplastic barrier between cortex and stele. This barrier creates two apoplastic domains which are non-communicating. A kinetic barrier exists between the apoplast of the mesocotyl stele and that of the coleoptile. This kinetic barrier is not absolute and there is limited communication between the apoplasts of the two regions. This kinetic barrier effectively creates two sub-domains. In the coleoptile, there is communication between the apoplast of the vascular strands and that of the surrounding cortical tissue. No apoplastic communication was observed between the coleoptile cortex and the mesocotyl cortex. Thus, the apoplastic space of the coleoptile cortex is a sub-domain of the integrated coleoptile domain and is separate from that of the apoplastic domain of the mesocotyl cortex.

  14. Cyber indicators of compromise: a domain ontology for security information and event management

    Science.gov (United States)

    2017-03-01

    heuristics, mapping, and detection. CybOX is aimed at supporting a broad range of important cyber security domains to include [31]: • Digital...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE CYBER INDICATORS OF COMPROMISE: A DOMAIN ONTOLOGY FOR SECURITY INFORMATION AND...Distribution is unlimited. CYBER INDICATORS OF COMPROMISE: A DOMAIN ONTOLOGY FOR SECURITY INFORMATION AND EVENT MANAGEMENT Marsha D. Rowell

  15. Time- and Frequency-domain Comparisons of the Wavepiston Wave Energy Converter

    DEFF Research Database (Denmark)

    Read, Robert; Bingham, Harry

    Analysis of wave-energy converters is most frequently undertaken in the time-domain. This formulation allows the direct inclusion of nonlinear time-varying loads such as power take-off (PTO) reactions, mooring forces, and viscous drag. However, integrating the governing equations of motion...... forces arising from both the PTO reactions and the non-negligible viscous drag acting on the plate. Equivalent linear damping coeffcients are used to model these forces in the frequency domain, while they are included explicitly in the time domain. The main idea of this paper is to quantify...

  16. Building Scalable Knowledge Graphs for Earth Science

    Science.gov (United States)

    Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Zhang, Jia; Duan, Xiaoyi; Miller, J. J.; Bugbee, Kaylin; Christopher, Sundar; Freitag, Brian

    2017-01-01

    Knowledge Graphs link key entities in a specific domain with other entities via relationships. From these relationships, researchers can query knowledge graphs for probabilistic recommendations to infer new knowledge. Scientific papers are an untapped resource which knowledge graphs could leverage to accelerate research discovery. Goal: Develop an end-to-end (semi) automated methodology for constructing Knowledge Graphs for Earth Science.

  17. Science during crisis: the application of social science during major environmental crises

    Science.gov (United States)

    Machlis, Gary; Ludwig, Kris; Manfredo, Michael J.; Vaske, Jerry J.; Rechkemmer, Andreas; Duke, Esther

    2014-01-01

    Historical and contemporary experience suggests that science plays an increasingly critical role in governmental and institutional responses to major environmental crises. Recent examples include major western wildfires (2009), the Deepwater Horizon oil spill (2010), the Fukushima nuclear accident (2011), and Hurricane Sandy (2012). The application of science during such crises has several distinctive characteristics, as well as essential requirements if it is to be useful to decision makers. these include scope conditions that include coupled natural/human systems, clear statement of uncertainties and limitations, description of cascading consequences, accurate sense of place, estimates of magnitude of impacts, identification of beneficiaries and those adversely affected, clarity and conciseness, compelling visualization and presentation, capacity to speak "truth to power", and direct access to decision makers. In this chapter, we explore the role and significance of scienceincluding all relevant disciplines and focusing attention on the social sciences – in responding to major environmental crises. We explore several important questions: How is science during crisis distinctive? What social science is most useful during crises? What distinctive characteristics are necessary for social science to make meaningful contributions to emergency response and recovery? How might the social sciences be integrated into the strategic science needed to respond to future crises? The authors, both members of the Department of the Interior's innovative Strategic Sciences Group, describe broad principles of engagement as well as specific examples drawn from history, contemporary efforts (such as during the Deepwater Horizon oil spill), and predictions of environmental crises still to be confronted.

  18. DIMA 3.0: Domain Interaction Map.

    Science.gov (United States)

    Luo, Qibin; Pagel, Philipp; Vilne, Baiba; Frishman, Dmitrij

    2011-01-01

    Domain Interaction MAp (DIMA, available at http://webclu.bio.wzw.tum.de/dima) is a database of predicted and known interactions between protein domains. It integrates 5807 structurally known interactions imported from the iPfam and 3did databases and 46,900 domain interactions predicted by four computational methods: domain phylogenetic profiling, domain pair exclusion algorithm correlated mutations and domain interaction prediction in a discriminative way. Additionally predictions are filtered to exclude those domain pairs that are reported as non-interacting by the Negatome database. The DIMA Web site allows to calculate domain interaction networks either for a domain of interest or for entire organisms, and to explore them interactively using the Flash-based Cytoscape Web software.

  19. Predicting Stereotype Endorsement and Academic Motivation in Women in Science Programs: A Longitudinal Model

    Science.gov (United States)

    Delisle, Marie-Noelle; Guay, Frederic; Senecal, Caroline; Larose, Simon

    2009-01-01

    This study proposed and tested a model based on stereotype threat theory. The hypothesis is that women who are exposed to a low percentage of women in a science program are more likely to endorse the gender stereotype that science is a male domain, which will in turn undermine their autonomous academic motivation. A total of 167 women university…

  20. Domain fusion analysis by applying relational algebra to protein sequence and domain databases.

    Science.gov (United States)

    Truong, Kevin; Ikura, Mitsuhiko

    2003-05-06

    Domain fusion analysis is a useful method to predict functionally linked proteins that may be involved in direct protein-protein interactions or in the same metabolic or signaling pathway. As separate domain databases like BLOCKS, PROSITE, Pfam, SMART, PRINTS-S, ProDom, TIGRFAMs, and amalgamated domain databases like InterPro continue to grow in size and quality, a computational method to perform domain fusion analysis that leverages on these efforts will become increasingly powerful. This paper proposes a computational method employing relational algebra to find domain fusions in protein sequence databases. The feasibility of this method was illustrated on the SWISS-PROT+TrEMBL sequence database using domain predictions from the Pfam HMM (hidden Markov model) database. We identified 235 and 189 putative functionally linked protein partners in H. sapiens and S. cerevisiae, respectively. From scientific literature, we were able to confirm many of these functional linkages, while the remainder offer testable experimental hypothesis. Results can be viewed at http://calcium.uhnres.utoronto.ca/pi. As the analysis can be computed quickly on any relational database that supports standard SQL (structured query language), it can be dynamically updated along with the sequence and domain databases, thereby improving the quality of predictions over time.