WorldWideScience

Sample records for science curriculum standards

  1. Taiwanese Science and Life Technology Curriculum Standards and Earth Systems Education

    Science.gov (United States)

    Chang, Chun-Yen

    2005-01-01

    In the past several years, curriculum reform has received increasing attention from educators in many countries around the world. Recently, Taiwan has developed new Science and Life Technology Curriculum Standards (SaLTS) for grades 1-9. SaLTS features a systematic way for developing students' understanding and appreciation of…

  2. From Prescribed Curriculum to Classroom Practice: An Examination of the Implementation of the New York State Earth Science Standards

    Science.gov (United States)

    Contino, Julie; Anderson, O. Roger

    2013-01-01

    In New York State (NYS), Earth science teachers use the "National Science Education Standards" (NSES), the NYS "Learning Standards for Mathematics, Science and Technology" (NYS Standards), and the "Physical Setting/Earth Science Core Curriculum" (Core Curriculum) to create local curricula and daily lessons. In this…

  3. Evolution: Its Treatment in K-12 State Science Curriculum Standards

    Science.gov (United States)

    Lerner, L. S.

    2001-12-01

    State standards are the basis upon which states and local schools build curricula. Usually taking the form of lists of what students are expected to learn at specified grades or clusters of grades, they influence statewide examinations, textbooks, teacher education and credentialing, and other areas in which states typically exercise control over local curriculum development. State science standards vary very widely in overall quality.1,2 This is especially true in their treatment of evolution, both in the life sciences and to a somewhat lesser extent in geology and astronomy. Not surprisingly, a detailed evaluation of the treatment of evolution in state science standards3 has evoked considerably more public interest than the preceding studies of overall quality. We here consider the following questions: What constitutes a good treatment of evolution in science standards and how does one evaluate the standards? Which states have done well, and which less well? What nonscientific influences have been brought to bear on standards, for what reasons, and by whom? What strategies have been used to obscure or distort the role of evolution as the central organizing principle of the historical sciences? What are the effects of such distortions on students' overall understanding of science? What can the scientific community do to assure the publication of good science standards and to counteract attacks on good science teaching? 1. Lerner, L. S., State Science Standards: An Appraisal of Science Standards in 36 States, The Thomas B. Fordham Foundation, Washington, D.C., March 1998. 2. Lerner, L. S. et al ., The State of State Standards 2000, ibid., January 2000. 3. Lerner, L. S., Good Science, Bad Science: Teaching Evolution In the States, ibid., September 2000.

  4. The Politics of Developing and Maintaining Mathematics and Science Curriculum Content Standards. Research Monograph.

    Science.gov (United States)

    Kirst, Michael W.; Bird, Robin L.

    The movement toward math and science curriculum standards is inextricably linked with high-stakes politics. There are two major types of politics discussed in this paper: the allocation of curriculum content, and the political issues involved in systemic change. Political strategies for gaining assent to national, state, and local content…

  5. Windmills by Design: Purposeful Curriculum Design to Meet Next Generation Science Standards in a 9-12 Physics Classroom

    Science.gov (United States)

    Concannon, James; Brown, Patrick L.

    2017-01-01

    The "Next Generation Science Standards" (NGSS) challenges science teachers to think beyond specific content standards when considering how to design and implement curriculum. This lesson, "Windmills by Design," is an insightful lesson in how science teachers can create and implement a cross-cutting lesson to teach the concepts…

  6. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    Science.gov (United States)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  7. Georgia science curriculum alignment and accountability: A blueprint for student success

    Science.gov (United States)

    Reining-Gray, Kimberly M.

    Current trends and legislation in education indicate an increased dependency on standardized test results as a measure for learner success. This study analyzed test data in an effort to assess the impact of curriculum alignment on learner success as well as teacher perceptions of the changes in classroom instruction due to curriculum alignment. Qualitative and quantitative design methods were used to determine the impact of science curriculum alignment in grades 9-12. To determine the impact of science curriculum alignment from the Quality Core Curriculum (QCC) to the Georgia Performance Standards (GPS) test data and teacher opinion surveys from one Georgia School system were examined. Standardized test scores before and after curriculum alignment were analyzed as well as teacher perception survey data regarding the impact of curriculum change. A quantitative teacher perception survey was administered to science teachers in the school system to identify significant changes in teacher perceptions or teaching strategies following curriculum realignment. Responses to the survey were assigned Likert scale values for analysis purposes. Selected teachers were also interviewed using panel-approved questions to further determine teacher opinions of curriculum realignment and the impact on student success and teaching strategies. Results of this study indicate significant changes related to curriculum alignment. Teachers reported a positive change in teaching strategies and instructional delivery as a result of curriculum alignment and implementation. Student scores also showed improvement, but more research is recommended in this area.

  8. An overview of conceptual understanding in science education curriculum in Indonesia

    Science.gov (United States)

    Widiyatmoko, A.; Shimizu, K.

    2018-03-01

    The purpose of this article is to discuss the term of “conceptual understanding” in science education curriculum in Indonesia. The implementation of 2013 Curriculum focuses on the acquisition of contextual knowledge in respective areas and environments. The curriculum seeks to develop students' evaluation skills in three areas: attitude, technical skills, and scientific knowledge. It is based on two layers of competencies: core and basic competencies. The core competencies in the curriculum 2013 represent the ability level to achieve the gradute competency standards of a students at each grade level. There are four mandatory core competencies for all educational levels and all subjects including science, which are spiritual, social, knowledge and skills competencies. In terms of knowledge competencies, conceptual understanding is an inseparable part of science concept since conceptual understanding is one of the basic competencies in science learning. This competency is a part of science graduation standard indicated in MoEC article number 20 in 2016. Therefore, conceptual understanding is needed by students for learning science successfully.

  9. Rad World -- computer-animated video radiation and hazardous waste-management science curriculum

    International Nuclear Information System (INIS)

    Powell, B.

    1996-01-01

    The Rad World computer-animated video and curriculum materials were developed through a grant from the Waste-management Education and Research Consortium. The package, which includes a computer-animated video, hands-on activities, and multidisciplinary lessons concerning radiation and hazardous-waste management, was created to approach these subjects in an informative, yet entertaining, manner. The lessons and video, designed to supplement studies of energy and physical science at the middle school and high school level, also implement quality and consistent science education as outlined by the New Mexico Science Standards and Benchmarks (1995). Consistent with the curriculum standards and benchmarks, the curriculum includes library research, collaborative learning, hands-on-science, and discovery learning. Pre- and post-tests are included

  10. A comparative analysis of Science-Technology-Society standards in elementary, middle and high school state science curriculum frameworks

    Science.gov (United States)

    Tobias, Karen Marie

    An analysis of curriculum frameworks from the fifty states to ascertain the compliance with the National Science Education Standards for integrating Science-Technology-Society (STS) themes is reported within this dissertation. Science standards for all fifty states were analyzed to determine if the STS criteria were integrated at the elementary, middle, and high school levels of education. The analysis determined the compliance level for each state, then compared each educational level to see if the compliance was similar across the levels. Compliance is important because research shows that using STS themes in the science classroom increases the student's understanding of the concepts, increases the student's problem solving skills, increases the student's self-efficacy with respect to science, and students instructed using STS themes score well on science high stakes tests. The two hypotheses for this study are: (1) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school levels. (2) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school level when examined individually. The Analysis of Variance F ratio was used to determine the variance between and within the three educational levels. This analysis addressed hypothesis one. The Analysis of Variance results refused to reject the null hypothesis, meaning there is significant difference in the compliance to STS themes between the elementary, middle and high school educational levels. The Chi-Square test was the statistical analysis used to compare the educational levels for each individual criterion. This analysis addressed hypothesis two. The Chi-Squared results showed that none of the states were equally compliant with each

  11. The Next Generation Science Standards: A Focus on Physical Science

    Science.gov (United States)

    Krajcik, Joe

    2013-01-01

    This article describes ways to adapt U.S. science curriculum to the U.S. National Research Council (NRC) "Framework for K-12 Science Education" and "Next Generation of Science Standards" (NGSS), noting their focus on teaching the physical sciences. The overall goal of the Framework and NGSS is to help all learners develop the…

  12. Interdisciplinary Climate Change Curriculum Materials based on the Next Generation Science Standards and The Earth Charter

    Science.gov (United States)

    Barbosa, A.; Robertson, W. H.

    2013-12-01

    In the 2012, the National Research Council (NRC) of the National Academies' reported that one of the major issues associated with the development of climate change curriculum was the lack of interdisciplinary materials that also promoted a correlation between science standards and content. Therefore, in order to respond to this need, our group has developed an interdisciplinary climate change curriculum that has had as its fundamental basis the alignment with the guidelines presented by the Next Generation Science Standards (NGSS) and the ones presented by the international document entitled The Earth Charter. In this regards, while the alignment with NGSS disciplinary core ideas, cross-concepts and students' expectations intended to fulfill the need for the development of climate change curriculum activities that were directly associated with the appropriate set of NGSS guidelines, the alignment with The Earth Charter document intended to reinforce the need the for the integration of sociological, philosophical and intercultural analysis of the theme 'climate change'. Additionally, our curriculum was also developed as part of a collaborative project between climate scientists and engineers, who are responsible for the development of a Regional Arctic Simulation Model (RASM). Hence, another important curriculum constituent was the feedback, suggestions and reviews provided by these professionals, who have also contributed to these pedagogical materials' scientific accuracy by facilitating the integration of datasets and visualizations developed by RASM. Furthermore, our group has developed a climate change curriculum for two types of audience: high school and early undergraduate students. Each curriculum unit is divided into modules and each module contains a set of lesson plans. The topics selected to compose each unit and module were designated according to the surveys conducted with scientists and engineers involved with the development of the climate change

  13. Professional Learning Communities (PLCs) as a Means for School-Based Science Curriculum Change

    Science.gov (United States)

    Browne, Christi L.

    The challenge of school-based science curriculum change and educational reform is often presented to science teachers and departments who are not necessarily prepared for the complexity of considerations that change movements require. The development of a Professional Learning Community (PLC) focused on a science department's curriculum change efforts, may provide the necessary tools to foster sustainable school-based curriculum science changes. This research presents a case study of an evolving science department PLC consisting of 10 middle school science teachers from the same middle school and their efforts of school-based science curriculum change. A transformative mixed model case study with qualitative data and deepened by quantitative analysis, was chosen to guide the investigation. Collected data worked to document the essential developmental steps, the occurrence and frequency of the five essential dimensions of successful PLCs, and the influences the science department PLC had on the middle school science department's progression through school-based science curriculum change, and the barriers, struggles and inhibiting actions of the science department PLC. Findings indicated that a science department PLC was unique in that it allowed for a focal science departmental lens of science curriculum change to be applied to the structure and function of the PLC and therefore the process, proceedings, and results were directly aligned to and driven by the science department. The science PLC, while logically difficult to set-up and maintain, became a professional science forum where the middle school science teachers were exposed to new science teaching and learning knowledge, explored new science standards, discussed effects on student science learning, designed and critically analyzed science curriculum change application. Conclusions resulted in the science department PLC as an identified tool providing the ability for science departmental actions to lead to

  14. Application of the Reggio Emilia Approach to Early Childhood Science Curriculum.

    Science.gov (United States)

    Stegelin, Dolores A.

    2003-01-01

    This article focuses on the relevance of the Reggio Emilia approach to early childhood education for science knowledge and content standards for the preK-12 student population. The article includes: (1) a summary of key concepts; (2) a description of the science curriculum standards for K-3 in the United States; and (3) an example of an in-depth…

  15. Design of the Information Science and Systems (IS Curriculum in a Computer and Information Sciences Department

    Directory of Open Access Journals (Sweden)

    Behrooz Seyed-Abbassi

    2004-12-01

    Full Text Available Continuous technological changes have resulted in a rapid turnover of knowledge in the computing field. The impact of these changes directly affects the computer-related curriculum offered by educational institutions and dictates that curriculum must evolve to keep pace with technology and to provide students with the skills required by businesses. At the same time, accreditations of curricula from reviewing organizations provide additional guidelines and standardization for computing science as well as information science programs. One of the areas significantly affected by these changes is the field of information systems. This paper describes the evaluation and course structure for the undergraduate information science and systems program in the Computer and Information Sciences Department at the University of North Florida. A list of the major required and elective courses as well as an overview of the challenges encountered during the revision of the curriculum is given.

  16. Surviving the Implementation of a New Science Curriculum

    Science.gov (United States)

    Lowe, Beverly; Appleton, Ken

    2015-12-01

    Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2 years getting to know the new science curriculum through meetings, training, and exploring the new Australian curriculum documents. This article examines the support and preparation for implementation provided in two regional schools, with a closer look at six specific teachers and their science teaching practices as they attempted to implement the new science curriculum. The use of a survey, field observations, and interviews revealed the schools' preparation practices and the teachers' practices, including the support provided to implement the new science curriculum. A description and analysis of school support and preparation as well as teachers' views of their experiences implementing the new science curriculum reveal both achievements and shortcomings. Problematic issues for the two schools and teachers include time to read and comprehend the curriculum documents and content expectations as well as time to train and change the current processes effectively. The case teachers' experiences reveal implications for the successful and effective implementation of new curriculum and curriculum reform.

  17. Curriculum Implementation and Reform: Teachers' Views about Kuwait's New Science Curriculum

    Science.gov (United States)

    Alshammari, Ahmad

    2013-01-01

    The MoE (Ministry of Education) in the state of Kuwait is starting to reform the science curriculum in all school academic stages: primary (1-5) grades, intermediate (6-9) grades, and secondary (10-12) grades. The purpose of this study was to explore the opinions of science teachers about Kuwait's new sixth and seventh grade science curriculum,…

  18. Questioning the Fidelity of the "Next Generation Science Standards" for Astronomy and Space Sciences Education

    Science.gov (United States)

    Slater, Stephanie J.; Slater, Timothy F.

    2015-01-01

    Although the Next Generation Science Standards (NGSS) are not federally mandated national standards or performance expectations for K-12 schools in the United States, they stand poised to become a de facto national science and education policy, as state governments, publishers of curriculum materials, and assessment providers across the country…

  19. A Substantiation of Macdonald's Models in Science Curriculum Development.

    Science.gov (United States)

    Searles, W. E.

    1982-01-01

    A history and analysis of science curriculum development is presented. Factors which influence the selection and organization of content in a science curriculum are discussed, including Macdonald's curriculum development models, propositions for curriculum development, and changes made in science curricula during the last century. (CJ)

  20. Leading Change in the Primary Science Curriculum

    Science.gov (United States)

    Waller, Nicky; Baker, Chris

    2014-01-01

    Nicky Waller and Chris Baker believe that change can be a good thing and explain how their training has helped others to adjust to the new science curriculum. In September 2013, teachers across England received the definitive version of the new primary curriculum "Leading Change in the Primary Science Curriculum." This course aimed to…

  1. Uncovering Portuguese teachers’ difficulties in implementing sciences curriculum

    Directory of Open Access Journals (Sweden)

    Clara Vasconcelos

    2015-12-01

    Full Text Available Many countries recognize the positive and effective results of improving science education through the introduction of reforms in the sciences curriculum. However, some important issues are generally neglected like, for example, the involvement of the teachers in the reform process. Taking the sciences curriculum reform under analysis and benefitting from 10 years of teachers’ experiences in teaching sciences based on this curriculum, 19 semi-structure interviews were applied so as to identify the major difficulties felt by science teachers when implementing the Portuguese sciences curriculum in the third cycle of middle school (pupils’ age range of 12–15. Some of the difficulties depicted by the data analysis include: length of the curriculum, lack of time, unsuitable laboratory facilities, insufficient means and materials for experimental work, pupils’ indiscipline and little interest in learning sciences. Although less frequently mentioned, the lack of professional development was also referred to as a constraint that seems to play an essential role in this process. Some recommendations for improving the success of sciences curriculum reforms’ implementation are given: defining and conceptualizing curricular policies by relating the reality of both the schools and the science classrooms; reorganizing and restructuring pre-service teachers’ courses; organizing professional development courses for in-service teachers.

  2. Earth Science for Educators: Preparing 7-12 Teachers for Standards-based, Inquiry Instruction

    Science.gov (United States)

    Sloan, H.

    2002-05-01

    "Earth Science for Educators" is an innovative, standards-based, graduate level teacher education curriculum that presents science content and pedagogic technique in parallel. The curriculum calls upon the resources and expertise of the American Museum of Natural History (AMNH) to prepare novice New York City teachers for teaching Earth Science. One of the goals of teacher education is to assure and facilitate science education reform through preparation of K-12 teachers who understand and are able to implement standard-based instruction. Standards reflect not only the content knowledge students are expected to attain but also the science skills and dispositions towards science they are expected to develop. Melding a list of standards with a curriculum outline to create inquiry-based classroom instruction that reaches a very diverse population of learners is extremely challenging. "Earth Science for Educators" helps novice teachers make the link between standards and practice by constantly connecting standards with instruction they receive and activities they carry out. Development of critical thinking and enthusiasm for inquiry is encouraged through engaging experience and contact with scientists and their work. Teachers are taught Earth systems science content through modeling of a wide variety of instruction and assessment methods based upon authentic scientific inquiry and aimed at different learning styles. Use of fieldwork and informal settings, such as the Museum, familiarizes novice teachers with ways of drawing on community resources for content and instructional settings. Metacognitive reflection that articulates standards, practice, and the teachers' own learning experience help draw out teachers' insights into their students' learning. The innovation of bring science content together with teaching methods is key to preparing teachers for standards-based, inquiry instruction. This curriculum was successfully piloted with a group of 28 novice teachers as

  3. Water Pollution, Environmental Science Curriculum Guide Supplement.

    Science.gov (United States)

    McKenna, Harold J.

    This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers…

  4. Story - Science - Solutions: A new middle school science curriculum that promotes climate-stewardship

    Science.gov (United States)

    Cordero, E.; Centeno Delgado, D. C.

    2017-12-01

    Over the last five years, Green Ninja has been developing educational media to help motivate student interest and engagement around climate science and solutions. The adoption of the Next Generation Science Standards (NGSS) offers a unique opportunity where schools are changing both what they teach in a science class and how they teach. Inspired by the new emphasis in NGSS on climate change, human impact and engineering design, Green Ninja developed a technology focused, integrative, and yearlong science curriculum (6th, 7th and 8th grade) focused broadly around solutions to environmental problems. The use of technology supports the development of skills valuable for students, while also offering real-time metrics to help measure both student learning and environmental impact of student actions. During the presentation, we will describe the design philosophy around our middle school curriculum and share data from a series of classes that have created environmental benefits that transcend the traditional classroom. The notion that formal education, if done correctly, can be leveraged as a viable climate mitigation strategy will be discussed.

  5. Teaching Grade Eight Science with Reference to the Science Curriculum

    Directory of Open Access Journals (Sweden)

    Rasel Babu

    2016-08-01

    Full Text Available A mixed methodological approach was used to explore to what extent the science curriculum was being reflected in science teaching-learning of grade VIII students in Bangladesh. 160 students were randomly selected and 10 science teachers were purposively selected as study respondents. Fifteen science lessons were observed. Data were collected via student questionnaires, teacher interviews, and classroom observation checklists. Grade VIII science teaching-learning activities were not conducted according to the instructions of the science curriculum. Most teachers did not adhere to the curriculum and teacher's guide. Teachers mainly depended on lecture methods for delivering lessons. Learning by doing, demonstrating experiments, scientific inquiry, rational thinking, and analysing cause-effect relationships were noticeably absent. Teachers reported huge workloads and a lack of ingredients as reasons for not practising these activities. Teachers did not use teaching aids properly. Science teaching-learning was fully classroom centred, and students were never involved in any creative activities. 

  6. Science in Hawaii/Haawina Hoopapau: A Culturally Responsive Curriculum Project

    Science.gov (United States)

    Galloway, L. M.; Roberts, K.; Leake, D. W.; Stodden, R. S.; Crabbe, V.

    2005-12-01

    The marvels of modern science often fail to engage indigenous students, as the content and instructional style are usually rooted in the Western experience. This 3 year project, funded by the US Dept. of Education for the Education of Native Hawaiians, offers a curriculum that teaches science through (rather than just about) Native Hawaiian culture. The curriculum focuses on the interdependence of natural resources in our ahupuaa, or watersheds, and helps students strengthen their sense of place and self to malama i ka aina, to care for the land. Further, the curriculum is designed to: engage students in scientific study with relevant, interesting content and activities; improve student achievement of state department of education standards; increase student knowledge and skills in science, math and language arts; respond to the learning needs of Native Hawaiian and/or at-risk students. The project will be presented by a curriculum writer who created and adapted more than a year's worth of materials by teaming with kupuna (respected elders), local cultural experts and role models, educators (new, veteran, Hawaiian, non-Hawaiian, mainland, general and special education teachers), and professionals at the Center on Disability Studies at the University of Hawaii and ALU LIKE, Inc, a non-profit organization to assist Native Hawaiians. The materials created thus far are available for viewing at: www.scihi.hawaii.edu The curriculum, designed for grades 8-11 science classes, can be used to teach a year-long course, a unit, or single lesson related to astronomy, biology, botany, chemistry, geology, oceanography, physical and environmental sciences. This project is in its final year of field testing, polishing and dissemination, and therefore this session will encourage idea sharing, as does our copyright free Web site.

  7. Earth & Space Science in the Next Generation Science Standards: Promise, Challenge, and Future Actions. (Invited)

    Science.gov (United States)

    Pyle, E. J.

    2013-12-01

    The Next Generation Science Standards (NGSS) are a step forward in ensuring that future generations of students become scientifically literate. The NGSS document builds from the National Science Education Standards (1996) and the National Assessment of Educational Progress (NAEP) science framework of 2005. Design teams for the Curriculum Framework for K-12 Science Education were to outline the essential content necessary for students' science literacy, considering the foundational knowledge and the structure of each discipline in the context of learning progressions. Once draft standards were developed, two issues emerged from their review: (a) the continual need to prune 'cherished ideas' within the content, such that only essential ideas were represented, and (b) the potential for prior conceptions of Science & Engineering Practices (SEP) and cross-cutting concepts (CCC) to limit overly constrain performance expectations. With the release of the NGSS, several challenges are emerging for geoscience education. First, the traditional emphasis of Earth science in middle school has been augmented by new standards for high school that require major syntheses of concepts. Second, the integration of SEPs into performance expectations places an increased burden on teachers and curriculum developers to organize instruction around the nature of inquiry in the geosciences. Third, work is needed to define CCCs in Earth contexts, such that the unique structure of the geosciences is best represented. To ensure that the Earth & Space Science standards are implemented through grade 12, two supporting structures must be developed. In the past, many curricular materials claimed that they adhered to the NSES, but in some cases this match was a simple word match or checklist that bore only superficial resemblance to the standards. The structure of the performance expectations is of sufficient sophistication to ensure that adherence to the standards more than a casual exercise. Claims

  8. Energy Transformation: Teaching Youth about Energy Efficiency while Meeting Science Essential Standards

    Science.gov (United States)

    Kirby, Sarah D.; Chilcote, Amy G.

    2014-01-01

    This article describes the Energy Transformation 4-H school enrichment curriculum. The curriculum addresses energy efficiency and conservation while meeting sixth-grade science essential standards requirements. Through experiential learning, including building and testing a model home, youth learn the relationship between various technologies and…

  9. Curriculum-Dependent and Curriculum-Independent Factors in Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Science

    Science.gov (United States)

    Forbes, Cory T.

    2013-01-01

    In this nested mixed methods study I investigate factors influencing preservice elementary teachers' adaptation of science curriculum materials to better support students' engagement in science as inquiry. Analyses focus on two "reflective teaching assignments" completed by 46 preservice elementary teachers in an undergraduate elementary science…

  10. K-6 Science Curriculum.

    Science.gov (United States)

    Blueford, J. R.; And Others

    A unified science approach is incorporated in this K-6 curriculum mode. The program is organized into six major cycles. These include: (1) science, math, and technology cycle; (2) universe cycle; (3) life cycle; (4) water cycle; (5) plate tectonics cycle; and (6) rock cycle. An overview is provided of each cycle's major concepts. The topic…

  11. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    Science.gov (United States)

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  12. An Exploratory Analysis of a Middle School Science Curriculum: Implications for Students with Learning Disabilities

    Science.gov (United States)

    Taylor, Gregory S.; Hord, Casey

    2016-01-01

    An exploratory study of a middle school curriculum directly aligned with the Next Generation Science Standards was conducted with a focus on how the curriculum addresses the instructional needs of students with learning disabilities. A descriptive analysis of a lesson on speed and velocity was conducted and implications discussed for students with…

  13. On track for success: an innovative behavioral science curriculum model.

    Science.gov (United States)

    Freedy, John R; Carek, Peter J; Dickerson, Lori M; Mallin, Robert M

    2013-01-01

    This article describes the behavioral science curriculum currently in place at the Trident/MUSC Family Medicine Residency Program. The Trident/MUSC Program is a 10-10-10 community-based, university-affiliated program in Charleston, South Carolina. Over the years, the Trident/MUSC residency program has graduated over 400 Family Medicine physicians. The current behavioral science curriculum consists of both required core elements (didactic lectures, clinical observation, Balint groups, and Resident Grand Rounds) as well as optional elements (longitudinal patient care experiences, elective rotations, behavioral science editorial experience, and scholars project with a behavioral science focus). All Trident/MUSC residents complete core behavioral science curriculum elements and are free to participate in none, some, or all of the optional behavioral science curriculum elements. This flexibility allows resident physicians to tailor the educational program in a manner to meet individual educational needs. The behavioral science curriculum is based upon faculty interpretation of existing "best practice" guidelines (Residency Review Committee-Family Medicine and AAFP). This article provides sufficient curriculum detail to allow the interested reader the opportunity to adapt elements of the behavioral science curriculum to other residency training programs. While this behavioral science track system is currently in an early stage of implementation, the article discusses track advantages as well as future plans to evaluate various aspects of this innovative educational approach.

  14. Science Curriculum Components Favored by Taiwanese Biology Teachers

    Science.gov (United States)

    Lin, Chen-Yung; Hu, Reping; Changlai, Miao-Li

    2005-09-01

    The new 1-9 curriculum framework in Taiwan provides a remarkable change from previous frameworks in terms of the coverage of content and the powers of teachers. This study employs a modified repertory grid technique to investigate biology teachers' preferences with regard to six curriculum components. One hundred and eighty-five in-service and pre-service biology teachers were asked to determine which science curriculum components they liked and disliked most of all to include in their biology classes. The data show that the rank order of these science curriculum components, from top to bottom, was as follows: application of science, manipulation skills, scientific concepts, social/ethical issues, problem-solving skills, and the history of science. They also showed that pre-service biology teachers, as compared with in-service biology teachers, favored problem-solving skills significantly more than manipulative skills, while in-service biology teachers, as compared with pre-service biology teachers, favored manipulative skills significantly more than problem-solving skills. Some recommendations for ensuring the successful implementation of the Taiwanese 1-9 curriculum framework are also proposed.

  15. Science Curriculum Guide, Level 4.

    Science.gov (United States)

    Newark School District, DE.

    The fourth of four levels in a K-12 science curriculum is outlined. In Level 4 (grades 9-12), science areas include earth science, biology, chemistry, and physics. Six major themes provide the basis for study in all levels (K-12). These are: Change, Continuity, Diversity, Interaction, Limitation, and Organization. In Level 4, all six themes are…

  16. Interior Design Standards in the Secondary FCS Curriculum

    Science.gov (United States)

    Katz, Shana H.; Smith, Bettye P.

    2006-01-01

    This article deals with a study on interior design standards in the secondary FCS curriculum. This study assessed the importance FCS teachers placed on content standards in the interior design curriculum to help determine the amount of time and emphasis to place on the units within the courses. A cover letter and questionnaire were sent…

  17. Improving the Science Curriculum with Bioethics.

    Science.gov (United States)

    Lundmark, Cathy

    2002-01-01

    Explains the importance of integrating bioethics into the science curriculum for student learning. Introduces a workshop designed for middle and high school science teachers teaching bioethics, its application to case studies, and how teachers can fit bioethics into their classroom. (YDS)

  18. Shifting Gears: Standards, Assessments, Curriculum, & Instruction.

    Science.gov (United States)

    Dougherty, Eleanor

    This book is designed to help educators move from a system that measures students against students to one that values mastery of central concepts and skills, striving for proficiency in publicly acknowledged standards of academic performance. It aims to connect the operative parts of standards-based education (standards, assessment, curriculum,…

  19. The South Carolina Amazing Coast Program: Using Ocean Sciences to Address Next Generation Science Standards in Grades 3-5

    Science.gov (United States)

    Bell, E. V.; Thomas, C.; Weiss, B.; Bliss, A.; Spence, L.

    2013-12-01

    The Next Generation Science Standards (NGSS) are more inclusive of ocean sciences than the National Science Standards and respective state science standards. In response, the Center for Ocean Sciences Education Excellence-SouthEast (COSEE SE) is piloting the South Carolina's Amazing Coast (SCAC) program: a three-year initiative that incorporates ocean science concepts in grades 3-5 with the goals of addressing NGSS, STEM (science-technology-engineering-math) disciplines, and inquiry skills. The SCAC program targeted two Charleston County, South Carolina elementary schools that were demographically similar: Title 1 status (75% free or reduced lunch), > 90% African American student population, grade level size inquiry skills. Specifically, third grade students learn about coastal habitats, animal and plant adaptations, and human impacts to the environment, and engage in a salt marsh restoration capstone project. This part of the curriculum aligns with the NGSS Core Ideas 3-LS1, 3-LS3, 3-LS4, 3-ESS3. The fourth grade students learn about weather, organism responses to the environment, and engage in a weather buoy construction capstone project. This part of the curriculum aligns with the NGSSS Core Ideas 4-LS1, 4-ESS2, 4-ESS3, 3-5-ETS1. In 5th grade, students focus specifically on the ocean ecosystem, human impacts on the environment and engage in a capstone project of designing and constructing remotely operated vehicles. This part of the curriculum aligns with NGSS Core Ideas 5-PS2, 5-LS1, 5-LS2, 5-ESS2, 3-5-ETS1. Initial evaluation results indicate that the SCAC teachers value the coach mentor approach for teacher professional development as well as the impact of field based experiences, place-based learning, and a culminating capstone project on student learning. Teacher feedback also indicates elements of sustainability that extend beyond the scope of the pilot project.These initial evaluation results poise the SCAC curriculum to be replicated in other

  20. Work-Based Curriculum to Broaden Learners' Participation in Science: Insights for Designers

    Science.gov (United States)

    Bopardikar, Anushree; Bernstein, Debra; Drayton, Brian; McKenney, Susan

    2018-05-01

    Around the globe, science education during compulsory schooling is envisioned for all learners regardless of their educational and career aspirations, including learners bound to the workforce upon secondary school completion. Yet, a major barrier in attaining this vision is low learner participation in secondary school science. Because curricula play a major role in shaping enacted learning, this study investigated how designers developed a high school physics curriculum with positive learning outcomes in learners with varied inclinations. Qualitative analysis of documents and semistructured interviews with the designers focused on the curriculum in different stages—from designers' ideas about learning goals to their vision for enactment to the printed materials—and on the design processes that brought them to fruition. This revealed designers' emphases on fostering workplace connections via learning goals and activities, and printed supports. The curriculum supported workplace-inspired, hands-on design-and-build projects, developed to address deeply a limited set of standards aligned learning goals. The curriculum also supported learners' interactions with relevant workplace professionals. To create these features, the designers reviewed other curricula to develop vision and printed supports, tested activities internally to assess content coverage, surveyed states in the USA receiving federal school-to-work grants and reviewed occupational information to choose unit topics and career contexts, and visited actual workplaces to learn about authentic praxis. Based on the worked example, this paper offers guidelines for designing work-based science curriculum products and processes that can serve the work of other designers, as well as recommendations for research serving designers and policymakers.

  1. Increasing ocean sciences in K and 1st grade classrooms through ocean sciences curriculum aligned to A Framework for K-12 Science Education, and implementation support.

    Science.gov (United States)

    Pedemonte, S.; Weiss, E. L.

    2016-02-01

    Ocean and climate sciences are rarely introduced at the early elementary levels. Reasons for this vary, but include little direct attention at the national and state levels; lack of quality instructional materials; and, lack of teacher content knowledge. Recent recommendations by the National Research Council, "revise the Earth and Space sciences core ideas and grade band endpoints to include more attention to the ocean whenever possible" (NRC, 2012, p. 336) adopted in the Next Generation Science Standards (NGSS), may increase the call for ocean and climate sciences to be addressed. In response to these recommendations' and the recognition that an understanding of some of the Disciplinary Core Ideas (DCIs) would be incomplete without an understanding of processes or phenomena unique to the ocean and ocean organisms; the ocean Literacy community have created documents that show the alignment of NGSS with the Ocean Literacy Principles and Fundamental Concepts (Ocean Literacy, 2013) as well as the Ocean Literacy Scope and Sequence for Grades K-12 (Ocean Literacy, 2010), providing a solid argument for how and to what degree ocean sciences should be part of the curriculum. However, the percentage of science education curricula focused on the ocean remains very low. This session will describe a new project, that draws on the expertise of curriculum developers, ocean literacy advocates, and researchers to meet the challenges of aligning ocean sciences curriculum to NGSS, and supporting its implementation. The desired outcomes of the proposed project are to provide a rigorous standards aligned curricula that addresses all of the Life Sciences, and some Earth and Space Sciences and Engineering Design Core Ideas for Grades K and 1; and provides teachers with the support they need to understand the content and begin implementation. The process and lessons learned will be shared.

  2. Measuring Science Curriculum Improvement Study Teachers' Attitudinal Changes Toward Science.

    Science.gov (United States)

    Hovey, Larry Michael

    Investigated were three questions related to the relationship between a science teacher's attitude regarding the use of a newer science program, in this instance the Science Curriculum Improvement Study (SCIS): (1) Could the Projective Tests of Attitudes, originally designed for fifth-grade students, be modified for use with adults? (2) Is there a…

  3. Teachers' sense-making of curriculum structures and its impact on the implementation of an innovative reform-based science curriculum

    Science.gov (United States)

    Beckford-Smart, Meredith

    This study discusses the social interactions involved in teachers' enactment and use of new science curricula. The teachers studied participated in the LiFE program, a university-school partnership, which is an inquiry based science and nutrition education program. In this program fifth and sixth grade students learned science through the study of food. The program used the study of food and food systems to teach life sciences and nutrition through inquiry based studies. Through the partnership teachers received professional development which aimed to deepen their conceptual understandings of life science and develop skills in implementing inquiry-base teaching. Using qualitative research methods of ethnography and narrative inquiry to study teachers' sense-making of messages from curriculum structures, the intention was to explore how teachers' sense-making of these structures guided their classroom practices. Two research questions were addressed: (a) How do teachers make sense of curriculum given their perceptions, their school context and their curricular context; (b) What influence do their identities as science teachers/learners have on their enactment of an innovative science curriculum. I used comparative analysis to examine teacher's beliefs and identities as teachers/learners. In the process of studying these teachers an understanding of how teachers' stories and identities shape their use and enactment of science curriculum came to light. The initial analysis revealed four distinct teacher identities: (a) social responsibility teacher/learner; (b) experiential teacher/learner; (c) supportive institution teacher/learner; and (d) turning point teacher. Besides these distinct teacher identities three cross cutting themes emerged: (a) creating environments conducive to their teaching visions; (b) empowering student through science teaching; and (c) dealing with the uncertainty of teaching. The information gathered from this study will illuminate how these

  4. Grade 6 Science Curriculum Specifications.

    Science.gov (United States)

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    This material describes curriculum specifications for grade 6 science in Alberta. Emphases recommended are: (1) process skills (50%); (2) psychomotor skills (10%); (3) attitudes (10%); and (4) subject matter (30%). Priorities within each category are identified. (YP)

  5. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    Science.gov (United States)

    Halversen, C.; Weiss, E. L.; Pedemonte, S.

    2016-02-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, few high quality curriculum materials exist that address climate change in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8: The Ocean-Atmosphere Connection and Climate Change (OSS) addresses this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. OSS was developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified curriculum development team. Scientists were active partners throughout the entire development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. The goal was to focus strategically and effectively on core concepts within ocean and climate sciences that students should understand. OSS was designed in accordance with the latest research from the learning sciences and provides numerous opportunities for students to develop facility with science practices by "doing" science.Through hands-on activities, technology, informational readings, and embedded assessments, OSS deeply addresses a significant number of standards from the Next Generation Science Standards and is being used by many teachers as they explore the shifts required by NGSS. It also aligns with the Ocean Literacy and Climate Literacy Frameworks. OSS comprises 33 45-minute sessions organized into three thematic units, each driven by an exploratory question: (1) How do the ocean and atmosphere

  6. Shifts in funding for science curriculum design and their (unintended) consequences

    NARCIS (Netherlands)

    Pareja Roblin, Natalie; Schunn, Christian; Bernstein, Debra; McKenney, Susan

    2016-01-01

    Federal agencies in the Unites States invest heavily in the development of science curriculum materials, which can significantly facilitate science education reform. The current study describes the characteristics of K-12 science curriculum materials produced by federally funded projects between

  7. A statistical analysis of the characteristics of the intended curriculum for Japanese primary science and its relationship to the attained curriculum

    Directory of Open Access Journals (Sweden)

    Kenji Matsubara

    2016-08-01

    Full Text Available Abstract This study statistically investigates the characteristics of the intended curriculum for Japanese primary science, focusing on the learning content. The study used the TIMSS 2011 Grade 4 Curriculum Questionnaire data as a major source for the learning content prescribed at the national level. Confirmatory factor analysis was used to determine the extent to which a topic area was covered, as compared to the average among the 59 TIMSS 2011 participating countries. The study revealed that the topic areas of “Human Health” and “Changes in Environments,” both in the life science domain, showed statistically less coverage in the Japanese primary science curriculum when compared to the international average. Furthermore, in discussion, the study relates the characteristics found in the intended curriculum to those in the attained curriculum, examining the percent correct statistics for relevant items from the science assessment. Based on these findings, the study proposes two recommendations for revision of the Japanese primary science curriculum.

  8. chemistry syllabus of the nigeria science curriculum

    African Journals Online (AJOL)

    Preferred Customer

    The senior secondary two chemistry course content of the Nigerian science curriculum was assessed ... of the students. In Nigeria, the need to re-examine both what to teach in science and how to teach it led ..... primary school. Our industries ...

  9. Horizontal integration of the basic sciences in the chiropractic curriculum.

    Science.gov (United States)

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  10. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    Science.gov (United States)

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  11. Language games: Christian fundamentalism and the science curriculum

    Science.gov (United States)

    Freund, Cheryl J.

    Eighty years after the Scope's Trial, the debate over evolution in the public school curriculum is alive and well. Historically, Christian fundamentalists, the chief opponents of evolution in the public schools, have used the court system to force policymakers, to adopt their ideology regarding evolution in the science curriculum. However, in recent decades their strategy has shifted from the courts to the local level, where they pressure teachers and school boards to include "alternate theories" and the alleged "flaws" and "inconsistencies" of evolution in the science curriculum. The purpose of this content analysis study was to answer the question: How do Christian fundamentalists employ rhetorical strategies to influence the science curriculum? The rhetorical content of several public legal and media documents resulting from a lawsuit filed against the Athens Public Schools by the American Center of Law and Justice were analyzed for the types of rhetorical strategies employed by the participants engaged in the scientific, legal, and public discourse communities. The study employed an analytical schema based on Ludwig Wittgenstein's theory of language games, Lawrence Prelli's theory of discourse communities, and Michael Apple's notion of constitutive and preference rules. Ultimately, this study revealed that adroit use of the constitutive and preference rules of the legal and public discourse communities allowed the school district to reframe the creation-evolution debate, thereby avoiding a public spectacle and ameliorating the power of creationist language to affect change in the science curriculum. In addition, the study reinforced the assertion that speakers enjoy the most persuasive power when they attend to the preference rules of the public discourse community.

  12. California Diploma Project Technical Report II: Alignment Study--Alignment Study of the Health Sciences and Medical Technology Draft Standards and California's Exit Level Common Core State Standards

    Science.gov (United States)

    McGaughy, Charis; de Gonzalez, Alicia

    2012-01-01

    The California Department of Education is in the process of revising the Career and Technical Education (CTE) Model Curriculum Standards. The Educational Policy Improvement Center (EPIC) conducted an investigation of the draft version of the Health Sciences and Medical Technology Standards (Health Science). The purpose of the study is to…

  13. Science and Technology Teachers' Views of Primary School Science and Technology Curriculum

    Science.gov (United States)

    Yildiz-Duban, Nil

    2013-01-01

    This phenomenographic study attempts to explicit science and technology teachers' views of primary school science and technology curriculum. Participants of the study were selected through opportunistic sampling and consisted of 30 science and technology teachers teaching in primary schools in Afyonkarahisar, Turkey. Data were collected through an…

  14. Curriculum optimization of College of Optical Science and Engineering

    Science.gov (United States)

    Wang, Xiaoping; Zheng, Zhenrong; Wang, Kaiwei; Zheng, Xiaodong; Ye, Song; Zhu, Yuhui

    2017-08-01

    The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of "optoelectronics + X", according to their individual strengths and preferences.

  15. Curriculum Design for Inquiry: Preservice Elementary Teachers' Mobilization and Adaptation of Science Curriculum Materials

    Science.gov (United States)

    Forbes, Cory T.; Davis, Elizabeth A.

    2010-01-01

    Curriculum materials are crucial tools with which teachers engage students in science as inquiry. In order to use curriculum materials effectively, however, teachers must develop a robust capacity for pedagogical design, or the ability to mobilize a variety of personal and curricular resources to promote student learning. The purpose of this study…

  16. Forensic Science Curriculum for High School Students

    Science.gov (United States)

    Burgess, Christiana J.

    Over the last several decades, forensic science---the application of science to civil and criminal legal matters---has become of increasing popularity with the public. The range of disciplines within the field is immense, offering individuals the potential for a unique career, regardless of their specific interests or expertise. In response to this growth, many organizations, both public and private, have recognized the need to create forensic science programs that strive to maintain and enhance the quality of forensic science education. Unfortunately, most of the emphasis placed on developing these materials relates to post-secondary education, and creates a significant lack of forensic science educational materials available in the U.S., especially in Oklahoma. The purpose of this project was to create a high school curriculum that provides the foundation for building a broad, yet comprehensive, overview of the field of forensic science and its associated disciplines. The overall goal was to create and provide course materials to high school teachers in order to increase their knowledge of forensic science such that they are able to teach its disciplines effectively and with accuracy. The Forensic Science Curriculum for High School Students includes sample lesson plans, PowerPoint presentations, and lab activities with step-by-step instructions.

  17. Elements of Contemporary Integrated Science Curriculum: Impacts ...

    African Journals Online (AJOL)

    This paper acknowledged the vital roles played by integration of ideas and established the progress brought about when science is taught as a unified whole through knowledge integration which birthed integrated science as a subject in Nigerian school curriculum. The efforts of interest groups at regional, national and ...

  18. Developing Practical Knowledge of the Next Generation Science Standards in Elementary Science Teacher Education

    Science.gov (United States)

    Hanuscin, Deborah L.; Zangori, Laura

    2016-12-01

    Just as the Next Generation Science Standards (NGSSs) call for change in what students learn and how they are taught, teacher education programs must reconsider courses and curriculum in order to prepare teacher candidates to understand and implement new standards. In this study, we examine the development of prospective elementary teachers' practical knowledge of the NGSS in the context of a science methods course and innovative field experience. We present three themes related to how prospective teachers viewed and utilized the standards: (a) as a useful guide for planning and designing instruction, (b) as a benchmark for student and self-evaluation, and (c) as an achievable vision for teaching and learning. Our findings emphasize the importance of collaborative opportunities for repeated teaching of the same lessons, but question what is achievable in the context of a semester-long experience.

  19. Mentoring BUGS: An Integrated Science and Technology Curriculum

    Science.gov (United States)

    Harrell, Pamela Esprivalo; Walker, Michelle; Hildreth, Bertina; Tyler-Wood, Tandra

    2004-01-01

    The current study describes an authentic learning experience designed to develop technology and science process skills through a carefully scaffolded curriculum using mealworms as a content focus. An individual mentor assigned to each 4th and 5th grade girl participating in the program delivered the curriculum. Results indicate mastery of science…

  20. Bringing Data Science, Xinformatics and Semantic eScience into the Graduate Curriculum

    Science.gov (United States)

    Fox, P.

    2012-04-01

    Committee on Information and Data (SCCID), features this excerpt from section 4.2.4 Data scientists and professionals: "An unfortunate state in the recognition of data science, is that there is a lack of appreciation of the need for a set of professional knowledge in skill in key areas, many of which have not been emphasized to date, e.g. professional approaches to the management of data over its lifecycle. As such, the effort required to be a data scientists is not valued sufficiently by the remainder of the scientific community." SCCID Recommendation 6 reads: "We recommend the development of education at university level in the new and vital field of data science. The curriculum included in appendix D can be used as a starting point for curriculum development. Appendix D. is entitled "Example curriculum for data science" and explicitly uses the "Curriculum for Data Science taught at Rensselaer Polytechnic Institute, USA" . This contribution will present relevant curriculum offerings at the Rensselaer Polytechnic Institute. http://tw.rpi.edu/web/Courses

  1. The Study of Literacy Reinforcement of Science Teachers in Implementing 2013 Curriculum

    Science.gov (United States)

    Dewi, W. S.; Festiyed, F.; Hamdi, H.; Sari, S. Y.

    2018-04-01

    This research aims to study and collect data comprehensively, new and actual about science literacy to improve the ability of educators in implementing the 2013 Curriculum at Junior High School Padang Pariaman District. The specific benefit of this research is to give description and to know the problem of science literacy problem in interaction among teacher, curriculum, facilities and infrastructure, evaluation, learning technology and students. This study uses explorative in deep study approach, studying and collecting data comprehensively from the interaction of education process components (curriculum, educator, learner, facilities and infrastructure, learning media technology, and evaluation) that influence the science literacy. This research was conducted in the districts of Padang Pariaman consisting of 17 subdistricts and 84 junior high schools managed by the government and private. The sample of this research is science teachers of Padang Pariaman District with sampling technique is stratified random sampling. The instrument used in this study is a questionnaire to the respondents. Research questionnaire data are processed by percentage techniques (quantitative). The results of this study explain that the understanding of science teachers in Padang Pariaman District towards the implementation of 2013 Curriculum is still lacking. The science teachers of Padang Pariaman District have not understood the scientific approach and the effectiveness of 2013 Curriculum in shaping the character of the students. To improve the understanding of the implementation of Curriculum 2013, it is necessary to strengthen the literacy toward science teachers at the Junior High School level in Padang Pariaman District.

  2. Designing a Science Curriculum Fit for Purpose

    Science.gov (United States)

    Millar, Robin

    2014-01-01

    The science curriculum to age 16 should be judged on how well it meets the needs of students who progress to A-level science courses and those (a larger number) who do not. To address the diversity of students' interests and aspirations, we need a clear view of the purposes of science education rooted in a view of the purposes of education itself.…

  3. Surviving the Implementation of a New Science Curriculum

    Science.gov (United States)

    Lowe, Beverly; Appleton, Ken

    2015-01-01

    Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2 years getting to know the new…

  4. Changing Curriculum: A Critical Inquiry into the Revision of the British Columbia Science Curriculum For Grades K-9

    Science.gov (United States)

    Searchfield, Mary A.

    In 2010 British Columbia's Ministry of Education started the process of redesigning the provincial school curriculum, Kindergarten to Grade 12. Mandatory implementation of the new curriculum was set for the 2016/17 school year for Grades K-9, and 2017/18 for Grades 10-12. With a concerted emphasis on personalized learning and through the frame of a Know-Do-Understand curriculum model, the new curriculum aims to meet the needs of today's learners, described as living in a technology-rich, fast-paced and ever-changing world, through a concept-based and competency-driven emphasis. This thesis is a critical analysis of the BC K-9 Science curriculum as written and published, looking specifically at how science is treated as a form of knowledge, its claimed presentation as a story, and on whether the intentions claimed by the designers are matched in the curriculum's final form.

  5. Teachers and Science Curriculum Materials: Where We Are and Where We Need to Go

    Science.gov (United States)

    Davis, Elizabeth A.; Janssen, Fred J. J. M.; Van Driel, Jan H.

    2016-01-01

    Curriculum materials serve as a key conceptual tool for science teachers, and better understanding how science teachers use these tools could help to improve both curriculum design and theory related to teacher learning and decision-making. The authors review the literature on teachers and science curriculum materials. The review is organised…

  6. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    Science.gov (United States)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  7. Models and Materials: Bridging Art and Science in the Secondary Curriculum

    Science.gov (United States)

    Pak, D.; Cavazos, L.

    2006-12-01

    Creating and sustaining student engagement in science is one challenge facing secondary teachers. The visual arts provide an alternative means of communicating scientific concepts to students who may not respond to traditional formats or identify themselves as interested in science. We have initiated a three-year teacher professional development program at U C Santa Barbara focused on bridging art and science in secondary curricula, to engage students underrepresented in science majors, including girls, English language learners and non-traditional learners. The three-year format provides the teams of teachers with the time and resources necessary to create innovative learning experiences for students that will enhance their understanding of both art and science content. Models and Materials brings together ten secondary art and science teachers from six Santa Barbara County schools. Of the five participating science teachers, three teach Earth Science and two teach Life Science. Art and science teachers from each school are teamed and challenged with the task of creating integrated curriculum projects that bring visual art concepts to the science classroom and science concepts to the art classroom. Models and Materials were selected as unifying themes; understanding the concept of models, their development and limitations, is a prominent goal in the California State Science and Art Standards. Similarly, the relationship between composition, structure and properties of materials is important to both art and science learning. The program began with a 2-week institute designed to highlight the natural links between art and science through presentations and activities by both artists and scientists, to inspire teachers to develop new ways to present models in their classrooms, and for the teacher teams to brainstorm ideas for curriculum projects. During the current school year, teachers will begin to integrate science and art and the themes of modeling and materials

  8. Designing Computer-Supported Complex Systems Curricula for the Next Generation Science Standards in High School Science Classrooms

    Directory of Open Access Journals (Sweden)

    Susan A. Yoon

    2016-12-01

    Full Text Available We present a curriculum and instruction framework for computer-supported teaching and learning about complex systems in high school science classrooms. This work responds to a need in K-12 science education research and practice for the articulation of design features for classroom instruction that can address the Next Generation Science Standards (NGSS recently launched in the USA. We outline the features of the framework, including curricular relevance, cognitively rich pedagogies, computational tools for teaching and learning, and the development of content expertise, and provide examples of how the framework is translated into practice. We follow this up with evidence from a preliminary study conducted with 10 teachers and 361 students, aimed at understanding the extent to which students learned from the activities. Results demonstrated gains in students’ complex systems understanding and biology content knowledge. In interviews, students identified influences of various aspects of the curriculum and instruction framework on their learning.

  9. Family and Consumer Sciences Teacher Needs Assessment of a STEM-Enhanced Food and Nutrition Sciences Curriculum

    OpenAIRE

    Merrill, Cathy A.

    2016-01-01

    Science, technology, engineering and mathematics (STEM) education concepts are naturally contextualized in the study of food and nutrition. In 2014 a pilot group of Utah high school Career and Technical Education Family and Consumer Sciences teachers rewrote the Food and Nutrition Sciences curriculum to add and enhance the STEM-related content. This study is an online needs assessment by Utah Food and Nutrition 1 teachers on the implementation of the STEM-enhanced curriculum after its first y...

  10. Study of graduate curriculum in the radiological science: problems and suggestions

    International Nuclear Information System (INIS)

    Ko, Seong Jin; Kim, Hwa Gon; Kang, Se Sik; Park, Byeong Rae; Kim, Chang Soo

    2006-01-01

    Currently, Educational program of radiological science is developed in enormous growth, our educational environments leading allied health science education program in the number of super high speed medical industry. Radiological science may be the fastest growing technologies in our medical department today. In this way, Medical industry fields converged in the daily quick, the fact that department of radiological science didn't discharged ones duties on current educational environments. The curriculum of radiological technologists that play an important part between skill and occupation's education as major and personality didn't performed one's part most effectively on current medical environments and digital radiological equipment interface. We expect improvement and suggestion to grow natural disposition as studies in the graduate of radiological science. Therefore, in this paper, current curriculum of radiological science are catched hold of trend and problems on digital radiology environments, on fact the present state of problems, for Graduate program of radiological science, graduate courses of MS and ph.D. are suggested a reform measure of major education curriculum introduction

  11. Exploring the Associations Among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum.

    Science.gov (United States)

    Stage, Virginia C; Kolasa, Kathryn M; Díaz, Sebastián R; Duffrin, Melani W

    2018-01-01

    Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across North Carolina and Ohio; mean age 10 years old; gender (I = 53.2% female; C = 51.6% female). Dependent variable = post-test-nutrition knowledge; independent variables = baseline-nutrition knowledge, and post-test science and mathematics knowledge. Analyses included descriptive statistics and multiple linear regression. The hypothesized model predicted post-nutrition knowledge (F(437) = 149.4, p mathematics knowledge were predictive of nutrition knowledge indicating use of an integrative science and mathematics curriculum to improve academic knowledge may also simultaneously improve nutrition knowledge among fourth-grade students. Teachers can benefit from integration by meeting multiple academic standards, efficiently using limited classroom time, and increasing nutrition education provided in the classroom. © 2018, American School Health Association.

  12. Science-based occupations and the science curriculum: Concepts of evidence

    Science.gov (United States)

    Aikenhead, Glen S.

    2005-03-01

    What science-related knowledge is actually used by nurses in their day-to-day clinical reasoning when attending patients? The study investigated the knowledge-in-use of six acute-care nurses in a hospital surgical unit. It was found that the nurses mainly drew upon their professional knowledge of nursing and upon their procedural understanding that included a common core of concepts of evidence (concepts implicitly applied to the evaluation of data and the evaluation of evidence - the focus of this research). This core included validity triangulation, normalcy range, accuracy, and a general predilection for direct sensual access to a phenomenon over indirect machine-managed access. A cluster of emotion-related concepts of evidence (e.g. cultural sensitivity) was also discovered. These results add to a compendium of concepts of evidence published in the literature. Only a small proportion of nurses (one of the six nurses in the study) used canonical science content in their clinical reasoning, a result consistent with other research. This study also confirms earlier research on employees in science-rich workplaces in general, and on professional development programs for nurses specifically: canonical science content found in a typical science curriculum (e.g. high school physics) does not appear relevant to many nurses' knowledge-in-use. These findings support a curriculum policy that gives emphasis to students learning how to learn science content as required by an authentic everyday or workplace context, and to students learning concepts of evidence.

  13. The Social Science Curriculum of the Two-Year College.

    Science.gov (United States)

    Friedlander, Jack

    1980-01-01

    Describes a nationwide study to identify: (1) the representation of different areas within the social sciences (i.e. anthropology, economics, history, political science, psychology, social/ethnic studies, sociology, and interdisciplinary social sciences) in the two-year college curriculum, and (2) which courses were offered for transfer,…

  14. Design and validation of a standards-based science teacher efficacy instrument

    Science.gov (United States)

    Kerr, Patricia Reda

    National standards for K--12 science education address all aspects of science education, with their main emphasis on curriculum---both science subject matter and the process involved in doing science. Standards for science teacher education programs have been developing along a parallel plane, as is self-efficacy research involving classroom teachers. Generally, studies about efficacy have been dichotomous---basing the theoretical underpinnings on the work of either Rotter's Locus of Control theory or on Bandura's explanations of efficacy beliefs and outcome expectancy. This study brings all three threads together---K--12 science standards, teacher education standards, and efficacy beliefs---in an instrument designed to measure science teacher efficacy with items based on identified critical attributes of standards-based science teaching and learning. Based on Bandura's explanation of efficacy being task-specific and having outcome expectancy, a developmental, systematic progression from standards-based strategies and activities to tasks to critical attributes was used to craft items for a standards-based science teacher efficacy instrument. Demographic questions related to school characteristics, teacher characteristics, preservice background, science teaching experience, and post-certification professional development were included in the instrument. The instrument was completed by 102 middle level science teachers, with complete data for 87 teachers. A principal components analysis of the science teachers' responses to the instrument resulted in two components: Standards-Based Science Teacher Efficacy: Beliefs About Teaching (BAT, reliability = .92) and Standards-Based Science Teacher Efficacy: Beliefs About Student Achievement (BASA, reliability = .82). Variables that were characteristic of professional development activities, science content preparation, and school environment were identified as members of the sets of variables predicting the BAT and BASA

  15. Middle school science curriculum design and 8th grade student achievement in Massachusetts public schools

    Science.gov (United States)

    Clifford, Betsey A.

    The Massachusetts Department of Elementary and Secondary Education (DESE) released proposed Science and Technology/Engineering standards in 2013 outlining the concepts that should be taught at each grade level. Previously, standards were in grade spans and each district determined the method of implementation. There are two different methods used teaching middle school science: integrated and discipline-based. In the proposed standards, the Massachusetts DESE uses grade-by-grade standards using an integrated approach. It was not known if there is a statistically significant difference in student achievement on the 8th grade science MCAS assessment for students taught with an integrated or discipline-based approach. The results on the 8th grade science MCAS test from six public school districts from 2010 -- 2013 were collected and analyzed. The methodology used was quantitative. Results of an ANOVA showed that there was no statistically significant difference in overall student achievement between the two curriculum models. Furthermore, there was no statistically significant difference for the various domains: Earth and Space Science, Life Science, Physical Science, and Technology/Engineering. This information is useful for districts hesitant to make the change from a discipline-based approach to an integrated approach. More research should be conducted on this topic with a larger sample size to better support the results.

  16. Standardized Curriculum for Service Station Retailing.

    Science.gov (United States)

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    This curriculum guide for service station retailing was developed by the state of Mississippi to standardize vocational education course titles and core contents. The objectives contained in this document are common to all service station retailing programs in the state. The guide contains objectives for service station retailing I and II courses.…

  17. Specifying a curriculum for biopolitical critical literacy in science teacher education: exploring roles for science fiction

    Science.gov (United States)

    Gough, Noel

    2017-12-01

    In this essay I suggest some ways in which science teacher educators in Western neoliberal economies might facilitate learners' development of a critical literacy concerning the social and cultural changes signified by the concept of biopolitics. I consider how such a biopolitically inflected critical literacy might find expression in a science teacher education curriculum and suggest a number of ways of materializing such a curriculum in specific literatures, media, procedures, and assessment tasks, with particular reference to the contributions of science fiction in popular media.

  18. A behavioral science/behavioral medicine core curriculum proposal for Japanese undergraduate medical education.

    Science.gov (United States)

    Tsutsumi, Akizumi

    2015-01-01

    Behavioral science and behavioral medicine have not been systematically taught to Japanese undergraduate medical students. A working group under the auspices of Japanese Society of Behavioral Medicine developed an outcome-oriented curriculum of behavioral science/behavioral medicine through three processes: identifying the curriculum contents, holding a joint symposium with related societies, and defining outcomes and proposing a learning module. The behavioral science/behavioral medicine core curriculum consists of 11 units of lectures and four units of practical study. The working group plans to improve the current core curriculum by devising formative assessment methods so that students can learn and acquire attitude as well as the skills and knowledge necessary for student-centered clinical practice.

  19. The effects of an integrated Algebra 1/physical science curriculum on student achievement in Algebra 1, proportional reasoning and graphing abilities

    Science.gov (United States)

    Lawrence, Lettie Carol

    1997-08-01

    the two groups over time. However, all subjects (experimental and control groups) made significant improvement in graphing abilities over one school year. In this study, students participating in an investigation-based curriculum integrating algebra 1 and physical science performed as well on the instruments as the students in the traditional curriculum. Therefore, an argument can be made that instruction using an integrated curriculum (algebra l/physical science) is a viable alternative to instruction using a more traditional algebra 1 curriculum. Finally, the integrated curriculum adheres to the constructivist theoretical perspective (Krupnik-Gotlieb, 1995) and is more consistent with recommendations in the NCTM Standards (1992) than the traditional curriculum.

  20. Computer Science (CS) in the Compulsory Education Curriculum: Implications for Future Research

    Science.gov (United States)

    Passey, Don

    2017-01-01

    The subject of computer science (CS) and computer science education (CSE) has relatively recently arisen as a subject for inclusion within the compulsory school curriculum. Up to this present time, a major focus of technologies in the school curriculum has in many countries been on applications of existing technologies into subject practice (both…

  1. Rock Cycle. K-6 Science Curriculum.

    Science.gov (United States)

    Blueford, J. R.; And Others

    Rock Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) chemistry (introducing the topics of matter, elements, compounds, and chemical bonding); (2) characteristics (presenting hands-on activities with rocks and minerals); (3) minerals (emphasizing the aesthetic and economic…

  2. The Making of a History Standards Wiki: "Covering", "Uncovering", and "Discovering" Curriculum Frameworks Using a Highly Interactive Technology

    Science.gov (United States)

    Maloy, Robert W.; Poirier, Michelle; Smith, Hilary K.; Edwards, Sharon A.

    2010-01-01

    This article explores using a wiki, one of the newest forms of interactive computer-based technology, as a resource for teaching the Massachusetts K-12 History and Social Science Curriculum Framework, a set of state-mandated learning standards. Wikis are web pages that can be easily edited by multiple authors. They invite active involvement by…

  3. Arguing for Computer Science in the School Curriculum

    Science.gov (United States)

    Fluck, Andrew; Webb, Mary; Cox, Margaret; Angeli, Charoula; Malyn-Smith, Joyce; Voogt, Joke; Zagami, Jason

    2016-01-01

    Computer science has been a discipline for some years, and its position in the school curriculum has been contested differently in several countries. This paper looks at its role in three countries to illustrate these differences. A reconsideration of computer science as a separate subject both in primary and secondary education is suggested. At…

  4. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    Science.gov (United States)

    Weiss, E.; Skene, J.; Tran, L.

    2011-12-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, there are few high quality curricula available to teachers that address these topics in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8 aims to address this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. The Ocean Sciences Sequence for Grades 6-8 is developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified GEMS (Great Explorations in Math & Science) curriculum development team. Scientists are active partners throughout the whole development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. As with all GEMS Sequences, the Ocean Sciences Sequence for Grades 6-8 is designed to provide significant scientific and educational depth, systematic assessments and informational readings, and incorporate new learning technologies. The goal is to focus strategically and effectively on the core concepts within ocean and climate sciences that students need to understand. This curriculum is designed in accordance with the latest research from the learning sciences, and provides numerous opportunities for students to develop inquiry skills and abilities as they learn about the practice of science through hands-on activities. The Ocean Sciences Sequence for Grades 6-8 addresses in depth a significant number of national, state, and district standards and benchmarks. It

  5. Leading change: curriculum reform in graduate education in the biomedical sciences.

    Science.gov (United States)

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were also 15 unique curricula. Departments and programs offered courses independently, and students participated in curricula that were overlapping combinations of these courses. This system created curricula that were not coordinated and that had redundant course content as well as content gaps. A partnership of key stakeholders began a curriculum reform process to completely restructure doctoral education at the Boston University School of Medicine. The key pedagogical goals, objectives, and elements designed into the new curriculum through this reform process created a curriculum designed to foster the interdisciplinary thinking that students are ultimately asked to utilize in their research endeavors. We implemented comprehensive student and peer evaluation of the new Foundations in Biomedical Sciences integrated curriculum to assess the new curriculum. Furthermore, we detail how this process served as a gateway toward creating a more fully integrated graduate experience, under the umbrella of the Program in Biomedical Sciences. © 2015 The International Union of Biochemistry and Molecular Biology.

  6. Representation and Analysis of Chemistry Core Ideas in Science Education Standards between China and the United States

    Science.gov (United States)

    Wan, Yanlan; Bi, Hualin

    2016-01-01

    Chemistry core ideas play an important role in students' chemistry learning. On the basis of the representations of chemistry core ideas about "substances" and "processes" in the Chinese Chemistry Curriculum Standards (CCCS) and the U.S. Next Generation Science Standards (NGSS), we conduct a critical comparison of chemistry…

  7. Using the AGsploration: the Science of Maryland Agriculture Curriculum as a Tool to Increase Youth Appreciation and Understanding of Agriculture and Science

    Directory of Open Access Journals (Sweden)

    April Hall Barczewski

    2017-01-01

    Full Text Available AGsploration: The Science of Maryland Agriculture is a 24-lesson, peer-reviewed curriculum that includes experiential hands-on activities and built-in pre-/post-evaluation tools. Lesson topics include production agriculture, the environment and nutrition with emphasis on how science relates to each topic. Student pre-/post- evaluation data reflects participation in AGsploration positively affects students’ attitudes about agriculture and science. Separate evaluations were developed to survey two groups of trained teen teachers about the curriculum immediately following their training, 1-2 years after using the curriculum and another 3-4 years post involvement. The results demonstrated that teen teachers were an effective way to disseminate the curriculum and these same teens increased their agriculture knowledge, life skills and interest in agriculture science education and careers. A similar evaluation was conducted with adult educators following a training session and another 1-2 years after actively using the curriculum. This data suggests that the curriculum is well received and valued.

  8. The Innovative Immersion of Mobile Learning into a Science Curriculum in Singapore: an Exploratory Study

    Science.gov (United States)

    Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting

    2016-08-01

    With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear program of school-based research. The foci of this paper is on the design principles of the curriculum and its enactment, and the establishment of a teacher learning community. Through elucidating the design features of the innovative curriculum and evaluating teacher and student involvement in science instruction and learning, we introduce the science curriculum, called Mobilized 5E Science Curriculum (M5ESC), and present a representative case study of how one experienced teacher and her class adopted the curriculum. The findings indicate the intervention promoted this teacher's questioning competency, enabled her to interact with students frequently and flexibly in class, and supported her technology use for promoting different levels of cognition. Student learning was also improved in terms of test achievement and activity performance in and out of the classroom. We propose that the study can be used to guide the learning design of mobile technology-supported curricula, as well as teacher professional development for curriculum enactment.

  9. A Curriculum Development for the Enhancement of Learning Management Performances Emphasizing Higher Order Thinking Skills for Lower Secondary Science Teachers

    Directory of Open Access Journals (Sweden)

    Saksit Seeluangpetch

    2016-12-01

    Full Text Available This study aimed at 1 investigating the problems and needs for the enhancement of learning management performances emphasizing the higher order thinking skills for lower secondary Science teachers, 2 developing an effective curriculum to enhance the learning management performances which emphasized the higher order thinking skills for lower secondary Science teachers, and 3 studying the effects of using the curriculum developed for the enhancement of learning management performances emphasizing the higher order thinking skills for lower secondary Science teachers. The research was conducted in 4 phases. Phase 1 of the research was the study of fundamental information regarding problems and needs for the enhancement of learning management performances emphasizing the higher order thinking skills for lower secondary Science teachers. It was carried out by studying the related literature and exploring the needs. The instrument used in Phase 1 study was the needs assessment. The statistics used for data analysis were mean ( , percentage (%, and standard deviation (S.D.. The result of the study revealed that the Science teachers’ prior knowledge was at low level and the need to enhance their performances was at high level. The development of the curriculum was carried out in Phase 2 of the study. The curriculum was constructed and developed in order to enhance the learning management performances which emphasized the higher order thinking skills. The instrument used was the appropriateness the assessment of the curriculum framework. Mean ( , percentage (%, and standard deviation (S.D. were used to analyze the data. The result of the assessment showed that the overall appropriateness of the curriculum was at high level. The main components of the curriculum comprised of curriculum’s problem and necessity, rationale, objective, structure, training activity, training media, training duration, and evaluation and assessment. The curriculum trial was

  10. Curriculum Assessment in Social Sciences at Universiti Pendidikan Sultan Idris

    Science.gov (United States)

    Saleh, Hanifah Mahat Yazid; Hashim, Mohmadisa; Yaacob, Norazlan Hadi; Kasim, Adnan Jusoh Ahmad Yunus

    2015-01-01

    The purpose of this paper is to discuss the effectiveness of the curriculum implementation for undergraduate programme in the Faculty of Human Sciences, UPSI producing quality and competitive educators. Curriculum implementation has to go through an assessment process that aims to determine the problem, select relevant information and collect and…

  11. A behavioral science/behavioral medicine core curriculum proposal for Japanese undergraduate medical education

    OpenAIRE

    Tsutsumi, Akizumi

    2015-01-01

    Behavioral science and behavioral medicine have not been systematically taught to Japanese undergraduate medical students. A working group under the auspices of Japanese Society of Behavioral Medicine developed an outcome-oriented curriculum of behavioral science/behavioral medicine through three processes: identifying the curriculum contents, holding a joint symposium with related societies, and defining outcomes and proposing a learning module. The behavioral science/behavioral medicine cor...

  12. New curriculum at Nuclear Science Department, National University of Malaysia

    International Nuclear Information System (INIS)

    Shahidan bin Radiman; Ismail bin Bahari

    1995-01-01

    A new undergraduate curriculum at the Department of Nuclear Science, Universiti Kebangsaan Malaysia is discussed. It includes the rational and objective of the new curriculum, course content and expectations due to a rapidly changing job market. The major change was a move to implement only on one Nuclear Science module rather than the present three modules of Radiobiology, Radiochemistry and Nuclear Physics. This will optimise not only laboratory use of facilities but also effectiveness of co-supervision. Other related aspects like industrial training and research exposures for the undergraduates are also discussed

  13. Environmental Science for All? Considering Environmental Science for Inclusion in the High School Core Curriculum

    Science.gov (United States)

    Edelson, Daniel C.

    2007-01-01

    With the dramatic growth of environmental science as an elective in high schools over the last decade, educators have the opportunity to realistically consider the possibility of incorporating environmental science into the core high school curriculum. Environmental science has several characteristics that make it a candidate for the core…

  14. The influence of secondary science teachers' pedagogical content knowledge, educational beliefs and perceptions of the curriculum on implementation and science reform

    Science.gov (United States)

    Bonner, Portia Selene

    2001-07-01

    Science education reform is one of the focal points of restructuring the educational system in the United States. However, research indicates a slow change in progression towards science literacy among secondary students. One of the factors contributing to slow change is how teachers implement the curriculum in the classroom. Three constructs are believed to be influential in curriculum implementation: educational beliefs, pedagogical knowledge and perception of the curriculum. Earlier research suggests that there is a strong correlation between teachers' educational beliefs and instructional practices. These beliefs can be predictors of preferred strategies employed in the classroom. Secondly, teachers' pedagogical knowledge, that is the ability to apply theory and appropriate strategies associated with implementing and evaluating a curriculum, contributes to implementation. Thirdly, perception or how the curriculum itself is perceived also effects implementation. Each of these constructs has been examined independently, but never the interplay of the three. The purpose of this qualitative study was to examine the interplay of teachers' educational beliefs, pedagogical content knowledge and perceptions of a science curriculum with respect to how these influence curriculum implementation. This was accomplished by investigating the emerging themes that evolved from classroom observations, transcripts from interview and supplementary data. Five high school biology teachers in an urban school system were observed for ten months for correspondence of teaching strategies to the curriculum. Teachers were interviewed formally and informally about their perceptions of science teaching, learning and the curriculum. Supplementary material such as lesson plans, course syllabus and notes from classroom observations were collected and analyzed. Data were transcribed and analyzed for recurring themes using a thematic matrix. A theoretical model was developed from the emerging

  15. Integration of the primary health care approach into a community nursing science curriculum.

    Science.gov (United States)

    Vilakazi, S S; Chabeli, M M; Roos, S D

    2000-12-01

    The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994: 155). Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.

  16. Integration of the primary health care approach into a community nursing science curriculum

    Directory of Open Access Journals (Sweden)

    SS Vilakazi

    2000-09-01

    Full Text Available The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994:155. Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/ goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.

  17. Effect of an environmental science curriculum on students' leisure time activities

    Science.gov (United States)

    Blum, Abraham

    Cooley and Reed's active interest measurement approach was combined with Guttman's Facet Design to construct a systematic instrument for the assessment of the impact of an environmental science course on students' behavior outside school. A quasimatched design of teacher allocation to the experimental and control groups according to their preferred teaching style was used. A kind of dummy control curriculum was devised to enable valid comparative evaluation of a new course which differs from the traditional one in both content and goal. This made it possible to control most of the differing factors inherent in the old and new curriculum. The research instrument was given to 1000 students who were taught by 28 teachers. Students who learned according to the experimental curriculum increased their leisure time activities related to the environmental science curriculum significantly. There were no significant differences between boys and girls and between students with different achievement levels.

  18. Student teachers' views: what is an interesting life sciences curriculum?

    Directory of Open Access Journals (Sweden)

    Rian de Villiers

    2011-01-01

    Full Text Available In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology curriculum which focuses on outcomes-based education (OBE. This paper presents an exploration of what students (as learners considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university responded to a questionnaire in regard to their experiences with the newly implemented FET Life Sciences curricula. The responses to the questions were analysed qualitatively and/or quantitatively. Friedman tests were used to compare the mean rankings of the four different content knowledge areas within each curriculum, and to make cross-curricular comparisons of the mean rankings of the same content knowledge area for all three curricula. All four content areas of Grade 12 were considered as being more interesting than the other two grades. In terms of difficulty, the students found the Grade 10 curriculum themes the most difficult, followed by the Grade 12 and the Grade 11 curricula. Most of the students found the themes under the content area Diversity, change and continuity (Grades 10-12 more difficult to learn than the other three content areas. It is recommended that more emphasis needs to be placed on what learners are interested in, and on having this incorporated into Life Sciences curricula.

  19. Bridging the Gap: Embedding Communication Courses in the Science Undergraduate Curriculum

    Science.gov (United States)

    Jandciu, Eric; Stewart, Jaclyn J.; Stoodley, Robin; Birol, Gülnur; Han, Andrea; Fox, Joanne A.

    2015-01-01

    The authors describe a model for embedding science communication into the science curriculum without displacing science content. They describe the rationale, development, design, and implementation of two courses taught by science faculty addressing these criteria. They also outline the evaluation plan for these courses, which emphasize broad…

  20. Social Science Disciplines. Fundamental for Curriculum Development.

    Science.gov (United States)

    McLendon, Johathan C., Ed.

    This guide is written for the social studies curriculum developer interested in developing a structured multidisciplinary program based on the concepts, methodology, and structure of social science disciplines and history. Seven 15-29 page chapters are included on each discipline: Anthropology and Psychology, by Charles R. Berryman; Economics, by…

  1. Electromagnetic Spectrum. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    Science.gov (United States)

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the second in a set of six, contains teacher and student materials for a unit on the electromagnetic spectrum prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for…

  2. Theme: The Role of Science in the Agricultural Education Curriculum.

    Science.gov (United States)

    Agricultural Education Magazine, 2002

    2002-01-01

    Thirteen theme articles discuss integration of science and agriculture, the role of science in agricultural education, biotechnology, agriscience in Tennessee and West Virginia, agriscience and program survival, modernization of agricultural education curriculum, agriscience and service learning, and biotechnology websites. (SK)

  3. Science curriculum formation in Denmark

    DEFF Research Database (Denmark)

    Chaiklin, Seth

    Cultural-historical theory is primarily a psychological theory about and human action and development within meaningful contexts. As a psychologically-oriented theory, it can be relevant to science education research, even if it was not been developed or elaborated specifically in relation...... to problems within science education. STEM education research can be reduced (roughly) to four major problem areas: curriculum, empirical evaluation of existing practices and conditions, didactics, and professional development, where each of these categories can be concretised further according to grade...... between research and practice, (b) the idea of developmental teaching, and (c) the idea of theoretical thinking. This paper will present an example of subject-matter analysis for food production and food chemistry to illustrate practical consequences that follow from these three points....

  4. Teachers' Sensemaking about Implementation of an Innovative Science Curriculum Across the Settings of Professional Development and Classroom Enactment

    Science.gov (United States)

    de los Santos, Xeng

    Designing professional development that effectively supports teachers in learning new and often challenging practices remains a dilemma for teacher educators. Within the context of current reform efforts in science education, such as the Next Generation Science Standards, teacher educators are faced with managing the dilemma of how to support a large number of teachers in learning new practices while also considering factors such as time, cost, and effectiveness. Implementation of educative, reform-aligned curricula is one way to reach many teachers at once. However, one question is whether large-scale curriculum implementation can effectively support teachers in learning and sustaining new teaching practices. To address this dilemma, this study used a comparative, multiple case study design to investigate how secondary science teachers engaged in sensemaking about implementation of an innovative science curriculum across the settings of professional development and classroom enactment. In using the concept of sensemaking from organizational theory, I focused specifically on how teachers' roles in social organizations influenced their decisions to implement the curriculum in particular ways, with differing outcomes for their own learning and students' engagement in three-dimensional learning. My research questions explored: (1) patterns in teachers' occasions of sensemaking, including critical noticing of interactions among themselves, the curriculum, and their students; (2) how teachers' social commitments to different communities influenced their sensemaking; and, (3) how sustained sensemaking over time could facilitate teacher learning of rigorous and responsive science teaching practices. In privileging teachers' experiences in the classroom using the curriculum with their students, I used data generated primarily from teacher interviews with their case study coaches about implementation over the course of one school year. Secondary sources of data included

  5. A study of science leadership and science standards in exemplary standards-based science programs

    Science.gov (United States)

    Carpenter, Wendy Renae

    The purpose for conducting this qualitative study was to explore best practices of exemplary standards-based science programs and instructional leadership practices in a charter high school and in a traditional high school. The focus of this study included how twelve participants aligned practices to National Science Education Standards to describe their science programs and science instructional practices. This study used a multi-site case study qualitative design. Data were obtained through a review of literature, interviews, observations, review of educational documents, and researcher's notes collected in a field log. The methodology used was a multi-site case study because of the potential, through cross analysis, for providing greater explanation of the findings in the study (Merriam, 1988). This study discovered six characteristics about the two high school's science programs that enhance the literature found in the National Science Education Standards; (a) Culture of expectations for learning-In exemplary science programs teachers are familiar with a wide range of curricula. They have the ability to examine critically and select activities to use with their students to promote the understanding of science; (b) Culture of varied experiences-In exemplary science programs students are provided different paths to learning, which help students, take in information and make sense of concepts and skills that are set forth by the standards; (c) Culture of continuous feedback-In exemplary science programs teachers and students work together to engage students in ongoing assessments of their work and that of others as prescribed in the standards; (d) Culture of Observations-In exemplary science programs students, teachers, and principals reflect on classroom instructional practices; teachers receive ongoing evaluations about their teaching and apply feedback towards improving practices as outlined in the standards; (e) Culture of continuous learning-In exemplary

  6. Making Earth Science Relevant in the K-8 Classroom. The Development of an Instructional Soils Module for Pre-Service Elementary Teachers Using the Next Generation Science Standards

    Science.gov (United States)

    Baldwin, K. A.; Hauge, R.; Dechaine, J. M.; Varrella, G.; Egger, A. E.

    2013-12-01

    The development and adoption of the Next Generation Science Standards (NGSS) raises a challenge in teacher preparation: few current teacher preparation programs prepare students to teach science the way it is presented in the NGSS, which emphasize systems thinking, interdisciplinary science, and deep engagement in the scientific process. In addition, the NGSS include more geoscience concepts and methods than previous standards, yet this is a topic area in which most college students are traditionally underprepared. Although nationwide, programmatic reform is needed, there are a few targets where relatively small, course-level changes can have a large effect. One of these targets is the 'science methods' course for pre-service elementary teachers, a requirement in virtually all teacher preparation programs. Since many elementary schools, both locally and across the country, have adopted a kit based science curriculum, examining kits is often a part of a science methods course. Unfortunately, solely relying on a kit based curriculum may leave gaps in science content curriculum as one prepares teachers to meet the NGSS. Moreover, kits developed at the national level often fall short in connecting geoscientific content to the locally relevant societal issues that engage students. This highlights the need to train pre-service elementary teachers to supplement kit curriculum with inquiry based geoscience investigations that consider relevant societal issues, promote systems thinking and incorporate connections between earth, life, and physical systems. We are developing a module that teaches geoscience concepts in the context of locally relevant societal issues while modeling effective pedagogy for pre-service elementary teachers. Specifically, we focus on soils, an interdisciplinary topic relevant to multiple geoscience-related societal grand challenges (e.g., water, food) that is difficult to engage students in. Module development is funded through InTeGrate, NSF

  7. Noise Pollution--An Overlooked Issue in the Science Curriculum.

    Science.gov (United States)

    Treagust, David F.; Kam, Goh Ah

    1985-01-01

    Discusses the need for including noise pollution in the science curriculum and describes 10 activities for improving students' awareness and understanding of and concern for noise and its effects. (Author/JN)

  8. Integrated Curriculum and Subject-based Curriculum: Achievement and Attitudes

    Science.gov (United States)

    Casady, Victoria

    The research conducted for this mixed-method study, qualitative and quantitative, analyzed the results of an academic year-long study to determine whether the use of an integrated fourth grade curriculum would benefit student achievement in the areas of English language arts, social studies, and science more than a subject-based traditional curriculum. The research was conducted based on the international, national, and state test scores, which show a slowing or lack of growth. Through pre- and post-assessments, student questionnaires, and administrative interviews, the researcher analyzed the phenomenological experiences of the students to determine if the integrated curriculum was a beneficial restructuring of the curriculum. The research questions for this study focused on the achievement and attitudes of the students in the study and whether the curriculum they were taught impacted their achievement and attitudes over the course of one school year. The curricula for the study were organized to cover the current standards, where the integrated curriculum focused on connections between subject areas to help students make connections to what they are learning and the world beyond the classroom. The findings of this study indicated that utilizing the integrated curriculum could increase achievement as well as students' attitudes toward specific content areas. The ANOVA analysis for English language arts was not determined to be significant; although, greater growth in the students from the integrated curriculum setting was recorded. The ANOVA for social studies (0.05) and the paired t-tests (0.001) for science both determined significant positive differences. The qualitative analysis led to the discovery that the experiences of the students from the integrated curriculum setting were more positive. The evaluation of the data from this study led the researcher to determine that the integrated curriculum was a worthwhile endeavor to increase achievement and attitudes

  9. History of Science in the Physics Curriculum: A Directed Content Analysis of Historical Sources

    Science.gov (United States)

    Seker, Hayati; Guney, Burcu G.

    2012-01-01

    Although history of science is a potential resource for instructional materials, teachers do not have a tendency to use historical materials in their lessons. Studies showed that instructional materials should be adaptable and consistent with curriculum. This study purports to examine the alignment between history of science and the curriculum in…

  10. The Implementation of the New Lower Secondary Science Curriculum in Three Schools in Rwanda

    Science.gov (United States)

    Nsengimana, Théophile; Ozawa, Hiroaki; Chikamori, Kensuke

    2014-01-01

    In 2006, Rwanda began implementing an Outcomes Based Education (OBE) lower secondary science curriculum that emphasises a student-centred approach. The new curriculum was designed to transform Rwandan society from an agricultural to a knowledge-based economy, with special attention to science and technology education. Up until this point in time…

  11. From FRA to RFN, or How the Family Resemblance Approach Can Be Transformed for Science Curriculum Analysis on Nature of Science

    Science.gov (United States)

    Kaya, Ebru; Erduran, Sibel

    2016-12-01

    The inclusion of Nature of Science (NOS) in the science curriculum has been advocated around the world for several decades. One way of defining NOS is related to the family resemblance approach (FRA). The family resemblance idea was originally described by Wittgenstein. Subsequently, philosophers and educators have applied Wittgenstein's idea to problems of their own disciplines. For example, Irzik and Nola adapted Wittgenstein's generic definition of the family resemblance idea to NOS, while Erduran and Dagher reconceptualized Irzik and Nola's FRA-to-NOS by synthesizing educational applications by drawing on perspectives from science education research. In this article, we use the terminology of "Reconceptualized FRA-to-NOS (RFN)" to refer to Erduran and Dagher's FRA version which offers an educational account inclusive of knowledge about pedagogical, instructional, curricular and assessment issues in science education. Our motivation for making this distinction is rooted in the need to clarify the various accounts of the family resemblance idea.The key components of the RFN include the aims and values of science, methods and methodological rules, scientific practices, scientific knowledge as well as the social-institutional dimensions of science including the social ethos, certification, and power relations. We investigate the potential of RFN in facilitating curriculum analysis and in determining the gaps related to NOS in the curriculum. We analyze two Turkish science curricula published 7 years apart and illustrate how RFN can contribute not only to the analysis of science curriculum itself but also to trends in science curriculum development. Furthermore, we present an analysis of documents from USA and Ireland and contrast them to the Turkish curricula thereby illustrating some trends in the coverage of RFN categories. The results indicate that while both Turkish curricula contain statements that identify science as a cognitive-epistemic system, they

  12. Mentoring and Argumentation in a Game-Infused Science Curriculum

    Science.gov (United States)

    Gould, Deena L.; Parekh, Priyanka

    2018-04-01

    Engaging in argumentation from evidence is challenging for most middle school students. We report the design of a media-based mentoring system to support middle school students in engaging in argumentation in the context of a game-infused science curriculum. Our design emphasizes learners apprenticing with college student mentors around the socio-scientific inquiry of a designed video game. We report the results of a mixed-methods study examining the use of this media-based mentoring system with students ages 11 through 14. We observed that the discourse of groups of students that engaged with the game-infused science curriculum while interacting with college student mentors via a social media platform demonstrated statistically significant higher ratings of cognitive, epistemic, and social aspects of argumentation than groups of students that engaged with the social media platform and game-infused science curriculum without mentors. We further explored the differences between the Discourses of the mentored and non-mentored groups. This analysis showed that students in the mentored groups were invited, guided, and socialized into roles of greater agency than students in the non-mentored groups. This increased agency might explain why mentored groups demonstrated higher levels of scientific argumentation than non-mentored groups. Based on our analyses, we argue that media-based mentoring may be designed around a video game to support middle school students in engaging in argumentation from evidence.

  13. Revising and Updating the Plant Science Components of the Connecticut Vocational Agriculture Curriculum.

    Science.gov (United States)

    Connecticut Univ., Storrs. Dept. of Educational Leadership.

    This curriculum guide provides the plant science components of the vocational agriculture curriculum for Regional Vocational Agriculture Centers. The curriculum is divided into exploratory units for students in the 9th and 10th grades and specialized units for students in grades 11 and 12. The five exploratory units are: agricultural pest control;…

  14. Fostering Student Sense Making in Elementary Science Learning Environments: Elementary Teachers' Use of Science Curriculum Materials to Promote Explanation Construction

    Science.gov (United States)

    Zangori, Laura; Forbes, Cory T.; Biggers, Mandy

    2013-01-01

    While research has shown that elementary (K-5) students are capable of engaging in the scientific practice of explanation construction, commonly-used elementary science curriculum materials may not always afford them opportunities to do so. As a result, elementary teachers must often adapt their science curriculum materials to better support…

  15. Student teachers' views: what is an interesting life sciences curriculum?

    OpenAIRE

    Rian de Villiers

    2011-01-01

    In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET) phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university...

  16. SU-F-E-08: Medical Physics as a Teaching Tool for High School Science Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, L [The Ottawa Hospital Cancer Ctr., Ottawa, ON (Canada)

    2016-06-15

    Purpose: Delivering high school science curriculum in a timely manner and in way that is accessible to all students is a challenge for teachers. Although many high schools offer career workshops, these are typically directed at senior students and do not relate directly to details of the curriculum. The objective of this initiative was to create a series of lectures that use medical physics to relate many aspects of the high school science curriculum to tangible clinical applications and to introduce students to alternate pathways into a career in health sciences. Methods: A series of lectures has been developed based on the Ontario High School Science Curriculum. Each lecture uses a career in radiotherapy medical physics as the framework for discussion of topics specific to the high school course being addressed. Results: At present, these lectures have been delivered in five area high schools to students ranging from sophomores to seniors. Survey documents are given to the students before and after the lecture to assess their awareness of careers in health care, applications of physics and their general interest in the subject areas. As expected, students have limited up front awareness of the wide variety of health related career paths. The idea of combining a career lecture with topics specific to the classroom curriculum has been well-received by teachers and students alike. Conclusion: Career talks for high school students are useful for students contemplating their post- secondary career path. Relating career discussion with direct course curriculum makes their studies more relevant and engaging. Students aspiring to a career in health sciences often focus their studies on life sciences due to limited knowledge of potential careers. An early introduction to medical physics presents them with an alternate path through the physical sciences into health care.

  17. SU-F-E-08: Medical Physics as a Teaching Tool for High School Science Curriculum

    International Nuclear Information System (INIS)

    Buckley, L

    2016-01-01

    Purpose: Delivering high school science curriculum in a timely manner and in way that is accessible to all students is a challenge for teachers. Although many high schools offer career workshops, these are typically directed at senior students and do not relate directly to details of the curriculum. The objective of this initiative was to create a series of lectures that use medical physics to relate many aspects of the high school science curriculum to tangible clinical applications and to introduce students to alternate pathways into a career in health sciences. Methods: A series of lectures has been developed based on the Ontario High School Science Curriculum. Each lecture uses a career in radiotherapy medical physics as the framework for discussion of topics specific to the high school course being addressed. Results: At present, these lectures have been delivered in five area high schools to students ranging from sophomores to seniors. Survey documents are given to the students before and after the lecture to assess their awareness of careers in health care, applications of physics and their general interest in the subject areas. As expected, students have limited up front awareness of the wide variety of health related career paths. The idea of combining a career lecture with topics specific to the classroom curriculum has been well-received by teachers and students alike. Conclusion: Career talks for high school students are useful for students contemplating their post- secondary career path. Relating career discussion with direct course curriculum makes their studies more relevant and engaging. Students aspiring to a career in health sciences often focus their studies on life sciences due to limited knowledge of potential careers. An early introduction to medical physics presents them with an alternate path through the physical sciences into health care.

  18. Customization of Curriculum Materials in Science: Motives, Challenges, and Opportunities

    Science.gov (United States)

    Romine, William L.; Banerjee, Tanvi

    2012-01-01

    Exemplary science instructors use inquiry to tailor content to student's learning needs; traditional textbooks treat science as a set of facts and a rigid curriculum. Publishers now allow instructors to compile pieces of published and/or self-authored text to make custom textbooks. This brings numerous advantages, including the ability to produce…

  19. What Are Critical Features of Science Curriculum Materials That Impact Student and Teacher Outcomes?

    Science.gov (United States)

    Roblin, Natalie Pareja; Schunn, Christian; McKenney, Susan

    2018-01-01

    Large investments are made in curriculum materials with the goal of supporting science education reform. However, relatively little evidence is available about what features of curriculum materials really matter to impact student and teacher learning. To address this need, the current study examined curriculum features associated with student and…

  20. Hydromania II: Journey of the Oncorhynchus. Summer Science Camp Curriculum 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Joan; Swerin, Rod

    1995-01-01

    The Hydromania II curriculum was written for the third in a series of summer science camp experiences targeting students in grades 4--6 who generally have difficulty accessing supplementary academic programs. The summer science camp in Portland is a collaborative effort between Bonneville Power Administration (BPA), the US Department of Energy (DOE), and the Portland Parks and Recreation Community Schools Program along with various other cooperating businesses and organizations. The curriculum has also been incorporated into other summer programs and has been used by teachers to supplement classroom activities. Camps are designed to make available, affordable learning experiences that are fun and motivating to students for the study of science and math. Inner-city, under-represented minorities, rural, and low-income families are particularly encouraged to enroll their children in the program.

  1. Factors Affecting Student Success with a Google Earth-Based Earth Science Curriculum

    Science.gov (United States)

    Blank, Lisa M.; Almquist, Heather; Estrada, Jen; Crews, Jeff

    2016-01-01

    This study investigated to what extent the implementation of a Google Earth (GE)-based earth science curriculum increased students' understanding of volcanoes, earthquakes, plate tectonics, scientific reasoning abilities, and science identity. Nine science classrooms participated in the study. In eight of the classrooms, pre- and post-assessments…

  2. Cascade-sea : Computer Assisted Curriculum Analysis, Design & Evaluation for Science Education in Africa.

    NARCIS (Netherlands)

    McKenney, Susan; van den Akker, Jan; Maribe, Robert; Gustafson, Kent; Nieveen, Nienke; Plomp, Tjeerd

    1999-01-01

    The CASCADE-SEA program aims to support curriculum development within the context of secondary level science and mathematics education in sub-Saharan Africa. This project focuses on the iterative design of a computer-based curriculum development support system for the creation of classroom

  3. Do We Need a National Standards-Based K-12 Deaf Studies Curriculum? An Analytic History of Trends and Discourse in Development of Deaf Studies Curriculum

    Science.gov (United States)

    Zernovoj, Alexander

    2007-01-01

    This study provides a complete review of discussion and development leading up to the current trends in Deaf Studies curriculum development, and also analyzes existing known curriculum (or curriculum-like) materials to help inform development of an ideal standards-based Deaf Studies curriculum. The common shared arguments identified in this…

  4. The Content Analysis, Material Presentation, and Readability of Curriculum 2013 Science Textbook for 1st Semester of Junior High School 7th Grade

    Directory of Open Access Journals (Sweden)

    Endik Deni Nugroho

    2017-07-01

    Full Text Available Based on the early observation by researchers of the two Science textbooks 7thGrade about biological material, 1stand 2ndsemester of curriculum 2013, there were errors in the material presentation and legibility. This study aimed to compare and find the contents suitability of the book based on standard of competence and basic competences, readability, materials presentation and supporting material in the science textbook VII grade, 1st and 2nd semester and measured student legibility. This study used a qualitative descriptive approach by using document analysis. The data resources were obtained by using purposive, the data collection was triangulation, data analysis was inductive/qualitative and the results emphasized the meaning. This research results showed that the Integrated Sciences and Sciences textbook 1st and 2nd semester meet the standards of the core competencies and basic competence on the syllabus curriculum 2013 and also meet the books standart. The results of the analysis conducted in misstatement concept and principles and material llustration in the Integrated Science textbook 1st semester were found 5 misstatement concept, for the presentation of the principles and material illustration was found no error. In the book Integrated Sciences there was no delivery errors concept, principle, and material illustration. Science textbook 1st semester found 8 concepts misstatements and 8 illustration material misstatements. In general, Integrated Sciences and Sciences textbooks 1st and 2nd semester are illegibility so not appropriate for students.

  5. Next Generation Science Partnerships

    Science.gov (United States)

    Magnusson, J.

    2016-02-01

    I will provide an overview of the Next Generation Science Standards (NGSS) and demonstrate how scientists and educators can use these standards to strengthen and enhance their collaborations. The NGSS are rich in content and practice and provide all students with an internationally-benchmarked science education. Using these state-led standards to guide outreach efforts can help develop and sustain effective and mutually beneficial teacher-researcher partnerships. Aligning outreach with the three dimensions of the standards can help make research relevant for target audiences by intentionally addressing the science practices, cross-cutting concepts, and disciplinary core ideas of the K-12 science curriculum that drives instruction and assessment. Collaborations between researchers and educators that are based on this science framework are more sustainable because they address the needs of both scientists and educators. Educators are better able to utilize science content that aligns with their curriculum. Scientists who learn about the NGSS can better understand the frameworks under which educators work, which can lead to more extensive and focused outreach with teachers as partners. Based on this model, the International Ocean Discovery Program (IODP) develops its education materials in conjunction with scientists and educators to produce accurate, standards-aligned activities and curriculum-based interactions with researchers. I will highlight examples of IODP's current, successful teacher-researcher collaborations that are intentionally aligned with the NGSS.

  6. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  7. Re-visioning Curriculum and Pedagogy in a University Science and ...

    African Journals Online (AJOL)

    Re-visioning Curriculum and Pedagogy in a University Science and Technology Education Setting: Case Studies Interrogating Socio-Scientific Issues. Overson Shumba, George Kasali, Yaki Namiluko, Beauty Choobe, Gezile Mbewe, Moola Mutondo, Kenneth Maseka ...

  8. Planning Instruction to Meet the Intent of the Next Generation Science Standards

    Science.gov (United States)

    Krajcik, Joseph; Codere, Susan; Dahsah, Chanyah; Bayer, Renee; Mun, Kongju

    2014-03-01

    The National Research Council's Framework for K- 12 Science Education and the Next Generation Science Standards (NGSS Lead States in Next Generation Science Standards: For states, by states. The National Academies Press, Washington, 2013) move teaching away from covering many isolated facts to a focus on a smaller number of disciplinary core ideas (DCIs) and crosscutting concepts that can be used to explain phenomena and solve problems by engaging in science and engineering practices. The NGSS present standards as knowledge-in-use by expressing them as performance expectations (PEs) that integrate all three dimensions from the Framework for K- 12 Science Education. This integration of core ideas, practices, and crosscutting concepts is referred to as three-dimensional learning (NRC in Division of Behavioral and Social Sciences and Education. The National Academies Press, Washington, 2014). PEs state what students can be assessed on at the end of grade level for K-5 and at the end of grade band for 6-8 and 9-12. PEs do not specify how instruction should be developed nor do they serve as objectives for individual lessons. To support students in developing proficiency in the PEs, the elements of the DCIs will need to be blended with various practices and crosscutting concepts. In this paper, we examine how to design instruction to support students in meeting a cluster or "bundle" of PEs and how to blend the three dimensions to develop lesson level PEs that can be used for guiding instruction. We provide a ten-step process and an example of that process that teachers and curriculum designers can use to design lessons that meet the intent of the Next Generation of Science Standards.

  9. Support of a Problem-Based Learning Curriculum by Basic Science Faculty

    Directory of Open Access Journals (Sweden)

    William L. Anderson

    2002-11-01

    Full Text Available Although published reports describe benefits to students of learning in a problem-based, student-centered environment, questions have persisted about the excessive faculty time commitments associated with the implementation of PBL pedagogy. The argument has been put forward that the excessive faculty costs of such a curriculum cannot be justified based upon the potential benefits to students. However, the magnitude of the faculty time commitment to a PBL curriculum to support the aforementioned argument is not clear to us and we suspect that it is also equally unclear to individuals charged with making resource decisions supporting the educational efforts of the institution. Therefore, to evaluate this cost - benefit question, we analyzed the actual basic science faculty time commitment in a hybrid PBL curriculum during the first phase 18 months of undergraduate medical education. The results of this analysis do demonstrate an increase in faculty time commitments but do not support the argument that PBL pedagogy is excessively costly in terms of faculty time. For the year analyzed in this report, basic science faculty members contributed on average of 27.4 hours to the instruction of medical students. The results of the analysis did show significant contributions (57% of instructional time by the clinical faculty during the initial 18 months of medical school. In addition, the data revealed a four-fold difference between time commitments of the four basic science departments. We conclude that a PBL curriculum does not place unreasonable demands on the time of basic science faculty. The demands on clinical faculty, in the context of their other commitments, could not be evaluated. Moreover, this type of analysis provides a tool that can be used to make faculty resource allocation decisions fairly.

  10. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    Science.gov (United States)

    Kulo, Violet; Bodzin, Alec

    2013-02-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade students classified in three ability level tracks. Data were gathered through pre/posttest content knowledge assessments, daily classroom observations, and daily reflective meetings with the teacher. Findings indicated a significant increase in the energy content knowledge for all the students. Effect sizes were large for all three ability level tracks, with the middle and low track classes having larger effect sizes than the upper track class. Learners in all three tracks were highly engaged with the curriculum. Curriculum effectiveness and practical issues involved with using geospatial technologies to support science learning are discussed.

  11. The Analysis of Curriculum Development Studies Which are Applied For Effective Science Teaching at Primary Level in Turkey and Suggestions to Problems Encountered

    OpenAIRE

    Rahmi YAĞBASAN; Murat DEMİRBAŞ

    2005-01-01

    In this study, curriculum development studies for effective science teaching were analyzed in Turkey, solution suggestions were made by determining the confronted problems. The studies for curriculum analysis toward science teaching were done by covering applications of modern science teaching started in 1970s, curriculum of science teaching made in 1990s and applications of science teaching curriculum put into practice in 2000. It was determined that new science teaching studies that will be...

  12. A Reexamination of Ontario's Science Curriculum: Toward a More Inclusive Multicultural Science Education?

    Science.gov (United States)

    Mujawamariya, Donatille; Hujaleh, Filsan; Lima-Kerckhoff, Ashley

    2014-01-01

    The rapid diversification of communities in Ontario has necessitated the provincial government to reevaluate public school curriculums and policies to make schools more inclusive and reflective of its diverse population. This article critically analyzes the content of the latest revised science curricula for Grades 1 to 10 and assesses the degree…

  13. The Impact of Science Integrated Curriculum Supplements on Early Childhood Teachers' Attitudes and Beliefs towards Science while In-Service: A Multiple Case

    Science.gov (United States)

    Collins, Kellian L.

    Science at the early childhood level has been rarely taught as a single subject or integrated into the curriculum. One reason why early childhood educators avoid teaching science are their attitudes, beliefs, and lack of understanding scientific concepts as presented in traditional science curriculums. The intervention used by researchers for improving beliefs and attitudes in K-6 pre-service teachers towards teaching science in early childhood has been science method courses. For in service teachers, the intervention has been professional development workshops, seminars, and symposiums. Though these interventions have had a positive impact on teachers' attitudes and beliefs toward teaching science, the interventions have not necessarily guaranteed more science being taught in the preschool classroom. The specific problem investigated for this study was how to improve the interventions designed to improve preschool teachers' attitudes and beliefs so that they would feel more confident in teaching science to young children. The purpose of this study was to examine how implementing a one-week science integrated curriculum supplement could be an effective tool for improving preschool teachers' attitudes and beliefs toward teaching science. This study utilized the qualitative multiple case study research method. A logical model was created based on negative teacher attitudes and beliefs attributes that were the core components of the Preschool Teachers' Attitudes and Beliefs toward Science teaching (P-TABS) questionnaire. The negative attributes were paired with positive interventions and encapsulated in a one-week science integrated curriculum supplement based on the factors of teacher comfort, child benefit and challenges. The primary source of evidence for this study was the semi-structured interview. The researcher contacted 24 early childhood facilities, 44 emails were sent to preschool teachers, four teachers agreed to participate in the study. The results of the

  14. The Impact of a Curriculum Course on Pre-Service Primary Teachers' Science Content Knowledge and Attitudes towards Teaching Science

    Science.gov (United States)

    Murphy, Cliona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students'…

  15. Student attitudes to UNDP Social Science curriculum in Fiji — Personal and environmental influences

    Science.gov (United States)

    Baba, Tupeni L.; Fraser, Barry J.

    1983-12-01

    A sample of 834 seventh grade students in Fiji participated in an evaluation of the UNDP Social Science curriculum by responding to questionnaires measuring attitudes to or perceptions of three important curriculum process criteria (Interest, Ease and Adequacy of Time). The three major purposes of the evaluation were to provide formative information to guide curriculum revision, to provide summative information about the overall efficacy of the curriculum, and to explore the differential suitability of the curriculum for students varying in personal and environmental characteristics. Examination of means on individual questionnaire items led to the identification of certain curriculum activities requiring modification to improve their level of Interest, Ease, or Adequacy of Time. The finding that the mean score was relatively high for most questionnaire items suggested that the majority of activities in the curriculum were perceived by students as interesting and easy and having sufficient time for completion. Multiple regression analyses revealed that a block of personal variables and a block of environmental variables, but not a block of person-environment interactions, accounted for a significant amount of variance in the three process criteria. In particular, it was found that student attitudes to the curriculum varied systematically with certain personal variables (e.g., student general interest in social science, student ethnicity) and environmental variables (e.g., school location, teacher training).

  16. NASA Goddard Space Flight Center presents Enhancing Standards Based Science Curriculum through NASA Content Relevancy: A Model for Sustainable Teaching-Research Integration Dr. Robert Gabrys, Raquel Marshall, Dr. Evelina Felicite-Maurice, Erin McKinley

    Science.gov (United States)

    Marshall, R. H.; Gabrys, R.

    2016-12-01

    NASA Goddard Space Flight Center has developed a systemic educator professional development model for the integration of NASA climate change resources into the K-12 classroom. The desired outcome of this model is to prepare teachers in STEM disciplines to be globally engaged and knowledgeable of current climate change research and its potential for content relevancy alignment to standard-based curriculum. The application and mapping of the model is based on the state education needs assessment, alignment to the Next Generation Science Standards (NGSS), and implementation framework developed by the consortium of district superintendents and their science supervisors. In this presentation, we will demonstrate best practices for extending the concept of inquiry-based and project-based learning through the integration of current NASA climate change research into curriculum unit lessons. This model includes a significant teacher development component focused on capacity development for teacher instruction and pedagogy aimed at aligning NASA climate change research to related NGSS student performance expectations and subsequent Crosscutting Concepts, Science and Engineering Practices, and Disciplinary Core Ideas, a need that was presented by the district steering committee as critical for ensuring sustainability and high-impact in the classroom. This model offers a collaborative and inclusive learning community that connects classroom teachers to NASA climate change researchers via an ongoing consultant/mentoring approach. As a result of the first year of implementation of this model, Maryland teachers are implementing NGSS unit lessons that guide students in open-ended research based on current NASA climate change research.

  17. The Digestive System and Alcohol Use. Science of Alcohol Curriculum for American Indians. Training Unit [and] Participant Booklet.

    Science.gov (United States)

    Jacobs, Cecelia; And Others

    The Science of Alcohol Curriculum for American Indians uses the Medicine Circle and the "new science paradigm" to study the science of alcohol through a culturally relevant holistic approach. Intended for teachers and other educational personnel involved with American Indians, this curriculum presents a framework for alcohol education…

  18. Exploring the role of curriculum materials to support teachers in science education reform

    Science.gov (United States)

    Schneider, Rebecca M.

    2001-07-01

    For curriculum materials to succeed in promoting large-scale science education reform, teacher learning must be supported. Materials were designed to reflect desired reforms and to be educative by including detailed lesson descriptions that addressed necessary content, pedagogy, and pedagogical content knowledge for teachers. The goal of this research was to describe how such materials contributed to classroom practices. As part of an urban systemic reform effort, four middle school teachers' initial enactment of an inquiry-based science unit on force and motion were videotaped. Enactments focused on five lesson sequences containing experiences with phenomena, investigation, technology use, or artifact development. Each sequence spanned three to five days across the 10-week unit. For each lesson sequence, intended and actual enactment were compared using ratings of (1) accuracy and completeness of science ideas presented, (2) amount student learning opportunities, similarity of learning opportunities with those intended, and quality of adaptations , and (3) amount of instructional supports offered, appropriateness of instructional supports and source of ideas for instructional supports. Ratings indicated two teachers' enactments were consistent with intentions and two teachers' enactments were not. The first two were in school contexts supportive of the reform. They purposefully used the materials to guide enactment, which tended to be consistent with standards-based reform. They provided students opportunities to use technology tools, design investigations, and discuss ideas. However, enactment ratings were less reflective of curriculum intent when challenges were greatest, such as when teachers attempted to present challenging science ideas, respond to students' ideas, structure investigations, guide small-group discussions, or make adaptations. Moreover, enactment ratings were less consistent in parts of lessons where materials did not include lesson specific

  19. An analysis of teaching competence in science teachers involved in the design of context-based curriculum materials

    NARCIS (Netherlands)

    Putter - Smits, de L.G.A.; Taconis, R.; Driel, van J.H.; Jochems, W.M.G.

    2012-01-01

    The committees for the current Dutch context-based innovation in secondary science education employed teachers to design context-based curriculum materials. A study on the learning of science teachers in design teams for context-based curriculum materials is presented in this paper. In a correlation

  20. Teacher enactment of an inquiry-based science curriculum and its relationship to student interest and achievement in science

    Science.gov (United States)

    Dimichino, Daniela C.

    This mixed-methods case study, influenced by aspects of grounded theory, aims to explore the relationships among a teacher's attitude toward inquiry-based middle school reform, their enactment of such a curriculum, and student interest and achievement in science. A solid theoretical basis was constructed from the literature on the benefits of inquiry-based science over traditional science education, the benefits of using constructivist learning techniques in the classroom, the importance of motivating teachers to change their teaching practices to be more constructive, and the importance of motivating and exciting students in order to boost achievement in science. Data was collected using qualitative documents such as teacher and student interviews, classroom observations, and curriculum development meetings, in addition to quantitative documents such as student science interest surveys and science skills tests. The qualitative analysis focused on examining teacher attitudes toward curricular reform efforts, and the enactments of three science teachers during the initial year of an inquiry-based middle school curriculum adoption using a fidelity of implementation tool constructed from themes that emerged from the data documents utilized in this study. In addition, both qualitative and quantitative tools were used to measure an increase or decrease in student interest and student achievement over the study year, and their resulting relationships to their teachers' attitudes and enactments of the curriculum. Results from data analysis revealed a positive relationship between the teachers' attitude toward curricular change and their fidelity of implementation to the developers' intentions, or curricular enactment. In addition, strong positive relationships were also discovered among teacher attitude, student interest, and student achievement. Variations in teacher enactment also related to variations in student interest and achievement, with considerable positive

  1. Systematic Testing should not be a Topic in the Computer Science Curriculum!

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2003-01-01

    In this paper we argue that treating "testing" as an isolated topic is a wrong approach in computer science and software engineering teaching. Instead testing should pervade practical topics and exercises in the computer science curriculum to teach students the importance of producing software...

  2. An Ecological System Curriculum: An Integrated MST Approach to Environmental Science Education.

    Science.gov (United States)

    Leonhardt, Nina A.

    This paper describes an inquiry-based, student-centered mathematics, science, and technology curriculum guide. It features activities addressing such environmental science topics as groundwater modeling, water filtration, soil permeability and porosity, water temperature and salinity, and quadrant studies. Activities are organized so that the…

  3. Investigating the Role of the Teacher in Science Curriculum: New Evidence for an Old Debate

    Science.gov (United States)

    Penuel, W.; McAuliffe, C.; McWilliams, H.

    2007-12-01

    It is widely believed that teachers need high-quality curriculum materials to improve teaching and learning. Professional development designs differ, however, in whether they emphasize preparing teachers to use expert- designed curricula or preparing teachers with the tools needed to design and implement high-quality science units themselves. Evidence exists for the effectiveness of providing teachers with training in how to implement expert-designed curricula (Bredderman, 1983; Shymansky, Hedges, & Woodworth, 1990; Weinstein, Boulanger, & Walberg, 1982) and for providing teachers with professional development aimed at preparing teachers to design instruction and assessments (Black & Harrison, 2001; Shepard, 1997; Sneider, Adams, Ibanez, Templeton, & Porter, 1996). However, no studies, however, have compared explicitly these different approaches to preparing teachers to plan and enact instruction in science. The Transforming Instruction by Design in Earth Science (TIDES) project is an experimental study comparing the efficacy of three different approaches to professional development. The approaches differ with respect to the role that teachers are expected to play in curriculum. In one condition (Earth Science by Design), teachers learn how to design curriculum units in Earth science. In a second condition (Investigating Earth Systems), teachers learn how to adopt and implement curriculum materials developed by experts. In the third condition (Hybrid), teachers learn a principled approach to adapt expert-developed curriculum materials. The TIDES study is examining the impacts of each of the approaches to professional development on instructional planning and on the quality of assignments and assessments they give to students. We measured impacts on instructional planning using an end-of-unit questionnaire that focused on changes to teachers" overall approach to planning units of instruction, their strategies for organizing assignment, and materials they use in

  4. COMPUTATIONAL SCIENCE IN IN THE EDUCATIONAL CURRICULUM

    Directory of Open Access Journals (Sweden)

    José Manuel Cabrera Delgado

    2017-06-01

    Full Text Available How to incorporate Computer Science (CS into the basic education curriculum continues to be subject of controversy at the European level. Without there being a defined strategy on behalf of the European Union in this respect, several countries have begun their incorporation showing us the advantages and difficulties of such action. Main elements of CS, such as computational thinking and coding, are already being taught in schools, establishing the need for a curriculum adapted to the ages of the students, training for teachers and enough resources. The purpose of this article, from the knowledge of the experience of these countries, is to respond, or at least to reflect, on the answers to the following questions: what is CS?, what are their main elements?, why is it necessary?, at what age should CS be taught?, what requirements are needed for their incorporation?

  5. What are critical features of science curriculum materials that impact student and teacher outcomes?

    NARCIS (Netherlands)

    Roblin, Natalie Pareja; Schunn, Christian; McKenney, Susan

    2018-01-01

    Large investments are made in curriculum materials with the goal of supporting science education reform. However, relatively little evidence is available about what features of curriculum materials really matter to impact student and teacher learning. To address this need, the current study examined

  6. Implementing Curriculum-Embedded Formative Assessment in Primary School Science Classrooms

    Science.gov (United States)

    Hondrich, Annika Lena; Hertel, Silke; Adl-Amini, Katja; Klieme, Eckhard

    2016-01-01

    The implementation of formative assessment strategies is challenging for teachers. We evaluated teachers' implementation fidelity of a curriculum-embedded formative assessment programme for primary school science education, investigating both material-supported, direct application and subsequent transfer. Furthermore, the relationship between…

  7. Go Ask Alice: Uncovering the Role of a University Partner in an Informal Science Curriculum Support Network

    Science.gov (United States)

    Baker-Doyle, Kira J.

    2013-01-01

    This article describes a study from the Linking Instructors Networks of Knowledge in Science Education project, which aims to examine the informal science curriculum support networks of teachers in a school-university curriculum reform partnership. We used social network analysis and qualitative methods to reveal characteristics of the informal…

  8. Dissemination of an innovative mastery learning curriculum grounded in implementation science principles: a case study.

    Science.gov (United States)

    McGaghie, William C; Barsuk, Jeffrey H; Cohen, Elaine R; Kristopaitis, Theresa; Wayne, Diane B

    2015-11-01

    Dissemination of a medical education innovation, such as mastery learning, from a setting where it has been used successfully to a new and different medical education environment is not easy. This article describes the uneven yet successful dissemination of a simulation-based mastery learning (SBML) curriculum on central venous catheter (CVC) insertion for internal medicine and emergency medicine residents across medical education settings. The dissemination program was grounded in implementation science principles. The article begins by describing implementation science which addresses the mechanisms of medical education and health care delivery. The authors then present a mastery learning case study in two phases: (1) the development, implementation, and evaluation of the SBML CVC curriculum at a tertiary care academic medical center; and (2) the dissemination of the SBML CVC curriculum to an academic community hospital setting. Contextual information about the drivers and barriers that affected the SBML CVC curriculum dissemination is presented. This work demonstrates that dissemination of mastery learning curricula, like all other medical education innovations, will fail without active educational leadership, personal contacts, dedication, hard work, rigorous measurement, and attention to implementation science principles. The article concludes by presenting a set of lessons learned about disseminating an SBML CVC curriculum across different medical education settings.

  9. AIAA Educator Academy - Mars Rover Curriculum: A 6 week multidisciplinary space science based curriculum

    Science.gov (United States)

    Henriquez, E.; Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.

    2013-12-01

    The Curiosity mission has captured the imagination of children, as NASA missions have done for decades. The AIAA and the University of Houston have developed a flexible curriculum program that offers children in-depth science and language arts learning culminating in the design and construction of their own model rover. The program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students learn to research Mars in order to pick a science question about Mars that is of interest to them. They learn principles of spacecraft design in order to build a model of a Mars rover to carry out their mission on the surface of Mars. The model is a mock-up, constructed at a minimal cost from art supplies. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the structure and organization of the 6 week curriculum. A set of 30 new 5E lesson plans have been written to support this project as a classroom activity. The challenge of developing interactive

  10. The Central Nervous System and Alcohol Use. Science of Alcohol Curriculum for American Indians. Training Unit [and] Participant Booklet.

    Science.gov (United States)

    Jacobs, Cecelia; And Others

    The Science of Alcohol Curriculum for American Indians uses the Medicine Circle and the "new science paradigm" to study the science of alcohol through a culturally relevant holistic approach. Intended for teachers and other educational personnel involved with American Indians, this curriculum aims to present a framework for alcohol…

  11. The impact of a curriculum course on pre-service primary teachers' science content knowledge and attitudes towards teaching science

    OpenAIRE

    Murphy, Clíona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students' conceptual and pedagogical knowledge of science and on their attitudes towards teaching science in the primary classroom. A questionnaire, containing closed ...

  12. SSMA Science Reviewers' Forecasts for the Future of Science Education.

    Science.gov (United States)

    Jinks, Jerry; Hoffer, Terry

    1989-01-01

    Described is a study which was conducted as an exploratory assessment of science reviewers' perceptions for the future of science education. Arrives at interpretations for identified categories of computers and high technology, science curriculum, teacher education, training, certification, standards, teaching methods, and materials. (RT)

  13. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    Science.gov (United States)

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  14. The quest for balanced curriculum: The perceptions of secondary students and teachers who experienced an integrated art and science curriculum

    Science.gov (United States)

    Schramm, Susan Lynn

    The purpose of this study was to describe how an integrated high school curriculum unit connecting the different subject areas of art and science could be used to give students a voice in the decisions about learning. Through the data generated I examined the obstacles of integrating curriculum in a traditionally subject-centered high school. Forty-one students, nineteen biology students in the ninth grade, and twenty-two art students ranging from the tenth grade through the twelfth grade, along with their two teachers and a student teacher, were the subjects of the research. An integrated curricular unit, "Genetic Robotics," was designed specifically for this research to enable students to integrate scientific and artistic processes such as communication skills, problem-solving, critical thinking, creativity and responsiveness to the aesthetic; thus empowering them for future learning. Semi-structured interviews, surveys, questionnaires, informal conversations, reaction journals, field observations, video tapes, and official documents from the school, provided the data for this research. Data were collected using a strategy of participant-observation. The constant comparative analysis method was employed to explore emerging themes. Oak Park students' adaptability to an integrated art and science unit was found to be limited because of their inability to conceptualize curricular structures that are different from the traditional ones to which they are accustomed. Students typically scored high on standardized proficiency tests and college entrance exams. Therefore, for them to experience an innovation that is not based on the memorize-and-recall mode of learning is to risk failure and many are unwilling to do so, especially the high achieving students.

  15. Implementing the Next Generation Science Standards: Impacts on Geoscience Education

    Science.gov (United States)

    Wysession, M. E.

    2014-12-01

    This is a critical time for the geoscience community. The Next Generation Science Standards (NGSS) have been released and are now being adopted by states (a dozen states and Washington, DC, at the time of writing this), with dramatic implications for national K-12 science education. Curriculum developers and textbook companies are working hard to construct educational materials that match the new standards, which emphasize a hands-on practice-based approach that focuses on working directly with primary data and other forms of evidence. While the set of 8 science and engineering practices of the NGSS lend themselves well to the observation-oriented approach of much of the geosciences, there is currently not a sufficient number of geoscience educational modules and activities geared toward the K-12 levels, and geoscience research organizations need to be mobilizing their education & outreach programs to meet this need. It is a rare opportunity that will not come again in this generation. There are other significant issues surrounding the implementation of the NGSS. The NGSS involves a year of Earth and space science at the high school level, but there does not exist a sufficient workforce is geoscience teachers to meet this need. The form and content of the geoscience standards are also very different from past standards, moving away from a memorization and categorization approach and toward a complex Earth Systems Science approach. Combined with the shift toward practice-based teaching, this means that significant professional development will therefore be required for the existing K-12 geoscience education workforce. How the NGSS are to be assessed is another significant question, with an NRC report providing some guidance but leaving many questions unanswered. There is also an uneasy relationship between the NGSS and the Common Core of math and English, and the recent push-back against the Common Core in many states may impact the implementation of the NGSS.

  16. The Future Curriculum for School Science: What Can Be Learnt from the Past?

    Science.gov (United States)

    Fensham, Peter J.

    2016-01-01

    In the 1960s, major reforms of the curriculum for school science education occurred that set a future for school science education that has been astonishingly robust at seeing off alternatives. This is not to say that there are not a number of good reasons for such alternative futures. The sciences, their relation to the socio-scientific context,…

  17. Hyper-curriculum: Transcending Borders of Standardization in the Cosmopolitan Classroom

    Directory of Open Access Journals (Sweden)

    Christopher J. Kazanjian

    2016-10-01

    Full Text Available The world is not just connected; it is hyper-connected. The global flow of ideas, technology, and people are at unmatched levels in history. More classrooms are becoming cosmopolitan centers composed of students with multicultural backgrounds. However, United States public education in this hyper-connected world puts emphasis on standardization and accountability. By doing so, schools driven by federal initiatives fail in helping students to become worldly citizens. Students and teachers are derived of room for creativity or new multicultural possibilities. Hence, this paper intends to develop a theoretical framework for curriculum in the hyper-connected world, aptly named “hyper-curriculum.”

  18. The Efficacy of Educative Curriculum Materials to Support Geospatial Science Pedagogical Content Knowledge

    Science.gov (United States)

    Bodzin, Alec; Peffer, Tamara; Kulo, Violet

    2012-01-01

    Teaching and learning about geospatial aspects of energy resource issues requires that science teachers apply effective science pedagogical approaches to implement geospatial technologies into classroom instruction. To address this need, we designed educative curriculum materials as an integral part of a comprehensive middle school energy…

  19. The "Next Generation Science Standards" and the Life Sciences

    Science.gov (United States)

    Bybee, Rodger W.

    2013-01-01

    Publication of the "Next Generation Science Standards" will be just short of two decades since publication of the "National Science Education Standards" (NRC 1996). In that time, biology and science education communities have advanced, and the new standards will reflect that progress (NRC 1999, 2007, 2009; Kress and Barrett…

  20. Consumer Citizenship Curriculum Guides for Social Studies, English, Science, Mathematics.

    Science.gov (United States)

    MacKenzie, Louise; Smith, Alice

    These four consumer citizenship curriculum guides for social studies, English, science, and mathematics incorporate consumer education into these subject matter areas in grades 8-12. Each guide is organized around 10 main component/goals. They are basic economics in the marketplace, credit, consumer law/protection, banking skills, comparison…

  1. Science Standards, Science Achievement, and Attitudes about Evolution

    Science.gov (United States)

    Belin, Charlie M.; Kisida, Brian

    2015-01-01

    This article explores the relationships between (a) the quality of state science standards and student science achievement, (b) the public's belief in teaching evolution and the quality of state standards, and (c) the public's belief in teaching evolution and student science achievement. Using multiple measures, we find no evidence of a…

  2. Boundary Interaction: Towards Developing a Mobile Technology-Enabled Science Curriculum to Integrate Learning in the Informal Spaces

    Science.gov (United States)

    Sun, Daner; Looi, Chee-Kit

    2018-01-01

    This paper explores the crossover between formal learning and learning in informal spaces supported by mobile technology, and proposes design principles for educators to carry out a science curriculum, namely Boundary Activity-based Science Curriculum (BAbSC). The conceptualization of the boundary object, and the principles of boundary activity as…

  3. Microsoft Excel Software Usage for Teaching Science and Engineering Curriculum

    Science.gov (United States)

    Singh, Gurmukh; Siddiqui, Khalid

    2009-01-01

    In this article, our main objective is to present the use of Microsoft Software Excel 2007/2003 for teaching college and university level curriculum in science and engineering. In particular, we discuss two interesting and fascinating examples of interactive applications of Microsoft Excel targeted for undergraduate students in: 1) computational…

  4. Remodeling Science Education

    Science.gov (United States)

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  5. A Creative Approach to the Common Core Standards: The Da Vinci Curriculum

    Science.gov (United States)

    Chaucer, Harry

    2012-01-01

    "A Creative Approach to the Common Core Standards: The Da Vinci Curriculum" challenges educators to design programs that boldly embrace the Common Core State Standards by imaginatively drawing from the genius of great men and women such as Leonardo da Vinci. A central figure in the High Renaissance, Leonardo made extraordinary contributions as a…

  6. Reaching Consensus on Essential Biomedical Science Learning Objectives in a Dental Curriculum.

    Science.gov (United States)

    Best, Leandra; Walton, Joanne N; Walker, Judith; von Bergmann, HsingChi

    2016-04-01

    This article describes how the University of British Columbia Faculty of Dentistry reached consensus on essential basic biomedical science objectives for DMD students and applied the information to the renewal of its DMD curriculum. The Delphi Method was used to build consensus among dental faculty members and students regarding the relevance of over 1,500 existing biomedical science objectives. Volunteer panels of at least three faculty members (a basic scientist, a general dentist, and a dental specialist) and a fourth-year dental student were formed for each of 13 biomedical courses in the first two years of the program. Panel members worked independently and anonymously, rating each course objective as "need to know," "nice to know," "irrelevant," or "don't know." Panel members were advised after each round which objectives had not yet achieved a 75% consensus and were asked to reconsider their ratings. After a maximum of three rounds to reach consensus, a second group of faculty experts reviewed and refined the results to establish the biomedical science objectives for the renewed curriculum. There was consensus on 46% of the learning objectives after round one, 80% after round two, and 95% after round three. The second expert group addressed any remaining objectives as part of its review process. Only 47% of previous biomedical science course objectives were judged to be essential or "need to know" for the general dentist. The consensus reached by participants in the Delphi Method panels and a second group of faculty experts led to a streamlined, better integrated DMD curriculum to prepare graduates for future practice.

  7. Prospects and challenges in teachers’ adoption of a new modeling orientated science curriculum in lower secondary school in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Sanne Schnell

    A new science curriculum with a significant emphasis on modeling has recently been enacted in the Danish compulsory school. This design based study aims to investigate science teachers’ beliefs, practice and reflections in response to the new curriculum. The data sources include teacher...... towards the modeling emphasis in the new curriculum, but nevertheless use a restricted range of modeling practices and pay limited attention to the purpose and utility of models. Teachers raised concerns in enacting the new curriculum due to: (i) Lack of time for preparations and teamwork, (ii) Shortage...... of clarifications and examples in the curriculum materials and teacher education on how to enact modeling in practice, (iii) Overcrowded curriculum, and (iv) Lack of alignment with a national test. In addition, the results indicate an inconsistence between teachers’ intentions and their classroom practice...

  8. Standardizing hysteroscopy teaching: development of a curriculum using the Delphi method.

    Science.gov (United States)

    Neveu, Marie-Emmanuelle; Debras, Elodie; Niro, Julien; Fernandez, Hervé; Panel, Pierre

    2017-12-01

    Hysteroscopy is performed often and in many indications but is challenging to learn. Hands-on training in live patients faces ethical, legal, and economic obstacles. Virtual reality simulation may hold promise as a hysteroscopy training tool. No validated curriculum specific in hysteroscopy exists. The aim of this study was to develop a hysteroscopy curriculum, using the Delphi method to identify skill requirements. Based on a literature review using the key words "curriculum," "simulation," and "hysteroscopy," we identified five technical and non-technical areas in which skills were required. Twenty hysteroscopy experts from different French hospital departments participated in Delphi rounds to select items in these five areas. The rounds were to be continued until 80-100% agreement was obtained for at least 60% of items. A curriculum was built based on the selected items and was evaluated in residents. From November 2014 to April 2015, 18 of 20 invited experts participated in three Delphi rounds. Of the 51 items selected during the first round, only 25 (49%) had 80-100% agreement during the second round, and a third round was therefore conducted. During this last round, 80-100% agreement was achieved for 31 (61%) items, which were used to create the curriculum. All 14 residents tested felt that a simulator training session was acceptable and helped them to improve their skills. We describe a simulation-based hysteroscopy curriculum focusing on skill requirements identified by a Delphi procedure. Its development allows standardization of training programs offered to residents.

  9. Student Teachers' Views: What Is an Interesting Life Sciences Curriculum?

    Science.gov (United States)

    de Villiers, Rian

    2011-01-01

    In South Africa, the Grade 12 "classes of 2008 and 2009" were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences…

  10. Revision of Primary I-III Science Curriculum in Somalia. African Studies in Curriculum Development & Evaluation No. 83.

    Science.gov (United States)

    Abdi, Ahmed Ali

    This study was designed to evaluate: (1) the content of the primary I-III science curriculum in Somalia; (2) the instructional materials that back up the content and methodologies; and (3) the professional competence of the teachers in charge of teaching this subject. Data were collected by means of a questionnaire, observations, and unstructured…

  11. Building Astronomy Curriculum to Include the Sight Impaired: Week long summer camp activities for Middle School Students adherent to Washington State Curriculum Standards (EALR's)

    Science.gov (United States)

    Ramien, Natalie; Loebman, S. R.; Player, V.; Larson, A.; Torcolini, N. B.; Traverse, A.

    2011-01-01

    Currently astronomy learning is heavily geared towards visual aids; however, roughly 10 million people in North America are sight impaired. Every student should have access to meaningful astronomy curriculum; an understanding of astronomy is an expectation of national and state science learning requirements. Over the last ten years, Noreen Grice has developed Braille and large print astronomy text books aimed at sight impaired learners. We build upon Grice's written work and present here a five day lesson plan that integrates 2D reading with 3D activities. Through this curriculum, students develop an intuitive understanding of astronomical distance, size, composition and lifetimes. We present five distinct lesson modules that can be taught individually or in a sequential form: the planets, our sun, stars, stellar evolution and galaxies. We have tested these modules on sight impaired students and report the results here. Overall, we find the work presented here lends itself equally well to a week long science camp geared toward middle school sight impaired taught by astronomers or as supplemental material integrated into a regular classroom science curriculum. This work was made possible by a 2007 Simple Effective Education and Dissemination (SEED) Grant For Astronomy Researchers, Astronomical Society of the Pacific through funds provided by the Planck Mission, Jet Propulsion Laboratory, California Institute of Technology.

  12. The "Curriculum for Excellence": A Major Change for Scottish Science Education

    Science.gov (United States)

    Brown, Sally

    2014-01-01

    The Curriculum for Excellence and new National Qualifications offer innovative reform, based on widely supported ideas and aims, for Scottish preschool, primary and secondary education levels. "Objectives and syllabuses" for science are replaced by "experiences and outcomes". Most strikingly, central prescription makes way for…

  13. The Effect of Design Modifications to the Typographical Layout of the New York State Elementary Science Learning Standards on User Preference and Process Time

    Science.gov (United States)

    Arnold, Jeffery E.

    2010-01-01

    The purpose of this study was to determine the effect of four different design layouts of the New York State elementary science learning standards on user processing time and preference. Three newly developed layouts contained the same information as the standards core curriculum. In this study, the layout of the core guide is referred to as Book.…

  14. National standards in science education: Teacher perceptions regarding utilization

    Science.gov (United States)

    Fletcher, Carol Louise Parsons

    The purpose of this naturalistic study was to determine what factors most influence middle school science teachers' intentions to utilize or ignore national standards, as a toot for reform in their classrooms, schools, or districts. Results indicate. that teachers with. minimal training were unlikely to use national standards documents due to their perceptions of a lack of support from peers, administrators and a high-stakes state accountability system. Teachers with more extensive training were more inclined to use national standards documents as philosophical guides for reform because they believed in the validity of the recommendations. Implications are discussed, chief among them that short-term professional development may actually do more harm than good if teachers retain or develop unexamined misconceptions about national standards recommendations as a result. In addition, due to the concerns expressed by teachers regarding state curriculum mandates and standardized testing, this study indicates that changes in these external factors must be instituted before teachers will commit themselves to standards-based reforms. It is suggested that staff development focus on opportunities for reflection and application which will promote conceptual change in teachers. A model predicated on the notion that the process of implementing reform is essentially an issue of promoting conceptual change in teachers is proposed. This model, termed the Reform Implementation as Conceptual Change, or RICC, focuses specifically on the cognitive processes teachers may go through when they are exposed to an innovation such as national standards. Stages such as integrated application, accommodation, assimilation, disconnection, and false accommodation, are described. The impact that professional development and training may have on the likelihood that teachers will experience these various stages is also discussed. This model serves as a theoretical framework for explaining why some

  15. Teacher change and professional development: A case study of teachers engaged in an innovative constructivist science curriculum

    Science.gov (United States)

    Akura, Okong'o. Gabriel

    This study examined both the changes that elementary school teachers experienced when they implemented a reform-based science curriculum and the impact of professional development on this transformation. The research involved a case study of three purposefully selected teachers implementing the Linking Food and the Environment (LIFE) program during the 2002--2003 school year. The LIFE program is a curriculum designed to enhance science literacy among learners from high poverty urban environments. While the study was grounded in the tradition of critical theory (Carspecken, 1996), the theoretical perspective of hermeneutic phenomenology (van Manen, 1990) guided data collection and analysis. Extensive observations of the teachers were made in order to capture and record the teacher change phenomenon. Data were recorded by means of field notes, audio and videotapes, semi-structured interviews, classroom observations, and video Stimulated Recall (SR) interviews. Emerging themes relating to teacher change, knowledge interests, constructivist pedagogy, and professional development illustrated how teachers grapple with various aspects of implementing a reform-based science curriculum. The teachers in this study were similar to those in earlier investigations, which found that sustained professional development programs involving mentoring and constant reflection enable elementary science teachers to change their instructional strategies from the technical-realist orientation towards the practical-hermeneutic and emancipatory-liberatory orientations. The study has implications for science curriculum developers and designers of professional development programs.

  16. Mi-STAR Unit Challenges serve as a model for integrating earth science and systems thinking in a Next Generation Science Standards (NGSS) aligned curriculum.

    Science.gov (United States)

    Gochis, E. E.; Tubman, S.; Matthys, T.; Bluth, G.; Oppliger, D.; Danhoff, B.; Huntoon, J. E.

    2017-12-01

    Michigan Science Teaching and Assessment Reform (Mi-STAR) is developing an NGSS-aligned middle school curriculum and associated teacher professional learning program in which science is taught and learned as an integrated body of knowledge that can be applied to address societal issues. With the generous support of the Herbert H. and Grace A. Dow Foundation, Mi-STAR has released several pilot-tested units through the Mi-STAR curriculum portal at mi-star.mtu.edu. Each of these units focuses on an ongoing `Unit Challenge' investigation that integrates STEM content across disciplinary boundaries, stimulates interest, and engages students in using scientific practices to address 21st century challenges. Each Mi-STAR unit is connected to a Unifying NGSS Crosscutting Concept (CCC) that allows students to recognize the concepts that are related to the phenomena or problems under investigation. In the 6th grade, students begin with an exploration of the CCC Systems and System Models. Through repeated applications across units, students refine their understanding of what a system is and how to model a complex Earth system. An example 6th grade unit entitled "Water on the Move: The Water Cycle," provides an example of how Mi-STAR approaches the use of Unifying CCCs and Unit Challenges to enhance middle school students' understanding of the interconnections of Earth system processes and human activities. Throughout the unit, students use a series of hands-on explorations and simulations to explore the hydrologic cycle and how human activity can alter Earth systems. Students develop new knowledge through repeated interactions with the Unit Challenge, which requires development of system models and construction of evidence-based arguments related to flooding problems in a local community. Students have the opportunity to make predictions about how proposed land-use management practices (e.g. development of a skate-park, rain garden, soccer field, etc.) can alter the earth

  17. Experiencing Wireless Sensor Network Concepts in an Undergraduate Computer Science Curriculum

    NARCIS (Netherlands)

    Zwartjes, G.J.; van de Voort, M.; Dil, B.J.; Havinga, Paul J.M.

    2009-01-01

    Incorporating Embedded Systems courses in a general and broad Computer Science undergraduate curriculum can be a challenging task. The lack of experience with relevant tools and programming languages tends to limit the amount material that can be included in courses on this area. This, combined with

  18. Life Sciences Teachers Negotiating Professional Development Agency in Changing Curriculum Times

    Science.gov (United States)

    Singh-Pillay, Asheena; Samuel, Michael Anthony

    2017-01-01

    This article probes teacher responses to three curricular reform initiatives from a South African situated contextual perspective. It focuses on Life Sciences teachers who have initially reported feeling overwhelmed by this rapidly changing curriculum environment: adopting and re-adapting to the many expected shifts. The research question posed…

  19. The Next Generation Science Standards and the Life Sciences

    Science.gov (United States)

    Bybee, Rodger W.

    2013-01-01

    Using the life sciences, this article first reviews essential features of the "NRC Framework for K-12 Science Education" that provided a foundation for the new standards. Second, the article describes the important features of life science standards for elementary, middle, and high school levels. Special attention is paid to the teaching…

  20. Developing Oral and Written Communication Skills in Undergraduate Computer Science and Information Systems Curriculum

    Science.gov (United States)

    Kortsarts, Yana; Fischbach, Adam; Rufinus, Jeff; Utell, Janine M.; Yoon, Suk-Chung

    2010-01-01

    Developing and applying oral and written communication skills in the undergraduate computer science and computer information systems curriculum--one of the ABET accreditation requirements - is a very challenging and, at the same time, a rewarding task that provides various opportunities to enrich the undergraduate computer science and computer…

  1. Professional development as a strategy for curriculum implementation in multidisciplinary science education

    NARCIS (Netherlands)

    Visser, Talitha Christine

    2012-01-01

    Schoolteachers must deal with curriculum innovations during their teaching careers. In 2005, the Dutch Ministry of Education, Culture and Science introduced committees to develop and redesign the curricula for chemistry, biology, physics, and mathematics in secondary education. The purpose of

  2. The Delphi Technique in Identifying Learning Objectives for the Development of Science, Technology and Society Modules for Palestinian Ninth Grade Science Curriculum

    Science.gov (United States)

    Abualrob, Marwan M. A.; Daniel, Esther Gnanamalar Sarojini

    2013-01-01

    This article outlines how learning objectives based upon science, technology and society (STS) elements for Palestinian ninth grade science textbooks were identified, which was part of a bigger study to establish an STS foundation in the ninth grade science curriculum in Palestine. First, an initial list of STS elements was determined. Second,…

  3. Perspective of Lecturers in Implementing PISMP Science Curriculum in Malaysia's IPG

    Science.gov (United States)

    Yahya, Fauziah Hj; Bin Hamdan, Abdul Rahim; Jantan, Hafsah Binti; Saleh, Halimatussadiah Binti

    2015-01-01

    The article aims to identify lecturers' perspectives in implementing PISMP science curriculum in IPG Malaysia based on teaching experience with KIPP model. The respondents consisted of 105 lecturers from 20 IPG Malaysia. The study used a questionnaire consisting of 74 items covering the four dimensions (Context, Input, Process and Product). Data…

  4. Integrating technology, curriculum, and online resources: A multilevel model study of impacts on science teachers and students

    Science.gov (United States)

    Ye, Lei

    This scale-up study investigated the impact of a teacher technology tool (Curriculum Customization Service, CCS), curriculum, and online resources on earth science teachers' attitudes, beliefs, and practices and on students' achievement and engagement with science learning. Participants included 73 teachers and over 2,000 ninth-grade students within five public school districts in the western U.S. To assess the impact on teachers, changes between pre- and postsurveys were examined. Results suggest that the CCS tool appeared to significantly increase both teachers' awareness of other earth science teachers' practices and teachers' frequency of using interactive resources in their lesson planning and classroom teaching. A standard multiple regression model was developed. In addition to "District," "Training condition" (whether or not teachers received CCS training) appeared to predict teachers' attitudes, beliefs, and practices. Teachers who received CCS training tended to have lower postsurvey scores than their peers who had no CCS training. Overall, usage of the CCS tool tended to be low, and there were differences among school districts. To assess the impact on students, changes were examined between pre- and postsurveys of (1) knowledge assessment and (2) students' engagement with science learning. Students showed pre- to postsurvey improvements in knowledge assessment, with small to medium effect sizes. A nesting effect (students clustered within teachers) in the Earth's Dynamic Geosphere (EDG) knowledge assessment was identified and addressed by fitting a two-level hierarchical linear model (HLM). In addition, significant school district differences existed for student post-knowledge assessment scores. On the student engagement questionnaire, students tended to be neutral or to slightly disagree that science learning was important in terms of using science in daily life, stimulating their thinking, discovering science concepts, and satisfying their own

  5. Designing a primary science curriculum in a globalizing world: How do social constructivism and Vietnamese culture meet?

    Science.gov (United States)

    Hằng, Ngô Vũ Thu; Meijer, Marijn Roland; Bulte, Astrid M. W.; Pilot, Albert

    2017-09-01

    The implementation of social constructivist approaches to learning science in primary education in Vietnamese culture as an example of Confucian heritage culture remains challenging and problematic. This theoretical paper focuses on the initial phase of a design-based research approach; that is, the description of the design of a formal, written curriculum for primary science education in which features of social constructivist approaches to learning are synthesized with essential aspects of Vietnamese culture. The written design comprises learning aims, a framework that is the synthesis of learning functions, learning settings and educational expectations for learning phases, and exemplary curriculum units. Learning aims are formulated to comprehensively develop scientific knowledge, skills, and attitudes toward science for primary students. Derived from these learning aims, the designed framework consists of four learning phases respectively labeled as Engagement, Experience, Exchange, and Follow-up. The designed framework refers to knowledge of the "nature of science" education and characteristics of Vietnamese culture as an example of Confucian heritage culture. The curriculum design aims to serve as an educational product that addresses previously analyzed problems of primary science education in the Vietnamese culture in a globalizing world.

  6. «On the Origin of Species»: Didactic transposition to the curriculum and Portuguese science textbooks (1859-1959

    Directory of Open Access Journals (Sweden)

    Bento Cavadas

    2017-07-01

    Full Text Available This research aimed to contribute to the history of the teaching of Darwinism in the Portuguese curriculum from 1859 to 1959. To this end, it was analysed the didactic transposition of the book On the Origin of Species for the standards and textbooks of Natural Sciences of secondary education. This study showed that some standards did not address Darwinism (Standards of 1856, 1872, 1880, 1886, 1926 and 1929, while others only prescribed the study of some subjects of Darwinism (Standards of 1889 and 1905. The standards of 1895 were the ones that addressed more Darwinists ideas in the 19th century. In the 20th century, the overall approach to Darwinism was related to the study of transformist ideas (Standards of 1919 or evolution (Standards of 1936 and 1954. However, even when the respective standards did not make that prescription, the major part of textbooks addressed the mechanisms of Darwinian evolution: adaptation, variability, growth correlations, heredity, natural selection, vital competition, geographic isolation and sexual selection.

  7. Ka Hana `Imi Na`auao: A Science Curriculum Project

    Science.gov (United States)

    Napeahi, K.; Roberts, K. D.; Galloway, L. M.; Stodden, R. A.; Akuna, J.; Bruno, B.

    2005-12-01

    In antiquity, the first people to step foot on what are now known as the Hawaiian islands skillfully traversed the Pacific Ocean using celestial navigation and learned observations of scientific phenomena. Long before the Western world ventured beyond the horizon, Hawaiians had invented the chronometer, built aqueduct systems (awai) that continue to amaze modern engineers, and had preventive health systems as well as a comprehensive knowledge of medicinal plants (including antivirals) which only now are working their way through trials for use in modern pharmacopia. Yet, today, Native Hawaiians are severely underrepresented in science-related fields, reflecting (in part) a failure of the Western educational system to nurture the potential of these resourceful students, particularly the many "at-risk" students who are presently over-represented in special education. A curriculum which draws from and incorporates traditional Hawaiian values and knowledge is needed to reinforce links to the inquiry process which nurtured creative thinking during the renaissance of Polynesian history. The primary goal of the Ka Hana `Imi Na`auao Project (translation: `science` or `work in which you seek enlightenment, knowledge or wisdom`) is to increase the number of Native Hawaiian adults in science-related postsecondary education and employment fields. Working closely with Native Hawaiian cultural experts and our high school partners, we will develop and implement a culturally responsive 11th and 12th grade high school science curriculum, infused with math, literacy and technology readiness skills. Software and assistive technology will be used to adapt instruction to individual learners` reading levels, specific disabilities and learning styles. To ease the transition from secondary to post-secondary education, selected grade 12 students will participate in planned project activities that link high school experiences with college science-related programs of study. Ka Hana `Imi Na

  8. Access, Astronomy and Science Fiction. A Case Study in Curriculum Design

    Science.gov (United States)

    Saunders, Danny; Brake, Mark; Griffiths, Martin; Thornton, Rosi

    2004-01-01

    It is argued that a positive response to lifelong learning policies involves the use of imaginative curriculum design in order to attract learners from disadvantaged backgrounds who are otherwise alienated from higher education. In this article a case study is presented based on the popularity of science fiction within popular culture, beginning…

  9. Living in Water: An Aquatic Science Curriculum for Grades 5-7.

    Science.gov (United States)

    National Aquarium in Baltimore, MD. Dept. of Education.

    "Living in Water" is a classroom-based, scientific study of water, aquatic environments, and the plants and animals that live in water. The lessons in this curriculum integrate basic physical, biological, and earth sciences, and mathematics. The integration of language arts is also considered essential to its success. These lessons do not require…

  10. An evaluative study of the impact of the "Curriculum Alignment Toolbox" on middle school science achievement

    Science.gov (United States)

    Jones, Carol L.

    The number of computer-assisted education programs on the market is overwhelming science teachers all over the Michigan. Though the need is great, many teachers are reluctant to procure computer-assisted science education programs because they are unsure of the effectiveness of such programs. The Curriculum Alignment Toolbox (CAT) is a computer-based program, aligned to the Michigan Curriculum Framework's Benchmarks for Science Education and designed to supplement science instruction in Michigan middle schools. The purpose of this study was to evaluate the effectiveness of CAT in raising the standardized test scores of Michigan students. This study involved 419 students from one urban, one suburban and one rural middle school. Data on these students was collected from 4 sources: (1) the 8th grade Michigan Education Assessment Program (MEAP) test, (2) a 9 question, 5-point Likert-type scale student survey, (3) 4 open-response student survey questions and (4) classroom observations. Results of this study showed that the experimental group of 226 students who utilized the CAT program in addition to traditional instruction did significantly better on the Science MEAP test than the control group of 193 students who received only traditional instruction. The study also showed that the urban students from a "high needs" school seemed to benefit most from the program. Additionally, though both genders and all identified ethnic groups benefited from the program, males benefited more than females and whites, blacks and Asian/Pacific Islander students benefited more than Hispanic and multi-racial students. The CAT program's success helping raise the middle school MEAP scores may well be due to some of its components. CAT provided students with game-like experiences all based on the benchmarks required for science education and upon which the MEAP test is based. The program also provided visual and auditory stimulation as well as numerous references which students indicated

  11. Science-Based Thematic Cultural Art Learning in Primary School (2013 Curriculum

    Directory of Open Access Journals (Sweden)

    Warih Handayaningrum

    2016-12-01

    Full Text Available This study is aimed at discussing the development result of thematic cultural art subject’s learning material based on science for primary school (2013 curriculum. This study is expected to inspire teacher to develop learning material that may explore artworks exist in our living environment (based on the context of children’s environment. This study applies steps in developmental research collaboration by Borg & Gall (1989 and Puslitjaknov (2008 to create the product. The development stages comprise observation in several primary schools in Surabaya, Gresik, and Sidoarjo that has implemented 2013 curriculum that is followed up by stages of development. Furthermore, prototype of cultural and art thematic learning material development results are verified by learning material experts, material expert, primary school teacher, and revised afterwards. The result of this research development is a set of teacher and student books. Science-based cultural art here means cultural art learning as the main medium to introduce local culture products (music, drawing, dance, and drama by integrating mathematics, sciences, Bahasa Indonesia, and local language subjects. Cultural art products in the form of dance, music, drawing, dramas will help children to understand a simple mathematical concept, such as: two-dimensional figure, geometry, comparing or estimating longer-shorter, smaller-bigger, or more-less.

  12. Science teachers designing context-based curriculum materials : developing context-based teaching competence

    NARCIS (Netherlands)

    Putter - Smits, de L.G.A.

    2012-01-01

    The intended new context-based curriculum for four science subjects (AS-MaT1, biology, chemistry, and physics) in senior general secondary education and pre-university education has been the subject of numerous research and teacher professionalisation efforts in the Netherlands for the last seven

  13. Using Evolution as a Context for Teaching the Nature of Science to Diverse Student Populations: A High School Unit of Curriculum

    Science.gov (United States)

    Metcalfe, Angela C.

    Teaching evolution provides teachers with the opportunity to educate students on how science aims to understand the natural world. Rooted in research, the purpose of this project was to create NGSS-aligned curriculum focused on teaching the nature of science (NOS) within the context of biological evolution. Field testing and review of the unit resulted in revisions aimed at creating more comprehensive teacher resource materials and explicit inclusion of NOS. Emphasizing NOS in curriculum development and teaching scientific qualities through an evolutionary context has taken the focus off belief or disbelief, keeping the attention on the scientific concept at hand. Designing curriculum around compelling subject matter and embracing student-led learning increased and maintained student interest in the classroom. Implementation of this curriculum not only requires the teacher to be knowledgeable in conventional educational pedagogy, but also the subjects of NGSS and NOS. Additional training and support centered around NGSS is recommended for science educators interested in integrating NOS into their curriculum and instruction.

  14. From FRA to RFN, or How the Family Resemblance Approach Can Be Transformed for Science Curriculum Analysis on Nature of Science

    Science.gov (United States)

    Kaya, Ebru; Erduran, Sibel

    2016-01-01

    The inclusion of Nature of Science (NOS) in the science curriculum has been advocated around the world for several decades. One way of defining NOS is related to the family resemblance approach (FRA). The family resemblance idea was originally described by Wittgenstein. Subsequently, philosophers and educators have applied Wittgenstein's idea to…

  15. The Place of Science in Education

    Science.gov (United States)

    Jevons, F. R.

    1972-01-01

    Suggests that the curriculum include a balance of both science and non-science and that the thought process of science be applied in non-science situations. Schools and colleges must expose students to this application of scientific thinking. Knowledge in breadth does not necessarily mean lower standards. (PS)

  16. The Value of Fidelity of Implementation Criteria to Evaluate School-Based Science Curriculum Innovations

    Science.gov (United States)

    Lee, Yew-Jin; Chue, Shien

    2013-10-01

    School-based curriculum innovations, including those in science education, are usually not adequately evaluated, if at all. Furthermore, current procedures and instruments for programme evaluations are often unable to support evidence-based decision-making. We suggest that adopting fidelity of implementation (FOI) criteria from healthcare research can both characterize and narrow the separation between programme intent and actual implementation, which is a mandatory stage of evaluation before determining overall programme value. We demonstrate how such a process could be applied by science educators using data from a secondary school in Singapore that had devised a new curriculum to promote interest, investigative processes, and knowledge in science. Results showed that there were ambivalent student responses to this programme, while there were high levels of science process skill instruction and close alignment with the intended lesson design. The implementation of this programme appeared to have a satisfactory overall level of FOI, but we also detected tensions between programme intent and everyday classroom teaching. If we want to advance science education, then our argument is that applying FOI criteria is necessary when evaluating all curricular innovations, not just those that originate from schools.

  17. Into the Curriculum. Art: Whistler's Mother; Reading/Language Arts: Finding My Voice; Science: Where on My Tongue? Taste; Social Studies/Science: Volcanoes; Social Studies: Pompeii.

    Science.gov (United States)

    Reed-Mundell, Charlie

    2001-01-01

    Provides five fully developed library media activities that are designed for use with specific curriculum units in art, reading, language arts, science, and social studies. Describes library media skills, curriculum objectives, grade levels, resources, instructional roles, procedures, evaluation, and follow-up for each activity. (LRW)

  18. Special series on "The meaning of behavioral medicine in the psychosomatic field" establishment of a core curriculum for behavioral science in Japan: The importance of such a curriculum from the perspective of psychology.

    Science.gov (United States)

    Shimazu, Akihito; Nakao, Mutsuhiro

    2016-01-01

    This article discusses the core curriculum for behavioral science, from the perspective of psychology, recommended by the Japanese Society of Behavioral Medicine and seeks to explain how the curriculum can be effectively implemented in medical and health-related departments. First, the content of the core curriculum is reviewed from the perspective of psychology. We show that the curriculum features both basic and applied components and that the basic components are closely related to various aspects of psychology. Next, we emphasize two points to aid the effective delivery of the curriculum: 1) It is necessary to explain the purpose and significance of basic components of behavioral science to improve student motivation; and 2) it is important to encourage student self-efficacy to facilitate application of the acquired knowledge and skills in clinical practice.

  19. Next Generation Science Standards: All Standards, All Students

    Science.gov (United States)

    Lee, Okhee; Miller, Emily C.; Januszyk, Rita

    2014-01-01

    The Next Generation Science Standards (NGSS) offer a vision of science teaching and learning that presents both learning opportunities and demands for all students, particularly student groups that have traditionally been underserved in science classrooms. The NGSS have addressed issues of diversity and equity from their inception, and the NGSS…

  20. Challenging traditional assumptions of high school science through the physics and Everyday Thinking Curriculum(TM)

    Science.gov (United States)

    Ross, Michael J.

    Science education in the U.S. has failed for over a century to bring the experience of scientific induction to classrooms, from elementary science to undergraduate courses. The achievement of American students on international comparisons of science proficiency is unacceptable, and the disparities between groups underrepresented in STEM and others are large and resistant to reform efforts. This study investigated the enactment of a physics curriculum designed upon the inductive method in a high school serving mostly students from groups underrepresented in science. The Physics and Everyday Thinking curriculum was designed to model the central practices of science and to provide opportunities for students to both extract general principles of physics and to develop scientific models from laboratory evidence. The findings of this study suggest that scientific induction is not only a process that is well within the capacity of high school students, but they enjoy it as well. Students that engaged in the central practices of science through the inductive method reported a new sense of agency and control in their learning. These findings suggest that modeling the pedagogy of the science classroom upon the epistemology of science can result in a mode of learning that can lead to positive identification with physics and the development of scientific literacy.

  1. Improvement on a science curriculum including experimental demonstration of environmental radioactivity for secondary school students

    International Nuclear Information System (INIS)

    Watanabe, Kenji; Matsubara, Shizuo; Aiba, Yoshio; Eriguchi, Hiroshi; Kiyota, Saburo; Takeyama, Tetsuji.

    1988-01-01

    A science curriculum previously prepared for teaching environmental radioactivity was modified on the basis of the results of trial instructions in secondary schools. The main subject of the revised curriculum is an understanding of the natural radioactivity through the experimental demonstration about air-borne β and γ ray emitters. The other subjects included are the radioactive decay, the biological effects of radiation, the concept of risk-benefit balance (acceptable level) and the peaceful uses of nuclear energy and radiation. The work sheets and reference data prepared as learning materials are in two levels corresponding to the ability of students for this curriculum. (author)

  2. The Proof of the Pudding?: A Case Study of an "At-Risk" Design-Based Inquiry Science Curriculum

    Science.gov (United States)

    Chue, Shien; Lee, Yew-Jin

    2013-12-01

    When students collaboratively design and build artifacts that require relevant understanding and application of science, many aspects of scientific literacy are developed. Design-based inquiry (DBI) is one such pedagogy that can serve these desired goals of science education well. Focusing on a Projectile Science curriculum previously found to be implemented with satisfactory fidelity, we investigate the many hidden challenges when using DBI with Grade 8 students from one school in Singapore. A case study method was used to analyze video recordings of DBI lessons conducted over 10 weeks, project presentations, and interviews to ascertain the opportunities for developing scientific literacy among participants. One critical factor that hindered learning was task selection by teachers, which emphasized generic scientific process skills over more important cognitive and epistemic learning goals. Teachers and students were also jointly engaged in forms of inquiry that underscored artifact completion over deeper conceptual and epistemic understanding of science. Our research surfaced two other confounding factors that undermined the curriculum; unanticipated teacher effects and the underestimation of the complexity of DBI and of inquiry science in general. Thus, even though motivated or experienced teachers can implement an inquiry science curriculum with good fidelity and enjoy school-wide support, these by themselves will not guarantee deep learning of scientific literacy in DBI. Recommendations are made for navigating the hands- and minds-on aspects of learning science that is an asset as well as inherent danger during DBI teaching.

  3. Writing for Science Literacy

    Science.gov (United States)

    Chamberlin, Shannon Marie

    Scientific literacy is the foundation on which both California's currently adopted science standards and the recommended new standards for science are based (CDE, 2000; NRC, 2011). The Writing for Science Literacy (WSL) curriculum focuses on a series of writing and discussion tasks aimed at increasing students' scientific literacy. These tasks are based on three teaching and learning constructs: thought and language, scaffolding, and meta-cognition. To this end, WSL is focused on incorporating several strategies from the Rhetorical Approach to Reading, Writing, Listening and Speaking to engage students in activities designed to increase their scientific literacy; their ability to both identify an author's claim and evidence and to develop their own arguments based on a claim and evidence. Students participated in scaffolded activities designed to strengthen their written and oral discourse, hone their rhetorical skills and improve their meta-cognition. These activities required students to participate in both writing and discussion tasks to create meaning and build their science content knowledge. Students who participated in the WSL curriculum increased their written and oral fluency and were able to accurately write an evidence-based conclusion all while increasing their conceptual knowledge. This finding implies that a discourse rich curriculum can lead to an increase in scientific knowledge.

  4. Examining the Features of Earth Science Logical Reasoning and Authentic Scientific Inquiry Demonstrated in a High School Earth Science Curriculum: A Case Study

    Science.gov (United States)

    Park, Do-Yong; Park, Mira

    2013-01-01

    The purpose of this study was to investigate the inquiry features demonstrated in the inquiry tasks of a high school Earth Science curriculum. One of the most widely used curricula, Holt Earth Science, was chosen for this case study to examine how Earth Science logical reasoning and authentic scientific inquiry were related to one another and how…

  5. Perception of Science Standards' Effectiveness and Their Implementation by Science Teachers

    Science.gov (United States)

    Klieger, Aviva; Yakobovitch, Anat

    2011-06-01

    The introduction of standards into the education system poses numerous challenges and difficulties. As with any change, plans should be made for teachers to understand and implement the standards. This study examined science teachers' perceptions of the effectiveness of the standards for teaching and learning, and the extent and ease/difficulty of implementing science standards in different grades. The research used a mixed methods approach, combining qualitative and quantitative research methods. The research tools were questionnaires that were administered to elementary school science teachers. The majority of the teachers perceived the standards in science as effective for teaching and learning and only a small minority viewed them as restricting their pedagogical autonomy. Differences were found in the extent of implementation of the different standards and between different grades. The teachers perceived a different degree of difficulty in the implementation of the different standards. The standards experienced as easiest to implement were in the field of biology and materials, whereas the standards in earth sciences and the universe and technology were most difficult to implement, and are also those evaluated by the teachers as being implemented to the least extent. Exposure of teachers' perceptions on the effectiveness of standards and the implementation of the standards may aid policymakers in future planning of teachers' professional development for the implementation of standards.

  6. Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration

    Science.gov (United States)

    Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.

    2017-12-01

    "Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of

  7. Implications of the Next Generation Science Standards for Earth and Space Sciences

    Science.gov (United States)

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Huff, K.; Lopez, R. E.; Messina, P.; Speranza, P.; Matthews, T.; Childress, J.

    2012-12-01

    The Next Generation Science Standards (NGSS), due to be released in 2013, set a new direction for K-12 science education in America. These standards will put forth significant changes for Earth and space sciences. The NGSS are based upon the recommendations of the National Research Council's 2011 report "A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas." The standards are being written by a large group of authors who represent many different constituencies, including 26 participating states, in a process led by Achieve, Inc. The standards encourage innovative ways to teach science at the K-12 level, including enhanced integration between the content, practices, and crosscutting ideas of science and greater assimilation among the sciences and engineering, and among the sciences, mathematics, and English language arts. The NGSS presents a greater emphasis on Earth and space sciences than in previous standards, recommending a year at both the middle and high school levels. The new standards also present a greater emphasis on areas of direct impact between humans and the Earth system, including climate change, natural hazards, resource management, and sustainability.

  8. The Effects of Gender and Type of Inquiry Curriculum on Sixth Grade Students' Science Process Skills and Epistemological Beliefs in Science

    Science.gov (United States)

    Zaleta, Kristy L.

    The purpose of this study was to investigate the impact of gender and type of inquiry curriculum (open or structured) on science process skills and epistemological beliefs in science of sixth grade students. The current study took place in an urban northeastern middle school. The researcher utilized a sample of convenience comprised of 303 sixth grade students taught by four science teachers on separate teams. The study employed mixed methods with a quasi-experimental design, pretest-posttest comparison group with 17 intact classrooms of students. Students' science process skills and epistemological beliefs in science (source, certainty, development, and justification) were measured before and after the intervention, which exposed different groups of students to different types of inquiry (structured or open). Differences between comparison and treatment groups and between male and female students were analyzed after the intervention, on science process skills, using a two-way analysis of covariance (ANCOVA), and, on epistemological beliefs in science, using a two-way multivariate analysis of covariance (MANCOVA). Responses from two focus groups of open inquiry students were cycle coded and examined for themes and patterns. Quantitative measurements indicated that girls scored significantly higher on science process skills than boys, regardless of type of inquiry instruction. Neither gender nor type of inquiry instruction predicted students' epistemological beliefs in science after accounting for students' pretest scores. The dimension Development accounted for 10.6% of the variance in students' science process skills. Qualitative results indicated that students with sophisticated epistemological beliefs expressed engagement with the open-inquiry curriculum. Students in both the sophisticated and naive beliefs groups identified challenges with the curriculum and improvement in learning as major themes. The types of challenges identified differed between the groups

  9. The Innovative Immersion of Mobile Learning into a Science Curriculum in Singapore: An Exploratory Study

    Science.gov (United States)

    Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting

    2016-01-01

    With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear…

  10. Moral education and values education in curriculum reform In China

    Institute of Scientific and Technical Information of China (English)

    Zhu Xiaoman

    2006-01-01

    In the new curriculum reform in China,moral education and values education have been defined from the angles of the integrity and conformity of curriculum functions.Accordingly, a new education concept based on complete/integral curriculum functions is established.By discussing the essences of the curriculum,the basis of moral and values education,integrated curriculum setting in instruction structure,the presence of emotional and attitudinal goals in the subject standards,and teaching methods,this text points out that this curriculum reform looks to moral and values education in schools.The reform also emphasizes and will guarantee moral and values education in schools.Finally,the article recommends to elementary and secondary schools the studies on moral education in class conducted by the Research Institute of Moral Education of Nanjing Normal University,one of the Key Bases for Humanities and Social Sciences Research for the Ministry of Education.

  11. Towards a Philosophically and a Pedagogically Reasonable Nature of Science Curriculum

    Science.gov (United States)

    Yacoubian, Hagop Azad

    This study, primarily theoretical in nature, explores a philosophically and pedagogically reasonable way of addressing nature of science (NOS) in school science. NOS encompasses what science is and how scientific knowledge develops. I critically evaluate consensus frameworks of NOS in school science, which converge contentious philosophical viewpoints into general NOS-related ideas. I argue that they (1) lack clarity in terms of how NOS-related ideas could be applied for various ends, (2) portray a distorted image of the substantive content of NOS and the process of its development, and (3) lack a developmental trajectory for how to address NOS at different grade levels. As a remedy to these problems, I envision a NOS curriculum that (1) explicates and targets both NOS as an educational end and NOS as a means for socioscientific decision making, (2) has critical thinking as its foundational pillar, and (3) provides a developmental pathway for NOS learning using critical thinking as a progression unit. Next, I illustrate a framework for addressing NOS in school science referred to as the critical thinking—nature of science (CT-NOS) framework. This framework brings together the first two of the three elements envisioned in the NOS curriculum. I address the third element by situating the CT-NOS framework in a developmental context, borrowing from the literature on learning progressions in science and using critical thinking as a progression unit. Finally, I present an empirical study of experienced secondary science teachers’ views of a NOS lesson prepared using the CT-NOS framework. The teachers attended a professional development workshop at which the lesson, and the characteristics of the CT-NOS framework, were presented. The analysis of the qualitative data revealed that most teachers found the lesson to be somewhat feasible for a secondary science classroom, useful or somewhat useful to their students, and interesting. The teachers focused on 14 features of

  12. Science Education Curriculum Development Principles in Taiwan: Connecting with Aboriginal Learning and Culture

    Science.gov (United States)

    Huang, Tzu-Hua; Liu, Yuan-Chen

    2017-01-01

    This paper reflects thorough consideration of cultural perspectives in the establishment of science curriculum development principles in Taiwan. The authority explicitly states that education measures and activities of aboriginal peoples' ethnic group should be implemented consistently to incorporate their history, language, art, living customs,…

  13. The "Next Generation Science Standards" and the Earth and Space Sciences

    Science.gov (United States)

    Wysession, Michael E.

    2013-01-01

    The "Next Generation Science Standards" ("NGSS"), due to be released this spring, represents a revolutionary step toward establishing modern, national K-12 science education standards. Based on the recommendations of the National Research Council's "A Framework for K-12 Science Education: Practices, Crosscutting…

  14. Curriculum and instruction in nuclear waste disposal

    International Nuclear Information System (INIS)

    Robinson, M.; Lugaski, T.; Pankratius, B.

    1991-01-01

    Curriculum and instruction in nuclear waste disposal is part of the larger problem of curriculum and instruction in science. At a time when science and technological literacy is crucial to the nation's economic future fewer students are electing to take needed courses in science that might promote such literacy. The problem is directly related to what science teachers teach and how they teach it. Science content that is more relevant and interesting to students must be a part of the curriculum. Science instruction must allow students to be actively involved in investigating or playing the game of science

  15. Nurturing At-Risk Youth in Math and Science: Curriculum and Teaching Considerations.

    Science.gov (United States)

    Tobias, Randolf

    The social environment of today has necessitated revision in educators' beliefs about what students are considered to be at risk of failing to complete their education with adequate levels of skills. This book addresses this issue in the areas of mathematics and science and is intended as a curriculum and teacher training accompaniment that can…

  16. Standards for vision science libraries: 2014 revision.

    Science.gov (United States)

    Motte, Kristin; Caldwell, C Brooke; Lamson, Karen S; Ferimer, Suzanne; Nims, J Chris

    2014-10-01

    This Association of Vision Science Librarians revision of the "Standards for Vision Science Libraries" aspires to provide benchmarks to address the needs for the services and resources of modern vision science libraries (academic, medical or hospital, pharmaceutical, and so on), which share a core mission, are varied by type, and are located throughout the world. Through multiple meeting discussions, member surveys, and a collaborative revision process, the standards have been updated for the first time in over a decade. While the range of types of libraries supporting vision science services, education, and research is wide, all libraries, regardless of type, share core attributes, which the standards address. The current standards can and should be used to help develop new vision science libraries or to expand the growth of existing libraries, as well as to support vision science librarians in their work to better provide services and resources to their respective users.

  17. Science for Survival: The Modern Synthesis of Evolution and The Biological Sciences Curriculum Study

    Science.gov (United States)

    Green, Lisa Anne

    In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called "the modern synthesis of evolution." Building primarily on the work of historians Vassiliki Smocovitis and John L. Rudolph, I used the archival papers and published writings of the four architects of the modern synthesis and the four most influential leaders of the BSCS in regards to evolution to investigate how the modern synthetic theory of evolution shaped the BSCS curriculum. The central question was "Why was evolution so important to the BSCS to make it the central theme of the texts?" Important answers to this question had already been offered in the historiography, but it was still not clear why every citizen in the world needed to understand evolution. I found that the emphasis on natural selection in the modern synthesis shifted the focus away from humans as passive participants to the recognition that humans are active agents in their own cultural and biological evolution. This required re-education of the world citizenry, which was accomplished in part by the BSCS textbooks. I also found that BSCS leaders Grobman, Glass, and Muller had serious concerns regarding the effects of nuclear radiation on the human gene pool, and were actively involved in informing th public. Lastly, I found that concerns of 1950s reform eugenicists were addressed in the BSCS textbooks, without mentioning eugenics by name. I suggest that the leaders of the BSCS, especially Bentley Glass and Hermann J. Muller, thought that students needed to understand genetics and evolution to be able to make some of the tough choices they might be called on to make as the dominant species on earth and the next reproductive generation in the nuclear age. This

  18. Innovative curriculum: Integrating the bio-behavioral and social science principles across the LifeStages in basic science years.

    Science.gov (United States)

    Lele Mookerjee, Anuradha; Fischer, Bradford D; Cavanaugh, Susan; Rajput, Vijay

    2018-05-20

    Behavioral and social science integration in clinical practice improves health outcomes across the life stages. The medical school curriculum requires an integration of the behavioral and social science principles in early medical education. We developed and delivered a four-week course entitled "LifeStages" to the first year medical students. The learning objectives of the bio-behavioral and social science principles along with the cultural, economic, political, and ethical parameters were integrated across the lifespan in the curriculum matrix. We focused on the following major domains: Growth and Brain Development; Sexuality, Hormones and Gender; Sleep; Cognitive and Emotional Development; Mobility, Exercise, Injury and Safety; Nutrition, Diet and Lifestyle; Stress and coping skills, Domestic Violence; Substance Use Disorders; Pain, Illness and Suffering; End of Life, Ethics and Death along with Intergenerational issues and Family Dynamics. Collaboration from the clinical and biomedical science departments led to the dynamic delivery of the course learning objectives and content. The faculty developed and led a scholarly discussion, using the case of a multi-racial, multi-generational family during Active Learning Group (ALG) sessions. The assessment in the LifeStages course involved multiple assessment tools: including the holistic assessment by the faculty facilitator inside ALGs, a Team-Based Learning (TBL) exercise, multiple choice questions and Team Work Assessment during which the students had to create a clinical case on a LifeStages domain along with the facilitators guide and learning objectives.

  19. When Are Students Ready for Research Methods? A Curriculum Mapping Argument for the Political Science Major

    Science.gov (United States)

    Bergbower, Matthew L.

    2017-01-01

    For many political science programs, research methods courses are a fundamental component of the recommended undergraduate curriculum. However, instructors and students often see these courses as the most challenging. This study explores when it is most appropriate for political science majors to enroll and pass a research methods course. The…

  20. Incorporating nanoscale science and technology into secondary school curriculum: Views of nano-trained science teachers

    Directory of Open Access Journals (Sweden)

    Antti Laherto

    2011-09-01

    Full Text Available The growing societal significance of nanoscience and nanotechnology (NST entails needs for addressing these topics in school curricula. This study lays groundwork for responding to those needs in Finland. The purpose was to analyse the appropriateness of NST for secondary school curriculum contents. First, a week-long in-service teacher training course was arranged on content knowledge of NST. After attending the course, 23 experienced science teachers were surveyed regarding their views on the educational significance of these issues, and on prospects for including them into the curriculum. A questionnaire with open-ended questions was used. Qualitative content analysis of the responses revealed that the respondents considered NST as desirable contents for secondary school, but arranging instruction is problematic. The teachers emphasised the educational significance of many applications, scientific principles and ethical issues related to NST. The outcomes are discussed with reference to recent studies on teachers’ barriers and educational concerns regarding NST.

  1. Mapping Physical Sciences Teachers' Concerns Regarding the New Curriculum in South Africa

    Science.gov (United States)

    Gudyanga, Remeredzayi; Jita, Loyiso C.

    2018-01-01

    This article reports on a study investigating physical sciences teachers' stages of concern (SoC) profiles during the implementation of the curriculum and assessment policy statement (CAPS) in South Africa. Throughout reform implementation, it is conceivable that teachers go through different SoC, ranging from giving low priority to the reform…

  2. INTRODUCTION TO SCIENCE: A CURRICULUM APPROACH

    Directory of Open Access Journals (Sweden)

    André A. G. Bianco

    2007-05-01

    Full Text Available International and national institutions concerned with higher education recommendthe inclusion in curriculum of strategies to promote development of aditional skills thentraditionals memorazing habilities and contents reproduction. Between this, specialattention is given to stimulating the critical capacitie. To develop this skills, was given aproject, included into the Biochemistry discipline, with freshmen students in the Nutritioncourse of the Saúde Pública College of USP. The project consisted into the scientificarticles analysis and in the elaboration of research projects at the Scientific Initiation level.The first part presented the way how Science is divulged and the second, the mold that thescientific knowledge is generated. All activities was always conducted by activecommunication strategy. The general goal was bring near the students of scientificproceedings, contribute to developed scientific attitude, that is to say, critical sense. Theproceeding was evaluated by quantitative methods (questionnaire and qualitative(interview with differents participant and the results point for a significative increase ofknowledge of scientific job and a developed of yerned skills.

  3. Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report. Appendix

    Science.gov (United States)

    Achieve, Inc., 2010

    2010-01-01

    This appendix accompanies the report "Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report," a study conducted by Achieve to compare the science standards of 10 countries. This appendix includes the following: (1) PISA and TIMSS Assessment Rankings; (2) Courses and…

  4. The role of project-based learning in the "Political and social sciences of the environment" curriculum at Nijmegen University

    NARCIS (Netherlands)

    Leroy, P.; Bosch, van den H.; Ligthart, S.S.H.

    2001-01-01

    Since the end of 1996, teachers at the Faculty of Policy Sciences at Nijmegen University, The Netherlands, have been working on a new educational programme called "Political and Social Sciences of the Environment" (PSSE). In fact, the PSSE curriculum builds on the Environmental Policy Sciences

  5. Understanding Standards and Assessment Policy in Science Education: Relating and Exploring Variations in Policy Implementation by Districts and Teachers in Wisconsin

    Science.gov (United States)

    Anderson, Kevin John Boyett

    Current literature shows that many science teachers view policies of standards-based and test-based accountability as conflicting with research-based instruction in science education. With societal goals of improving scientific literacy and using science to spur economic growth, improving science education policy becomes especially important. To understand perceived influences of science education policy, this study looked at three questions: 1) How do teachers perceive state science standards and assessment and their influence on curriculum and instruction? 2) How do these policy perspectives vary by district and teacher level demographic and contextual differences? 3) How do district leaders' interpretations of and efforts within these policy realms relate to teachers' perceptions of the policies? To answer these questions, this study used a stratified sample of 53 districts across Wisconsin, with 343 middle school science teachers responding to an online survey; science instructional leaders from each district were also interviewed. Survey results were analyzed using multiple regression modeling, with models generally predicting 8-14% of variance in teacher perceptions. Open-ended survey and interview responses were analyzed using a constant comparative approach. Results suggested that many teachers saw state testing as limiting use of hands-on pedagogy, while standards were seen more positively. Teachers generally held similar views of the degree of influence of standards and testing regardless of their experience, background in science, credentials, or grade level taught. District SES, size and past WKCE scores had some limited correlations to teachers' views of policy, but teachers' perceptions of district policies and leadership consistently had the largest correlation to their views. District leadership views of these state policies correlated with teachers' views. Implications and future research directions are provided. Keywords: science education, policy

  6. Associate in science degree education programs: organization, structure, and curriculum.

    Science.gov (United States)

    Galvin, William F

    2005-09-01

    After years of discussion, debate, and study, the respiratory care curriculum has evolved to a minimum of an associate degree for entry into practice. Although programs are at liberty to offer the entry-level or advanced level associate degree, most are at the advanced level. The most popular site for sponsorship of the associate degree in respiratory care is the community college. The basis for community college sponsorship seems to be its comprehensive curriculum, which focuses on a strong academic foundation in writing, communication, and the basic sciences as well as supporting a career-directed focus in respiratory care. Issues facing the community college are tied to literacy, outcomes, assessment, placement,cooperation with the community, partnerships with industry, and articulation arrangements with granting institutions granting baccalaureate degrees. Community colleges must produce a literate graduate capable of thriving in an information-saturated society. Assessment and placement will intensify as the laissez-faire attitudes toward attendance and allowing students to select courses without any accountability and evaluation of outcome become less acceptable. Students will be required to demonstrate steady progress toward established outcomes. Maintaining relations and cooperation with the local community and the health care industry will continue to be a prominent role for the community college. The challenge facing associate degree education in respiratory care at the community college level is the ability to continue to meet the needs of an expanding professional scope of practice and to provide a strong liberal arts or general education core curriculum. The needs for a more demanding and expanding respiratory care curriculum and for a rich general education core curriculum have led to increased interest in baccalaureate and graduate degree education. The value of associate degree education at the community college level is well established. It is

  7. Perceptions of Private College Teachers of Karachi about the Curriculum Prescribed by Sindh Bureau of Curriculum (BOC)

    Science.gov (United States)

    Syeda, Talat Jehan

    2015-01-01

    Curriculum at the college level is prescribed at provincial level to ensure a standardized education throughout. A prescribed curriculum aligns educational standards and maintains them to ensure teaching standards. In Pakistan the curriculum for intermediate students at both private and government colleges is designed and proposed by Sindh Bureau…

  8. An exploration of administrators' perceptions of elementary science: A case study of the role of science in two elementary schools based on the interactions of administrators with colleagues, science content and state standards

    Science.gov (United States)

    Brogdon, Lori-Anne Stelmark

    This research is a case study on the perceptions and attitudes of administrators in the area of elementary science and how their responses reflect agreement or dissonance with the perceptions of elementary teachers on the subject of science within the same district. The study used Likert-type surveys and interviews from both administrators and teachers on five key areas: 1) Attitudes towards science and teaching 2) Attitudes towards teaching science 3) Attitudes towards administrators 4) Time teaching science and 5) Attitudes about policy and standards. Survey data was analyzed within and across areas to identify similarity and difference within each group. The medians from the administrative and teacher surveys were then crossed referenced through the use of a Mann Whitney test to identify areas of similarity. Interview data was coded around three major themes: 1) Standards 2) Classroom Instruction and 3) Conversations. The findings show that even though administrators' perceptions favor the inclusion of science in the elementary classroom, both administrators and teachers in this study reported limited involvement from, and conversation with, each other on the topic of science education. Heavy reliance by the administrators was placed on the use of consultants to provide professional development in the area of science instruction and to review the use of state standards, resulting in limited conversation between administrators and teachers about science. Teachers reported a heavy reliance upon their colleagues in the area of science instruction and curriculum planning. In addition, both administrators and teachers reported a greater focus on math and English for classroom instruction. Findings in this research support implications that more focus should be placed on the role of administrators in the implementation of science instruction. Administrators can play a crucial role in the success of science programs at the building, district and state levels

  9. Curriculum Package: Elementary Science Lessons. [A Visit to the Louisville, Kentucky Airports: Standiford and Bowman Fields.

    Science.gov (United States)

    Squires, Frances H.

    This science curriculum was written for teachers of children in the elementary grades. It contains science activities for the following lessons: (1) Whirly Birds and the Concept of Lift; (2) Parachutes; (3) Weather Vanes; (4) Paper Airplanes; (5) Flying an Airplane; (6) Jet Engine; (7) Identifying Flying Objects; (8) It's a Bird! It's a Plane; (9)…

  10. Exploring Ivorian Perspectives on the Effectiveness of the Current Ivorian Science Curriculum in Addressing Issues Related to HIV/AIDS

    Science.gov (United States)

    Ado, Gustave Firmin

    2014-01-01

    School-based HIV/AIDS science education has the potential to impact students when integrated into the science curriculum. However, this mixed method study shows that school-based HIV/AIDS science education is often not infused into career subjects such as science education but integrated into civics education and taught by teachers who lack the…

  11. How a science methods course may influence the curriculum decisions of preservice teachers in the Bahamas

    Science.gov (United States)

    Wisdom, Sonya L.

    The purpose of this study was to examine how a science methods course in primary education might influence the curriculum decisions of preservice teachers in The Bahamas related to unit plan development on environmental science topics. Grounded in a social constructivist theoretical framework for teaching and learning science, this study explored the development of the confidence and competence of six preservice teachers to teach environmental science topics at the primary school level. A qualitative case study using action research methodologies was conducted. The perspectives of preservice teachers about the relevancy of methods used in a science methods course were examined as I became more reflective about my practice. Using constant comparative analysis, data from student-written documents and interviews as well as my field notes from class observations and reflective journaling were analyzed for emerging patterns and themes. Findings of the study indicated that while preservice teachers showed a slight increase in interest regarding learning and teaching environmental science, their primary focus during the course was learning effective teaching strategies in science on topics with which they already had familiarity. Simultaneously, I gained a deeper understanding of the usefulness of reflection in my practice. As a contribution to the complexity of learning to teach science at the primary school level, this study suggests some issues for consideration as preservice teachers are supported to utilize more of the national primary science curriculum in The Bahamas.

  12. Engineering design skills coverage in K-12 engineering program curriculum materials in the USA

    Science.gov (United States)

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-11-01

    The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.

  13. Relativism, Values and Morals in the New Zealand Curriculum Framework

    Science.gov (United States)

    Jorgensen, Lone Morris; Ryan, Sueann

    The New Zealand Curriculum Framework, 1993, is the official document for teaching, learning and assessment in New Zealand schools. It consists of a set of curriculum statements, which define the learning principles, achievement aims and essential skills for seven learning areas. It also indicates the place of attitudes and values in the school curriculum. This paper investigates the requirements for teaching attitudes, values and ethics in the curriculum statements for Science, Biology and Technology. The question is raised whether the teaching of skills for resolving moral and ethical dilemmas are required by the official education standards in New Zealand, and internationally. The paper reports on a survey done on pre-service teacher trainees of their understanding of these requirements. Implications for courses that might need to be provided in future pre-service teacher education programmes are briefly discussed.

  14. National Construction of Global Education: A Critical Review of the National Curriculum Standards for South Korean Global High Schools

    Science.gov (United States)

    Sung, Youl-Kwan; Park, Minjeong; Choi, Il-Seon

    2013-01-01

    In this paper, the authors investigate what global visions of education are reflected in the selected national curriculum standards, with special reference to two seemingly contradictory forces: globalization and nationalism. This paper examines the socio-economic and cultural foundations of the curriculum and explains how the national curriculum…

  15. Establishing Enabling Conditions to Develop Critical Thinking Skills: A Case of Innovative Curriculum Design in Environmental Science

    Science.gov (United States)

    Belluigi, Dina Zoe; Cundill, Georgina

    2017-01-01

    This paper considers a curriculum design motivated by a desire to explore more valid pedagogical approaches that foster critical thinking skills among students engaged in an Environmental Science course in South Africa, focussing specifically on the topic of Citizen Science. Fifty-three under graduate students were involved in the course, which…

  16. The Next Generation Science Standards: The Features and Challenges

    Science.gov (United States)

    Pruitt, Stephen L.

    2014-01-01

    Beginning in January of 2010, the Carnegie Corporation of New York funded a two-step process to develop a new set of state developed science standards intended to prepare students for college and career readiness in science. These new internationally benchmarked science standards, the Next Generation Science Standards (NGSS) were completed in…

  17. Design of a social constructivism-based curriculum for primary science education in Confucian heritage culture

    NARCIS (Netherlands)

    Vu Thu Hang, N.

    2014-01-01

    This study is about the application of social constructivism in primary science curriculum in Confucian heritage culture. It was found that the implementation of social constructivism in Confucian heritage culture was low and influenced by cultural divergences between Confucian cultural philosophy

  18. The "Next Generation Science Standards" and the Earth and Space Sciences

    Science.gov (United States)

    Wysession, Michael E.

    2013-01-01

    In this article, Michael E. Wysession comments on the "Next Generation Science Standards" (NGSS), which are based on the recommendations of the National Research Council and represent a revolutionary step toward establishing modern, national K-12 science education standards. The NGSS involves significant changes from traditional…

  19. NASA's Earth Science Data Systems Standards Process Experiences

    Science.gov (United States)

    Ullman, Richard E.; Enloe, Yonsook

    2007-01-01

    NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards.

  20. Closing the science achievement gap for ninth grade English learners through standards- and inquiry-based science instruction

    Science.gov (United States)

    Estrada, Myrna Hipol

    In light of the need to close the achievement gap among our culturally and linguistically diverse students, more specifically the Hispanics and the Hispanic English Learners (ELs), the effects of teacher professional development (2 year PD vs. 1 Year PD vs. no PD) on the implementation of a standards-aligned and inquiry-based science curriculum program---the Integrated Coordinated Science for the 21st Century published by It's About Time, Inc. (ICS-IAT)---on the LAUSD ninth graders science scores were examined. Participants included 8,937 9th grade students (7,356 Hispanics). The primary outcome measurement was scaled scores from the California Standard Test (CST) in Integrated Coordinated Science (CST_ICS1). Correlations between California English Language Development Test (CELDT) component subscores (reading, listening and speaking) and CST scores were also examined. Results indicated that the science scores of the students of teachers who participated in two year PD were significantly higher compared to the scores of students of the one year PD group and the control group. The results show that all ethnic groups benefited from two years of teacher PD, except the African American group. Among Hispanics, students classified as IFEP, RFEP and EO gained from the teachers having two years of professional development. But the target population, ELs did not benefit from two years of teacher PD. The correlations between the CELDT and CST_ELA were much higher than the CELDT and CST_ICS1 correlations. This finding validates Abedi's claim (2004) that EL students are disadvantaged because of their language handicap on tests that have a greater language load. Two year PD participation significantly enhanced the accessibility of science to the ninth graders. The essential features in the PD were classroom simulation of all the activities identified in the storyboard with the actual and correct use of needed equipment and materials; creation and presentation of sample or model

  1. Designing a Standardized Laparoscopy Curriculum for Gynecology Residents

    DEFF Research Database (Denmark)

    Shore, Eliane M; Lefebvre, Guylaine G; Husslein, Heinrich

    2015-01-01

    surgery, and asked 39 experts in gynecologic education to rate the items on a Likert scale (1-5) for inclusion in the curriculum. Consensus was predefined as Cronbach α of ≥0.80. We then conducted another Delphi survey with 9 experienced users of laparoscopic virtual reality simulators to delineate...... of the curriculum Delphi, and after 2 rounds (Cronbach α=0.80) in the virtual reality curriculum Delphi. Consensus was reached for cognitive, technical, and nontechnical skills as well as for 6 virtual reality tasks. Median time and economy of movement scores defined benchmarks for all tasks. CONCLUSIONS...

  2. Common Core Science Standards: Implications for Students with Learning Disabilities

    Science.gov (United States)

    Scruggs, Thomas E.; Brigham, Frederick J.; Mastropieri, Margo A.

    2013-01-01

    The Common Core Science Standards represent a new effort to increase science learning for all students. These standards include a focus on English and language arts aspects of science learning, and three dimensions of science standards, including practices of science, crosscutting concepts of science, and disciplinary core ideas in the various…

  3. Supports and Concerns for Teacher Professional Growth During the Implementation of a Science Curriculum Innovation

    Science.gov (United States)

    Peers, Cheryl (Shelley) E.; Diezmann, Carmel M.; Watters, James J.

    2003-02-01

    Internationally, considerable reform in science education is occurring which promotes constructivist philosophies and advocates constructivist-inspired pedagogical strategies that are new to many teachers. This paper reports on the supporting factors necessary for teacher professional growth and the issues of concern that were evident during one primary teacher''s successful implementation of a unit of work based on a draft of a new state-wide science syllabus which proposes such approaches. One researcher (CEP) provided guidance during the writing and implementation of the unit through professional development workshops complemented by ongoing collegial support. The analysis of the teacher''s practice reveals that professional growth required a willingness of the teacher to engage with change and modify his professional practice. The support factors for teacher growth consisted of an appropriate program of professional development, teacher understanding of the elements of the curriculum innovation, and successful experiences in implementing new approaches. In contrast, the issues of concern were: the adequacy of support for planning including the time required to understand the innovation and make changes to teaching practice; science equipment; teacher knowledge; classroom management strategies; and ways to cope with change. Understanding of these support factors and issues of concern is vital for the successful implementation of science curriculum innovations.

  4. Transformative Multicultural Science curriculum: A case study of middle school robotics

    Science.gov (United States)

    Grimes, Mary Katheryn

    Multicultural Science has been a topic of research and discourse over the past several years. However, most of the literature concerning this topic (or paradigm) has centered on programs in tribal or Indigenous schools. Under the framework of instructional congruence, this case study explored how elementary and middle school students in a culturally diverse charter school responded to a Multicultural Science program. Furthermore, this research sought to better understand the dynamics of teaching and learning strategies used within the paradigm of Multicultural Science. The school's Robotics class, a class typically stereotyped as fitting within the misconceptions associated with the Western Modern Science paradigm, was the center of this case study. A triangulation of data consisted of class observations throughout two semesters; pre and post student science attitude surveys; and interviews with individual students, Robotic student teams, the Robotics class instructor, and school administration. Three themes emerged from the data that conceptualized the influence of a Multicultural Science curriculum with ethnically diverse students in a charter school's Robotics class. Results included the students' perceptions of a connection between science (i.e., Robotics) and their personal lives, a positive growth in the students' attitude toward science (and engineering), and a sense of personal empowerment toward being successful in science. However, also evident in the findings were the students' stereotypical attitudes toward science (and scientists) and their lack of understanding of the Nature of Science. Implications from this study include suggestions toward the development of Multicultural Science curricula in public schools. Modifications in university science methods courses to include the Multicultural Science paradigm are also suggested.

  5. An exploration of the science teaching orientations of Indian science teachers in the context of curriculum reform

    Science.gov (United States)

    Nargund-Joshi, Vanashri

    This study explores the concepts and behaviors, otherwise referred to as orientations, of six Indian science teachers and the alignment of these orientations to the 2005 India National Curriculum Framework (NCF-2005). Differences in teachers' orientations across grade bands (elementary, middle, and secondary) and school types (public versus private) are also examined to determine how contextual factors may influence this alignment. First, a content analysis of the NCF-2005 was completed to identify the overarching principles of the NCF-2005 and goals specific to the teaching and learning of science. Interviews with school principals were also analyzed to understand how the goals of NCF-2005 were communicated to schools and teachers. Together, these data sources served to answer research question one. Next, profiles were created based on three interviews with each teacher and several observations of their teaching. These profiles provide a point of reference for answering the remaining three research questions. Findings include teacher's orientations falling along a continuum from traditionalist in nature to inquiry/constructivist in nature. Stark contrasts were found between traditionalist orientations and the goals of NCF-2005, with much of this contrast due to the limited pedagogical content knowledge these teachers have regarding students' scientific thinking, curriculum design, instructional strategies, and assessment. Inquiry/constructivist teachers' orientations, while more in line with reform, still have a few key areas of pedagogical content knowledge needing attention (e.g., knowledge of assessment and a variety of purposes for constructivist instructional strategies). In response to the final research question, several contextual factors contributed to teachers' orientations including environmental constraints, such as limited resources and large class sizes, cultural testing pressures, and limited accessibility to professional development. Suggestions

  6. The Next Generation Science Standards

    Science.gov (United States)

    Pruitt, Stephen L.

    2015-01-01

    The Next Generation Science Standards (NGSS Lead States 2013) were released almost two years ago. Work tied to the NGSS, their adoption, and implementation continues to move forward around the country. Stephen L. Pruitt, senior vice president, science, at Achieve, an independent, nonpartisan, nonprofit education reform organization that was a lead…

  7. The role of project‐based learning in the “Political and Social Sciences of the Environment” curriculum at Nijmegen University

    NARCIS (Netherlands)

    Leroy, P.; Ligthart, S.S.H.; Bosch, H. van den

    2001-01-01

    Since the end of 1996, teachers at the Faculty of Policy Sciences at Nijmegen University, The Netherlands, have been working on a new educational programme called “Political and Social Sciences of the Environment” (PSSE). In fact, the PSSE curriculum builds on the Environmental Policy Sciences

  8. California teachers' perceptions of standards-based reform in middle school science: A mixed-methods study

    Science.gov (United States)

    Leggett, Allison Gail Wilson

    The No Child Left Behind (NCLB) Act of 2001 presented one of the most significant and comprehensive literacy reforms in many years (McDonnell, 2005; U.S. Department of Education, 2006). The era of school accountability and standards based reform has brought many challenges and changes to public schools. Increasingly, public officials and educational administrators are asked to use standards based assessments to make high-stakes decisions, such as whether a student will move on to the next grade level or receive a diploma (American Psychological Association, 2005). It is important to understand any shifts in teachers' perceptions and to identify the changes teachers are making as they implement standards-based reform. This mixed-methods study was designed to assess teachers' perceptions of changes related to standards-based reform as supported by Fullan's (2001) change theory and transformational leadership theory. Survey questions sought to identify teacher perceptions of changes in curriculum, instruction and daily practice as schools documented and incorporated standards-based reform and began focusing on preparing students for the California Standards Test in Science (CSTS). Using descriptive statistical analysis and in-depth interviews, results show favorable insight towards standards-based reform. The survey was distributed to 30 middle school science teachers from 10 low-performing schools in Los Angeles, California. Results were analyzed using Spearman rank-ordered correlations. Interviews were conducted on middle school teachers represented by each grade level. Teachers who receive more support from administrators have more positive attitudes toward all aspects of SBR and the CSTS as measured in this study. No school should overlook the potential of a supportive administration in its effort to improve school programs.

  9. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum

    Science.gov (United States)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.

    2017-12-01

    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  10. The Biome Project: Developing a Legitimate Parallel Curriculum for Physical Education and Life Sciences

    Science.gov (United States)

    Hastie, Peter Andrew

    2013-01-01

    The purpose of this article is to describe the outcomes of a parallel curriculum project between life sciences and physical education. Throughout a 6-week period, students in grades two through five became members of teams that represented different animal species and biomes, and concurrently participated in a season of gymnastics skills and…

  11. Probing the Natural World, Level III, Student Guide: Investigating Variation. Intermediate Science Curriculum Study.

    Science.gov (United States)

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's text of one unit of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit focuses on diversity in human populations, measurement, and data collection. Numerous activities are given and optional excursions encourage students to pursue a topic in greater depth. Data tables within the…

  12. Using Next Generation Science Standards (NGSS) Practices to Address Scientific Misunderstandings Around Complex Environmental Issues

    Science.gov (United States)

    Turrin, M.; Kenna, T. C.

    2014-12-01

    The new NGSS provide an important opportunity for scientists to develop curriculum that links the practice of science to research-based data in order to improve understanding in areas of science that are both complex and confusing. Our curriculum focuses in particular on the fate and transport of anthropogenic radionuclides. Radioactivity, both naturally occurring and anthropogenic, is highly debated and largely misunderstood, and for large sections of the population is a source of scientific misunderstanding. Developed as part of the international GEOTRACES project which focuses on identifying ocean processes and quantifying fluxes that control the distributions of selected trace elements and isotopes in the ocean, and on establishing the sensitivity of these distributions to changing environmental conditions, the curriculum topic fits nicely into the applied focus of NGSS with both environmental and topical relevance. Our curriculum design focuses on small group discussion driven by questions, yet unlike more traditional curriculum pieces these are not questions posed to the students, rather they are questions posed by the students to facilitate their deeper understanding. Our curriculum design challenges the traditional question/answer memorization approach to instruction as we strive to develop an educational approach that supports the practice of science as well as the NGSS Cross Cutting Concepts and the Science & Engineering Practices. Our goal is for students to develop a methodology they can employ when faced with a complex scientific issue. Through background readings and team discussions they identify what type of information is important for them to know and where to find a reliable source for that information. Framing their discovery around key questions such as "What type of radioactive decay are we dealing with?", "What is the potential half-life of the isotope?", and "What are the pathways of transport of radioactivity?" allows students to evaluate a

  13. Implementing the Next Generation Science Standards

    Science.gov (United States)

    Penuel, William R.; Harris, Christopher J.; DeBarger, Angela Haydel

    2015-01-01

    The Next Generation Science Standards embody a new vision for science education grounded in the idea that science is both a body of knowledge and a set of linked practices for developing knowledge. The authors describe strategies that they suggest school and district leaders consider when designing strategies to support NGSS implementation.

  14. Curriculum Trends in Medical Education in Mauritius

    Directory of Open Access Journals (Sweden)

    Aprajita Panwar

    2017-08-01

    Full Text Available Medical education began in Mauritius with the establishment of Sir Seewoosagur Ramgoolam (SSR Medical college in 1999 followed by a breakthrough in field of medicine with opening of Anna Medical College and Research Center (AMCRC in 2010 and Padhamshree DY PatilMedical College in 2013.Though it was an appreciable beginning of medical education in Mauritius, medical schools are currently experiencing hardships in delivering right medical exposure to health care professionals.Mauritian medical schools now need to review their current teaching methodology and present curriculum to keep pace with global standards. Integrated curriculum which is now gaining popularity world-wide is to be introduced and strongly implemented in medical schools in Mauritius. This curriculum would breach barriers and improve integration between pre-clinical and clinical sciences thus facilitating long-term retention of knowledge in medical schools and develop a professionally soundapproach towards management of health care. Horizontal curriculum can be replaced by vertical and spiral integration. For this major change, faculty engaged in medical profession are to be acquainted about innovative strategies and emerging trends in medical education. Thus this article aims to highlight the current scenario of medical education in Mauritius and also offer suggestions about possible future strategies to be implemented in medical colleges.Keywords: MEDICAL EDUCATION, CURRICULUM, CHALLENGES

  15. An Indigenous Framework for Science, Technology, Engineering and Mathematics

    Science.gov (United States)

    Monette, G.

    2003-12-01

    The American Indian Higher Education Consortium, composed of 35 American Indian tribally-controlled Colleges and Universities in the U.S. and Canada, is leading a comprehensive effort to improve American Indian student achievement in STEM. A key component of this effort is the synthesis of indigenous ways of knowing and western education systems. This presentation will provide an overview of culturally responsive, place-based teaching, learning, and research and will discuss potential opportunities and strategies for helping to ensure that education systems and research programs reflect our diversity and respect our cultures. One example to be discussed is the NSF-funded "Tribal College Rural Systemic Initiative." Founded on the belief that all students can learn and should be given the opportunity to reach their full potential, Tribal Colleges are leading this effort to achieve successful and sustainable improvement of science, math, and technology education at the K-14 level in rural, economically disadvantaged, geographically challenged areas. Working with parents, tribal governments, schools and the private sector, the colleges are helping to implement math and science standards-based curriculum for students and standards-based assessment for schools; provide math and science standards-based professional development for teachers, administrators, and community leaders; and integrate local Native culture into math and science standards-based curriculum. The close working relationship between the Tribal Colleges and K-12 is paying off. According to the National Science Foundation, successful systemic reform has resulted in enhanced student achievement and participation in science and math; reductions in the achievement disparities among students that can be attributed to socioeconomic status, race, ethnicity, gender, or learning styles; implementation of a comprehensive, standards-based curriculum aligned with instructions and assessment; development of a coherent

  16. Understanding Curriculum, Instruction and Assessment within Eighth Grade Science Classrooms for Special Needs Students

    Science.gov (United States)

    Riedell, Kate Elizabeth

    The Individuals with Disabilities Education Act (IDEA, 2004) cemented the fact that students with disabilities must be placed in the least restrictive environment and be given the necessary supports to help them succeed (Lawrence-Brown, 2004). This provides significant challenges for general education teachers, especially in an era of standards based reform with the adoption of the Common Core State Standards (CCSSI, 2014) by most states, along with the Next Generation Science Standards (NGSS, 2013). While a variety of methods, strategies, and techniques are available to teachers, there is a dearth of literature that clearly investigates how teachers take into account the ability and motivation of students with special needs when planning and implementing curriculum, instruction, and assessment. Thus, this study sought to investigate this facet through the lens of differentiation, personalization, individualization and universal design for learning (UDL) (CAST, 2015), all of which are designed to meet the needs of diverse learners, including students with special needs. An embedded single-case study design (Yin, 2011) was used in this study with the case being differentiated and/or personalized curriculum, instruction and/or assessment, along with UDL for students with special needs, with each embedded unit of analysis being one eighth grade general education science teacher. Analyzing each sub-unit or case, along with a cross-case analysis, three eighth grade general education science teachers were observed over the course of two 10-day units of study in the fall and spring, as they collected artifacts and completed annotations within their electronic portfolios (ePortfolios). All three eighth grade general education science teachers collected ePortfolios as part of their participation in a larger study within California, "Measuring Next Generation Science Instruction Using Tablet-Based Teacher Portfolios," funded by the National Science Foundation. Each teacher

  17. Integrating GIS in the Middle School Curriculum: Impacts on Diverse Students' Standardized Test Scores

    Science.gov (United States)

    Goldstein, Donna; Alibrandi, Marsha

    2013-01-01

    This case study conducted with 1,425 middle school students in Palm Beach County, Florida, included a treatment group receiving GIS instruction (256) and a control group without GIS instruction (1,169). Quantitative analyses on standardized test scores indicated that inclusion of GIS in middle school curriculum had a significant effect on student…

  18. The application of Legacy Cycles in the development of Earth Science curriculum

    Science.gov (United States)

    Ellins, K.; Abernathy, E.; Negrito, K.; McCall, L.

    2009-04-01

    The Institute for Geophysics in the Jackson School of Geosciences at The University of Texas at Austin actively contributes to K-12 education, including the development of rigorous Earth and Space Science curriculum designed for secondary school learning environments. Here we report on our efforts to apply an innovative new pedagogical approach, the Legacy Cycle, to scientific ocean drilling paleoclimate data from fossil corals collected offshore Barbados in 2006 and to the creation of a high school water resources education program for Texas high school students supported by a grant from the Texas Water Development Board. The Legacy Cycle makes use of the Internet and computer technology to engage students in extended inquiry learning. A series of inquiry activities are organized around a set of three driving questions, or challenges. Students mimic the work of scientists by generating ideas to address a given challenge, listening to multiple perspectives from experts on the topic, researching a set of sub-questions and revising their original ideas, testing their mettle with labs and quizzes, and finally composing a project or paper that answers the original challenge. The technology makes it easy for students to move through the challenges and the organizational framework since there are hyperlinks to each of the sections (and to reach the other challenges) at the bottom of each webpage. Students' final work is posted to the Internet for others to see, and in this way they leave behind their legacy. Our Legacy Cycle activities use authentic hydrologic, water quality, geochemical, geophysical data, as well as remotely sensed data such as is collected by satellites. They are aligned with the U.S. National Science Education Standards, the new Ocean, Climate and Earth Science Literacy Principles (in development), and the Texas Essential Knowledge and Skills for Earth and Space Science. The work represents a collaboration involving teachers from The University of

  19. Exploring the Associations among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum

    Science.gov (United States)

    Stage, Virginia C.; Kolasa, Kathryn M.; Díaz, Sebastián R.; Duffrin, Melani W.

    2018-01-01

    Background: Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Methods: Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across…

  20. Interacting with a Suite of Educative Features: Elementary Science Teachers' Use of Educative Curriculum Materials

    Science.gov (United States)

    Arias, Anna Maria; Bismack, Amber Schultz; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2016-01-01

    New reform documents underscore the importance of learning both the practices and content of science. This integration of practices and content requires sophisticated teaching that does not often happen in elementary classrooms. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited…

  1. Integration of Cognitive Skills as a Cross-Cutting Theme Into the Undergraduate Medical Curriculum at Tehran University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Akbar Soltani

    2017-02-01

    Full Text Available Nowadays, improvement of thinking skills of students is one of the universally supported aims in the majority of medical schools. This study aims to design longitudinal theme of reasoning, problem-solving and decision-making into the undergraduate medical curriculum at Tehran University of Medical Sciences (TUMS. A participatory approach was applied to design the curriculum during 2009-2011. The project was conducted by the contribution of representatives of both basic and clinical faculty members, students and graduates at Tehran University of Medical Sciences. The first step toward integrating cognitive skills into the curriculum was to assemble a taskforce of different faculty and students, including a wide variety of fields with multidisciplinary expertise using nonprobability sampling and the snowball method. Several meetings with the contribution of experts and some medical students were held to generate the draft of expected outcomes. Subsequently, the taskforce also determined what content would fit best into each phase of the program and what teaching and assessment methods would be more appropriate for each outcome. After a pilot curriculum with a small group of second-year medical students, we implemented this program for all first-year students since 2011 at TUMS. Based on findings, the teaching of four areas, including scientific and critical thinking skills (Basic sciences, problem-solving and reasoning (Pathophysiology, evidence-based medicine (Clerkship, and clinical decision-making (Internship were considered in the form of a longitudinal theme. The results of this study could be utilized as a useful pattern for integration of psycho-social subjects into the medical curriculum.

  2. Ethics Instruction in Library and Information Science: The Role of "Ethics across the Curriculum"

    Science.gov (United States)

    Smith, Bernie Todd

    2010-01-01

    Ethics is an important element of most graduate professional training programs. In the field of Library and Information Science (LIS) the inclusion of ethics in the curriculum is supported by a position paper by library educators and is monitored in the accreditation of graduate programs. Despite the many LIS programs which claim to integrate…

  3. Probing the Natural World, Level III, Teacher's Edition: Investigating Variation. Intermediate Science Curriculum Study.

    Science.gov (United States)

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit focuses on diversity in human populations, measurement, and data collection. Optional excursions are described for students who wish to study a topic in greater depth. An introduction describes…

  4. Probing the Natural World, Level III, Student Guide: What's Up? Intermediate Science Curriculum Study.

    Science.gov (United States)

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's text of one unit of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). The chapters contain basic information about rockets, space, and principles of physics, as well as activities related to the subject and optional excursions. A section of introductory notes to the student discusses how the…

  5. Teaching science through literature

    Science.gov (United States)

    Barth, Daniel

    2007-12-01

    The hypothesis of this study was that a multidisciplinary, activity rich science curriculum based around science fiction literature, rather than a conventional text book would increase student engagement with the curriculum and improve student performance on standards-based test instruments. Science fiction literature was chosen upon the basis of previous educational research which indicated that science fiction literature was able to stimulate and maintain interest in science. The study was conducted on a middle school campus during the regular summer school session. Students were self-selected from the school's 6 th, 7th, and 8th grade populations. The students used the science fiction novel Maurice on the Moon as their only text. Lessons and activities closely followed the adventures of the characters in the book. The student's initial level of knowledge in Earth and space science was assessed by a pre test. After the four week program was concluded, the students took a post test made up of an identical set of questions. The test included 40 standards-based questions that were based upon concepts covered in the text of the novel and in the classroom lessons and activities. The test also included 10 general knowledge questions that were based upon Earth and space science standards that were not covered in the novel or the classroom lessons or activities. Student performance on the standards-based question set increased an average of 35% for all students in the study group. Every subgroup disaggregated by gender and ethnicity improved from 28-47%. There was no statistically significant change in the performance on the general knowledge question set for any subgroup. Student engagement with the material was assessed by three independent methods, including student self-reports, percentage of classroom work completed, and academic evaluation of student work by the instructor. These assessments of student engagement were correlated with changes in student performance

  6. Designing an educative curriculum unit for teaching molecular geometry in high school chemistry

    Science.gov (United States)

    Makarious, Nader N.

    Chemistry is a highly abstract discipline that is taught and learned with the aid of various models. Among the most challenging, yet a fundamental topic in general chemistry at the high school level, is molecular geometry. This study focused on developing exemplary educative curriculum materials pertaining to the topic of molecular geometry. The methodology used in this study consisted of several steps. First, a diverse set of models were analyzed to determine to what extent each model serves its purpose in teaching molecular geometry. Second, a number of high school teachers and college chemistry professors were asked to share their experiences on using models in teaching molecular geometry through an online questionnaire. Third, findings from the comparative analysis of models, teachers’ experiences, literature review on models and students’ misconceptions, the curriculum expectations of the Next Generation Science Standards and their emphasis on three-dimensional learning and nature of science (NOS) contributed to the development of the molecular geometry unit. Fourth, the developed unit was reviewed by fellow teachers and doctoral-level science education experts and was revised to further improve its coherence and clarity in support of teaching and learning of the molecular geometry concepts. The produced educative curriculum materials focus on the scientific practice of developing and using models as promoted in the Next Generations Science Standards (NGSS) while also addressing nature of science (NOS) goals. The educative features of the newly developed unit support teachers’ pedagogical knowledge (PK) and pedagogical content knowledge (PCK). The unit includes an overview, teacher’s guide, and eight detailed lesson plans with inquiry oriented modeling activities replete with models and suggestions for teachers, as well as formative and summative assessment tasks. The unit design process serves as a model for redesigning other instructional units in

  7. Lessons learned from curriculum changes and setting curriculum objectives at the University of Pennsylvania's Earth and Environmental Science Department

    Science.gov (United States)

    Dmochowski, J. E.

    2009-12-01

    Recent restructuring of the University of Pennsylvania’s curriculum, including a revised multi-disciplinary Environmental Studies major and a proposed Environmental Science major has led to several changes, including a mandatory junior research seminar. Feedback from students indicates that a more structured curriculum has helped guide them through the multi-disciplinary Environmental Studies major. The addition of mandatory courses in Statistics, Geographical and Environmental Modeling, as well as Economics and Policy has ensured that students have important skills needed to succeed after graduation. We have compiled a curriculum objective matrix to clarify both the broad and focused objectives of our curriculum and how each course helps to fulfill these objectives. An important aspect of both majors is the Senior Thesis. The junior research seminar was recently revised to help students prepare for their thesis research. Topic selection, library research, data presentation, basic research methods, advisor identification, and funding options are discussed. Throughout the course, faculty from within the department lecture about their research and highlight opportunities for undergraduates. In one assignment, students are given a few types of datasets and asked to present the data and error analysis in various formats using different software (SPSS and Excel). The final paper was a research proposal outlining the student’s Senior Thesis. Based on both the university and instructor written course evaluations, students felt they benefited most from writing their senior thesis proposal; doing assignments on data analysis, library research and critical analysis; and the faculty research lectures. The lessons learned in restructuring this flexible major and providing a research seminar in the junior year may benefit other departments considering such changes.

  8. Computational Experiments for Science and Engineering Education

    Science.gov (United States)

    Xie, Charles

    2011-01-01

    How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.

  9. The Astrobiology in Secondary Classrooms (ASC) curriculum: focusing upon diverse students and teachers.

    Science.gov (United States)

    Arino de la Rubia, Leigh S

    2012-09-01

    The Minority Institution Astrobiology Collaborative (MIAC) began working with the NASA Goddard Center for Astrobiology in 2003 to develop curriculum materials for high school chemistry and Earth science classes based on astrobiology concepts. The Astrobiology in Secondary Classrooms (ASC) modules emphasize interdisciplinary connections in astronomy, biology, chemistry, geoscience, physics, mathematics, and ethics through hands-on activities that address national educational standards. Field-testing of the Astrobiology in Secondary Classrooms materials occurred over three years in eight U.S. locations, each with populations that are underrepresented in the career fields of science, technology, engineering, and mathematics. Analysis of the educational research upon the high school students participating in the ASC project showed statistically significant increases in students' perceived knowledge and science reasoning. The curriculum is in its final stages, preparing for review to become a NASA educational product.

  10. Exploring shifts in the characteristics of US government-funded science curriculum materials and their (unintended) consequences

    NARCIS (Netherlands)

    Pareja Roblin, Natalie; Schunn, Christian; Bernstein, Debra; McKenney, Susan

    2018-01-01

    Grant-funded curriculum development efforts can substantially impact practice and research in science education. Therefore, understanding the sometimes-unintended consequences of changes in grant priorities is crucial. Using the case of two large funding agencies in the United States, the current

  11. Maximising Students' Progress and Engagement in Science through the Use of the Biological Sciences Curriculum Study (BSCS) 5E Instructional Model

    Science.gov (United States)

    Hoskins, Peter

    2013-01-01

    The Biological Sciences Curriculum Studies (BSCS) 5E Instructional Model (often referred to as the 5Es) consists of five phases. Each phase has a specific function and contributes both to teachers' coherent instruction and to students' formulation of a better understanding of scientific knowledge, attitudes and skills. Evidence indicates that the…

  12. Crop and Soil Science. A Curriculum Guide for Idaho Vocational Agriculture Instructors. Volume 1 and Volume 2.

    Science.gov (United States)

    Ledington, Richard L.

    The 24 units that comprise this crop and soil science curriculum guide are not geared to a particular age level and must be adapted to the students for whom they are used. Units 1 through 6 are general units covering topics common to soil science. Units 7 through 24 are units covering topics common to crop production. Each unit includes objectives…

  13. The Role of Standards-Based Education in Fostering Scientific Literacy in the Geosciences

    Science.gov (United States)

    Moosavi, S. C.

    2008-12-01

    Societal controversy over the content taught in K-12 science classrooms continues at a time of increasing demand for teacher and school accountability enacted through legislative mandates such as the No Child Left Behind Law. As teachers are held increasingly to nationally-inspired state standards, building blocks for future controversy are being built via inclusion of social and environmental policy agendas related to diversity, multiculturalism and environmental stewardship into these same science standards. While the authors' attempts to include such policies are well intended, they undermine the narrow answer to the question, "What is science?" leaving the door open to inclusion of pseudo-scientific content into the science curriculum in compliance with the perceived mandate of the standards. Disparate interpretation of the language and intent of the standards between that written by scientists, science educators and policy makers relative to that of the teachers, school administrators and parents tasked to implement and work within these standards leaves room for inclusion of much content that most scientists would object to. The resulting controversy and confusion have the potential to undermine public confidence in the scientific community's opinions on geoscience issues precisely at the time that full societal engagement is necessary to deal with climate change and other major environmental challenges. Results from this study suggest using the standards to mandate opening the scientific curriculum to political and social agendas, even under the guise of diversity, multiculturalism and environmental awareness, has created a whole raft of unintended consequences. These same mandates can be interpreted by the general public as also opening the curriculum to other views of science ranging from traditional religious and cultural views to intelligent design and alternative ways of knowing, thereby undermining scientific literacy in the general population

  14. Into the Curriculum. Interdisciplinary: Celebrating Our Animal Friends: An Across-the-Curriculum Unit for Middle Level Students [and] Music: Program Notes [and] Reading-Language Arts: Letters: Written, Licked, and Stamped [and] Science: Plants in Families [and] Science: Physics and Holiday Toys (Gravity) [and] Social Studies: Learning about Geography through Children's Literature.

    Science.gov (United States)

    Gillen, Rose; And Others

    1995-01-01

    Presents six curriculum guides for elementary and secondary education. Subjects include interdisciplinary instruction, music, reading/language arts, science, and social studies. Each guide provides library media skills objectives, curriculum objectives, grade levels, resources, instructional roles, activity and procedures for completion, a…

  15. Attitudes among students and teachers on vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum.

    Science.gov (United States)

    Brynhildsen, J; Dahle, L O; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M

    2002-05-01

    Important elements in the curriculum at the Faculty of Health Sciences in Linköping are vertical integration, i.e. integration between the clinical and basic science sections of the curriculum, and horizontal integration between different subject areas. Integration throughout the whole curriculum is time-consuming for both teachers and students and hard work is required for planning, organization and execution. The aim was to assess the importance of vertical and horizontal integration in an undergraduate medical curriculum, according to opinions among students and teachers. In a questionnaire 102 faculty teachers and 106 students were asked about the importance of 14 different components of the undergraduate medical curriculum including vertical and horizontal integration. They were asked to assign between one and six points to each component (6 points = extremely important for the quality of the curriculum; 1 point = unimportant). Students as well as teachers appreciated highly both forms of integration. Students scored horizontal integration slightly but significantly higher than the teachers (median 6 vs 5 points; p=0.009, Mann-Whitney U-test), whereas teachers scored vertical integration higher than students (6 vs 5; p=0.019, Mann-Whitney U-test). Both students and teachers considered horizontal and vertical integration to be highly important components of the undergraduate medical programme. We believe both kinds of integration support problem-based learning and stimulate deep and lifelong learning and suggest that integration should always be considered deeply when a new curriculum is planned for undergraduate medical education.

  16. Paths through interpretive territory: Two teachers' enactment of a technology-rich, inquiry-fostering science curriculum

    Science.gov (United States)

    McDonald, Scott Powell

    New understandings about how people learn and constructivist pedagogy pose challenges for teachers. Science teachers face an additional challenge of developing inquiry-based pedagogy to foster complex reasoning skills. Theory provides only fuzzy guidance as to how constructivist or inquiry pedagogy can be accomplished in a wide variety of contexts and local constraints. This study contributes to the understanding of the development of constructivist, inquiry-based pedagogy by addressing the question: How do teachers interpret and enact a technology-rich, inquiry fostering science curricula for fifth grade students' biodiversity learning? This research is a case study of two teachers chosen as critical contrasting cases and represent differences across multiple criteria including: urban I suburban, teaching philosophy, and content preparation. The two fifth grade teachers each enacted BioKIDS: Kids' Inquiry in Diverse Species, an eight week curriculum focused on biodiversity. BioKIDS incorporates multiple learning technologies to support student learning including handheld computer software designed to help students collect field data, and a web-based resource for data on local animal species. The results of this study indicate there are tensions teachers must struggle with when setting goals during enactment of inquiry science curricula. They must find a balance between an emphasis on authentic learning and authentic science, and between natural history and natural science. Authentic learning focuses on students' interests and lives; Authentic science focuses on students working with the tools and processes of science. Natural history focuses on the foundational skills in science of observation and classification. Natural science focuses on analytical science drawing on data to develop claims about the world. These two key tensions in teachers' goal setting were critical in defining and understanding differences in how teachers interpreted a curriculum to meet

  17. Next generation science standards available for comment

    Science.gov (United States)

    Asher, Pranoti

    2012-05-01

    The first public draft of the Next Generation Science Standards (NGSS) is now available for public comment. Feedback on the standards is sought from people who have a stake in science education, including individuals in the K-12, higher education, business, and research communities. Development of NGSS is a state-led effort to define the content and practices students need to learn from kindergarten through high school. NGSS will be based on the U.S. National Research Council's reportFramework for K-12 Science Education.

  18. Science Teacher Decision-Making in a Climate of Heightened Accountability: A Rhizomatic Case Study Analysis of Two Science Departments in New York City

    Science.gov (United States)

    Purohit, Kiran Dilip

    important practical implications in the fields of professional development, curriculum development, and school change. As more states (including New York) adopt standards derived from the Next Generation Science Standards (NGSS), the importance of privileging teachers' investment and critical decision-making in the process of new curriculum development is vital. I suggest that tools like video-based coaching and consultancy protocol discussions support this kind of thoughtful curricular change.

  19. High School Class for Gifted Pupils in Physics and Sciences and Pupils' Skills Measured by Standard and Pisa Test

    Science.gov (United States)

    Djordjevic, G. S.; Pavlovic-Babic, D.

    2010-01-01

    The "High school class for students with special abilities in physics" was founded in Nis, Serbia (www.pmf.ni.ac.yu/f_odeljenje) in 2003. The basic aim of this project has been introducing a broadened curriculum of physics, mathematics, computer science, as well as chemistry and biology. Now, six years after establishing of this specialized class, and 3 years after the previous report, we present analyses of the pupils' skills in solving rather problem oriented test, as PISA test, and compare their results with the results of pupils who study under standard curricula. More precisely results are compared to the progress results of the pupils in a standard Grammar School and the corresponding classes of the Mathematical Gymnasiums in Nis. Analysis of achievement data should clarify what are benefits of introducing in school system track for gifted students. Additionally, item analysis helps in understanding and improvement of learning strategies' efficacy. We make some conclusions and remarks that may be useful for the future work that aims to increase pupils' intrinsic and instrumental motivation for physics and sciences, as well as to increase the efficacy of teaching physics and science.

  20. The Nature of Science and the Next Generation Science Standards: Analysis and Critique

    Science.gov (United States)

    McComas, William F.; Nouri, Noushin

    2016-08-01

    This paper provides a detailed analysis of the inclusion of aspects of nature of science (NOS) in the Next Generation Science Standards (NGSS). In this new standards document, NOS elements in eight categories are discussed in Appendix H along with illustrative statements (called exemplars). Many, but not all, of these exemplars are linked to the standards by their association with either the "practices of science" or "crosscutting concepts," but curiously not with the recommendations for science content. The study investigated all aspects of NOS in NGSS including the accuracy and inclusion of the supporting exemplar statements and the relationship of NOS in NGSS to other aspects of NOS to support teaching and learning science. We found that while 92 % of these exemplars are acceptable, only 78 % of those written actually appear with the standards. "Science as a way of knowing" is a recommended NOS category in NGSS but is not included with the standards. Also, several other NOS elements fail to be included at all grade levels thus limiting their impact. Finally, NGSS fails to include or insufficiently emphasize several frequently recommended NOS elements such as creativity and subjectivity. The paper concludes with a list of concerns and solutions to the challenges of NOS in NGSS.

  1. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    Science.gov (United States)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  2. Measuring Course Competencies in a School of Business: The Use of Standardized Curriculum and Rubrics

    Science.gov (United States)

    Gibson, Jane Whitney

    2011-01-01

    This paper examines the growing emphasis on measurement of course competencies by individual college students through two course examples, an undergraduate course in managing change and conflict and a graduate course in human resource management. The author explains how standardized curriculum and assignment rubrics are being used to measure…

  3. Developing a yearlong Next Generation Science Standard (NGSS) learning sequence focused on climate solutions: opportunities, challenges and reflections

    Science.gov (United States)

    Cordero, E.; Centeno, D.

    2015-12-01

    Over the last four years, the Green Ninja Project (GNP) has been developing educational media (e.g., videos, games and online lessons) to help motivate student interest and engagement around climate science and solutions. Inspired by the new emphasis in NGSS on climate change, human impact and engineering design, the GNP is developing a technology focused, integrative, and yearlong science curriculum focused around solutions to climate change. Recognizing the importance of teacher training on the successful implementation of NGSS, we have also integrated teacher professional development into our curriculum. During the presentation, we will describe the design philosophy around our middle school curriculum and share data from a series of classes that are piloting the curriculum during Fall 2015. We will also share our perspectives on how data, media creation and engineering can be used to create educational experiences that model the type of 'three-dimensional learning' encouraged by NGSS.

  4. The MORPG-Based Learning System for Multiple Courses: A Case Study on Computer Science Curriculum

    Science.gov (United States)

    Liu, Kuo-Yu

    2015-01-01

    This study aimed at developing a Multiplayer Online Role Playing Game-based (MORPG) Learning system which enabled instructors to construct a game scenario and manage sharable and reusable learning content for multiple courses. It used the curriculum of "Introduction to Computer Science" as a study case to assess students' learning…

  5. Dissect, Design, and Customize the Curriculum

    Science.gov (United States)

    Tienken, Christopher H.

    2013-01-01

    Education bureaucrats in 45 states have approved the Common Core State Standards ([CCSS], 2010) as the de facto national curriculum. The implementation of the CCSS will be monitored by a national standardized test in language arts and mathematics. The confluence of a standardized curriculum enforced with a standardized test will entrench a…

  6. Patient safety principles in family medicine residency accreditation standards and curriculum objectives

    Science.gov (United States)

    Kassam, Aliya; Sharma, Nishan; Harvie, Margot; O’Beirne, Maeve; Topps, Maureen

    2016-01-01

    Abstract Objective To conduct a thematic analysis of the College of Family Physicians of Canada’s (CFPC’s) Red Book accreditation standards and the Triple C Competency-based Curriculum objectives with respect to patient safety principles. Design Thematic content analysis of the CFPC’s Red Book accreditation standards and the Triple C curriculum. Setting Canada. Main outcome measures Coding frequency of the patient safety principles (ie, patient engagement; respectful, transparent relationships; complex systems; a just and trusting culture; responsibility and accountability for actions; and continuous learning and improvement) found in the analyzed CFPC documents. Results Within the analyzed CFPC documents, the most commonly found patient safety principle was patient engagement (n = 51 coding references); the least commonly found patient safety principles were a just and trusting culture (n = 5 coding references) and complex systems (n = 5 coding references). Other patient safety principles that were uncommon included responsibility and accountability for actions (n = 7 coding references) and continuous learning and improvement (n = 12 coding references). Conclusion Explicit inclusion of patient safety content such as the use of patient safety principles is needed for residency training programs across Canada to ensure the full spectrum of care is addressed, from community-based care to acute hospital-based care. This will ensure a patient safety culture can be cultivated from residency and sustained into primary care practice. PMID:27965349

  7. Merging Information Literacy and Evidence-Based Practice in an Undergraduate Health Sciences Curriculum Map

    Science.gov (United States)

    Franzen, Susan; Bannon, Colleen M.

    2016-01-01

    The ACRL's "Framework for Information Literacy for Higher Education" offers the opportunity to rethink information literacy teaching and curriculum. However, the ACRL's rescinded "Information Literacy Competency Standards for Higher Education" correlate with the preferred research and decision-making model of the health…

  8. Effects of Teacher Lesson Introduction on Second Graders' Creativity in a Science/Literacy Integrated Unit on Health and Nutrition

    Science.gov (United States)

    Webb, Angela Naomi; Rule, Audrey C.

    2014-01-01

    The focus on standardized testing in the areas of reading and mathematics in early elementary education often minimalizes science and the arts in the curriculum. The science topics of health and nutrition were integrated into the reading curriculum through read aloud books. Inclusion of creativity skills through figural transformation drawings…

  9. Building Standards based Science Information Systems: A Survey of ISO and other standards

    Science.gov (United States)

    King, Todd; Walker, Raymond

    Science Information systems began with individual researchers maintaining personal collec-tions of data and managing them by using ad hoc, specialized approaches. Today information systems are an enterprise consisting of federated systems that manage and distribute both historical and contemporary data from distributed sources. Information systems have many components. Among these are metadata models, metadata registries, controlled vocabularies and ontologies which are used to describe entities and resources. Other components include services to exchange information and data; tools to populate the system and tools to utilize available resources. When constructing information systems today a variety of standards can be useful. The benefit of adopting standards is clear; it can shorten the design cycle, enhance software reuse and enable interoperability. We look at standards from the International Stan-dards Organization (ISO), International Telecommunication Union (ITU), Organization for the Advancement of Structured Information Standards (OASIS), Internet Engineering Task Force (IETF), American National Standards Institute (ANSI) which have influenced the develop-ment of information systems in the Heliophysics and Planetary sciences. No standard can solve the needs of every community. Individual disciplines often must fill the gap between general purpose standards and the unique needs of the discipline. To this end individual science dis-ciplines are developing standards, Examples include the International Virtual Observatory Al-liance (IVOA), Planetary Data System (PDS)/ International Planetary Data Alliance (IPDA), Dublin-Core Science, and the Space Physics Archive Search and Extract (SPASE) consortium. This broad survey of ISO and other standards provides some guidance for the development information systems. The development of the SPASE data model is reviewed and provides some insights into the value of applying appropriate standards and is used to illustrate

  10. Science, Engineering, and Mathematics (SEM) at the Timbuktu Academy

    Science.gov (United States)

    2005-07-31

    Science (AAAS) and the first Standards of the National Council of Teachers o f Mathematics ( NCTM ) both appeared in 1989 . They were followed by Scope...National Council of Teachers of Mathematics ( NCTM , 1989, 1991 , and 1995), Science for All Americans (Project 2061) and the Benchmarks of the America n...Documents, Mail Stop SSOP, Washington, DC, 20402-9328 . National Council of Teachers of Mathematics ( NCTM ) . Curriculum and Evaluation Standard s for School

  11. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School

    Directory of Open Access Journals (Sweden)

    Olopade FE

    2016-07-01

    Full Text Available Funmilayo Eniola Olopade,1 Oluwatosin Adekunle Adaramoye,2 Yinusa Raji,3 Abiodun Olubayo Fasola,4 Emiola Oluwabunmi Olapade-Olaopa5 1Department of Anatomy, 2Department of Biochemistry, 3Department of Physiology, 4Department of Oral Pathology, 5Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria Abstract: The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the “old” curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula

  12. Wilderness Education Association certification and safety, ecological impact, and curriculum standardization of graduates

    OpenAIRE

    Detzel, David

    1985-01-01

    Graduates of the Wilderness Education Association (W.E.A.) were surveyed by mail to investigate the effects of their certification on safety, ecological impact, and curriculum standardization of their subsequent leadership activities. Self-reports showed a slight, but not statistically significant, decrease in the number of post- W.E.A. course evacuations and rescues. Graduates reported a moderate W.E.A. influence on their accident records, and knowledge of W.E.A. stan...

  13. Engineering the curriculum: Towards an adaptive curriculum

    Science.gov (United States)

    Johns-Boast, Lynette Frances

    The curriculum is one of the most important artefacts produced by higher education institutions, yet it is one of the least studied. Additionally, little is known about the decision-making of academics when designing and developing their curricula, nor how they make use of them. This research investigates how 22 Australian higher education engineering, software engineering, computer science, and information systems academics conceive of curriculum, what approaches they take when designing, and developing course and program curricula, and what use they make of the curriculum. It also considers the implications of these conceptions and behaviour upon their curricula. Data were collected through a series of one-to-one, in-depth, qualitative interviews as well as small focus group sessions and were analysed following Charmaz’ (2006) approach to grounded theory. In this thesis, I argue that the development of curricula for new higher degree programs and courses and / or the updating and innovating of an existing curriculum is a design problem. I also argue that curriculum is a complex adaptive system. Surrounding the design and development of a curriculum is a process of design that leads to the creation of a designed object - the official-curriculum. The official-curriculum provides the guiding principles for its implementation, which involves the design and development of the curriculum-in-use, its delivery, and evaluation. Data show that while the participants conceive of curriculum as a problem of design involving a design process leading to the development of the official-curriculum, surprisingly, their behaviour does not match their conceptions. Over a very short period, their behaviour leads to a process I have called curriculum drift where the official-curriculum and the curriculum-in-use drift away from each other causing the curriculum to lose its integrity. Curricular integrity is characterised through the attributes of alignment, coherence, and

  14. Using science soundly: The Yucca Mountain standard

    International Nuclear Information System (INIS)

    Fri, R.W.

    1995-01-01

    Using sound science to shape government regulation is one of the most hotly argued topics in the ongoing debate about regulatory reform. Even though no one advaocates using unsound science, the belief that even the best science will sweep away regulatory controversy is equally foolish. As chair of a National Research Council (NRC) committee that studied the scientific basis for regulating high-level nuclear waste disposal, the author learned that science alone could resolve few of the key regulatory questions. Developing a standard that specifies a socially acceptable limit on the human health effects of nuclear waste releases involves many decisions. As the NRC committee learned in evaluating the scientific basis for the Yucca Mountain standard, a scientifically best decision rarely exists. More often, science can only offer a useful framework and starting point for policy debates. And sometimes, science's most helpful contribution is to admit that it has nothing to say. The Yucca mountain study clearly illustrates that excessive faith in the power of science is more likely to produce messy frustration than crisp decisions. A better goal for regulatory reform is the sound use of science to clarify and contain the inevitable policy controversy

  15. Creating effective environmental education: A case study utilizing an integrative teaching methodology to develop positive environmental attitudes and behaviors in the secondary general science curriculum

    Science.gov (United States)

    O'Connor, Teresa M.

    Many years of teaching environmental issues years has revealed that giving students only "the facts" frequently leaves them with a sense of hopelessness about the future of life on this planet. Problems of the environment often seem large and complex, and student's feel there is nothing "they" can do. In response, a curriculum was developed that permits students to learn about action strategies they can partake in that would make a small contribution towards a solution, as well as exploring their own values and attitudes about environmental issues. The curriculum also attempts to foster positive attitudes and beliefs about the natural world. The curriculum contains three distinct units, focusing on energy, atmospheric issues, and the loss of habitat and rainforest. It was taught in sixty-one sessions over a fourteen week period in a standard level ninth grade General Science class of twenty-four students, at Harriton High School in the Lower Merion School District in the suburbs of Philadelphia. The dissertation is presented as a case study that is the author's construction of the actual experience, developed from audio tapes of the classroom sessions, personal logs, and data collected from the students. The dissertation presents an in-depth case study of the development, the actual implementation, and subsequent evaluation of this environmental curriculum, and gives an in-depth view of life in this class.

  16. Inquiry in early years science teaching and learning: Curriculum design and the scientific story

    Science.gov (United States)

    McMillan, Barbara Alexander

    2001-07-01

    Inquiry in school science, as conceived by the authors of the Common Framework of Science Learning Outcomes K--12, is dependent upon four areas of skills. These are the skills of initiating and planning, performing and recording, analysing and interpreting, and communication and teamwork that map onto what Hodson calls the five phases of scientific inquiry in school science: initiation, design and planning, performance, interpretation, and reporting and communicating. This study looked at initiation in a multiage (Grades 1--3) classroom, and the curriculum, design tools, and inquiry acts believed to be necessary precursors of design and planning phases whether the inquiry in which young children engage is archival or laboratory investigation. The curriculum was designed to build upon children's everyday biological knowledge and through a series of carefully organized lessons to help them to begin to build scientifically valid conceptual models in the area of animal life cycles. The lessons began with what is called benchmark-invention after the historical work of Robert Karplus and the contemporary work of Earl Hunt and Jim Minstrell. The introduction of a biological concept was followed by a series of exploration activities in which children were encouraged to apply the concept invented in the benchmark lesson. Enlargement followed. This was the instructional phase in which children were helped to establish scientifically valid relationships between the invented concept and other biological concepts. The pre-instruction and post-instruction interview data suggest that the enacted curriculum and sequence in which the biological knowledge was presented helped the nineteen children in the study to recognize the connections and regularities within the life cycles of the major groupings of animals, and to begin to build scientific biological conceptual models. It is, however, argued that everyday biology, in the form of the person analogy, acts as an obstacle to

  17. Curriculum Package: Junior High - Middle School Science Lessons. [A Visit to the Louisville, Kentucky Airports: Standiford and Bowman Fields.

    Science.gov (United States)

    Squires, Frances H.

    This science curriculum was written for teachers of children in junior high or middle school. It contains science activities for the following lessons: (1) Anemometers and Wind Speed; (2) Up! Up! and Away; (3) Jet Lag--Time Zones; (4) Inventors; (5) Model Rocketry; (6) Geometry and Kites; and (7) Super Savers. In lesson one, students construct an…

  18. The Impact of High School Science Teachers' Beliefs, Curricular Enactments and Experience on Student Learning during an Inquiry-Based Urban Ecology Curriculum

    Science.gov (United States)

    McNeill, Katherine L.; Pimentel, Diane Silva; Strauss, Eric G.

    2013-01-01

    Inquiry-based curricula are an essential tool for reforming science education yet the role of the teacher is often overlooked in terms of the impact of the curriculum on student achievement. Our research focuses on 22 teachers' use of a year-long high school urban ecology curriculum and how teachers' self-efficacy, instructional practices,…

  19. A Study of Changes in the Library and Information Science Curriculum with Evaluation of Its Practicality

    Science.gov (United States)

    Noh, Younghee; Ahn, In-Ja; Choi, Sang-Ki

    2012-01-01

    Purpose: This study analyzed the process of changes in Korean Library and Information Science curriculum and evaluated the courses currently available by using a perception survey of librarians in the field. It also explored a possible demand for new courses, while suggesting compulsory, core, and optional courses for Bachelor's degree curriculum…

  20. Founders' Weekend. North Country Workshop on Science, Technology and the Undergraduate Curriculum. Proceedings (Potsdam, New York, November 9-10, 1984).

    Science.gov (United States)

    State Univ. of New York, Potsdam. Coll. at Potsdam.

    Proceedings of the North Country Workshop on Science, Technology, and the Undergraduate Curriculum are presented. The Sloan Foundation's call for reform of the liberal arts and coverage of mathematics, science, and technology is noted in welcoming remarks by State University of New York, Potsdam, President Humphrey Tonkin. Stephen H. Cutcliffe…

  1. High Standards for All: The Struggle for Equality in the American High School Curriculum, 1890-1990.

    Science.gov (United States)

    Mirel, Jeffrey; Angus, David

    1994-01-01

    Close investigation of trends in high school student course taking indicates that curriculum differentiation has had a negative effect on the education of many young people, particularly working-class and black students. It is argued that national goals and standards, wisely developed and applied, can benefit American education. (SLD)

  2. Experience in the United States with a secondary resource curriculum on ''Science, society and America's nuclear waste''

    International Nuclear Information System (INIS)

    King, G.P.

    1994-01-01

    The nuclear power and nuclear waste situation in the Usa, is first reviewed. In order to enhance information concerning these topics among pupils and teachers, a resource curriculum, 'Science, society, and America's Nuclear Waste', was developed by teachers for teachers; it consists of four units: nuclear waste, ionizing radiation, the nuclear waste policy act, and the waste management system. It has been well received by teachers. Within nine months after its national introduction, 350000 teacher and student curriculum documents were requested by teachers from all 50 states. Requests have been also received from 250 foreign colleges and universities

  3. The Nature of Science and the "Next Generation Science Standards": Analysis and Critique

    Science.gov (United States)

    McComas, William F.; Nouri, Noushin

    2016-01-01

    This paper provides a detailed analysis of the inclusion of aspects of nature of science (NOS) in the "Next Generation Science Standards" (NGSS). In this new standards document, NOS elements in eight categories are discussed in Appendix H along with illustrative statements (called exemplars). Many, but not all, of these exemplars are…

  4. An Evaluation of Integrated Curriculum as It Exists in Mathematics and Science SSS as Well as the Subsequent Supportive Presentation of Those Standards in Eighth Grade Mathematics and Science Textbooks

    Science.gov (United States)

    Gill, Clara Joanne Schneberger

    2010-01-01

    This study attempted to verify points of intersection (POIs) between mathematics and science in the eighth grade Sunshine State Standards (SSS), and to develop a valid and reliable instrument to evaluate these POIs as they were presented in the respective mathematics and science textbooks approved for use in Florida public schools. Shannon and…

  5. The international development of forensic science standards - A review.

    Science.gov (United States)

    Wilson-Wilde, Linzi

    2018-04-16

    Standards establish specifications and procedures designed to ensure products, services and systems are safe, reliable and consistently perform as intended. Standards can be used in the accreditation of forensic laboratories or facilities and in the certification of products and services. In recent years there have been various international activities aiming at developing forensic science standards and guidelines. The most significant initiative currently underway within the global forensic community is the development of International Organization for Standardization (ISO) standards. This paper reviews the main bodies working on standards for forensic science, the processes used and the implications for accreditation. This paper specifically discusses the work of ISO Technical Committee TC272, the future TC272 work program for the development of forensic science standards and associated timelines. Also discussed, are the lessons learnt to date in navigating the complex environment of multi-country stakeholder deliberations in standards development. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  6. A Look at the Relationship of Curriculum and Instruction and the Art and Science of Teaching

    Science.gov (United States)

    Flake, Lee Hatch

    2017-01-01

    The definition of instruction and curriculum may take on different meanings based on the purpose or interpretation whether political, social, or educational. Teaching effectively requires the skill of a knowledgeable and experienced educator. Teaching can be convincingly debated as being an art or a science or defined collectively as an art and a…

  7. Neo-Liberal Individualism and a New Essentialism: A Comparison of Two Australian Curriculum Documents

    Science.gov (United States)

    Smith, Dorothy V.

    2011-01-01

    This article explores a significant shift in the science curriculum in Victoria, Australia, in the mid-1990s by using the idea of essentialism to compare two science curriculum documents that span the shift. The accounts given in these documents of desirable approaches to teaching science, science itself and the proper scope of curriculum, are…

  8. To Kit or Not to Kit? Evaluating and Implementing Science Materials and Resources

    Science.gov (United States)

    Schiller, Ellen; Melin, Jacque; Bair, Mary

    2016-01-01

    With the release of the "Next Generation Science Standards," many schools are reexamining the science materials they are using. Textbook companies and kit developers are eager to meet the demand for "NGSS"-aligned teaching materials. Teacher may have been asked to serve on a science curriculum committee, or to evaluate current…

  9. Next Generation Science Standards and edTPA: Evidence of Science and Engineering Practices

    Science.gov (United States)

    Brownstein, Erica M.; Horvath, Larry

    2016-01-01

    Science teacher educators in the United States are currently preparing future science teachers to effectively implement the "Next Generation Science Standards" (NGSS) and, in thirteen states, to successfully pass a content-specific high stakes teacher performance assessment, the edTPA. Science education and teacher performance assessment…

  10. Hydrogen Technology and Energy Curriculum (HyTEC)

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, Barbara

    2013-02-28

    The Lawrence Hall of Science of the University of California, Berkeley has collaborated with scientists and engineers, a local transit agency, school districts, and a commercial curriculum publisher to develop, field-test nationally, and publish a two-week curriculum module on hydrogen and fuel cells for high school science. Key partners in this project are the Schatz Energy Research Center (SERC) of Humboldt State University, the Alameda-Contra Costa Transit District (AC Transit), FilmSight Productions, Lab-Aids, Inc., and 32 teachers and 2,370 students in field-test classrooms in California, Connecticut, Ohio, New York, South Carolina, and Washington. Field-test teachers received two to three days of professional development before teaching the curriculum and providing feedback used for revision of the curriculum. The curriculum, titled Investigating Alternative Energy: Hydrogen and Fuel Cells and published by Lab-Aids, Inc., includes a teachers guide (with lesson plans, resources, and student handout pages), two interactive computer animations, a video, a website, and a laboratory materials kit. The project has been disseminated to over 950 teachers through awareness workshops at state, regional, and national science teacher conferences.

  11. Why Astronomy Should BE Part of the School Curriculum

    Science.gov (United States)

    Percy, John

    Why is astronomy useful? Why should it be supported by taxpayers? Why should it be part of the school curriculum? In this paper I will list 20 reasons. They include: cultural historical and philosophical reasons; practical technological and scientific reasons; environmental aesthetic and emotional reasons; and pedagogical reasons. Astronomy can attract young people to science and technology. It can promote public awareness understanding and appreciation of science. It can be done as an inexpensive hobby; ""the stars belong to everyone"". Finally: I will connect the 20 reasons to the expectations of the modern school curriculum: knowledge skills applications and attitudes. In the context of the science curriculum this includes science technology society and environment.

  12. MAP Science for Use with Next Generation Science Standards. NWEA External FAQ

    Science.gov (United States)

    Northwest Evaluation Association, 2016

    2016-01-01

    Measures of Academic Progress® (MAP®) Science for use with Next Generation Science Standards (NGSS) assessments are available for the 2016-17 school year. These new assessments measure student growth toward understanding of the multidimensional NGSS performance expectations. This report presents MAP Science for use with NGSS by presenting and…

  13. Reproductive Science for High School Students: A Shared Curriculum Model to Enhance Student Success.

    Science.gov (United States)

    Castle, Megan; Cleveland, Charlotte; Gordon, Diana; Jones, Lynda; Zelinski, Mary; Winter, Patricia; Chang, Jeffrey; Senegar-Mitchell, Ericka; Coutifaris, Christos; Shuda, Jamie; Mainigi, Monica; Bartolomei, Marisa; Woodruff, Teresa K

    2016-07-01

    The lack of a national reproductive biology curriculum leads to critical knowledge gaps in today's high school students' comprehensive understanding of human biology. The Oncofertility Consortium developed curricula that address the basic and clinical aspects of reproductive biology. Launching this academy and creating easy-to-disseminate learning modules allowed other universities to implement similar programs across the country. The expansion of this informal, extracurricular academy on reproductive health from Northwestern University to the University of California, San Diego, Oregon Health & Science University, and the University of Pennsylvania magnifies the scope of scientific learning to students who might not otherwise be exposed to this important information. To assess the experience gained from this curriculum, we polled alumni from the four centers. Data were collected anonymously from de-identified users who elected to self-report on their experiences in their respective reproductive science academy. The alumni survey asked participants to report on their current academic standing, past experiences in the academy, and future academic and career goals. The results of this national survey suggest the national oncofertility academies had a lasting impact on participants and may have contributed to student persistence in scientific learning. © 2016 by the Society for the Study of Reproduction, Inc.

  14. Pros and cons of vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum: examples and experiences from Linköping, Sweden.

    Science.gov (United States)

    Dahle, L O; Brynhildsen, J; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M

    2002-05-01

    Problem-based learning (PBL), combined with early patient contact, multiprofessional education and emphasis on development of communications skills, has become the basis for the medical curriculum at the Faculty of Health Sciences in Linköping (FHS), Sweden, which was started in 1986. Important elements in the curriculum are vertical integration, i.e. integration between the clinical and basic science parts of the curriculum and horizontal integration between different subject areas. This article discusses the importance of vertical integration in an undergraduate medical curriculum, according to experiences from the Faculty of Health Sciences in Linköping, and also give examples on how it has been implemented during the latest 15 years. Results and views put forward in published articles concerning vertical integration within undergraduate medical education are discussed in relation to the experiences in Linköping. Vertical integration between basic sciences and clinical medicine in a PBL setting has been found to stimulate profound rather than superficial learning, and thereby stimulates better understanding of important biomedical principles. Integration probably leads to better retention of knowledge and the ability to apply basic science principles in the appropriate clinical context. Integration throughout the whole curriculum entails a lot of time and work in respect of planning, organization and execution. The teachers have to be deeply involved and enthusiastic and have to cooperate over departmental borders, which may produce positive spin-off effects in teaching and research but also conflicts that have to be resolved. The authors believe vertical integration supports PBL and stimulates deep and lifelong learning.

  15. How Climate Science got to be in the Next Generation Science Standards (Invited)

    Science.gov (United States)

    Wysession, M. E.

    2013-12-01

    Climate science plays a prominent role in the new national K-12 Next Generation Science Standards (NGSS). This represents the culmination of a significant amount of effort by many different organizations that have worked hard to educate the public on one of the most interesting, complex, complicated, and societally important aspects of geoscience. While there are significant challenges to the full implementation of the NGSS, especially those aspects that relate to climate change, the fact that so many states are currently adopting the NGSS represents a significant milestone in geoscience education. When grade 6-12 textbooks were written ten years ago, such as Pearson's high school Physical Science: Concepts in Action (Wysession et al., 2004), very little mention of climate change was incorporated because it did not appear in state standards. Now, climate and climate change are an integral part of the middle school and high school NGSS standards, and textbook companies are fully incorporating this content into their programs. There are many factors that have helped the shift toward teaching about climate, such as the IPCC report, Al Gore's 'An Inconvenient Truth,' and the many reports on climate change published by the National Research Council (NRC). However, four major community-driven literacy documents (The Essential Principles of Ocean Science, Essential Principles and Fundamental Concepts for Atmospheric Science Literacy, The Earth Science Literacy Principles, and The Essential Principles of Climate Science) were essential in that they directly informed the construction of the Earth and Space Science (ESS) content of the NRC's 'Framework for K-12 Science Education' by the ESS Design Team. The actual performance expectations of the NGSS were then informed directly by the disciplinary core ideas of the NRC Framework, which were motivated by the community-driven literacy documents and the significant credentials these bore. The work in getting climate science

  16. Assessing the Genetics Content in the Next Generation Science Standards.

    Science.gov (United States)

    Lontok, Katherine S; Zhang, Hubert; Dougherty, Michael J

    2015-01-01

    Science standards have a long history in the United States and currently form the backbone of efforts to improve primary and secondary education in science, technology, engineering, and math (STEM). Although there has been much political controversy over the influence of standards on teacher autonomy and student performance, little light has been shed on how well standards cover science content. We assessed the coverage of genetics content in the Next Generation Science Standards (NGSS) using a consensus list of American Society of Human Genetics (ASHG) core concepts. We also compared the NGSS against state science standards. Our goals were to assess the potential of the new standards to support genetic literacy and to determine if they improve the coverage of genetics concepts relative to state standards. We found that expert reviewers cannot identify ASHG core concepts within the new standards with high reliability, suggesting that the scope of content addressed by the standards may be inconsistently interpreted. Given results that indicate that the disciplinary core ideas (DCIs) included in the NGSS documents produced by Achieve, Inc. clarify the content covered by the standards statements themselves, we recommend that the NGSS standards statements always be viewed alongside their supporting disciplinary core ideas. In addition, gaps exist in the coverage of essential genetics concepts, most worryingly concepts dealing with patterns of inheritance, both Mendelian and complex. Finally, state standards vary widely in their coverage of genetics concepts when compared with the NGSS. On average, however, the NGSS support genetic literacy better than extant state standards.

  17. Assessing the Genetics Content in the Next Generation Science Standards.

    Directory of Open Access Journals (Sweden)

    Katherine S Lontok

    Full Text Available Science standards have a long history in the United States and currently form the backbone of efforts to improve primary and secondary education in science, technology, engineering, and math (STEM. Although there has been much political controversy over the influence of standards on teacher autonomy and student performance, little light has been shed on how well standards cover science content. We assessed the coverage of genetics content in the Next Generation Science Standards (NGSS using a consensus list of American Society of Human Genetics (ASHG core concepts. We also compared the NGSS against state science standards. Our goals were to assess the potential of the new standards to support genetic literacy and to determine if they improve the coverage of genetics concepts relative to state standards. We found that expert reviewers cannot identify ASHG core concepts within the new standards with high reliability, suggesting that the scope of content addressed by the standards may be inconsistently interpreted. Given results that indicate that the disciplinary core ideas (DCIs included in the NGSS documents produced by Achieve, Inc. clarify the content covered by the standards statements themselves, we recommend that the NGSS standards statements always be viewed alongside their supporting disciplinary core ideas. In addition, gaps exist in the coverage of essential genetics concepts, most worryingly concepts dealing with patterns of inheritance, both Mendelian and complex. Finally, state standards vary widely in their coverage of genetics concepts when compared with the NGSS. On average, however, the NGSS support genetic literacy better than extant state standards.

  18. Models for Instruction and Curriculum.

    Science.gov (United States)

    Toth, Elizabeth L.

    1999-01-01

    Proposes three models of course-specific curricula and a content-curriculum model for undergraduate public-relations education, and proposes core and elective areas for a master's of public-relations curriculum. Agrees that public-relations curricula should have a broad liberal arts and science basis, and recommended more attention to ethics,…

  19. The Integrated Early Childhood Curriculum.

    Science.gov (United States)

    Krogh, Suzanne

    This textbook provides an outline of an integrated curriculum for early childhood education. Part 1 discusses the human element in school: the child and the teacher and child development. Part 2 contains the curriculum itself and covers the subjects of language, mathematics, science, social studies, art, music, and movement. Guidelines provide…

  20. Evolution of the New Pathway curriculum at Harvard Medical School: the new integrated curriculum.

    Science.gov (United States)

    Dienstag, Jules L

    2011-01-01

    In 1985, Harvard Medical School adopted a "New Pathway" curriculum, based on active, adult learning through problem-based, faculty-facilitated small-group tutorials designed to promote lifelong skills of self-directed learning. Despite the successful integration of clinically relevant material in basic science courses, the New Pathway goals were confined primarily to the preclinical years. In addition, the shifting balance in the delivery of health care from inpatient to ambulatory settings limited the richness of clinical education in clinical clerkships, creating obstacles for faculty in their traditional roles as teachers. In 2006, Harvard Medical School adopted a more integrated curriculum based on four principles that emerged after half a decade of self-reflection and planning: (1) integrate the teaching of basic/population science and clinical medicine throughout the entire student experience; (2) reestablish meaningful and intensive faculty-student interactions and reengage the faculty; (3) develop a new model of clinical education that offers longitudinal continuity of patient experience, cross-disciplinary curriculum, faculty mentoring, and student evaluation; and (4) provide opportunities for all students to pursue an in-depth, faculty-mentored scholarly project. These principles of our New Integrated Curriculum reflect our vision for a curriculum that fosters a partnership between students and faculty in the pursuit of scholarship and leadership.

  1. The Next Generation of Science Standards: Implications for Biology Education

    Science.gov (United States)

    Bybee, Rodger W.

    2012-01-01

    The release of A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (NRC, 2012) provides the basis for the next generation of science standards. This article first describes that foundation for the life sciences; it then presents a draft standard for natural selection and evolution. Finally, there is a…

  2. Problem based learning (PBL) vs. Case based curriculum in clinical clerkship, Internal Medicine innovated Curriculum, Student prospective.

    Science.gov (United States)

    Aljarallah, Badr; Hassan, Mohammad Saleh

    2015-04-01

    The vast majority of PBL experience is in basic science courses. Application of classic Problem based learning in clerkship phase is challenging. Although the clinical case is considered a problem, yet solving this problem following the burrow's law has faced hurdles. The difficulties are facing the learner, the teacher and curricula. We implement innovative curriculum for the clerkship year in internal medicine course. We surveyed the student just before coming to an internal medicine course to ask them about continuing PBL or other types of learning in clinical years. A committee was created to study the possible ways to integrate PBL in the course. After multiple brainstorming meeting, an innovated curriculum was implemented. Student surveyed again after they completed their course. The survey is asking them about what is the effect of the implemented curriculum in their skills, attitude, and knowledge. 70% of Students, who finished their basic science in PBL, preferred not to have classical PBL, but more a clinical oriented case based curriculum in the clinical years. After this innovated curriculum, 50-60 % of students who completed it showed a positive response in all aspects of effects including skill, attitude, and knowledge. The Innovated curriculum includes daily morning report, 3 bedside teaching, investigation session, and clinical reasoning weekly, and Lectures up to twice a week. We suggest implementing a curriculum with PBL and case-based criteria in clinical phase are feasible, we are providing a framework with this innovated curriculum.

  3. Teaching the "Geo" in Geography with the Next Generation Science Standards

    Science.gov (United States)

    Wysession, Michael E.

    2016-01-01

    The Next Generation Science Standards (NGSS; Achieve 2014, 532; Figure 1A) represent a new approach to K-12 science education that involves the interweaving of three educational dimensions: Science and Engineering Practices (SEPs), Disciplinary Core Ideas (DCIs), and Crosscutting Concepts (CCCs). Unlike most preexisting state science standards for…

  4. Problems and the present status of radiation educational curriculum

    International Nuclear Information System (INIS)

    Hiroi, Tadashi; Muraishi, Yukimasa; Mikado, Shogo; Watanabe, Tomohiro

    1999-01-01

    To examine teaching curriculum for radiation education requires a collective and extensive consideration on various subjects from many fields. The present study has been made from 4 points of view, namely 'physics', physics experiment', 'chemistry', and 'general science'. In 'physics', a curriculum in which learning about radiation followed by learning Newtonian mechanics was examined. Some group experiments taking radiation as the subject, a curriculum including radiation and radioactivity in high school chemistry course and general science are proposed and discussed briefly. (S. Ohno)

  5. Flood Rescue: A Gender-Inclusive Integrated STEM Curriculum Unit

    Directory of Open Access Journals (Sweden)

    Emily A. Dare

    2017-04-01

    Full Text Available As national reform documents and movements in the United States, such as Next Generation Science Standards (NGSS Lead States, 2013, push K-12 educators to begin to include engineering and integration of the STEM disciplines, there is a need to create curricula that meet a multitude of different standards. Additionally, there is a need to engage a more diverse population of students to pursue STEM careers. The 6th grade curriculum presented here focuses on an example of a teacher-created integrated STEM curriculum that combines girl-friendly instructional strategies (Häussler et al., 1998; Newbill & Cennamo, 2008 with an integrated STEM framework (Moore et al., 2014. An engineering design challenge that asks students to create a prototype of a watercraft used by the National Guard to rescue people during floods engages students in learning various physics concepts (forces, buoyancy, volume, and maximum capacity. In this article, we describe the lessons of the unit with respect to the frameworks, as well as key areas that particularly impacted 6th grade girls and boys.

  6. Effect of Personal Response Systems on Student Perception and Academic Performance in Courses in a Health Sciences Curriculum

    Science.gov (United States)

    FitzPatrick, Kathleen A.; Finn, Kevin E.; Campisi, Jay

    2011-01-01

    To increase student engagement, active participation, and performance, personal response systems (clickers) were incorporated into six lecture-based sections of four required courses within the Health Sciences Department major curriculum: freshman-level Anatomy and Physiology I and II, junior-level Exercise Physiology, and senior-level Human…

  7. World-Class Ambitions, Weak Standards: An Excerpt from "The State of State Science Standards 2012"

    Science.gov (United States)

    American Educator, 2012

    2012-01-01

    A solid science education program begins by clearly establishing what well-educated youngsters need to learn about this multifaceted domain of human knowledge. The first crucial step is setting clear academic standards for the schools--standards that not only articulate the critical science content students need to learn, but that also properly…

  8. An analysis of curriculum implementation on high schools in Yogyakarta

    Science.gov (United States)

    Febriana, Beta Wulan; Arlianty, Widinda Normalia; Diniaty, Artina; Fauzi'ah, Lina

    2017-12-01

    This study aims to find out how the implementation of the curriculum at three schools in Yogyakarta. The selection of these three schools is based on the use of different curriculum in each school. The analysis was done by distributing questionnaire analysis of eight national education standards (NES). The purpose of this questionnaire is to find out how the curriculum implemented in the schools. In addition, to find out whether or not the implementation was done in accordance with the expectations of the curriculum. The questionnaire distributed in the form of indicators on each NES. These indicators include, Content Standards, Process Standards, Graduates Competency Standards, Teacher and Education Staff Standards, Facility and Infrastructure Standards, Management Standards, Financing Standards and Assessment Standards. Results of the observation indicate that there is a discrepancy between the expectations and the reality of the three schools observed.

  9. Mid-level healthcare personnel training: an evaluation of the revised, nationally-standardized, pre-service curriculum for clinical officers in Mozambique.

    Science.gov (United States)

    Feldacker, Caryl; Chicumbe, Sergio; Dgedge, Martinho; Augusto, Gerito; Cesar, Freide; Robertson, Molly; Mbofana, Francisco; O'Malley, Gabrielle

    2014-01-01

    Mozambique suffers from a critical shortage of healthcare workers. Mid-level healthcare workers, (Tecnicos de Medicina Geral (TMG)), in Mozambique require less money and time to train than physicians. From 2009-2010, the Mozambique Ministry of Health (MoH) and the International Training and Education Center for Health (I-TECH), University of Washington, Seattle, revised the TMG curriculum. To evaluate the effect of the curriculum revision, we used mixed methods to determine: 1) if TMGs meet the MoH's basic standards of clinical competency; and 2) do scores on measurements of clinical knowledge, physical exam, and clinical case scenarios differ by curriculum? T-tests of differences in means examined differences in continuous score variables between curriculum groups. Univariate and multivariate linear regression models assess curriculum-related and demographic factors associated with assessment scores on each of the three evaluation methods at the pTMG scores on both the clinical cases and physical exam. TMGs trained in either curriculum may be inadequately prepared to provide quality care. Curriculum changes are a necessary, but insufficient, part of improving TMG knowledge and skills overall. A more comprehensive, multi-level approach to improving TMG training that includes post-graduation mentoring, strengthening the pre-service internship training, and greater resources for training institute faculty may result in improvements in TMG capacity and patient care over time.

  10. Next Generation Science Standards: Adoption and Implementation Workbook

    Science.gov (United States)

    Peltzman, Alissa; Rodriguez, Nick

    2013-01-01

    The Next Generation Science Standards (NGSS) represent the culmination of years of collaboration and effort by states, science educators and experts from across the United States. Based on the National Research Council's "A Framework for K-12 Science Education" and developed in partnership with 26 lead states, the NGSS, when…

  11. Nuclear power and the science curriculum

    International Nuclear Information System (INIS)

    Scott, W.

    1980-01-01

    The curriculum provision in UK schools for studies of nuclear power, its scientific aspects, its technologies and its effect upon society are examined in the light of present concern for an informed lay opinion. (U.K.)

  12. A Comparison of Readability in Science-Based Texts: Implications for Elementary Teachers

    Science.gov (United States)

    Gallagher, Tiffany; Fazio, Xavier; Ciampa, Katia

    2017-01-01

    Science curriculum standards were mapped onto various texts (literacy readers, trade books, online articles). Statistical analyses highlighted the inconsistencies among readability formulae for Grades 2-6 levels of the standards. There was a lack of correlation among the readability measures, and also when comparing different text sources. Online…

  13. A Study of the Benefits of Math Manipulatives versus Standard Curriculum in the Comprehension of Mathematical Concepts.

    Science.gov (United States)

    Rust, Amanda L.

    This study attempted to determine which teaching method, mainly manipulatives or the standard curriculum, best allowed the students to learn first grade math concepts. The manipulatives consisted of objects such as unifix cubes, personal chalkboards, work mats, and various other articles, which allowed the students to see the math that they were…

  14. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School.

    Science.gov (United States)

    Olopade, Funmilayo Eniola; Adaramoye, Oluwatosin Adekunle; Raji, Yinusa; Fasola, Abiodun Olubayo; Olapade-Olaopa, Emiola Oluwabunmi

    2016-01-01

    The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the "old" curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula successfully. The modifications to the teaching and assessment of the core basic medical science subjects have resulted in improved learning and performance at the final examinations.

  15. A Comprehensive Analysis of High School Genetics Standards: Are States Keeping Pace with Modern Genetics?

    Science.gov (United States)

    Dougherty, M. J.; Pleasants, C.; Solow, L.; Wong, A.; Zhang, H.

    2011-01-01

    Science education in the United States will increasingly be driven by testing and accountability requirements, such as those mandated by the No Child Left Behind Act, which rely heavily on learning outcomes, or "standards," that are currently developed on a state-by-state basis. Those standards, in turn, drive curriculum and instruction.…

  16. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Austin Independent School District. Grade 8, Public Schools

    Science.gov (United States)

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  17. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Austin Independent School District. Grade 4, Public Schools

    Science.gov (United States)

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  18. Mid-level healthcare personnel training: an evaluation of the revised, nationally-standardized, pre-service curriculum for clinical officers in Mozambique.

    Directory of Open Access Journals (Sweden)

    Caryl Feldacker

    Full Text Available Mozambique suffers from a critical shortage of healthcare workers. Mid-level healthcare workers, (Tecnicos de Medicina Geral (TMG, in Mozambique require less money and time to train than physicians. From 2009-2010, the Mozambique Ministry of Health (MoH and the International Training and Education Center for Health (I-TECH, University of Washington, Seattle, revised the TMG curriculum. To evaluate the effect of the curriculum revision, we used mixed methods to determine: 1 if TMGs meet the MoH's basic standards of clinical competency; and 2 do scores on measurements of clinical knowledge, physical exam, and clinical case scenarios differ by curriculum?T-tests of differences in means examined differences in continuous score variables between curriculum groups. Univariate and multivariate linear regression models assess curriculum-related and demographic factors associated with assessment scores on each of the three evaluation methods at the p<0.05 level. Qualitative interviews and focus groups inform interpretation.We found no significant differences in sex, marital status and age between the 112 and 189 TMGs in initial and revised curriculum, respectively. Mean scores at graduation of initial curriculum TMGs were 56.7%, 63.5%, and 49.1% on the clinical cases, knowledge test, and physical exam, respectively. Scores did not differ significantly from TMGs in the revised curriculum. Results from linear regression models find that training institute was the most significant predictor of TMG scores on both the clinical cases and physical exam.TMGs trained in either curriculum may be inadequately prepared to provide quality care. Curriculum changes are a necessary, but insufficient, part of improving TMG knowledge and skills overall. A more comprehensive, multi-level approach to improving TMG training that includes post-graduation mentoring, strengthening the pre-service internship training, and greater resources for training institute faculty may

  19. Graduates from a reformed undergraduate medical curriculum based on Tomorrow's Doctors evaluate the effectiveness of their curriculum 6 years after graduation through interviews.

    Science.gov (United States)

    Watmough, Simon D; O'Sullivan, Helen; Taylor, David C M

    2010-09-29

    In 1996 Liverpool reformed its medical curriculum from a traditional lecture based course to a curriculum based on the recommendations in Tomorrow's Doctors. A project has been underway since 2000 to evaluate this change. This paper focuses on the views of graduates from that reformed curriculum 6 years after they had graduated. Between 2007 and 2009 45 interviews took place with doctors from the first two cohorts to graduate from the reformed curriculum. The interviewees felt like they had been clinically well prepared to work as doctors and in particular had graduated with good clinical and communication skills and had a good knowledge of what the role of doctor entailed. They also felt they had good self directed learning and research skills. They did feel their basic science knowledge level was weaker than traditional graduates and perceived they had to work harder to pass postgraduate exams. Whilst many had enjoyed the curriculum and in particular the clinical skills resource centre and the clinical exposure of the final year including the "shadowing" and A & E attachment they would have liked more "structure" alongside the PBL when learning the basic sciences. According to the graduates themselves many of the aims of curriculum reform have been met by the reformed curriculum and they were well prepared clinically to work as doctors. However, further reforms may be needed to give confidence to science knowledge acquisition.

  20. Science and Literacy: Incorporating Vocabulary, Reading Comprehension, Research Methods, and Writing into the Science Curriculum

    Science.gov (United States)

    Nieser, K.; Carlson, C.; Bering, E. A.; Slagle, E.

    2012-12-01

    Part of preparing the next generation of STEM researchers requires arming these students with the requisite literacy and research skills they will need. In a unique collaboration, the departments of Physics (ECE) and Psychology at the University of Houston have teamed up with NASA in a grant to develop a supplemental curriculum for elementary (G3-5) and middle school (G6-8) science teachers called Mars Rover. During this six week project, students work in teams to research the solar system, the planet Mars, design a research mission to Mars, and create a model Mars Rover to carry out this mission. Targeted Language Arts skills are embedded in each lesson so that students acquire the requisite academic vocabulary and research skills to enable them to successfully design their Mars Rover. Students learn academic and scientific vocabulary using scientifically based reading research. They receive direct instruction in research techniques, note-taking, summarizing, writing and other important language skills. The interdisciplinary collaboration empowers students as readers, writers and scientists. After the curriculum is completed, a culminating Mars Rover event is held at a local university, bringing students teams in contact with real-life scientists who critique their work, ask questions, and generate excite about STEM careers. Students have the opportunity to showcase their Mars Rover and to orally demonstrate their knowledge of Mars. Students discover the excitement of scientific research, STEM careers, important research and writing tools in a practical, real-life setting.

  1. Evaluating the Effects of Medical Explorers a Case Study Curriculum on Critical Thinking, Attitude Toward Life Science, and Motivational Learning Strategies in Rural High School Students

    Science.gov (United States)

    Brand, Lance G.

    2011-12-01

    The purpose of this study was three-fold: to measure the ability of the Medical Explorers case-based curriculum to improve higher order thinking skills; to evaluate the impact of the Medical Explorers case-based curriculum to help students be self directed learners; and to investigate the impact of the Medical Explorers case-based curriculum to improve student attitudes of the life sciences. The target population for this study was secondary students enrolled in advanced life science programs. The resulting sample (n = 71) consisted of 36 students in the case-based experimental group and 35 students in the control group. Furthermore, this study employed an experimental, pretest-posttest control group research design. The treatment consisted of two instructional strategies: case-based learning and teacher-guided learning. Analysis of covariance indicated no treatment effect on critical thinking ability or Motivation and Self-regulation of Learning. However, the Medical Explorers case-based curriculum did show a treatment effect on student attitudes toward the life sciences. These results seem to indicate that case-based curriculum has a positive impact on students' perspectives and attitudes about the study of life science as well as their interest in life science based careers. Such outcomes are also a good indicator that students enjoy and perceive the value to use of case studies in science, and because they see value in the work that they do they open up their minds to true learning and integration. Of additional interest was the observationthat on average eleventh graders showed consistently stronger gains in critical thinking, motivation and self-regulation of learning strategies, and attitudes toward the life sciences as compared to twelfth grade students. In fact, twelfth grade students showed a pre to post loss on the Watson-Glaser and the MSLQ scores while eleventh grade students showed positive gains on each of these instruments. This decline in twelfth

  2. Do Facilitate, Don’t Demonstrate: Meaningful Engagement for Science Outreach

    Science.gov (United States)

    Gelderman, Richard

    2017-01-01

    We are encouraged to hand over the learning experience to the students who must do the learning. After the 1957 launch of Sputnik it seemed that learning by discovery would replace lectures and other forms of learning by rote. The innovative Physical Science Study Committee (PSSC), Chemical Education Materials Study (ChEMS), and Biological Sciences Curriculum Study (BSCS) provided teachers with hands-on, activity-based curriculum materials emphasizing problem solving, process skills, and creativity. Our current reforms, based on the Next Generation Science Standards, stress that learner-centered strategies need to become commonplace throughout the classrooms of our formal education system. In this presentation, we share tips on how to double check your style of interactions for science outreach, to ensure the audience is working with a facilitator rather than simply enjoying an expert’s entertaining demonstration.

  3. The Gas Laws and the Kinetic Theory: Curriculum Guide for the Thirteen-College Curriculum Program.

    Science.gov (United States)

    Daniel, Army; And Others

    This booklet is both a teacher's manual and a student's manual in a series of booklets that make up the core of a Physical Science course designed for the freshman year of college and used by teachers in the 27 colleges participating in the Thirteen College Curriculum Program. This program is a curriculum revision project in support of 13…

  4. The standardization in the curriculum educational: the tip of the iceberg of the homogenization

    Directory of Open Access Journals (Sweden)

    Elsy Rodríguez-Revelo

    2017-07-01

    Full Text Available Taking as a reference the existing literature, through this article intends to make a brief presentation of curriculum standardization and its implementation in the field of education. Standards, taken from the business field, are considered to be a necessary instrument for assurance of educational quality. However, empirical research, as well as critical voices in relation to their applicability, in all educational contexts, emphasize that these cultural homogenized and unify teaching, which does not guarantee an improvement in learning, since it tends to ignore cultural diversity in schools. Standards, taken from the business field, are considered to be a necessary instrument for assurance of educational quality. However, empirical research, as well as critical voices in relation to their applicability, in all educational contexts, emphasize that these cultural homogenized and unify teaching, which does not guarantee an improvement in learning, since it tends to ignore cultural diversity in schools.

  5. Curriculum Framework (CF) Implementation Conference. Report of the Regional Educational Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia (Hilton Head Island, South Carolina, January 26-27, 1995).

    Science.gov (United States)

    Palmer, Jackie; Powell, Mary Jo

    The Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia, operating as the Curriculum Frameworks Task Force, jointly convened a group of educators involved in implementing state-level mathematics or science curriculum frameworks (CF). The Hilton Head (South Carolina) conference had a dual…

  6. Accomplishing the Visions for Teacher Education Programs Advocated in the National Science Education Standards

    Science.gov (United States)

    Akcay, Hakan; Yager, Robert

    2010-10-01

    The purpose of this study was to investigate the advantages of an approach to instruction using current problems and issues as curriculum organizers and illustrating how teaching must change to accomplish real learning. The study sample consisted of 41 preservice science teachers (13 males and 28 females) in a model science teacher education program. Both qualitative and quantitative research methods were used to determine success with science discipline-specific “Societal and Educational Applications” courses as one part of a total science teacher education program at a large Midwestern university. Students were involved with idea generation, consideration of multiple points of views, collaborative inquiries, and problem solving. All of these factors promoted grounded instruction using constructivist perspectives that situated science with actual experiences in the lives of students.

  7. Political Science and the Good Citizen: The Genealogy of Traditionalist Paradigm of Citizenship Education in the American School Curriculum

    Science.gov (United States)

    Ahmad, Iftikhar

    2017-01-01

    Purpose: The purpose of this article is to chronicle paradigm shifts in American political science during the twentieth century and their influence on political scientists' perspectives on pre-collegiate citizenship education curriculum. Methodology: The research questions explored in this article are concerned with the history of political…

  8. Should Intelligent Design Be Included in Today's Public School Curriculums?

    Science.gov (United States)

    Costley, Kevin C.; Killins, Pam

    2010-01-01

    The controversial concept of evolution makes up only a small part of the science curriculum stated in Arkansas. During the past few years, the curriculum topic of "Intelligent Design" has caught the attention of many science teachers in the public schools. The Intelligent Design Movement has been successful in attracting the attention of…

  9. KUSPACE: Embedding Science Technology and Mathematics Ambassador Activities in the Undergradiuate Engineering Curriculum

    Science.gov (United States)

    Welch, C.; Osborne, B.

    The UK national STEM Ambassadors programme provides inspiring role models for school students in science, technology, engineering, mathematics (STEM) subjects. STEMNET, the national body responsible for STEM Ambassa- dors aims to provide more than 27,000 STEM Ambassadors nationwide by the end of 2011. This paper reports on a project at Kingston University to embed STEM Ambassador training and activity in Year 2 of the undergraduate Aerospace Engineering, Astronautics and Space Technology degree. The project, known as KUSPACE (Kingston University Students Providing Amazing Classroom Experiences), was conceived to develop students' communication, planning and presentation skills and build links between different cohort years, while providing a valuable contribution to local primary schools' STEM programmes and simultaneously raising the public engagement profile of the university. This paper describes the pedagogical conception of the KUSPACE, its implementation in the curriculum, the delivery of it in the university and schools and its effect on the undergraduate students, as well as identifying good practice and drawing attention to lessons learned.STEMNET (www.stemnet.org) is the UK's Science, Technol- ogy, Engineering and Mathematics Network. Working with a broad range of UK partners and funded by the UK govern- ment's Department for Business Innovation and Skills, STEMNET plays a significant role in ensuring that five to nineteen year olds and their teachers can experience a wide range of activities and schemes which enhance and enrich the school curriculum [1]. Covering all aspects of Science, Tech- nology, Engineering and Maths (STEM), these activities and schemes are designed both to increase STEM awareness and literacy in the young people and also to encourage more of them to undertake post-16 STEM qualifications and associated careers [2]. STEMNET operates through forty-five local con- tract holders around the UK which help the network deliver its

  10. History of science content analysis of Chinese science textbooks from the perspective of acculturation

    Science.gov (United States)

    Ma, Yongjun; Wan, Yanlan

    2017-08-01

    Based on previous international studies, a content analysis scheme has been designed and used from the perspective of culture to study the history of science (HOS) in science textbooks. Nineteen sets of Chinese science textbooks have been analyzed. It has been found that there are noticeable changes in the quantity, content, layout, presentation, and writing intention of the HOS sections in textbooks from different time periods. What's more, the textbooks aim at presenting the scientific culture and aim to help students understand it better. However, the cultural associations of the HOS in textbooks is insufficient and significant differences exist among textbooks of different subjects. In order to explore the reasons why the presentation of HOS in various subjects is different, we made a specific comparison of curriculum standards of two subjects with great differences and interviewed the editors-in-chief of two textbooks. Results show that one of the most important reasons for the different writings of the HOS in textbooks is that different subject curriculum standards attach greater importance to the HOS. In addition, the attention to the HOS by editors-in-chief, the tradition of studying the HOS within the history of the discipline, and the reference textbooks in compiling textbooks are all important influence factors. Some suggestions for future textbooks compilation are given at the end.

  11. Islamic values in the Kuwaiti curriculum

    Science.gov (United States)

    Alshahen, Ghanim A.

    This study investigated the influence of Islamic values on the curriculum, in particular the Islamic studies and science curricula. Three questionnaires were developed, validated, and used to investigate teachers' and pupils' attitudes toward Islamic values in the curriculum. Four main sections deal with Islamic values in the Islamic studies and science curricula, namely: Islamic values in the textbook, teaching Islamic values, the relationship between Islamic values and the science curriculum, and the Islamic values model. Two instruments were used in this study: questionnaires and interviews. Both qualitative and quantitative data were generated from the sample, which consisted of Islamic studies and science teachers and supervisors in intermediate schools, and pupils studying in the eighth grade in intermediate schools. In the last case, the data were gathered by questionnaire only. The interviews and questionnaires provided explanatory data. The research was carried out in three phases, considering respectively 55 Islamic studies teachers, 55 science teachers who teach the eighth grade in intermediate schools, and 786 pupils who study in the eighth grade in 20 schools. In each school, the researcher selected two classes. This thesis consists of eight chapters. Chapter One provides a general introduction and highlights the general framework of this study. Chapter Two is concerned with the development of the education system in Kuwait and the objectives of the Islamic studies and science curricula in the intermediate stage. Chapter Three presents the conceptions of values, the Islamic values model, and Islamic values in the curriculum. Chapter Four describes the objectives of the study, and its research design methods and procedures used to develop the instruments. The sampling procedure, the data collection procedures, and the statistical methods used to analyse the data are also described. Chapter Five presents and interprets the findings of this study. Data

  12. Business Mathematics Curriculum Guide. Bulletin 1612. Revised.

    Science.gov (United States)

    Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.

    This curriculum guide for business mathematics was developed to establish statewide curriculum standards for the Louisiana Competency-based Education Program. Following an overview of the secondary school mathematics curriculum, eight goals for the business mathematics course are listed. A pacing chart with suggested time periods for each major…

  13. Graduates from a reformed undergraduate medical curriculum based on Tomorrow's Doctors evaluate the effectiveness of their curriculum 6 years after graduation through interviews

    Directory of Open Access Journals (Sweden)

    Taylor David CM

    2010-09-01

    Full Text Available Abstract Background In 1996 Liverpool reformed its medical curriculum from a traditional lecture based course to a curriculum based on the recommendations in Tomorrow's Doctors. A project has been underway since 2000 to evaluate this change. This paper focuses on the views of graduates from that reformed curriculum 6 years after they had graduated. Methods Between 2007 and 2009 45 interviews took place with doctors from the first two cohorts to graduate from the reformed curriculum. Results The interviewees felt like they had been clinically well prepared to work as doctors and in particular had graduated with good clinical and communication skills and had a good knowledge of what the role of doctor entailed. They also felt they had good self directed learning and research skills. They did feel their basic science knowledge level was weaker than traditional graduates and perceived they had to work harder to pass postgraduate exams. Whilst many had enjoyed the curriculum and in particular the clinical skills resource centre and the clinical exposure of the final year including the "shadowing" and A & E attachment they would have liked more "structure" alongside the PBL when learning the basic sciences. Conclusion According to the graduates themselves many of the aims of curriculum reform have been met by the reformed curriculum and they were well prepared clinically to work as doctors. However, further reforms may be needed to give confidence to science knowledge acquisition.

  14. Education and the Environment: Creating Standards-Based Programs in Schools and Districts

    Science.gov (United States)

    Lieberman, Gerald A.

    2013-01-01

    In this timely book, curriculum expert Gerald A. Lieberman provides an innovative guide to creating and implementing a new type of environmental education that combines standards-based lessons on English language arts, math, history, and science with community investigations and service learning projects. By connecting academic content with local…

  15. Competency Standards for Bachelor of Industrial Technology Graduates for the Construction Industry in Region IV-A: Inputs For Curriculum Enhancement

    Directory of Open Access Journals (Sweden)

    George P. Compasivo

    2015-12-01

    Full Text Available The main objective of this study was to develop competency standards for Industrial Technology graduates for employment in the construction industry in Region IV-A, Philippines. It specifically identified the basic and core competency standards for industrial technology and determined the degree of importance of competencies needed in the construction industry sector. The study identified 28 common competencies for three areas of specializations in industrial technology namely: electrical, civil and drafting technology. There were 39 core competencies for electrical, 31 for drafting and 38 items for civil technology. A total of 50 panel of experts were carefully selected using the purposive sampling as respondents in the study. Experts are selected based on their technical know-how or proficiency and currently practicing their line of profession in the construction industry. The study used the descriptive-developmental method of research. The Delphi technique was applied to determine if the competency under investigation reached the general agreement of opinions by the panel of experts involved. The findings implied that the newly developed competency standards were good input for curriculum enhancement in the area of civil, drafting and electrical technology. The study recommended the newly developed competencies may be followed by the faculty in the course they teach and the new competency items suggested by the panel of experts for inclusion in the curriculum for the three areas of specializations may be considered during the curriculum revision.

  16. Mapping and sequencing the human genome: Science, ethics, and public policy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.D.

    1993-03-31

    Development of Mapping and Sequencing the Human Genome: Science, Ethics, and Public Policy followed the standard process of curriculum development at the Biological Sciences Curriculum Study (BSCS), the process is described. The production of this module was a collaborative effort between BSCS and the American Medical Association (AMA). Appendix A contains a copy of the module. Copies of reports sent to the Department of Energy (DOE) during the development process are contained in Appendix B; all reports should be on file at DOE. Appendix B also contains copies of status reports submitted to the BSCS Board of Directors.

  17. SYMBIOSIS: development, implementation, and assessment of a model curriculum across biology and mathematics at the introductory level.

    Science.gov (United States)

    Depelteau, Audrey M; Joplin, Karl H; Govett, Aimee; Miller, Hugh A; Seier, Edith

    2010-01-01

    "It takes a lot of courage to release the familiar and seemingly secure, to embrace the new. But there is no real security in what is no longer meaningful. There is more security in the adventurous and exciting, for in movement there is life, and in change there is power." Alan Cohen (Used by permission. All rights reserved. For more information on Alan Cohen's books and programs, see (www.alancohen.com.) With the support of the East Tennessee State University (ETSU) administration and a grant from Howard Hughes Medical Institute, the departments of Biological Sciences, Mathematics and Statistics, and Curriculum and Instruction have developed a biology-math integrated curriculum. An interdisciplinary faculty team, charged with teaching the 18 curriculum modules, designed this three-semester curriculum, known as SYMBIOSIS. This curriculum was piloted to two student cohorts during the developmental stage. The positive feedback and assessment results of this project have given us the foundation to implement the SYMBIOSIS curriculum as a replacement for the standard biology majors curriculum at the introductory level. This article addresses the history and development of the curriculum, previous assessment results and current assessment protocol, and the future of ETSU's approach to implementing the SYMBIOSIS curriculum.

  18. U.S. initiatives to strengthen forensic science & international standards in forensic DNA

    Science.gov (United States)

    Butler, John M.

    2015-01-01

    A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. PMID:26164236

  19. Customizing Curriculum with Digital Resources

    Science.gov (United States)

    Miller, Jeffrey

    2011-01-01

    To effectively use digital resources in the classroom, teachers must customize the information, merge it with pre-existing curriculum, differentiate it for diverse student populations, and still meet standards-based learning goals. This article describes a solution to these challenges: the Curriculum Customization Service, which provides access to…

  20. Development of mathematics curriculum for Medialogy studentsat Aalborg University

    DEFF Research Database (Denmark)

    Timcenko, Olga

    Abstract This paper addresses mathematics curriculum development for Medialogy education. Medialogy as a study line was established in 2002 at Faculty for Engineering and Natural Sciences at Aalborg University, and mathematics curriculum has already been revised tree times. Some of the reasoning...... behind curriculum development, lessons learned and remaining issues are presented and discussed....

  1. Answers to Teachers' Questions about the Next Generation Science Standards

    Science.gov (United States)

    Workosky, Cindy; Willard, Ted

    2015-01-01

    K-12 teachers of science have been digging into the "Next Generation Science Standards" ("NGSS") (NGSS Lead States 2013) to begin creating plans and processes for translating them for classroom instruction. As teachers learn about the NGSS, they have asked about the general structure of the standards document and how to read…

  2. Learning progressions from a sociocultural perspective: response to "co-constructing cultural landscapes for disciplinary learning in and out of school: the next generation science standards and learning progressions in action"

    Science.gov (United States)

    Tytler, Russell

    2016-10-01

    This article discusses a case for a different, socio-cultural way of looking at learning progressions as treated in the next generation science standards (NGSS) as described by Ralph Cordova and Phyllis Balcerzak's paper "Co-constructing cultural landscapes for disciplinary learning in and out of school: the next generation science standards and learning progressions in action". The paper is interesting for a number of reasons, and in this response I will identify different aspects of the paper and link the points made to my own research, and that of colleagues, as complementary perspectives. First, the way that the science curriculum is conceived as an expanding experience that moves from the classroom into the community, across subjects, and across time, links to theoretical positions on disciplinary literacies and notions of learning as apprenticeship into the discursive tools, or `habits of mind' as the authors put it, that underpin disciplinary practice. Second, the formulation of progression through widening communities of practice is a strong feature of the paper, and shows how children take on the role of scientists through this expanding exposure. I will link this approach to some of our own work with school—community science partnerships, drawing on the construct of boundary crossing to tease out relations between school science and professional practice. Third, the demonstration of the expansion of the children's view of what scientists do is well documented in the paper, illustrated by Figure 13 for instance. However I will, in this response, try to draw out and respond to what the paper is saying about the nature of progression; what the progression consists of, over what temporal or spatial dimensions it progresses, and how it can productively frame curriculum processes.

  3. Did We Have Science before 1988?

    Science.gov (United States)

    Peacock, Alan; Dunne, Mick

    2014-01-01

    In this "Primary Science" interview, science educators Alan Peacock and Mick Dunne reflect on their own experiences of what science was like in England before a National Curriculum was introduced. Among the topics covered are: earliest memories of science in school, teaching science before 1988 (pre-science curriculum for primary…

  4. Outcomes of a Self-Regulated Learning Curriculum Model

    Science.gov (United States)

    Peters-Burton, Erin E.

    2015-10-01

    The purpose of this study was to describe connections among students' views of nature of science in relation to the goals of a curriculum delivered in a unique setting, one where a researcher and two teachers collaborated to develop a course devoted to teaching students about how knowledge is built in science. Students proceeded through a cycle of self-regulated phases, forethought, performance, and self-reflection, during each segment of the curriculum: (a) independent research, (b) knowledge building in the discipline of science, and (c) a citizen science project. Student views were measured at the beginning and end of the course using epistemic network analysis. The pretest map reported student understanding of science as experimentation and indicated three clusters representing the durability of knowledge, empirical evidence, and habits of mind, which were loosely connected and represented knowledge generation as external to personal thinking. The posttest map displayed a broader understanding of scientific endeavors beyond experimentation, a shift toward personal knowledge generation, and indicated a larger number of connections among three more tightly oriented clusters: empirical evidence, habits of mind, and tentativeness. Implications include the potential to build curriculum that purposefully considers reinforcing cycles of learning of the nature of science in different contexts.

  5. the impact of digital technology revolution on surveying curriculum ...

    African Journals Online (AJOL)

    the impact of digital technology revolution on surveying curriculum review in ... Global Journal of Environmental Sciences ... Also, it focuses on the need to review the current surveying curriculum to meet the technological advancement. Finally ...

  6. Description and Early Outcomes of a Comprehensive Curriculum Redesign at the Northwestern University Feinberg School of Medicine.

    Science.gov (United States)

    Heiman, Heather L; O'Brien, Celia L; Curry, Raymond H; Green, Marianne M; Baker, James F; Kushner, Robert F; Thomas, John X; Corbridge, Thomas C; Corcoran, Julia F; Hauser, Joshua M; Garcia, Patricia M

    2017-09-26

    In 2012, the Northwestern University Feinberg School of Medicine launched a redesigned curriculum addressing the four primary recommendations in the 2010 Carnegie Foundation for the Advancement of Teaching report on reforming medical education. This new curriculum provides a more standardized evaluation of students' competency achievement through a robust portfolio review process coupled with standard evaluations of medical knowledge and clinical skills. It individualizes learning processes through curriculum flexibility, enabling students to take electives earlier and complete clerkships in their preferred order. The new curriculum is integrated both horizontally and vertically, combining disciplines within organ-based modules and deliberately linking elements (science in medicine, clinical medicine, health and society, professional development) and threads (medical decision making, quality and safety, teamwork and leadership, lifestyle medicine, advocacy and equity) across the three phases that replaced the traditional four-year timeline. It encourages students to conduct research in an area of interest and commit to lifelong learning and self-improvement. The curriculum formalizes the process of professional identity formation and requires students to reflect on their experiences with the informal and hidden curricula, which strongly shape their identities.The authors describe the new curriculum structure, explain their approach to each Carnegie report recommendation, describe early outcomes and challenges, and propose areas for further work. Early data from the first cohort to progress through the curriculum show unchanged United States Medical Licensing Examination Step 1 and 2 scores, enhanced student research engagement and career exploration, and improved student confidence in the patient care and professional development domains.

  7. Using Symbolic Interactionism to Analyze a Specialized STEM High School Teacher's Experience in Curriculum Reform

    Science.gov (United States)

    Teo, Tang Wee; Osborne, Margery

    2012-01-01

    In this paper, we present a microanalysis of a specialized STEM (science, technology, engineering, and mathematics) high school teacher's experience of self-initiated science inquiry curriculum reform. We examine the meanings of these two constructs: "inquiry curriculum" and "curriculum change" through the process lens of interactions, actions,…

  8. In the Footsteps of Roger Revelle: A STEM Partnership Between Scripps Institution of Oceanography, Office of Naval Research and Middle School Science Students Bringing Next Generation Science Standards into the Classroom through Ocean Science

    Science.gov (United States)

    Brice, D.; Appelgate, B., Jr.; Mauricio, P.

    2014-12-01

    Now in its tenth year, "In the Footsteps of Roger Revelle" (IFRR) is a middle school science education program that draws student interest, scientific content and coherence with Next Generation Science Standards from real-time research at sea in fields of physical science. As a successful collaboration involving Scripps Institution of Oceanography (SIO),Office of Naval Research (ONR), and San Marcos Middle School (SMMS), IFRR brings physical oceanography and related sciences to students at the San Marcos Middle School in real-time from research vessels at sea using SIO's HiSeasNet satellite communication system. With a generous grant from ONR, students are able to tour the SIO Ships and spend a day at sea doing real oceanographic data collection and labs. Through real-time and near-realtime broadcasts and webcasts, students are able to share data with scientists and gain an appreciation for the value of Biogeochemical research in the field as it relates to their classroom studies. Interaction with scientists and researchers as well as crew members gives students insights into not only possible career paths, but the vital importance of cutting edge oceanographic research on our society. With their science teacher on the ship as an education outreach specialist or ashore guiding students in their interactions with selected scientists at sea, students observe shipboard research being carried out live via videoconference, Skype, daily e-mails, interviews, digital whiteboard sessions, and web interaction. Students then research, design, develop, deploy, and field-test their own data-collecting physical oceanography instruments in their classroom. The online interactive curriculum models the Next Generation Science Standards encouraging active inquiry and critical thinking with intellectually stimulating problem- solving, enabling students to gain critical insight and skill while investigating some of the most provocative questions of our time, and seeing scientists as

  9. Teacher perceptions of usefulness of mobile learning devices in rural secondary science classrooms

    Science.gov (United States)

    Tighe, Lisa

    The internet and easy accessibility to a wide range of digital content has created the necessity for teachers to embrace and integrate digitial media in their curriculums. Although there is a call for digital media integration in curriculum by current learning standards, rural schools continue to have access to fewer resources due to limited budgets, potentially preventing teachers from having access to the most current technology and science instructional materials. This dissertation identifies the perceptions rural secondary science teachers have on the usefulness of mobile learning devices in the science classroom. The successes and challenges in using mobile learning devices in the secondary classroom were also explored. Throughout this research, teachers generally supported the integration of mobile devices in the classroom, while harboring some concerns relating to student distractability and the time required for integrating mobile devices in exisiting curriculum. Quantitative and qualitative data collected through surveys, interviews, and classroom observations revealed that teachers perceive that mobile devices bring benefits such as ease of communication and easy access to digitial information. However, there are perceived challenges with the ability to effectively communicate complex scientific information via mobile devices, distractibility of students, and the time required to develop effective curriculum to integrate digital media into the secondary science classroom.

  10. Spaceship Earth: A partnership in curriculum writing

    Science.gov (United States)

    Lindstrom, Marilyn M.

    1993-01-01

    As the Apollo astronauts left Earth to venture onto the surface of another planetary body, they saw their home planet in a new global perspective. Unmanned NASA missions have given us a closer look at all the other planets in our solar system and emphasized the uniqueness of Earth as the only place in our solar system that can sustain life as we know it. Spaceship Earth is a new science curriculum which was developed to help students and teachers to explore the Earth, to see it in the global perspective, and to understand the relationships among life, the planet, and the sun. Astronaut photographs, especially shuttle pictures, are used as groundbased studies to help students to understand global Earth Science and integrate various aspects of physical, life, and social science. The Spaceship Earth curriculum was developed at by a team of JSC scientists working in collaboration with teachers from local school districts. This project was done under the auspices of Partner-In-Space, a local non-profit organization dedicated to improving science education and our general knowledge of space. The team met once a month for a year then assembled the curriculum during the summer. The project is now in the testing stage as the teachers try it out in their classrooms. It was supported by the Texas Education Agency and will be offered by the State of Texas as a supplemental curriculum for statewide use. Because the curriculum was developed by teachers, it is self contained and the lessons are easy to implement and give students concrete experiences. The three sub-units follow in a logical order, but may be used independently. If they are used separately, they may be tied together by the teacher returning to the basic theme of the global Earth as each unit is completed.

  11. U.S. initiatives to strengthen forensic science & international standards in forensic DNA.

    Science.gov (United States)

    Butler, John M

    2015-09-01

    A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. Published by Elsevier Ireland Ltd.

  12. Development of a Systems Science Curriculum to Engage Rural African American Teens in Understanding and Addressing Childhood Obesity Prevention

    Science.gov (United States)

    Frerichs, Leah; Lich, Kristen Hassmiller; Young, Tiffany L.; Dave, Gaurav; Stith, Doris; Corbie-Smith, Giselle

    2018-01-01

    Engaging youth from racial and ethnic minority communities as leaders for change is a potential strategy to mobilize support for addressing childhood obesity, but there are limited curricula designed to help youth understand the complex influences on obesity. Our aim was to develop and pilot test a systems science curriculum to elicit rural…

  13. Brain-Based Learning and Standards-Based Elementary Science.

    Science.gov (United States)

    Konecki, Loretta R.; Schiller, Ellen

    This paper explains how brain-based learning has become an area of interest to elementary school science teachers, focusing on the possible relationships between, and implications of, research on brain-based learning to the teaching of science education standards. After describing research on the brain, the paper looks at three implications from…

  14. Standardization in library and information science in selected European countries

    Science.gov (United States)

    Matysek, Anna

    2015-02-01

    Standardization plays an important role in library and information science (LIS), because it gives rules to identify, classify, access, select, exploit, communicate, exchange and preserve information. Standards are developed by national, European and international organizations. The objective of the study is to present the situation of standardization in library and information science in the countries that joined the European Union in 2004. The research covered Technical Committees that take the problems of LIS, their cooperation with European Committee for Standardization (CEN) and International Organization for Standardization (ISO). The second part of the study is an analysis of LIS standards published in the last 10 years. Data on published documents were gathered from online standards directories. The documents were searched using International Classification for Standards. Retrieved standards were analyzed for their origin and status. The research illustrates the changes in the national standardization, most popular topics and the growing importance of international cooperation in standardization.

  15. THE EFFECTS OF ELECTIVE COURSE DESIGNED WITH DIFFERENT CONTENTS ON PRE-SERVICE SCIENCE TEACHERS’ SELF-EFFICACY BELIEFS AND KNOWLEDGE ABOUT ORGANIZING CURRICULUM BASED FIELD TRIPS

    Directory of Open Access Journals (Sweden)

    Aykut Emre Bozdoğan

    2018-06-01

    Full Text Available This research examined the effect of a course designed with different content on pre-service science teachers’ self-efficacy beliefs and knowledge about organizing curriculum-based trips. A pre-test post-test quasi experimental design was used in the research. One-hundred and thirty pre-service science teachers participated in the research. The research was carried out within the context of an elective course called “Informal Learning Environments in Science Education” and was conducted over 14 weeks in total for two hours per week. The research data were obtained by means of a questionnaire, self–efficacy scale for designing curriculum-based field trips (CFTSES and semi-structured focus-group interviews. As a result of the research, it was found that the course content which included in-class and out-of-school setting practices in the 3rd group was the most effective. This was followed by the 2nd group which included only in-class implementations. The first group which was supported with visuals and theoretical related presented information was the group which was the least effected. The results of the research revealed that pre-service science teachers had mainly different concerns about safety, but that this did not deter them, as they still continued to design curriculum-based field trips for learners.

  16. Scientific Skills and Processes in Curriculum Resources

    Science.gov (United States)

    Kremer, Joe

    2017-11-01

    Increasingly, the science education community has recognized the need for curriculum resources that support student development of authentic scientific practices, rather than focusing exclusively on content knowledge. This paper proposes a tool for teachers and researchers to assess the degree to which certain curriculum resources and lessons achieve this goal. After describing a method for reflecting on and categorizing curriculum resources, I apply the method to highlight differences across three teaching methods: Modeling Instruction, Physics Union Mathematics, and a traditional, lecture-based approach.

  17. Interaction of Vietnamese teachers with a social constructivism-based primary science curriculum in a framework appropriate for a Confucian heritage culture

    NARCIS (Netherlands)

    Vu Thu Hang, N.; Bulte, A.M.W.; Pilot, A.

    2017-01-01

    This paper describes the perception of a social constructivist approach to teaching and learning among Vietnamese teachers in a Confucian heritage culture and the changes these teachers undergo through their interaction with a new science curriculum that was designed culturally appropriate. A

  18. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    Science.gov (United States)

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-06-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS) curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  19. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    Directory of Open Access Journals (Sweden)

    Fred Goldberg1

    2012-05-01

    Full Text Available We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET, for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  20. Lunar and Planetary Science XXXV: Engaging K-12 Educators, Students, and the General Public in Space Science Exploration

    Science.gov (United States)

    2004-01-01

    The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.

  1. Science education ahead?

    Science.gov (United States)

    1999-01-01

    In spite of the achievements and successes of science education in recent years, certain problems undoubtedly remain. Firstly the content taught at secondary level has largely remained unchanged from what had been originally intended to meet the needs of those who would go on to become scientists. Secondly the curriculum is overloaded with factual content rather than emphasizing applications of scientific knowledge and skills and the connections between science and technology. Thirdly the curriculum does not relate to the needs and interests of the pupils. A recent report entitled Beyond 2000: Science Education for the Future, derived from a series of seminars funded by the Nuffield Foundation, attempts to address these issues by setting out clear aims and describing new approaches to achieve them. Joint editors of the report are Robin Millar of the University of York and Jonathan Osborne of King's College London. The recommendations are that the curriculum should contain a clear statement of its aims, with the 5 - 16 science curriculum seen as enhancing general `scientific literacy'. At key stage 4 there should be more differentiation between the literacy elements and those designed for the early stages of a specialist training in science; up to the end of key stage 3 a common curriculum is still appropriate. The curriculum should be presented clearly and simply, following on from the statement of aims, and should provide young people with an understanding of some key `ideas about science'. A wide variety of teaching methods and approaches should be encouraged, and the assessment approaches for reporting on students' performance should focus on their ability to understand and interpret information as well as their knowledge and understanding of scientific ideas. The last three recommendations in the report cover the incorporation of aspects of technology and the applications of science into the curriculum, with no substantial change overall in the short term but a

  2. Aerospace Technology Curriculum Guide. Invest in Success. Vo. Ed. #260.

    Science.gov (United States)

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This document contains standards for an articulated secondary and postsecondary curriculum in aerospace technology. The curriculum standards can be used to ensure that vocational programs meet the needs of local business and industry. The first part of the document contains a task list and student performance standards for the aerospace technology…

  3. Nucleonics across the curriculum

    International Nuclear Information System (INIS)

    Marrano, Rich

    2005-01-01

    Many within the ''nuclear'' community are interested in attracting young people to careers in nuclear related fields while they are at the age when they are considering career choices. High school is a good to introduce students to ideas that may lead them to investigate careers in nuclear science. However, they may not even be exposed to those ideas for various reasons. For example, many teachers may not see the connection between nuclear issues and other areas of instruction. In addition, most teachers already have a full curriculum, and adding another topic is unlikely. As a result many students will not see some of the practical applications of nuclear science in other fields of study unless they take a class where nuclear science is a specified topic of study. A good alternative is to incorporate nuclear examples across the curriculum to illustrate concepts already included in other classes. This would be a simple step that teachers may find interesting and would expose a variety of students to nuclear issues. (author)

  4. Revidert læreplan i naturfag – Økt fokus på grunnleggende ferdigheter og forskerspirenRevised Norwegian science curriculum – Increased focus on literacy and inquiry skills

    Directory of Open Access Journals (Sweden)

    Sonja M. Mork

    2013-11-01

    Full Text Available One of the main consequences of the large Norwegian curriculum reform in 2006 is that teachers in all subjects are now responsible for focusing on the basic skills of reading, writing, oral, arithmetic and the use of digital tools. However, research following the implementation of the reform report a gap between curriculum intentions and classroom practice regarding basic skills. Hence the curriculum in science and four other subjects are now revised to clarify basic skills. This article describes some of the background for the revision, the revision process and some main changes in the revised curriculum.

  5. A Cooking Curriculum.

    Science.gov (United States)

    Wright, Wynn D., Ed.

    This cooking curriculum, issued by the Washington District Early Childhood Council, details specific ways in which language arts, math, science, and social studies may be taught through cooking specific recipes. Cooking activities and recipes are presented for the fall, winter, and spring months, and guidelines are provided for preparing…

  6. Scientists in the classroom: Curriculum reform and the Cold War, 1949--1963

    Science.gov (United States)

    Rudolph, John Laurence

    This dissertation focuses on the origins of the National Science Foundation-supported curriculum reform movement of the 1950s and 1960s. Using the Physical Science Study Committee (PSSC) and the Biological Sciences Curriculum Study (BSCS) as exemplars of the curriculum projects that proliferated during this era, this work provides a historical analysis of the shift in school curriculum from the life adjustment, functional approach to schooling prevalent after World War II to the discipline-centered approach characteristic of the 1960s. Important factors in this shift include the rising technological threat posed by the Soviet Union along with the Red Scare in the United States, which aroused public suspicion of the ideological underpinnings of the life adjustment curricular program. The efforts of the scientific elite to develop new science curricula were welcomed as a means to combat both the technological threat of the Soviets and, through science's identification with free inquiry and democracy, the ideological threat of communism. This dissertation specifically illustrates how the key elements of the new science curriculum materials---the focus on inquiry, laboratory work, and instructional technology---were shaped by the social and political atmosphere of the Cold War and how those elements were designed to advance the interests of the American scientific community in the postwar period. This social and political atmosphere, this work argues, was not only responsible for moving science instruction away from an emphasis on the every-day applications of science toward the disciplinary structure of scientific knowledge, but also contributed to a fundamental restructuring of the substantive content of the scientific knowledge itself that made up the subject matter of the new curricula.

  7. Investigation of Environmental Topics in the Science and Technology Curriculum and Textbooks in Terms of Environmental Ethics and Aesthetics

    Science.gov (United States)

    Lacin Simsek, Canan

    2011-01-01

    In order to solve environmental problems, it is thought that education should be connected with values. For this reason, it is emphasized that environmental issues should be integrated with ethical and aesthetic values. In this study, 6th, 7th and 8th grade science and technology curriculum and textbooks were investigated to find out how much…

  8. Finding the Hook: Computer Science Education in Elementary Contexts

    Science.gov (United States)

    Ozturk, Zehra; Dooley, Caitlin McMunn; Welch, Meghan

    2018-01-01

    The purpose of this study was to investigate how elementary teachers with little knowledge of computer science (CS) and project-based learning (PBL) experienced integrating CS through PBL as a part of a standards-based elementary curriculum in Grades 3-5. The researchers used qualitative constant comparison methods on field notes and reflections…

  9. Data Science Programs in U.S. Higher Education: An Exploratory Content Analysis of Program Description, Curriculum Structure, and Course Focus

    Science.gov (United States)

    Tang, Rong; Sae-Lim, Watinee

    2016-01-01

    In this study, an exploratory content analysis of 30 randomly selected Data Science (DS) programs from eight disciplines revealed significant gaps in current DS education in the United States. The analysis centers on linguistic patterns of program descriptions, curriculum requirements, and DS course focus as pertaining to key skills and domain…

  10. Gender Effects on Curriculum Elements Based on Mathematics and Science and Technology Teachers' Opinions: A Meta-Analysis for Turkish Studies

    Science.gov (United States)

    Küçüktepe, Seval Eminoglu; Yildiz, Nilgün

    2016-01-01

    The purpose of this study is to investigate the gender effect on elementary mathematics and science and technology teachers' opinions regarding curriculum elements which are objectives, content, learning situation and evaluation. Meta-analysis was used in order to analyze data. Two articles, 11 master and one doctorate thesis which were conducted…

  11. Impacts of a Place-Based Science Curriculum on Student Place Attachment in Hawaiian and Western Cultural Institutions at an Urban High School in Hawai'i

    Science.gov (United States)

    Kuwahara, Jennifer L. H.

    2013-01-01

    This study investigates how students' participation in a place-based science curriculum may influence their place attachment (dependence and identity). Participants attend an urban high school in Hawai'i and are members of different cultural institutions within the school. Students are either enrolled in an environmental science class within the…

  12. Across the Curriculum.

    Science.gov (United States)

    Burns, Marilyn; And Others

    1994-01-01

    Across-the-curriculum articles focus on four areas. A math activity describes optical illusions and the properties of shapes. A hands-on science activity presents the chemistry of secret messages. A writing lesson helps students capture the essence of character. An art lesson presents a project on medieval castles. (SM)

  13. Science youth action research: Promoting critical science literacy through relevance and agency

    Science.gov (United States)

    Coleman, Elizabeth R.

    This three-article dissertation presents complementary perspectives on Science Youth Action Research (Sci-YAR), a K-12 curriculum designed to emphasize relevance and agency to promote youth's science learning. In Sci-YAR, youth conduct action research projects to better understand science-related issues in their lives, schools, or communities, while they simultaneously document, analyze, and reflect upon their own practices as researchers. The first article defines Sci-YAR and argues for its potential to enhance youth's participation as citizens in a democratic society. The second article details findings from a case study of youth engaged in Sci-YAR, describing how the curriculum enabled and constrained youth's identity work in service of critical science agency. The third article provides guidance to science teachers in implementing student-driven curriculum and instruction by emphasizing Sci-YAR's key features as a way to promote student agency and relevance in school science.

  14. Integrating Ethics into the Social Studies Curriculum.

    Science.gov (United States)

    Howe, Kenneth R.

    1991-01-01

    Urges incorporation of ethics into social studies curriculum. Provides an overview of ethical theory including principle-based theories of utilitarianism and deontology and virtue-based theories. Discusses philosophies of social science including positivism, interpretivism, and critical social science. Suggests teaching methods and curriculum…

  15. INTRODUCTION TO SCIENCE: A CURRICULUM APPROACH

    OpenAIRE

    Bianco, André A. G.; Biochemistry Departament, Chemistry Institute, Sao Paulo University, Sao Paulo.; Torres, Bayardo B.; Biochemistry Departament, Chemistry Institute, Sao Paulo University, Sao Paulo.

    2007-01-01

    International and national institutions concerned with higher education recommendthe inclusion in curriculum of strategies to promote development of aditional skills thentraditionals memorazing habilities and contents reproduction. Between this, specialattention is given to stimulating the critical capacitie. To develop this skills, was given aproject, included into the Biochemistry discipline, with freshmen students in the Nutritioncourse of the Saúde Pública College of USP. The project cons...

  16. Exploring the Effectiveness of Curriculum Provided Through Transmedia Books for Increasing Students' Knowledge and Interest in Science

    Science.gov (United States)

    Ponners, Pamela Jones

    Transmedia books are new and emerging technologies which are beginning to be used in current classrooms. Transmedia books are a traditional printed book that uses multiple media though the use of Quick Response (QR) codes and augmented reality (AR) triggers to access web-based technology. Using the transmedia book Skills That Engage Me students in kindergarten through second grade engage in curriculum designed to introduce science skills and careers. Using the modified Draw-a-Scientist Test (mDAST), observations and interviews, researchers analyzed pre and post data to describe changes students have about science and scientists. Future study may include the development and validation of a new instrument, Draw a Science Student, and examining the mDAST checklist with the intention of updating the parameters of what is considered positive and negative in relationship with work a scientist conducts.

  17. Engaging Students In The Science Of Climate Change

    Science.gov (United States)

    Rhew, R. C.; Halversen, C.; Weiss, E.; Pedemonte, S.; Weirman, T.

    2013-12-01

    Climate change is arguably the defining environmental issue of our generation. It is thus increasingly necessary for every member of the global community to understand the basic underlying science of Earth's climate system and how it is changing in order to make informed, evidence-based decisions about how we will respond individually and as a society. Through exploration of the inextricable interconnection between Earth's ocean, atmosphere and climate, we believe students will be better prepared to tackle the complex issues surrounding the causes and effects of climate change and evaluate possible solutions. If students are also given opportunities to gather evidence from real data and use scientific argumentation to make evidence-based explanations about climate change, not only will they gain an increased understanding of the science concepts and science practices, the students will better comprehend the nature of climate change science. Engaging in argument from evidence is a scientific practice not only emphasized in the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS), but also emphasized in the Common Core State Standards for English Language Arts & Literacy in History/Social Studies and Science (CCSS). This significant overlap between NGSS and CCSS has implications for science and language arts classrooms, and should influence how we support and build students' expertise with this practice of sciences. The featured exemplary curricula supports middle school educators as they address climate change in their classrooms. The exemplar we will use is the NOAA-funded Ocean Sciences Sequence (OSS) for Grades 6-8: The ocean-atmosphere connection and climate change, which are curriculum units that deliver rich science content correlated to the Next Generation Science Standards (NGSS) Disciplinary Core Ideas and an emphasis on the Practices of Science, as called for in NGSS and the Framework. Designed in accordance with the latest

  18. Influence of Science, Technology, and Engineering Curriculum on Rural Midwestern High School Student Career Decisions

    Science.gov (United States)

    Killingsworth, John

    Low degree completion in technical and engineering degrees is a growing concern for policymakers and educators in the United States. This study was an examination of the behaviors of adolescents specific to career decisions related to technology and engineering. The central research question for this study was: do rural, Midwestern high school technical and engineering curricula serve to engage students sufficiently to encourage them to persist through high school while sustaining their interests in technology and engineering careers? Engaging students in technology and engineering fields is the challenge for educators throughout the country and the Midwest. Rural schools have the additional challenge of meeting those issues because of resource limitations. Students in three Midwestern schools were surveyed to determine the level of interest in technology and engineering. The generalized likelihood ratio test was used to overcome concerns for small sample sizes. Accounting for dependent variables, multiple independent variables are examined using descriptive statistics to determine which have greater influence on career decisions, specifically those related to technology and engineering. A typical science curriculum is defined for rural Midwestern high schools. This study concludes that such curriculum achieves the goal of maintaining or increasing student interest and engagement in STEM careers. Furthermore, those schools that incorporate contextual and experiential learning activities into the curriculum demonstrate increased results in influencing student career choices toward technology and engineering careers. Implications for parents, educators, and industry professionals are discussed.

  19. Experiencing the Implementation of New Inquiry Science Curricula

    Science.gov (United States)

    Ower, Peter S.

    Using a phenomenological methodology, a cohort of four experienced science teachers was interviewed about their experience transitioning from traditional, teacher and fact-centered science curricula to inquiry-based curricula. Each teacher participated in two interviews that focused on their teaching backgrounds, their experience teaching the prior traditional curriculum, and their experience teaching the new inquiry-based curriculum. The findings are presented as a narrative of each teachers' experience with the new curriculum implementation. Analyzing the data revealed four key themes. 1) The teachers felt trapped by the old curriculum as it did not align with their positive views of teaching science through inquiry. 2) The teachers found a way to fit their beliefs and values into the old and new curriculum. This required changes to the curriculum. 3) The teachers attempted to make the science curriculum as meaningful as possible for their students. 4) The teachers experienced a balancing act between their beliefs and values and the various aspects of the curriculum. The revealed essence of the curriculum transition is one of freedom and reconciliation of their beliefs. The teachers experienced the implementation of the new curriculum as a way to ensure their values and beliefs of science education were embedded therein. They treated the new curriculum as a malleable structure to impart their grander ideas of science education (e.g. providing important skills for future careers, creating a sense of wonder, future problem solving) to the students. Their changes were aligned with the philosophy of the curriculum kits they were implementing. Thus, the fidelity of the curriculum's philosophy was not at risk even though the curriculum kits were not taught as written. This study showed that phenomenological methods are able to reveal the relationship between a teacher's prior experiences, values and beliefs and their current instructional philosophy in science

  20. BIBLIOGRAPHY ON CURRICULUM DEVELOPMENT.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Graduate School of Education.

    THIS BIBLIOGRAPHY LISTS MATERIALS ON VARIOUS ASPECTS OF CURRICULUM DEVELOPMENT. FORTY UNANNOTATED REFERENCES ARE PROVIDED FOR DOCUMENTS DATING FROM 1960 TO 1966. BOOKS, JOURNALS, REPORT MATERIALS, AND SOME UNPUBLISHED MANUSCRIPTS ARE LISTED IN SUCH AREAS AS COGNITIVE STUDIES, VOCATIONAL REHABILITATION, INSTRUCTIONAL MATERIALS, SCIENCE STUDIES, AND…

  1. A web-based resource for the nuclear science/technology high school curriculum - a summary

    International Nuclear Information System (INIS)

    Ripley, C.

    2009-01-01

    On November 15, 2008, the CNA launched a new Nuclear Science Technology High School Curriculum Website. Located at www.cna.ca the site was developed over a decade, first with funding from AECL and finally by the CNA, as a tool to explain concepts and issues related to energy and in particular nuclear energy targeting the public, teachers and students in grades 9-12. It draws upon the expertise of leading nuclear scientists and science educators. Full lesson plans for the teacher, videos for discussion, animations, games, electronic publications, laboratory exercises and quick question and answer sheets will give the student greater knowledge, skills and attitudes necessary to solve problems and to critically examine issues in making decisions. Eight modules focus on key areas: Canada's Nuclear History, Atomic Theory, What is Radiation?, Biological Effects of Radiation, World Energy Sources, Nuclear Technology at Work, Safety (includes Waste Disposal) in the Nuclear Industry and Careers. (author)

  2. Into the Curriculum. Reading/Language Arts: Three Little Kittens and the Lost Mittens; Reading/Language Arts: A Caldecott Archaeological Dig; Science: Discovering the Periodic Table of Elements; Science: The Red-Eyed Tree Frog Jumps into Nonfiction; Social Studies: Our Nation's Beginnings-Jamestown and Plymouth Settlements.

    Science.gov (United States)

    Cherry, Carolyn; Louk, Cathy; Barwick, Martha; Kidd, Gentry E.

    2001-01-01

    Provides five fully developed school library media activities that are designed for use with specific curriculum units in reading/language arts, science, and social studies. Library media skills objectives, curriculum (subject area) objectives, grade levels, resources, instructional roles, activity and procedures for completion, evaluation, and…

  3. [An example of self-evaluation of a sense of achievement by students in 6-year pharmacy school with the model core curriculum of pharmaceutical education].

    Science.gov (United States)

    Shingaki, Tomoteru; Koyanagi, Jyunichi; Nakamura, Hiroshi; Hirata, Takahiro; Ohta, Atsutane; Akimoto, Masayuki; Shirahata, Akira; Mitsumoto, Atsushi

    2013-01-01

    In March 2012, the first students, finishing the newly introduced 6-year-course of pharmaceutical education, have graduated and gone out into the world. At this point, the Ministry of Education, Culture, Sports, Science and Technology (MEXT) is going to revise the model core curriculum of pharmaceutical education to be more suited for educating students to achieve their goal of becoming the clinical pharmacist standard defined by the revised School Education Act. Here we report the self-evaluation study based on the survey using questionnaire about a sense of achievement with Visual Analog Scales, regarding the fundamental quality as a pharmacist standard proposed by the Professional Activities Committee in the MEXT. The sample size of survey was about 600 of students studying in the Faculty of Pharmaceutical Sciences in Josai International University (JIU) and the survey was carried out during the period of March-April in 2012. The study suggested that the majority of graduates were satisfied with the new education system and marked as a well-balanced quality to be a pharmacist standard, after completing the 6-year pharmaceutical education based on "the model core-curriculum". It would be worthwhile to perform this kind of survey continuously to monitor the student's self-evaluation of a sense of achievement to verify the effectiveness of 6-year-course pharmaceutical education based on the newly establishing core curriculum in Japan.

  4. Effects of the layered curriculum on student’s success, permanence and attitudes in Science and Technology Course

    OpenAIRE

    Mehmet Nuri Gömleksiz; Serav Biçer

    2012-01-01

    This study aims to determine the effects of the layered curriculum on students’ achievement, permanence and attitudes towards Science and Technology course.  The research was conducted with two classes including an experimental and a control class at 6th grade of Elazig İstiklal Primary School in 2009-2010 academic year. Mixed research model that utilize both quantitative and qualitative research methods together was preferred in this research. To that end, achievement test and attitude scale...

  5. Transformational Play as a Curricular Scaffold: Using Videogames to Support Science Education

    Science.gov (United States)

    Barab, Sasha A.; Scott, Brianna; Siyahhan, Sinem; Goldstone, Robert; Ingram-Goble, Adam; Zuiker, Steven J.; Warren, Scott

    2009-08-01

    Drawing on game-design principles and an underlying situated theoretical perspective, we developed and researched a 3D game-based curriculum designed to teach water quality concepts. We compared undergraduate student dyads assigned randomly to four different instructional design conditions where the content had increasingly level of contextualization: (a) expository textbook condition, (b) simplistic framing condition, (c) immersive world condition, and (d) a single-user immersive world condition. Results indicated that the immersive-world dyad and immersive-world single user conditions performed significantly better than the electronic textbook group on standardized items. The immersive-world dyad condition also performed significantly better than either the expository textbook or the descriptive framing condition on a performance-based transfer task, and performed significantly better than the expository textbook condition on standardized test items. Implications for science education, and consistent with the goals of this special issue, are that immersive game-based learning environments provide a powerful new form of curriculum for teaching and learning science.

  6. The World Needs a New Curriculum

    Science.gov (United States)

    Prensky, Marc

    2014-01-01

    The author proposes that today's existing, world-wide curriculum--based on offering roughly the same math, language arts, science, and social studies to all--is not what is required for the future, and is hurting rather than helping the world's students. Math, language arts, science, and social studies, he argues, are really "proxies"…

  7. Science Technology Engineering and Math (STEM) Education MUST Begin in Early Childhood Education: A Systematic Analysis of Washington State Guidelines Used to Gauge the Development and Learning of Young Learners

    Science.gov (United States)

    Briseno, Luis Miguel

    This paper reflects future direction for early Science Technology Engineering and Mathematics (STEM) education, science in particular. Washington State stakeholders use guidelines including: standards, curriculums and assessments to gauge young children's development and learning, in early childhood education (ECE). Next Generation Science Standards (NGSS), and the Framework for K-12 programs (National Research Council, 2011) emphasizes the need for reconfiguration of standards: "Too often standards are a long list of detailed and disconnected facts... this approach alienates young people, it also leaves them with fragments of knowledge and little sense of the inherent logic and consistency of science and of its universality." NGSS' position elevates the concern and need for learners to experience teaching and learning from intentionally designed cohesive curriculum units, rather than as a series of unrelated and isolated lessons. To introduce the argument the present study seeks to examine Washington State early learning standards. To evaluate this need, I examined balance and coverage/depth. Analysis measures the level of continuum in high-quality guidelines from which Washington State operates to serve its youngest citizens and their families.

  8. Methods and Tools to Align Curriculum to the Skills and Competencies Needed by the Workforce - an Example from Geospatial Science and Technology

    Science.gov (United States)

    Johnson, A. B.

    2012-12-01

    Geospatial science and technology (GST) including geographic information systems, remote sensing, global positioning systems and mobile applications, are valuable tools for geoscientists and students learning to become geoscientists. GST allows the user to analyze data spatially and temporarily and then visualize the data and outcomes in multiple formats (digital, web and paper). GST has evolved rapidly and it has been difficult to create effective curriculum as few guidelines existed to help educators. In 2010, the US Department of Labor (DoL), in collaboration with the National Geospatial Center of Excellence (GeoTech Center), a National Science Foundation supported grant, approved the Geospatial Technology Competency Mode (GTCM). The GTCM was developed and vetted with industry experts and provided the structure and example competencies needed across the industry. While the GTCM was helpful, a more detailed list of skills and competencies needed to be identified in order to build appropriate curriculum. The GeoTech Center carried out multiple DACUM events to identify the skills and competencies needed by entry-level workers. DACUM (Developing a Curriculum) is a job analysis process whereby expert workers are convened to describe what they do for a specific occupation. The outcomes from multiple DACUMs were combined into a MetaDACUM and reviewed by hundreds of GST professionals. This provided a list of more than 320 skills and competencies needed by the workforce. The GeoTech Center then held multiple workshops across the U.S. where more than 100 educators knowledgeable in teaching GST parsed the list into Model Courses and a Model Certificate Program. During this process, tools were developed that helped educators define which competency should be included in a specific course and the depth of instruction for that competency. This presentation will provide details about the process, methodology and tools used to create the Models and suggest how they can be used

  9. Developing Sport Psychology in a Girls' Sport Academy Curriculum

    Science.gov (United States)

    Lewis, Andrew

    2014-01-01

    This article explores the initial steps in developing and presenting Sport Psychology in a leadership and sport curriculum at Stellenbosch University's (SU) Centre for Human Performance Sciences' (CHPS) Academy for Girls' Leadership and Sport Development. Sport Psychology does not feature within the South African school curriculum specifically,…

  10. Inquiry-based laboratory investigations and student performance on standardized tests in biological science

    Science.gov (United States)

    Patke, Usha

    Achievement data from the 3rd International Mathematics and Sciences Study and Program for International Student Assessment in science have indicated that Black students from economically disadvantaged families underachieve at alarming rates in comparison to White and economically advantaged peer groups. The study site was a predominately Black, urban school district experiencing underachievement. The purpose of this correlational study was to examine the relationship between students' use of inquiry-based laboratory investigations and their performance on the Biology End of Course Test, as well as to examine the relationship while partialling out the effects of student gender. Constructivist theory formed the theoretical foundation of the study. Students' perceived levels of experience with inquiry-based laboratory investigations were measured using the Laboratory Program Variable Inventory (LPVI) survey. LPVI scores of 256 students were correlated with test scores and were examined by student gender. The Pearson correlation coefficient revealed a small direct correlation between students' experience in inquiry-based laboratory investigation classes and standardized test scores on the Biology EOCT. A partial correlational analysis indicated that the correlation remained after controlling for gender. This study may prompt a change from teacher-centered to student-centered pedagogy at the local site in order to increase academic achievement for all students. The results of this study may also influence administrators and policy makers to initiate local, state, or nationwide curricular development. A change in curriculum may promote social change as students become more competent, and more able, to succeed in life beyond secondary school.

  11. Becoming the Change: A Critical Evaluation of the Changing Face of Life Science, as Reflected in the NGSS

    Science.gov (United States)

    Bowman, Larry L., Jr.; Govett, Aimee L.

    2015-01-01

    Twenty-six states voluntarily partnered to provide leadership and guidance for the purpose of adoption of the Next Generation Science Standards (NGSS). However, a need exists to examine the NGSS versus state standards to better understand changes in curriculum and instruction to make their implementation successful for all states. The present…

  12. Incorporating Dynamical Systems into the Traditional Curriculum.

    Science.gov (United States)

    Natov, Jonathan

    2001-01-01

    Presents a brief overview of dynamical systems. Gives examples from dynamical systems and where they fit into the current curriculum. Points out that these examples are accessible to undergraduate freshmen and sophomore students, add continuity to the standard curriculum, and are worth including in classes. (MM)

  13. The botanical content in the South African curriculum: A barren desert or a thriving forest?

    Directory of Open Access Journals (Sweden)

    Amelia L. Abrie

    2016-02-01

    Full Text Available Botanists who are interested in education have often expressed their dismay at how plant sciences are neglected in Biology curricula, despite the important roles that plants play. While botanists in several overseas countries have studied the ways in which plant sciences are represented in curricula, no research has been done on how botany is neglected in the South African curriculum. Currently, the South African curriculum is known as the Curriculum and Assessment Policy Statements (CAPS for Grades R–12. In this study, a comparison was made among the content that is generally taught in introductory plant sciences courses, the American Society of Plant Biologists’ principles for plant biology education and the relevant CAPS documents. The time spent on plant, animal or human-focused content was established and compared at both phase and grade level. It was found that while the curriculum addresses all the major concepts in the plant sciences, very little time was being allocated to exclusively plant-focused content as compared to animal and human-focused content. This neglect was particularly prevalent in the Foundation Phase. The way in which the content is structured and presented in the curriculum may in all likelihood not be sufficient to provide a strong knowledge and skills foundation in the plant sciences, nor will it encourage the development of positive values towards plants. While consensus regarding the content of a curriculum will be difficult to achieve, awareness of potential gaps in the curriculum should be brought to the attention of the botanical and educational communities.

  14. Evaluation of the New Curriculum of the College of Health Sciences ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The changes to the curriculum were designed through a facilitated participatory process aimed at producing health professionals with expanded competencies. The new curriculum was deemed necessary to prepare health professionals to respond to the new demands of decentralized health service delivery, to tackle new ...

  15. Data Curation Education Grounded in Earth Sciences and the Science of Data

    Science.gov (United States)

    Palmer, C. L.

    2015-12-01

    This presentation looks back over ten years of experience advancing data curation education at two Information Schools, highlighting the vital role of earth science case studies, expertise, and collaborations in development of curriculum and internships. We also consider current data curation practices and workforce demand in data centers in the geosciences, drawing on studies conducted in the Data Curation Education in Research Centers (DCERC) initiative and the Site-Based Data Curation project. Outcomes from this decade of data curation research and education has reinforced the importance of key areas of information science in preparing data professionals to respond to the needs of user communities, provide services across disciplines, invest in standards and interoperability, and promote open data practices. However, a serious void remains in principles to guide education and practice that are distinct to the development of data systems and services that meet both local and global aims. We identify principles emerging from recent empirical studies on the reuse value of data in the earth sciences and propose an approach for advancing data curation education that depends on systematic coordination with data intensive research and propagation of current best practices from data centers into curriculum. This collaborative model can increase both domain-based and cross-disciplinary expertise among data professionals, ultimately improving data systems and services in our universities and data centers while building the new base of knowledge needed for a foundational science of data.

  16. The Earth2Class Model for Professional Development to Implement the Next Generation Science Standards

    Science.gov (United States)

    Passow, M. J.; Assumpcao, C. M.; Baggio, F. D.; Hemming, S. R.; Goodwillie, A. M.; Brenner, C.

    2014-12-01

    Professional development for teachers involved in the implementation of the Next Generation Science Standards (NGSS) will require a multifaceted approach combining curriculum development, understanding the nature of science, applications of engineering and technology, integrating reading and writing, and other pedagogical components. The Earth2Class Workshops (E2C) at the Lamont-Doherty Earth Observatory of Columbia University (LDEO) provides one model for creating effective training to meet the NGSS challenges. E2C has provided more than 135 workshops since 1998 that have brought together LDEO research scientists with classroom teachers and students from the New York metropolitan area and elsewhere. Each session provides teachers with the chance to learn first-hand about the wide range of investigations conducted at LDEO. This approach aligns strongly with the NGSS goals: mastery of the disciplinary core ideas, science and engineering practices, understanding the nature of science, and cross-cutting relationships. During workshops, participating teachers interact with scientists to gain understanding of what stimulated research questions, how scientists put together all the components of investigations, and ways in which results are disseminated. Networking among teachers often leads to developing lesson plans based on the science, as well as support for professional growth not always possible within the school setting. Through the E2C website www.earth2class.org, teachers and students not able to attend the live workshops can access archival versions of the sessions. The website also provides a wide variety of educational resources. These have proved to be valuable on a national basis, as evidenced by an average of more than 300,000 hits per month from thousands of site visitors. Participating researchers have found E2C to be an effective approach to provide broader outreach of their results. During the next couple of years, the E2C program will expand to provide

  17. Improving Early Career Science Teachers' Ability to Teach Space Science

    Science.gov (United States)

    Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.

    2012-12-01

    The GEMS Space Science Sequence is a high quality, hands-on curriculum for elementary and middle schools, created by a national team of astronomers and science educators with NASA funding and support. The standards-aligned curriculum includes 24 class sessions for upper elementary grades targeting the scale and nature of Earth's, shape, motion and gravity, and 36 class sessions for middle school grades focusing on the interactions between our Sun and Earth and the nature of the solar system and beyond. These materials feature extensive teacher support materials which results in pre-test to post-test content gains for students averaging 22%. Despite the materials being highly successful, there has been a less than desired uptake by teachers in using these materials, largely due to a lack of professional development training. Responding to the need to improve the quantity and quality of space science education, a collaborative of space scientists and science educators - from the University of California, Berkeley's Lawrence Hall of Science (LHS) and Center for Science Education at the Space Sciences Laboratory (CSE@SSL), the Astronomical Society of the Pacific (ASP), the University of Wyoming, and the CAPER Center for Astronomy & Physics Education - experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. Research on the exodus of young teachers from the teaching profession clearly demonstrates that early career teachers often leave teaching because of a lack of mentoring support and classroom ready curriculum materials. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers in middle school, and trained these master teachers to use the GEMS Space Science Sequence for Grades 6-8. Then, these master teachers were mentored in how to coach their

  18. Emerging identities: A proposed model for an interactive science curriculum for First Nations students

    Science.gov (United States)

    Sable, Trudy

    Mi'kmaw students face a complexity of personal, cultural, and social conditions within contemporary educational systems that affect their continued participation in the educational process offered within Atlantic Canada. Despite a variety of approaches developed by educators to address the high drop out rate and lack of interest in science, the statistics remain largely unchanged. Aboriginal educators are calling for a "new story" in education that better meets the needs of Aboriginal students. This study attempts to identify the conditions and contexts necessary to bridge the gap that currently exists for Aboriginal students in science studies. The research investigates the basic relationship between learning in general and the meaning-making processes engaged in by students of a Grade 7/8 class within a Mi'kmaw reserve school. It leads to a proposal for an alternative pedagogy, or a new narrative, for teaching science to Aboriginal students and the foundations for a culturally interactive science curriculum. For educators to understand the complexity of issues affecting Mi'kmaw student achievement in science requires a theoretical framework that allows the students' lived experience to emerge. Toward this end, the research includes both phenomenological and ethnographic approaches to understanding the lived experiences and cultural narratives based on interviews with the students, a field trip within the community, and a trial chemistry lesson. I examined how these students perceive themselves in different contexts and how their sense of identity establishes the meaningfulness of particular educational content. I also assessed how person, community/cultural and social contexts affect the students' learning. Part of creating this new narrative requires recognizing knowledge, including science, as a cultural product Taking this cultural view of scientific knowledge allows us to view learning as a process of identity formation and culture as a system of symbols

  19. Science standards: The foundation of evolution education in the United States

    Directory of Open Access Journals (Sweden)

    Elizabeth Watts

    2016-12-01

    Full Text Available Science standards and textbooks have a huge impact on the manner in which evolution is taught in American classrooms. Standards dictate how much time and what points have to be dedicated to the subject in order to prepare students for state-wide assessments, while the textbooks will largely determine how the subject is presented in the classroom. In the United States both standards and textbooks are determined at the state-level through a political process. Currently there is a tremendous amount of pressure arising from anti-evolutionists in the United States to weaken or omit the teaching of evolution despite recommendations from central institutions such as the National Academy of Science. Results from the Program for International Student Assessment (PISA showed that not only are American students performing below average, but also that their performance is declining as they scored worse in 2012 than they did in 2010. Interestingly PISA also found that the internal variation within a country is often greater than between countries with a variation of up to 300 points, which is equivalent to seven years of education pointing to the extreme heterogeneous quality of education within a country (OECD, 2012. An implementation of strong standards would not only help to increase the average performance of American students but could also alleviate the vast discrepancy between the highest and lowest scoring groups of American students. Although the Next Generation Science Standards have been in existence since 2013 and A Framework for K-12 Science Education has been available to the public since 2011 many American states still continue to create their own standards that, according to the Fordham study, are well below par (Lerner et al., 2012. Due to the political nature of the adoption procedure of standards and textbooks, there are many opportunities for interested individuals to get involved in the process of improving these fundamental elements of

  20. Narrative Inquiry for Science Education: Teachers' repertoire-making in the case of environmental curriculum

    Science.gov (United States)

    Hwang, Seyoung

    2011-04-01

    This paper considers how the school science curriculum can be conceptualised in order to address the contingent and complex nature of environmental and sustainability-related knowledge and understanding. A special concern lies in the development of research perspectives and tools for investigating ways, in which teachers are faced with complex and various situations in the sense-making of science-related issues, and subsequent pedagogic issues. Based on an empirical examination of Korean teachers' sense-making of their curricular practice, the paper develops a narrative approach to teachers' perspectives and knowledge by considering the value of stories as sense-making tools for reflective questioning of what is worth teaching, how and why. By employing the idea of 'repertoire', the study regards teachers' stories about their environment-related personal and teaching experiences as offering angles with which to understand teachers' motivation and reflection in curricular development and implementation. Furthermore, three empirical cases present ways in which the nature of knowledge and understanding is recognised and potentially integrated into pedagogies through teachers' narratives. Finally, the paper argues for the need to reconsider the role of the science teacher in addressing environmental and sustainability-related issues, in ways that facilitate teachers' reflexive interpretation of meanings in cultural texts and the construction of pedagogic text.

  1. Customization of Curriculum Materials in Science: Motives, Challenges, and Opportunities

    Science.gov (United States)

    Romine, William L.; Banerjee, Tanvi

    2012-02-01

    Exemplary science instructors use inquiry to tailor content to student's learning needs; traditional textbooks treat science as a set of facts and a rigid curriculum. Publishers now allow instructors to compile pieces of published and/or self-authored text to make custom textbooks. This brings numerous advantages, including the ability to produce smaller, cheaper text and added flexibility on the teaching models used. Moreover, the internet allows instructors to decentralize textbooks through easy access to educational objects such as audiovisual simulations, individual textbook chapters, and scholarly research articles. However, these new opportunities bring with them new problems. With educational materials easy to access, manipulate and duplicate, it is necessary to define intellectual property boundaries, and the need to secure documents against unlawful copying and use is paramount. Engineers are developing and enhancing information embedding technologies, including steganography, cryptography, watermarking, and fingerprinting, to label and protect intellectual property. While these are showing their utility in securing information, hackers continue to find loop holes in these protection schemes, forcing engineers to constantly assess the algorithms to make them as secure as possible. As newer technologies rise, people still question whether custom publishing is desirable. Many instructors see the process as complex, costly, and substandard in comparison to using traditional text. Publishing companies are working to improve attitudes through advertising. What lacks is peer reviewed evidence showing that custom publishing improves learning. Studies exploring the effect of custom course materials on student attitude and learning outcomes are a necessary next step.

  2. Science and Math Lesson Plans to Meet the Ohio Revised Science Standards and the Next Generation of Standards for Today; Technology (Excel

    Directory of Open Access Journals (Sweden)

    Suzanne Lunsford

    2015-02-01

    Full Text Available Pre-service teachers (K-12 developed and taught lesson plans that met the state and national science and technology standards by integrating Excel and PowerPoint into their lesson. A sample of 74 pre-service teachers in our science education program were required to integrate technology (Excel as they developed science and math lesson plans with graphing as a requirement. These students took pre-test and post-test (n=74 to determine their understanding of Excel in relation to the need of current technology for todays' science classroom. The test results showed that students obtained content gains in Excel graphing in all the inquiry-based lab experiments. They also gained experience in developing math skills, inquiry-based science lesson plans, and communication and presentation skills.

  3. Assessing the Life Science Knowledge of Students and Teachers Represented by the K–8 National Science Standards

    Science.gov (United States)

    Sadler, Philip M.; Coyle, Harold; Smith, Nancy Cook; Miller, Jaimie; Mintzes, Joel; Tanner, Kimberly; Murray, John

    2013-01-01

    We report on the development of an item test bank and associated instruments based on the National Research Council (NRC) K–8 life sciences content standards. Utilizing hundreds of studies in the science education research literature on student misconceptions, we constructed 476 unique multiple-choice items that measure the degree to which test takers hold either a misconception or an accepted scientific view. Tested nationally with 30,594 students, following their study of life science, and their 353 teachers, these items reveal a range of interesting results, particularly student difficulties in mastering the NRC standards. Teachers also answered test items and demonstrated a high level of subject matter knowledge reflecting the standards of the grade level at which they teach, but exhibiting few misconceptions of their own. In addition, teachers predicted the difficulty of each item for their students and which of the wrong answers would be the most popular. Teachers were found to generally overestimate their own students’ performance and to have a high level of awareness of the particular misconceptions that their students hold on the K–4 standards, but a low level of awareness of misconceptions related to the 5–8 standards. PMID:24006402

  4. Assessing the life science knowledge of students and teachers represented by the K-8 national science standards.

    Science.gov (United States)

    Sadler, Philip M; Coyle, Harold; Smith, Nancy Cook; Miller, Jaimie; Mintzes, Joel; Tanner, Kimberly; Murray, John

    2013-01-01

    We report on the development of an item test bank and associated instruments based on the National Research Council (NRC) K-8 life sciences content standards. Utilizing hundreds of studies in the science education research literature on student misconceptions, we constructed 476 unique multiple-choice items that measure the degree to which test takers hold either a misconception or an accepted scientific view. Tested nationally with 30,594 students, following their study of life science, and their 353 teachers, these items reveal a range of interesting results, particularly student difficulties in mastering the NRC standards. Teachers also answered test items and demonstrated a high level of subject matter knowledge reflecting the standards of the grade level at which they teach, but exhibiting few misconceptions of their own. In addition, teachers predicted the difficulty of each item for their students and which of the wrong answers would be the most popular. Teachers were found to generally overestimate their own students' performance and to have a high level of awareness of the particular misconceptions that their students hold on the K-4 standards, but a low level of awareness of misconceptions related to the 5-8 standards.

  5. A Proposed Concentration Curriculum Design for Big Data Analytics for Information Systems Students

    Science.gov (United States)

    Molluzzo, John C.; Lawler, James P.

    2015-01-01

    Big Data is becoming a critical component of the Information Systems curriculum. Educators are enhancing gradually the concentration curriculum for Big Data in schools of computer science and information systems. This paper proposes a creative curriculum design for Big Data Analytics for a program at a major metropolitan university. The design…

  6. Curriculum Theory and the Welfare State

    Directory of Open Access Journals (Sweden)

    Benjamin Justice

    2017-07-01

    Full Text Available How do states make citizens? The question is as old as states themselves. Surprisingly, however, the approaches to answering it have emerged as a form of parallel play, uncoordinated (and poorly understood across fields. This essay attempts to reconcile disparate realms of social research that address the question. The first, curriculum theory, grows out of educational research that for a century has focused almost exclusively on schools, schooling, and intentional settings for academic knowledge transmission. The second realm draws primarily on research from psychology, sociology, and political science to look empirically for effects of exposure to particular kinds of social phenomena. These include, but are not exclusive to, public institutions and policies. This essay begins by developing a mainstream conception of curriculum theory. It then compares and contrasts social science traditions that engage questions related to the state’s role in civic identity formation. Finally, it offers a case study on New York City’s controversial policing strategy known as Stop, Question, and Frisk, exploring how curriculum theory (developed in the context of mass schooling can be a useful framework for understanding the educational features of a distinct social policy.

  7. The Rise and Fall of the Social Science Curriculum Project in Iceland, 1974-1984: Reflections on Reason and Power in Educational Progress.

    Science.gov (United States)

    Edelstein, Wolfgang

    1987-01-01

    Examines the demise of the Icelandic Social Science Curriculum Project (SSCP) as an example of progressive educational reform thwarted by neofundamentalist ideologies. States that the paper goes beyond Jerome Bruner's 1984 account of the rise and fall of "Man: A Course of Study" to provide a deeper analysis of the politics of…

  8. Addressing Three Common Myths about the Next Generation Science Standards

    Science.gov (United States)

    Huff, Kenneth L.

    2016-01-01

    Although the "Next Generation Science Standards" (NGSS Lead States 2013) were released over two years ago, misconceptions about what they are--and are not--persist. The "NGSS" provide for consistent science education opportunities for all students--regardless of demographics--with a level of rigor expected in every location and…

  9. How In-Service Science Teachers Integrate History and Nature of Science in Elementary Science Courses

    Science.gov (United States)

    Hacieminoglu, Esme

    2014-01-01

    The purpose of this study is to investigate how the in-service science teachers' (IST) perceptions and practices about curriculum and integration of the history of science (HOS) and the nature of science (NOS) affect their science courses. For this aim, how ISTs integrated the NOS and HOS in their elementary science courses for understanding of…

  10. The re-theorisation of collective pedagogy and emergent curriculum

    Science.gov (United States)

    Fleer, Marilyn

    2010-09-01

    This essay review of Goulart and Roth's work explores the cultural-historical concepts that they have drawn upon to create a new conception of emergent curriculum in early childhood science education. The pedagogical contexts of Brazilian preschools is discussed in relation to other practices found across cultural communities, with a view to locating the specific research need that has arisen for preschools within Brazil. In the latter part of this article, Davydov's (International perspectives in non-classical psychology, 2008) work on theoretical knowledge and dialectical thinking is discussed in order to further develop Goulart and Roth's conception of early childhood science curriculum.

  11. The Power of Questions to Bring Balance to the Curriculum in the Age of New Standards

    Science.gov (United States)

    del Prado, Pixita; McMillen, Susan E.; Friedland, Ellen S.

    2017-01-01

    The Common Core State Standards (CCSS); the Next Generation Science Standards (NGSS); and the College, Career, and Civic Life (C3) Framework for Social State Standards are bringing many changes to schools and classrooms across the United States. This article suggests using the power of questions to make connections across seemingly disparate…

  12. Bioinformatics in High School Biology Curricula: A Study of State Science Standards

    Science.gov (United States)

    Wefer, Stephen H.; Sheppard, Keith

    2008-01-01

    The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics…

  13. Working Alongside Scientists. Impacts on Primary Teacher Beliefs and Knowledge About Science and Science Education

    Science.gov (United States)

    Anderson, Dayle; Moeed, Azra

    2017-05-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the impact on teacher beliefs about science and science education of a programme where 26 New Zealand primary (elementary) teachers worked fulltime for 6 months alongside scientists, experiencing the nature of work in scientific research institutes. During the 6 months, teachers were supported, through a series of targeted professional development days, to make connections between their experiences working with scientists, the curriculum and the classroom. Data for the study consisted of mid- and end-of-programme written teacher reports and open-ended questionnaires collected at three points, prior to and following 6 months with the science host and after 6 to 12 months back in school. A shift in many teachers' beliefs was observed after the 6 months of working with scientists in combination with curriculum development days; for many, these changes were sustained 6 to 12 months after returning to school. Beliefs about the aims of science education became more closely aligned with the New Zealand curriculum and its goal of developing science for citizenship. Responses show greater appreciation of the value of scientific ways of thinking, deeper understanding about the nature of scientists' work and the ways in which science and society influence each other.

  14. Taking Chances: A New Librarian and Curriculum Redesign.

    Science.gov (United States)

    Kovar-Gough, Iris

    2017-01-01

    As technology becomes ubiquitous in designing and delivering medical school curricula, health sciences librarians can embrace emerging opportunities for participation in curriculum design. A new medical librarian at Michigan State University Libraries engaged her user base outside of established duties, learned new skills, and challenged preconceived notions about librarians' roles. In the process, she became a partner in copyright education, amended license agreements for enhanced curricular multimedia use, and facilitated curriculum mapping through taxonomy building. These projects helped create the informational foundation for a novel hybrid medical education curriculum and introduced new curricular roles for the librarian.

  15. Paving the road for a European postgraduate training curriculum.

    Science.gov (United States)

    van der Aa, Jessica E; Goverde, Angelique J; Teunissen, Pim W; Scheele, Fedde

    2016-08-01

    The 'Project for Achieving Consensus in Training' has been initiated by the European Board & College of Obstetrics and Gynaecology to harmonise training in Obstetrics and Gynaecology throughout Europe. In this project called the EBCOG-PACT, a state of the art pan-European training curriculum will be developed. Implementation of a pan-European curriculum will enhance harmonisation of both quality standards of women's healthcare practice and standards of postgraduate training. Secondly, it will assure equal quality of training of gynaecologists, promoting mobility throughout Europe. Thirdly, it will enhance cooperation and exchange of best practices between medical specialists and hospitals within Europe. The project is expecting to deliver (1) a description of the core and electives of the curriculum based on previously defined standards of care, (2) a societally responsive competency framework based on input from societal stakeholders and (3) strategies for education and assessment based on the current literature. Also, the project focuses on implementation and sustainability of the curriculum by delivering (4) a SWOT-analysis for the implementation based on insights into transcultural differences, (5) recommendations for implementation, change management and sustainability based on the SWOT analysis (6) and finally a handbook for other specialties initiating European curriculum development. The development and the implementation of this modern pan-European curriculum in Obstetrics and Gynaecology aims to serve as an example for the harmonisation of postgraduate training in Europe. Copyright © 2016. Published by Elsevier Ireland Ltd.

  16. The Curriculum Customization Service: A Tool for Customizing Earth Science Instruction and Supporting Communities of Practice

    Science.gov (United States)

    Melhado, L. C.; Devaul, H.; Sumner, T.

    2010-12-01

    Accelerating demographic trends in the United States attest to the critical need to broaden access to customized learning: reports refer to the next decade as the era of “extreme diversity” in K-12 classrooms, particularly in large urban school districts. This diverse student body possesses a wide range of knowledge, skills, and abilities in addition to cultural differences. A single classroom may contain students with different levels of quantitative skills, different levels of English language proficiency, and advanced students preparing for college-level science. A uniform curriculum, no matter how well designed and implemented, cannot possibly serve the needs of such diverse learners equally well. Research has shown positive learning outcomes when pedagogical strategies that customize instruction to address specific learner needs are implemented, with under-achieving students often benefiting most. Supporting teachers in the effective adoption and use of technology to meet these instructional challenges is the underlying goal of the work to be presented here. The Curriculum Customization Service (CCS) is an integrated web-based platform for middle and high school Earth science teachers designed to facilitate teachers’ instructional planning and delivery; enhancing existing curricula with digital library resources and shared teacher-contributed materials in the context of articulated learning goals. The CCS integrates interactive resources from the Digital Library for Earth System Education (DLESE) with an inquiry-based curriculum component developed by the American Geological Institute (EarthComm and Investigating Earth Systems). The digital library resources emphasize visualizations and animations of Earth processes that often challenge students’ understanding, offering multiple representations of phenomena to address different learning styles, reading abilities, and preconceived ideas. Teachers can access these materials, as well as those created or

  17. Systematic Changes in the Undergraduate Chemistry Curriculum Progam Award and Course and Curriculum Development Program Awards

    Science.gov (United States)

    1996-06-01

    Eight awards in chemistry curriculum development for FY1996 have been announced. One award, to a consortium centered at the University of California-Los Angeles, represents the fifth award in the Systemic Changes in the Undergraduate Chemistry Curriculum program. Although no proposals will be accepted in this program for either planning or full grants for FY1997, it is anticipated that proposals will be accepted in June of 1997 for projects that would adapt and adopt materials developed by the five funded consortia: Molecular Science centered at the University of California-Los Angeles; ChemLinks centered at Beloit College; MolecularChem Consortium centered at the University of California-Berkeley; Workshop Chemistry centered at CUNY City College; and New Traditions centered at the University of Wisconsin-Madison. Seven awards have been made in the Course and Curriculum Development program. This ongoing program continues to accept proposals in chemistry as usual. Systemic Changes in the Undergraduate Chemistry Curriculum Program Award. Molecular Science. Orville L. Chapman University of California-Los Angeles DUE 9555605 FY96 725,000 FY97 575,000, FY98 575,000 FY99 275,000, FY00 275,000 The UCLA-CSUF-Community College Alliance (24 area community colleges that have worked together for more than 15 years) proposes a sweeping restructuring of the lower division chemistry curriculum and the auxiliary learning and assessment processes. In forming our new curriculum, we reject the positivist approach to science education in favor of a constructivist approach that emphasizes problem solving and exploratory learning. We make this change in order to focus on the developing key skills, traits, and abilities of our students. Our new curriculum, the Molecular Science Curriculum, cuts across departments and disciplines to embrace all activities that involve the study of atoms and molecules. In particular, environmental science, materials science, and molecular life science have

  18. ESO science data product standard for 1D spectral products

    Science.gov (United States)

    Micol, Alberto; Arnaboldi, Magda; Delmotte, Nausicaa A. R.; Mascetti, Laura; Retzlaff, Joerg

    2016-07-01

    The ESO Phase 3 process allows the upload, validation, storage, and publication of reduced data through the ESO Science Archive Facility. Since its introduction, 2 million data products have been archived and published; 80% of them are one-dimensional extracted and calibrated spectra. Central to Phase3 is the ESO science data product standard that defines metadata and data format of any product. This contribution describes the ESO data standard for 1d-spectra, its adoption by the reduction pipelines of selected instrument modes for in-house generation of reduced spectra, the enhanced archive legacy value. Archive usage statistics are provided.

  19. The Six-Legged Subject: A Survey of Secondary Science Teachers' Incorporation of Insects into U.S. Life Science Instruction.

    Science.gov (United States)

    Ingram, Erin; Golick, Douglas

    2018-03-14

    To improve students' understanding and appreciation of insects, entomology education efforts have supported insect incorporation in formal education settings. While several studies have explored student ideas about insects and the incorporation of insects in elementary and middle school classrooms, the topic of how and why insects are incorporated in secondary science classrooms remains relatively unexplored. Using survey research methods, this study addresses the gap in the literature by (1) describing in-service secondary science teachers' incorporation of insects in science classrooms; (2) identifying factors that support or deter insect incorporation and (3) identifying teachers' preferred resources to support future entomology education efforts. Findings indicate that our sample of U.S. secondary science teachers commonly incorporate various insects in their classrooms, but that incorporation is infrequent throughout the academic year. Insect-related lesson plans are commonly used and often self-created to meet teachers' need for standards-aligned curriculum materials. Obstacles to insect incorporation include a perceived lack of alignment of insect education materials to state or national science standards and a lack of time and professional training to teach about insects. Recommendations are provided for entomology and science education organizations to support teachers in overcoming these obstacles.

  20. The Six-Legged Subject: A Survey of Secondary Science Teachers’ Incorporation of Insects into U.S. Life Science Instruction

    Science.gov (United States)

    Ingram, Erin

    2018-01-01

    To improve students’ understanding and appreciation of insects, entomology education efforts have supported insect incorporation in formal education settings. While several studies have explored student ideas about insects and the incorporation of insects in elementary and middle school classrooms, the topic of how and why insects are incorporated in secondary science classrooms remains relatively unexplored. Using survey research methods, this study addresses the gap in the literature by (1) describing in-service secondary science teachers’ incorporation of insects in science classrooms; (2) identifying factors that support or deter insect incorporation and (3) identifying teachers’ preferred resources to support future entomology education efforts. Findings indicate that our sample of U.S. secondary science teachers commonly incorporate various insects in their classrooms, but that incorporation is infrequent throughout the academic year. Insect-related lesson plans are commonly used and often self-created to meet teachers’ need for standards-aligned curriculum materials. Obstacles to insect incorporation include a perceived lack of alignment of insect education materials to state or national science standards and a lack of time and professional training to teach about insects. Recommendations are provided for entomology and science education organizations to support teachers in overcoming these obstacles. PMID:29538297

  1. Wind-energy Science, Technology and Research (WindSTAR) Consortium: Curriculum, Workforce Development, and Education Plan Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, James [Univ. of Massachusetts, Amherst, MA (United States)

    2013-03-19

    The purpose of the project is to modify and expand the current wind energy curriculum at the University of Massachusetts Amherst and to develop plans to expand the graduate program to a national scale. The expansion plans include the foundational steps to establish the American Academy of Wind Energy (AAWE). The AAWE is intended to be a cooperative organization of wind energy research, development, and deployment institutes and universities across North America, whose mission will be to develop and execute joint RD&D projects and to organize high-level science and education in wind energy

  2. Integrated Assessment for an Integrated Curriculum.

    Science.gov (United States)

    Mockrish, Rob

    1989-01-01

    In a sixth grade science classroom for able students, major grades are broken down into four categories: lab reports, projects, creative writing, and written tests. These four components of assessment structure how the curriculum content is presented. (JDD)

  3. Science and Exploration in the Classroom & Beyond: An Interdisciplinary STEAM Curriculum Developed by SSERVI Educators & Scientists

    Science.gov (United States)

    Becker, Tracy M.; Runyon, Cassandra; Cynthia, Hall; Britt, Daniel; Tracy Becker

    2017-10-01

    Through NASA’s Solar System Exploration Research Virtual Institute (SSERVI), the Center for Lunar and Asteroid Surface Science (CLASS) and the SSERVI Evolution and Environment of Exploration Destinations (SEEED) nodes have developed an interdisciplinary formal and informal hands-on curriculum to bring the excitement of space exploration directly to the students.With a focus on exploring asteroids, this 5-year effort has infused art with traditional STEM practices (creating STEAM) and provides teachers with learning materials to incorporate art, social studies, English language arts, and other courses into the lesson plans. The formal curricula being developed follows Next Generation Standards and incorporates effective and engaging pedagogical strategies, such as problem-based learning (PBL), design thinking, and document based questions, using authentic data and articles, some of which are produced by the SSERVI scientists. From the materials developed for the formal education component, we have built up a collection of informal activities of varying lengths (minutes to weeks-long programs) to be used by museums, girl and boy scouts, science camps, etc.The curricula are being developed by formal and informal educators, artists, storytellers, and scientists. The continual feedback between the educators, artists, and scientists enables the program to evolve and mature such that the material will be accessible to the students without losing scientific merit. Online components will allow students to interact with SSERVI scientists and will ultimately infuse ongoing, exciting research into the student’s lessons.Our Education & Public Engagement (EPE) program makes a strong effort to make educational material accessible to all learners, including those with visual or hearing impairments. Specific activities have been included or independently developed to give all students an opportunity to experience the excitement of the universe.

  4. Cognitive Language and Content Standards: Language Inventory of the Common Core State Standards in Mathematics and the Next Generation Science Standards

    Science.gov (United States)

    Winn, Kathleen M.; Mi Choi, Kyong; Hand, Brian

    2016-01-01

    STEM education is a current focus of many educators and policymakers and the Next Generation Science Standards (NGSS) with the Common Core State Standards in Mathematics (CCSSM) are foundational documents driving curricular and instructional decision making for teachers and students in K-8 classrooms across the United States. Thus, practitioners…

  5. Chemistry in Past and New Science Frameworks and Standards: Gains, Losses, and Missed Opportunities

    Science.gov (United States)

    Talanquer, Vicente; Sevian, Hannah

    2014-01-01

    Science education frameworks and standards play a central role in the development of curricula and assessments, as well as in guiding teaching practices in grades K-12. Recently, the National Research Council published a new Framework for K-12 Science Education that has guided the development of the Next Generation Science Standards. In this…

  6. Scientific Management as part of the curriculum of Pedagogical Sciences.

    Directory of Open Access Journals (Sweden)

    Martha Margarita López Ruiz

    2013-07-01

    Full Text Available The Psychology and Pedagogy carer is developed in pedagogical sciences Cuban universities and the plan of the teaching learning process is organized on disciplines, subjects and activities from the working practice are distributed during the five years of the career which guarantee the fulfilment of the objectives in the professional qualification degree. Scientific educational management is included as part of the curriculum of this specialty in Pedagogical Universities. Scientific educational management has a great importance in the existence of state who is worried for the preparation and training of pedagogical specialists to whom ethics becomes a daily practice in their jobs in a society in which the formation and development of Cuban citizens is carried out by social programs encouraged by the government. The growing of this specialist is supported on the existence of a government that is interested on teaching, innovate and develop human beings by means of putting into practice social and cultural activities. The main goal of this article is to exemplify how to organize the contents of scientific educational management and the way of planning the teaching learning process to better future Cuban teacher trainers and managers.

  7. Next Generation Science Standards: Considerations for Curricula, Assessments, Preparation, and Implementation

    Science.gov (United States)

    Best, Jane; Dunlap, Allison

    2014-01-01

    This policy brief provides an overview of the Next Generation Science Standards (NGSS), discusses policy considerations for adopting or adapting the new standards, and presents examples from states considering or implementing the NGSS. Changing academic standards is a complex process that requires significant investments of time, money, and human…

  8. Ornamental Horticulture Production Occupations. Curriculum Guide.

    Science.gov (United States)

    Reneau, Fred; And Others

    This curriculum guide contains guidesheets for the ornamental horticulture production occupations. Each guidesheet provides a job-relevant task; performance objective, with task, performance standard, source of standard, and conditions for performance of task; enabling objectives; a list of resources; teaching activities; a criterion-referenced…

  9. Multicultural Science Education and Curriculum Materials

    Science.gov (United States)

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  10. 2016 High School Honors Human Anatomy and Physiology Curriculum Investigation for College Board Advanced Placement Classification Validity

    Directory of Open Access Journals (Sweden)

    Jeanine Siebold

    2017-02-01

    Full Text Available Four sections of senior Honors Human Anatomy and Physiology (A&P students are representative of sixty-five nations. These classes participated in a yearlong investigation pursuant of innovative learning, and grading modalities to introduce a 21st century curriculum for A&P to become a College Board Advanced Placement (AP course. All enrollees began the year by taking a self-assessment based on Howard Gardner's Multiple Intelligences. This data was evaluated for the design of learning approaches identifying student uniqueness that could better implement the Next Generation Science Standards (NGSS, and present State of Tennessee Human Anatomy and Physiology Learning Standards laying the groundwork to write the AP curriculum. Component curriculum rubrics were used, and modified to enable students to self-evaluate their performance in certain areas. Students participated in teams represented as Center for Disease Control and Prevention (CDC 'Intern Teams' investigating various diseases. The students, also, researched health equity, and disparity issues from variables based on survey questions they designed that could affect the health care treatment of patients suffering from their investigated disease. They then proposed a 2016 CDC Educational Campaign revamping public health education for the disease, including brochure, and public service announcement (PSA.

  11. A K-6 Computational Thinking Curriculum Framework : Implications for Teacher Knowledge

    NARCIS (Netherlands)

    Angeli, C.; Voogt, J.; Fluck, A.; Webb, M.; Cox, M.; Malyn-Smith, J.; Zagami, J.

    2016-01-01

    Adding computer science as a separate school subject to the core K-6 curriculum is a complex issue with educational challenges. The authors herein address two of these challenges: (1) the design of the curriculum based on a generic computational thinking framework, and (2) the knowledge teachers

  12. Making the Transition to Three-Dimensional Teaching: An NGSS@NSTA Curator and Elementary Science Specialist Shares How to Evaluate Teaching Materials Using the EQuIP Rubric

    Science.gov (United States)

    O'Day, Betsy

    2016-01-01

    Curriculum and lesson planning require the consideration of many things. With a shift to the "Next Generation Science Standards" ("NGSS"), integrating the dimensions of science and engineering practices, disciplinary core ideas, and crosscutting concepts becomes a focus of that planning. The author, Betsy O'Day, an elementary…

  13. Integrating Gender into the Political Science Core Curriculum

    Science.gov (United States)

    Cassese, Erin C.; Bos, Angela L.; Duncan, Lauren E.

    2012-01-01

    The New Research on Gender in Political Psychology Conference brought together new and experienced teachers with interests in gender politics. The conference session "Teaching Gender throughout the Curriculum" generated a great deal of discussion concerning the pedagogical practice of gender mainstreaming. Gender mainstreaming--the integration of…

  14. The Pennsylvania Academy for the Profession of Teaching; Rural Fellowship Program: A Science Curriculum Development Partnership. Project "Prepare Them for the Future."

    Science.gov (United States)

    Beisel, Raymond W.

    This report describes development of the "Prepare Them for the Future" project, a K-3 activity-oriented science curriculum. The program, funded through two grants, was driven by the need to boost the distressed labor-based economy in rural western Pennsylvania. Data showed a drop of 1,100 coal-mining jobs between 1980 and 1986 in Indiana…

  15. Teaching professionalism in science courses: Anatomy to zoology

    Directory of Open Access Journals (Sweden)

    Cheryl C. Macpherson

    2012-02-01

    Full Text Available Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies’ trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences.

  16. Learning Science and the Science of Learning. Science Educators' Essay Collection.

    Science.gov (United States)

    Bybee, Rodger W., Ed.

    This yearbook addresses critical issues in science learning and teaching. Contents are divided into four sections: (1) "How Do Students Learn Science?"; (2) "Designing Curriculum for Student Learning"; (3) "Teaching That Enhances Student Learning"; and (4) "Assessing Student Learning." Papers include: (1) "How Students Learn and How Teachers…

  17. Lessons of Researcher-Teacher Co-design of an Environmental Health Afterschool Club Curriculum

    Science.gov (United States)

    Hundal, Savreen; Levin, Daniel M.; Keselman, Alla

    2014-06-01

    This paper addresses the impact of teachers' beliefs about argumentation and their community of practice framed views of teaching on co-designing an environmental health afterschool club curriculum with researchers. Our team collaborated with a group of four middle school teachers, asking them to co-design a club that would facilitate (1) students' understanding of environmental health, (2) use of electronic resources, and (3) argumentation skills. The process included researcher-led sessions emphasizing the importance of argumentation to science and teacher-led curriculum design sessions. The qualitative analysis of the meetings and teacher interview transcripts suggests that while teachers viewed argumentation as important, its practice was relegated to the background by the focus on student engagement and perceived logistical and systemic constraints. The paper concludes that in addition to stressing relevance of argumentation to science learning, researchers involved in co-design need to emphasize the potential of argumentation to engage students and to fit into science curriculum. The analysis also reveals teacher-participants' views of environmental health as an important area of middle school education, relevant to students' lives, linkable to the existing curriculum, essential for informed citizenship, and capable of inspiring interest in science. These findings underscore the importance of integrating environmental health into science education and advocating for its inclusion in informal and formal educational settings.

  18. Nanomedicine concepts in the general medical curriculum: initiating a discussion

    Directory of Open Access Journals (Sweden)

    Sweeney AE

    2015-12-01

    Full Text Available Aldrin E Sweeney Center for Teaching & Learning, Ross University School of Medicine, Roseau, Commonwealth of Dominica Abstract: Various applications of nanoscale science to the field of medicine have resulted in the ongoing development of the subfield of nanomedicine. Within the past several years, there has been a concurrent proliferation of academic journals, textbooks, and other professional literature addressing fundamental basic science research and seminal clinical developments in nanomedicine. Additionally, there is now broad consensus among medical researchers and practitioners that along with personalized medicine and regenerative medicine, nanomedicine is likely to revolutionize our definitions of what constitutes human disease and its treatment. In light of these developments, incorporation of key nanomedicine concepts into the general medical curriculum ought to be considered. Here, I offer for consideration five key nanomedicine concepts, along with suggestions regarding the manner in which they might be incorporated effectively into the general medical curriculum. Related curricular issues and implications for medical education also are presented. Keywords: medical education, basic science, teaching, learning, assessment, nanoscience curriculum, nanomedicine concepts

  19. Teaching Sustainability and Resource Management Using NOAA's Voices Of The Bay Community Fisheries Education Curriculum

    Science.gov (United States)

    Hams, J. E.; Uttal, L.; Hunter-Thomson, K.; Nachbar, S.

    2010-12-01

    This presentation highlights the implementation of the NOAA VOICES OF THE BAY education curriculum at a two-year college. The VOICES OF THE BAY curriculum provides students with an understanding of the marine ecology, economy, and culture of fisheries through three interdisciplinary modules that use hands-on activities while meeting a wide range of science, math, social science, and communications standards. In the BALANCE IN THE BAY module, students use critical-thinking skills and apply principles of ecosystem-based management to analyze data, debate and discuss their findings, and make decisions that recognize the complex dynamics associated with maintaining a balance in fisheries. Through role-playing, teamwork, and a little fate, the FROM OCEAN TO TABLE module provides students with an opportunity to get an insider’s view of what it takes to be an active stakeholder in a commercial fishery. In the CAPTURING THE VOICES OF THE BAY module, students research, plan, and conduct personal interviews with citizens of the local fishing community and explore the multiple dimensions of fisheries and how they inter-connect through the lives of those who live and work in the region. The VOICES OF THE BAY modules were introduced into the curriculum at Los Angeles Valley College during the Fall 2009 semester and are currently being used in the introductory Oceanography lecture, introductory Oceanography laboratory, and Environmental Science laboratory courses. Examples of curriculum materials being used (power point presentations, module worksheets and simulated fishing activities) will be presented. In addition, samples of completed student worksheets for the three interdisciplinary modules are provided. Students commented that their overall awareness and knowledge of the issues involved in sustainable fishing and managing fishery resources increased following completion of the VOICES OF THE BAY education curriculum. Students enrolled in the laboratory sections commented

  20. Competency based ophthalmology training curriculum for ...

    African Journals Online (AJOL)

    Background: The establishment of a credible, defensible and acceptable “formal competency based ophthalmology training curriculum for undergraduate medical and dental students” is fundamental to program recognition, monitoring and evaluation. The University of Zimbabwe College of Health Sciences (UZ-CHS) has ...

  1. Global curriculum in surgical oncology.

    Science.gov (United States)

    Are, C; Berman, R S; Wyld, L; Cummings, C; Lecoq, C; Audisio, R A

    2016-06-01

    The significant global variations in surgical oncology training paradigms can have a detrimental effect on tackling the rising global cancer burden. While some variations in training are essential to account for the differences in types of cancer and biology, the fundamental principles of providing care to a cancer patient remain the same. The development of a global curriculum in surgical oncology with incorporated essential standards could be very useful in building an adequately trained surgical oncology workforce, which in turn could help in tackling the rising global cancer burden. The leaders of the Society of Surgical Oncology and European Society of Surgical Oncology convened a global curriculum committee to develop a global curriculum in surgical oncology. A global curriculum in surgical oncology was developed to incorporate the required domains considered to be essential in training a surgical oncologist. The curriculum was constructed in a modular fashion to permit flexibility to suit the needs of the different regions of the world. Similarly, recognizing the various sociocultural, financial and cultural influences across the world, the proposed curriculum is aspirational and not mandatory in intent. A global curriculum was developed which may be considered as a foundational scaffolding for training surgical oncologists worldwide. It is envisioned that this initial global curriculum will provide a flexible and modular scaffolding that can be tailored by individual countries or regions to train surgical oncologists in a way that is appropriate for practice in their local environment. Copyright © 2016 Society of Surgical Oncology, European Society of Surgical Oncology. Published by Elsevier Ltd.. All rights reserved.

  2. Next Generation Science Standards: A National Mixed-Methods Study on Teacher Readiness

    Science.gov (United States)

    Haag, Susan; Megowan, Colleen

    2015-01-01

    Next Generation Science Standards (NGSS) science and engineering practices are ways of eliciting the reasoning and applying foundational ideas in science. As research has revealed barriers to states and schools adopting the NGSS, this mixed-methods study attempts to identify characteristics of professional development (PD) that will support NGSS…

  3. Fundamental Data Standards for Science Data System Interoperability and Data Correlation

    Science.gov (United States)

    Hughes, J. Steven; Gopala Krishna, Barla; Rye, Elizabeth; Crichton, Daniel

    The advent of the Web and languages such as XML have brought an explosion of online science data repositories and the promises of correlated data and interoperable systems. However there have been relatively few successes in meeting the expectations of science users in the internet age. For example a Google-like search for images of Mars will return many highly-derived and appropriately tagged images but largely ignore the majority of images in most online image repositories. Once retrieved, users are further frustrated by poor data descriptions, arcane formats, and badly organized ancillary information. A wealth of research indicates that shared information models are needed to enable system interoperability and data correlation. However, at a more fundamental level, data correlation and system interoperability are dependant on a relatively few shared data standards. A com-mon data dictionary standard, for example, allows the controlled vocabulary used in a science repository to be shared with potential collaborators. Common data registry and product iden-tification standards enable systems to efficiently find, locate, and retrieve data products and their metadata from remote repositories. Information content standards define categories of descriptive data that help make the data products scientifically useful to users who were not part of the original team that produced the data. The Planetary Data System (PDS) has a plan to move the PDS to a fully online, federated system. This plan addresses new demands on the system including increasing data volume, numbers of missions, and complexity of missions. A key component of this plan is the upgrade of the PDS Data Standards. The adoption of the core PDS data standards by the International Planetary Data Alliance (IPDA) adds the element of international cooperation to the plan. This presentation will provide an overview of the fundamental data standards being adopted by the PDS that transcend science domains and that

  4. Integrating the New Generation Science Standards (NGSS) into K- 6 teacher training and curricula

    Science.gov (United States)

    Pinter, S.; Carlson, S. J.

    2017-12-01

    The Next Generation Science Standards is an initiative, adopted by 26 states, to set national education standards that are "rich in content and practice, arranged in a coherent manner across disciplines and grades to provide all students an internationally benchmarked science education." Educators now must integrate these standards into existing curricula. Many grade-school (K-6) teachers face a particularly daunting task, as they were traditionally not required to teach science or only at a rudimentary level. The majority of K-6 teachers enter teaching from non-science disciplines, making this transition even more difficult. Since the NGSS emphasizes integrated and coherent progression of knowledge from grade to grade, prospective K-6 teachers must be able to deliver science with confidence and enthusiasm to their students. CalTeach/MAST (Mathematics and Science Teaching Program) at the University of California Davis, has created a two-quarter sequence of integrated science courses for undergraduate students majoring in non-STEM disciplines and intending to pursue multiple-subject K-6 credentials. The UCD integrated science course provides future primary school teachers with a basic, but comprehensive background in the physical and earth/space sciences. Key tools are taught for improving teaching methods, investigating complex science ideas, and solving problems relevant to students' life experiences that require scientific or technological knowledge. This approach allows prospective K-6 teachers to explore more effectively the connections between the disciplinary core ideas, crosscutting concepts, and scientific and engineering practices, as outlined in the NGSS. In addition, they develop a core set of science teaching skills based on inquiry activities and guided lab discussions. With this course, we deliver a solid science background to prospective K-6 teachers and facilitate their ability to teach science following the standards as articulated in the NGSS.

  5. A Multi-User Virtual Environment for Building and Assessing Higher Order Inquiry Skills in Science

    Science.gov (United States)

    Ketelhut, Diane Jass; Nelson, Brian C.; Clarke, Jody; Dede, Chris

    2010-01-01

    This study investigated novel pedagogies for helping teachers infuse inquiry into a standards-based science curriculum. Using a multi-user virtual environment (MUVE) as a pedagogical vehicle, teams of middle-school students collaboratively solved problems around disease in a virtual town called River City. The students interacted with "avatars" of…

  6. What are the educational and curriculum needs for emergency medical technicians in Taiwan? A scoping review

    Directory of Open Access Journals (Sweden)

    Chang YT

    2017-09-01

    Full Text Available Yu-Tung Chang,1,2 Kuang-Chau Tsai,2 Brett Williams1 1Department of Community Emergency Health and Paramedic Practice, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Frankston, VIC, Australia; 2Emergency Medicine Department, Far Eastern Memorial Hospital, New Taipei City, Taiwan Purpose: The development of emergency medical services (EMS training in Taiwan is in a transitional phase because of increasing demand for, and advancements in, clinical skill sets. The aim of this study is to review the current literature to compare the key factors of EMS training and education development in different countries in order to provide a new curricula blueprint for the Taiwanese EMS training system.Method: The method follows Arksey and O’Malley’s six stages of scoping review.Results: Five databases were searched for relevant articles: MEDLINE, EMBASE, Allied and Complementary Medicine Database; Education Resources Information Center, and Google Scholar. The initial search of five databases produced 1,230 articles, of which title and abstract screening excluded 1,156 articles. The 74 remaining articles underwent a full-text screening process, which further reduced the number of articles to 22. Researching references and citations produced an additional 23 articles, national curriculum standards produced a further six documents, and one article derived from emergency medical technician (EMT regulation in Taiwan. In total, 52 articles were included in the study, categorized by competency and standards, EMT education and learning environment, curriculum design, and teaching and learning method.Conclusion: This study reviewed international EMS training and education literature and documents to summarize the essential elements for developing an EMS education system: for example, core competencies and standards, education environment, curriculum design, and teaching and learning method. By

  7. Teacher Perceptions of Their Curricular and Pedagogical Shifts: Outcomes of a Project-Based Model of Teacher Professional Development in the Next Generation Science Standards.

    Science.gov (United States)

    Shernoff, David J; Sinha, Suparna; Bressler, Denise M; Schultz, Dawna

    2017-01-01

    In this study, we conducted a model of teacher professional development (PD) on the alignment of middle and high school curricula and instruction to the Next Generation Science Standards (NGSSs), and evaluated the impact of the PD on teacher participants' development. The PD model included a 4-day summer academy emphasizing project-based learning (PBL) in the designing of NGSS-aligned curricula and instruction, as well as monthly follow-up Professional Learning Community meetings throughout the year providing numerous opportunities for teachers to develop and implement lesson plans, share results of lesson writing and implementation (successes and challenges), provide mutual feedback, and refine curricula and assessments. Following the summer academy, six female teachers were interviewed about their current conceptualizations of NGSS, the extent of curricular shifts made that are required by NGSS, their self-perceptions regarding their level of accomplishment in curriculum writing, and the benefits of the PD in reaching their goals related to NGSS. Interviews were supplemented with an analysis of lesson plans written while participating in the PD program. The interviewed teachers suggested that they had made important conceptual and pedagogical shifts required by NGSS as they participated in the PD, and also noted a variety of challenges as they made this shift. While all teachers were relative novices at NGSS curriculum writing before the PD, most of the teachers interviewed felt that they had achieved the status of an "accomplished novice" following the summer academy. An analysis of their written lessons suggested a great range in the extent to which teachers effectively applied their understanding of NGSS to write lessons aligned to NGSS. Interviewed teachers believed that the PD model was helpful to their development as science teachers, and all reported that there were no aspects of the PD that were not helpful. Even though most teachers obtained a basic

  8. The Pedagogical Orientations of South African Physical Sciences Teachers Towards Inquiry or Direct Instructional Approaches

    Science.gov (United States)

    Ramnarain, Umesh; Schuster, David

    2014-08-01

    In recent years, inquiry-based science instruction has become widely advocated in science education standards in many countries and, hence, in teacher preparation programmes. Nevertheless, in practice, one finds a wide variety of science instructional approaches. In South Africa, as in many countries, there is also a great disparity in school demographic situations, which can also affect teaching practices. This study investigated the pedagogical orientations of in-service physical sciences teachers at a diversity of schools in South Africa. Assessment items in a Pedagogy of Science Teaching Test (POSTT) were used to identify teachers' science teaching orientations, and reasons for pedagogical choices were probed in interviews. The findings reveal remarkable differences between the orientations of teachers at disadvantaged township schools and teachers at more privileged suburban schools. We found that teachers at township schools have a strong `active direct' teaching orientation overall, involving direct exposition of the science followed by confirmatory practical work, while teachers at suburban schools exhibit a guided inquiry orientation, with concepts being developed via a guided exploration phase. The study identified contextual factors such as class size, availability of resources, teacher competence and confidence, time constraints, student ability, school culture and parents' expectations as influencing the methods adopted by teachers. In view of the recent imperative for inquiry-based learning in the new South African curriculum, this study affirms the context specificity of curriculum implementation (Bybee 1993) and suggests situational factors beyond the curriculum mandate that need to be addressed to achieve successful inquiry-based classroom instruction in science.

  9. Curriculum Redesign in Veterinary Medicine: Part I.

    Science.gov (United States)

    Chaney, Kristin P; Macik, Maria L; Turner, Jacqueline S; Korich, Jodi A; Rogers, Kenita S; Fowler, Debra; Scallan, Elizabeth M; Keefe, Lisa M

    Curricular review is considered a necessary component for growth and enhancement of academic programs and requires time, energy, creativity, and persistence from both faculty and administration. At Texas A&M College of Veterinary Medicine & Biomedical Sciences (TAMU), the faculty and administration partnered with the university's Center for Teaching Excellence to create a faculty-driven, data-enhanced curricular redesign process. The 8-step process begins with the formation of a dedicated faculty curriculum design team to drive the redesign process and to support the college curriculum committee. The next steps include defining graduate outcomes and mapping the current curriculum to identify gaps and redundancies across the curriculum. Data are collected from internal and external stakeholders including veterinary students, faculty, alumni, and employers of graduates. Data collected through curriculum mapping and stakeholder engagement substantiate the curriculum redesign. The guidelines, supporting documents, and 8-step process developed at TAMU are provided to assist other veterinary schools in successful curricular redesign. This is the first of a two-part report that provides the background, context, and description of the process for charting the course for curricular change. The process involves defining expected learning outcomes for new graduates, conducting a curriculum mapping exercise, and collecting stakeholder data for curricular evaluation (steps 1-4). The second part of the report describes the development of rubrics that were applied to the graduate learning outcomes (steps 5-8) and engagement of faculty during the implementation phases of data-driven curriculum change.

  10. The Comparison of the Inquiry Behavior of ISCS and Non-ISCS Science Students as Measured by the Tab Science Test

    Science.gov (United States)

    Stallings, Everett S.; Snyder, William R.

    1977-01-01

    Studies of a group of seventh-grade students who were tested for inquiry skills using the TAB Science Test showed no significant differences between those students who had studied the Intermediate Science Curriculum Study (ISCS) and those who studied another curriculum. (MLH)

  11. Schools of California Online Resources for Education: History-Social Science One Stop Shopping for California's Social Studies Teachers.

    Science.gov (United States)

    Hill, Margaret; Benoit, Robert

    1998-01-01

    Reviews the resources available for social studies teachers from the Schools of California Online Resources for Education (SCORE): History Social Science World Wide Web site. Includes curriculum-aligned resources and lessons; standards and assessment information; interactive projects and field trips; teacher chat area; professional development…

  12. The impact of federal policy on teachers' use of science manipulatives: A survey of teacher philosophy and practices

    Science.gov (United States)

    Helgoe, Catherine A.

    Recently, educators in public K-12 schools have added testing of science knowledge to the measures of Adequate Yearly Progress required by the federal No Child Left Behind (NCLB) legislation. Research of the impact of NCLB policy on general teaching practices had credited the policy with improving instruction; however, negative impacts noted included the concern that teachers "teach to the test," narrowing the curriculum. Testing as an assessment strategy was not advocated by the professional educators and scientists responsible for the National Science Education Standards (NSES). Results from previous studies pointed to a potential conflict between the NCLB reforms and the National Science Education Standards science standards, in which teachers might reduce or eliminate hands-on activities and other constructivist practices in order to focus class time on other topics and tasks. Most research on NCLB policy, however, had not evaluated instructional practices regarding science education. This study examined the relationship among teacher beliefs, specifically the strength of their constructivist versus traditional beliefs, teachers' responses to NCLB policy, and teachers' use of constructivist practices in the form of manipulatives. This study showed that national policy did have an impact on teachers; however, that impact was not specific to the hands-on practices in science education. Teachers who responded to this survey had found many benefits in student learning using manipulatives and those positive impacts on their students justified the increased use of manipulatives in the classroom. The strength of teachers' constructivist beliefs showed a weak positive correlation to choices related to curriculum priorities, learning goals and advantages in using manipulatives. However, a relationship to beliefs was not found in the changes teachers made to various instructional practices, or in how they viewed certain manipulative materials, or in how they viewed

  13. Framework for Leading Next Generation Science Standards Implementation

    Science.gov (United States)

    Stiles, Katherine; Mundry, Susan; DiRanna, Kathy

    2017-01-01

    In response to the need to develop leaders to guide the implementation of the Next Generation Science Standards (NGSS), the Carnegie Corporation of New York provided funding to WestEd to develop a framework that defines the leadership knowledge and actions needed to effectively implement the NGSS. The development of the framework entailed…

  14. Self-reported competency ratings of graduates of a problem-leased medical curriculum

    NARCIS (Netherlands)

    van der Molen, H. T.

    Purpose. To study the self-reports of professional competencies by graduates of a problem-based medical curriculum. Method. All graduates from a medical school and a faculty of health sciences with a problem-based curriculum were sent a questionnaire asking them to compare their own performances in

  15. Self-reported competency ratings of graduates of a problem-based medical curriculum

    NARCIS (Netherlands)

    H.G. Schmidt (Henk); H.M. van der Molen

    2001-01-01

    textabstractPurpose. To study the self-reports of professional competencies by graduates of a problem-based medical curriculum. Method. All graduates from a medical school and a faculty of health sciences with a problem-based curriculum were sent a questionnaire asking them to compare their own

  16. Failure, The Next Generation: Why Rigorous Standards are not Sufficient to Improve Science Learning

    Directory of Open Access Journals (Sweden)

    Mary Antony Bair

    2014-11-01

    Full Text Available Although many states in the United States are adopting policies that require all students to complete college-preparatory science classes to graduate from high school, such policies have not always led to improved student outcomes. There is much speculation about the cause of the dismal results, but there is scant research on the processes by which the policies are being implemented at the school level, especially in schools that enroll large numbers of historically non-college-bound students. To address this gap in the literature, we conducted a four-year ethnographic case study of policy implementation at one racially and socioeconomically diverse high school in Michigan. Guided by the structuration theory of Anthony Giddens (1984, we gathered and analyzed information from interviews with administrators and science teachers, observations of science classes, and relevant curriculum and policy documents. Our findings reveal the processes and rationales by which a state policy mandating three years of college-preparatory science for all students was implemented at the school. Four years after the policy was implemented, there was little improvement in science outcomes. The main reason for this, we found, was the lack of correspondence between the state policy and local policies developed in response to that state policy.

  17. High-level radioactive waste curriculum usage, evaluation, and customer focus

    International Nuclear Information System (INIS)

    King, G.P.

    1994-01-01

    In August 1992, the U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) issued for educator use, a secondary school resource curriculum entitled open-quotes Science, Society, and America's Nuclear Wasteclose quotes. This resource curriculum was developed in response to years and thousands of teacher, student, and general public requests for facts about nuclear waste -- specifically, what the United States was doing and why. The curriculum materials when issued were the result of six years of development and testing by science and social studies teachers as well as multi-state field-testing and international critique. The curriculum is provided only to educators who specifically request it; and in the first one-and-a-half years following its availability more than 500,000 curriculum documents have been requested. Of all the requests for information received by OCRWM for any information or materials, most requests received are from educators or students. So one might consider educators and students to be open-quotes customerclose quotes, that is, as the business world might define customers: anyone expecting a product or a service from us. To determine usefulness and content for future editions of open-quotes Science, Society, and America's Nuclear Wasteclose quotes, the Office of Civilian Radioactive Waste Management has undertaken a usage evaluation to ensure that it focuses on the needs of the open-quotes customerclose quotes; that is, those who need and request it. This paper presents preliminary findings based on a formal evaluation provided to and requested from educators, unsolicited comments received from educator requesters of the material, and comments from others

  18. How the Environment Is Positioned in the "Next Generation Science Standards": A Critical Discourse Analysis

    Science.gov (United States)

    Hufnagel, Elizabeth; Kelly, Gregory J.; Henderson, Joseph A.

    2018-01-01

    The purpose of this paper is to describe how the environment and environmental issues are conceptualized and positioned in the Next Generation Science Standards (NGSS) to examine underlying assumptions about the environment. The NGSS are a recent set of science standards in the USA, organized and led by Achieve Inc., that propose science education…

  19. Executing and teaching science---The breast cancer genetics and technology-rich curriculum professional development studies of a science educator

    Science.gov (United States)

    Wragg, Regina E.

    This dissertation presents my explorations in both molecular biology and science education research. In study one, we determined the ADIPOQ and ADIPORI genotypes of 364 White and 148 Black BrCa patients and used dominant model univariate logistic regression analyses to determine individual SNP and haplotype associations with tumor or patient characteristics in a case-case comparison. We found twelve associations between individual SNPs and patient or tumor characteristics that impact BrCa prognosis. For example, the ADIPOQ rs1501299 C allele was associated with ER+ tumors (OR=4.73, p=0.001) among White women >50 years of age at their time of diagnosis. Also, the A allele was more frequent in the Black patient population among whom more aggressive subtypes are common. Similarly, the ADIPORI rs12733285 T allele was associated with both PR+ and ER+ tumors. (OR=2.18 p=0.001; OR=1.88 p=0.019, respectively). Our data suggest that several polymorphisms individually or as specific ADIPOQ and ADIPOR1 haplotypes are associated with tumor characteristics that impact prognosis in BrCa patients. Thus, genotyping additional groups of patients for these SNPs could offer insight into the involvement of adiponectin signaling allele variance in BrCa outcomes. In our second study, we examined 1) how teachers' beliefs about themselves and their students influence the fidelity of implementation of their enactment of a technology-rich curriculum, and 2) how professional development support during the enactment leads to changes in teacher beliefs. From the analysis of two teachers' experiences through interviews, surveys, journal entries, and video recordings of their enactments, several different themes were identified. For example, teachers' beliefs regarding students' ability to learn using the curriculum influenced the fidelity of implementation and student learning. These observations led to the development of a model of professional development that would promote faithful

  20. Key steps for integrating a basic science throughout a medical school curriculum using an e-learning approach.

    Science.gov (United States)

    Dubois, Eline Agnès; Franson, Kari Lanette

    2009-09-01

    Basic sciences can be integrated into the medical school curriculum via e-learning. The process of integrating a basic science in this manner resembles a curricular change. The change usually begins with an idea for using e-learning to teach a basic science and establishing the need for the innovation. In the planning phase, learning outcomes are formulated and a prototype of the program is developed based on the desired requirements. A realistic concept is formed after considering the limitations of the current institute. Next, a project team is assembled to develop the program and plan its integration. Incorporation of the e-learning program is facilitated by a well-developed and communicated integration plan. Various course coordinators are contacted to determine content of the e-learning program as well as establish assessment. Linking the e-learning program to existing course activities and thereby applying the basic science into the clinical context enhances the degree of integration. The success of the integration is demonstrated by a positive assessment of the program including favourable cost-benefit analysis and improved student performance. Lastly, when the program becomes institutionalised, continuously updating content and technology (when appropriate), and evaluating the integration contribute to the prolonged survival of the e-learning program.

  1. Revolutionizing Earth System Science Education for the 21st Century: Report and Recommendations from a 50-State Analysis of Earth Science Education Standards

    Science.gov (United States)

    Hoffman, Martos; Barstow, Daniel

    2007-01-01

    The National Oceanic and Atmospheric Administration (NOAA) commissioned TERC to complete a review of science education standards for all 50 states. The study analyzed K-12 Earth science standards to determine how well each state addresses key Earth-science content, concepts and skills. This report reveals that few states have thoroughly integrated…

  2. Incorporation of an Explicit Critical-Thinking Curriculum to Improve Pharmacy Students' Critical-Thinking Skills.

    Science.gov (United States)

    Cone, Catherine; Godwin, Donald; Salazar, Krista; Bond, Rucha; Thompson, Megan; Myers, Orrin

    2016-04-25

    Objective. The Health Sciences Reasoning Test (HSRT) is a validated instrument to assess critical-thinking skills. The objective of this study was to determine if HSRT results improved in second-year student pharmacists after exposure to an explicit curriculum designed to develop critical-thinking skills. Methods. In December 2012, the HSRT was administered to students who were in their first year of pharmacy school. Starting in August 2013, students attended a 16-week laboratory curriculum using simulation, formative feedback, and clinical reasoning to teach critical-thinking skills. Following completion of this course, the HSRT was readministered to the same cohort of students. Results. All students enrolled in the course (83) took the HSRT, and following exclusion criteria, 90% of the scores were included in the statistical analysis. Exclusion criteria included students who did not finish more than 60% of the questions or who took less than 15 minutes to complete the test. Significant changes in the HSRT occurred in overall scores and in the subdomains of deduction, evaluation, and inference after students completed the critical-thinking curriculum. Conclusions. Significant improvement in HSRT scores occurred following student immersion in an explicit critical-thinking curriculum. The HSRT was useful in detecting these changes, showing that critical-thinking skills can be learned and then assessed over a relatively short period using a standardized, validated assessment tool like the HSRT.

  3. Incorporation of an Explicit Critical-Thinking Curriculum to Improve Pharmacy Students’ Critical-Thinking Skills

    Science.gov (United States)

    Godwin, Donald; Salazar, Krista; Bond, Rucha; Thompson, Megan; Myers, Orrin

    2016-01-01

    Objective. The Health Sciences Reasoning Test (HSRT) is a validated instrument to assess critical-thinking skills. The objective of this study was to determine if HSRT results improved in second-year student pharmacists after exposure to an explicit curriculum designed to develop critical-thinking skills. Methods. In December 2012, the HSRT was administered to students who were in their first year of pharmacy school. Starting in August 2013, students attended a 16-week laboratory curriculum using simulation, formative feedback, and clinical reasoning to teach critical-thinking skills. Following completion of this course, the HSRT was readministered to the same cohort of students. Results. All students enrolled in the course (83) took the HSRT, and following exclusion criteria, 90% of the scores were included in the statistical analysis. Exclusion criteria included students who did not finish more than 60% of the questions or who took less than 15 minutes to complete the test. Significant changes in the HSRT occurred in overall scores and in the subdomains of deduction, evaluation, and inference after students completed the critical-thinking curriculum. Conclusions. Significant improvement in HSRT scores occurred following student immersion in an explicit critical-thinking curriculum. The HSRT was useful in detecting these changes, showing that critical-thinking skills can be learned and then assessed over a relatively short period using a standardized, validated assessment tool like the HSRT. PMID:27170812

  4. Aeronautics and Aviation Science: Careers and Opportunities Project

    Science.gov (United States)

    Texter, P. Cardie

    1998-01-01

    standards for quality of teaching, and an educational agenda that promotes high standards for all students, Aeronautics and Aviation Science: Careers and Opportunities had as its aim to deliver products to schools, both in and outside the project sites, which attempt to incorporate multi-disciplined approaches in the presentation of a curriculum which would be appropriate in any classroom, while also aiming to appeal to young women and minorities. The curriculum was developed to provide students with fundamentals of aeronautics and aviation science. The curriculum also encouraged involving students and teachers in research projects, and further information gathering via electronic bulletin boards and internet capabilities. Though not entirely prescriptive, the curriculum was designed to guide teachers through recommended activities to supplement MCET's live telecast video presentations. Classroom teachers were encouraged to invite local pilots, meteorologists, and others from the field of aviation and aeronautics, particularly women and minorities to visit schools and to field questions from the students.

  5. Cybersecurity Curriculum Development: Introducing Specialties in a Graduate Program

    Science.gov (United States)

    Bicak, Ali; Liu, Michelle; Murphy, Diane

    2015-01-01

    The cybersecurity curriculum has grown dramatically over the past decade: once it was just a couple of courses in a computer science graduate program. Today cybersecurity is introduced at the high school level, incorporated into undergraduate computer science and information systems programs, and has resulted in a variety of cybersecurity-specific…

  6. Investigating engagement, thinking, and learning among culturally diverse, urban sixth graders experiencing an inquiry-based science curriculum, contextualized in the local environment

    Science.gov (United States)

    Kelley, Sybil Schantz

    This mixed-methods study combined pragmatism, sociocultural perspectives, and systems thinking concepts to investigate students' engagement, thinking, and learning in science in an urban, K-8 arts, science, and technology magnet school. A grant-funded school-university partnership supported the implementation of an inquiry-based science curriculum, contextualized in the local environment through field experiences. The researcher worked as co-teacher of 3 sixth-grade science classes and was deeply involved in the daily routines of the school. The purposes of the study were to build a deeper understanding of the complex interactions that take place in an urban science classroom, including challenges related to implementing culturally-relevant instruction; and to offer insight into the role educational systems play in supporting teaching and learning. The central hypothesis was that connecting learning to meaningful experiences in the local environment can provide culturally accessible points of engagement from which to build science learning. Descriptive measures provided an assessment of students' engagement in science activities, as well as their levels of thinking and learning throughout the school year. Combined with analyses of students' work files and focus group responses, these findings provided strong evidence of engagement attributable to the inquiry-based curriculum. In some instances, degree of engagement was found to be affected by student "reluctance" and "resistance," terms defined but needing further examination. A confounding result showed marked increases in thinking levels coupled with stasis or decrease in learning. Congruent with past studies, data indicated the presence of tension between the diverse cultures of students and the mainstream cultures of school and science. Findings were synthesized with existing literature to generate the study's principal product, a grounded theory model representing the complex, interacting factors involved in

  7. Student Project and Curriculum Based on Light at Night Data Collection

    Science.gov (United States)

    Craine, Erin M.; DeBenedetti, Jennifer C.

    2012-05-01

    There is a growing movement in the educational field to promote science, technology, engineering and math studies, stemming from a concern about waning understanding and interest among K-12 students in these topics. STEM Laboratory, Inc. (STEM) has developed a Sky Brightness Meter (SBM) that can be used with ease yet produces complex information relating to light at night monitoring. STEM sees the SBM and its corresponding data archive as a means to involve students in projects that relate to scientific method exploration, makes science more accessible, and encourages a life long appreciation and understanding of scientific endeavors. In this paper we present an example of a project template that could be used by students studying effects of artificial light on sky brightness. STEM has developed several outreach lessons aligned with the National Common Core Curriculum, Systems Thinking concepts and local standards to be implemented in classrooms or independent youth organizations.

  8. Dismantling the Curriculum in Higher Education

    Directory of Open Access Journals (Sweden)

    Richard Hall

    2016-04-01

    Full Text Available The higher education curriculum in the global North is increasingly co-opted for the production of measurable outcomes, framed by determinist narratives of employability and enterprise. Such co-option is immanent to processes of financialisation and marketisation, which encourage the production of quantifiable curriculum activities and tradable academic services. Yet the university is also affected by global socio-economic and socio-environmental crises, which can be expressed as a function of a broader crisis of social reproduction or sociability. As the labour of academics and students is increasingly driven by a commodity-valuation rooted in the measurement of performance, the ability for academics and students to respond to crises from inside the university is constrained by the market. This article argues that in understanding the relationship between the university and society, and in responding to a crisis of sociability, revealing the bounded nature of the curriculum is central. One possible way to address this crisis is by re-imagining the university through the co-operative practices of groups like the Dismantling the Masters House community and the Social Science Centre. Such an exploration, rooted in the organising principles of the curriculum, asks educators to consider how their curriculum reproduces an on-going colonisation by Capital. It is argued that such work enables a re-imagination of higher education that is rooted in a co-operative curriculum, and which might enable activist-educators to build an engaged curriculum, through which students and academics no longer simply learn to internalise, monitor and manage their own alienation.

  9. Charles Darwin and Evolution: Illustrating Human Aspects of Science

    Science.gov (United States)

    Kampourakis, Kostas; McComas, William F.

    2010-01-01

    Recently, the nature of science (NOS) has become recognized as an important element within the K-12 science curriculum. Despite differences in the ultimate lists of recommended aspects, a consensus is emerging on what specific NOS elements should be the focus of science instruction and inform textbook writers and curriculum developers. In this…

  10. Tracing the Policy Mediation Process in the Implementation of a Change in the Life Sciences Curriculum

    Science.gov (United States)

    Singh-Pillay, Asheena; Alant, Busisiwe

    2015-01-01

    This paper accounts for the enacted realities of curriculum reform in South Africa, in particular the mediation of curriculum change. Curriculum implementation is viewed as a complex networked process of transforming or mediating policy into classroom practice. The fact that curriculum implementation is seen as problematic requires attention for…

  11. Meeting Classroom Needs: Designing Space Physics Educational Outreach for Science Education Standards

    Science.gov (United States)

    Urquhart, M. L.; Hairston, M.

    2008-12-01

    As with all NASA missions, the Coupled Ion Neutral Dynamics Investigation (CINDI) is required to have an education and public outreach program (E/PO). Through our partnership between the University of Texas at Dallas William B. Hanson Center for Space Sciences and Department of Science/Mathematics Education, the decision was made early on to design our educational outreach around the needs of teachers. In the era of high-stakes testing and No Child Left Behind, materials that do not meet the content and process standards teachers must teach cannot be expected to be integrated into classroom instruction. Science standards, both state and National, were the fundamental drivers behind the designs of our curricular materials, professional development opportunities for teachers, our target grade levels, and even our popular informal educational resource, the "Cindi in Space" comic book. The National Science Education Standards include much more than content standards, and our E/PO program was designed with this knowledge in mind as well. In our presentation we will describe how we came to our approach for CINDI E/PO, and how we have been successful in our efforts to have CINDI materials and key concepts make the transition into middle school classrooms. We will also present on our newest materials and high school physics students and professional development for their teachers.

  12. Issues in Informal Education: Event-Based Science Communication Involving Planetaria and the Internet

    Science.gov (United States)

    Adams, M.; Gallagher, D. L.; Whitt, A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    For the past four years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of science communication through the web resources on the Internet. The program includes extended stories about NAS.4 science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. We give here, examples of events, problems, and lessons learned from these activities.

  13. Examining occupational therapy education through faculty engagement in curriculum mapping and pedagogical reflection.

    Science.gov (United States)

    MacNeil, Cheryl; Hand, Theresa

    2014-01-01

    This article discusses a 1-yr evaluation study of a master of science in occupational therapy program to examine curriculum content and pedagogical practices as a way to gauge program preparedness to move to a clinical doctorate. Faculty members participated in a multitiered qualitative study that included curriculum mapping, semistructured individual interviewing, and iterative group analysis. Findings indicate that curriculum mapping and authentic dialogue helped the program formulate a more streamlined and integrated curriculum with increased faculty collaboration. Curriculum mapping and collaborative pedagogical reflection are valuable evaluation strategies for examining preparedness to offer a clinical doctorate, enhancing a self-study process, and providing information for ongoing formative curriculum review. Copyright © 2014 by the American Occupational Therapy Association, Inc.

  14. NASA Reverb: Standards-Driven Earth Science Data and Service Discovery

    Science.gov (United States)

    Cechini, M. F.; Mitchell, A.; Pilone, D.

    2011-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) is a core capability in NASA's Earth Science Data Systems Program. NASA's EOS ClearingHOuse (ECHO) is a metadata catalog for the EOSDIS, providing a centralized catalog of data products and registry of related data services. Working closely with the EOSDIS community, the ECHO team identified a need to develop the next generation EOS data and service discovery tool. This development effort relied on the following principles: + Metadata Driven User Interface - Users should be presented with data and service discovery capabilities based on dynamic processing of metadata describing the targeted data. + Integrated Data & Service Discovery - Users should be able to discovery data and associated data services that facilitate their research objectives. + Leverage Common Standards - Users should be able to discover and invoke services that utilize common interface standards. Metadata plays a vital role facilitating data discovery and access. As data providers enhance their metadata, more advanced search capabilities become available enriching a user's search experience. Maturing metadata formats such as ISO 19115 provide the necessary depth of metadata that facilitates advanced data discovery capabilities. Data discovery and access is not limited to simply the retrieval of data granules, but is growing into the more complex discovery of data services. These services include, but are not limited to, services facilitating additional data discovery, subsetting, reformatting, and re-projecting. The discovery and invocation of these data services is made significantly simpler through the use of consistent and interoperable standards. By utilizing an adopted standard, developing standard-specific adapters can be utilized to communicate with multiple services implementing a specific protocol. The emergence of metadata standards such as ISO 19119 plays a similarly important role in discovery as the 19115 standard

  15. Assessing the Life Science Knowledge of Students and Teachers Represented by the K-8 National Science Standards

    Science.gov (United States)

    Sadler, Philip M.; Coyle, Harold; Cook Smith, Nancy; Miller, Jaimie; Mintzes, Joel; Tanner, Kimberly; Murray, John

    2013-01-01

    We report on the development of an item test bank and associated instruments based on the National Research Council (NRC) K-8 life sciences content standards. Utilizing hundreds of studies in the science education research literature on student misconceptions, we constructed 476 unique multiple-choice items that measure the degree to which test…

  16. Extended professional development for systemic curriculum reform

    Science.gov (United States)

    Kubitskey, Mary Elizabeth

    Education standards call for adopting inquiry science instruction. Successful adoption requires professional development (PD) to support teachers, increasing the need for research on PD. This dissertation examines the question: What is the influence of high quality, curriculum aligned, long-term group workshops and related practice on teacher learning? I focus on the following subquestions: (1) What is the influence of high quality, curriculum aligned, long-term, group workshops on teacher knowledge and beliefs? (2) What is the impact of the workshops on teacher practice? (3) What is the influence of practice on student response? (4) What is the impact of practice and student response on teacher knowledge and beliefs? I focus on an instance of PD nested within a long-term systemic change initiative, tracing eleven science teachers' learning from workshops and associated enactments. The data included pre and post-unit interviews (n=22), two post-workshop interviews (n=17), workshop observations (n=2), classroom observations (n=24) and student work (n=351). I used mixed-methods analysis. Quantitative analysis measured teacher learning by comparing pre and post-unit interview ratings. Qualitative components included two case study approaches: logic model technique and cross-case synthesis, examining teacher learning within and across teachers. The findings suggested a teacher-learning model incorporating PD, teacher knowledge, beliefs, practice and student response. PD impacts teachers' knowledge by providing teachers with new knowledge, adapting previous knowledge, or convincing them to value existing knowledge they chose not to use. The workshops can influence beliefs, providing teachers with confidence and motivation to adopt the practice. Beliefs can mediate how knowledge manifested itself in practice that, in turn, impacts students' response. Student response influences the teachers' beliefs, either reinforcing or motivating change. This teacher-learning model

  17. Teaching professionalism in science courses: anatomy to zoology.

    Science.gov (United States)

    Macpherson, Cheryl C

    2012-02-01

    Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies' trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences. Copyright © 2011. Published by Elsevier B.V.

  18. Into the Curriculum. Reading/Language Arts: Hans Christian Andersen [and] Science: Bat Research [and] Science: The Library Media Center Rocks! An Introduction to Rocks, Minerals, and Gemstones [and] Social Studies: Ticket to the Olympics: Exploring Sydney and the 2000 Summer Games [and] Social Studies/Music: Sounds of the Election: Presidential Campaign Songs.

    Science.gov (United States)

    Germain, Claudia; Mayo, Jeanne B.; Hart, Lisa

    2000-01-01

    Provides five fully developed library media activities that are designed for use with specific curriculum units in reading and language arts, science, social studies, and music. Library media skills, curriculum objectives, grade levels, resources, instructional roles, procedures, evaluation, and follow-up are described for each activity. (LRW)

  19. Rethinking the MSW Curriculum

    Science.gov (United States)

    Colby, Ira C.

    2013-01-01

    The foundation year and specialization year of study are the accepted framework for graduate social work education. A common belief among educators is that accreditation standards are prescriptive by design, resulting in a rigidity that neither encourages nor supports curricular innovation. This article outlines a newly developed curriculum model…

  20. Addressing Next Generation Science Standards: A Method for Supporting Classroom Teachers

    Science.gov (United States)

    Pellien, Tamara; Rothenburger, Lisa

    2014-01-01

    The Next Generation Science Standards (NGSS) will define science education for the foreseeable future, yet many educators struggle to see the bridge between current practice and future practices. The inquiry-based methods used by Extension professionals (Kress, 2006) can serve as a guide for classroom educators. Described herein is a method of…