WorldWideScience

Sample records for science curriculum focusing

  1. Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration

    Science.gov (United States)

    Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.

    2017-12-01

    "Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of

  2. Data Science Programs in U.S. Higher Education: An Exploratory Content Analysis of Program Description, Curriculum Structure, and Course Focus

    Science.gov (United States)

    Tang, Rong; Sae-Lim, Watinee

    2016-01-01

    In this study, an exploratory content analysis of 30 randomly selected Data Science (DS) programs from eight disciplines revealed significant gaps in current DS education in the United States. The analysis centers on linguistic patterns of program descriptions, curriculum requirements, and DS course focus as pertaining to key skills and domain…

  3. K-6 Science Curriculum.

    Science.gov (United States)

    Blueford, J. R.; And Others

    A unified science approach is incorporated in this K-6 curriculum mode. The program is organized into six major cycles. These include: (1) science, math, and technology cycle; (2) universe cycle; (3) life cycle; (4) water cycle; (5) plate tectonics cycle; and (6) rock cycle. An overview is provided of each cycle's major concepts. The topic…

  4. Analysis of the Importance of Subjects to Improve the Educational Curriculum in the Radiological Science: Focused on Radiological Technologists

    International Nuclear Information System (INIS)

    Kim, Jung Hoon; Ko, Seong Jin; Kang, Se Sik; Kim, Dong Hyun; Kim, Chang Soo

    2012-01-01

    In this study a group of experts and clinical radiological technologists were surveyed to evaluate the clinical importance of current subjects in the radiological sciences. For the data collection and analysis, an open-ended questionnaire was distributed to the group of experts, and a multiple choice questionnaire was distributed to radiological technologists. Subjects were classified into 9 groups for analysis of the importance of subjects, and in regard to the questionnaire design for measurement of variables, departments and type of hospital were set up as independent variables, and the 9 groups of subjects were set up as dependent variables. As a result, clinical radiological technologists perceived Diagnostic Imaging Technology and practical courses, including general radiography, CT and MRI, as the most clinically necessary subjects, and the group of experts placed most weight on basic courses for the major. The result of this study suggests that the curriculum should be revised in a way that combines theory and practice in order to foster radiological technologists capable of adapting to the rapidly changing healthcare environment.

  5. Focus groups: a useful tool for curriculum evaluation.

    Science.gov (United States)

    Frasier, P Y; Slatt, L; Kowlowitz, V; Kollisch, D O; Mintzer, M

    1997-01-01

    Focus group interviews have been used extensively in health services program planning, health education, and curriculum planning. However, with the exception of a few reports describing the use of focus groups for a basic science course evaluation and a clerkship's impact on medical students, the potential of focus groups as a tool for curriculum evaluation has not been explored. Focus groups are a valid stand-alone evaluation process, but they are most often used in combination with other quantitative and qualitative methods. Focus groups rely heavily on group interaction, combining elements of individual interviews and participant observation. This article compares the focus group interview with both quantitative and qualitative methods; discusses when to use focus group interviews; outlines a protocol for conducting focus groups, including a comparison of various styles of qualitative data analysis; and offers a case study, in which focus groups evaluated the effectiveness of a pilot preclinical curriculum.

  6. Revidert læreplan i naturfag – Økt fokus på grunnleggende ferdigheter og forskerspirenRevised Norwegian science curriculum – Increased focus on literacy and inquiry skills

    Directory of Open Access Journals (Sweden)

    Sonja M. Mork

    2013-11-01

    Full Text Available One of the main consequences of the large Norwegian curriculum reform in 2006 is that teachers in all subjects are now responsible for focusing on the basic skills of reading, writing, oral, arithmetic and the use of digital tools. However, research following the implementation of the reform report a gap between curriculum intentions and classroom practice regarding basic skills. Hence the curriculum in science and four other subjects are now revised to clarify basic skills. This article describes some of the background for the revision, the revision process and some main changes in the revised curriculum.

  7. The Next Generation Science Standards: A Focus on Physical Science

    Science.gov (United States)

    Krajcik, Joe

    2013-01-01

    This article describes ways to adapt U.S. science curriculum to the U.S. National Research Council (NRC) "Framework for K-12 Science Education" and "Next Generation of Science Standards" (NGSS), noting their focus on teaching the physical sciences. The overall goal of the Framework and NGSS is to help all learners develop the…

  8. Grade 6 Science Curriculum Specifications.

    Science.gov (United States)

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    This material describes curriculum specifications for grade 6 science in Alberta. Emphases recommended are: (1) process skills (50%); (2) psychomotor skills (10%); (3) attitudes (10%); and (4) subject matter (30%). Priorities within each category are identified. (YP)

  9. Science Curriculum Guide, Level 4.

    Science.gov (United States)

    Newark School District, DE.

    The fourth of four levels in a K-12 science curriculum is outlined. In Level 4 (grades 9-12), science areas include earth science, biology, chemistry, and physics. Six major themes provide the basis for study in all levels (K-12). These are: Change, Continuity, Diversity, Interaction, Limitation, and Organization. In Level 4, all six themes are…

  10. UWHS Climate Science: Uniting University Scientists and High School Teachers in the Development and Implementation of a Dual-Credit STEM-Focused Curriculum

    Science.gov (United States)

    Bertram, M. A.; Thompson, L.; Ackerman, T. P.

    2012-12-01

    The University of Washington is adapting a popular UW Atmospheric Sciences course on Climate and Climate Change for the high school environment. In the process, a STEM-focused teaching and learning community has formed. With the support of NASA Global Climate Change Education 20 teachers have participated in an evolving professional development program that brings those actively engaged in research together with high school teachers passionate about bringing a formal climate science course into the high school. Over a period of several months participating teachers work through the UW course homework and delve deeply into specific subject areas. Then, during a week-long summer institute, scientists bring their particular expertise (e.g. radiation, modeling) to the high school teachers through lectures or labs. Together they identify existing lectures, textbook material and peer-reviewed resources and labs available through the internet that can be used to effectively teach the UW material to the high school students. Through this process the scientists learn how to develop teaching materials around their area of expertise, teachers engage deeply in the subject matter, and both the university and high school teachers are armed with the tools to effectively teach a STEM-focused introductory course in climate science. To date 12 new hands-on modules have been completed or are under development, exploring ice-cores, isotopes, historical temperature trends, energy balance, climate models, and more. Two modules have been tested in the classroom and are ready for peer-review through well-respected national resources such as CLEAN or the National Earth Science Teachers Association; three others are complete and will be implemented in a high school classroom this year, and the remainder under various stages of development. The UWHS ATMS 211 course was piloted in two APES (Advanced Placement Environmental Science classrooms) in Washington State in 2011/2012. The high school

  11. Multi-Year Professional Development Grounded in Educative Curriculum Focused on Integrating Technology with Reformed Science Teaching Principles

    Science.gov (United States)

    Longhurst, Max L.; Coster, Daniel C.; Wolf, Paul G.; Duffy, Aaron M.; Lee, Hyunju; Campbell, Todd

    2016-01-01

    Visions of science teaching and learning in the newest U.S. standards documents are dramatically different than those found in most classrooms. This research addresses these differences through closely examining one professional development (PD) project that connects teacher learning and teacher practice with student learning/achievement. This…

  12. Leading Change in the Primary Science Curriculum

    Science.gov (United States)

    Waller, Nicky; Baker, Chris

    2014-01-01

    Nicky Waller and Chris Baker believe that change can be a good thing and explain how their training has helped others to adjust to the new science curriculum. In September 2013, teachers across England received the definitive version of the new primary curriculum "Leading Change in the Primary Science Curriculum." This course aimed to…

  13. Mentoring BUGS: An Integrated Science and Technology Curriculum

    Science.gov (United States)

    Harrell, Pamela Esprivalo; Walker, Michelle; Hildreth, Bertina; Tyler-Wood, Tandra

    2004-01-01

    The current study describes an authentic learning experience designed to develop technology and science process skills through a carefully scaffolded curriculum using mealworms as a content focus. An individual mentor assigned to each 4th and 5th grade girl participating in the program delivered the curriculum. Results indicate mastery of science…

  14. On track for success: an innovative behavioral science curriculum model.

    Science.gov (United States)

    Freedy, John R; Carek, Peter J; Dickerson, Lori M; Mallin, Robert M

    2013-01-01

    This article describes the behavioral science curriculum currently in place at the Trident/MUSC Family Medicine Residency Program. The Trident/MUSC Program is a 10-10-10 community-based, university-affiliated program in Charleston, South Carolina. Over the years, the Trident/MUSC residency program has graduated over 400 Family Medicine physicians. The current behavioral science curriculum consists of both required core elements (didactic lectures, clinical observation, Balint groups, and Resident Grand Rounds) as well as optional elements (longitudinal patient care experiences, elective rotations, behavioral science editorial experience, and scholars project with a behavioral science focus). All Trident/MUSC residents complete core behavioral science curriculum elements and are free to participate in none, some, or all of the optional behavioral science curriculum elements. This flexibility allows resident physicians to tailor the educational program in a manner to meet individual educational needs. The behavioral science curriculum is based upon faculty interpretation of existing "best practice" guidelines (Residency Review Committee-Family Medicine and AAFP). This article provides sufficient curriculum detail to allow the interested reader the opportunity to adapt elements of the behavioral science curriculum to other residency training programs. While this behavioral science track system is currently in an early stage of implementation, the article discusses track advantages as well as future plans to evaluate various aspects of this innovative educational approach.

  15. Water Pollution, Environmental Science Curriculum Guide Supplement.

    Science.gov (United States)

    McKenna, Harold J.

    This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers…

  16. Science curriculum formation in Denmark

    DEFF Research Database (Denmark)

    Chaiklin, Seth

    Cultural-historical theory is primarily a psychological theory about and human action and development within meaningful contexts. As a psychologically-oriented theory, it can be relevant to science education research, even if it was not been developed or elaborated specifically in relation...... to problems within science education. STEM education research can be reduced (roughly) to four major problem areas: curriculum, empirical evaluation of existing practices and conditions, didactics, and professional development, where each of these categories can be concretised further according to grade...... between research and practice, (b) the idea of developmental teaching, and (c) the idea of theoretical thinking. This paper will present an example of subject-matter analysis for food production and food chemistry to illustrate practical consequences that follow from these three points....

  17. Space Sciences Focus Area

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-10

    To advance our understanding of the space environment (from the Sun to the Earth and beyond) and to advance our ability to operate systems in space that protect life and society. Space Science is distinct from other field, such as astrophysics or cosmology, in that Space Science utilizes in-situ measurements from high altitude rockets, balloons and spacecraft or ground-based measurements of objects and conditions in space.

  18. Student teachers' views: what is an interesting life sciences curriculum?

    OpenAIRE

    Rian de Villiers

    2011-01-01

    In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET) phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university...

  19. Curriculum-Dependent and Curriculum-Independent Factors in Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Science

    Science.gov (United States)

    Forbes, Cory T.

    2013-01-01

    In this nested mixed methods study I investigate factors influencing preservice elementary teachers' adaptation of science curriculum materials to better support students' engagement in science as inquiry. Analyses focus on two "reflective teaching assignments" completed by 46 preservice elementary teachers in an undergraduate elementary science…

  20. A Substantiation of Macdonald's Models in Science Curriculum Development.

    Science.gov (United States)

    Searles, W. E.

    1982-01-01

    A history and analysis of science curriculum development is presented. Factors which influence the selection and organization of content in a science curriculum are discussed, including Macdonald's curriculum development models, propositions for curriculum development, and changes made in science curricula during the last century. (CJ)

  1. Student Teachers' Views: What Is an Interesting Life Sciences Curriculum?

    Science.gov (United States)

    de Villiers, Rian

    2011-01-01

    In South Africa, the Grade 12 "classes of 2008 and 2009" were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences…

  2. Elements of Contemporary Integrated Science Curriculum: Impacts ...

    African Journals Online (AJOL)

    This paper acknowledged the vital roles played by integration of ideas and established the progress brought about when science is taught as a unified whole through knowledge integration which birthed integrated science as a subject in Nigerian school curriculum. The efforts of interest groups at regional, national and ...

  3. Improving the Science Curriculum with Bioethics.

    Science.gov (United States)

    Lundmark, Cathy

    2002-01-01

    Explains the importance of integrating bioethics into the science curriculum for student learning. Introduces a workshop designed for middle and high school science teachers teaching bioethics, its application to case studies, and how teachers can fit bioethics into their classroom. (YDS)

  4. chemistry syllabus of the nigeria science curriculum

    African Journals Online (AJOL)

    Preferred Customer

    The senior secondary two chemistry course content of the Nigerian science curriculum was assessed ... of the students. In Nigeria, the need to re-examine both what to teach in science and how to teach it led ..... primary school. Our industries ...

  5. Teaching Grade Eight Science with Reference to the Science Curriculum

    Directory of Open Access Journals (Sweden)

    Rasel Babu

    2016-08-01

    Full Text Available A mixed methodological approach was used to explore to what extent the science curriculum was being reflected in science teaching-learning of grade VIII students in Bangladesh. 160 students were randomly selected and 10 science teachers were purposively selected as study respondents. Fifteen science lessons were observed. Data were collected via student questionnaires, teacher interviews, and classroom observation checklists. Grade VIII science teaching-learning activities were not conducted according to the instructions of the science curriculum. Most teachers did not adhere to the curriculum and teacher's guide. Teachers mainly depended on lecture methods for delivering lessons. Learning by doing, demonstrating experiments, scientific inquiry, rational thinking, and analysing cause-effect relationships were noticeably absent. Teachers reported huge workloads and a lack of ingredients as reasons for not practising these activities. Teachers did not use teaching aids properly. Science teaching-learning was fully classroom centred, and students were never involved in any creative activities. 

  6. Designing a Science Curriculum Fit for Purpose

    Science.gov (United States)

    Millar, Robin

    2014-01-01

    The science curriculum to age 16 should be judged on how well it meets the needs of students who progress to A-level science courses and those (a larger number) who do not. To address the diversity of students' interests and aspirations, we need a clear view of the purposes of science education rooted in a view of the purposes of education itself.…

  7. Measuring Science Curriculum Improvement Study Teachers' Attitudinal Changes Toward Science.

    Science.gov (United States)

    Hovey, Larry Michael

    Investigated were three questions related to the relationship between a science teacher's attitude regarding the use of a newer science program, in this instance the Science Curriculum Improvement Study (SCIS): (1) Could the Projective Tests of Attitudes, originally designed for fifth-grade students, be modified for use with adults? (2) Is there a…

  8. Computer Science (CS) in the Compulsory Education Curriculum: Implications for Future Research

    Science.gov (United States)

    Passey, Don

    2017-01-01

    The subject of computer science (CS) and computer science education (CSE) has relatively recently arisen as a subject for inclusion within the compulsory school curriculum. Up to this present time, a major focus of technologies in the school curriculum has in many countries been on applications of existing technologies into subject practice (both…

  9. Social Science Disciplines. Fundamental for Curriculum Development.

    Science.gov (United States)

    McLendon, Johathan C., Ed.

    This guide is written for the social studies curriculum developer interested in developing a structured multidisciplinary program based on the concepts, methodology, and structure of social science disciplines and history. Seven 15-29 page chapters are included on each discipline: Anthropology and Psychology, by Charles R. Berryman; Economics, by…

  10. Rock Cycle. K-6 Science Curriculum.

    Science.gov (United States)

    Blueford, J. R.; And Others

    Rock Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) chemistry (introducing the topics of matter, elements, compounds, and chemical bonding); (2) characteristics (presenting hands-on activities with rocks and minerals); (3) minerals (emphasizing the aesthetic and economic…

  11. Forensic Science Curriculum for High School Students

    Science.gov (United States)

    Burgess, Christiana J.

    Over the last several decades, forensic science---the application of science to civil and criminal legal matters---has become of increasing popularity with the public. The range of disciplines within the field is immense, offering individuals the potential for a unique career, regardless of their specific interests or expertise. In response to this growth, many organizations, both public and private, have recognized the need to create forensic science programs that strive to maintain and enhance the quality of forensic science education. Unfortunately, most of the emphasis placed on developing these materials relates to post-secondary education, and creates a significant lack of forensic science educational materials available in the U.S., especially in Oklahoma. The purpose of this project was to create a high school curriculum that provides the foundation for building a broad, yet comprehensive, overview of the field of forensic science and its associated disciplines. The overall goal was to create and provide course materials to high school teachers in order to increase their knowledge of forensic science such that they are able to teach its disciplines effectively and with accuracy. The Forensic Science Curriculum for High School Students includes sample lesson plans, PowerPoint presentations, and lab activities with step-by-step instructions.

  12. Student teachers' views: what is an interesting life sciences curriculum?

    Directory of Open Access Journals (Sweden)

    Rian de Villiers

    2011-01-01

    Full Text Available In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology curriculum which focuses on outcomes-based education (OBE. This paper presents an exploration of what students (as learners considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university responded to a questionnaire in regard to their experiences with the newly implemented FET Life Sciences curricula. The responses to the questions were analysed qualitatively and/or quantitatively. Friedman tests were used to compare the mean rankings of the four different content knowledge areas within each curriculum, and to make cross-curricular comparisons of the mean rankings of the same content knowledge area for all three curricula. All four content areas of Grade 12 were considered as being more interesting than the other two grades. In terms of difficulty, the students found the Grade 10 curriculum themes the most difficult, followed by the Grade 12 and the Grade 11 curricula. Most of the students found the themes under the content area Diversity, change and continuity (Grades 10-12 more difficult to learn than the other three content areas. It is recommended that more emphasis needs to be placed on what learners are interested in, and on having this incorporated into Life Sciences curricula.

  13. Cascade-sea : Computer Assisted Curriculum Analysis, Design & Evaluation for Science Education in Africa.

    NARCIS (Netherlands)

    McKenney, Susan; van den Akker, Jan; Maribe, Robert; Gustafson, Kent; Nieveen, Nienke; Plomp, Tjeerd

    1999-01-01

    The CASCADE-SEA program aims to support curriculum development within the context of secondary level science and mathematics education in sub-Saharan Africa. This project focuses on the iterative design of a computer-based curriculum development support system for the creation of classroom

  14. An Exploratory Analysis of a Middle School Science Curriculum: Implications for Students with Learning Disabilities

    Science.gov (United States)

    Taylor, Gregory S.; Hord, Casey

    2016-01-01

    An exploratory study of a middle school curriculum directly aligned with the Next Generation Science Standards was conducted with a focus on how the curriculum addresses the instructional needs of students with learning disabilities. A descriptive analysis of a lesson on speed and velocity was conducted and implications discussed for students with…

  15. Professional Learning Communities (PLCs) as a Means for School-Based Science Curriculum Change

    Science.gov (United States)

    Browne, Christi L.

    The challenge of school-based science curriculum change and educational reform is often presented to science teachers and departments who are not necessarily prepared for the complexity of considerations that change movements require. The development of a Professional Learning Community (PLC) focused on a science department's curriculum change efforts, may provide the necessary tools to foster sustainable school-based curriculum science changes. This research presents a case study of an evolving science department PLC consisting of 10 middle school science teachers from the same middle school and their efforts of school-based science curriculum change. A transformative mixed model case study with qualitative data and deepened by quantitative analysis, was chosen to guide the investigation. Collected data worked to document the essential developmental steps, the occurrence and frequency of the five essential dimensions of successful PLCs, and the influences the science department PLC had on the middle school science department's progression through school-based science curriculum change, and the barriers, struggles and inhibiting actions of the science department PLC. Findings indicated that a science department PLC was unique in that it allowed for a focal science departmental lens of science curriculum change to be applied to the structure and function of the PLC and therefore the process, proceedings, and results were directly aligned to and driven by the science department. The science PLC, while logically difficult to set-up and maintain, became a professional science forum where the middle school science teachers were exposed to new science teaching and learning knowledge, explored new science standards, discussed effects on student science learning, designed and critically analyzed science curriculum change application. Conclusions resulted in the science department PLC as an identified tool providing the ability for science departmental actions to lead to

  16. Curriculum Implementation and Reform: Teachers' Views about Kuwait's New Science Curriculum

    Science.gov (United States)

    Alshammari, Ahmad

    2013-01-01

    The MoE (Ministry of Education) in the state of Kuwait is starting to reform the science curriculum in all school academic stages: primary (1-5) grades, intermediate (6-9) grades, and secondary (10-12) grades. The purpose of this study was to explore the opinions of science teachers about Kuwait's new sixth and seventh grade science curriculum,…

  17. COMPUTATIONAL SCIENCE IN IN THE EDUCATIONAL CURRICULUM

    Directory of Open Access Journals (Sweden)

    José Manuel Cabrera Delgado

    2017-06-01

    Full Text Available How to incorporate Computer Science (CS into the basic education curriculum continues to be subject of controversy at the European level. Without there being a defined strategy on behalf of the European Union in this respect, several countries have begun their incorporation showing us the advantages and difficulties of such action. Main elements of CS, such as computational thinking and coding, are already being taught in schools, establishing the need for a curriculum adapted to the ages of the students, training for teachers and enough resources. The purpose of this article, from the knowledge of the experience of these countries, is to respond, or at least to reflect, on the answers to the following questions: what is CS?, what are their main elements?, why is it necessary?, at what age should CS be taught?, what requirements are needed for their incorporation?

  18. Surviving the Implementation of a New Science Curriculum

    Science.gov (United States)

    Lowe, Beverly; Appleton, Ken

    2015-12-01

    Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2 years getting to know the new science curriculum through meetings, training, and exploring the new Australian curriculum documents. This article examines the support and preparation for implementation provided in two regional schools, with a closer look at six specific teachers and their science teaching practices as they attempted to implement the new science curriculum. The use of a survey, field observations, and interviews revealed the schools' preparation practices and the teachers' practices, including the support provided to implement the new science curriculum. A description and analysis of school support and preparation as well as teachers' views of their experiences implementing the new science curriculum reveal both achievements and shortcomings. Problematic issues for the two schools and teachers include time to read and comprehend the curriculum documents and content expectations as well as time to train and change the current processes effectively. The case teachers' experiences reveal implications for the successful and effective implementation of new curriculum and curriculum reform.

  19. Science Education at Arts-Focused Colleges

    Science.gov (United States)

    Oswald, W. Wyatt; Ritchie, Aarika; Murray, Amy Vashlishan; Honea, Jon

    2016-01-01

    Many arts-focused colleges and universities in the United States offer their undergraduate students coursework in science. To better understand the delivery of science education at this type of institution, this article surveys the science programs of forty-one arts-oriented schools. The findings suggest that most science programs are located in…

  20. High-level radioactive waste curriculum usage, evaluation, and customer focus

    International Nuclear Information System (INIS)

    King, G.P.

    1994-01-01

    In August 1992, the U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) issued for educator use, a secondary school resource curriculum entitled open-quotes Science, Society, and America's Nuclear Wasteclose quotes. This resource curriculum was developed in response to years and thousands of teacher, student, and general public requests for facts about nuclear waste -- specifically, what the United States was doing and why. The curriculum materials when issued were the result of six years of development and testing by science and social studies teachers as well as multi-state field-testing and international critique. The curriculum is provided only to educators who specifically request it; and in the first one-and-a-half years following its availability more than 500,000 curriculum documents have been requested. Of all the requests for information received by OCRWM for any information or materials, most requests received are from educators or students. So one might consider educators and students to be open-quotes customerclose quotes, that is, as the business world might define customers: anyone expecting a product or a service from us. To determine usefulness and content for future editions of open-quotes Science, Society, and America's Nuclear Wasteclose quotes, the Office of Civilian Radioactive Waste Management has undertaken a usage evaluation to ensure that it focuses on the needs of the open-quotes customerclose quotes; that is, those who need and request it. This paper presents preliminary findings based on a formal evaluation provided to and requested from educators, unsolicited comments received from educator requesters of the material, and comments from others

  1. Theme: The Role of Science in the Agricultural Education Curriculum.

    Science.gov (United States)

    Agricultural Education Magazine, 2002

    2002-01-01

    Thirteen theme articles discuss integration of science and agriculture, the role of science in agricultural education, biotechnology, agriscience in Tennessee and West Virginia, agriscience and program survival, modernization of agricultural education curriculum, agriscience and service learning, and biotechnology websites. (SK)

  2. Focused Science Delivery makes science make sense.

    Science.gov (United States)

    Rachel W. Scheuering; Jamie. Barbour

    2004-01-01

    Science does not exist in a vacuum, but reading scientific publications might make you think it does. Although the policy and management implications of their findings could often touch a much wider audience, many scientists write only for the few people in the world who share their area of expertise. In addition, most scientific publications provide information that...

  3. Application of the Reggio Emilia Approach to Early Childhood Science Curriculum.

    Science.gov (United States)

    Stegelin, Dolores A.

    2003-01-01

    This article focuses on the relevance of the Reggio Emilia approach to early childhood education for science knowledge and content standards for the preK-12 student population. The article includes: (1) a summary of key concepts; (2) a description of the science curriculum standards for K-3 in the United States; and (3) an example of an in-depth…

  4. Uncovering Portuguese teachers’ difficulties in implementing sciences curriculum

    Directory of Open Access Journals (Sweden)

    Clara Vasconcelos

    2015-12-01

    Full Text Available Many countries recognize the positive and effective results of improving science education through the introduction of reforms in the sciences curriculum. However, some important issues are generally neglected like, for example, the involvement of the teachers in the reform process. Taking the sciences curriculum reform under analysis and benefitting from 10 years of teachers’ experiences in teaching sciences based on this curriculum, 19 semi-structure interviews were applied so as to identify the major difficulties felt by science teachers when implementing the Portuguese sciences curriculum in the third cycle of middle school (pupils’ age range of 12–15. Some of the difficulties depicted by the data analysis include: length of the curriculum, lack of time, unsuitable laboratory facilities, insufficient means and materials for experimental work, pupils’ indiscipline and little interest in learning sciences. Although less frequently mentioned, the lack of professional development was also referred to as a constraint that seems to play an essential role in this process. Some recommendations for improving the success of sciences curriculum reforms’ implementation are given: defining and conceptualizing curricular policies by relating the reality of both the schools and the science classrooms; reorganizing and restructuring pre-service teachers’ courses; organizing professional development courses for in-service teachers.

  5. Curriculum Design for Inquiry: Preservice Elementary Teachers' Mobilization and Adaptation of Science Curriculum Materials

    Science.gov (United States)

    Forbes, Cory T.; Davis, Elizabeth A.

    2010-01-01

    Curriculum materials are crucial tools with which teachers engage students in science as inquiry. In order to use curriculum materials effectively, however, teachers must develop a robust capacity for pedagogical design, or the ability to mobilize a variety of personal and curricular resources to promote student learning. The purpose of this study…

  6. Integration of the primary health care approach into a community nursing science curriculum.

    Science.gov (United States)

    Vilakazi, S S; Chabeli, M M; Roos, S D

    2000-12-01

    The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994: 155). Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.

  7. Integration of the primary health care approach into a community nursing science curriculum

    Directory of Open Access Journals (Sweden)

    SS Vilakazi

    2000-09-01

    Full Text Available The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994:155. Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/ goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.

  8. Surviving the Implementation of a New Science Curriculum

    Science.gov (United States)

    Lowe, Beverly; Appleton, Ken

    2015-01-01

    Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2 years getting to know the new…

  9. Curriculum Assessment in Social Sciences at Universiti Pendidikan Sultan Idris

    Science.gov (United States)

    Saleh, Hanifah Mahat Yazid; Hashim, Mohmadisa; Yaacob, Norazlan Hadi; Kasim, Adnan Jusoh Ahmad Yunus

    2015-01-01

    The purpose of this paper is to discuss the effectiveness of the curriculum implementation for undergraduate programme in the Faculty of Human Sciences, UPSI producing quality and competitive educators. Curriculum implementation has to go through an assessment process that aims to determine the problem, select relevant information and collect and…

  10. Noise Pollution--An Overlooked Issue in the Science Curriculum.

    Science.gov (United States)

    Treagust, David F.; Kam, Goh Ah

    1985-01-01

    Discusses the need for including noise pollution in the science curriculum and describes 10 activities for improving students' awareness and understanding of and concern for noise and its effects. (Author/JN)

  11. INTRODUCTION TO SCIENCE: A CURRICULUM APPROACH

    Directory of Open Access Journals (Sweden)

    André A. G. Bianco

    2007-05-01

    Full Text Available International and national institutions concerned with higher education recommendthe inclusion in curriculum of strategies to promote development of aditional skills thentraditionals memorazing habilities and contents reproduction. Between this, specialattention is given to stimulating the critical capacitie. To develop this skills, was given aproject, included into the Biochemistry discipline, with freshmen students in the Nutritioncourse of the Saúde Pública College of USP. The project consisted into the scientificarticles analysis and in the elaboration of research projects at the Scientific Initiation level.The first part presented the way how Science is divulged and the second, the mold that thescientific knowledge is generated. All activities was always conducted by activecommunication strategy. The general goal was bring near the students of scientificproceedings, contribute to developed scientific attitude, that is to say, critical sense. Theproceeding was evaluated by quantitative methods (questionnaire and qualitative(interview with differents participant and the results point for a significative increase ofknowledge of scientific job and a developed of yerned skills.

  12. The Social Science Curriculum of the Two-Year College.

    Science.gov (United States)

    Friedlander, Jack

    1980-01-01

    Describes a nationwide study to identify: (1) the representation of different areas within the social sciences (i.e. anthropology, economics, history, political science, psychology, social/ethnic studies, sociology, and interdisciplinary social sciences) in the two-year college curriculum, and (2) which courses were offered for transfer,…

  13. Focus: Global histories of science. Introduction.

    Science.gov (United States)

    Sivasundaram, Sujit

    2010-03-01

    An interest in global histories of science is not new. Yet the project envisioned by this Focus section is different from that pursued by natural historians and natural philosophers in the early modern age. Instead of tracing universal patterns, there is value in attending to the connections and disconnections of science on the global stage. Instead of assuming the precision of science's boundaries, historians might consider the categories of "science" and "indigenous knowledge" to have emerged from globalization. New global histories of science will be characterized by critical reflection on the limits of generalization, as well as a creative adoption of new sources, methods, and chronologies, in an attempt to decenter the European history of science. Such a project holds the promise of opening up new conversations between historians, anthropologists, philosophers, and sociologists of science. It is of critical importance if the discipline is not to fragment into regional and national subfields or become dominated by structural frameworks such as imperialism.

  14. Associate in science degree education programs: organization, structure, and curriculum.

    Science.gov (United States)

    Galvin, William F

    2005-09-01

    After years of discussion, debate, and study, the respiratory care curriculum has evolved to a minimum of an associate degree for entry into practice. Although programs are at liberty to offer the entry-level or advanced level associate degree, most are at the advanced level. The most popular site for sponsorship of the associate degree in respiratory care is the community college. The basis for community college sponsorship seems to be its comprehensive curriculum, which focuses on a strong academic foundation in writing, communication, and the basic sciences as well as supporting a career-directed focus in respiratory care. Issues facing the community college are tied to literacy, outcomes, assessment, placement,cooperation with the community, partnerships with industry, and articulation arrangements with granting institutions granting baccalaureate degrees. Community colleges must produce a literate graduate capable of thriving in an information-saturated society. Assessment and placement will intensify as the laissez-faire attitudes toward attendance and allowing students to select courses without any accountability and evaluation of outcome become less acceptable. Students will be required to demonstrate steady progress toward established outcomes. Maintaining relations and cooperation with the local community and the health care industry will continue to be a prominent role for the community college. The challenge facing associate degree education in respiratory care at the community college level is the ability to continue to meet the needs of an expanding professional scope of practice and to provide a strong liberal arts or general education core curriculum. The needs for a more demanding and expanding respiratory care curriculum and for a rich general education core curriculum have led to increased interest in baccalaureate and graduate degree education. The value of associate degree education at the community college level is well established. It is

  15. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    Science.gov (United States)

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  16. AIAA Educator Academy - Mars Rover Curriculum: A 6 week multidisciplinary space science based curriculum

    Science.gov (United States)

    Henriquez, E.; Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.

    2013-12-01

    The Curiosity mission has captured the imagination of children, as NASA missions have done for decades. The AIAA and the University of Houston have developed a flexible curriculum program that offers children in-depth science and language arts learning culminating in the design and construction of their own model rover. The program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students learn to research Mars in order to pick a science question about Mars that is of interest to them. They learn principles of spacecraft design in order to build a model of a Mars rover to carry out their mission on the surface of Mars. The model is a mock-up, constructed at a minimal cost from art supplies. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the structure and organization of the 6 week curriculum. A set of 30 new 5E lesson plans have been written to support this project as a classroom activity. The challenge of developing interactive

  17. Curriculum optimization of College of Optical Science and Engineering

    Science.gov (United States)

    Wang, Xiaoping; Zheng, Zhenrong; Wang, Kaiwei; Zheng, Xiaodong; Ye, Song; Zhu, Yuhui

    2017-08-01

    The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of "optoelectronics + X", according to their individual strengths and preferences.

  18. Science-based occupations and the science curriculum: Concepts of evidence

    Science.gov (United States)

    Aikenhead, Glen S.

    2005-03-01

    What science-related knowledge is actually used by nurses in their day-to-day clinical reasoning when attending patients? The study investigated the knowledge-in-use of six acute-care nurses in a hospital surgical unit. It was found that the nurses mainly drew upon their professional knowledge of nursing and upon their procedural understanding that included a common core of concepts of evidence (concepts implicitly applied to the evaluation of data and the evaluation of evidence - the focus of this research). This core included validity triangulation, normalcy range, accuracy, and a general predilection for direct sensual access to a phenomenon over indirect machine-managed access. A cluster of emotion-related concepts of evidence (e.g. cultural sensitivity) was also discovered. These results add to a compendium of concepts of evidence published in the literature. Only a small proportion of nurses (one of the six nurses in the study) used canonical science content in their clinical reasoning, a result consistent with other research. This study also confirms earlier research on employees in science-rich workplaces in general, and on professional development programs for nurses specifically: canonical science content found in a typical science curriculum (e.g. high school physics) does not appear relevant to many nurses' knowledge-in-use. These findings support a curriculum policy that gives emphasis to students learning how to learn science content as required by an authentic everyday or workplace context, and to students learning concepts of evidence.

  19. Story - Science - Solutions: A new middle school science curriculum that promotes climate-stewardship

    Science.gov (United States)

    Cordero, E.; Centeno Delgado, D. C.

    2017-12-01

    Over the last five years, Green Ninja has been developing educational media to help motivate student interest and engagement around climate science and solutions. The adoption of the Next Generation Science Standards (NGSS) offers a unique opportunity where schools are changing both what they teach in a science class and how they teach. Inspired by the new emphasis in NGSS on climate change, human impact and engineering design, Green Ninja developed a technology focused, integrative, and yearlong science curriculum (6th, 7th and 8th grade) focused broadly around solutions to environmental problems. The use of technology supports the development of skills valuable for students, while also offering real-time metrics to help measure both student learning and environmental impact of student actions. During the presentation, we will describe the design philosophy around our middle school curriculum and share data from a series of classes that have created environmental benefits that transcend the traditional classroom. The notion that formal education, if done correctly, can be leveraged as a viable climate mitigation strategy will be discussed.

  20. Horizontal integration of the basic sciences in the chiropractic curriculum.

    Science.gov (United States)

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  1. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    Science.gov (United States)

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  2. Nuclear power and the science curriculum

    International Nuclear Information System (INIS)

    Scott, W.

    1980-01-01

    The curriculum provision in UK schools for studies of nuclear power, its scientific aspects, its technologies and its effect upon society are examined in the light of present concern for an informed lay opinion. (U.K.)

  3. Shifts in funding for science curriculum design and their (unintended) consequences

    NARCIS (Netherlands)

    Pareja Roblin, Natalie; Schunn, Christian; Bernstein, Debra; McKenney, Susan

    2016-01-01

    Federal agencies in the Unites States invest heavily in the development of science curriculum materials, which can significantly facilitate science education reform. The current study describes the characteristics of K-12 science curriculum materials produced by federally funded projects between

  4. Multicultural Science Education and Curriculum Materials

    Science.gov (United States)

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  5. Probing the Natural World, Level III, Teacher's Edition: Investigating Variation. Intermediate Science Curriculum Study.

    Science.gov (United States)

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit focuses on diversity in human populations, measurement, and data collection. Optional excursions are described for students who wish to study a topic in greater depth. An introduction describes…

  6. Probing the Natural World, Level III, Student Guide: Investigating Variation. Intermediate Science Curriculum Study.

    Science.gov (United States)

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's text of one unit of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit focuses on diversity in human populations, measurement, and data collection. Numerous activities are given and optional excursions encourage students to pursue a topic in greater depth. Data tables within the…

  7. Life Sciences Teachers Negotiating Professional Development Agency in Changing Curriculum Times

    Science.gov (United States)

    Singh-Pillay, Asheena; Samuel, Michael Anthony

    2017-01-01

    This article probes teacher responses to three curricular reform initiatives from a South African situated contextual perspective. It focuses on Life Sciences teachers who have initially reported feeling overwhelmed by this rapidly changing curriculum environment: adopting and re-adapting to the many expected shifts. The research question posed…

  8. Customization of Curriculum Materials in Science: Motives, Challenges, and Opportunities

    Science.gov (United States)

    Romine, William L.; Banerjee, Tanvi

    2012-01-01

    Exemplary science instructors use inquiry to tailor content to student's learning needs; traditional textbooks treat science as a set of facts and a rigid curriculum. Publishers now allow instructors to compile pieces of published and/or self-authored text to make custom textbooks. This brings numerous advantages, including the ability to produce…

  9. Arguing for Computer Science in the School Curriculum

    Science.gov (United States)

    Fluck, Andrew; Webb, Mary; Cox, Margaret; Angeli, Charoula; Malyn-Smith, Joyce; Voogt, Joke; Zagami, Jason

    2016-01-01

    Computer science has been a discipline for some years, and its position in the school curriculum has been contested differently in several countries. This paper looks at its role in three countries to illustrate these differences. A reconsideration of computer science as a separate subject both in primary and secondary education is suggested. At…

  10. Nuclear Science Curriculum and Curriculum para la Ciencia Nuclear.

    Science.gov (United States)

    American Nuclear Society, La Grange Park, IL.

    This document presents a course in the science of nuclear energy, units of which may be included in high school physics, chemistry, and biology classes. It is intended for the use of teachers whose students have already completed algebra and chemistry or physics. Included in this paper are the objectives of this course, a course outline, a…

  11. Careers in focus library and information science

    CERN Document Server

    2011-01-01

    Careers in Focus: Library and Information Science, Second Edition profiles 19 careers for professionals interested in this field. Job profiles include:. -Acquisitions librarians. -Book conservators. -Children's librarians. -Corporate librarians. -Film and video librarians. -Law librarians. -Library assistants. -Library media specialists. -Medical librarians. -Research assistants.

  12. Teachers' sense-making of curriculum structures and its impact on the implementation of an innovative reform-based science curriculum

    Science.gov (United States)

    Beckford-Smart, Meredith

    different teacher stories shaped their teaching practices and enactment of science curriculum. Curriculum developers and policy makers struggle to understand how their messages can be communicated clearly to their readers and users. Many argue that curriculum materials are not used the way they are intended. Others argue the messages read from policy and curriculum materials and artifacts are ambiguous and unclear. This study did not argue that teachers do not use the curriculum materials correctly. This study focused on teachers' sense-making of curriculum materials so we can get a better understanding of the role curriculum resources can play in reform.

  13. Science Curriculum Components Favored by Taiwanese Biology Teachers

    Science.gov (United States)

    Lin, Chen-Yung; Hu, Reping; Changlai, Miao-Li

    2005-09-01

    The new 1-9 curriculum framework in Taiwan provides a remarkable change from previous frameworks in terms of the coverage of content and the powers of teachers. This study employs a modified repertory grid technique to investigate biology teachers' preferences with regard to six curriculum components. One hundred and eighty-five in-service and pre-service biology teachers were asked to determine which science curriculum components they liked and disliked most of all to include in their biology classes. The data show that the rank order of these science curriculum components, from top to bottom, was as follows: application of science, manipulation skills, scientific concepts, social/ethical issues, problem-solving skills, and the history of science. They also showed that pre-service biology teachers, as compared with in-service biology teachers, favored problem-solving skills significantly more than manipulative skills, while in-service biology teachers, as compared with pre-service biology teachers, favored manipulative skills significantly more than problem-solving skills. Some recommendations for ensuring the successful implementation of the Taiwanese 1-9 curriculum framework are also proposed.

  14. A statistical analysis of the characteristics of the intended curriculum for Japanese primary science and its relationship to the attained curriculum

    Directory of Open Access Journals (Sweden)

    Kenji Matsubara

    2016-08-01

    Full Text Available Abstract This study statistically investigates the characteristics of the intended curriculum for Japanese primary science, focusing on the learning content. The study used the TIMSS 2011 Grade 4 Curriculum Questionnaire data as a major source for the learning content prescribed at the national level. Confirmatory factor analysis was used to determine the extent to which a topic area was covered, as compared to the average among the 59 TIMSS 2011 participating countries. The study revealed that the topic areas of “Human Health” and “Changes in Environments,” both in the life science domain, showed statistically less coverage in the Japanese primary science curriculum when compared to the international average. Furthermore, in discussion, the study relates the characteristics found in the intended curriculum to those in the attained curriculum, examining the percent correct statistics for relevant items from the science assessment. Based on these findings, the study proposes two recommendations for revision of the Japanese primary science curriculum.

  15. SU-F-E-08: Medical Physics as a Teaching Tool for High School Science Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, L [The Ottawa Hospital Cancer Ctr., Ottawa, ON (Canada)

    2016-06-15

    Purpose: Delivering high school science curriculum in a timely manner and in way that is accessible to all students is a challenge for teachers. Although many high schools offer career workshops, these are typically directed at senior students and do not relate directly to details of the curriculum. The objective of this initiative was to create a series of lectures that use medical physics to relate many aspects of the high school science curriculum to tangible clinical applications and to introduce students to alternate pathways into a career in health sciences. Methods: A series of lectures has been developed based on the Ontario High School Science Curriculum. Each lecture uses a career in radiotherapy medical physics as the framework for discussion of topics specific to the high school course being addressed. Results: At present, these lectures have been delivered in five area high schools to students ranging from sophomores to seniors. Survey documents are given to the students before and after the lecture to assess their awareness of careers in health care, applications of physics and their general interest in the subject areas. As expected, students have limited up front awareness of the wide variety of health related career paths. The idea of combining a career lecture with topics specific to the classroom curriculum has been well-received by teachers and students alike. Conclusion: Career talks for high school students are useful for students contemplating their post- secondary career path. Relating career discussion with direct course curriculum makes their studies more relevant and engaging. Students aspiring to a career in health sciences often focus their studies on life sciences due to limited knowledge of potential careers. An early introduction to medical physics presents them with an alternate path through the physical sciences into health care.

  16. SU-F-E-08: Medical Physics as a Teaching Tool for High School Science Curriculum

    International Nuclear Information System (INIS)

    Buckley, L

    2016-01-01

    Purpose: Delivering high school science curriculum in a timely manner and in way that is accessible to all students is a challenge for teachers. Although many high schools offer career workshops, these are typically directed at senior students and do not relate directly to details of the curriculum. The objective of this initiative was to create a series of lectures that use medical physics to relate many aspects of the high school science curriculum to tangible clinical applications and to introduce students to alternate pathways into a career in health sciences. Methods: A series of lectures has been developed based on the Ontario High School Science Curriculum. Each lecture uses a career in radiotherapy medical physics as the framework for discussion of topics specific to the high school course being addressed. Results: At present, these lectures have been delivered in five area high schools to students ranging from sophomores to seniors. Survey documents are given to the students before and after the lecture to assess their awareness of careers in health care, applications of physics and their general interest in the subject areas. As expected, students have limited up front awareness of the wide variety of health related career paths. The idea of combining a career lecture with topics specific to the classroom curriculum has been well-received by teachers and students alike. Conclusion: Career talks for high school students are useful for students contemplating their post- secondary career path. Relating career discussion with direct course curriculum makes their studies more relevant and engaging. Students aspiring to a career in health sciences often focus their studies on life sciences due to limited knowledge of potential careers. An early introduction to medical physics presents them with an alternate path through the physical sciences into health care.

  17. An overview of conceptual understanding in science education curriculum in Indonesia

    Science.gov (United States)

    Widiyatmoko, A.; Shimizu, K.

    2018-03-01

    The purpose of this article is to discuss the term of “conceptual understanding” in science education curriculum in Indonesia. The implementation of 2013 Curriculum focuses on the acquisition of contextual knowledge in respective areas and environments. The curriculum seeks to develop students' evaluation skills in three areas: attitude, technical skills, and scientific knowledge. It is based on two layers of competencies: core and basic competencies. The core competencies in the curriculum 2013 represent the ability level to achieve the gradute competency standards of a students at each grade level. There are four mandatory core competencies for all educational levels and all subjects including science, which are spiritual, social, knowledge and skills competencies. In terms of knowledge competencies, conceptual understanding is an inseparable part of science concept since conceptual understanding is one of the basic competencies in science learning. This competency is a part of science graduation standard indicated in MoEC article number 20 in 2016. Therefore, conceptual understanding is needed by students for learning science successfully.

  18. New curriculum at Nuclear Science Department, National University of Malaysia

    International Nuclear Information System (INIS)

    Shahidan bin Radiman; Ismail bin Bahari

    1995-01-01

    A new undergraduate curriculum at the Department of Nuclear Science, Universiti Kebangsaan Malaysia is discussed. It includes the rational and objective of the new curriculum, course content and expectations due to a rapidly changing job market. The major change was a move to implement only on one Nuclear Science module rather than the present three modules of Radiobiology, Radiochemistry and Nuclear Physics. This will optimise not only laboratory use of facilities but also effectiveness of co-supervision. Other related aspects like industrial training and research exposures for the undergraduates are also discussed

  19. INTRODUCTION TO SCIENCE: A CURRICULUM APPROACH

    OpenAIRE

    Bianco, André A. G.; Biochemistry Departament, Chemistry Institute, Sao Paulo University, Sao Paulo.; Torres, Bayardo B.; Biochemistry Departament, Chemistry Institute, Sao Paulo University, Sao Paulo.

    2007-01-01

    International and national institutions concerned with higher education recommendthe inclusion in curriculum of strategies to promote development of aditional skills thentraditionals memorazing habilities and contents reproduction. Between this, specialattention is given to stimulating the critical capacitie. To develop this skills, was given aproject, included into the Biochemistry discipline, with freshmen students in the Nutritioncourse of the Saúde Pública College of USP. The project cons...

  20. Consumer Citizenship Curriculum Guides for Social Studies, English, Science, Mathematics.

    Science.gov (United States)

    MacKenzie, Louise; Smith, Alice

    These four consumer citizenship curriculum guides for social studies, English, science, and mathematics incorporate consumer education into these subject matter areas in grades 8-12. Each guide is organized around 10 main component/goals. They are basic economics in the marketplace, credit, consumer law/protection, banking skills, comparison…

  1. Microsoft Excel Software Usage for Teaching Science and Engineering Curriculum

    Science.gov (United States)

    Singh, Gurmukh; Siddiqui, Khalid

    2009-01-01

    In this article, our main objective is to present the use of Microsoft Software Excel 2007/2003 for teaching college and university level curriculum in science and engineering. In particular, we discuss two interesting and fascinating examples of interactive applications of Microsoft Excel targeted for undergraduate students in: 1) computational…

  2. Investigating the Role of the Teacher in Science Curriculum: New Evidence for an Old Debate

    Science.gov (United States)

    Penuel, W.; McAuliffe, C.; McWilliams, H.

    2007-12-01

    It is widely believed that teachers need high-quality curriculum materials to improve teaching and learning. Professional development designs differ, however, in whether they emphasize preparing teachers to use expert- designed curricula or preparing teachers with the tools needed to design and implement high-quality science units themselves. Evidence exists for the effectiveness of providing teachers with training in how to implement expert-designed curricula (Bredderman, 1983; Shymansky, Hedges, & Woodworth, 1990; Weinstein, Boulanger, & Walberg, 1982) and for providing teachers with professional development aimed at preparing teachers to design instruction and assessments (Black & Harrison, 2001; Shepard, 1997; Sneider, Adams, Ibanez, Templeton, & Porter, 1996). However, no studies, however, have compared explicitly these different approaches to preparing teachers to plan and enact instruction in science. The Transforming Instruction by Design in Earth Science (TIDES) project is an experimental study comparing the efficacy of three different approaches to professional development. The approaches differ with respect to the role that teachers are expected to play in curriculum. In one condition (Earth Science by Design), teachers learn how to design curriculum units in Earth science. In a second condition (Investigating Earth Systems), teachers learn how to adopt and implement curriculum materials developed by experts. In the third condition (Hybrid), teachers learn a principled approach to adapt expert-developed curriculum materials. The TIDES study is examining the impacts of each of the approaches to professional development on instructional planning and on the quality of assignments and assessments they give to students. We measured impacts on instructional planning using an end-of-unit questionnaire that focused on changes to teachers" overall approach to planning units of instruction, their strategies for organizing assignment, and materials they use in

  3. Teachers and Science Curriculum Materials: Where We Are and Where We Need to Go

    Science.gov (United States)

    Davis, Elizabeth A.; Janssen, Fred J. J. M.; Van Driel, Jan H.

    2016-01-01

    Curriculum materials serve as a key conceptual tool for science teachers, and better understanding how science teachers use these tools could help to improve both curriculum design and theory related to teacher learning and decision-making. The authors review the literature on teachers and science curriculum materials. The review is organised…

  4. elements of contemporary integrated science curriculum

    African Journals Online (AJOL)

    both science and technology (Hurd, 1975). Discoveries in nature are made easier through integration of ideas, thoughts and concepts. To this end, science teaching in the modern world ought to be interdisciplinary, unified, society based and aspire above all to achieve scientific literacy (Arokoyu and Dike, 2009). These are.

  5. Science and Technology Teachers' Views of Primary School Science and Technology Curriculum

    Science.gov (United States)

    Yildiz-Duban, Nil

    2013-01-01

    This phenomenographic study attempts to explicit science and technology teachers' views of primary school science and technology curriculum. Participants of the study were selected through opportunistic sampling and consisted of 30 science and technology teachers teaching in primary schools in Afyonkarahisar, Turkey. Data were collected through an…

  6. Environmental Science for All? Considering Environmental Science for Inclusion in the High School Core Curriculum

    Science.gov (United States)

    Edelson, Daniel C.

    2007-01-01

    With the dramatic growth of environmental science as an elective in high schools over the last decade, educators have the opportunity to realistically consider the possibility of incorporating environmental science into the core high school curriculum. Environmental science has several characteristics that make it a candidate for the core…

  7. Science for Survival: The Modern Synthesis of Evolution and The Biological Sciences Curriculum Study

    Science.gov (United States)

    Green, Lisa Anne

    In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called "the modern synthesis of evolution." Building primarily on the work of historians Vassiliki Smocovitis and John L. Rudolph, I used the archival papers and published writings of the four architects of the modern synthesis and the four most influential leaders of the BSCS in regards to evolution to investigate how the modern synthetic theory of evolution shaped the BSCS curriculum. The central question was "Why was evolution so important to the BSCS to make it the central theme of the texts?" Important answers to this question had already been offered in the historiography, but it was still not clear why every citizen in the world needed to understand evolution. I found that the emphasis on natural selection in the modern synthesis shifted the focus away from humans as passive participants to the recognition that humans are active agents in their own cultural and biological evolution. This required re-education of the world citizenry, which was accomplished in part by the BSCS textbooks. I also found that BSCS leaders Grobman, Glass, and Muller had serious concerns regarding the effects of nuclear radiation on the human gene pool, and were actively involved in informing th public. Lastly, I found that concerns of 1950s reform eugenicists were addressed in the BSCS textbooks, without mentioning eugenics by name. I suggest that the leaders of the BSCS, especially Bentley Glass and Hermann J. Muller, thought that students needed to understand genetics and evolution to be able to make some of the tough choices they might be called on to make as the dominant species on earth and the next reproductive generation in the nuclear age. This

  8. Language games: Christian fundamentalism and the science curriculum

    Science.gov (United States)

    Freund, Cheryl J.

    Eighty years after the Scope's Trial, the debate over evolution in the public school curriculum is alive and well. Historically, Christian fundamentalists, the chief opponents of evolution in the public schools, have used the court system to force policymakers, to adopt their ideology regarding evolution in the science curriculum. However, in recent decades their strategy has shifted from the courts to the local level, where they pressure teachers and school boards to include "alternate theories" and the alleged "flaws" and "inconsistencies" of evolution in the science curriculum. The purpose of this content analysis study was to answer the question: How do Christian fundamentalists employ rhetorical strategies to influence the science curriculum? The rhetorical content of several public legal and media documents resulting from a lawsuit filed against the Athens Public Schools by the American Center of Law and Justice were analyzed for the types of rhetorical strategies employed by the participants engaged in the scientific, legal, and public discourse communities. The study employed an analytical schema based on Ludwig Wittgenstein's theory of language games, Lawrence Prelli's theory of discourse communities, and Michael Apple's notion of constitutive and preference rules. Ultimately, this study revealed that adroit use of the constitutive and preference rules of the legal and public discourse communities allowed the school district to reframe the creation-evolution debate, thereby avoiding a public spectacle and ameliorating the power of creationist language to affect change in the science curriculum. In addition, the study reinforced the assertion that speakers enjoy the most persuasive power when they attend to the preference rules of the public discourse community.

  9. Interior's Climate Science Centers: Focus or Fail

    Science.gov (United States)

    Udall, B.

    2012-12-01

    ; (5) seek institutional stability; and (6) design processes for learning. In addition, CSC outputs should help decision makers to embrace and focus on uncertainty rather than on attempts to reduce uncertainty. Model building can be a useful exercise if used as a broad intellectual exercise to understand systems instead of narrow projection-based efforts. In some cases DOI agencies may want very simple products including scientific syntheses. Social science work including but not limited to economics and policy should be considered when appropriate to decision maker needs. One method for allocating CSC resources would involve a limited number of small scoping meetings with climate sensitive regional DOI agencies. In the Southwest, for example, regional entities would include at least the Landscape Conservation Cooperatives, National Park Service, Fish and Wildlife Service, Bureau of Land Management, Reclamation and the US Forest Service, a critically important land manager with a well-funded and well-structured climate program. Given DOI's trust responsibility to the tribes, at least one project should be focused on meeting those needs in this region. The goal of these meetings would be to identify a small number of projects each with adequate funding for interdisciplinary teams of university and USGS scientists and DOI decision makers. Done correctly, the CSCs should be able to leverage resources with these DOI partners.

  10. Group Projects and the Computer Science Curriculum

    Science.gov (United States)

    Joy, Mike

    2005-01-01

    Group projects in computer science are normally delivered with reference to good software engineering practice. The discipline of software engineering is rapidly evolving, and the application of the latest 'agile techniques' to group projects causes a potential conflict with constraints imposed by regulating bodies on the computer science…

  11. How a science methods course may influence the curriculum decisions of preservice teachers in the Bahamas

    Science.gov (United States)

    Wisdom, Sonya L.

    The purpose of this study was to examine how a science methods course in primary education might influence the curriculum decisions of preservice teachers in The Bahamas related to unit plan development on environmental science topics. Grounded in a social constructivist theoretical framework for teaching and learning science, this study explored the development of the confidence and competence of six preservice teachers to teach environmental science topics at the primary school level. A qualitative case study using action research methodologies was conducted. The perspectives of preservice teachers about the relevancy of methods used in a science methods course were examined as I became more reflective about my practice. Using constant comparative analysis, data from student-written documents and interviews as well as my field notes from class observations and reflective journaling were analyzed for emerging patterns and themes. Findings of the study indicated that while preservice teachers showed a slight increase in interest regarding learning and teaching environmental science, their primary focus during the course was learning effective teaching strategies in science on topics with which they already had familiarity. Simultaneously, I gained a deeper understanding of the usefulness of reflection in my practice. As a contribution to the complexity of learning to teach science at the primary school level, this study suggests some issues for consideration as preservice teachers are supported to utilize more of the national primary science curriculum in The Bahamas.

  12. Science in Hawaii/Haawina Hoopapau: A Culturally Responsive Curriculum Project

    Science.gov (United States)

    Galloway, L. M.; Roberts, K.; Leake, D. W.; Stodden, R. S.; Crabbe, V.

    2005-12-01

    The marvels of modern science often fail to engage indigenous students, as the content and instructional style are usually rooted in the Western experience. This 3 year project, funded by the US Dept. of Education for the Education of Native Hawaiians, offers a curriculum that teaches science through (rather than just about) Native Hawaiian culture. The curriculum focuses on the interdependence of natural resources in our ahupuaa, or watersheds, and helps students strengthen their sense of place and self to malama i ka aina, to care for the land. Further, the curriculum is designed to: engage students in scientific study with relevant, interesting content and activities; improve student achievement of state department of education standards; increase student knowledge and skills in science, math and language arts; respond to the learning needs of Native Hawaiian and/or at-risk students. The project will be presented by a curriculum writer who created and adapted more than a year's worth of materials by teaming with kupuna (respected elders), local cultural experts and role models, educators (new, veteran, Hawaiian, non-Hawaiian, mainland, general and special education teachers), and professionals at the Center on Disability Studies at the University of Hawaii and ALU LIKE, Inc, a non-profit organization to assist Native Hawaiians. The materials created thus far are available for viewing at: www.scihi.hawaii.edu The curriculum, designed for grades 8-11 science classes, can be used to teach a year-long course, a unit, or single lesson related to astronomy, biology, botany, chemistry, geology, oceanography, physical and environmental sciences. This project is in its final year of field testing, polishing and dissemination, and therefore this session will encourage idea sharing, as does our copyright free Web site.

  13. Changing Curriculum: A Critical Inquiry into the Revision of the British Columbia Science Curriculum For Grades K-9

    Science.gov (United States)

    Searchfield, Mary A.

    In 2010 British Columbia's Ministry of Education started the process of redesigning the provincial school curriculum, Kindergarten to Grade 12. Mandatory implementation of the new curriculum was set for the 2016/17 school year for Grades K-9, and 2017/18 for Grades 10-12. With a concerted emphasis on personalized learning and through the frame of a Know-Do-Understand curriculum model, the new curriculum aims to meet the needs of today's learners, described as living in a technology-rich, fast-paced and ever-changing world, through a concept-based and competency-driven emphasis. This thesis is a critical analysis of the BC K-9 Science curriculum as written and published, looking specifically at how science is treated as a form of knowledge, its claimed presentation as a story, and on whether the intentions claimed by the designers are matched in the curriculum's final form.

  14. The Global Systems Science High School Curriculum

    Science.gov (United States)

    Gould, A. D.; Sneider, C.; Farmer, E.; Erickson, J.

    2015-12-01

    Global Systems Science (GSS), a high school integrated interdisciplinary science project based at Lawrence Hall of Science at UC Berkeley, began in the early 1990s as a single book "Planet at Risk" which was only about climate change. Federal grants enabled the project to enlist about 150 teachers to field test materials in their classes and then meeting in summer institutes to share results and effect changes. The result was a series of smaller modules dealing not only with climate change, but other related topics including energy flow, energy use, ozone, loss of biodiversity, and ecosystem change. Other relevant societal issues have also been incorporated including economics, psychology and sociology. The course has many investigations/activities for student to pursue, interviews with scientists working in specific areas of research, and historical contexts. The interconnectedness of a myriad of small and large systems became an overarching theme of the resulting course materials which are now available to teachers for free online at http://www.globalsystemsscience.org/

  15. Mentoring and Argumentation in a Game-Infused Science Curriculum

    Science.gov (United States)

    Gould, Deena L.; Parekh, Priyanka

    2018-04-01

    Engaging in argumentation from evidence is challenging for most middle school students. We report the design of a media-based mentoring system to support middle school students in engaging in argumentation in the context of a game-infused science curriculum. Our design emphasizes learners apprenticing with college student mentors around the socio-scientific inquiry of a designed video game. We report the results of a mixed-methods study examining the use of this media-based mentoring system with students ages 11 through 14. We observed that the discourse of groups of students that engaged with the game-infused science curriculum while interacting with college student mentors via a social media platform demonstrated statistically significant higher ratings of cognitive, epistemic, and social aspects of argumentation than groups of students that engaged with the social media platform and game-infused science curriculum without mentors. We further explored the differences between the Discourses of the mentored and non-mentored groups. This analysis showed that students in the mentored groups were invited, guided, and socialized into roles of greater agency than students in the non-mentored groups. This increased agency might explain why mentored groups demonstrated higher levels of scientific argumentation than non-mentored groups. Based on our analyses, we argue that media-based mentoring may be designed around a video game to support middle school students in engaging in argumentation from evidence.

  16. Specifying a curriculum for biopolitical critical literacy in science teacher education: exploring roles for science fiction

    Science.gov (United States)

    Gough, Noel

    2017-12-01

    In this essay I suggest some ways in which science teacher educators in Western neoliberal economies might facilitate learners' development of a critical literacy concerning the social and cultural changes signified by the concept of biopolitics. I consider how such a biopolitically inflected critical literacy might find expression in a science teacher education curriculum and suggest a number of ways of materializing such a curriculum in specific literatures, media, procedures, and assessment tasks, with particular reference to the contributions of science fiction in popular media.

  17. The Astrobiology in Secondary Classrooms (ASC) curriculum: focusing upon diverse students and teachers.

    Science.gov (United States)

    Arino de la Rubia, Leigh S

    2012-09-01

    The Minority Institution Astrobiology Collaborative (MIAC) began working with the NASA Goddard Center for Astrobiology in 2003 to develop curriculum materials for high school chemistry and Earth science classes based on astrobiology concepts. The Astrobiology in Secondary Classrooms (ASC) modules emphasize interdisciplinary connections in astronomy, biology, chemistry, geoscience, physics, mathematics, and ethics through hands-on activities that address national educational standards. Field-testing of the Astrobiology in Secondary Classrooms materials occurred over three years in eight U.S. locations, each with populations that are underrepresented in the career fields of science, technology, engineering, and mathematics. Analysis of the educational research upon the high school students participating in the ASC project showed statistically significant increases in students' perceived knowledge and science reasoning. The curriculum is in its final stages, preparing for review to become a NASA educational product.

  18. Design of the Information Science and Systems (IS Curriculum in a Computer and Information Sciences Department

    Directory of Open Access Journals (Sweden)

    Behrooz Seyed-Abbassi

    2004-12-01

    Full Text Available Continuous technological changes have resulted in a rapid turnover of knowledge in the computing field. The impact of these changes directly affects the computer-related curriculum offered by educational institutions and dictates that curriculum must evolve to keep pace with technology and to provide students with the skills required by businesses. At the same time, accreditations of curricula from reviewing organizations provide additional guidelines and standardization for computing science as well as information science programs. One of the areas significantly affected by these changes is the field of information systems. This paper describes the evaluation and course structure for the undergraduate information science and systems program in the Computer and Information Sciences Department at the University of North Florida. A list of the major required and elective courses as well as an overview of the challenges encountered during the revision of the curriculum is given.

  19. Lessons learned from curriculum changes and setting curriculum objectives at the University of Pennsylvania's Earth and Environmental Science Department

    Science.gov (United States)

    Dmochowski, J. E.

    2009-12-01

    Recent restructuring of the University of Pennsylvania’s curriculum, including a revised multi-disciplinary Environmental Studies major and a proposed Environmental Science major has led to several changes, including a mandatory junior research seminar. Feedback from students indicates that a more structured curriculum has helped guide them through the multi-disciplinary Environmental Studies major. The addition of mandatory courses in Statistics, Geographical and Environmental Modeling, as well as Economics and Policy has ensured that students have important skills needed to succeed after graduation. We have compiled a curriculum objective matrix to clarify both the broad and focused objectives of our curriculum and how each course helps to fulfill these objectives. An important aspect of both majors is the Senior Thesis. The junior research seminar was recently revised to help students prepare for their thesis research. Topic selection, library research, data presentation, basic research methods, advisor identification, and funding options are discussed. Throughout the course, faculty from within the department lecture about their research and highlight opportunities for undergraduates. In one assignment, students are given a few types of datasets and asked to present the data and error analysis in various formats using different software (SPSS and Excel). The final paper was a research proposal outlining the student’s Senior Thesis. Based on both the university and instructor written course evaluations, students felt they benefited most from writing their senior thesis proposal; doing assignments on data analysis, library research and critical analysis; and the faculty research lectures. The lessons learned in restructuring this flexible major and providing a research seminar in the junior year may benefit other departments considering such changes.

  20. The Impact of High School Science Teachers' Beliefs, Curricular Enactments and Experience on Student Learning during an Inquiry-Based Urban Ecology Curriculum

    Science.gov (United States)

    McNeill, Katherine L.; Pimentel, Diane Silva; Strauss, Eric G.

    2013-01-01

    Inquiry-based curricula are an essential tool for reforming science education yet the role of the teacher is often overlooked in terms of the impact of the curriculum on student achievement. Our research focuses on 22 teachers' use of a year-long high school urban ecology curriculum and how teachers' self-efficacy, instructional practices,…

  1. Developing a yearlong Next Generation Science Standard (NGSS) learning sequence focused on climate solutions: opportunities, challenges and reflections

    Science.gov (United States)

    Cordero, E.; Centeno, D.

    2015-12-01

    Over the last four years, the Green Ninja Project (GNP) has been developing educational media (e.g., videos, games and online lessons) to help motivate student interest and engagement around climate science and solutions. Inspired by the new emphasis in NGSS on climate change, human impact and engineering design, the GNP is developing a technology focused, integrative, and yearlong science curriculum focused around solutions to climate change. Recognizing the importance of teacher training on the successful implementation of NGSS, we have also integrated teacher professional development into our curriculum. During the presentation, we will describe the design philosophy around our middle school curriculum and share data from a series of classes that are piloting the curriculum during Fall 2015. We will also share our perspectives on how data, media creation and engineering can be used to create educational experiences that model the type of 'three-dimensional learning' encouraged by NGSS.

  2. Work-Based Curriculum to Broaden Learners' Participation in Science: Insights for Designers

    Science.gov (United States)

    Bopardikar, Anushree; Bernstein, Debra; Drayton, Brian; McKenney, Susan

    2018-05-01

    Around the globe, science education during compulsory schooling is envisioned for all learners regardless of their educational and career aspirations, including learners bound to the workforce upon secondary school completion. Yet, a major barrier in attaining this vision is low learner participation in secondary school science. Because curricula play a major role in shaping enacted learning, this study investigated how designers developed a high school physics curriculum with positive learning outcomes in learners with varied inclinations. Qualitative analysis of documents and semistructured interviews with the designers focused on the curriculum in different stages—from designers' ideas about learning goals to their vision for enactment to the printed materials—and on the design processes that brought them to fruition. This revealed designers' emphases on fostering workplace connections via learning goals and activities, and printed supports. The curriculum supported workplace-inspired, hands-on design-and-build projects, developed to address deeply a limited set of standards aligned learning goals. The curriculum also supported learners' interactions with relevant workplace professionals. To create these features, the designers reviewed other curricula to develop vision and printed supports, tested activities internally to assess content coverage, surveyed states in the USA receiving federal school-to-work grants and reviewed occupational information to choose unit topics and career contexts, and visited actual workplaces to learn about authentic praxis. Based on the worked example, this paper offers guidelines for designing work-based science curriculum products and processes that can serve the work of other designers, as well as recommendations for research serving designers and policymakers.

  3. Evolution: Its Treatment in K-12 State Science Curriculum Standards

    Science.gov (United States)

    Lerner, L. S.

    2001-12-01

    State standards are the basis upon which states and local schools build curricula. Usually taking the form of lists of what students are expected to learn at specified grades or clusters of grades, they influence statewide examinations, textbooks, teacher education and credentialing, and other areas in which states typically exercise control over local curriculum development. State science standards vary very widely in overall quality.1,2 This is especially true in their treatment of evolution, both in the life sciences and to a somewhat lesser extent in geology and astronomy. Not surprisingly, a detailed evaluation of the treatment of evolution in state science standards3 has evoked considerably more public interest than the preceding studies of overall quality. We here consider the following questions: What constitutes a good treatment of evolution in science standards and how does one evaluate the standards? Which states have done well, and which less well? What nonscientific influences have been brought to bear on standards, for what reasons, and by whom? What strategies have been used to obscure or distort the role of evolution as the central organizing principle of the historical sciences? What are the effects of such distortions on students' overall understanding of science? What can the scientific community do to assure the publication of good science standards and to counteract attacks on good science teaching? 1. Lerner, L. S., State Science Standards: An Appraisal of Science Standards in 36 States, The Thomas B. Fordham Foundation, Washington, D.C., March 1998. 2. Lerner, L. S. et al ., The State of State Standards 2000, ibid., January 2000. 3. Lerner, L. S., Good Science, Bad Science: Teaching Evolution In the States, ibid., September 2000.

  4. Revising and Updating the Plant Science Components of the Connecticut Vocational Agriculture Curriculum.

    Science.gov (United States)

    Connecticut Univ., Storrs. Dept. of Educational Leadership.

    This curriculum guide provides the plant science components of the vocational agriculture curriculum for Regional Vocational Agriculture Centers. The curriculum is divided into exploratory units for students in the 9th and 10th grades and specialized units for students in grades 11 and 12. The five exploratory units are: agricultural pest control;…

  5. What Are Critical Features of Science Curriculum Materials That Impact Student and Teacher Outcomes?

    Science.gov (United States)

    Roblin, Natalie Pareja; Schunn, Christian; McKenney, Susan

    2018-01-01

    Large investments are made in curriculum materials with the goal of supporting science education reform. However, relatively little evidence is available about what features of curriculum materials really matter to impact student and teacher learning. To address this need, the current study examined curriculum features associated with student and…

  6. Focus: science, history, and modern India. Introduction.

    Science.gov (United States)

    Phalkey, Jahnavi

    2013-06-01

    Histories of science in India are revisitations of the colonial question. Science is ideology to be unraveled and exposed--as modernity and progress making or violence and oppression making--depending on where you stand on the interpretive spectrum. It has been seen as ideologically driven practice, as a mode of knowledge production whose history is inseparable from the social and political uses to which it is tethered. In the colonial as well as the postcolonial context, science and technology have been seen as the "ideology of empire," "tools of empire," "tentacles of progress," and "reasons of state." Yet science and technology are practices and bodies of knowledge that inhabitants of the subcontinent have engaged with enthusiasm, that they have used to invent themselves in their global, national, and individual lives. We know remarkably little about the histories of these complex engagements. A departure from current historiographical preoccupations is called for to map and explain the lives, institutions, practices, and stories of science on the subcontinent as they connect with, and where they break away from, the world at large.

  7. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  8. A Reexamination of Ontario's Science Curriculum: Toward a More Inclusive Multicultural Science Education?

    Science.gov (United States)

    Mujawamariya, Donatille; Hujaleh, Filsan; Lima-Kerckhoff, Ashley

    2014-01-01

    The rapid diversification of communities in Ontario has necessitated the provincial government to reevaluate public school curriculums and policies to make schools more inclusive and reflective of its diverse population. This article critically analyzes the content of the latest revised science curricula for Grades 1 to 10 and assesses the degree…

  9. Teacher enactment of an inquiry-based science curriculum and its relationship to student interest and achievement in science

    Science.gov (United States)

    Dimichino, Daniela C.

    This mixed-methods case study, influenced by aspects of grounded theory, aims to explore the relationships among a teacher's attitude toward inquiry-based middle school reform, their enactment of such a curriculum, and student interest and achievement in science. A solid theoretical basis was constructed from the literature on the benefits of inquiry-based science over traditional science education, the benefits of using constructivist learning techniques in the classroom, the importance of motivating teachers to change their teaching practices to be more constructive, and the importance of motivating and exciting students in order to boost achievement in science. Data was collected using qualitative documents such as teacher and student interviews, classroom observations, and curriculum development meetings, in addition to quantitative documents such as student science interest surveys and science skills tests. The qualitative analysis focused on examining teacher attitudes toward curricular reform efforts, and the enactments of three science teachers during the initial year of an inquiry-based middle school curriculum adoption using a fidelity of implementation tool constructed from themes that emerged from the data documents utilized in this study. In addition, both qualitative and quantitative tools were used to measure an increase or decrease in student interest and student achievement over the study year, and their resulting relationships to their teachers' attitudes and enactments of the curriculum. Results from data analysis revealed a positive relationship between the teachers' attitude toward curricular change and their fidelity of implementation to the developers' intentions, or curricular enactment. In addition, strong positive relationships were also discovered among teacher attitude, student interest, and student achievement. Variations in teacher enactment also related to variations in student interest and achievement, with considerable positive

  10. Increasing ocean sciences in K and 1st grade classrooms through ocean sciences curriculum aligned to A Framework for K-12 Science Education, and implementation support.

    Science.gov (United States)

    Pedemonte, S.; Weiss, E. L.

    2016-02-01

    Ocean and climate sciences are rarely introduced at the early elementary levels. Reasons for this vary, but include little direct attention at the national and state levels; lack of quality instructional materials; and, lack of teacher content knowledge. Recent recommendations by the National Research Council, "revise the Earth and Space sciences core ideas and grade band endpoints to include more attention to the ocean whenever possible" (NRC, 2012, p. 336) adopted in the Next Generation Science Standards (NGSS), may increase the call for ocean and climate sciences to be addressed. In response to these recommendations' and the recognition that an understanding of some of the Disciplinary Core Ideas (DCIs) would be incomplete without an understanding of processes or phenomena unique to the ocean and ocean organisms; the ocean Literacy community have created documents that show the alignment of NGSS with the Ocean Literacy Principles and Fundamental Concepts (Ocean Literacy, 2013) as well as the Ocean Literacy Scope and Sequence for Grades K-12 (Ocean Literacy, 2010), providing a solid argument for how and to what degree ocean sciences should be part of the curriculum. However, the percentage of science education curricula focused on the ocean remains very low. This session will describe a new project, that draws on the expertise of curriculum developers, ocean literacy advocates, and researchers to meet the challenges of aligning ocean sciences curriculum to NGSS, and supporting its implementation. The desired outcomes of the proposed project are to provide a rigorous standards aligned curricula that addresses all of the Life Sciences, and some Earth and Space Sciences and Engineering Design Core Ideas for Grades K and 1; and provides teachers with the support they need to understand the content and begin implementation. The process and lessons learned will be shared.

  11. Models and Materials: Bridging Art and Science in the Secondary Curriculum

    Science.gov (United States)

    Pak, D.; Cavazos, L.

    2006-12-01

    Creating and sustaining student engagement in science is one challenge facing secondary teachers. The visual arts provide an alternative means of communicating scientific concepts to students who may not respond to traditional formats or identify themselves as interested in science. We have initiated a three-year teacher professional development program at U C Santa Barbara focused on bridging art and science in secondary curricula, to engage students underrepresented in science majors, including girls, English language learners and non-traditional learners. The three-year format provides the teams of teachers with the time and resources necessary to create innovative learning experiences for students that will enhance their understanding of both art and science content. Models and Materials brings together ten secondary art and science teachers from six Santa Barbara County schools. Of the five participating science teachers, three teach Earth Science and two teach Life Science. Art and science teachers from each school are teamed and challenged with the task of creating integrated curriculum projects that bring visual art concepts to the science classroom and science concepts to the art classroom. Models and Materials were selected as unifying themes; understanding the concept of models, their development and limitations, is a prominent goal in the California State Science and Art Standards. Similarly, the relationship between composition, structure and properties of materials is important to both art and science learning. The program began with a 2-week institute designed to highlight the natural links between art and science through presentations and activities by both artists and scientists, to inspire teachers to develop new ways to present models in their classrooms, and for the teacher teams to brainstorm ideas for curriculum projects. During the current school year, teachers will begin to integrate science and art and the themes of modeling and materials

  12. Bringing Data Science, Xinformatics and Semantic eScience into the Graduate Curriculum

    Science.gov (United States)

    Fox, P.

    2012-04-01

    Committee on Information and Data (SCCID), features this excerpt from section 4.2.4 Data scientists and professionals: "An unfortunate state in the recognition of data science, is that there is a lack of appreciation of the need for a set of professional knowledge in skill in key areas, many of which have not been emphasized to date, e.g. professional approaches to the management of data over its lifecycle. As such, the effort required to be a data scientists is not valued sufficiently by the remainder of the scientific community." SCCID Recommendation 6 reads: "We recommend the development of education at university level in the new and vital field of data science. The curriculum included in appendix D can be used as a starting point for curriculum development. Appendix D. is entitled "Example curriculum for data science" and explicitly uses the "Curriculum for Data Science taught at Rensselaer Polytechnic Institute, USA" . This contribution will present relevant curriculum offerings at the Rensselaer Polytechnic Institute. http://tw.rpi.edu/web/Courses

  13. Innovative curriculum: Integrating the bio-behavioral and social science principles across the LifeStages in basic science years.

    Science.gov (United States)

    Lele Mookerjee, Anuradha; Fischer, Bradford D; Cavanaugh, Susan; Rajput, Vijay

    2018-05-20

    Behavioral and social science integration in clinical practice improves health outcomes across the life stages. The medical school curriculum requires an integration of the behavioral and social science principles in early medical education. We developed and delivered a four-week course entitled "LifeStages" to the first year medical students. The learning objectives of the bio-behavioral and social science principles along with the cultural, economic, political, and ethical parameters were integrated across the lifespan in the curriculum matrix. We focused on the following major domains: Growth and Brain Development; Sexuality, Hormones and Gender; Sleep; Cognitive and Emotional Development; Mobility, Exercise, Injury and Safety; Nutrition, Diet and Lifestyle; Stress and coping skills, Domestic Violence; Substance Use Disorders; Pain, Illness and Suffering; End of Life, Ethics and Death along with Intergenerational issues and Family Dynamics. Collaboration from the clinical and biomedical science departments led to the dynamic delivery of the course learning objectives and content. The faculty developed and led a scholarly discussion, using the case of a multi-racial, multi-generational family during Active Learning Group (ALG) sessions. The assessment in the LifeStages course involved multiple assessment tools: including the holistic assessment by the faculty facilitator inside ALGs, a Team-Based Learning (TBL) exercise, multiple choice questions and Team Work Assessment during which the students had to create a clinical case on a LifeStages domain along with the facilitators guide and learning objectives.

  14. Electromagnetic Spectrum. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    Science.gov (United States)

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the second in a set of six, contains teacher and student materials for a unit on the electromagnetic spectrum prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for…

  15. History of Science in the Physics Curriculum: A Directed Content Analysis of Historical Sources

    Science.gov (United States)

    Seker, Hayati; Guney, Burcu G.

    2012-01-01

    Although history of science is a potential resource for instructional materials, teachers do not have a tendency to use historical materials in their lessons. Studies showed that instructional materials should be adaptable and consistent with curriculum. This study purports to examine the alignment between history of science and the curriculum in…

  16. The Implementation of the New Lower Secondary Science Curriculum in Three Schools in Rwanda

    Science.gov (United States)

    Nsengimana, Théophile; Ozawa, Hiroaki; Chikamori, Kensuke

    2014-01-01

    In 2006, Rwanda began implementing an Outcomes Based Education (OBE) lower secondary science curriculum that emphasises a student-centred approach. The new curriculum was designed to transform Rwandan society from an agricultural to a knowledge-based economy, with special attention to science and technology education. Up until this point in time…

  17. Georgia science curriculum alignment and accountability: A blueprint for student success

    Science.gov (United States)

    Reining-Gray, Kimberly M.

    Current trends and legislation in education indicate an increased dependency on standardized test results as a measure for learner success. This study analyzed test data in an effort to assess the impact of curriculum alignment on learner success as well as teacher perceptions of the changes in classroom instruction due to curriculum alignment. Qualitative and quantitative design methods were used to determine the impact of science curriculum alignment in grades 9-12. To determine the impact of science curriculum alignment from the Quality Core Curriculum (QCC) to the Georgia Performance Standards (GPS) test data and teacher opinion surveys from one Georgia School system were examined. Standardized test scores before and after curriculum alignment were analyzed as well as teacher perception survey data regarding the impact of curriculum change. A quantitative teacher perception survey was administered to science teachers in the school system to identify significant changes in teacher perceptions or teaching strategies following curriculum realignment. Responses to the survey were assigned Likert scale values for analysis purposes. Selected teachers were also interviewed using panel-approved questions to further determine teacher opinions of curriculum realignment and the impact on student success and teaching strategies. Results of this study indicate significant changes related to curriculum alignment. Teachers reported a positive change in teaching strategies and instructional delivery as a result of curriculum alignment and implementation. Student scores also showed improvement, but more research is recommended in this area.

  18. Ka Hana `Imi Na`auao: A Science Curriculum Project

    Science.gov (United States)

    Napeahi, K.; Roberts, K. D.; Galloway, L. M.; Stodden, R. A.; Akuna, J.; Bruno, B.

    2005-12-01

    In antiquity, the first people to step foot on what are now known as the Hawaiian islands skillfully traversed the Pacific Ocean using celestial navigation and learned observations of scientific phenomena. Long before the Western world ventured beyond the horizon, Hawaiians had invented the chronometer, built aqueduct systems (awai) that continue to amaze modern engineers, and had preventive health systems as well as a comprehensive knowledge of medicinal plants (including antivirals) which only now are working their way through trials for use in modern pharmacopia. Yet, today, Native Hawaiians are severely underrepresented in science-related fields, reflecting (in part) a failure of the Western educational system to nurture the potential of these resourceful students, particularly the many "at-risk" students who are presently over-represented in special education. A curriculum which draws from and incorporates traditional Hawaiian values and knowledge is needed to reinforce links to the inquiry process which nurtured creative thinking during the renaissance of Polynesian history. The primary goal of the Ka Hana `Imi Na`auao Project (translation: `science` or `work in which you seek enlightenment, knowledge or wisdom`) is to increase the number of Native Hawaiian adults in science-related postsecondary education and employment fields. Working closely with Native Hawaiian cultural experts and our high school partners, we will develop and implement a culturally responsive 11th and 12th grade high school science curriculum, infused with math, literacy and technology readiness skills. Software and assistive technology will be used to adapt instruction to individual learners` reading levels, specific disabilities and learning styles. To ease the transition from secondary to post-secondary education, selected grade 12 students will participate in planned project activities that link high school experiences with college science-related programs of study. Ka Hana `Imi Na

  19. Family and Consumer Sciences Teacher Needs Assessment of a STEM-Enhanced Food and Nutrition Sciences Curriculum

    OpenAIRE

    Merrill, Cathy A.

    2016-01-01

    Science, technology, engineering and mathematics (STEM) education concepts are naturally contextualized in the study of food and nutrition. In 2014 a pilot group of Utah high school Career and Technical Education Family and Consumer Sciences teachers rewrote the Food and Nutrition Sciences curriculum to add and enhance the STEM-related content. This study is an online needs assessment by Utah Food and Nutrition 1 teachers on the implementation of the STEM-enhanced curriculum after its first y...

  20. The Impact of a Curriculum Course on Pre-Service Primary Teachers' Science Content Knowledge and Attitudes towards Teaching Science

    Science.gov (United States)

    Murphy, Cliona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students'…

  1. The Proof of the Pudding?: A Case Study of an "At-Risk" Design-Based Inquiry Science Curriculum

    Science.gov (United States)

    Chue, Shien; Lee, Yew-Jin

    2013-12-01

    When students collaboratively design and build artifacts that require relevant understanding and application of science, many aspects of scientific literacy are developed. Design-based inquiry (DBI) is one such pedagogy that can serve these desired goals of science education well. Focusing on a Projectile Science curriculum previously found to be implemented with satisfactory fidelity, we investigate the many hidden challenges when using DBI with Grade 8 students from one school in Singapore. A case study method was used to analyze video recordings of DBI lessons conducted over 10 weeks, project presentations, and interviews to ascertain the opportunities for developing scientific literacy among participants. One critical factor that hindered learning was task selection by teachers, which emphasized generic scientific process skills over more important cognitive and epistemic learning goals. Teachers and students were also jointly engaged in forms of inquiry that underscored artifact completion over deeper conceptual and epistemic understanding of science. Our research surfaced two other confounding factors that undermined the curriculum; unanticipated teacher effects and the underestimation of the complexity of DBI and of inquiry science in general. Thus, even though motivated or experienced teachers can implement an inquiry science curriculum with good fidelity and enjoy school-wide support, these by themselves will not guarantee deep learning of scientific literacy in DBI. Recommendations are made for navigating the hands- and minds-on aspects of learning science that is an asset as well as inherent danger during DBI teaching.

  2. Paths through interpretive territory: Two teachers' enactment of a technology-rich, inquiry-fostering science curriculum

    Science.gov (United States)

    McDonald, Scott Powell

    New understandings about how people learn and constructivist pedagogy pose challenges for teachers. Science teachers face an additional challenge of developing inquiry-based pedagogy to foster complex reasoning skills. Theory provides only fuzzy guidance as to how constructivist or inquiry pedagogy can be accomplished in a wide variety of contexts and local constraints. This study contributes to the understanding of the development of constructivist, inquiry-based pedagogy by addressing the question: How do teachers interpret and enact a technology-rich, inquiry fostering science curricula for fifth grade students' biodiversity learning? This research is a case study of two teachers chosen as critical contrasting cases and represent differences across multiple criteria including: urban I suburban, teaching philosophy, and content preparation. The two fifth grade teachers each enacted BioKIDS: Kids' Inquiry in Diverse Species, an eight week curriculum focused on biodiversity. BioKIDS incorporates multiple learning technologies to support student learning including handheld computer software designed to help students collect field data, and a web-based resource for data on local animal species. The results of this study indicate there are tensions teachers must struggle with when setting goals during enactment of inquiry science curricula. They must find a balance between an emphasis on authentic learning and authentic science, and between natural history and natural science. Authentic learning focuses on students' interests and lives; Authentic science focuses on students working with the tools and processes of science. Natural history focuses on the foundational skills in science of observation and classification. Natural science focuses on analytical science drawing on data to develop claims about the world. These two key tensions in teachers' goal setting were critical in defining and understanding differences in how teachers interpreted a curriculum to meet

  3. A behavioral science/behavioral medicine core curriculum proposal for Japanese undergraduate medical education

    OpenAIRE

    Tsutsumi, Akizumi

    2015-01-01

    Behavioral science and behavioral medicine have not been systematically taught to Japanese undergraduate medical students. A working group under the auspices of Japanese Society of Behavioral Medicine developed an outcome-oriented curriculum of behavioral science/behavioral medicine through three processes: identifying the curriculum contents, holding a joint symposium with related societies, and defining outcomes and proposing a learning module. The behavioral science/behavioral medicine cor...

  4. Bridging the Gap: Embedding Communication Courses in the Science Undergraduate Curriculum

    Science.gov (United States)

    Jandciu, Eric; Stewart, Jaclyn J.; Stoodley, Robin; Birol, Gülnur; Han, Andrea; Fox, Joanne A.

    2015-01-01

    The authors describe a model for embedding science communication into the science curriculum without displacing science content. They describe the rationale, development, design, and implementation of two courses taught by science faculty addressing these criteria. They also outline the evaluation plan for these courses, which emphasize broad…

  5. Collaborative curriculum design to increase science teaching self-efficacy

    NARCIS (Netherlands)

    Velthuis, C.H.

    2014-01-01

    The focus in this study is on developing a teacher training program for improving teachers’ science teaching self-efficacy. Teachers with a high sense of self-efficacy will set higher goals for themselves, are less afraid of failure and will find new strategies when old ones fail. If their sense of

  6. Integrating Leadership Development throughout the Undergraduate Science Curriculum

    Science.gov (United States)

    Reed, Kelynne E.; Aiello, David P.; Barton, Lance F.; Gould, Stephanie L.; McCain, Karla S.; Richardson, John M.

    2016-01-01

    This article discusses the STEM (science, technology, engineering, and mathematics) Teaching and Research (STAR) Leadership Program, developed at Austin College, which engages students in activities integrated into undergraduate STEM courses that promote the development of leadership behaviors. Students focus on interpersonal communication,…

  7. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    Science.gov (United States)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  8. The impact of a curriculum course on pre-service primary teachers' science content knowledge and attitudes towards teaching science

    OpenAIRE

    Murphy, Clíona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students' conceptual and pedagogical knowledge of science and on their attitudes towards teaching science in the primary classroom. A questionnaire, containing closed ...

  9. Revision of Primary I-III Science Curriculum in Somalia. African Studies in Curriculum Development & Evaluation No. 83.

    Science.gov (United States)

    Abdi, Ahmed Ali

    This study was designed to evaluate: (1) the content of the primary I-III science curriculum in Somalia; (2) the instructional materials that back up the content and methodologies; and (3) the professional competence of the teachers in charge of teaching this subject. Data were collected by means of a questionnaire, observations, and unstructured…

  10. Customization of Curriculum Materials in Science: Motives, Challenges, and Opportunities

    Science.gov (United States)

    Romine, William L.; Banerjee, Tanvi

    2012-02-01

    Exemplary science instructors use inquiry to tailor content to student's learning needs; traditional textbooks treat science as a set of facts and a rigid curriculum. Publishers now allow instructors to compile pieces of published and/or self-authored text to make custom textbooks. This brings numerous advantages, including the ability to produce smaller, cheaper text and added flexibility on the teaching models used. Moreover, the internet allows instructors to decentralize textbooks through easy access to educational objects such as audiovisual simulations, individual textbook chapters, and scholarly research articles. However, these new opportunities bring with them new problems. With educational materials easy to access, manipulate and duplicate, it is necessary to define intellectual property boundaries, and the need to secure documents against unlawful copying and use is paramount. Engineers are developing and enhancing information embedding technologies, including steganography, cryptography, watermarking, and fingerprinting, to label and protect intellectual property. While these are showing their utility in securing information, hackers continue to find loop holes in these protection schemes, forcing engineers to constantly assess the algorithms to make them as secure as possible. As newer technologies rise, people still question whether custom publishing is desirable. Many instructors see the process as complex, costly, and substandard in comparison to using traditional text. Publishing companies are working to improve attitudes through advertising. What lacks is peer reviewed evidence showing that custom publishing improves learning. Studies exploring the effect of custom course materials on student attitude and learning outcomes are a necessary next step.

  11. A web-based resource for the nuclear science/technology high school curriculum - a summary

    International Nuclear Information System (INIS)

    Ripley, C.

    2009-01-01

    On November 15, 2008, the CNA launched a new Nuclear Science Technology High School Curriculum Website. Located at www.cna.ca the site was developed over a decade, first with funding from AECL and finally by the CNA, as a tool to explain concepts and issues related to energy and in particular nuclear energy targeting the public, teachers and students in grades 9-12. It draws upon the expertise of leading nuclear scientists and science educators. Full lesson plans for the teacher, videos for discussion, animations, games, electronic publications, laboratory exercises and quick question and answer sheets will give the student greater knowledge, skills and attitudes necessary to solve problems and to critically examine issues in making decisions. Eight modules focus on key areas: Canada's Nuclear History, Atomic Theory, What is Radiation?, Biological Effects of Radiation, World Energy Sources, Nuclear Technology at Work, Safety (includes Waste Disposal) in the Nuclear Industry and Careers. (author)

  12. Curriculum

    Directory of Open Access Journals (Sweden)

    Robi Kroflič

    1997-12-01

    Full Text Available Modern curriculum theories emphasize that if we understand the curriculum as a real core substance of education. We have to bear in mind, when planning the curriculum, the whole multitude of factors (curricula which have an influence on the educational impact. In the field of andragogy, we especially have to consider educational needs, and linking the strategies of instruction with those of learning. The best way of realizing this principle is the open strategy of planning the national curriculum and process-developmental strategy of planning with the microandragogic situation. This planning strategy is S1m1lar to the system-integration strategy and Jarvis's model of negotiated curriculum, which derive from the basic andragogic principle: that the interests and capacities of adults for education increase if we enable them to cooperate in the planning and production of the curriculum.

  13. What are critical features of science curriculum materials that impact student and teacher outcomes?

    NARCIS (Netherlands)

    Roblin, Natalie Pareja; Schunn, Christian; McKenney, Susan

    2018-01-01

    Large investments are made in curriculum materials with the goal of supporting science education reform. However, relatively little evidence is available about what features of curriculum materials really matter to impact student and teacher learning. To address this need, the current study examined

  14. The Politics of Developing and Maintaining Mathematics and Science Curriculum Content Standards. Research Monograph.

    Science.gov (United States)

    Kirst, Michael W.; Bird, Robin L.

    The movement toward math and science curriculum standards is inextricably linked with high-stakes politics. There are two major types of politics discussed in this paper: the allocation of curriculum content, and the political issues involved in systemic change. Political strategies for gaining assent to national, state, and local content…

  15. Taiwanese Science and Life Technology Curriculum Standards and Earth Systems Education

    Science.gov (United States)

    Chang, Chun-Yen

    2005-01-01

    In the past several years, curriculum reform has received increasing attention from educators in many countries around the world. Recently, Taiwan has developed new Science and Life Technology Curriculum Standards (SaLTS) for grades 1-9. SaLTS features a systematic way for developing students' understanding and appreciation of…

  16. The Study of Literacy Reinforcement of Science Teachers in Implementing 2013 Curriculum

    Science.gov (United States)

    Dewi, W. S.; Festiyed, F.; Hamdi, H.; Sari, S. Y.

    2018-04-01

    This research aims to study and collect data comprehensively, new and actual about science literacy to improve the ability of educators in implementing the 2013 Curriculum at Junior High School Padang Pariaman District. The specific benefit of this research is to give description and to know the problem of science literacy problem in interaction among teacher, curriculum, facilities and infrastructure, evaluation, learning technology and students. This study uses explorative in deep study approach, studying and collecting data comprehensively from the interaction of education process components (curriculum, educator, learner, facilities and infrastructure, learning media technology, and evaluation) that influence the science literacy. This research was conducted in the districts of Padang Pariaman consisting of 17 subdistricts and 84 junior high schools managed by the government and private. The sample of this research is science teachers of Padang Pariaman District with sampling technique is stratified random sampling. The instrument used in this study is a questionnaire to the respondents. Research questionnaire data are processed by percentage techniques (quantitative). The results of this study explain that the understanding of science teachers in Padang Pariaman District towards the implementation of 2013 Curriculum is still lacking. The science teachers of Padang Pariaman District have not understood the scientific approach and the effectiveness of 2013 Curriculum in shaping the character of the students. To improve the understanding of the implementation of Curriculum 2013, it is necessary to strengthen the literacy toward science teachers at the Junior High School level in Padang Pariaman District.

  17. The Innovative Immersion of Mobile Learning into a Science Curriculum in Singapore: an Exploratory Study

    Science.gov (United States)

    Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting

    2016-08-01

    With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear program of school-based research. The foci of this paper is on the design principles of the curriculum and its enactment, and the establishment of a teacher learning community. Through elucidating the design features of the innovative curriculum and evaluating teacher and student involvement in science instruction and learning, we introduce the science curriculum, called Mobilized 5E Science Curriculum (M5ESC), and present a representative case study of how one experienced teacher and her class adopted the curriculum. The findings indicate the intervention promoted this teacher's questioning competency, enabled her to interact with students frequently and flexibly in class, and supported her technology use for promoting different levels of cognition. Student learning was also improved in terms of test achievement and activity performance in and out of the classroom. We propose that the study can be used to guide the learning design of mobile technology-supported curricula, as well as teacher professional development for curriculum enactment.

  18. Re-visioning Curriculum and Pedagogy in a University Science and ...

    African Journals Online (AJOL)

    Re-visioning Curriculum and Pedagogy in a University Science and Technology Education Setting: Case Studies Interrogating Socio-Scientific Issues. Overson Shumba, George Kasali, Yaki Namiluko, Beauty Choobe, Gezile Mbewe, Moola Mutondo, Kenneth Maseka ...

  19. Professional development as a strategy for curriculum implementation in multidisciplinary science education

    NARCIS (Netherlands)

    Visser, Talitha Christine

    2012-01-01

    Schoolteachers must deal with curriculum innovations during their teaching careers. In 2005, the Dutch Ministry of Education, Culture and Science introduced committees to develop and redesign the curricula for chemistry, biology, physics, and mathematics in secondary education. The purpose of

  20. Designing a primary science curriculum in a globalizing world: How do social constructivism and Vietnamese culture meet?

    Science.gov (United States)

    Hằng, Ngô Vũ Thu; Meijer, Marijn Roland; Bulte, Astrid M. W.; Pilot, Albert

    2017-09-01

    The implementation of social constructivist approaches to learning science in primary education in Vietnamese culture as an example of Confucian heritage culture remains challenging and problematic. This theoretical paper focuses on the initial phase of a design-based research approach; that is, the description of the design of a formal, written curriculum for primary science education in which features of social constructivist approaches to learning are synthesized with essential aspects of Vietnamese culture. The written design comprises learning aims, a framework that is the synthesis of learning functions, learning settings and educational expectations for learning phases, and exemplary curriculum units. Learning aims are formulated to comprehensively develop scientific knowledge, skills, and attitudes toward science for primary students. Derived from these learning aims, the designed framework consists of four learning phases respectively labeled as Engagement, Experience, Exchange, and Follow-up. The designed framework refers to knowledge of the "nature of science" education and characteristics of Vietnamese culture as an example of Confucian heritage culture. The curriculum design aims to serve as an educational product that addresses previously analyzed problems of primary science education in the Vietnamese culture in a globalizing world.

  1. Scientific Management as part of the curriculum of Pedagogical Sciences.

    Directory of Open Access Journals (Sweden)

    Martha Margarita López Ruiz

    2013-07-01

    Full Text Available The Psychology and Pedagogy carer is developed in pedagogical sciences Cuban universities and the plan of the teaching learning process is organized on disciplines, subjects and activities from the working practice are distributed during the five years of the career which guarantee the fulfilment of the objectives in the professional qualification degree. Scientific educational management is included as part of the curriculum of this specialty in Pedagogical Universities. Scientific educational management has a great importance in the existence of state who is worried for the preparation and training of pedagogical specialists to whom ethics becomes a daily practice in their jobs in a society in which the formation and development of Cuban citizens is carried out by social programs encouraged by the government. The growing of this specialist is supported on the existence of a government that is interested on teaching, innovate and develop human beings by means of putting into practice social and cultural activities. The main goal of this article is to exemplify how to organize the contents of scientific educational management and the way of planning the teaching learning process to better future Cuban teacher trainers and managers.

  2. Factors Affecting Student Success with a Google Earth-Based Earth Science Curriculum

    Science.gov (United States)

    Blank, Lisa M.; Almquist, Heather; Estrada, Jen; Crews, Jeff

    2016-01-01

    This study investigated to what extent the implementation of a Google Earth (GE)-based earth science curriculum increased students' understanding of volcanoes, earthquakes, plate tectonics, scientific reasoning abilities, and science identity. Nine science classrooms participated in the study. In eight of the classrooms, pre- and post-assessments…

  3. The Future Curriculum for School Science: What Can Be Learnt from the Past?

    Science.gov (United States)

    Fensham, Peter J.

    2016-01-01

    In the 1960s, major reforms of the curriculum for school science education occurred that set a future for school science education that has been astonishingly robust at seeing off alternatives. This is not to say that there are not a number of good reasons for such alternative futures. The sciences, their relation to the socio-scientific context,…

  4. From Prescribed Curriculum to Classroom Practice: An Examination of the Implementation of the New York State Earth Science Standards

    Science.gov (United States)

    Contino, Julie; Anderson, O. Roger

    2013-01-01

    In New York State (NYS), Earth science teachers use the "National Science Education Standards" (NSES), the NYS "Learning Standards for Mathematics, Science and Technology" (NYS Standards), and the "Physical Setting/Earth Science Core Curriculum" (Core Curriculum) to create local curricula and daily lessons. In this…

  5. Towards a Philosophically and a Pedagogically Reasonable Nature of Science Curriculum

    Science.gov (United States)

    Yacoubian, Hagop Azad

    This study, primarily theoretical in nature, explores a philosophically and pedagogically reasonable way of addressing nature of science (NOS) in school science. NOS encompasses what science is and how scientific knowledge develops. I critically evaluate consensus frameworks of NOS in school science, which converge contentious philosophical viewpoints into general NOS-related ideas. I argue that they (1) lack clarity in terms of how NOS-related ideas could be applied for various ends, (2) portray a distorted image of the substantive content of NOS and the process of its development, and (3) lack a developmental trajectory for how to address NOS at different grade levels. As a remedy to these problems, I envision a NOS curriculum that (1) explicates and targets both NOS as an educational end and NOS as a means for socioscientific decision making, (2) has critical thinking as its foundational pillar, and (3) provides a developmental pathway for NOS learning using critical thinking as a progression unit. Next, I illustrate a framework for addressing NOS in school science referred to as the critical thinking—nature of science (CT-NOS) framework. This framework brings together the first two of the three elements envisioned in the NOS curriculum. I address the third element by situating the CT-NOS framework in a developmental context, borrowing from the literature on learning progressions in science and using critical thinking as a progression unit. Finally, I present an empirical study of experienced secondary science teachers’ views of a NOS lesson prepared using the CT-NOS framework. The teachers attended a professional development workshop at which the lesson, and the characteristics of the CT-NOS framework, were presented. The analysis of the qualitative data revealed that most teachers found the lesson to be somewhat feasible for a secondary science classroom, useful or somewhat useful to their students, and interesting. The teachers focused on 14 features of

  6. A behavioral science/behavioral medicine core curriculum proposal for Japanese undergraduate medical education.

    Science.gov (United States)

    Tsutsumi, Akizumi

    2015-01-01

    Behavioral science and behavioral medicine have not been systematically taught to Japanese undergraduate medical students. A working group under the auspices of Japanese Society of Behavioral Medicine developed an outcome-oriented curriculum of behavioral science/behavioral medicine through three processes: identifying the curriculum contents, holding a joint symposium with related societies, and defining outcomes and proposing a learning module. The behavioral science/behavioral medicine core curriculum consists of 11 units of lectures and four units of practical study. The working group plans to improve the current core curriculum by devising formative assessment methods so that students can learn and acquire attitude as well as the skills and knowledge necessary for student-centered clinical practice.

  7. Student Focused Geospatial Curriculum Initiatives: Internships and Certificate Programs at NCCU

    Science.gov (United States)

    Vlahovic, G.; Malhotra, R.

    2009-12-01

    Service (GRITS) Center housed in the Department of Environmental, Earth and Geospatial Sciences. The GRITS center was established in 2006 with funding from the National Science Foundation to promote the learning and application of geospatial technologies. Since then GRITS has been a hub for Geographical Information Science (GIS) curriculum development, faculty and professional GIS workshops, grant writing and outreach efforts. The Center also serves as a contact point for partnerships with other universities, national organizations and businesses in the geospatial arena - and as a result, opens doors to the professional world for our graduate and undergraduate students.

  8. Student attitudes to UNDP Social Science curriculum in Fiji — Personal and environmental influences

    Science.gov (United States)

    Baba, Tupeni L.; Fraser, Barry J.

    1983-12-01

    A sample of 834 seventh grade students in Fiji participated in an evaluation of the UNDP Social Science curriculum by responding to questionnaires measuring attitudes to or perceptions of three important curriculum process criteria (Interest, Ease and Adequacy of Time). The three major purposes of the evaluation were to provide formative information to guide curriculum revision, to provide summative information about the overall efficacy of the curriculum, and to explore the differential suitability of the curriculum for students varying in personal and environmental characteristics. Examination of means on individual questionnaire items led to the identification of certain curriculum activities requiring modification to improve their level of Interest, Ease, or Adequacy of Time. The finding that the mean score was relatively high for most questionnaire items suggested that the majority of activities in the curriculum were perceived by students as interesting and easy and having sufficient time for completion. Multiple regression analyses revealed that a block of personal variables and a block of environmental variables, but not a block of person-environment interactions, accounted for a significant amount of variance in the three process criteria. In particular, it was found that student attitudes to the curriculum varied systematically with certain personal variables (e.g., student general interest in social science, student ethnicity) and environmental variables (e.g., school location, teacher training).

  9. Factors affecting retention in science-based curriculums at HBCUs

    Energy Technology Data Exchange (ETDEWEB)

    Pelham, J.

    1991-01-01

    A systematic and comprehensive study of the retention of minority students enrolled in college-level engineering was conducted. The majority of prior work in this area focused on institutional retention factors for students in non-specified majors and considered students dropouts'' whenever there was a break in enrollment. This study looked only at students whose beginning major was engineering, enrolled primarily at historically black colleges and universities (HBCUs), including a comparison sample from a predominantly white institution (PWI). Science persisters were defined as those students who continuously enrolled in post-secondary institutions full- and part-time -- whether or not they transferred between institutions. The critical factor was their continued enrollment in engineering. Study participants provided four types of information: (1) a measure of academic motivation, (2) an objective measure of science interest, (3) a measure of nine aspects of normal personality functioning, and (4) an assessment of selected demographic variables. 64 refs.

  10. Factors affecting retention in science-based curriculums at HBCUs

    Energy Technology Data Exchange (ETDEWEB)

    Pelham, J.

    1991-12-31

    A systematic and comprehensive study of the retention of minority students enrolled in college-level engineering was conducted. The majority of prior work in this area focused on institutional retention factors for students in non-specified majors and considered students ``dropouts`` whenever there was a break in enrollment. This study looked only at students whose beginning major was engineering, enrolled primarily at historically black colleges and universities (HBCUs), including a comparison sample from a predominantly white institution (PWI). Science persisters were defined as those students who continuously enrolled in post-secondary institutions full- and part-time -- whether or not they transferred between institutions. The critical factor was their continued enrollment in engineering. Study participants provided four types of information: (1) a measure of academic motivation, (2) an objective measure of science interest, (3) a measure of nine aspects of normal personality functioning, and (4) an assessment of selected demographic variables. 64 refs.

  11. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    Science.gov (United States)

    Halversen, C.; Weiss, E. L.; Pedemonte, S.

    2016-02-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, few high quality curriculum materials exist that address climate change in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8: The Ocean-Atmosphere Connection and Climate Change (OSS) addresses this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. OSS was developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified curriculum development team. Scientists were active partners throughout the entire development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. The goal was to focus strategically and effectively on core concepts within ocean and climate sciences that students should understand. OSS was designed in accordance with the latest research from the learning sciences and provides numerous opportunities for students to develop facility with science practices by "doing" science.Through hands-on activities, technology, informational readings, and embedded assessments, OSS deeply addresses a significant number of standards from the Next Generation Science Standards and is being used by many teachers as they explore the shifts required by NGSS. It also aligns with the Ocean Literacy and Climate Literacy Frameworks. OSS comprises 33 45-minute sessions organized into three thematic units, each driven by an exploratory question: (1) How do the ocean and atmosphere

  12. Exploring the role of curriculum materials to support teachers in science education reform

    Science.gov (United States)

    Schneider, Rebecca M.

    2001-07-01

    For curriculum materials to succeed in promoting large-scale science education reform, teacher learning must be supported. Materials were designed to reflect desired reforms and to be educative by including detailed lesson descriptions that addressed necessary content, pedagogy, and pedagogical content knowledge for teachers. The goal of this research was to describe how such materials contributed to classroom practices. As part of an urban systemic reform effort, four middle school teachers' initial enactment of an inquiry-based science unit on force and motion were videotaped. Enactments focused on five lesson sequences containing experiences with phenomena, investigation, technology use, or artifact development. Each sequence spanned three to five days across the 10-week unit. For each lesson sequence, intended and actual enactment were compared using ratings of (1) accuracy and completeness of science ideas presented, (2) amount student learning opportunities, similarity of learning opportunities with those intended, and quality of adaptations , and (3) amount of instructional supports offered, appropriateness of instructional supports and source of ideas for instructional supports. Ratings indicated two teachers' enactments were consistent with intentions and two teachers' enactments were not. The first two were in school contexts supportive of the reform. They purposefully used the materials to guide enactment, which tended to be consistent with standards-based reform. They provided students opportunities to use technology tools, design investigations, and discuss ideas. However, enactment ratings were less reflective of curriculum intent when challenges were greatest, such as when teachers attempted to present challenging science ideas, respond to students' ideas, structure investigations, guide small-group discussions, or make adaptations. Moreover, enactment ratings were less consistent in parts of lessons where materials did not include lesson specific

  13. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    Science.gov (United States)

    Weiss, E.; Skene, J.; Tran, L.

    2011-12-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, there are few high quality curricula available to teachers that address these topics in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8 aims to address this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. The Ocean Sciences Sequence for Grades 6-8 is developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified GEMS (Great Explorations in Math & Science) curriculum development team. Scientists are active partners throughout the whole development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. As with all GEMS Sequences, the Ocean Sciences Sequence for Grades 6-8 is designed to provide significant scientific and educational depth, systematic assessments and informational readings, and incorporate new learning technologies. The goal is to focus strategically and effectively on the core concepts within ocean and climate sciences that students need to understand. This curriculum is designed in accordance with the latest research from the learning sciences, and provides numerous opportunities for students to develop inquiry skills and abilities as they learn about the practice of science through hands-on activities. The Ocean Sciences Sequence for Grades 6-8 addresses in depth a significant number of national, state, and district standards and benchmarks. It

  14. Teachers' Sensemaking about Implementation of an Innovative Science Curriculum Across the Settings of Professional Development and Classroom Enactment

    Science.gov (United States)

    de los Santos, Xeng

    Designing professional development that effectively supports teachers in learning new and often challenging practices remains a dilemma for teacher educators. Within the context of current reform efforts in science education, such as the Next Generation Science Standards, teacher educators are faced with managing the dilemma of how to support a large number of teachers in learning new practices while also considering factors such as time, cost, and effectiveness. Implementation of educative, reform-aligned curricula is one way to reach many teachers at once. However, one question is whether large-scale curriculum implementation can effectively support teachers in learning and sustaining new teaching practices. To address this dilemma, this study used a comparative, multiple case study design to investigate how secondary science teachers engaged in sensemaking about implementation of an innovative science curriculum across the settings of professional development and classroom enactment. In using the concept of sensemaking from organizational theory, I focused specifically on how teachers' roles in social organizations influenced their decisions to implement the curriculum in particular ways, with differing outcomes for their own learning and students' engagement in three-dimensional learning. My research questions explored: (1) patterns in teachers' occasions of sensemaking, including critical noticing of interactions among themselves, the curriculum, and their students; (2) how teachers' social commitments to different communities influenced their sensemaking; and, (3) how sustained sensemaking over time could facilitate teacher learning of rigorous and responsive science teaching practices. In privileging teachers' experiences in the classroom using the curriculum with their students, I used data generated primarily from teacher interviews with their case study coaches about implementation over the course of one school year. Secondary sources of data included

  15. The Central Nervous System and Alcohol Use. Science of Alcohol Curriculum for American Indians. Training Unit [and] Participant Booklet.

    Science.gov (United States)

    Jacobs, Cecelia; And Others

    The Science of Alcohol Curriculum for American Indians uses the Medicine Circle and the "new science paradigm" to study the science of alcohol through a culturally relevant holistic approach. Intended for teachers and other educational personnel involved with American Indians, this curriculum aims to present a framework for alcohol…

  16. The Digestive System and Alcohol Use. Science of Alcohol Curriculum for American Indians. Training Unit [and] Participant Booklet.

    Science.gov (United States)

    Jacobs, Cecelia; And Others

    The Science of Alcohol Curriculum for American Indians uses the Medicine Circle and the "new science paradigm" to study the science of alcohol through a culturally relevant holistic approach. Intended for teachers and other educational personnel involved with American Indians, this curriculum presents a framework for alcohol education…

  17. Quality of faculty, students, curriculum and resources for nursing doctoral education in Korea: a focus group study.

    Science.gov (United States)

    Kim, Mi Ja; Lee, Hyeonkyeong; Kim, Hyun Kyung; Ahn, Yang-Heui; Kim, Euisook; Yun, Soon-Nyoung; Lee, Kwang-Ja

    2010-03-01

    The rapidly increasing number of nursing doctoral programs has caused concern about the quality of nursing doctoral education, including in Korea. To describe the perceived quality of Korean nursing doctoral education in faculty, student, curriculum and resources. Focus group. Fourteen Korean nursing doctoral programs that are research focused and include coursework. Four groups of deans, faculty, students and graduates; students completed three semesters of doctoral program; and graduates completed doctoral programs within the most recent 3 years. Focus groups examined the strengths and weaknesses of faculty, students, curriculum, and resources. Faculty strengths were universities' recognition of faculty research/scholarship and the ability of faculty to attract extramural funding. Faculty weaknesses were aging faculty; high faculty workload; insufficient number of faculty; and teaching without expertise in nursing theories. Student strengths were diverse student backgrounds; multidisciplinary dissertation committee members, and opportunities to socialize with peers and graduates/faculty. Students' weaknesses were overproduction of PhDs with low academic quality; a lower number and quality of doctoral applicants; and lack of full-time students. Curriculum strengths were focusing on specific research areas; emphasis on research ethics; and multidisciplinary courses. Curriculum weaknesses were insufficient time for curriculum development; inadequate courses for core research competencies; and a lack of linkage between theory and practice. Resources strengths were inter-institutional courses with credit transfer. Weaknesses were diminished university financial support for graduate students and limited access to school facilities. Variations in participant groups (providers [deans and faculty] vs. receivers [students and graduates]) and geographical location (capital city vs. regional) were noted on all the four components. The quality characteristics of faculty

  18. The Analysis of Curriculum Development Studies Which are Applied For Effective Science Teaching at Primary Level in Turkey and Suggestions to Problems Encountered

    OpenAIRE

    Rahmi YAĞBASAN; Murat DEMİRBAŞ

    2005-01-01

    In this study, curriculum development studies for effective science teaching were analyzed in Turkey, solution suggestions were made by determining the confronted problems. The studies for curriculum analysis toward science teaching were done by covering applications of modern science teaching started in 1970s, curriculum of science teaching made in 1990s and applications of science teaching curriculum put into practice in 2000. It was determined that new science teaching studies that will be...

  19. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    Science.gov (United States)

    Kulo, Violet; Bodzin, Alec

    2013-02-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade students classified in three ability level tracks. Data were gathered through pre/posttest content knowledge assessments, daily classroom observations, and daily reflective meetings with the teacher. Findings indicated a significant increase in the energy content knowledge for all the students. Effect sizes were large for all three ability level tracks, with the middle and low track classes having larger effect sizes than the upper track class. Learners in all three tracks were highly engaged with the curriculum. Curriculum effectiveness and practical issues involved with using geospatial technologies to support science learning are discussed.

  20. Rad World -- computer-animated video radiation and hazardous waste-management science curriculum

    International Nuclear Information System (INIS)

    Powell, B.

    1996-01-01

    The Rad World computer-animated video and curriculum materials were developed through a grant from the Waste-management Education and Research Consortium. The package, which includes a computer-animated video, hands-on activities, and multidisciplinary lessons concerning radiation and hazardous-waste management, was created to approach these subjects in an informative, yet entertaining, manner. The lessons and video, designed to supplement studies of energy and physical science at the middle school and high school level, also implement quality and consistent science education as outlined by the New Mexico Science Standards and Benchmarks (1995). Consistent with the curriculum standards and benchmarks, the curriculum includes library research, collaborative learning, hands-on-science, and discovery learning. Pre- and post-tests are included

  1. Curriculum Package: Elementary Science Lessons. [A Visit to the Louisville, Kentucky Airports: Standiford and Bowman Fields.

    Science.gov (United States)

    Squires, Frances H.

    This science curriculum was written for teachers of children in the elementary grades. It contains science activities for the following lessons: (1) Whirly Birds and the Concept of Lift; (2) Parachutes; (3) Weather Vanes; (4) Paper Airplanes; (5) Flying an Airplane; (6) Jet Engine; (7) Identifying Flying Objects; (8) It's a Bird! It's a Plane; (9)…

  2. An Ecological System Curriculum: An Integrated MST Approach to Environmental Science Education.

    Science.gov (United States)

    Leonhardt, Nina A.

    This paper describes an inquiry-based, student-centered mathematics, science, and technology curriculum guide. It features activities addressing such environmental science topics as groundwater modeling, water filtration, soil permeability and porosity, water temperature and salinity, and quadrant studies. Activities are organized so that the…

  3. Systematic Testing should not be a Topic in the Computer Science Curriculum!

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2003-01-01

    In this paper we argue that treating "testing" as an isolated topic is a wrong approach in computer science and software engineering teaching. Instead testing should pervade practical topics and exercises in the computer science curriculum to teach students the importance of producing software...

  4. When Are Students Ready for Research Methods? A Curriculum Mapping Argument for the Political Science Major

    Science.gov (United States)

    Bergbower, Matthew L.

    2017-01-01

    For many political science programs, research methods courses are a fundamental component of the recommended undergraduate curriculum. However, instructors and students often see these courses as the most challenging. This study explores when it is most appropriate for political science majors to enroll and pass a research methods course. The…

  5. The Innovative Immersion of Mobile Learning into a Science Curriculum in Singapore: An Exploratory Study

    Science.gov (United States)

    Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting

    2016-01-01

    With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear…

  6. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    Science.gov (United States)

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  7. Developing Oral and Written Communication Skills in Undergraduate Computer Science and Information Systems Curriculum

    Science.gov (United States)

    Kortsarts, Yana; Fischbach, Adam; Rufinus, Jeff; Utell, Janine M.; Yoon, Suk-Chung

    2010-01-01

    Developing and applying oral and written communication skills in the undergraduate computer science and computer information systems curriculum--one of the ABET accreditation requirements - is a very challenging and, at the same time, a rewarding task that provides various opportunities to enrich the undergraduate computer science and computer…

  8. The Efficacy of Educative Curriculum Materials to Support Geospatial Science Pedagogical Content Knowledge

    Science.gov (United States)

    Bodzin, Alec; Peffer, Tamara; Kulo, Violet

    2012-01-01

    Teaching and learning about geospatial aspects of energy resource issues requires that science teachers apply effective science pedagogical approaches to implement geospatial technologies into classroom instruction. To address this need, we designed educative curriculum materials as an integral part of a comprehensive middle school energy…

  9. Effect of an environmental science curriculum on students' leisure time activities

    Science.gov (United States)

    Blum, Abraham

    Cooley and Reed's active interest measurement approach was combined with Guttman's Facet Design to construct a systematic instrument for the assessment of the impact of an environmental science course on students' behavior outside school. A quasimatched design of teacher allocation to the experimental and control groups according to their preferred teaching style was used. A kind of dummy control curriculum was devised to enable valid comparative evaluation of a new course which differs from the traditional one in both content and goal. This made it possible to control most of the differing factors inherent in the old and new curriculum. The research instrument was given to 1000 students who were taught by 28 teachers. Students who learned according to the experimental curriculum increased their leisure time activities related to the environmental science curriculum significantly. There were no significant differences between boys and girls and between students with different achievement levels.

  10. Improvement on a science curriculum including experimental demonstration of environmental radioactivity for secondary school students

    International Nuclear Information System (INIS)

    Watanabe, Kenji; Matsubara, Shizuo; Aiba, Yoshio; Eriguchi, Hiroshi; Kiyota, Saburo; Takeyama, Tetsuji.

    1988-01-01

    A science curriculum previously prepared for teaching environmental radioactivity was modified on the basis of the results of trial instructions in secondary schools. The main subject of the revised curriculum is an understanding of the natural radioactivity through the experimental demonstration about air-borne β and γ ray emitters. The other subjects included are the radioactive decay, the biological effects of radiation, the concept of risk-benefit balance (acceptable level) and the peaceful uses of nuclear energy and radiation. The work sheets and reference data prepared as learning materials are in two levels corresponding to the ability of students for this curriculum. (author)

  11. Focus: Bounded Rationality and the History of Science. Introduction.

    Science.gov (United States)

    Cowles, Henry M; Deringer, William; Dick, Stephanie; Webster, Colin

    2015-09-01

    Historians of science see knowledge and its claimants as constrained by myriad factors. These limitations range from the assumptions and commitments of scientific practitioners to the material and ideational contexts of their practice. The precise nature of such limits and the relations among them remains an open question in the history of science. The essays in this Focus section address this question by examining one influential portrayal of constraints--Herbert Simon's theory of "bounded rationality"--as well as the responses to which it has given rise over the last half century.

  12. Using a creativity-focused science program to foster general creativity in young children: A teacher action research study

    Science.gov (United States)

    Gomes, Joan Julieanne Mariani

    The importance of thinking and problem-solving skills, and the ability to integrate and analyze information has been recognized and yet may be lacking in schools. Creativity is inherently linked to problem finding, problem solving, and divergent thinking (Arieti, 1976; Csikszentmihalyi, 1990; Milgram, 1990). The importance of early childhood education and its role in the formation of young minds has been recognized (Caine & Caine, 1991; Montessori, 1967a, 1967b; Piaget, 1970). Early childhood education also impacts creativity (Gardner, 1999). The features of brain-based learning (Caine & Caine, 1991; Jensen, 1998; Sousa, 2001; Wolfe, 2001) have a clear connection to nurturing the creative potential in students. Intrinsic motivation and emotions affect student learning and creativity as well (Hennessey & Amabile, 1987). The purpose of this study was to discern if a creativity-focused science curriculum for the kindergarteners at a Montessori early learning center could increase creativity in students. This action research study included observations of the students in two classrooms, one using the creativity-focused science curriculum, and the other using the existing curriculum. The data collected for this interpretive study included interviews with the students, surveys and interviews with their parents and teachers, teacher observations, and the administration of Torrance's (1981) Thinking Creatively in Action and Movement (TCAM) test. The interpretation of the data indicated that the enhanced science curriculum played a role in enhancing the creativity of the children in the creativity-focused group. The results of the TCAM (Torrance, 1981) showed a significant increase in scores for the children in the creativity-focused group. The qualitative data revealed a heightened interest in science and the observation of creative traits, processes, and products in the creativity-focused group children. The implications of this study included the need for meaningful

  13. Incorporating nanoscale science and technology into secondary school curriculum: Views of nano-trained science teachers

    Directory of Open Access Journals (Sweden)

    Antti Laherto

    2011-09-01

    Full Text Available The growing societal significance of nanoscience and nanotechnology (NST entails needs for addressing these topics in school curricula. This study lays groundwork for responding to those needs in Finland. The purpose was to analyse the appropriateness of NST for secondary school curriculum contents. First, a week-long in-service teacher training course was arranged on content knowledge of NST. After attending the course, 23 experienced science teachers were surveyed regarding their views on the educational significance of these issues, and on prospects for including them into the curriculum. A questionnaire with open-ended questions was used. Qualitative content analysis of the responses revealed that the respondents considered NST as desirable contents for secondary school, but arranging instruction is problematic. The teachers emphasised the educational significance of many applications, scientific principles and ethical issues related to NST. The outcomes are discussed with reference to recent studies on teachers’ barriers and educational concerns regarding NST.

  14. Science and Literacy: Incorporating Vocabulary, Reading Comprehension, Research Methods, and Writing into the Science Curriculum

    Science.gov (United States)

    Nieser, K.; Carlson, C.; Bering, E. A.; Slagle, E.

    2012-12-01

    Part of preparing the next generation of STEM researchers requires arming these students with the requisite literacy and research skills they will need. In a unique collaboration, the departments of Physics (ECE) and Psychology at the University of Houston have teamed up with NASA in a grant to develop a supplemental curriculum for elementary (G3-5) and middle school (G6-8) science teachers called Mars Rover. During this six week project, students work in teams to research the solar system, the planet Mars, design a research mission to Mars, and create a model Mars Rover to carry out this mission. Targeted Language Arts skills are embedded in each lesson so that students acquire the requisite academic vocabulary and research skills to enable them to successfully design their Mars Rover. Students learn academic and scientific vocabulary using scientifically based reading research. They receive direct instruction in research techniques, note-taking, summarizing, writing and other important language skills. The interdisciplinary collaboration empowers students as readers, writers and scientists. After the curriculum is completed, a culminating Mars Rover event is held at a local university, bringing students teams in contact with real-life scientists who critique their work, ask questions, and generate excite about STEM careers. Students have the opportunity to showcase their Mars Rover and to orally demonstrate their knowledge of Mars. Students discover the excitement of scientific research, STEM careers, important research and writing tools in a practical, real-life setting.

  15. the impact of digital technology revolution on surveying curriculum ...

    African Journals Online (AJOL)

    the impact of digital technology revolution on surveying curriculum review in ... Global Journal of Environmental Sciences ... Also, it focuses on the need to review the current surveying curriculum to meet the technological advancement. Finally ...

  16. Using Evolution as a Context for Teaching the Nature of Science to Diverse Student Populations: A High School Unit of Curriculum

    Science.gov (United States)

    Metcalfe, Angela C.

    Teaching evolution provides teachers with the opportunity to educate students on how science aims to understand the natural world. Rooted in research, the purpose of this project was to create NGSS-aligned curriculum focused on teaching the nature of science (NOS) within the context of biological evolution. Field testing and review of the unit resulted in revisions aimed at creating more comprehensive teacher resource materials and explicit inclusion of NOS. Emphasizing NOS in curriculum development and teaching scientific qualities through an evolutionary context has taken the focus off belief or disbelief, keeping the attention on the scientific concept at hand. Designing curriculum around compelling subject matter and embracing student-led learning increased and maintained student interest in the classroom. Implementation of this curriculum not only requires the teacher to be knowledgeable in conventional educational pedagogy, but also the subjects of NGSS and NOS. Additional training and support centered around NGSS is recommended for science educators interested in integrating NOS into their curriculum and instruction.

  17. Focus: new perspectives on science and the Cold War. Introduction.

    Science.gov (United States)

    Heyck, Hunter; Kaiser, David

    2010-06-01

    Twenty years after the fall of the Berlin Wall, the Cold War looks ever more like a slice of history rather than a contemporary reality. During those same twenty years, scholarship on science, technology, and the state during the Cold War era has expanded dramatically. Building on major studies of physics in the American context--often couched in terms of "big science"--recent work has broached scientific efforts in other domains as well, scrutinizing Cold War scholarship in increasingly international and comparative frameworks. The essays in this Focus section take stock of current thinking about science and the Cold War, revisiting the question of how best to understand tangled (and sometimes surprising) relationships between government patronage and the world of ideas.

  18. The Effects of Gender and Type of Inquiry Curriculum on Sixth Grade Students' Science Process Skills and Epistemological Beliefs in Science

    Science.gov (United States)

    Zaleta, Kristy L.

    The purpose of this study was to investigate the impact of gender and type of inquiry curriculum (open or structured) on science process skills and epistemological beliefs in science of sixth grade students. The current study took place in an urban northeastern middle school. The researcher utilized a sample of convenience comprised of 303 sixth grade students taught by four science teachers on separate teams. The study employed mixed methods with a quasi-experimental design, pretest-posttest comparison group with 17 intact classrooms of students. Students' science process skills and epistemological beliefs in science (source, certainty, development, and justification) were measured before and after the intervention, which exposed different groups of students to different types of inquiry (structured or open). Differences between comparison and treatment groups and between male and female students were analyzed after the intervention, on science process skills, using a two-way analysis of covariance (ANCOVA), and, on epistemological beliefs in science, using a two-way multivariate analysis of covariance (MANCOVA). Responses from two focus groups of open inquiry students were cycle coded and examined for themes and patterns. Quantitative measurements indicated that girls scored significantly higher on science process skills than boys, regardless of type of inquiry instruction. Neither gender nor type of inquiry instruction predicted students' epistemological beliefs in science after accounting for students' pretest scores. The dimension Development accounted for 10.6% of the variance in students' science process skills. Qualitative results indicated that students with sophisticated epistemological beliefs expressed engagement with the open-inquiry curriculum. Students in both the sophisticated and naive beliefs groups identified challenges with the curriculum and improvement in learning as major themes. The types of challenges identified differed between the groups

  19. Shifting our focus: Communicating science to a new, nontechnical culture

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, A.; Hollen, G.; Longshore, A.; Mauzy, A.; Reeves, A.

    1994-07-01

    Congress` decision to close down the $11 billion Superconducting Supercollider is spreading anxiety throughout the scientific community. As funding for the nation`s research laboratories becomes increasingly scarce, technical communicators in these organizations must focus much of their communications efforts on a new culture: Congress and the public. We discuss how to characterize this new audience and the importance of evaluating communication products, and we highlight some strategies for interpreting science to nonscientists more effectively.

  20. Integrating Gender into the Political Science Core Curriculum

    Science.gov (United States)

    Cassese, Erin C.; Bos, Angela L.; Duncan, Lauren E.

    2012-01-01

    The New Research on Gender in Political Psychology Conference brought together new and experienced teachers with interests in gender politics. The conference session "Teaching Gender throughout the Curriculum" generated a great deal of discussion concerning the pedagogical practice of gender mainstreaming. Gender mainstreaming--the integration of…

  1. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum

    Science.gov (United States)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.

    2017-12-01

    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  2. Analysis of the national common curriculum basis and physical education in focus

    Directory of Open Access Journals (Sweden)

    Laine Rocha Moreira

    2016-09-01

    Full Text Available This article analyzes the manuscript of the National Common Curriculum Basis and it comprehends the conception of Physical Education. It identifies the concept attributed to physical education by the National Common Curriculum Basis. Methodologically, it uses a bibliographic and documentary analysis (National Common Curriculum Basis, the dialectic as method and applying content analysis to process data. It verifies that the National Common Curriculum Basis identifies the physical education in the language field and it affiliates to an eclecticism regarding to their conception and specific body of knowledge, generating inconsistency in content and the formative processes of this knowledge field. It concludes that the manuscript materializes an alliance between education and capital, defending the central hierarchical groups’ interests, transforming the right to education in marketing service.

  3. Incorporating Genomics and Bioinformatics across the Life Sciences Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Ditty, Jayna L.; Kvaal, Christopher A.; Goodner, Brad; Freyermuth, Sharyn K.; Bailey, Cheryl; Britton, Robert A.; Gordon, Stuart G.; Heinhorst, Sabine; Reed, Kelynne; Xu, Zhaohui; Sanders-Lorenz, Erin R.; Axen, Seth; Kim, Edwin; Johns, Mitrick; Scott, Kathleen; Kerfeld, Cheryl A.

    2011-08-01

    Undergraduate life sciences education needs an overhaul, as clearly described in the National Research Council of the National Academies publication BIO 2010: Transforming Undergraduate Education for Future Research Biologists. Among BIO 2010's top recommendations is the need to involve students in working with real data and tools that reflect the nature of life sciences research in the 21st century. Education research studies support the importance of utilizing primary literature, designing and implementing experiments, and analyzing results in the context of a bona fide scientific question in cultivating the analytical skills necessary to become a scientist. Incorporating these basic scientific methodologies in undergraduate education leads to increased undergraduate and post-graduate retention in the sciences. Toward this end, many undergraduate teaching organizations offer training and suggestions for faculty to update and improve their teaching approaches to help students learn as scientists, through design and discovery (e.g., Council of Undergraduate Research [www.cur.org] and Project Kaleidoscope [www.pkal.org]). With the advent of genome sequencing and bioinformatics, many scientists now formulate biological questions and interpret research results in the context of genomic information. Just as the use of bioinformatic tools and databases changed the way scientists investigate problems, it must change how scientists teach to create new opportunities for students to gain experiences reflecting the influence of genomics, proteomics, and bioinformatics on modern life sciences research. Educators have responded by incorporating bioinformatics into diverse life science curricula. While these published exercises in, and guidelines for, bioinformatics curricula are helpful and inspirational, faculty new to the area of bioinformatics inevitably need training in the theoretical underpinnings of the algorithms. Moreover, effectively integrating bioinformatics

  4. An analysis of teaching competence in science teachers involved in the design of context-based curriculum materials

    NARCIS (Netherlands)

    Putter - Smits, de L.G.A.; Taconis, R.; Driel, van J.H.; Jochems, W.M.G.

    2012-01-01

    The committees for the current Dutch context-based innovation in secondary science education employed teachers to design context-based curriculum materials. A study on the learning of science teachers in design teams for context-based curriculum materials is presented in this paper. In a correlation

  5. Go Ask Alice: Uncovering the Role of a University Partner in an Informal Science Curriculum Support Network

    Science.gov (United States)

    Baker-Doyle, Kira J.

    2013-01-01

    This article describes a study from the Linking Instructors Networks of Knowledge in Science Education project, which aims to examine the informal science curriculum support networks of teachers in a school-university curriculum reform partnership. We used social network analysis and qualitative methods to reveal characteristics of the informal…

  6. Boundary Interaction: Towards Developing a Mobile Technology-Enabled Science Curriculum to Integrate Learning in the Informal Spaces

    Science.gov (United States)

    Sun, Daner; Looi, Chee-Kit

    2018-01-01

    This paper explores the crossover between formal learning and learning in informal spaces supported by mobile technology, and proposes design principles for educators to carry out a science curriculum, namely Boundary Activity-based Science Curriculum (BAbSC). The conceptualization of the boundary object, and the principles of boundary activity as…

  7. Using the earth system for integrating the science curriculum

    Science.gov (United States)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.

  8. Clinical medical sciences for undergraduate dental students in the United Kingdom and Ireland - a curriculum.

    LENUS (Irish Health Repository)

    Mighell, A J

    2011-08-01

    The technical aspects of dentistry need to be practised with insight into the spectrum of human diseases and illnesses and how these impact upon individuals and society. Application of this insight is critical to decision-making related to the planning and delivery of safe and appropriate patient-centred healthcare tailored to the needs of the individual. Provision for the necessary training is included in undergraduate programmes, but in the United Kingdom and Ireland there is considerable variation between centres without common outcomes. In 2009 representatives from 17 undergraduate dental schools in the United Kingdom and Ireland agreed to move towards a common, shared approach to meet their own immediate needs and that might also be of value to others in keeping with the Bologna Process. To provide a clear identity the term \\'Clinical Medical Sciences in Dentistry\\' was agreed in preference to other names such as \\'Human Disease\\' or \\'Medicine and Surgery\\'. The group was challenged to define consensus outcomes. Contemporary dental education documents informed, but did not drive the process. The consensus curriculum for undergraduate Clinical Medical Sciences in Dentistry teaching agreed by the participating centres is reported. Many of the issues are generic and it includes elements that are likely to be applicable to others. This document will act as a focus for a more unified approach to the outcomes required by graduates of the participating centres and act as a catalyst for future developments that ultimately aim to enhance the quality of patient care.

  9. A Curriculum Development for the Enhancement of Learning Management Performances Emphasizing Higher Order Thinking Skills for Lower Secondary Science Teachers

    Directory of Open Access Journals (Sweden)

    Saksit Seeluangpetch

    2016-12-01

    conducted in Phase 3 in order to study the effectiveness of the designed curriculum on the teachers and students. The research samples consisted of 12 Science teachers teaching Mattayomsuksa 3 students. The research instruments were included the curriculum for the enhancement of learning management performances emphasizing the higher order thinking skills, the test on knowledge and understanding of the learning management focusing on the higher order thinking skills, the assessment form to assess the capability to design the learning management with the emphasis on the higher order thinking skills, the observation form to assess the ability to manage the learning process that focuses on the higher order thinking skills, and the achievement test to assess the students’ achievement in Science. The results showed as follows. 1. For the knowledge and understanding of the learning management focusing on the higher order thinking skills of the teachers, it exposed that the mean of the score in the pretest was 13.67 and the percentage was 45.56. The mean and the percentage in the post-test were 25.42 and 84.72, respectively. It could be concluded that the teachers teaching Science had knowledge and understanding in the learning management that emphasizes on the higher order thinking skills at higher level after the training. 2. The Science teachers’ capability to design the learning management with the emphasis on the higher order thinking skills was significantly appropriate. 3. The lower secondary Science teachers’ ability to manage the learning process with the emphasis on the higher order thinking skills was at good level. 4. The Mattayomsuksa 3 students learning Science with the trained teachers gained 74.68 percent in post-test which was higher than the set criteria at 70 percent. There were 82 students passing the set criteria accounted for 82 percent. The result indicated that the students achieved their learning and passed the requirement. In Phase 4, the curriculum

  10. Leading change: curriculum reform in graduate education in the biomedical sciences.

    Science.gov (United States)

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were also 15 unique curricula. Departments and programs offered courses independently, and students participated in curricula that were overlapping combinations of these courses. This system created curricula that were not coordinated and that had redundant course content as well as content gaps. A partnership of key stakeholders began a curriculum reform process to completely restructure doctoral education at the Boston University School of Medicine. The key pedagogical goals, objectives, and elements designed into the new curriculum through this reform process created a curriculum designed to foster the interdisciplinary thinking that students are ultimately asked to utilize in their research endeavors. We implemented comprehensive student and peer evaluation of the new Foundations in Biomedical Sciences integrated curriculum to assess the new curriculum. Furthermore, we detail how this process served as a gateway toward creating a more fully integrated graduate experience, under the umbrella of the Program in Biomedical Sciences. © 2015 The International Union of Biochemistry and Molecular Biology.

  11. Dissemination of an innovative mastery learning curriculum grounded in implementation science principles: a case study.

    Science.gov (United States)

    McGaghie, William C; Barsuk, Jeffrey H; Cohen, Elaine R; Kristopaitis, Theresa; Wayne, Diane B

    2015-11-01

    Dissemination of a medical education innovation, such as mastery learning, from a setting where it has been used successfully to a new and different medical education environment is not easy. This article describes the uneven yet successful dissemination of a simulation-based mastery learning (SBML) curriculum on central venous catheter (CVC) insertion for internal medicine and emergency medicine residents across medical education settings. The dissemination program was grounded in implementation science principles. The article begins by describing implementation science which addresses the mechanisms of medical education and health care delivery. The authors then present a mastery learning case study in two phases: (1) the development, implementation, and evaluation of the SBML CVC curriculum at a tertiary care academic medical center; and (2) the dissemination of the SBML CVC curriculum to an academic community hospital setting. Contextual information about the drivers and barriers that affected the SBML CVC curriculum dissemination is presented. This work demonstrates that dissemination of mastery learning curricula, like all other medical education innovations, will fail without active educational leadership, personal contacts, dedication, hard work, rigorous measurement, and attention to implementation science principles. The article concludes by presenting a set of lessons learned about disseminating an SBML CVC curriculum across different medical education settings.

  12. Airway Science curriculum demonstration project : summary of initial evaluation findings.

    Science.gov (United States)

    1988-10-01

    The performance, perceptions, and characteristics of Airway Science hires were compared with those of traditional hires. As of May 12, 1987. a total of 197 Airway Science candidates had been selected into FAA occupations. The demographic characterist...

  13. Fostering Student Sense Making in Elementary Science Learning Environments: Elementary Teachers' Use of Science Curriculum Materials to Promote Explanation Construction

    Science.gov (United States)

    Zangori, Laura; Forbes, Cory T.; Biggers, Mandy

    2013-01-01

    While research has shown that elementary (K-5) students are capable of engaging in the scientific practice of explanation construction, commonly-used elementary science curriculum materials may not always afford them opportunities to do so. As a result, elementary teachers must often adapt their science curriculum materials to better support…

  14. Study of graduate curriculum in the radiological science: problems and suggestions

    International Nuclear Information System (INIS)

    Ko, Seong Jin; Kim, Hwa Gon; Kang, Se Sik; Park, Byeong Rae; Kim, Chang Soo

    2006-01-01

    Currently, Educational program of radiological science is developed in enormous growth, our educational environments leading allied health science education program in the number of super high speed medical industry. Radiological science may be the fastest growing technologies in our medical department today. In this way, Medical industry fields converged in the daily quick, the fact that department of radiological science didn't discharged ones duties on current educational environments. The curriculum of radiological technologists that play an important part between skill and occupation's education as major and personality didn't performed one's part most effectively on current medical environments and digital radiological equipment interface. We expect improvement and suggestion to grow natural disposition as studies in the graduate of radiological science. Therefore, in this paper, current curriculum of radiological science are catched hold of trend and problems on digital radiology environments, on fact the present state of problems, for Graduate program of radiological science, graduate courses of MS and ph.D. are suggested a reform measure of major education curriculum introduction

  15. Fossil Fuels. A Supplement to the "Science 100, 101" Curriculum Guide. Curriculum Support Series.

    Science.gov (United States)

    Soprovich, William, Comp.

    When the fossil fuels unit was first designed for Science 101 (the currently approved provincial guide for grade 10 science in Manitoba), Canadian support materials were very limited. Since students are asked to interpret data concerning energy consumption and sources for certain fossil fuels, the need for appropriate Canadian data became obvious.…

  16. Science Education Curriculum Development Principles in Taiwan: Connecting with Aboriginal Learning and Culture

    Science.gov (United States)

    Huang, Tzu-Hua; Liu, Yuan-Chen

    2017-01-01

    This paper reflects thorough consideration of cultural perspectives in the establishment of science curriculum development principles in Taiwan. The authority explicitly states that education measures and activities of aboriginal peoples' ethnic group should be implemented consistently to incorporate their history, language, art, living customs,…

  17. Exploring the Associations among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum

    Science.gov (United States)

    Stage, Virginia C.; Kolasa, Kathryn M.; Díaz, Sebastián R.; Duffrin, Melani W.

    2018-01-01

    Background: Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Methods: Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across…

  18. Science teachers designing context-based curriculum materials : developing context-based teaching competence

    NARCIS (Netherlands)

    Putter - Smits, de L.G.A.

    2012-01-01

    The intended new context-based curriculum for four science subjects (AS-MaT1, biology, chemistry, and physics) in senior general secondary education and pre-university education has been the subject of numerous research and teacher professionalisation efforts in the Netherlands for the last seven

  19. Implementing Curriculum-Embedded Formative Assessment in Primary School Science Classrooms

    Science.gov (United States)

    Hondrich, Annika Lena; Hertel, Silke; Adl-Amini, Katja; Klieme, Eckhard

    2016-01-01

    The implementation of formative assessment strategies is challenging for teachers. We evaluated teachers' implementation fidelity of a curriculum-embedded formative assessment programme for primary school science education, investigating both material-supported, direct application and subsequent transfer. Furthermore, the relationship between…

  20. A Look at the Relationship of Curriculum and Instruction and the Art and Science of Teaching

    Science.gov (United States)

    Flake, Lee Hatch

    2017-01-01

    The definition of instruction and curriculum may take on different meanings based on the purpose or interpretation whether political, social, or educational. Teaching effectively requires the skill of a knowledgeable and experienced educator. Teaching can be convincingly debated as being an art or a science or defined collectively as an art and a…

  1. Perspective of Lecturers in Implementing PISMP Science Curriculum in Malaysia's IPG

    Science.gov (United States)

    Yahya, Fauziah Hj; Bin Hamdan, Abdul Rahim; Jantan, Hafsah Binti; Saleh, Halimatussadiah Binti

    2015-01-01

    The article aims to identify lecturers' perspectives in implementing PISMP science curriculum in IPG Malaysia based on teaching experience with KIPP model. The respondents consisted of 105 lecturers from 20 IPG Malaysia. The study used a questionnaire consisting of 74 items covering the four dimensions (Context, Input, Process and Product). Data…

  2. The Biome Project: Developing a Legitimate Parallel Curriculum for Physical Education and Life Sciences

    Science.gov (United States)

    Hastie, Peter Andrew

    2013-01-01

    The purpose of this article is to describe the outcomes of a parallel curriculum project between life sciences and physical education. Throughout a 6-week period, students in grades two through five became members of teams that represented different animal species and biomes, and concurrently participated in a season of gymnastics skills and…

  3. A Study of Changes in the Library and Information Science Curriculum with Evaluation of Its Practicality

    Science.gov (United States)

    Noh, Younghee; Ahn, In-Ja; Choi, Sang-Ki

    2012-01-01

    Purpose: This study analyzed the process of changes in Korean Library and Information Science curriculum and evaluated the courses currently available by using a perception survey of librarians in the field. It also explored a possible demand for new courses, while suggesting compulsory, core, and optional courses for Bachelor's degree curriculum…

  4. Ethics Instruction in Library and Information Science: The Role of "Ethics across the Curriculum"

    Science.gov (United States)

    Smith, Bernie Todd

    2010-01-01

    Ethics is an important element of most graduate professional training programs. In the field of Library and Information Science (LIS) the inclusion of ethics in the curriculum is supported by a position paper by library educators and is monitored in the accreditation of graduate programs. Despite the many LIS programs which claim to integrate…

  5. The MORPG-Based Learning System for Multiple Courses: A Case Study on Computer Science Curriculum

    Science.gov (United States)

    Liu, Kuo-Yu

    2015-01-01

    This study aimed at developing a Multiplayer Online Role Playing Game-based (MORPG) Learning system which enabled instructors to construct a game scenario and manage sharable and reusable learning content for multiple courses. It used the curriculum of "Introduction to Computer Science" as a study case to assess students' learning…

  6. Access, Astronomy and Science Fiction. A Case Study in Curriculum Design

    Science.gov (United States)

    Saunders, Danny; Brake, Mark; Griffiths, Martin; Thornton, Rosi

    2004-01-01

    It is argued that a positive response to lifelong learning policies involves the use of imaginative curriculum design in order to attract learners from disadvantaged backgrounds who are otherwise alienated from higher education. In this article a case study is presented based on the popularity of science fiction within popular culture, beginning…

  7. Mapping Physical Sciences Teachers' Concerns Regarding the New Curriculum in South Africa

    Science.gov (United States)

    Gudyanga, Remeredzayi; Jita, Loyiso C.

    2018-01-01

    This article reports on a study investigating physical sciences teachers' stages of concern (SoC) profiles during the implementation of the curriculum and assessment policy statement (CAPS) in South Africa. Throughout reform implementation, it is conceivable that teachers go through different SoC, ranging from giving low priority to the reform…

  8. Living in Water: An Aquatic Science Curriculum for Grades 5-7.

    Science.gov (United States)

    National Aquarium in Baltimore, MD. Dept. of Education.

    "Living in Water" is a classroom-based, scientific study of water, aquatic environments, and the plants and animals that live in water. The lessons in this curriculum integrate basic physical, biological, and earth sciences, and mathematics. The integration of language arts is also considered essential to its success. These lessons do not require…

  9. Design of a social constructivism-based curriculum for primary science education in Confucian heritage culture

    NARCIS (Netherlands)

    Vu Thu Hang, N.

    2014-01-01

    This study is about the application of social constructivism in primary science curriculum in Confucian heritage culture. It was found that the implementation of social constructivism in Confucian heritage culture was low and influenced by cultural divergences between Confucian cultural philosophy

  10. The "Curriculum for Excellence": A Major Change for Scottish Science Education

    Science.gov (United States)

    Brown, Sally

    2014-01-01

    The Curriculum for Excellence and new National Qualifications offer innovative reform, based on widely supported ideas and aims, for Scottish preschool, primary and secondary education levels. "Objectives and syllabuses" for science are replaced by "experiences and outcomes". Most strikingly, central prescription makes way for…

  11. Probing the Natural World, Level III, Student Guide: What's Up? Intermediate Science Curriculum Study.

    Science.gov (United States)

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's text of one unit of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). The chapters contain basic information about rockets, space, and principles of physics, as well as activities related to the subject and optional excursions. A section of introductory notes to the student discusses how the…

  12. Nurturing At-Risk Youth in Math and Science: Curriculum and Teaching Considerations.

    Science.gov (United States)

    Tobias, Randolf

    The social environment of today has necessitated revision in educators' beliefs about what students are considered to be at risk of failing to complete their education with adequate levels of skills. This book addresses this issue in the areas of mathematics and science and is intended as a curriculum and teacher training accompaniment that can…

  13. Interacting with a Suite of Educative Features: Elementary Science Teachers' Use of Educative Curriculum Materials

    Science.gov (United States)

    Arias, Anna Maria; Bismack, Amber Schultz; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2016-01-01

    New reform documents underscore the importance of learning both the practices and content of science. This integration of practices and content requires sophisticated teaching that does not often happen in elementary classrooms. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited…

  14. Experiencing Wireless Sensor Network Concepts in an Undergraduate Computer Science Curriculum

    NARCIS (Netherlands)

    Zwartjes, G.J.; van de Voort, M.; Dil, B.J.; Havinga, Paul J.M.

    2009-01-01

    Incorporating Embedded Systems courses in a general and broad Computer Science undergraduate curriculum can be a challenging task. The lack of experience with relevant tools and programming languages tends to limit the amount material that can be included in courses on this area. This, combined with

  15. Identifying and Overcoming Threshold Concepts and Conceptions: Introducing a Conception-Focused Curriculum to Course Design

    Science.gov (United States)

    Burch, Gerald F.; Burch, Jana J.; Bradley, Thomas P.; Heller, Nathan A.

    2015-01-01

    Educators have been challenged to identify threshold concepts and develop transformed students. This stands in stark contrast to many curriculum design and delivery models that currently view students as repositories of knowledge. In this article, we argue that educators can reach both goals, identify stumbling blocks and transforming students,…

  16. Exploring Ivorian Perspectives on the Effectiveness of the Current Ivorian Science Curriculum in Addressing Issues Related to HIV/AIDS

    Science.gov (United States)

    Ado, Gustave Firmin

    2014-01-01

    School-based HIV/AIDS science education has the potential to impact students when integrated into the science curriculum. However, this mixed method study shows that school-based HIV/AIDS science education is often not infused into career subjects such as science education but integrated into civics education and taught by teachers who lack the…

  17. Optimizing biomedical science learning in a veterinary curriculum: a review.

    Science.gov (United States)

    Warren, Amy L; Donnon, Tyrone

    2013-01-01

    As veterinary medical curricula evolve, the time dedicated to biomedical science teaching, as well as the role of biomedical science knowledge in veterinary education, has been scrutinized. Aside from being mandated by accrediting bodies, biomedical science knowledge plays an important role in developing clinical, diagnostic, and therapeutic reasoning skills in the application of clinical skills, in supporting evidence-based veterinary practice and life-long learning, and in advancing biomedical knowledge and comparative medicine. With an increasing volume and fast pace of change in biomedical knowledge, as well as increased demands on curricular time, there has been pressure to make biomedical science education efficient and relevant for veterinary medicine. This has lead to a shift in biomedical education from fact-based, teacher-centered and discipline-based teaching to applicable, student-centered, integrated teaching. This movement is supported by adult learning theories and is thought to enhance students' transference of biomedical science into their clinical practice. The importance of biomedical science in veterinary education and the theories of biomedical science learning will be discussed in this article. In addition, we will explore current advances in biomedical teaching methodologies that are aimed to maximize knowledge retention and application for clinical veterinary training and practice.

  18. Prospects and challenges in teachers’ adoption of a new modeling orientated science curriculum in lower secondary school in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Sanne Schnell

    A new science curriculum with a significant emphasis on modeling has recently been enacted in the Danish compulsory school. This design based study aims to investigate science teachers’ beliefs, practice and reflections in response to the new curriculum. The data sources include teacher...... towards the modeling emphasis in the new curriculum, but nevertheless use a restricted range of modeling practices and pay limited attention to the purpose and utility of models. Teachers raised concerns in enacting the new curriculum due to: (i) Lack of time for preparations and teamwork, (ii) Shortage...... of clarifications and examples in the curriculum materials and teacher education on how to enact modeling in practice, (iii) Overcrowded curriculum, and (iv) Lack of alignment with a national test. In addition, the results indicate an inconsistence between teachers’ intentions and their classroom practice...

  19. Hydromania II: Journey of the Oncorhynchus. Summer Science Camp Curriculum 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Joan; Swerin, Rod

    1995-01-01

    The Hydromania II curriculum was written for the third in a series of summer science camp experiences targeting students in grades 4--6 who generally have difficulty accessing supplementary academic programs. The summer science camp in Portland is a collaborative effort between Bonneville Power Administration (BPA), the US Department of Energy (DOE), and the Portland Parks and Recreation Community Schools Program along with various other cooperating businesses and organizations. The curriculum has also been incorporated into other summer programs and has been used by teachers to supplement classroom activities. Camps are designed to make available, affordable learning experiences that are fun and motivating to students for the study of science and math. Inner-city, under-represented minorities, rural, and low-income families are particularly encouraged to enroll their children in the program.

  20. Understanding Curriculum, Instruction and Assessment within Eighth Grade Science Classrooms for Special Needs Students

    Science.gov (United States)

    Riedell, Kate Elizabeth

    The Individuals with Disabilities Education Act (IDEA, 2004) cemented the fact that students with disabilities must be placed in the least restrictive environment and be given the necessary supports to help them succeed (Lawrence-Brown, 2004). This provides significant challenges for general education teachers, especially in an era of standards based reform with the adoption of the Common Core State Standards (CCSSI, 2014) by most states, along with the Next Generation Science Standards (NGSS, 2013). While a variety of methods, strategies, and techniques are available to teachers, there is a dearth of literature that clearly investigates how teachers take into account the ability and motivation of students with special needs when planning and implementing curriculum, instruction, and assessment. Thus, this study sought to investigate this facet through the lens of differentiation, personalization, individualization and universal design for learning (UDL) (CAST, 2015), all of which are designed to meet the needs of diverse learners, including students with special needs. An embedded single-case study design (Yin, 2011) was used in this study with the case being differentiated and/or personalized curriculum, instruction and/or assessment, along with UDL for students with special needs, with each embedded unit of analysis being one eighth grade general education science teacher. Analyzing each sub-unit or case, along with a cross-case analysis, three eighth grade general education science teachers were observed over the course of two 10-day units of study in the fall and spring, as they collected artifacts and completed annotations within their electronic portfolios (ePortfolios). All three eighth grade general education science teachers collected ePortfolios as part of their participation in a larger study within California, "Measuring Next Generation Science Instruction Using Tablet-Based Teacher Portfolios," funded by the National Science Foundation. Each teacher

  1. Engineering the curriculum: Towards an adaptive curriculum

    Science.gov (United States)

    Johns-Boast, Lynette Frances

    The curriculum is one of the most important artefacts produced by higher education institutions, yet it is one of the least studied. Additionally, little is known about the decision-making of academics when designing and developing their curricula, nor how they make use of them. This research investigates how 22 Australian higher education engineering, software engineering, computer science, and information systems academics conceive of curriculum, what approaches they take when designing, and developing course and program curricula, and what use they make of the curriculum. It also considers the implications of these conceptions and behaviour upon their curricula. Data were collected through a series of one-to-one, in-depth, qualitative interviews as well as small focus group sessions and were analysed following Charmaz’ (2006) approach to grounded theory. In this thesis, I argue that the development of curricula for new higher degree programs and courses and / or the updating and innovating of an existing curriculum is a design problem. I also argue that curriculum is a complex adaptive system. Surrounding the design and development of a curriculum is a process of design that leads to the creation of a designed object - the official-curriculum. The official-curriculum provides the guiding principles for its implementation, which involves the design and development of the curriculum-in-use, its delivery, and evaluation. Data show that while the participants conceive of curriculum as a problem of design involving a design process leading to the development of the official-curriculum, surprisingly, their behaviour does not match their conceptions. Over a very short period, their behaviour leads to a process I have called curriculum drift where the official-curriculum and the curriculum-in-use drift away from each other causing the curriculum to lose its integrity. Curricular integrity is characterised through the attributes of alignment, coherence, and

  2. Challenging traditional assumptions of high school science through the physics and Everyday Thinking Curriculum(TM)

    Science.gov (United States)

    Ross, Michael J.

    Science education in the U.S. has failed for over a century to bring the experience of scientific induction to classrooms, from elementary science to undergraduate courses. The achievement of American students on international comparisons of science proficiency is unacceptable, and the disparities between groups underrepresented in STEM and others are large and resistant to reform efforts. This study investigated the enactment of a physics curriculum designed upon the inductive method in a high school serving mostly students from groups underrepresented in science. The Physics and Everyday Thinking curriculum was designed to model the central practices of science and to provide opportunities for students to both extract general principles of physics and to develop scientific models from laboratory evidence. The findings of this study suggest that scientific induction is not only a process that is well within the capacity of high school students, but they enjoy it as well. Students that engaged in the central practices of science through the inductive method reported a new sense of agency and control in their learning. These findings suggest that modeling the pedagogy of the science classroom upon the epistemology of science can result in a mode of learning that can lead to positive identification with physics and the development of scientific literacy.

  3. A One-Year Introductory Robotics Curriculum for Computer Science Upperclassmen

    Science.gov (United States)

    Correll, N.; Wing, R.; Coleman, D.

    2013-01-01

    This paper describes a one-year introductory robotics course sequence focusing on computational aspects of robotics for third- and fourth-year students. The key challenges this curriculum addresses are "scalability," i.e., how to teach a robotics class with a limited amount of hardware to a large audience, "student assessment,"…

  4. The quest for balanced curriculum: The perceptions of secondary students and teachers who experienced an integrated art and science curriculum

    Science.gov (United States)

    Schramm, Susan Lynn

    The purpose of this study was to describe how an integrated high school curriculum unit connecting the different subject areas of art and science could be used to give students a voice in the decisions about learning. Through the data generated I examined the obstacles of integrating curriculum in a traditionally subject-centered high school. Forty-one students, nineteen biology students in the ninth grade, and twenty-two art students ranging from the tenth grade through the twelfth grade, along with their two teachers and a student teacher, were the subjects of the research. An integrated curricular unit, "Genetic Robotics," was designed specifically for this research to enable students to integrate scientific and artistic processes such as communication skills, problem-solving, critical thinking, creativity and responsiveness to the aesthetic; thus empowering them for future learning. Semi-structured interviews, surveys, questionnaires, informal conversations, reaction journals, field observations, video tapes, and official documents from the school, provided the data for this research. Data were collected using a strategy of participant-observation. The constant comparative analysis method was employed to explore emerging themes. Oak Park students' adaptability to an integrated art and science unit was found to be limited because of their inability to conceptualize curricular structures that are different from the traditional ones to which they are accustomed. Students typically scored high on standardized proficiency tests and college entrance exams. Therefore, for them to experience an innovation that is not based on the memorize-and-recall mode of learning is to risk failure and many are unwilling to do so, especially the high achieving students.

  5. Science and Exploration in the Classroom & Beyond: An Interdisciplinary STEAM Curriculum Developed by SSERVI Educators & Scientists

    Science.gov (United States)

    Becker, Tracy M.; Runyon, Cassandra; Cynthia, Hall; Britt, Daniel; Tracy Becker

    2017-10-01

    Through NASA’s Solar System Exploration Research Virtual Institute (SSERVI), the Center for Lunar and Asteroid Surface Science (CLASS) and the SSERVI Evolution and Environment of Exploration Destinations (SEEED) nodes have developed an interdisciplinary formal and informal hands-on curriculum to bring the excitement of space exploration directly to the students.With a focus on exploring asteroids, this 5-year effort has infused art with traditional STEM practices (creating STEAM) and provides teachers with learning materials to incorporate art, social studies, English language arts, and other courses into the lesson plans. The formal curricula being developed follows Next Generation Standards and incorporates effective and engaging pedagogical strategies, such as problem-based learning (PBL), design thinking, and document based questions, using authentic data and articles, some of which are produced by the SSERVI scientists. From the materials developed for the formal education component, we have built up a collection of informal activities of varying lengths (minutes to weeks-long programs) to be used by museums, girl and boy scouts, science camps, etc.The curricula are being developed by formal and informal educators, artists, storytellers, and scientists. The continual feedback between the educators, artists, and scientists enables the program to evolve and mature such that the material will be accessible to the students without losing scientific merit. Online components will allow students to interact with SSERVI scientists and will ultimately infuse ongoing, exciting research into the student’s lessons.Our Education & Public Engagement (EPE) program makes a strong effort to make educational material accessible to all learners, including those with visual or hearing impairments. Specific activities have been included or independently developed to give all students an opportunity to experience the excitement of the universe.

  6. Fifteen years medical information sciences: the Amsterdam curriculum

    NARCIS (Netherlands)

    Jaspers, Monique W.; Fockens, Paul; Ravesloot, Jan H.; Limburg, Martien; Abu-Hanna, Ameen

    2004-01-01

    Objectives: To inform the medical informatics community on the rational, goals, evolution and present contents of the Medical Information Sciences program of the University of Amsterdam and our achievements. Methods: We elaborate on the history of our program, the philosophy, contents and

  7. Curriculum challenges faced by rural-origin health science students ...

    African Journals Online (AJOL)

    This article is one of a series of investigations into various aspects of university life and career choices of health science students. Data were collected at three South African universities by the Collaboration for Health Equity through Education and Research (CHEER) collaborators. Ethical permission was sought from each ...

  8. Food-Based Science Curriculum Yields Gains in Nutrition Knowledge

    Science.gov (United States)

    Carraway-Stage, Virginia; Hovland, Jana; Showers, Carissa; Díaz, Sebastián; Duffrin, Melani W.

    2015-01-01

    Background: Students may be receiving less than an average of 4?hours of nutrition instruction per year. Integrating nutrition with other subject areas such as science may increase exposure to nutrition education, while supporting existing academics. Methods: During the 2009-2010 school year, researchers implemented the Food, Math, and Science…

  9. Implementation of modified team-based learning within a problem based learning medical curriculum: a focus group study.

    Science.gov (United States)

    Burgess, Annette; Roberts, Chris; Ayton, Tom; Mellis, Craig

    2018-04-10

    While Problem Based Learning (PBL) has long been established internationally, Team-based learning (TBL) is a relatively new pedagogy in medical curricula. Both PBL and TBL are designed to facilitate a learner-centred approach, where students, in interactive small groups, use peer-assisted learning to solve authentic, professionally relevant problems. Differences, however, exist between PBL and TBL in terms of preparation requirements, group numbers, learning strategies, and class structure. Although there are many similarities and some differences between PBL and TBL, both rely on constructivist learning theory to engage and motivate students in their learning. The aim of our study was to qualitatively explore students' perceptions of having their usual PBL classes run in TBL format. In 2014, two iterations in a hybrid PBL curriculum were converted to TBL format, with two PBL groups of 10 students each, being combined to form one TBL class of 20, split into four groups of five students. At the completion of two TBL sessions, all students were invited to attend one of two focus groups, with 14 attending. Thematic analysis was used to code and categorise the data into themes, with constructivist theory used as a conceptual framework to identify recurrent themes. Four key themes emerged; guided learning, problem solving, collaborative learning, and critical reflection. Although structured, students were attracted to the active and collaborative approach of TBL. They perceived the key advantages of TBL to include the smaller group size, the preparatory Readiness Assurance Testing process, facilitation by a clinician, an emphasis on basic science concepts, and immediate feedback. The competitiveness of TBL was seen as a spur to learning. These elements motivated students to prepare, promoted peer assisted teaching and learning, and focussed team discussion. An important advantage of PBL over TBL, was the opportunity for adequate clinical reasoning within the problem

  10. Interdisciplinary Climate Change Curriculum Materials based on the Next Generation Science Standards and The Earth Charter

    Science.gov (United States)

    Barbosa, A.; Robertson, W. H.

    2013-12-01

    In the 2012, the National Research Council (NRC) of the National Academies' reported that one of the major issues associated with the development of climate change curriculum was the lack of interdisciplinary materials that also promoted a correlation between science standards and content. Therefore, in order to respond to this need, our group has developed an interdisciplinary climate change curriculum that has had as its fundamental basis the alignment with the guidelines presented by the Next Generation Science Standards (NGSS) and the ones presented by the international document entitled The Earth Charter. In this regards, while the alignment with NGSS disciplinary core ideas, cross-concepts and students' expectations intended to fulfill the need for the development of climate change curriculum activities that were directly associated with the appropriate set of NGSS guidelines, the alignment with The Earth Charter document intended to reinforce the need the for the integration of sociological, philosophical and intercultural analysis of the theme 'climate change'. Additionally, our curriculum was also developed as part of a collaborative project between climate scientists and engineers, who are responsible for the development of a Regional Arctic Simulation Model (RASM). Hence, another important curriculum constituent was the feedback, suggestions and reviews provided by these professionals, who have also contributed to these pedagogical materials' scientific accuracy by facilitating the integration of datasets and visualizations developed by RASM. Furthermore, our group has developed a climate change curriculum for two types of audience: high school and early undergraduate students. Each curriculum unit is divided into modules and each module contains a set of lesson plans. The topics selected to compose each unit and module were designated according to the surveys conducted with scientists and engineers involved with the development of the climate change

  11. Updating the immunology curriculum in clinical laboratory science.

    Science.gov (United States)

    Stevens, C D

    2000-01-01

    To determine essential content areas of immunology/serology courses at the clinical laboratory technician (CLT) and clinical laboratory scientist (CLS) levels. A questionnaire was designed which listed all major topics in immunology and serology. Participants were asked to place a check beside each topic covered. For an additional list of serological and immunological laboratory testing, participants were asked to indicate if each test was performed in either the didactic or clinical setting, or not performed at all. A national survey of 593 NAACLS approved CLT and CLS programs was conducted by mail under the auspices of ASCLS. Responses were obtained from 158 programs. Respondents from all across the United States included 60 CLT programs, 48 hospital-based CLS programs, 45 university-based CLS programs, and 5 university-based combined CLT and CLS programs. The survey was designed to enumerate major topics included in immunology and serology courses by a majority of participants at two distinct educational levels, CLT and CLS. Laboratory testing routinely performed in student laboratories as well as in the clinical setting was also determined for these two levels of practitioners. Certain key topics were common to most immunology and serology courses. There were some notable differences in the depth of courses at the CLT and CLS levels. Laboratory testing associated with these courses also differed at the two levels. Testing requiring more detailed interpretation, such as antinuclear antibody patterns (ANAs), was mainly performed by CLS students only. There are certain key topics as well as specific laboratory tests that should be included in immunology/serology courses at each of the two different educational levels to best prepare students for the workplace. Educators can use this information as a guide to plan a curriculum for such courses.

  12. Science curriculum effects in high school: A quantitative synthesis

    Science.gov (United States)

    Weinstein, Thomas; Boulanger, F. David; Walberg, Herbert J.

    To assess the impact of the innovative precollege science curricula of the past twenty years on learning, a search was conducted using the computer-assisted Bibliographic Retrieval System (BRS), the ERIC Annual Summaries of Research in Science Education, and Dissertation Abstracts International. A total of 151 effect sizes were obtained from 33 studies representing 19,149 junior and senior high school students in the United States, Great Britain, and Israel. Study-weighted analysis yielded an overall mean effect size of 0.31 significantly favorable to the innovative curricula [t(25) = 2.183, p < 0.05] on all outcomes. Student performance in innovative curricula averaged in the 62nd percentile relative to the control norm. Tabulation of signed comparisons indicated that sixty-four out of eighty-one unweighted outcomes were favorable to the innovative curricula. Separate analyses for test content bias, methodological rigor, type of learning, and student characteristics showed no significant differences across these categories.

  13. Into the Curriculum. Art: Whistler's Mother; Reading/Language Arts: Finding My Voice; Science: Where on My Tongue? Taste; Social Studies/Science: Volcanoes; Social Studies: Pompeii.

    Science.gov (United States)

    Reed-Mundell, Charlie

    2001-01-01

    Provides five fully developed library media activities that are designed for use with specific curriculum units in art, reading, language arts, science, and social studies. Describes library media skills, curriculum objectives, grade levels, resources, instructional roles, procedures, evaluation, and follow-up for each activity. (LRW)

  14. EDITORIAL: Focus on Advances in Surface and Interface Science 2008 FOCUS ON ADVANCES IN SURFACE AND INTERFACE SCIENCE 2008

    Science.gov (United States)

    Scheffler, Matthias; Schneider, Wolf-Dieter

    2008-12-01

    Basic research in surface and interface science is highly interdisciplinary, covering the fields of physics, chemistry, biophysics, geo-, atmospheric and environmental sciences, material science, chemical engineering, and more. The various phenomena are interesting by themselves, and they are most important in nearly all modern technologies, as for example electronic, magnetic, and optical devices, sensors, catalysts, lubricants, hard and thermal-barrier coatings, protection against corrosion and crack formation under harsh environments. In fact, detailed understanding of the elementary processes at surfaces is necessary to support and to advance the high technology that very much founds the prosperity and lifestyle of our society. Current state-of-the-art experimental studies of elementary processes at surfaces, of surface properties and functions employ a variety of sophisticated tools. Some are capable of revealing the location and motion of individual atoms. Others measure excitations (electronic, magnetic and vibronic), employing, for example, special light sources such as synchrotrons, high magnetic fields, or free electron lasers. The surprising variety of intriguing physical phenomena at surfaces, interfaces, and nanostructures also pose a persistent challenge for the development of theoretical descriptions, methods, and even basic physical concepts. This second focus issue on the topic of 'Advances in Surface and Interface Science' in New Journal of Physics, following on from last year's successful collection, provides an exciting synoptic view on the latest pertinent developments in the field. Focus on Advances in Surface and Interface Science 2008 Contents Organic layers at metal/electrolyte interfaces: molecular structure and reactivity of viologen monolayers Stephan Breuer, Duc T Pham, Sascha Huemann, Knud Gentz, Caroline Zoerlein, Ralf Hunger, Klaus Wandelt and Peter Broekmann Spin polarized d surface resonance state of fcc Co/Cu(001) K Miyamoto, K

  15. Support of a Problem-Based Learning Curriculum by Basic Science Faculty

    Directory of Open Access Journals (Sweden)

    William L. Anderson

    2002-11-01

    Full Text Available Although published reports describe benefits to students of learning in a problem-based, student-centered environment, questions have persisted about the excessive faculty time commitments associated with the implementation of PBL pedagogy. The argument has been put forward that the excessive faculty costs of such a curriculum cannot be justified based upon the potential benefits to students. However, the magnitude of the faculty time commitment to a PBL curriculum to support the aforementioned argument is not clear to us and we suspect that it is also equally unclear to individuals charged with making resource decisions supporting the educational efforts of the institution. Therefore, to evaluate this cost - benefit question, we analyzed the actual basic science faculty time commitment in a hybrid PBL curriculum during the first phase 18 months of undergraduate medical education. The results of this analysis do demonstrate an increase in faculty time commitments but do not support the argument that PBL pedagogy is excessively costly in terms of faculty time. For the year analyzed in this report, basic science faculty members contributed on average of 27.4 hours to the instruction of medical students. The results of the analysis did show significant contributions (57% of instructional time by the clinical faculty during the initial 18 months of medical school. In addition, the data revealed a four-fold difference between time commitments of the four basic science departments. We conclude that a PBL curriculum does not place unreasonable demands on the time of basic science faculty. The demands on clinical faculty, in the context of their other commitments, could not be evaluated. Moreover, this type of analysis provides a tool that can be used to make faculty resource allocation decisions fairly.

  16. Windmills by Design: Purposeful Curriculum Design to Meet Next Generation Science Standards in a 9-12 Physics Classroom

    Science.gov (United States)

    Concannon, James; Brown, Patrick L.

    2017-01-01

    The "Next Generation Science Standards" (NGSS) challenges science teachers to think beyond specific content standards when considering how to design and implement curriculum. This lesson, "Windmills by Design," is an insightful lesson in how science teachers can create and implement a cross-cutting lesson to teach the concepts…

  17. The role of project-based learning in the "Political and social sciences of the environment" curriculum at Nijmegen University

    NARCIS (Netherlands)

    Leroy, P.; Bosch, van den H.; Ligthart, S.S.H.

    2001-01-01

    Since the end of 1996, teachers at the Faculty of Policy Sciences at Nijmegen University, The Netherlands, have been working on a new educational programme called "Political and Social Sciences of the Environment" (PSSE). In fact, the PSSE curriculum builds on the Environmental Policy Sciences

  18. Using natural analogue studies in the secondary science curriculum

    International Nuclear Information System (INIS)

    Ebert, E.K.

    1995-01-01

    This paper discusses an atomic theory unit of a high school chemistry course taught in Nevada. The unit is based on the application of natural analogues to nuclear waste issues. The paper focuses on the students' reactions to the subject material

  19. Effective Lesson Planning: Field Trips in the Science Curriculum

    Science.gov (United States)

    Rieger, C. R.

    2010-10-01

    Science field trips can positively impact and motivate students. However, if a field trip is not executed properly, with appropriate preparation and follow-up reinforcement, it can result in a loss of valuable educational time and promote misconceptions in the students. This study was undertaken to determine if a classroom lesson before an out-of-the-classroom activity would affect learner gain more or less than a lesson after the activity. The study was based on the immersive theater movie ``Earth's Wild Ride'' coupled with a teacher-led Power Point lesson. The participants in the study were students in a sixth grade physical science class. The order of lessons showed no detectable effect on final learner outcomes. Based on pre- and post-testing, improvement in mean learning gain came from the teacher-led lesson independent of the movie. The visit to the immersive theater, however, had significant positive effects that did not show up in the quantitative results of the testing.

  20. The Value of Fidelity of Implementation Criteria to Evaluate School-Based Science Curriculum Innovations

    Science.gov (United States)

    Lee, Yew-Jin; Chue, Shien

    2013-10-01

    School-based curriculum innovations, including those in science education, are usually not adequately evaluated, if at all. Furthermore, current procedures and instruments for programme evaluations are often unable to support evidence-based decision-making. We suggest that adopting fidelity of implementation (FOI) criteria from healthcare research can both characterize and narrow the separation between programme intent and actual implementation, which is a mandatory stage of evaluation before determining overall programme value. We demonstrate how such a process could be applied by science educators using data from a secondary school in Singapore that had devised a new curriculum to promote interest, investigative processes, and knowledge in science. Results showed that there were ambivalent student responses to this programme, while there were high levels of science process skill instruction and close alignment with the intended lesson design. The implementation of this programme appeared to have a satisfactory overall level of FOI, but we also detected tensions between programme intent and everyday classroom teaching. If we want to advance science education, then our argument is that applying FOI criteria is necessary when evaluating all curricular innovations, not just those that originate from schools.

  1. Examining the Features of Earth Science Logical Reasoning and Authentic Scientific Inquiry Demonstrated in a High School Earth Science Curriculum: A Case Study

    Science.gov (United States)

    Park, Do-Yong; Park, Mira

    2013-01-01

    The purpose of this study was to investigate the inquiry features demonstrated in the inquiry tasks of a high school Earth Science curriculum. One of the most widely used curricula, Holt Earth Science, was chosen for this case study to examine how Earth Science logical reasoning and authentic scientific inquiry were related to one another and how…

  2. The Delphi Technique in Identifying Learning Objectives for the Development of Science, Technology and Society Modules for Palestinian Ninth Grade Science Curriculum

    Science.gov (United States)

    Abualrob, Marwan M. A.; Daniel, Esther Gnanamalar Sarojini

    2013-01-01

    This article outlines how learning objectives based upon science, technology and society (STS) elements for Palestinian ninth grade science textbooks were identified, which was part of a bigger study to establish an STS foundation in the ninth grade science curriculum in Palestine. First, an initial list of STS elements was determined. Second,…

  3. Transformative Multicultural Science curriculum: A case study of middle school robotics

    Science.gov (United States)

    Grimes, Mary Katheryn

    Multicultural Science has been a topic of research and discourse over the past several years. However, most of the literature concerning this topic (or paradigm) has centered on programs in tribal or Indigenous schools. Under the framework of instructional congruence, this case study explored how elementary and middle school students in a culturally diverse charter school responded to a Multicultural Science program. Furthermore, this research sought to better understand the dynamics of teaching and learning strategies used within the paradigm of Multicultural Science. The school's Robotics class, a class typically stereotyped as fitting within the misconceptions associated with the Western Modern Science paradigm, was the center of this case study. A triangulation of data consisted of class observations throughout two semesters; pre and post student science attitude surveys; and interviews with individual students, Robotic student teams, the Robotics class instructor, and school administration. Three themes emerged from the data that conceptualized the influence of a Multicultural Science curriculum with ethnically diverse students in a charter school's Robotics class. Results included the students' perceptions of a connection between science (i.e., Robotics) and their personal lives, a positive growth in the students' attitude toward science (and engineering), and a sense of personal empowerment toward being successful in science. However, also evident in the findings were the students' stereotypical attitudes toward science (and scientists) and their lack of understanding of the Nature of Science. Implications from this study include suggestions toward the development of Multicultural Science curricula in public schools. Modifications in university science methods courses to include the Multicultural Science paradigm are also suggested.

  4. Incorporating Environmental Regulation and Litigation in Earth Science Curriculum

    Science.gov (United States)

    Flegal, A. R.

    2004-12-01

    Fundamental knowledge of geological processes is not only needed for effective environmental regulation and litigation, but Earth Science students find that relevance motivating in their studies of those processes. Crustal abundance and redox reactions suddenly become personally meaningful when they are used to account for the presence of high levels of carcinogenic Cr(VI) in the students' drinking water. Similarly, epithermal mercury deposits and the element's speciation gain new importance when they are related to the warning signs on the consumption of fish that the students catch and eat. And even those students that are not motivated by these, and many other, applications of geology find solace in learning that anthropogenic perturbations of the global lead cycle may partially account for their short attention span, lack of interest, and inability to learn the material. Consequently, a number of courses in environmental toxicology and ground water contamination have been developed that are based on (1) case studies in environmental regulation and litigation and (2) active student participation as "expert witnesses" opining on the scientific basis of environmental decisions.

  5. THE EFFECTS OF ELECTIVE COURSE DESIGNED WITH DIFFERENT CONTENTS ON PRE-SERVICE SCIENCE TEACHERS’ SELF-EFFICACY BELIEFS AND KNOWLEDGE ABOUT ORGANIZING CURRICULUM BASED FIELD TRIPS

    Directory of Open Access Journals (Sweden)

    Aykut Emre Bozdoğan

    2018-06-01

    Full Text Available This research examined the effect of a course designed with different content on pre-service science teachers’ self-efficacy beliefs and knowledge about organizing curriculum-based trips. A pre-test post-test quasi experimental design was used in the research. One-hundred and thirty pre-service science teachers participated in the research. The research was carried out within the context of an elective course called “Informal Learning Environments in Science Education” and was conducted over 14 weeks in total for two hours per week. The research data were obtained by means of a questionnaire, self–efficacy scale for designing curriculum-based field trips (CFTSES and semi-structured focus-group interviews. As a result of the research, it was found that the course content which included in-class and out-of-school setting practices in the 3rd group was the most effective. This was followed by the 2nd group which included only in-class implementations. The first group which was supported with visuals and theoretical related presented information was the group which was the least effected. The results of the research revealed that pre-service science teachers had mainly different concerns about safety, but that this did not deter them, as they still continued to design curriculum-based field trips for learners.

  6. The influence of secondary science teachers' pedagogical content knowledge, educational beliefs and perceptions of the curriculum on implementation and science reform

    Science.gov (United States)

    Bonner, Portia Selene

    2001-07-01

    Science education reform is one of the focal points of restructuring the educational system in the United States. However, research indicates a slow change in progression towards science literacy among secondary students. One of the factors contributing to slow change is how teachers implement the curriculum in the classroom. Three constructs are believed to be influential in curriculum implementation: educational beliefs, pedagogical knowledge and perception of the curriculum. Earlier research suggests that there is a strong correlation between teachers' educational beliefs and instructional practices. These beliefs can be predictors of preferred strategies employed in the classroom. Secondly, teachers' pedagogical knowledge, that is the ability to apply theory and appropriate strategies associated with implementing and evaluating a curriculum, contributes to implementation. Thirdly, perception or how the curriculum itself is perceived also effects implementation. Each of these constructs has been examined independently, but never the interplay of the three. The purpose of this qualitative study was to examine the interplay of teachers' educational beliefs, pedagogical content knowledge and perceptions of a science curriculum with respect to how these influence curriculum implementation. This was accomplished by investigating the emerging themes that evolved from classroom observations, transcripts from interview and supplementary data. Five high school biology teachers in an urban school system were observed for ten months for correspondence of teaching strategies to the curriculum. Teachers were interviewed formally and informally about their perceptions of science teaching, learning and the curriculum. Supplementary material such as lesson plans, course syllabus and notes from classroom observations were collected and analyzed. Data were transcribed and analyzed for recurring themes using a thematic matrix. A theoretical model was developed from the emerging

  7. Multimodal Literacies in Science: Currency, Coherence and Focus

    Science.gov (United States)

    Klein, Perry D.; Kirkpatrick, Lori C.

    2010-01-01

    Since the 1990s, researchers have increasingly drawn attention to the multiplicity of representations used in science. This issue of "RISE" advances this line of research by placing such representations at the centre of science teaching and learning. The authors show that representations do not simply transmit scientific information; they are…

  8. Supports and Concerns for Teacher Professional Growth During the Implementation of a Science Curriculum Innovation

    Science.gov (United States)

    Peers, Cheryl (Shelley) E.; Diezmann, Carmel M.; Watters, James J.

    2003-02-01

    Internationally, considerable reform in science education is occurring which promotes constructivist philosophies and advocates constructivist-inspired pedagogical strategies that are new to many teachers. This paper reports on the supporting factors necessary for teacher professional growth and the issues of concern that were evident during one primary teacher''s successful implementation of a unit of work based on a draft of a new state-wide science syllabus which proposes such approaches. One researcher (CEP) provided guidance during the writing and implementation of the unit through professional development workshops complemented by ongoing collegial support. The analysis of the teacher''s practice reveals that professional growth required a willingness of the teacher to engage with change and modify his professional practice. The support factors for teacher growth consisted of an appropriate program of professional development, teacher understanding of the elements of the curriculum innovation, and successful experiences in implementing new approaches. In contrast, the issues of concern were: the adequacy of support for planning including the time required to understand the innovation and make changes to teaching practice; science equipment; teacher knowledge; classroom management strategies; and ways to cope with change. Understanding of these support factors and issues of concern is vital for the successful implementation of science curriculum innovations.

  9. Reaching Consensus on Essential Biomedical Science Learning Objectives in a Dental Curriculum.

    Science.gov (United States)

    Best, Leandra; Walton, Joanne N; Walker, Judith; von Bergmann, HsingChi

    2016-04-01

    This article describes how the University of British Columbia Faculty of Dentistry reached consensus on essential basic biomedical science objectives for DMD students and applied the information to the renewal of its DMD curriculum. The Delphi Method was used to build consensus among dental faculty members and students regarding the relevance of over 1,500 existing biomedical science objectives. Volunteer panels of at least three faculty members (a basic scientist, a general dentist, and a dental specialist) and a fourth-year dental student were formed for each of 13 biomedical courses in the first two years of the program. Panel members worked independently and anonymously, rating each course objective as "need to know," "nice to know," "irrelevant," or "don't know." Panel members were advised after each round which objectives had not yet achieved a 75% consensus and were asked to reconsider their ratings. After a maximum of three rounds to reach consensus, a second group of faculty experts reviewed and refined the results to establish the biomedical science objectives for the renewed curriculum. There was consensus on 46% of the learning objectives after round one, 80% after round two, and 95% after round three. The second expert group addressed any remaining objectives as part of its review process. Only 47% of previous biomedical science course objectives were judged to be essential or "need to know" for the general dentist. The consensus reached by participants in the Delphi Method panels and a second group of faculty experts led to a streamlined, better integrated DMD curriculum to prepare graduates for future practice.

  10. Across the Curriculum.

    Science.gov (United States)

    Burns, Marilyn; And Others

    1994-01-01

    Across-the-curriculum articles focus on four areas. A math activity describes optical illusions and the properties of shapes. A hands-on science activity presents the chemistry of secret messages. A writing lesson helps students capture the essence of character. An art lesson presents a project on medieval castles. (SM)

  11. Vegetation survey: a new focus for Applied Vegetation Science

    NARCIS (Netherlands)

    Chytry, M.; Schaminee, J.H.J.; Schwabe, A.

    2011-01-01

    Vegetation survey is an important research agenda in vegetation science. It defines vegetation types and helps understand differences among them, which is essential for both basic ecological research and applications in biodiversity conservation and environmental monitoring. In this editorial, we

  12. Can a Three-Day Training Focusing on the Nature of Science and Science Practices as They Relate to Mind in the Making Make a Difference in Preschool Teachers' Self-Efficacy Engaging in Science Education?

    Science.gov (United States)

    Meacham, Colleen

    As technology and our world understanding develop, we will need citizens who are able to ask and answer questions that have not been thought of yet. Currently, high school and college graduates entering the workforce demonstrate a gap in their ability to develop unique solutions and fill the current technology-driven jobs. To address this gap, science needs to be prioritized early in children's lives. The focus of this research was to analyze a science training program that would help pre-school teachers better understand Mind in the Making life skills, the nature of science, science practices, and improve their self-efficacy integrating science education into their classrooms and curriculum. Seventy-one teachers enrolled in two three-day, professional development trainings that were conducted over three, five-hour sessions approximately one month apart... During that training the teachers learned hands-on activities for young children that introduced life and physical science content. They were also given the task of developing and implementing a science-based lesson for their students and then analyzing it with other participants. The information from the lesson plans was collected for analysis. After the last training the teachers were given a pre/post retrospective survey to measure effective outcomes. The results from the lesson plans and surveys indicate that the trainings helped improve the teachers' understanding of Mind in the Making, the nature of science, and science practices. The results also show that the teachers felt more comfortable integrating science education into their classrooms and curriculum.

  13. Middle school science curriculum design and 8th grade student achievement in Massachusetts public schools

    Science.gov (United States)

    Clifford, Betsey A.

    The Massachusetts Department of Elementary and Secondary Education (DESE) released proposed Science and Technology/Engineering standards in 2013 outlining the concepts that should be taught at each grade level. Previously, standards were in grade spans and each district determined the method of implementation. There are two different methods used teaching middle school science: integrated and discipline-based. In the proposed standards, the Massachusetts DESE uses grade-by-grade standards using an integrated approach. It was not known if there is a statistically significant difference in student achievement on the 8th grade science MCAS assessment for students taught with an integrated or discipline-based approach. The results on the 8th grade science MCAS test from six public school districts from 2010 -- 2013 were collected and analyzed. The methodology used was quantitative. Results of an ANOVA showed that there was no statistically significant difference in overall student achievement between the two curriculum models. Furthermore, there was no statistically significant difference for the various domains: Earth and Space Science, Life Science, Physical Science, and Technology/Engineering. This information is useful for districts hesitant to make the change from a discipline-based approach to an integrated approach. More research should be conducted on this topic with a larger sample size to better support the results.

  14. Crop and Soil Science. A Curriculum Guide for Idaho Vocational Agriculture Instructors. Volume 1 and Volume 2.

    Science.gov (United States)

    Ledington, Richard L.

    The 24 units that comprise this crop and soil science curriculum guide are not geared to a particular age level and must be adapted to the students for whom they are used. Units 1 through 6 are general units covering topics common to soil science. Units 7 through 24 are units covering topics common to crop production. Each unit includes objectives…

  15. Curriculum Package: Junior High - Middle School Science Lessons. [A Visit to the Louisville, Kentucky Airports: Standiford and Bowman Fields.

    Science.gov (United States)

    Squires, Frances H.

    This science curriculum was written for teachers of children in junior high or middle school. It contains science activities for the following lessons: (1) Anemometers and Wind Speed; (2) Up! Up! and Away; (3) Jet Lag--Time Zones; (4) Inventors; (5) Model Rocketry; (6) Geometry and Kites; and (7) Super Savers. In lesson one, students construct an…

  16. Establishing Enabling Conditions to Develop Critical Thinking Skills: A Case of Innovative Curriculum Design in Environmental Science

    Science.gov (United States)

    Belluigi, Dina Zoe; Cundill, Georgina

    2017-01-01

    This paper considers a curriculum design motivated by a desire to explore more valid pedagogical approaches that foster critical thinking skills among students engaged in an Environmental Science course in South Africa, focussing specifically on the topic of Citizen Science. Fifty-three under graduate students were involved in the course, which…

  17. Exploring the Associations Among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum.

    Science.gov (United States)

    Stage, Virginia C; Kolasa, Kathryn M; Díaz, Sebastián R; Duffrin, Melani W

    2018-01-01

    Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across North Carolina and Ohio; mean age 10 years old; gender (I = 53.2% female; C = 51.6% female). Dependent variable = post-test-nutrition knowledge; independent variables = baseline-nutrition knowledge, and post-test science and mathematics knowledge. Analyses included descriptive statistics and multiple linear regression. The hypothesized model predicted post-nutrition knowledge (F(437) = 149.4, p mathematics knowledge were predictive of nutrition knowledge indicating use of an integrative science and mathematics curriculum to improve academic knowledge may also simultaneously improve nutrition knowledge among fourth-grade students. Teachers can benefit from integration by meeting multiple academic standards, efficiently using limited classroom time, and increasing nutrition education provided in the classroom. © 2018, American School Health Association.

  18. Science-Based Thematic Cultural Art Learning in Primary School (2013 Curriculum

    Directory of Open Access Journals (Sweden)

    Warih Handayaningrum

    2016-12-01

    Full Text Available This study is aimed at discussing the development result of thematic cultural art subject’s learning material based on science for primary school (2013 curriculum. This study is expected to inspire teacher to develop learning material that may explore artworks exist in our living environment (based on the context of children’s environment. This study applies steps in developmental research collaboration by Borg & Gall (1989 and Puslitjaknov (2008 to create the product. The development stages comprise observation in several primary schools in Surabaya, Gresik, and Sidoarjo that has implemented 2013 curriculum that is followed up by stages of development. Furthermore, prototype of cultural and art thematic learning material development results are verified by learning material experts, material expert, primary school teacher, and revised afterwards. The result of this research development is a set of teacher and student books. Science-based cultural art here means cultural art learning as the main medium to introduce local culture products (music, drawing, dance, and drama by integrating mathematics, sciences, Bahasa Indonesia, and local language subjects. Cultural art products in the form of dance, music, drawing, dramas will help children to understand a simple mathematical concept, such as: two-dimensional figure, geometry, comparing or estimating longer-shorter, smaller-bigger, or more-less.

  19. Using the AGsploration: the Science of Maryland Agriculture Curriculum as a Tool to Increase Youth Appreciation and Understanding of Agriculture and Science

    Directory of Open Access Journals (Sweden)

    April Hall Barczewski

    2017-01-01

    Full Text Available AGsploration: The Science of Maryland Agriculture is a 24-lesson, peer-reviewed curriculum that includes experiential hands-on activities and built-in pre-/post-evaluation tools. Lesson topics include production agriculture, the environment and nutrition with emphasis on how science relates to each topic. Student pre-/post- evaluation data reflects participation in AGsploration positively affects students’ attitudes about agriculture and science. Separate evaluations were developed to survey two groups of trained teen teachers about the curriculum immediately following their training, 1-2 years after using the curriculum and another 3-4 years post involvement. The results demonstrated that teen teachers were an effective way to disseminate the curriculum and these same teens increased their agriculture knowledge, life skills and interest in agriculture science education and careers. A similar evaluation was conducted with adult educators following a training session and another 1-2 years after actively using the curriculum. This data suggests that the curriculum is well received and valued.

  20. Influence of Science, Technology, and Engineering Curriculum on Rural Midwestern High School Student Career Decisions

    Science.gov (United States)

    Killingsworth, John

    Low degree completion in technical and engineering degrees is a growing concern for policymakers and educators in the United States. This study was an examination of the behaviors of adolescents specific to career decisions related to technology and engineering. The central research question for this study was: do rural, Midwestern high school technical and engineering curricula serve to engage students sufficiently to encourage them to persist through high school while sustaining their interests in technology and engineering careers? Engaging students in technology and engineering fields is the challenge for educators throughout the country and the Midwest. Rural schools have the additional challenge of meeting those issues because of resource limitations. Students in three Midwestern schools were surveyed to determine the level of interest in technology and engineering. The generalized likelihood ratio test was used to overcome concerns for small sample sizes. Accounting for dependent variables, multiple independent variables are examined using descriptive statistics to determine which have greater influence on career decisions, specifically those related to technology and engineering. A typical science curriculum is defined for rural Midwestern high schools. This study concludes that such curriculum achieves the goal of maintaining or increasing student interest and engagement in STEM careers. Furthermore, those schools that incorporate contextual and experiential learning activities into the curriculum demonstrate increased results in influencing student career choices toward technology and engineering careers. Implications for parents, educators, and industry professionals are discussed.

  1. An exploration of the science teaching orientations of Indian science teachers in the context of curriculum reform

    Science.gov (United States)

    Nargund-Joshi, Vanashri

    This study explores the concepts and behaviors, otherwise referred to as orientations, of six Indian science teachers and the alignment of these orientations to the 2005 India National Curriculum Framework (NCF-2005). Differences in teachers' orientations across grade bands (elementary, middle, and secondary) and school types (public versus private) are also examined to determine how contextual factors may influence this alignment. First, a content analysis of the NCF-2005 was completed to identify the overarching principles of the NCF-2005 and goals specific to the teaching and learning of science. Interviews with school principals were also analyzed to understand how the goals of NCF-2005 were communicated to schools and teachers. Together, these data sources served to answer research question one. Next, profiles were created based on three interviews with each teacher and several observations of their teaching. These profiles provide a point of reference for answering the remaining three research questions. Findings include teacher's orientations falling along a continuum from traditionalist in nature to inquiry/constructivist in nature. Stark contrasts were found between traditionalist orientations and the goals of NCF-2005, with much of this contrast due to the limited pedagogical content knowledge these teachers have regarding students' scientific thinking, curriculum design, instructional strategies, and assessment. Inquiry/constructivist teachers' orientations, while more in line with reform, still have a few key areas of pedagogical content knowledge needing attention (e.g., knowledge of assessment and a variety of purposes for constructivist instructional strategies). In response to the final research question, several contextual factors contributed to teachers' orientations including environmental constraints, such as limited resources and large class sizes, cultural testing pressures, and limited accessibility to professional development. Suggestions

  2. The Need for Focused Literacy Training in the Medical School Curriculum

    DEFF Research Database (Denmark)

    Kling, Joyce; Larsen, Sanne; Thomsen, Simon Francis

    2017-01-01

    Introduction. Medical education programs have increasingly included compulsory research skills components but rarely include explicit academic literacy instruction for medical research. This article presents results from a project that developed methods of bridging the gap between textbook literacy...... and scientific literacy in a setting where English coexists with the local language. Methods. A paper-based, revised version of a validated self-report instrument (32 questions) designed to assess readers’ metacognitive awareness and perceived use of academic reading strategies was used to collect information...... for inclusion of focused training on academic and scientific literacy, in particular, strategy instruction in relation to foreign language reading comprehension skills in medical school curricula....

  3. Atmospheric rivers emerge as a global science and applications focus

    Science.gov (United States)

    Ralph, F. Martin; Dettinger, Michael; Lavers, David A.; Gorodetskaya, Irina; Martin, Andrew; Viale, Maximilliano; White, Allen; Oakley, Nina; Rutz, Jonathan; Spackman, J. Ryan; Wernli, Heini; Cordeira, Jason

    2017-01-01

    Recent advances in atmospheric sciences and hydrology have identified the key role of atmo-spheric rivers (ARs) in determining the distribution of strong precipitation events in the midlatitudes. The growth of the subject is evident in the increase in scientific publications that discuss ARs (Fig. 1a). Combined with related phenomena, that is, warm conveyor belts (WCBs) and tropical moisture exports (TMEs), the frequency, position, and strength of ARs determine the occurrence of floods, droughts, and water resources in many parts of the world. A conference at the Scripps Institution of Oceanography in La Jolla, California, recently gathered over 100 experts in atmospheric, hydrologic, oceanic, and polar science; ecology; water management; and civil engineering to assess the state of AR science and to explore the need for new information. This first International Atmospheric Rivers Conference (IARC) allowed for much needed introductions and interactions across fields and regions, for example, participants came from five continents, and studies covered ARs in six continents and Greenland (Fig. 1b). IARC also fostered discussions of the status and future of AR science, and attendees strongly supported the idea of holding another IARC at the Scripps Institution of Oceanography in the summer of 2018.

  4. From FRA to RFN, or How the Family Resemblance Approach Can Be Transformed for Science Curriculum Analysis on Nature of Science

    Science.gov (United States)

    Kaya, Ebru; Erduran, Sibel

    2016-01-01

    The inclusion of Nature of Science (NOS) in the science curriculum has been advocated around the world for several decades. One way of defining NOS is related to the family resemblance approach (FRA). The family resemblance idea was originally described by Wittgenstein. Subsequently, philosophers and educators have applied Wittgenstein's idea to…

  5. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    Science.gov (United States)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  6. Food-Based Science Curriculum Increases 4th Graders Multidisciplinary Science Knowledge

    Science.gov (United States)

    Hovland, Jana A.; Carraway-Stage, Virginia G.; Cela, Artenida; Collins, Caitlin; Díaz, Sebastián R.; Collins, Angelo; Duffrin, Melani W.

    2013-01-01

    Health professionals and policymakers are asking educators to place more emphasis on food and nutrition education. Integrating these topics into science curricula using hand-on, food-based activities may strengthen students' understanding of science concepts. The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a…

  7. A comparative analysis of Science-Technology-Society standards in elementary, middle and high school state science curriculum frameworks

    Science.gov (United States)

    Tobias, Karen Marie

    An analysis of curriculum frameworks from the fifty states to ascertain the compliance with the National Science Education Standards for integrating Science-Technology-Society (STS) themes is reported within this dissertation. Science standards for all fifty states were analyzed to determine if the STS criteria were integrated at the elementary, middle, and high school levels of education. The analysis determined the compliance level for each state, then compared each educational level to see if the compliance was similar across the levels. Compliance is important because research shows that using STS themes in the science classroom increases the student's understanding of the concepts, increases the student's problem solving skills, increases the student's self-efficacy with respect to science, and students instructed using STS themes score well on science high stakes tests. The two hypotheses for this study are: (1) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school levels. (2) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school level when examined individually. The Analysis of Variance F ratio was used to determine the variance between and within the three educational levels. This analysis addressed hypothesis one. The Analysis of Variance results refused to reject the null hypothesis, meaning there is significant difference in the compliance to STS themes between the elementary, middle and high school educational levels. The Chi-Square test was the statistical analysis used to compare the educational levels for each individual criterion. This analysis addressed hypothesis two. The Chi-Squared results showed that none of the states were equally compliant with each

  8. Creating effective environmental education: A case study utilizing an integrative teaching methodology to develop positive environmental attitudes and behaviors in the secondary general science curriculum

    Science.gov (United States)

    O'Connor, Teresa M.

    Many years of teaching environmental issues years has revealed that giving students only "the facts" frequently leaves them with a sense of hopelessness about the future of life on this planet. Problems of the environment often seem large and complex, and student's feel there is nothing "they" can do. In response, a curriculum was developed that permits students to learn about action strategies they can partake in that would make a small contribution towards a solution, as well as exploring their own values and attitudes about environmental issues. The curriculum also attempts to foster positive attitudes and beliefs about the natural world. The curriculum contains three distinct units, focusing on energy, atmospheric issues, and the loss of habitat and rainforest. It was taught in sixty-one sessions over a fourteen week period in a standard level ninth grade General Science class of twenty-four students, at Harriton High School in the Lower Merion School District in the suburbs of Philadelphia. The dissertation is presented as a case study that is the author's construction of the actual experience, developed from audio tapes of the classroom sessions, personal logs, and data collected from the students. The dissertation presents an in-depth case study of the development, the actual implementation, and subsequent evaluation of this environmental curriculum, and gives an in-depth view of life in this class.

  9. Reproductive Science for High School Students: A Shared Curriculum Model to Enhance Student Success.

    Science.gov (United States)

    Castle, Megan; Cleveland, Charlotte; Gordon, Diana; Jones, Lynda; Zelinski, Mary; Winter, Patricia; Chang, Jeffrey; Senegar-Mitchell, Ericka; Coutifaris, Christos; Shuda, Jamie; Mainigi, Monica; Bartolomei, Marisa; Woodruff, Teresa K

    2016-07-01

    The lack of a national reproductive biology curriculum leads to critical knowledge gaps in today's high school students' comprehensive understanding of human biology. The Oncofertility Consortium developed curricula that address the basic and clinical aspects of reproductive biology. Launching this academy and creating easy-to-disseminate learning modules allowed other universities to implement similar programs across the country. The expansion of this informal, extracurricular academy on reproductive health from Northwestern University to the University of California, San Diego, Oregon Health & Science University, and the University of Pennsylvania magnifies the scope of scientific learning to students who might not otherwise be exposed to this important information. To assess the experience gained from this curriculum, we polled alumni from the four centers. Data were collected anonymously from de-identified users who elected to self-report on their experiences in their respective reproductive science academy. The alumni survey asked participants to report on their current academic standing, past experiences in the academy, and future academic and career goals. The results of this national survey suggest the national oncofertility academies had a lasting impact on participants and may have contributed to student persistence in scientific learning. © 2016 by the Society for the Study of Reproduction, Inc.

  10. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    Science.gov (United States)

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-06-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS) curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  11. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    Directory of Open Access Journals (Sweden)

    Fred Goldberg1

    2012-05-01

    Full Text Available We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET, for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  12. Role of Public Outreach in the University Science Mission: Publishing K-12 Curriculum, Organizing Tours, and Other Methods of Engagement

    Science.gov (United States)

    Dittrich, T. M.

    2015-12-01

    Much attention has been devoted in recent years to the importance of Science, Technology, Engineering, and Math (STEM) education in K-12 curriculum for developing a capable workforce. Equally important is the role of the voting public in understanding STEM-related issues that impact public policy debates such as the potential impacts of climate change, hydraulic fracturing in oil and gas exploration, mining impacts on water quality, and science funding. Since voted officials have a major impact on the future of these policies, it is imperative that the general public have an understanding of the basic science behind these issues. By engaging with the public in a more fundamental way, university students can play an important role in educating the public while at the same time enhancing their communication skills and gaining valuable teaching experience. I will talk about my own experiences in (1) evaluating and publishing water chemistry and hazardous waste cleanup curriculum on the K-12 engineering platform TeachEngineering.org, (2) organizing public tours of water and energy sites (e.g., abandoned mine sites, coal power plants, wastewater treatment plants, hazardous waste treatment facilities), and (3) other outreach and communication activities including public education of environmental issues through consultations with customers of a landscaping/lawn mowing company. The main focus of this presentation will be the role that graduate students can play in engaging and educating their local community and lessons learned from community projects (Dittrich, 2014; 2012; 2011). References: Dittrich, T.M. 2014. Adventures in STEM: Lessons in water chemistry from elementary school to graduate school. Abstract ED13E-07 presented at 2014 Fall Meeting, AGU, San Francisco, Calif., 15-19 Dec. Dittrich, T.M. 2012. Collaboration between environmental water chemistry students and hazardous waste treatment specialists on the University of Colorado-Boulder campus. Abstract ED53C

  13. Tracing the Policy Mediation Process in the Implementation of a Change in the Life Sciences Curriculum

    Science.gov (United States)

    Singh-Pillay, Asheena; Alant, Busisiwe

    2015-01-01

    This paper accounts for the enacted realities of curriculum reform in South Africa, in particular the mediation of curriculum change. Curriculum implementation is viewed as a complex networked process of transforming or mediating policy into classroom practice. The fact that curriculum implementation is seen as problematic requires attention for…

  14. From FRA to RFN, or How the Family Resemblance Approach Can Be Transformed for Science Curriculum Analysis on Nature of Science

    Science.gov (United States)

    Kaya, Ebru; Erduran, Sibel

    2016-12-01

    The inclusion of Nature of Science (NOS) in the science curriculum has been advocated around the world for several decades. One way of defining NOS is related to the family resemblance approach (FRA). The family resemblance idea was originally described by Wittgenstein. Subsequently, philosophers and educators have applied Wittgenstein's idea to problems of their own disciplines. For example, Irzik and Nola adapted Wittgenstein's generic definition of the family resemblance idea to NOS, while Erduran and Dagher reconceptualized Irzik and Nola's FRA-to-NOS by synthesizing educational applications by drawing on perspectives from science education research. In this article, we use the terminology of "Reconceptualized FRA-to-NOS (RFN)" to refer to Erduran and Dagher's FRA version which offers an educational account inclusive of knowledge about pedagogical, instructional, curricular and assessment issues in science education. Our motivation for making this distinction is rooted in the need to clarify the various accounts of the family resemblance idea.The key components of the RFN include the aims and values of science, methods and methodological rules, scientific practices, scientific knowledge as well as the social-institutional dimensions of science including the social ethos, certification, and power relations. We investigate the potential of RFN in facilitating curriculum analysis and in determining the gaps related to NOS in the curriculum. We analyze two Turkish science curricula published 7 years apart and illustrate how RFN can contribute not only to the analysis of science curriculum itself but also to trends in science curriculum development. Furthermore, we present an analysis of documents from USA and Ireland and contrast them to the Turkish curricula thereby illustrating some trends in the coverage of RFN categories. The results indicate that while both Turkish curricula contain statements that identify science as a cognitive-epistemic system, they

  15. International student exchange and the medical curriculum: evaluation of a medical sciences translational physiology course in Brazil.

    Science.gov (United States)

    Morris, Mariana; Jones, T David; Rocha, Maria Jose Alves; Fazan, Rubens; Chapleau, Mark W; Salgado, Helio C; Johnson, Alan Kim; Irigoyen, Maria Claudia; Michelini, Lisete C; Goldstein, David L

    2006-09-01

    The objective of the present study was to conduct a short-term international course on translational physiology for medical students from Wright State University and the University of Iowa. The goals were to 1) provide students with an exposure to the academic, cultural, and medical environments in Brazil; 2) promote awareness of the global medical community; and 3) provide an academic course focused on translational physiology. An evaluation of the students was conducted to determine whether such a short-term course might be useful in the medical curriculum. The 2-wk course was held in the summer of 2005 at the University of São Paulo School of Medicine in Ribeirão Preto, Brazil, for 23 American students. The program included presentations of basic and clinical topics, meetings with medical students, and clinical presentations. The program finished with student attendance at a scientific meeting sponsored by the Brazilian Society of Hypertension. Student surveys evaluated issues related to perceived treatment, Brazilian medical school environment, culture and personal attributes, and career aspirations. The international Medical Sciences Translational Physiology course for medical students provided a brief, but intense, experience. It gave students a picture of the medical environment in Brazil and an appreciation for the differences and similarities in cultures. Most students reported that it was a positive experience that would be beneficial to their careers. In conclusion, a short-term international course provides an efficient means for medical students to experience aspects of global medical science.

  16. Teacher change and professional development: A case study of teachers engaged in an innovative constructivist science curriculum

    Science.gov (United States)

    Akura, Okong'o. Gabriel

    This study examined both the changes that elementary school teachers experienced when they implemented a reform-based science curriculum and the impact of professional development on this transformation. The research involved a case study of three purposefully selected teachers implementing the Linking Food and the Environment (LIFE) program during the 2002--2003 school year. The LIFE program is a curriculum designed to enhance science literacy among learners from high poverty urban environments. While the study was grounded in the tradition of critical theory (Carspecken, 1996), the theoretical perspective of hermeneutic phenomenology (van Manen, 1990) guided data collection and analysis. Extensive observations of the teachers were made in order to capture and record the teacher change phenomenon. Data were recorded by means of field notes, audio and videotapes, semi-structured interviews, classroom observations, and video Stimulated Recall (SR) interviews. Emerging themes relating to teacher change, knowledge interests, constructivist pedagogy, and professional development illustrated how teachers grapple with various aspects of implementing a reform-based science curriculum. The teachers in this study were similar to those in earlier investigations, which found that sustained professional development programs involving mentoring and constant reflection enable elementary science teachers to change their instructional strategies from the technical-realist orientation towards the practical-hermeneutic and emancipatory-liberatory orientations. The study has implications for science curriculum developers and designers of professional development programs.

  17. Climate Change and Arctic Issues in the Marine and Environmental Science Curriculum at the U.S. Coast Guard Academy

    Science.gov (United States)

    Vlietstra, L.; McConnell, M. C.; Bergondo, D. L.; Mrakovcich, K. L.; Futch, V.; Stutzman, B. S.; Fleischmann, C. M.

    2016-02-01

    As global climate change becomes more evident, demand will likely increase for experts with a detailed understanding of the scientific basis of climate change, the ocean's role in the earth-atmosphere system, and forecasted impacts, especially in Arctic regions where effects may be most pronounced. As a result, programs in marine and environmental sciences are uniquely poised to prepare graduates for the formidable challenges posed by changing climates. Here we present research evaluating the prevalence and themes of courses focusing on anthropogenic climate change in 125 Marine Science and Environmental Science undergraduate programs at 86 institutions in the United States. These results, in addition to the increasing role of the Coast Guard in the Arctic, led to the development of two new courses in the curriculum. Climate Change Science, a one-credit seminar, includes several student-centered activities supporting key learning objectives. Polar Oceanography, a three-credit course, incorporates a major outreach component to Coast Guard units and members of the scientific community. Given the importance of climate change in Arctic regions in particular, we also propose six essential "Arctic Literacy Principles" around which courses or individual lesson plans may be organized. We show how these principles are incorporated into an additional new three-credit course, Model Arctic Council, which prepares students to participate in a week-long simulation exercise of Arctic Council meetings, held in Fairbanks, Alaska. Students examine the history and mission of the Arctic Council and explore some of the issues on which the council has deliberated. Special attention is paid to priorities of the current U.S. chairmanship of the Arctic Council which include climate change impacts on, and stewardship of, the Arctic Ocean.

  18. Early Science Instruction and Academic Language Development Can Go Hand in Hand. The Promising Effects of a Low-Intensity Teacher-Focused Intervention

    Science.gov (United States)

    Henrichs, Lotte F.; Leseman, Paul P. M.

    2014-11-01

    Early science instruction is important in order to lay a firm basis for learning scientific concepts and scientific thinking. In addition, young children enjoy science. However, science plays only a minor role in the kindergarten curriculum. It has been reported that teachers feel they need to prioritize language and literacy practices over science. In this paper, we investigate whether science lessons might be integrated with learning the language functional for school: academic language. The occurrence of scientific reasoning and sophisticated vocabulary in brief science lessons with 5-year-olds is evaluated. The aim of the study was twofold: first, to explore the nature of kindergarten science discourse without any researcher directions (pre-intervention observation). Second, in a randomized control trial, we evaluated the effect on science discourse of a brief teacher training session focused on academic language awareness. The science lessons focussed on air pressure and mirror reflection. Analyses showed that teachers from the intervention group increased their use of scientific reasoning and of domain-specific academic words in their science discourse, compared to the control group. For the use of general academic words and for lexical diversity, the effect was task-specific: these dependent measures only increased during the air pressure task. Implications of the study include the need to increase teachers' awareness of possibilities to combine early science instruction and academic language learning.

  19. An evaluative study of the impact of the "Curriculum Alignment Toolbox" on middle school science achievement

    Science.gov (United States)

    Jones, Carol L.

    The number of computer-assisted education programs on the market is overwhelming science teachers all over the Michigan. Though the need is great, many teachers are reluctant to procure computer-assisted science education programs because they are unsure of the effectiveness of such programs. The Curriculum Alignment Toolbox (CAT) is a computer-based program, aligned to the Michigan Curriculum Framework's Benchmarks for Science Education and designed to supplement science instruction in Michigan middle schools. The purpose of this study was to evaluate the effectiveness of CAT in raising the standardized test scores of Michigan students. This study involved 419 students from one urban, one suburban and one rural middle school. Data on these students was collected from 4 sources: (1) the 8th grade Michigan Education Assessment Program (MEAP) test, (2) a 9 question, 5-point Likert-type scale student survey, (3) 4 open-response student survey questions and (4) classroom observations. Results of this study showed that the experimental group of 226 students who utilized the CAT program in addition to traditional instruction did significantly better on the Science MEAP test than the control group of 193 students who received only traditional instruction. The study also showed that the urban students from a "high needs" school seemed to benefit most from the program. Additionally, though both genders and all identified ethnic groups benefited from the program, males benefited more than females and whites, blacks and Asian/Pacific Islander students benefited more than Hispanic and multi-racial students. The CAT program's success helping raise the middle school MEAP scores may well be due to some of its components. CAT provided students with game-like experiences all based on the benchmarks required for science education and upon which the MEAP test is based. The program also provided visual and auditory stimulation as well as numerous references which students indicated

  20. The Curriculum Customization Service: A Tool for Customizing Earth Science Instruction and Supporting Communities of Practice

    Science.gov (United States)

    Melhado, L. C.; Devaul, H.; Sumner, T.

    2010-12-01

    Accelerating demographic trends in the United States attest to the critical need to broaden access to customized learning: reports refer to the next decade as the era of “extreme diversity” in K-12 classrooms, particularly in large urban school districts. This diverse student body possesses a wide range of knowledge, skills, and abilities in addition to cultural differences. A single classroom may contain students with different levels of quantitative skills, different levels of English language proficiency, and advanced students preparing for college-level science. A uniform curriculum, no matter how well designed and implemented, cannot possibly serve the needs of such diverse learners equally well. Research has shown positive learning outcomes when pedagogical strategies that customize instruction to address specific learner needs are implemented, with under-achieving students often benefiting most. Supporting teachers in the effective adoption and use of technology to meet these instructional challenges is the underlying goal of the work to be presented here. The Curriculum Customization Service (CCS) is an integrated web-based platform for middle and high school Earth science teachers designed to facilitate teachers’ instructional planning and delivery; enhancing existing curricula with digital library resources and shared teacher-contributed materials in the context of articulated learning goals. The CCS integrates interactive resources from the Digital Library for Earth System Education (DLESE) with an inquiry-based curriculum component developed by the American Geological Institute (EarthComm and Investigating Earth Systems). The digital library resources emphasize visualizations and animations of Earth processes that often challenge students’ understanding, offering multiple representations of phenomena to address different learning styles, reading abilities, and preconceived ideas. Teachers can access these materials, as well as those created or

  1. Inquiry in early years science teaching and learning: Curriculum design and the scientific story

    Science.gov (United States)

    McMillan, Barbara Alexander

    2001-07-01

    Inquiry in school science, as conceived by the authors of the Common Framework of Science Learning Outcomes K--12, is dependent upon four areas of skills. These are the skills of initiating and planning, performing and recording, analysing and interpreting, and communication and teamwork that map onto what Hodson calls the five phases of scientific inquiry in school science: initiation, design and planning, performance, interpretation, and reporting and communicating. This study looked at initiation in a multiage (Grades 1--3) classroom, and the curriculum, design tools, and inquiry acts believed to be necessary precursors of design and planning phases whether the inquiry in which young children engage is archival or laboratory investigation. The curriculum was designed to build upon children's everyday biological knowledge and through a series of carefully organized lessons to help them to begin to build scientifically valid conceptual models in the area of animal life cycles. The lessons began with what is called benchmark-invention after the historical work of Robert Karplus and the contemporary work of Earl Hunt and Jim Minstrell. The introduction of a biological concept was followed by a series of exploration activities in which children were encouraged to apply the concept invented in the benchmark lesson. Enlargement followed. This was the instructional phase in which children were helped to establish scientifically valid relationships between the invented concept and other biological concepts. The pre-instruction and post-instruction interview data suggest that the enacted curriculum and sequence in which the biological knowledge was presented helped the nineteen children in the study to recognize the connections and regularities within the life cycles of the major groupings of animals, and to begin to build scientific biological conceptual models. It is, however, argued that everyday biology, in the form of the person analogy, acts as an obstacle to

  2. Supramolecular Pharmaceutical Sciences: A Novel Concept Combining Pharmaceutical Sciences and Supramolecular Chemistry with a Focus on Cyclodextrin-Based Supermolecules.

    Science.gov (United States)

    Higashi, Taishi; Iohara, Daisuke; Motoyama, Keiichi; Arima, Hidetoshi

    2018-01-01

    Supramolecular chemistry is an extremely useful and important domain for understanding pharmaceutical sciences because various physiological reactions and drug activities are based on supramolecular chemistry. However, it is not a major domain in the pharmaceutical field. In this review, we propose a new concept in pharmaceutical sciences termed "supramolecular pharmaceutical sciences," which combines pharmaceutical sciences and supramolecular chemistry. This concept could be useful for developing new ideas, methods, hypotheses, strategies, materials, and mechanisms in pharmaceutical sciences. Herein, we focus on cyclodextrin (CyD)-based supermolecules, because CyDs have been used not only as pharmaceutical excipients or active pharmaceutical ingredients but also as components of supermolecules.

  3. Integrated Curriculum and Subject-based Curriculum: Achievement and Attitudes

    Science.gov (United States)

    Casady, Victoria

    The research conducted for this mixed-method study, qualitative and quantitative, analyzed the results of an academic year-long study to determine whether the use of an integrated fourth grade curriculum would benefit student achievement in the areas of English language arts, social studies, and science more than a subject-based traditional curriculum. The research was conducted based on the international, national, and state test scores, which show a slowing or lack of growth. Through pre- and post-assessments, student questionnaires, and administrative interviews, the researcher analyzed the phenomenological experiences of the students to determine if the integrated curriculum was a beneficial restructuring of the curriculum. The research questions for this study focused on the achievement and attitudes of the students in the study and whether the curriculum they were taught impacted their achievement and attitudes over the course of one school year. The curricula for the study were organized to cover the current standards, where the integrated curriculum focused on connections between subject areas to help students make connections to what they are learning and the world beyond the classroom. The findings of this study indicated that utilizing the integrated curriculum could increase achievement as well as students' attitudes toward specific content areas. The ANOVA analysis for English language arts was not determined to be significant; although, greater growth in the students from the integrated curriculum setting was recorded. The ANOVA for social studies (0.05) and the paired t-tests (0.001) for science both determined significant positive differences. The qualitative analysis led to the discovery that the experiences of the students from the integrated curriculum setting were more positive. The evaluation of the data from this study led the researcher to determine that the integrated curriculum was a worthwhile endeavor to increase achievement and attitudes

  4. Political Science and the Good Citizen: The Genealogy of Traditionalist Paradigm of Citizenship Education in the American School Curriculum

    Science.gov (United States)

    Ahmad, Iftikhar

    2017-01-01

    Purpose: The purpose of this article is to chronicle paradigm shifts in American political science during the twentieth century and their influence on political scientists' perspectives on pre-collegiate citizenship education curriculum. Methodology: The research questions explored in this article are concerned with the history of political…

  5. Exploring shifts in the characteristics of US government-funded science curriculum materials and their (unintended) consequences

    NARCIS (Netherlands)

    Pareja Roblin, Natalie; Schunn, Christian; Bernstein, Debra; McKenney, Susan

    2018-01-01

    Grant-funded curriculum development efforts can substantially impact practice and research in science education. Therefore, understanding the sometimes-unintended consequences of changes in grant priorities is crucial. Using the case of two large funding agencies in the United States, the current

  6. Investigation of Environmental Topics in the Science and Technology Curriculum and Textbooks in Terms of Environmental Ethics and Aesthetics

    Science.gov (United States)

    Lacin Simsek, Canan

    2011-01-01

    In order to solve environmental problems, it is thought that education should be connected with values. For this reason, it is emphasized that environmental issues should be integrated with ethical and aesthetic values. In this study, 6th, 7th and 8th grade science and technology curriculum and textbooks were investigated to find out how much…

  7. Development of a Systems Science Curriculum to Engage Rural African American Teens in Understanding and Addressing Childhood Obesity Prevention

    Science.gov (United States)

    Frerichs, Leah; Lich, Kristen Hassmiller; Young, Tiffany L.; Dave, Gaurav; Stith, Doris; Corbie-Smith, Giselle

    2018-01-01

    Engaging youth from racial and ethnic minority communities as leaders for change is a potential strategy to mobilize support for addressing childhood obesity, but there are limited curricula designed to help youth understand the complex influences on obesity. Our aim was to develop and pilot test a systems science curriculum to elicit rural…

  8. Effect of Personal Response Systems on Student Perception and Academic Performance in Courses in a Health Sciences Curriculum

    Science.gov (United States)

    FitzPatrick, Kathleen A.; Finn, Kevin E.; Campisi, Jay

    2011-01-01

    To increase student engagement, active participation, and performance, personal response systems (clickers) were incorporated into six lecture-based sections of four required courses within the Health Sciences Department major curriculum: freshman-level Anatomy and Physiology I and II, junior-level Exercise Physiology, and senior-level Human…

  9. Narrative Inquiry for Science Education: Teachers' repertoire-making in the case of environmental curriculum

    Science.gov (United States)

    Hwang, Seyoung

    2011-04-01

    This paper considers how the school science curriculum can be conceptualised in order to address the contingent and complex nature of environmental and sustainability-related knowledge and understanding. A special concern lies in the development of research perspectives and tools for investigating ways, in which teachers are faced with complex and various situations in the sense-making of science-related issues, and subsequent pedagogic issues. Based on an empirical examination of Korean teachers' sense-making of their curricular practice, the paper develops a narrative approach to teachers' perspectives and knowledge by considering the value of stories as sense-making tools for reflective questioning of what is worth teaching, how and why. By employing the idea of 'repertoire', the study regards teachers' stories about their environment-related personal and teaching experiences as offering angles with which to understand teachers' motivation and reflection in curricular development and implementation. Furthermore, three empirical cases present ways in which the nature of knowledge and understanding is recognised and potentially integrated into pedagogies through teachers' narratives. Finally, the paper argues for the need to reconsider the role of the science teacher in addressing environmental and sustainability-related issues, in ways that facilitate teachers' reflexive interpretation of meanings in cultural texts and the construction of pedagogic text.

  10. Specifying a Curriculum for Biopolitical Critical Literacy in Science Teacher Education: Exploring Roles for Science Fiction

    Science.gov (United States)

    Gough, Noel

    2017-01-01

    In this essay I suggest some ways in which science teacher educators in Western neoliberal economies might facilitate learners' development of a critical literacy concerning the social and cultural changes signified by the concept of "biopolitics." I consider how such a biopolitically inflected critical literacy might find expression in…

  11. Special series on "The meaning of behavioral medicine in the psychosomatic field" establishment of a core curriculum for behavioral science in Japan: The importance of such a curriculum from the perspective of psychology.

    Science.gov (United States)

    Shimazu, Akihito; Nakao, Mutsuhiro

    2016-01-01

    This article discusses the core curriculum for behavioral science, from the perspective of psychology, recommended by the Japanese Society of Behavioral Medicine and seeks to explain how the curriculum can be effectively implemented in medical and health-related departments. First, the content of the core curriculum is reviewed from the perspective of psychology. We show that the curriculum features both basic and applied components and that the basic components are closely related to various aspects of psychology. Next, we emphasize two points to aid the effective delivery of the curriculum: 1) It is necessary to explain the purpose and significance of basic components of behavioral science to improve student motivation; and 2) it is important to encourage student self-efficacy to facilitate application of the acquired knowledge and skills in clinical practice.

  12. The Impact of Science Integrated Curriculum Supplements on Early Childhood Teachers' Attitudes and Beliefs towards Science while In-Service: A Multiple Case

    Science.gov (United States)

    Collins, Kellian L.

    Science at the early childhood level has been rarely taught as a single subject or integrated into the curriculum. One reason why early childhood educators avoid teaching science are their attitudes, beliefs, and lack of understanding scientific concepts as presented in traditional science curriculums. The intervention used by researchers for improving beliefs and attitudes in K-6 pre-service teachers towards teaching science in early childhood has been science method courses. For in service teachers, the intervention has been professional development workshops, seminars, and symposiums. Though these interventions have had a positive impact on teachers' attitudes and beliefs toward teaching science, the interventions have not necessarily guaranteed more science being taught in the preschool classroom. The specific problem investigated for this study was how to improve the interventions designed to improve preschool teachers' attitudes and beliefs so that they would feel more confident in teaching science to young children. The purpose of this study was to examine how implementing a one-week science integrated curriculum supplement could be an effective tool for improving preschool teachers' attitudes and beliefs toward teaching science. This study utilized the qualitative multiple case study research method. A logical model was created based on negative teacher attitudes and beliefs attributes that were the core components of the Preschool Teachers' Attitudes and Beliefs toward Science teaching (P-TABS) questionnaire. The negative attributes were paired with positive interventions and encapsulated in a one-week science integrated curriculum supplement based on the factors of teacher comfort, child benefit and challenges. The primary source of evidence for this study was the semi-structured interview. The researcher contacted 24 early childhood facilities, 44 emails were sent to preschool teachers, four teachers agreed to participate in the study. The results of the

  13. Emerging identities: A proposed model for an interactive science curriculum for First Nations students

    Science.gov (United States)

    Sable, Trudy

    Mi'kmaw students face a complexity of personal, cultural, and social conditions within contemporary educational systems that affect their continued participation in the educational process offered within Atlantic Canada. Despite a variety of approaches developed by educators to address the high drop out rate and lack of interest in science, the statistics remain largely unchanged. Aboriginal educators are calling for a "new story" in education that better meets the needs of Aboriginal students. This study attempts to identify the conditions and contexts necessary to bridge the gap that currently exists for Aboriginal students in science studies. The research investigates the basic relationship between learning in general and the meaning-making processes engaged in by students of a Grade 7/8 class within a Mi'kmaw reserve school. It leads to a proposal for an alternative pedagogy, or a new narrative, for teaching science to Aboriginal students and the foundations for a culturally interactive science curriculum. For educators to understand the complexity of issues affecting Mi'kmaw student achievement in science requires a theoretical framework that allows the students' lived experience to emerge. Toward this end, the research includes both phenomenological and ethnographic approaches to understanding the lived experiences and cultural narratives based on interviews with the students, a field trip within the community, and a trial chemistry lesson. I examined how these students perceive themselves in different contexts and how their sense of identity establishes the meaningfulness of particular educational content. I also assessed how person, community/cultural and social contexts affect the students' learning. Part of creating this new narrative requires recognizing knowledge, including science, as a cultural product Taking this cultural view of scientific knowledge allows us to view learning as a process of identity formation and culture as a system of symbols

  14. KUSPACE: Embedding Science Technology and Mathematics Ambassador Activities in the Undergradiuate Engineering Curriculum

    Science.gov (United States)

    Welch, C.; Osborne, B.

    The UK national STEM Ambassadors programme provides inspiring role models for school students in science, technology, engineering, mathematics (STEM) subjects. STEMNET, the national body responsible for STEM Ambassa- dors aims to provide more than 27,000 STEM Ambassadors nationwide by the end of 2011. This paper reports on a project at Kingston University to embed STEM Ambassador training and activity in Year 2 of the undergraduate Aerospace Engineering, Astronautics and Space Technology degree. The project, known as KUSPACE (Kingston University Students Providing Amazing Classroom Experiences), was conceived to develop students' communication, planning and presentation skills and build links between different cohort years, while providing a valuable contribution to local primary schools' STEM programmes and simultaneously raising the public engagement profile of the university. This paper describes the pedagogical conception of the KUSPACE, its implementation in the curriculum, the delivery of it in the university and schools and its effect on the undergraduate students, as well as identifying good practice and drawing attention to lessons learned.STEMNET (www.stemnet.org) is the UK's Science, Technol- ogy, Engineering and Mathematics Network. Working with a broad range of UK partners and funded by the UK govern- ment's Department for Business Innovation and Skills, STEMNET plays a significant role in ensuring that five to nineteen year olds and their teachers can experience a wide range of activities and schemes which enhance and enrich the school curriculum [1]. Covering all aspects of Science, Tech- nology, Engineering and Maths (STEM), these activities and schemes are designed both to increase STEM awareness and literacy in the young people and also to encourage more of them to undertake post-16 STEM qualifications and associated careers [2]. STEMNET operates through forty-five local con- tract holders around the UK which help the network deliver its

  15. Maximising Students' Progress and Engagement in Science through the Use of the Biological Sciences Curriculum Study (BSCS) 5E Instructional Model

    Science.gov (United States)

    Hoskins, Peter

    2013-01-01

    The Biological Sciences Curriculum Studies (BSCS) 5E Instructional Model (often referred to as the 5Es) consists of five phases. Each phase has a specific function and contributes both to teachers' coherent instruction and to students' formulation of a better understanding of scientific knowledge, attitudes and skills. Evidence indicates that the…

  16. Mi-STAR Unit Challenges serve as a model for integrating earth science and systems thinking in a Next Generation Science Standards (NGSS) aligned curriculum.

    Science.gov (United States)

    Gochis, E. E.; Tubman, S.; Matthys, T.; Bluth, G.; Oppliger, D.; Danhoff, B.; Huntoon, J. E.

    2017-12-01

    Michigan Science Teaching and Assessment Reform (Mi-STAR) is developing an NGSS-aligned middle school curriculum and associated teacher professional learning program in which science is taught and learned as an integrated body of knowledge that can be applied to address societal issues. With the generous support of the Herbert H. and Grace A. Dow Foundation, Mi-STAR has released several pilot-tested units through the Mi-STAR curriculum portal at mi-star.mtu.edu. Each of these units focuses on an ongoing `Unit Challenge' investigation that integrates STEM content across disciplinary boundaries, stimulates interest, and engages students in using scientific practices to address 21st century challenges. Each Mi-STAR unit is connected to a Unifying NGSS Crosscutting Concept (CCC) that allows students to recognize the concepts that are related to the phenomena or problems under investigation. In the 6th grade, students begin with an exploration of the CCC Systems and System Models. Through repeated applications across units, students refine their understanding of what a system is and how to model a complex Earth system. An example 6th grade unit entitled "Water on the Move: The Water Cycle," provides an example of how Mi-STAR approaches the use of Unifying CCCs and Unit Challenges to enhance middle school students' understanding of the interconnections of Earth system processes and human activities. Throughout the unit, students use a series of hands-on explorations and simulations to explore the hydrologic cycle and how human activity can alter Earth systems. Students develop new knowledge through repeated interactions with the Unit Challenge, which requires development of system models and construction of evidence-based arguments related to flooding problems in a local community. Students have the opportunity to make predictions about how proposed land-use management practices (e.g. development of a skate-park, rain garden, soccer field, etc.) can alter the earth

  17. Experience in the United States with a secondary resource curriculum on ''Science, society and America's nuclear waste''

    International Nuclear Information System (INIS)

    King, G.P.

    1994-01-01

    The nuclear power and nuclear waste situation in the Usa, is first reviewed. In order to enhance information concerning these topics among pupils and teachers, a resource curriculum, 'Science, society, and America's Nuclear Waste', was developed by teachers for teachers; it consists of four units: nuclear waste, ionizing radiation, the nuclear waste policy act, and the waste management system. It has been well received by teachers. Within nine months after its national introduction, 350000 teacher and student curriculum documents were requested by teachers from all 50 states. Requests have been also received from 250 foreign colleges and universities

  18. Improving Primary Teachers' Attitudes toward Science by Attitude-Focused Professional Development

    Science.gov (United States)

    van Aalderen-Smeets, Sandra I.; van der Molen, Juliette H. Walma

    2015-01-01

    This article provides a description of a novel, attitude-focused, professional development intervention, and presents the results of an experimental pretest-posttest control group study investigating the effects of this intervention on primary teachers' personal attitudes toward science, attitudes toward teaching science, and their science…

  19. Curriculum Development for Quantitative Skills in Degree Programs: A Cross-Institutional Study Situated in the Life Sciences

    Science.gov (United States)

    Matthews, Kelly E.; Belward, Shaun; Coady, Carmel; Rylands, Leanne; Simbag, Vilma

    2016-01-01

    Higher education policies are increasingly focused on graduate learning outcomes, which infer an emphasis on, and deep understanding of, curriculum development across degree programs. As disciplinary influences are known to shape teaching and learning activities, research situated in disciplinary contexts is useful to further an understanding of…

  20. The Priority of the Question: Focus Questions for Sustained Reasoning in Science

    Science.gov (United States)

    Lustick, David

    2010-08-01

    Science education standards place a high priority on promoting the skills and dispositions associated with inquiry at all levels of learning. Yet, the questions teachers employ to foster sustained reasoning are most likely borrowed from a textbook, lab manual, or worksheet. Such generic questions generated for a mass audience, lack authenticity and contextual cues that allow learners to immediately appreciate a question’s relevance. Teacher queries intended to motivate, guide, and foster learning through inquiry are known as focus questions. This theoretical article draws upon science education research to present a typology and conceptual framework intended to support science teacher educators as they identify, develop, and evaluate focus questions with their students.

  1. Precincts and Prospects in the Use of Focus Groups in Social and Behavioral Science Research

    Science.gov (United States)

    Sagoe, Dominic

    2012-01-01

    Over the past few years, the focus group method has assumed a very important role as a method for collecting qualitative data in social and behavioural science research. This article elucidates theoretical and practical problems and prospects associated with the use of focus groups as a qualitative research method in social and behavioural science…

  2. The application of Legacy Cycles in the development of Earth Science curriculum

    Science.gov (United States)

    Ellins, K.; Abernathy, E.; Negrito, K.; McCall, L.

    2009-04-01

    The Institute for Geophysics in the Jackson School of Geosciences at The University of Texas at Austin actively contributes to K-12 education, including the development of rigorous Earth and Space Science curriculum designed for secondary school learning environments. Here we report on our efforts to apply an innovative new pedagogical approach, the Legacy Cycle, to scientific ocean drilling paleoclimate data from fossil corals collected offshore Barbados in 2006 and to the creation of a high school water resources education program for Texas high school students supported by a grant from the Texas Water Development Board. The Legacy Cycle makes use of the Internet and computer technology to engage students in extended inquiry learning. A series of inquiry activities are organized around a set of three driving questions, or challenges. Students mimic the work of scientists by generating ideas to address a given challenge, listening to multiple perspectives from experts on the topic, researching a set of sub-questions and revising their original ideas, testing their mettle with labs and quizzes, and finally composing a project or paper that answers the original challenge. The technology makes it easy for students to move through the challenges and the organizational framework since there are hyperlinks to each of the sections (and to reach the other challenges) at the bottom of each webpage. Students' final work is posted to the Internet for others to see, and in this way they leave behind their legacy. Our Legacy Cycle activities use authentic hydrologic, water quality, geochemical, geophysical data, as well as remotely sensed data such as is collected by satellites. They are aligned with the U.S. National Science Education Standards, the new Ocean, Climate and Earth Science Literacy Principles (in development), and the Texas Essential Knowledge and Skills for Earth and Space Science. The work represents a collaboration involving teachers from The University of

  3. Investigating engagement, thinking, and learning among culturally diverse, urban sixth graders experiencing an inquiry-based science curriculum, contextualized in the local environment

    Science.gov (United States)

    Kelley, Sybil Schantz

    This mixed-methods study combined pragmatism, sociocultural perspectives, and systems thinking concepts to investigate students' engagement, thinking, and learning in science in an urban, K-8 arts, science, and technology magnet school. A grant-funded school-university partnership supported the implementation of an inquiry-based science curriculum, contextualized in the local environment through field experiences. The researcher worked as co-teacher of 3 sixth-grade science classes and was deeply involved in the daily routines of the school. The purposes of the study were to build a deeper understanding of the complex interactions that take place in an urban science classroom, including challenges related to implementing culturally-relevant instruction; and to offer insight into the role educational systems play in supporting teaching and learning. The central hypothesis was that connecting learning to meaningful experiences in the local environment can provide culturally accessible points of engagement from which to build science learning. Descriptive measures provided an assessment of students' engagement in science activities, as well as their levels of thinking and learning throughout the school year. Combined with analyses of students' work files and focus group responses, these findings provided strong evidence of engagement attributable to the inquiry-based curriculum. In some instances, degree of engagement was found to be affected by student "reluctance" and "resistance," terms defined but needing further examination. A confounding result showed marked increases in thinking levels coupled with stasis or decrease in learning. Congruent with past studies, data indicated the presence of tension between the diverse cultures of students and the mainstream cultures of school and science. Findings were synthesized with existing literature to generate the study's principal product, a grounded theory model representing the complex, interacting factors involved in

  4. Developing a Curriculum for Information and Communications Technology Use in Global Health Research and Training: A Qualitative Study Among Chinese Health Sciences Graduate Students.

    Science.gov (United States)

    Ma, Zhenyu; Yang, Li; Yang, Lan; Huang, Kaiyong; Yu, Hongping; He, Huimin; Wang, Jiaji; Cai, Le; Wang, Jie; Fu, Hua; Quintiliani, Lisa; Friedman, Robert H; Xiao, Jian; Abdullah, Abu S

    2017-06-12

    Rapid development of information and communications technology (ICT) during the last decade has transformed biomedical and population-based research and has become an essential part of many types of research and educational programs. However, access to these ICT resources and the capacity to use them in global health research are often lacking in low- and middle-income country (LMIC) institutions. The aim of our study was to assess the practical issues (ie, perceptions and learning needs) of ICT use among health sciences graduate students at 6 major medical universities of southern China. Ten focus group discussions (FGDs) were conducted from December 2015 to March 2016, involving 74 health sciences graduate students studying at 6 major medical universities in southern China. The sampling method was opportunistic, accounting for the graduate program enrolled and the academic year. All FGDs were audio recorded and thematic content analysis was performed. Researchers had different views and arguments about the use of ICT which are summarized under six themes: (1) ICT use in routine research, (2) ICT-related training experiences, (3) understanding about the pros and cons of Web-based training, (4) attitudes toward the design of ICT training curriculum, (5) potential challenges to promoting ICT courses, and (6) related marketing strategies for ICT training curriculum. Many graduate students used ICT on a daily basis in their research to stay up-to-date on current development in their area of research or study or practice. The participants were very willing to participate in ICT courses that were relevant to their academic majors and would count credits. Suggestion for an ICT curriculum included (1) both organized training course or short lecture series, depending on the background and specialty of the students, (2) a mixture of lecture and Web-based activities, and (3) inclusion of topics that are career focused. The findings of this study suggest that a need exists

  5. From Theory to Practice: Utilizing Competency-based Milestones to Assess Professional Growth and Development in the Foundational Science Blocks of a Pre-Clerkship Medical School Curriculum.

    Science.gov (United States)

    Pettepher, Cathleen C; Lomis, Kimberly D; Osheroff, Neil

    2016-09-01

    Physicians-in-training require skills and attitudes beyond medical knowledge in order to mature into successful clinicians. However, because assessments in pre-clerkship curricula historically have focused almost exclusively on medical knowledge, faculty contributions to early student development often have been limited. To address this challenge and enhance student progress, we re-designed our pre-clerkship curriculum to include settings in which diverse facets of student performance could be observed and fostered. Concurrently, we transitioned to an assessment strategy focused on competency-based milestones. The implementation of this strategy has allowed pre-clerkship science faculty to provide early-stage students with rich holistic feedback designed to stimulate their professional growth.

  6. An Empirical Investigation of the Conception Focused Curriculum: The Importance of Introducing Undergraduate Business Statistics Students to the "Real World"

    Science.gov (United States)

    Burch, Gerald F.; Burch, Jana J.; Heller, Nathan A.; Batchelor, John H.

    2015-01-01

    Continuing pressures are being placed on undergraduate business education to alter curriculum content and delivery. The anticipated product of these changes is a graduate that is capable of performing the higher order thinking skills needed to navigate a constantly changing, global business environment. This article describes the implementation of…

  7. Tobephobia Experienced by Teachers in Secondary Schools: An Exploratory Study Focusing on Curriculum Reform in the Nelson Mandela Metropole

    Science.gov (United States)

    Singh, P.

    2011-01-01

    Because of its history from apartheid to democracy, the aspiration to reform schools is a recurrent theme in South African education. Efforts to reform education in schools based on the outcomes-based education (OBE) curriculum approach created major challenges for policy makers in South Africa. The purpose of this exploratory research was…

  8. Examining Teacher Mental Models for the Implementation of a STEM-Focused Curriculum Paradigm in Engineering and Technology Education

    Science.gov (United States)

    Kerr, Janel M.

    2013-01-01

    The purpose of this study was to explore the role of mental models in Idaho's Engineering and Technology Education teachers' in decision making when faced with major curriculum changes. Senge (1990) defined mental models as, "deeply ingrained assumptions, generalizations, or even pictures or images that influence how we understand the world…

  9. The Situations Bank, a Tool for Curriculum Design Focused on Daily Realities: The Case of the Reform in Niger

    Science.gov (United States)

    Charland, Patrick; Cyr, Stéphane

    2013-01-01

    In the context of the curriculum reform in Niger, the authors describe the process of developing a situations bank which focusses on everyday life situations in Niger. The bank plays a central role in the formulation of new study programmes guided by the so-called "situated" approach. The authors also describe various issues that arose…

  10. A Recommendation for a Professional Focus Area in Data Management for the IS2002 Information Systems Model Curriculum

    Science.gov (United States)

    Longenecker, Herbert E., Jr.; Yarbrough, David M.; Feinstein, David L.

    2010-01-01

    IS2002 has become a well defined standard for information systems curricula. The Data Management Association (DAMA 2006) curriculum framework defines a body of knowledge that points to a skill set that can enhance IS2002. While data management professionals are highly skilled individuals requiring as much as a decade of relevant experience before…

  11. Effects of the layered curriculum on student’s success, permanence and attitudes in Science and Technology Course

    OpenAIRE

    Mehmet Nuri Gömleksiz; Serav Biçer

    2012-01-01

    This study aims to determine the effects of the layered curriculum on students’ achievement, permanence and attitudes towards Science and Technology course.  The research was conducted with two classes including an experimental and a control class at 6th grade of Elazig İstiklal Primary School in 2009-2010 academic year. Mixed research model that utilize both quantitative and qualitative research methods together was preferred in this research. To that end, achievement test and attitude scale...

  12. The issues that class teachers encounter during application of science and technology teaching curriculum

    Directory of Open Access Journals (Sweden)

    Mustafa Ugras

    2014-08-01

    Full Text Available This study aimed at investigating the challenges class teachers face in the curriculum implementation and whether these challenges differ in relation to teachers’ gender, level of education, department they graduated from and teaching experience. For this purpose; a questionnaire was developed by the researcher. Items of the questionnaire were selected from the related literature and validated by a group of expert in the field. A pilot study was conducted to assess the clarity of the questionnaire items. The internal reliability of the final version of questionnaire was calculated by using Cronbach’s Alpha Formula and found be high (α=0.85. The participants of this research included 342 class teachers who were teaching 4th and 5th class in 57 different elementary schools in 2010-2011 academic years in Bingol and Diayrbakir cities. The results of the survey were considered by using SPSS packet program. In the analyzing of data obtained from this study, frequency, arithmetic average, t-test and variance analysis were used. From the obtained data, it was determined that the 4th and 5th class teachers encounter different problems in science and technology teaching program, especially in performance homework, sourcing and lesson time topics.

  13. The role of project‐based learning in the “Political and Social Sciences of the Environment” curriculum at Nijmegen University

    NARCIS (Netherlands)

    Leroy, P.; Ligthart, S.S.H.; Bosch, H. van den

    2001-01-01

    Since the end of 1996, teachers at the Faculty of Policy Sciences at Nijmegen University, The Netherlands, have been working on a new educational programme called “Political and Social Sciences of the Environment” (PSSE). In fact, the PSSE curriculum builds on the Environmental Policy Sciences

  14. Training trainers in health and human rights: implementing curriculum change in South African health sciences institutions.

    Science.gov (United States)

    Ewert, Elena G; Baldwin-Ragaven, Laurel; London, Leslie

    2011-07-25

    The complicity of the South African health sector in apartheid and the international relevance of human rights as a professional obligation prompted moves to include human rights competencies in the curricula of health professionals in South Africa. A Train-the-Trainers course in Health and Human Rights was established in 1998 to equip faculty members from health sciences institutions nationwide with the necessary skills, attitudes and knowledge to teach human rights to their students. This study followed up participants to determine the extent of curriculum implementation, support needed as well as barriers encountered in integrating human rights into health sciences teaching and learning. A survey including both quantitative and qualitative components was distributed in 2007 to past course participants from 1998-2006 via telephone, fax and electronic communication. Out of 162 past participants, 46 (28%) completed the survey, the majority of whom were still employed in academic settings (67%). Twenty-two respondents (48%) implemented a total of 33 formal human rights courses into the curricula at their institutions. Respondents were nine times more likely (relative risk 9.26; 95% CI 5.14-16.66) to implement human rights education after completing the training. Seventy-two extracurricular activities were offered by 21 respondents, many of whom had successfully implemented formal curricula. Enabling factors for implementation included: prior teaching experience in human rights, general institutional support and the presence of allies - most commonly coworkers as well as deans. Frequently cited barriers to implementation included: budget restrictions, time constraints and perceived apathy of colleagues or students. Overall, respondents noted personal enrichment and optimism in teaching human rights. This Train-the-Trainer course provides the historical context, educational tools, and collective motivation to incorporate human rights educational initiatives at health

  15. Training Trainers in health and human rights: Implementing curriculum change in South African health sciences institutions

    Directory of Open Access Journals (Sweden)

    Baldwin-Ragaven Laurel

    2011-07-01

    Full Text Available Abstract Background The complicity of the South African health sector in apartheid and the international relevance of human rights as a professional obligation prompted moves to include human rights competencies in the curricula of health professionals in South Africa. A Train-the-Trainers course in Health and Human Rights was established in 1998 to equip faculty members from health sciences institutions nationwide with the necessary skills, attitudes and knowledge to teach human rights to their students. This study followed up participants to determine the extent of curriculum implementation, support needed as well as barriers encountered in integrating human rights into health sciences teaching and learning. Methods A survey including both quantitative and qualitative components was distributed in 2007 to past course participants from 1998-2006 via telephone, fax and electronic communication. Results Out of 162 past participants, 46 (28% completed the survey, the majority of whom were still employed in academic settings (67%. Twenty-two respondents (48% implemented a total of 33 formal human rights courses into the curricula at their institutions. Respondents were nine times more likely (relative risk 9.26; 95% CI 5.14-16.66 to implement human rights education after completing the training. Seventy-two extracurricular activities were offered by 21 respondents, many of whom had successfully implemented formal curricula. Enabling factors for implementation included: prior teaching experience in human rights, general institutional support and the presence of allies - most commonly coworkers as well as deans. Frequently cited barriers to implementation included: budget restrictions, time constraints and perceived apathy of colleagues or students. Overall, respondents noted personal enrichment and optimism in teaching human rights. Conclusion This Train-the-Trainer course provides the historical context, educational tools, and collective motivation

  16. Focus: knowing the ocean: a role for the history of science.

    Science.gov (United States)

    Rozwadowski, Helen M

    2014-06-01

    While most historians have treated the sea as a surface or a void, the history of science is well positioned to draw the ocean itself into history. The contributors to this Focus section build on the modest existing tradition of history of oceanography and extend that tradition to demonstrate both the insights to be gained by studying oceans historically and the critical role that the history of science should play in future environmental history of the ocean.

  17. Science of driving.

    Science.gov (United States)

    2016-08-01

    The Science of Driving project focused on developing a collaborative relationship to develop curriculum units for middle school and high school students to engage them in exciting real-world scenarios. This effort involved faculty, staff, and student...

  18. A Study of the Curriculum and Contents in American Progressive Education : Focusing on Castle Kindergarten and Nursery School in Hawaii

    OpenAIRE

    塩路, 晶子

    2010-01-01

    This study aims to show the features of American progressive kindergarten in the early 20th century, through analyzing the curriculum and contents of Henry and Dorothy Castle Memorial Kindergarten and Nursery School in Hawaii. This kindergarten was established by Mary Castle at Honolulu in 1899 and influenced from John Dewey. And in 1927, the nursery school was established because educating younger children was important. Children could select the subject matter based on their own interest. A...

  19. Targeting change: Assessing a faculty learning community focused on increasing statistics content in life science curricula.

    Science.gov (United States)

    Parker, Loran Carleton; Gleichsner, Alyssa M; Adedokun, Omolola A; Forney, James

    2016-11-12

    Transformation of research in all biological fields necessitates the design, analysis and, interpretation of large data sets. Preparing students with the requisite skills in experimental design, statistical analysis, and interpretation, and mathematical reasoning will require both curricular reform and faculty who are willing and able to integrate mathematical and statistical concepts into their life science courses. A new Faculty Learning Community (FLC) was constituted each year for four years to assist in the transformation of the life sciences curriculum and faculty at a large, Midwestern research university. Participants were interviewed after participation and surveyed before and after participation to assess the impact of the FLC on their attitudes toward teaching, perceived pedagogical skills, and planned teaching practice. Overall, the FLC had a meaningful positive impact on participants' attitudes toward teaching, knowledge about teaching, and perceived pedagogical skills. Interestingly, confidence for viewing the classroom as a site for research about teaching declined. Implications for the creation and development of FLCs for science faculty are discussed. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):517-525, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  20. Evaluation of the New Curriculum of the College of Health Sciences ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The changes to the curriculum were designed through a facilitated participatory process aimed at producing health professionals with expanded competencies. The new curriculum was deemed necessary to prepare health professionals to respond to the new demands of decentralized health service delivery, to tackle new ...

  1. Impact of a Revised Curriculum Focusing on Clinical Neurology and Musculoskeletal Care on a Required Fourth-Year Medical Student Physical Medicine and Rehabilitation Clerkship

    Directory of Open Access Journals (Sweden)

    John W. Norbury

    2016-01-01

    Full Text Available Background. A Required Fourth-Year Medical Student Physical Medicine and Rehabilitation (PM&R Clerkship was found to increase students’ knowledge of PM&R; however the students’ overall rotation evaluations were consistently lower than the other 8 required clerkships at the medical school. Objective. To describe the impact of a revised curriculum based upon Entrustable Professional Activities and focusing on basic pain management, musculoskeletal care, and neurology. Setting. Academic Medical Center. Participants. 73 fourth-year medical students. Methods. The curriculum changes included a shift in the required readings from rehabilitation specific topics toward more general content in the areas of clinical neurology and musculoskeletal care. Hands-on workshops on neurological and musculoskeletal physical examination techniques, small group case-based learning, an anatomy clinical correlation lecture, and a lecture on pain management were integrated into the curriculum. Main Outcome Measurements. Student evaluations of the clerkship. Results. Statistically significant improvements were found in the students’ evaluations of usefulness of lecturers, development of patient interviewing skills, and diagnostic and patient management skills (p≤0.05. Conclusions. This study suggests that students have a greater satisfaction with a required PM&R clerkship when lecturers utilize a variety of pedagogic methods to teach basic pain, neurology and musculoskeletal care skills in the rehabilitation setting rather than rehabilitation specific content.

  2. Focused Campaign Increases Activity among Participants in "Nature's Notebook," a Citizen Science Project

    Science.gov (United States)

    Crimmins, Theresa M.; Weltzin, Jake F.; Rosemartin, Alyssa H.; Surina, Echo M.; Marsh, Lee; Denny, Ellen G.

    2014-01-01

    Science projects, which engage non-professional scientists in one or more stages of scientific research, have been gaining popularity; yet maintaining participants' activity level over time remains a challenge. The objective of this study was to evaluate the potential for a short-term, focused campaign to increase participant activity in a…

  3. Improving primary teachers’ attitudes toward science by attitude-focused professional development

    NARCIS (Netherlands)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Julie Henriëtte

    2015-01-01

    This article provides a description of a novel, attitude-focused, professional development intervention, and presents the results of an experimental pretest-posttest control group study investigating the effects of this intervention on primary teachers’ personal attitudes toward science, attitudes

  4. Communicating the Nature of Science through "The Big Bang Theory": Evidence from a Focus Group Study

    Science.gov (United States)

    Li, Rashel; Orthia, Lindy A.

    2016-01-01

    In this paper, we discuss a little-studied means of communicating about or teaching the nature of science (NOS)--through fiction television. We report some results of focus group research which suggest that the American sitcom "The Big Bang Theory" (2007-present), whose main characters are mostly working scientists, has influenced…

  5. Big Data Science Education: A Case Study of a Project-Focused Introductory Course

    Science.gov (United States)

    Saltz, Jeffrey; Heckman, Robert

    2015-01-01

    This paper reports on a case study of a project-focused introduction to big data science course. The pedagogy of the course leveraged boundary theory, where students were positioned to be at the boundary between a client's desire to understand their data and the academic class. The results of the case study demonstrate that using live clients…

  6. The effects of an integrated Algebra 1/physical science curriculum on student achievement in Algebra 1, proportional reasoning and graphing abilities

    Science.gov (United States)

    Lawrence, Lettie Carol

    1997-08-01

    The purpose of this investigation was to determine if an integrated curriculum in algebra 1/physical science facilitates acquisition of proportional reasoning and graphing abilities better than a non-integrated, traditional, algebra 1 curriculum. Also, this study was to ascertain if the integrated algebra 1/physical science curriculum resulted in greater student achievement in algebra 1. The curriculum used in the experimental class was SAM 9 (Science and Mathematics 9), an investigation-based curriculum that was written to integrate physical science and basic algebra content. The experiment was conducted over one school year. The subjects in the study were 61 ninth grade students. The experimental group consisted of one class taught concurrently by a mathematics teacher and a physical science teacher. The control group consisted of three classes of algebra 1 students taught by one mathematics teacher and taking physical science with other teachers in the school who were not participating in the SAM 9 program. This study utilized a quasi-experimental non-randomized control group pretest-posttest design. The investigator obtained end-of-algebra 1 scores from student records. The written open-ended graphing instruments and the proportional reasoning instrument were administered to both groups as pretests and posttests. The graphing instruments were also administered as a midtest. A two sample t-test for independent means was used to determine significant differences in achievement on the end-of-course algebra 1 test. Quantitative data from the proportional reasoning and graphing instruments were analyzed using a repeated measures analysis of variance to determine differences in scores over time for the experimental and control groups. The findings indicate no significant difference between the experimental and control groups on the end-of-course algebra 1 test. Results also indicate no significant differences in proportional reasoning and graphing abilities between

  7. "I am a scientist": How setting conditions that enhance focused concentration positively relate to student motivation and achievement outcomes in inquiry-based science

    Science.gov (United States)

    Ellwood, Robin B.

    This research investigated how student social interactions within two approaches to an inquiry-based science curriculum could be related to student motivation and achievement outcomes. This qualitative case study consisted of two cases, Off-Campus and On-Campus, and used ethnographic techniques of participant observation. Research participants included eight eighth grade girls, aged thirteen to fourteen years old. Data sources included formal and informal participant interviews, participant journal reflections, curriculum artifacts including quizzes, worksheets, and student-generated research posters, digital video and audio recordings, photographs, and researcher field notes. Data were transcribed verbatim and coded, then collapsed into emergent themes using NVIVO 9. The results of this research illustrate how setting conditions that promote focused concentration and communicative interactions can be positively related to student motivation and achievement outcomes in inquiry-based science. Participants in the Off-Campus case experienced more frequent states of focused concentration and out performed their peers in the On-Campus case on forty-six percent of classroom assignments. Off-Campus participants also designed and implemented a more cognitively complex research project, provided more in-depth analyses of their research results, and expanded their perceptions of what it means to act like a scientist to a greater extent than participants in the On-Campus case. These results can be understood in relation to Flow Theory. Student interactions that promoted the criteria necessary for initiating flow, which included having clearly defined goals, receiving immediate feedback, and maintaining a balance between challenges and skills, fostered enhanced student motivation and achievement outcomes. This research also illustrates the positive gains in motivation and achievement outcomes that emerge from student experiences with extended time in isolated areas referred to

  8. The NIH Science of Behavior Change Program: Transforming the science through a focus on mechanisms of change.

    Science.gov (United States)

    Nielsen, Lisbeth; Riddle, Melissa; King, Jonathan W; Aklin, Will M; Chen, Wen; Clark, David; Collier, Elaine; Czajkowski, Susan; Esposito, Layla; Ferrer, Rebecca; Green, Paige; Hunter, Christine; Kehl, Karen; King, Rosalind; Onken, Lisa; Simmons, Janine M; Stoeckel, Luke; Stoney, Catherine; Tully, Lois; Weber, Wendy

    2018-02-01

    The goal of the NIH Science of Behavior Change (SOBC) Common Fund Program is to provide the basis for an experimental medicine approach to behavior change that focuses on identifying and measuring the mechanisms that underlie behavioral patterns we are trying to change. This paper frames the development of the program within a discussion of the substantial disease burden in the U.S. attributable to behavioral factors, and details our strategies for breaking down the disease- and condition-focused silos in the behavior change field to accelerate discovery and translation. These principles serve as the foundation for our vision for a unified science of behavior change at the NIH and in the broader research community. Copyright © 2017. Published by Elsevier Ltd.

  9. Into the Curriculum. Interdisciplinary: Celebrating Our Animal Friends: An Across-the-Curriculum Unit for Middle Level Students [and] Music: Program Notes [and] Reading-Language Arts: Letters: Written, Licked, and Stamped [and] Science: Plants in Families [and] Science: Physics and Holiday Toys (Gravity) [and] Social Studies: Learning about Geography through Children's Literature.

    Science.gov (United States)

    Gillen, Rose; And Others

    1995-01-01

    Presents six curriculum guides for elementary and secondary education. Subjects include interdisciplinary instruction, music, reading/language arts, science, and social studies. Each guide provides library media skills objectives, curriculum objectives, grade levels, resources, instructional roles, activity and procedures for completion, a…

  10. Scientific Skills and Processes in Curriculum Resources

    Science.gov (United States)

    Kremer, Joe

    2017-11-01

    Increasingly, the science education community has recognized the need for curriculum resources that support student development of authentic scientific practices, rather than focusing exclusively on content knowledge. This paper proposes a tool for teachers and researchers to assess the degree to which certain curriculum resources and lessons achieve this goal. After describing a method for reflecting on and categorizing curriculum resources, I apply the method to highlight differences across three teaching methods: Modeling Instruction, Physics Union Mathematics, and a traditional, lecture-based approach.

  11. Science in the General Educational Development (GED) curriculum: Analyzing the science portion of GED programs and exploring adult students' attitudes toward science

    Science.gov (United States)

    Hariharan, Joya Reena

    The General Educational Development (GED) tests enable people to earn a high school equivalency diploma and help them to qualify for more jobs and opportunities. Apart from this main goal, GED courses aim at enabling adults to improve the condition of their lives and to cope with a changing society. In today's world, science and technology play an exceedingly important role in helping people better their lives and in promoting the national goals of informed citizenship. Despite the current efforts in the field of secondary science education directed towards scientific literacy and the concept of "Science for all Americans", the literature does not reflect any corresponding efforts in the field of adult education. Science education research appears to have neglected a population that could possibly benefit from it. The purpose of this study is to explore: the science component of GED programs, significant features of the science portion of GED curricula and GED science materials, and adult learners' attitudes toward various aspects of science. Data collection methods included interviews with GED students and instructors, content analysis of relevant materials, and classroom observations. Data indicate that the students in general feel that the science they learn should be relevant to their lives and have direct applications in everyday life. Student understanding of science and interest in it appears to be contingent to their perceiving it as relevant to their lives and to society. Findings indicate that the instructional approaches used in GED programs influence students' perceptions about the relevance of science. Students in sites that use strategies such as group discussions and field trips appear to be more aware of science in the world around them and more enthusiastic about increasing this awareness. However, the dominant strategy in most GED programs is individual reading. The educational strategies used in GED programs generally focus on developing reading

  12. Exploring the Effectiveness of Curriculum Provided Through Transmedia Books for Increasing Students' Knowledge and Interest in Science

    Science.gov (United States)

    Ponners, Pamela Jones

    Transmedia books are new and emerging technologies which are beginning to be used in current classrooms. Transmedia books are a traditional printed book that uses multiple media though the use of Quick Response (QR) codes and augmented reality (AR) triggers to access web-based technology. Using the transmedia book Skills That Engage Me students in kindergarten through second grade engage in curriculum designed to introduce science skills and careers. Using the modified Draw-a-Scientist Test (mDAST), observations and interviews, researchers analyzed pre and post data to describe changes students have about science and scientists. Future study may include the development and validation of a new instrument, Draw a Science Student, and examining the mDAST checklist with the intention of updating the parameters of what is considered positive and negative in relationship with work a scientist conducts.

  13. Early Science Instruction and Academic Language Development Can Go Hand in Hand. The Promising Effects of a Low-Intensity Teacher-Focused Intervention

    NARCIS (Netherlands)

    Henrichs, Lotte F.; Leseman, Paul P.M.

    2014-01-01

    Early science instruction is important in order to lay a firm basis for learning scientific concepts and scientific thinking. In addition, young children enjoy science. However, science plays only a minor role in the kindergarten curriculum. It has been reported that teachers feel they need to

  14. Impacts of a Place-Based Science Curriculum on Student Place Attachment in Hawaiian and Western Cultural Institutions at an Urban High School in Hawai'i

    Science.gov (United States)

    Kuwahara, Jennifer L. H.

    2013-01-01

    This study investigates how students' participation in a place-based science curriculum may influence their place attachment (dependence and identity). Participants attend an urban high school in Hawai'i and are members of different cultural institutions within the school. Students are either enrolled in an environmental science class within the…

  15. Founders' Weekend. North Country Workshop on Science, Technology and the Undergraduate Curriculum. Proceedings (Potsdam, New York, November 9-10, 1984).

    Science.gov (United States)

    State Univ. of New York, Potsdam. Coll. at Potsdam.

    Proceedings of the North Country Workshop on Science, Technology, and the Undergraduate Curriculum are presented. The Sloan Foundation's call for reform of the liberal arts and coverage of mathematics, science, and technology is noted in welcoming remarks by State University of New York, Potsdam, President Humphrey Tonkin. Stephen H. Cutcliffe…

  16. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School.

    Science.gov (United States)

    Olopade, Funmilayo Eniola; Adaramoye, Oluwatosin Adekunle; Raji, Yinusa; Fasola, Abiodun Olubayo; Olapade-Olaopa, Emiola Oluwabunmi

    2016-01-01

    The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the "old" curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula successfully. The modifications to the teaching and assessment of the core basic medical science subjects have resulted in improved learning and performance at the final examinations.

  17. Attitudes among students and teachers on vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum.

    Science.gov (United States)

    Brynhildsen, J; Dahle, L O; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M

    2002-05-01

    Important elements in the curriculum at the Faculty of Health Sciences in Linköping are vertical integration, i.e. integration between the clinical and basic science sections of the curriculum, and horizontal integration between different subject areas. Integration throughout the whole curriculum is time-consuming for both teachers and students and hard work is required for planning, organization and execution. The aim was to assess the importance of vertical and horizontal integration in an undergraduate medical curriculum, according to opinions among students and teachers. In a questionnaire 102 faculty teachers and 106 students were asked about the importance of 14 different components of the undergraduate medical curriculum including vertical and horizontal integration. They were asked to assign between one and six points to each component (6 points = extremely important for the quality of the curriculum; 1 point = unimportant). Students as well as teachers appreciated highly both forms of integration. Students scored horizontal integration slightly but significantly higher than the teachers (median 6 vs 5 points; p=0.009, Mann-Whitney U-test), whereas teachers scored vertical integration higher than students (6 vs 5; p=0.019, Mann-Whitney U-test). Both students and teachers considered horizontal and vertical integration to be highly important components of the undergraduate medical programme. We believe both kinds of integration support problem-based learning and stimulate deep and lifelong learning and suggest that integration should always be considered deeply when a new curriculum is planned for undergraduate medical education.

  18. Charles Darwin and Evolution: Illustrating Human Aspects of Science

    Science.gov (United States)

    Kampourakis, Kostas; McComas, William F.

    2010-01-01

    Recently, the nature of science (NOS) has become recognized as an important element within the K-12 science curriculum. Despite differences in the ultimate lists of recommended aspects, a consensus is emerging on what specific NOS elements should be the focus of science instruction and inform textbook writers and curriculum developers. In this…

  19. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School

    Directory of Open Access Journals (Sweden)

    Olopade FE

    2016-07-01

    Full Text Available Funmilayo Eniola Olopade,1 Oluwatosin Adekunle Adaramoye,2 Yinusa Raji,3 Abiodun Olubayo Fasola,4 Emiola Oluwabunmi Olapade-Olaopa5 1Department of Anatomy, 2Department of Biochemistry, 3Department of Physiology, 4Department of Oral Pathology, 5Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria Abstract: The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the “old” curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula

  20. Wind-energy Science, Technology and Research (WindSTAR) Consortium: Curriculum, Workforce Development, and Education Plan Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, James [Univ. of Massachusetts, Amherst, MA (United States)

    2013-03-19

    The purpose of the project is to modify and expand the current wind energy curriculum at the University of Massachusetts Amherst and to develop plans to expand the graduate program to a national scale. The expansion plans include the foundational steps to establish the American Academy of Wind Energy (AAWE). The AAWE is intended to be a cooperative organization of wind energy research, development, and deployment institutes and universities across North America, whose mission will be to develop and execute joint RD&D projects and to organize high-level science and education in wind energy

  1. Examination of Knowledge and NOS in a PBL Curriculum: Comparing the Impact on Pre-service Teachers and Science Career Undergraduates

    Science.gov (United States)

    Schleigh, S.; Manda, A. K.

    2011-12-01

    "Those who don't know or can't do, teach". This is a well known statement accepted by many as an adage. It is a statement that implies that the teachers of our science content really do not understand the science. In this study, we examined whether there was some truth in this statement by comparing undergraduates heading towards science careers and undergraduates heading toward science teaching careers. Do teachers really have a different understanding for science than scientists? If so, do they learn differently from each other? Our study examines content knowledge gains and ability to apply and engage in science using the content that is being addressed. We questioned (1)if students in one track engage and develop knowledge and skills more proficiently than another; (2)if the PBL approach is more effective for a particular group of learners; (3)if the PBL environment (virtual/physical) impacts the development and understanding for NOS; and (4) how the engagement of learning through PBL transfers to classroom practice. We used the Problem Based Approach (PBL) in undergraduate courses that covered the science content related to climate change. Project-based learning (PBL) is an approach to science education that has been shown to support student understanding for science concepts by allowing them to apply knowledge to real-world, relevant applications. Recent research has focused on developing teachers' understanding for science by engaging them in learning events that are found in PBL and authentic research approaches (AR)( e.g. Abd-El-Khalick and Lederman, 2000). We used mixed methods to answer each of our questions. Our instruments included a likert scale for the nature of science as argumentation, a concept mapping activity, a written essay, a content exam and an observation protocol for the teaching practice. In this study we included a total of 40 pre-service teachers (online) 30 pre-service teachers (physical classroom) and 35 undergraduates (physical

  2. Guiding students towards sensemaking: teacher questions focused on integrating scientific practices with science content

    Science.gov (United States)

    Benedict-Chambers, Amanda; Kademian, Sylvie M.; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2017-10-01

    Science education reforms articulate a vision of ambitious science teaching where teachers engage students in sensemaking discussions and emphasise the integration of scientific practices with science content. Learning to teach in this way is complex, and there are few examples of sensemaking discussions in schools where textbook lessons and teacher-directed discussions are the norm. The purpose of this study was to characterise the questioning practices of an experienced teacher who taught a curricular unit enhanced with educative features that emphasised students' engagement in scientific practices integrated with science content. Analyses indicated the teacher asked four types of questions: explication questions, explanation questions, science concept questions, and scientific practice questions, and she used three questioning patterns including: (1) focusing students on scientific practices, which involved a sequence of questions to turn students back to the scientific practice; (2) supporting students in naming observed phenomena, which involved a sequence of questions to help students use scientific language; and (3) guiding students in sensemaking, which involved a sequence of questions to help students learn about scientific practices, describe evidence, and develop explanations. Although many of the discussions in this study were not yet student-centred, they provide an image of a teacher asking specific questions that move students towards reform-oriented instruction. Implications for classroom practice are discussed and recommendations for future research are provided.

  3. Evaluation of authentic science projects on climate change in secondary schools: a focus on gender differences

    Science.gov (United States)

    Dijkstra, Elma; Goedhart, Martin

    2011-07-01

    Background and purpose This study examines secondary-school students' opinions on participating in authentic science projects which are part of an international EU project on climate change research in seven countries. Partnerships between schools and research institutes result in student projects, in which students work with and learn from scientists about the global carbon cycle. This study focuses in particular on differences between male and female students, as female students normally like traditional school science less than male students. Sample and design Data, drawn from 1370 students from 60 secondary schools across Europe, were collected through questionnaires taken at the end of the projects. The evaluated aspects were: organization; enjoyment; difficulty; and impact of the projects. Results The findings suggest that authentic science education is appreciated very much by both male students and even more by female students. The projects had positive impacts on climate change ideas, in particular for female students. Female students felt that they had learned many new things more often than male students. Conclusions Both male and female students have positive opinions about the authentic science projects. The results further point to positive effects of activities in which students have an active role, like hands-on experiments or presentation of results. The findings are placed in the international context of science education and their implications for policy are discussed.

  4. Integrating Explicit Learning about the Culture of Science into the Pre-Service Teacher Curriculum through Readings and Reflections

    Science.gov (United States)

    Egger, A. E.

    2014-12-01

    Teachers provide foundational science experiences that spark interest in some students to pursue science and serve as an endpoint for others. For both groups, getting a glimpse into the culture of science is important to their futures as citizens, but this glimpse is not something all teachers are equipped to offer. Explicit instruction in the culture of science is generally not part of college-level science courses; to reach future teachers, it should be incorporated into the curriculum for pre-service teachers. I have incorporated readings from Visionlearning's peer-reviewed, freely available, web-based Process of Science series (http://www.visionlearning.com/en/library/Process-of-Science/49) into my class for pre-service middle-level and secondary science teachers. The readings describe the development of the culture and process of science using deeply embedded examples of scientists and their work. Students reflected on each reading by describing what they learned and something they will use in their future teaching. Responses were graded for thoughtfulness and completeness and later compiled. In general, students with more science courses had a better initial understanding of the culture of science and found the readings engaging stories that explained in more depth what they already knew. However, all students reported learning some fundamental aspects of the culture and nature of science. Most commonly, they learned scientific language, often words with both colloquial and scientific definitions: theory, hypothesis, law, uncertainty, error, confidence. Other learning gains were reported in defining the difference between scientific controversy and social controversy over science, interactions between historical events and the scientific enterprise, how much scientists work in groups and interact at meetings, and the role that funding plays in guiding research. On their own, students struggled to describe explicit ways to incorporate these concepts into their

  5. Using the Science Writing Heuristic To Move toward an Inquiry-Based Laboratory Curriculum: An Example from Physical Equilibrium.

    Science.gov (United States)

    Rudd, James A., II; Greenbowe, Thomas J.; Hand, Brian M.; Legg, Margaret J.

    2001-01-01

    Investigates the effects of the Science Writing Heuristic (SWH) format on student's achievement, thinking abilities and motivation. Focuses on distribution equilibrium and assesses student understanding by studying metacognitive and practical factors. (Contains 17 references.) (Author/YDS)

  6. Proposed Model for a Streamlined, Cohesive, and Optimized K-12 STEM Curriculum with a Focus on Engineering

    Science.gov (United States)

    Locke, Edward

    2009-01-01

    This article presents a proposed model for a clear description of K-12 age-possible engineering knowledge content, in terms of the selection of analytic principles and predictive skills for various grades, based on the mastery of mathematics and science pre-requisites, as mandated by national or state performance standards; and a streamlined,…

  7. Learning about Teaching the Extracurricular Topic of Nanotechnology as a Vehicle for Achieving a Sustainable Change in Science Education

    Science.gov (United States)

    Blonder, Ron; Mamlok-Naaman, Rachel

    2016-01-01

    This study focused on teachers' transfer of a variety of teaching methods from a teaching module on nanotechnology, which is an example of a topic outside the science curriculum, to teaching topics that are part of the chemistry curriculum. Nanotechnology is outside the science curriculum, but it was used in this study as a means to carry out a…

  8. One Brief, Shining Moment? The Impact of Neo-Liberalism on Science Curriculum in the Compulsory Years of Schooling

    Science.gov (United States)

    Smith, Dorothy Veronica

    2011-01-01

    The past 20 years or so have seen ongoing concern for the nature of science education in the Anglophone developed world. A particular focus of this concern has been the need to find new ways to frame science curricula that will engage students, yet it is proving difficult to achieve this goal. In this article I argue that the impact on science…

  9. Impacts of a Literacy-Focused Preschool Curriculum on the Early Literacy Skills of Language-Minority Children.

    Science.gov (United States)

    Goodrich, J Marc; Lonigan, Christopher J; Farver, Jo Ann M

    Spanish-speaking language-minority (LM) children are at an elevated risk of struggling academically and display signs of that risk during early childhood. Therefore, high-quality research is needed to identify instructional techniques that promote the school readiness of Spanish-speaking LM children. The primary purpose of this study was to evaluate the effectiveness of an intervention that utilized an experimental curriculum and two professional development models for the development of English and Spanish early literacy skills among LM children. We also evaluated whether LM children's proficiency in one language moderated the effect of the intervention on early literacy skills in the other language, as well as whether the intervention was differentially effective for LM and monolingual English-speaking children. Five hundred twenty-six Spanish-speaking LM children and 447 monolingual English-speaking children enrolled in 26 preschool centers in Los Angeles, CA participated in this study. Results indicated that the intervention was effective for improving LM children's code-related but not language-related English early literacy skills. There were no effects of the intervention on children's Spanish early literacy skills. Proficiency in Spanish did not moderate the effect of the intervention for any English early literacy outcomes; however, proficiency in English significantly moderated the effect of the intervention for Spanish oral language skills, such that the effect of the intervention was stronger for children with higher proficiency in English than it was for children with lower proficiency in English. In general, there were not differential effects of the intervention for LM and monolingual children. Taken together, these findings indicate that high-quality, evidence-based instruction can improve the early literacy skills of LM children and that the same instructional techniques are effective for enhancing the early literacy skills of LM and monolingual

  10. Poultry Production for Agricultural Science I Core Curriculum. Instructor's Guide. Volume 19, Number 2.

    Science.gov (United States)

    Timko, Joseph J.; Stewart, Bob R.

    This unit is designed to aid teachers in lesson planning in the secondary agricultural education curriculum in Missouri. Intended to be taught to ninth-grade students of vocational agriculture, the unit contains six lessons for developing competencies needed in poultry production. The lessons are as follows: (1) the importance of the poultry…

  11. The Science of Nuclear Materials: A Modular, Laboratory-based Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, C.L., E-mail: cahill@gwu.edu [Department of Chemistry and Elliott School of International Affairs, The George Washington University, Washington, DC 20052 (United States); Feldman, G.; Briscoe, W.J. [Department of Physics, The George Washington University, Washington, DC 20052 (United States)

    2014-06-15

    The development of a curriculum for nuclear materials courses targeting students pursuing Master of Arts degrees at The George Washington University is described. The courses include basic concepts such as radiation and radioactivity as well as more complex topics such the nuclear fuel cycle, nuclear weapons, radiation detection and technological aspects of non-proliferation.

  12. Evaluation of the New Curriculum of the College of Health Sciences ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    A dramatic curriculum change process has recently been implemented within the Makerere University medical training facility, as requested by Makerere and funded by the Rockefeller Foundation and the World Bank. ... to prepare health professionals to respond to the new demands of decentralized health service delivery, ...

  13. Designing a Deeply Digital Science Curriculum: Supporting Teacher Learning and Implementation with Organizing Technologies

    Science.gov (United States)

    Leary, Heather; Severance, Samuel; Penuel, William R.; Quigley, David; Sumner, Tamara; Devaul, Holly

    2016-01-01

    This paper examines the impacts of technology (e.g., Chromebooks, Google Drive) on teacher learning and student activity in the development and implementation of a deeply digital high school biology unit. Using design-based implementation research, teachers co-designed with researchers and curriculum specialists a student-centered unit aligned to…

  14. Merging Information Literacy and Evidence-Based Practice in an Undergraduate Health Sciences Curriculum Map

    Science.gov (United States)

    Franzen, Susan; Bannon, Colleen M.

    2016-01-01

    The ACRL's "Framework for Information Literacy for Higher Education" offers the opportunity to rethink information literacy teaching and curriculum. However, the ACRL's rescinded "Information Literacy Competency Standards for Higher Education" correlate with the preferred research and decision-making model of the health…

  15. Connecting Cultures & Classrooms. K-12 Curriculum Guide: Language Arts, Science, Social Studies. Indian Education for All

    Science.gov (United States)

    Fox, Sandra J., Ed.

    2006-01-01

    This curriculum guide is but one of the resources that the Montana Office of Public Instruction is providing to help teachers implement Indian Education for All. The philosophy of this document promotes the use of Indian literature as an instructional tool. There are no textbooks presently for including aspects of Montana Indian cultures into the…

  16. The Science of Nuclear Materials: A Modular, Laboratory-based Curriculum

    International Nuclear Information System (INIS)

    Cahill, C.L.; Feldman, G.; Briscoe, W.J.

    2014-01-01

    The development of a curriculum for nuclear materials courses targeting students pursuing Master of Arts degrees at The George Washington University is described. The courses include basic concepts such as radiation and radioactivity as well as more complex topics such the nuclear fuel cycle, nuclear weapons, radiation detection and technological aspects of non-proliferation

  17. Integrating technology, curriculum, and online resources: A multilevel model study of impacts on science teachers and students

    Science.gov (United States)

    Ye, Lei

    This scale-up study investigated the impact of a teacher technology tool (Curriculum Customization Service, CCS), curriculum, and online resources on earth science teachers' attitudes, beliefs, and practices and on students' achievement and engagement with science learning. Participants included 73 teachers and over 2,000 ninth-grade students within five public school districts in the western U.S. To assess the impact on teachers, changes between pre- and postsurveys were examined. Results suggest that the CCS tool appeared to significantly increase both teachers' awareness of other earth science teachers' practices and teachers' frequency of using interactive resources in their lesson planning and classroom teaching. A standard multiple regression model was developed. In addition to "District," "Training condition" (whether or not teachers received CCS training) appeared to predict teachers' attitudes, beliefs, and practices. Teachers who received CCS training tended to have lower postsurvey scores than their peers who had no CCS training. Overall, usage of the CCS tool tended to be low, and there were differences among school districts. To assess the impact on students, changes were examined between pre- and postsurveys of (1) knowledge assessment and (2) students' engagement with science learning. Students showed pre- to postsurvey improvements in knowledge assessment, with small to medium effect sizes. A nesting effect (students clustered within teachers) in the Earth's Dynamic Geosphere (EDG) knowledge assessment was identified and addressed by fitting a two-level hierarchical linear model (HLM). In addition, significant school district differences existed for student post-knowledge assessment scores. On the student engagement questionnaire, students tended to be neutral or to slightly disagree that science learning was important in terms of using science in daily life, stimulating their thinking, discovering science concepts, and satisfying their own

  18. Research and Teaching: Encouraging Science Communication in an Undergraduate Curriculum Improves Students' Perceptions and Confidence

    Science.gov (United States)

    Train, Tonya Laakko; Miyamoto, Yuko J.

    2017-01-01

    The ability to effectively communicate science is a skill sought after by graduate and professional schools as well as by employers in science-related fields. Are content-heavy undergraduate science curricula able to incorporate opportunities to develop science communication skills, and is promoting these skills worth the time and effort? The…

  19. Advanced Placement Environmental Science and the Curriculum and Community Enterprise for Restoration Science (CCERS) Project in the New York City High School

    Science.gov (United States)

    Birney, Lauren; McNamara, Denise

    2018-01-01

    This paper explores the issue of social justice through the lens of equitable access to Advanced Placement courses in the City of New York High Schools, with focus on Advanced Placement Environmental Science. A critical component of the Advanced Placement Environmental Science course is the incorporation of environmental fieldwork. The National…

  20. Participation in a Multi-Institutional Curriculum Development Project Changed Science Faculty Knowledge and Beliefs about Teaching Science

    Science.gov (United States)

    Donovan, Deborah A.; Borda, Emily J.; Hanley, Daniel M.; Landel, Carolyn C.

    2015-01-01

    Despite significant pressure to reform science teaching and learning in K12 schools, and a concurrent call to reform undergraduate courses, higher education science content courses have remained relatively static. Higher education science faculty have few opportunities to explore research on how people learn, examine state or national science…

  1. Curriculum Framework (CF) Implementation Conference. Report of the Regional Educational Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia (Hilton Head Island, South Carolina, January 26-27, 1995).

    Science.gov (United States)

    Palmer, Jackie; Powell, Mary Jo

    The Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia, operating as the Curriculum Frameworks Task Force, jointly convened a group of educators involved in implementing state-level mathematics or science curriculum frameworks (CF). The Hilton Head (South Carolina) conference had a dual…

  2. Socio-scientific issues with CTS focus on training of science teachers: complementary perspective

    Directory of Open Access Journals (Sweden)

    Rosa Oliveira Marins Azevedo

    2013-06-01

    Full Text Available Theoretical work that seeks to highlight the possible reasons why the STS approach has not effectively be inserted in the educational process and point out alternative to its insertion. It thus explores the origin of the STS movement and discusses its focus on education, science teaching and teacher education. It is a study in a critical perspective, from a documentary research focused on scientific production published in books, theses, papers presented in conference proceedings and journals in the field of education. The readings allowed direct the discussions, assuming the interpretative analysis for the organization of the text. The study shows that teacher education, the problems presented in its theoretical and epistemological aspects and ethical, is the main obstacle to the insertion of the STS approach in the educational process. Alternatively, points to issues of social-scientific approach to STS approach in a complementary perspective, as the possibility of improvements in the aspects highlighted

  3. The Pitfalls of a Tool-based Science and the Promise of a Problem-focused Science

    Directory of Open Access Journals (Sweden)

    Patrick E. McKnight

    2011-05-01

    Full Text Available Our present social sciences are at risk of losing sight of their primary purpose: the goal of reducing uncertainty. For years social scientists have drifted slowly toward the routine of employing of accepted methodological, conceptual, and analytical tools rather than engaging in problem oriented inquiry. Scientific contributions are reviewed in accordance to their compliance with the routine application of tools rather than focusing on their ability to problem-solve for a wider population. Researchers in every area of psychology for instance now insist on using methods such as random assignment and control groups, as well as data analytic procedures such as null hypothesis significance testing without regard to their relevance. A problem-focused inquiry would not dictate the routine use of any particular tool but rather the judicious application of tools when deemed appropriate. The following article describes  the current situation in the framework contrasting toolbased and problem-focused inquiry and offers several insights that may create a more balanced and fruitful approach to scientific inquiry. DOI: 10.2458/azu_jmmss.v1i2.99

  4. Providing context for a medical school basic science curriculum: The importance of the humanities.

    Science.gov (United States)

    Thompson, Britta M; Vannatta, Jerry B; Scobey, Laura E; Fergeson, Mark; Humanities Research Group; Crow, Sheila M

    2016-01-01

    To increase students' understanding of what it means to be a physician and engage in the everyday practice of medicine, a humanities program was implemented into the preclinical curriculum of the medical school curriculum. The purpose of our study was to determine how medical students' views of being a doctor evolved after participating in a required humanities course. Medical students completing a 16-clock hour humanities course from 10 courses were asked to respond to an open-ended reflection question regarding changes, if any, of their views of being a doctor. The constant comparative method was used for coding; triangulation and a variety of techniques were used to provide evidence of validity of the analysis. A majority of first- and second-year medical students (rr = 70%) replied, resulting in 100 pages of text. A meta-theme of Contextualizing the Purpose of Medicine and three subthemes: the importance of Treating Patients Rather than a Disease, Understanding Observation Skills are Important, and Recognizing that Doctors are Fallible emerged from the data. Results suggest that requiring humanities as part of the required preclinical curriculum can have a positive influence on medical students and act as a bridge to contextualize the purpose of medicine.

  5. Key steps for integrating a basic science throughout a medical school curriculum using an e-learning approach.

    Science.gov (United States)

    Dubois, Eline Agnès; Franson, Kari Lanette

    2009-09-01

    Basic sciences can be integrated into the medical school curriculum via e-learning. The process of integrating a basic science in this manner resembles a curricular change. The change usually begins with an idea for using e-learning to teach a basic science and establishing the need for the innovation. In the planning phase, learning outcomes are formulated and a prototype of the program is developed based on the desired requirements. A realistic concept is formed after considering the limitations of the current institute. Next, a project team is assembled to develop the program and plan its integration. Incorporation of the e-learning program is facilitated by a well-developed and communicated integration plan. Various course coordinators are contacted to determine content of the e-learning program as well as establish assessment. Linking the e-learning program to existing course activities and thereby applying the basic science into the clinical context enhances the degree of integration. The success of the integration is demonstrated by a positive assessment of the program including favourable cost-benefit analysis and improved student performance. Lastly, when the program becomes institutionalised, continuously updating content and technology (when appropriate), and evaluating the integration contribute to the prolonged survival of the e-learning program.

  6. Exploring Science Teaching Efficacy of CASE Curriculum Teachers: A Post-Then-Pre Assessment

    Science.gov (United States)

    Ulmer, Jonathan D.; Velez, Jonathan J.; Lambert, Misty D.; Thompson, Greg W.; Burris, Scott; Witt, Phillip A.

    2013-01-01

    This descriptive-correlational study sought to investigate teachers' levels of Personal Science Teaching Efficacy (PSTE) and Science Teaching Outcome Expectancy (STOE) using the Science Teaching Efficacy Beliefs Instrument (STEBI). The population included all teachers completing a CASE Institute training session during summer 2010. Assessments…

  7. Science in the Maori-Medium Curriculum: Assessment of Policy Outcomes in Putaiao Education

    Science.gov (United States)

    Stewart, Georgina

    2011-01-01

    This second research paper on science education in Maori-medium school contexts complements an earlier article published in this journal (Stewart, 2005). Science and science education are related domains in society and in state schooling in which there have always been particularly large discrepancies in participation and achievement by Maori. In…

  8. Exploring Ivorian perspectives on the effectiveness of the current Ivorian science curriculum in addressing issues related to HIV/AIDS

    Science.gov (United States)

    Ado, Gustave Firmin

    School-based HIV/AIDS science education has the potential to impact students when integrated into the science curriculum. However, this mixed method study shows that school-based HIV/AIDS science education is often not infused into career subjects such as science education but integrated into civics education and taught by teachers who lack the skills, knowledge, and the training in the delivery of effective school HIV/AIDS education. Since science is where biological events take place, it is suggested that HIV/AIDS science merits being taught in the science education classroom. This study took place in nine public middle schools within two school districts in Abidjan, Ivory Coast, one major urban city in the southern region. The study utilized triangulation of multiple data sources---both qualitative and quantitative. To substantiate the claims made in this study, a range of qualitative methods such as field notes and individual interviews with 39 teachers, 63 sixth grade students, 8 school administrators, and 20 community elders were used. For the quantitative portion 140 teachers and 3510 sixth grade students were surveyed. The findings from the study prioritize science education that includes HIV/AIDS science education for all, with emphasis on HIV/AIDS prevention in Ivory Coast. The factors that influence the implementation of HIV/AIDS curricula within the Ivorian sixth grade classrooms are discussed. Interview and survey data from students, teachers, school administrators, and community elders indicate that in the Ivorian school setting, "gerontocratic" cultural influences, religious beliefs, personal cultural beliefs, and time spent toward the discourse on HIV/AIDS have led to HIV/AIDS education that is often insufficient to change either misconceptions about HIV/AIDS or risky practices. It was also found that approaches to teaching HIV/AIDS does not connect with youth cultures. By reframing and integrating current HIV/AIDS curricula into the science

  9. A Project to Develop an Associate of Science Degree Curriculum in Renewable Energy Resources and Applications in Agriculture. Final Report, July 1, 1980-June 30, 1981.

    Science.gov (United States)

    Allen, Keith; Fielding, Marvin R.

    A project was conducted at State Fair Community College (SFCC) in Sedalia, Missouri, to develop an associate of science degree curriculum in renewable energy resources and their application in agriculture. A pilot study, designed to verify and rate the importance of 138 competencies in fuel alcohol production and to ascertain employment…

  10. Gender Effects on Curriculum Elements Based on Mathematics and Science and Technology Teachers' Opinions: A Meta-Analysis for Turkish Studies

    Science.gov (United States)

    Küçüktepe, Seval Eminoglu; Yildiz, Nilgün

    2016-01-01

    The purpose of this study is to investigate the gender effect on elementary mathematics and science and technology teachers' opinions regarding curriculum elements which are objectives, content, learning situation and evaluation. Meta-analysis was used in order to analyze data. Two articles, 11 master and one doctorate thesis which were conducted…

  11. The Pennsylvania Academy for the Profession of Teaching; Rural Fellowship Program: A Science Curriculum Development Partnership. Project "Prepare Them for the Future."

    Science.gov (United States)

    Beisel, Raymond W.

    This report describes development of the "Prepare Them for the Future" project, a K-3 activity-oriented science curriculum. The program, funded through two grants, was driven by the need to boost the distressed labor-based economy in rural western Pennsylvania. Data showed a drop of 1,100 coal-mining jobs between 1980 and 1986 in Indiana…

  12. Interaction of Vietnamese teachers with a social constructivism-based primary science curriculum in a framework appropriate for a Confucian heritage culture

    NARCIS (Netherlands)

    Vu Thu Hang, N.; Bulte, A.M.W.; Pilot, A.

    2017-01-01

    This paper describes the perception of a social constructivist approach to teaching and learning among Vietnamese teachers in a Confucian heritage culture and the changes these teachers undergo through their interaction with a new science curriculum that was designed culturally appropriate. A

  13. The Rise and Fall of the Social Science Curriculum Project in Iceland, 1974-1984: Reflections on Reason and Power in Educational Progress.

    Science.gov (United States)

    Edelstein, Wolfgang

    1987-01-01

    Examines the demise of the Icelandic Social Science Curriculum Project (SSCP) as an example of progressive educational reform thwarted by neofundamentalist ideologies. States that the paper goes beyond Jerome Bruner's 1984 account of the rise and fall of "Man: A Course of Study" to provide a deeper analysis of the politics of…

  14. Cascadia GeoSciences: Community-Based Earth Science Research Focused on Geologic Hazard Assessment and Environmental Restoration.

    Science.gov (United States)

    Williams, T. B.; Patton, J. R.; Leroy, T. H.

    2007-12-01

    Cascadia GeoSciences (CG) is a new non-profit membership governed corporation whose main objectives are to conduct and promote interdisciplinary community based earth science research. The primary focus of CG is on geologic hazard assessment and environmental restoration in the Western U.S. The primary geographic region of interest is Humboldt Bay, NW California, within the southern Cascadia subduction zone (SCSZ). This region is the on-land portion of the accretionary prism to the SCSZ, a unique and exciting setting with numerous hazards in an active, dynamic geologic environment. Humboldt Bay is also a region rich in history. Timber harvesting has been occurring in California's coastal forestlands for approximately 150 years. Timber products transported with ships and railroads from Mendocino and Humboldt Counties helped rebuild San Francisco after the 1906 earthquake. Historic land-use of this type now commonly requires the services of geologists, engineers, and biologists to restore road networks as well as provide safe fish passage. While Humboldt Bay is a focus of some of our individual research goals, we welcome regional scientists to utilize CG to support its mission while achieving their goals. An important function of CG is to provide student opportunities in field research. One of the primary charitable contributions of the organization is a student grant competition. Funds for the student grant will come from member fees and contributions, as well as a percent of all grants awarded to CG. A panel will review and select the student research proposal annually. In addition to supporting student research financially, professional members of CG will donate their time as mentors to the student researchers, promoting a student mentor program. The Humboldt Bay region is well suited to support annual student research. Thorough research like this will help unravel some of the mysteries of regional earthquake-induced land-level changes, as well as possible fault

  15. Waiting for physics? An inquiry into first year physics students’ experience of a traditionel science curriculum

    DEFF Research Database (Denmark)

    Johannsen, Bjørn Friis; Rump, Camilla Østerberg

    Studies of attrition in science education show that students who leave are often extrinsically motivated, whereas students who stay are often intrinsically motivated. Furthermore, students (in Scandinavia) tend to use an introvert discourse when explaining their motives for leaving. A longitudinal...... study of 26 first year students of physics, who were interviewed on two to seven occasions over a year, show that even the intrinsically motivated students struggle with their studies. They experience a pressure for using a surface approach to studying, which they find inappropriate. Although students...... use an introspective discourse, analysis of interviews show that they experience a conflict between their intrinsic interest in physics and the curriculum. This can be interpreted as a problem with the didactical transposition; the ‘physics taught’ is too distant from ‘research physics’....

  16. Effects of a Research-Infused Botanical Curriculum on Undergraduates’ Content Knowledge, STEM Competencies, and Attitudes toward Plant Sciences

    Science.gov (United States)

    Clarke, H. David; Horton, Jonathan L.

    2014-01-01

    In response to the American Association for the Advancement of Science's Vision and Change in Undergraduate Biology Education initiative, we infused authentic, plant-based research into majors’ courses at a public liberal arts university. Faculty members designed a financially sustainable pedagogical approach, utilizing vertically integrated curricular modules based on undergraduate researchers’ field and laboratory projects. Our goals were to 1) teach botanical concepts, from cells to ecosystems; 2) strengthen competencies in statistical analysis and scientific writing; 3) pique plant science interest; and 4) allow all undergraduates to contribute to genuine research. Our series of inquiry-centered exercises mitigated potential faculty barriers to adopting research-rich curricula, facilitating teaching/research balance by gathering publishable scholarly data during laboratory class periods. Student competencies were assessed with pre- and postcourse quizzes and rubric-graded papers, and attitudes were evaluated with pre- and postcourse surveys. Our revised curriculum increased students’ knowledge and awareness of plant science topics, improved scientific writing, enhanced statistical knowledge, and boosted interest in conducting research. More than 300 classroom students have participated in our program, and data generated from these modules’ assessment allowed faculty and students to present 28 contributed talks or posters and publish three papers in 4 yr. Future steps include analyzing the effects of repeated module exposure on student learning and creating a regional consortium to increase our project's pedagogical impact. PMID:25185223

  17. An educational ethnography of teacher-developed science curriculum implementation: Enacting conceptual change-based science inquiry with Hispanic students

    Science.gov (United States)

    Brunsell, Eric Steven

    An achievement gap exists between White and Hispanic students in the United States. Research has shown that improving the quality of instruction for minority students is an effective way to narrow this gap. Science education reform movements emphasize that science should be taught using a science inquiry approach. Extensive research in teaching and learning science also shows that a conceptual change model of teaching is effective in helping students learn science. Finally, research into how Hispanic students learn best has provided a number of suggestions for science instruction. The Inquiry for Conceptual Change model merges these three research strands into a comprehensive yet accessible model for instruction. This study investigates two questions. First, what are teachers' perceptions of science inquiry and its implementation in the classroom? Second, how does the use of the Inquiry for Conceptual Change model affect the learning of students in a predominantly Hispanic, urban neighborhood. Five teachers participated in a professional development project where they developed and implemented a science unit based on the Inquiry for Conceptual Change model. Three units were developed and implemented for this study. This is a qualitative study that included data from interviews, participant reflections and journals, student pre- and post-assessments, and researcher observations. This study provides an in-depth description of the role of professional development in helping teachers understand how science inquiry can be used to improve instructional quality for students in a predominantly Hispanic, urban neighborhood. These teachers demonstrated that it is important for professional development to be collaborative and provide opportunities for teachers to enact and reflect on new teaching paradigms. This study also shows promising results for the ability of the Inquiry for Conceptual Change model to improve student learning.

  18. Environmental Management Welcomes a New Face and Reinforces Its Focus on Science-Based Stewardship

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Virginia H [ORNL

    2010-06-01

    ENVIRONMENTAL MANAGEMENT is pleased to announce that Rebecca Efroymson will join Virginia Dale as Co-Editors-in-Chief of the journal. Dr. Efroymson brings extensive expertise in risk assessment and environmental toxicology. Her work has focused on land management, natural resources, water quality, and rare species, with recent work on benefits and risks of energy alternatives. ENVIRONMENTAL MANAGEMENT has been publishing research on the management and conservation of natural resources and habitats since 1976. Articles discuss implications for an international audience and examine a scientific or management hypothesis. As a premier scientific journal in applied and cross-cutting areas, articles come from a variety of disciplines including biology, botany, climatology, earth sciences, ecology, ecological economics, environmental engineering, fisheries, forest sciences, geography, information science, law, management science, politics, public affairs, social sciences, and zoology, most often in combinations determined by the interdisciplinary topic of the study. The journal strives to improve cross-disciplinary communication by making ideas and results available to environmental practitioners from other backgrounds. The goal of ENVIRONMENTAL MANAGEMENT is to present a wide spectrum of viewpoints and approaches, and to this end the journal consists of four main sections. Forum contains addresses, editorials, comments, and opinions about environmental matters. Articles in the Profile section describe and evaluate particular case histories, events, policies, problems, or organizations and their work. Papers in the Research section present the methods and findings from empirical and model-based scientific studies. The section on Environmental Assessment is for articles that cover methods of appraisal, measurement, and comparison. Generally, the debates published in the journal's Forum help construct better environmental research or policies; Research and Assessment

  19. The Language of Mathematics in Science

    Science.gov (United States)

    Boohan, Richard

    2016-01-01

    "The Language of Mathematics in Science" is an ASE/Nuffield project aimed at supporting teachers of 11-16 science in the use of mathematical ideas in the science curriculum. Two publications have been produced. This article focuses on the first of these, "The Language of Mathematics in Science: A Guide for Teachers of 11-16…

  20. Correlation Educational Model in Primary Education Curriculum of Mathematics and Computer Science

    Science.gov (United States)

    Macinko Kovac, Maja; Eret, Lidija

    2012-01-01

    This article gives insight into methodical correlation model of teaching mathematics and computer science. The model shows the way in which the related areas of computer science and mathematics can be supplemented, if it transforms the way of teaching and creates a "joint" lessons. Various didactic materials are designed, in which all…

  1. A Longitudinal Study of a 5th Grade Science Curriculum Based on the 5E Model

    Science.gov (United States)

    Scott, Timothy P.; Schroeder, Carolyn; Tolson, Homer; Huang, Tse-Yang; Williams, Omah M.

    2014-01-01

    The Center for Mathematics and Science Education at Texas A&M University contracted with Region 4 Education Service Center (ESC) and a large, diverse school district to conduct a longitudinal study from 2005-2009. The state achievement test scores of 5th graders who were taught using a Grade 5 science textbook designed by Region 4 ESC were…

  2. A Curriculum Framework for Geographical Information Science (GISc) Training at South African Universities

    Science.gov (United States)

    du Plessis, H.; van Niekerk, A.

    2012-01-01

    Geographical information science (GISc) is one of the fastest growing industries worldwide. Being a relatively new discipline, universities often provide training as part of geography, surveying, town planning, environmental and computer science programmes. This complicates professional accreditation assessments as the content, outcomes, extent…

  3. Identifying the Factors Leading to Success: How an Innovative Science Curriculum Cultivates Student Motivation

    Science.gov (United States)

    Scogin, Stephen C.

    2016-01-01

    "PlantingScience" is an award-winning program recognized for its innovation and use of computer-supported scientist mentoring. Science learners work on inquiry-based experiments in their classrooms and communicate asynchronously with practicing plant scientist-mentors about the projects. The purpose of this study was to identify specific…

  4. A Portable Bioinformatics Course for Upper-Division Undergraduate Curriculum in Sciences

    Science.gov (United States)

    Floraino, Wely B.

    2008-01-01

    This article discusses the challenges that bioinformatics education is facing and describes a bioinformatics course that is successfully taught at the California State Polytechnic University, Pomona, to the fourth year undergraduate students in biological sciences, chemistry, and computer science. Information on lecture and computer practice…

  5. Three Simple Hands-On Soil Exercises Extension Professionals Can Incorporate into Natural Sciences Curriculum

    Science.gov (United States)

    Kleinschmidt, Andy

    2011-01-01

    The importance of healthy soil and of conveying the importance of soils starts by conveying a few basic concepts of soil science cannot be overstated. This article provides three hands-on exercises Extension professionals can add to natural resources or Master Gardener education curricula. These natural sciences exercises are easy to prepare for…

  6. Collaborative Curriculum Design to Increase Science Teaching Self-Efficacy: A Case Study

    NARCIS (Netherlands)

    Velthuis, C.H.; Fisser, Petra; Pieters, Julius Marie

    2015-01-01

    The purpose of this study was to establish whether participation in a teacher design team (TDT) is an effective way to increase the science teaching self-efficacy of primary school teachers who vary in their levels of experience and interest in science. A TDT is a group of at least 2 teachers from

  7. Collaborative Curriculum Design to Increase Science Teaching Self-Efficacy: A Case Study

    Science.gov (United States)

    Velthuis, Chantal; Fisser, Petra; Pieters, Jules

    2015-01-01

    The purpose of this study was to establish whether participation in a teacher design team (TDT) is an effective way to increase the science teaching self-efficacy of primary school teachers who vary in their levels of experience and interest in science. A TDT is a group of at least 2 teachers from the same or related subjects working together to…

  8. Effect of an Exercise and Weight Control Curriculum: Views of Obesity among Exercise Science Students

    Science.gov (United States)

    Richardson, Laura A.; Fister, Carrie L.; Ramlo, Susan E.

    2015-01-01

    Awareness of effective weight management strategies is necessary to prepare exercise science students for future work with obesity. Exercise science faculty members developed a course related to exercise as a therapeutic tool and options available for weight loss. The purpose of the present study was to investigate student views of weight…

  9. Social Science Curriculum Guide and Selected Multi-Media, K-6.

    Science.gov (United States)

    Gaydosh, Ronald; And Others

    GRADES OR AGES: K-6. SUBJECT MATTER: Social science. ORGANIZATION AND PHYSICAL APPEARANCE: The introductory material includes an explanation of the rationale, definitions of the social science core disciplines, glossary of terms, guidelines for teaching, and descriptions of concepts. The main body of the guide is designed in a five-column…

  10. The Body as a Substrate of Differentiation. Shifting the Focus from Race Science to Life Scientists' Research on Human Variation

    OpenAIRE

    Lipphardt, Veronika

    2017-01-01

    Abstract This article suggests to focus on the history of human variation instead of focussing on the history of race science. It views the latter as a subset of the former, hence views race science as embedded into the larger field of life scientists' investigations into human variation. This paper explores why human variation is such an attractive and productive object particularly for the life sciences. It proposes that knowledge about human variation is incomplete in a promising way, and ...

  11. Expanding Capacity and Promoting Inclusion in Introductory Computer Science: A Focus on Near-Peer Mentor Preparation and Code Review

    Science.gov (United States)

    Pon-Barry, Heather; Packard, Becky Wai-Ling; St. John, Audrey

    2017-01-01

    A dilemma within computer science departments is developing sustainable ways to expand capacity within introductory computer science courses while remaining committed to inclusive practices. Training near-peer mentors for peer code review is one solution. This paper describes the preparation of near-peer mentors for their role, with a focus on…

  12. From Words to Concepts: Focusing on Word Knowledge When Teaching for Conceptual Understanding within an Inquiry-Based Science Setting

    Science.gov (United States)

    Haug, Berit S.; Ødegaard, Marianne

    2014-01-01

    This qualitative video study explores how two elementary school teachers taught for conceptual understanding throughout different phases of science inquiry. The teachers implemented teaching materials with a focus on learning science key concepts through the development of word knowledge. A framework for word knowledge was applied to examine the…

  13. The Content Analysis, Material Presentation, and Readability of Curriculum 2013 Science Textbook for 1st Semester of Junior High School 7th Grade

    Directory of Open Access Journals (Sweden)

    Endik Deni Nugroho

    2017-07-01

    Full Text Available Based on the early observation by researchers of the two Science textbooks 7thGrade about biological material, 1stand 2ndsemester of curriculum 2013, there were errors in the material presentation and legibility. This study aimed to compare and find the contents suitability of the book based on standard of competence and basic competences, readability, materials presentation and supporting material in the science textbook VII grade, 1st and 2nd semester and measured student legibility. This study used a qualitative descriptive approach by using document analysis. The data resources were obtained by using purposive, the data collection was triangulation, data analysis was inductive/qualitative and the results emphasized the meaning. This research results showed that the Integrated Sciences and Sciences textbook 1st and 2nd semester meet the standards of the core competencies and basic competence on the syllabus curriculum 2013 and also meet the books standart. The results of the analysis conducted in misstatement concept and principles and material llustration in the Integrated Science textbook 1st semester were found 5 misstatement concept, for the presentation of the principles and material illustration was found no error. In the book Integrated Sciences there was no delivery errors concept, principle, and material illustration. Science textbook 1st semester found 8 concepts misstatements and 8 illustration material misstatements. In general, Integrated Sciences and Sciences textbooks 1st and 2nd semester are illegibility so not appropriate for students.

  14. Focused campaign increases activity among participants in Nature's Notebook, a citizen science project

    Science.gov (United States)

    Crimmins, Theresa M.; Weltzin, Jake F.; Rosemartin, Alyssa H.; Surina, Echo M.; Marsh, Lee; Denny, Ellen G.

    2014-01-01

    Citizen science projects, which engage non-professional scientists in one or more stages of scientific research, have been gaining popularity; yet maintaining participants’ activity level over time remains a challenge. The objective of this study was to evaluate the potential for a short-term, focused campaign to increase participant activity in a national-scale citizen science program. The campaign that we implemented was designed to answer a compelling scientific question. We invited participants in the phenology-observing program, Nature’s Notebook, to track trees throughout the spring of 2012, to ascertain whether the season arrived as early as the anomalous spring of 2010. Consisting of a series of six electronic newsletters and costing our office slightly more than 1 week of staff resources, our effort was successful; compared with previous years, the number of observations collected in the region where the campaign was run increased by 184%, the number of participants submitting observations increased by 116%, and the number of trees registered increased by 110%. In comparison, these respective metrics grew by 25, 55, and 44%, over previous years, in the southeastern quadrant of the United States, where no such campaign was carried out. The campaign approach we describe here is a model that could be adapted by a wide variety of programs to increase engagement and thereby positively influence participant retention.

  15. NASA Goddard Space Flight Center presents Enhancing Standards Based Science Curriculum through NASA Content Relevancy: A Model for Sustainable Teaching-Research Integration Dr. Robert Gabrys, Raquel Marshall, Dr. Evelina Felicite-Maurice, Erin McKinley

    Science.gov (United States)

    Marshall, R. H.; Gabrys, R.

    2016-12-01

    NASA Goddard Space Flight Center has developed a systemic educator professional development model for the integration of NASA climate change resources into the K-12 classroom. The desired outcome of this model is to prepare teachers in STEM disciplines to be globally engaged and knowledgeable of current climate change research and its potential for content relevancy alignment to standard-based curriculum. The application and mapping of the model is based on the state education needs assessment, alignment to the Next Generation Science Standards (NGSS), and implementation framework developed by the consortium of district superintendents and their science supervisors. In this presentation, we will demonstrate best practices for extending the concept of inquiry-based and project-based learning through the integration of current NASA climate change research into curriculum unit lessons. This model includes a significant teacher development component focused on capacity development for teacher instruction and pedagogy aimed at aligning NASA climate change research to related NGSS student performance expectations and subsequent Crosscutting Concepts, Science and Engineering Practices, and Disciplinary Core Ideas, a need that was presented by the district steering committee as critical for ensuring sustainability and high-impact in the classroom. This model offers a collaborative and inclusive learning community that connects classroom teachers to NASA climate change researchers via an ongoing consultant/mentoring approach. As a result of the first year of implementation of this model, Maryland teachers are implementing NGSS unit lessons that guide students in open-ended research based on current NASA climate change research.

  16. Effects of a research-infused botanical curriculum on undergraduates' content knowledge, STEM competencies, and attitudes toward plant sciences.

    Science.gov (United States)

    Ward, Jennifer Rhode; Clarke, H David; Horton, Jonathan L

    2014-01-01

    In response to the American Association for the Advancement of Science's Vision and Change in Undergraduate Biology Education initiative, we infused authentic, plant-based research into majors' courses at a public liberal arts university. Faculty members designed a financially sustainable pedagogical approach, utilizing vertically integrated curricular modules based on undergraduate researchers' field and laboratory projects. Our goals were to 1) teach botanical concepts, from cells to ecosystems; 2) strengthen competencies in statistical analysis and scientific writing; 3) pique plant science interest; and 4) allow all undergraduates to contribute to genuine research. Our series of inquiry-centered exercises mitigated potential faculty barriers to adopting research-rich curricula, facilitating teaching/research balance by gathering publishable scholarly data during laboratory class periods. Student competencies were assessed with pre- and postcourse quizzes and rubric-graded papers, and attitudes were evaluated with pre- and postcourse surveys. Our revised curriculum increased students' knowledge and awareness of plant science topics, improved scientific writing, enhanced statistical knowledge, and boosted interest in conducting research. More than 300 classroom students have participated in our program, and data generated from these modules' assessment allowed faculty and students to present 28 contributed talks or posters and publish three papers in 4 yr. Future steps include analyzing the effects of repeated module exposure on student learning and creating a regional consortium to increase our project's pedagogical impact. © 2014 J. R. Ward et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http

  17. Designing a primary science curriculum in a globalizing world: how do social constructivism and Vietnamese culture meet?

    NARCIS (Netherlands)

    Vu Thu Hang, N.; Meijer, M.R.; Bulte, A.M.W.; Pilot, A.

    2017-01-01

    The implementation of social constructivist approaches to learning science in primary education in Vietnamese culture as an example of Confucian heritage culture (CHC) remains challenging and problematic. This theoretical paper focuses on the initial phase of a design-based research approach; that

  18. Designing a Primary Science Curriculum in a Globalizing World: How Do Social Constructivism and Vietnamese Culture Meet?

    Science.gov (United States)

    H?ng, Ngô Vu Thu; Meijer, Marijn Roland; Bulte, Astrid M. W.; Pilot, Albert

    2017-01-01

    The implementation of social constructivist approaches to learning science in primary education in Vietnamese culture as an example of Confucian heritage culture remains challenging and problematic. This theoretical paper focuses on the initial phase of a design-based research approach; that is, the description of the design of a formal, written…

  19. Why not just Google it? An assessment of information literacy skills in a biomedical science curriculum

    Directory of Open Access Journals (Sweden)

    Stewart Tanis

    2011-04-01

    Full Text Available Abstract Background Few issues in higher education are as fundamental as the ability to search for, evaluate, and synthesize information. The need to develop information literacy, the process of finding, retrieving, organizing, and evaluating the ever-expanding collection of online information, has precipitated the need for training in skill-based competencies in higher education, as well as medical and dental education. Methods The current study evaluated the information literacy skills of first-year dental students, consisting of two, consecutive dental student cohorts (n = 160. An assignment designed to evaluate information literacy skills was conducted. In addition, a survey of student online search engine or database preferences was conducted to identify any significant associations. Subsequently, an intervention was developed, based upon the results of the assessment and survey, to address any deficiencies in information literacy. Results Nearly half of students (n = 70/160 or 43% missed one or more question components that required finding an evidence-based citation. Analysis of the survey revealed a significantly higher percentage of students who provided incorrect responses (n = 53/70 or 75.7% reported using Google as their preferred online search method (p Conclusions This study confirmed that information literacy among this student population was lacking and that integration of modules within the curriculum can help students to filter and establish the quality of online information, a critical component in the training of new health care professionals. Furthermore, incorporation of these modules early in the curriculum may be of significant value to other dental, medical, health care, and professional schools with similar goals of incorporating the evidence base into teaching and learning activities.

  20. Re-visioning Curriculum and Pedagogy in a University Science and ...

    African Journals Online (AJOL)

    Southern African Journal of Environmental Education, Vol. 32, 2016 ... prosperous Africa based on inclusive growth and sustainable development where people have ..... real world science and technology investigations into classrooms.

  1. Classroom Environment in the Implementation of an Innovative Curriculum Project in Science Education.

    Science.gov (United States)

    Suarez, Mercedes; Pias, Rosa; Membiela, Pedro; Dapia, Dolores

    1998-01-01

    Analyzes the perceptions of students, teachers, and external observers in order to study the influence of classroom environment on the implementation of an innovative project in science education. Contains 33 references. (DDR)

  2. The management of grey literature as a component of a library and information science curriculum

    OpenAIRE

    Aina, L. Olatokunbo (University of Botswana); GreyNet, Grey Literature Network Service

    1998-01-01

    A citation analysis of a sample of publications appearing in journals published in Africa in 1995 was carried out. The citation covered major disciplines in sciences, humanities, education, social sciences and librarianship. The study reveals that grey literature (GL) is used by researchers across the disciplines. Given the importance of GL to researchers in Africa, as well as the pervasive role internet can play in providing access to GL, a case is made for teaching the "management of GL " i...

  3. GLOBE Atmosphere and AMS Diversity Program Content to Foster Weather and Climate Science Awareness at HBCUs: A Curriculum Enhancement Model

    Science.gov (United States)

    Padgett, D.

    2017-12-01

    Tennessee State University (TSU) is a member of the "Global Learning and Observations to Benefit the Environment (GLOBE) Mission Earth" project. The World Regional Geography (GEOG 1010/1020) courses are required for Education majors. Pre-service teachers must complete several exercises to be certified in the GLOBE Atmosphere Protocols. The pre-service teachers are required to develop GLOBE-based lessons to high school students. The exercise theme is "Exploring the Impacts of Urban Heat Islands (UHI) using Geospatial Technology." Surface temperature, ambient air temperature, and cloud cover data are collected. Sample point locations are logged using Garmin GPS receivers and then mapped using ArcGIS Online (http://arcg.is/1oiD379). The service learning outreach associated with this experience requires collegians to thoroughly understand the physical, social, and health science content associated with UHIs and then impart the information to younger learners. The precollegiate students are motivated due to their closeness in age and social context to the college students. All of the students have the advantage of engaging in hands-on problem-based learning of complex meteorology, climate science, and geospatial technology concepts. The optimal result is to have pre-service teachers enroll in the Weather and Climate (GEOG 3500) course, which is supported by the American Meteorological Society (AMS) Weather and Climate Studies Curriculum. Tennessee State University faculty have completed training to deliver the curriculum through the AMS Diversity Program. The AMS Weather Studies and Climate Studies programs have been institutionalized at Tennessee State University (TSU) since fall 2005. Approximately 250 undergraduate students have been exposed to the interactive AMS learning materials over the past 10-plus years. Non-STEM, and education majors are stimulated by the real-time course content and are encouraged to think critically about atmospheric systems science, and

  4. Bridging the Chasm: Challenges, Opportunities, and Resources for Integrating a Dissemination and Implementation Science Curriculum into Medical Education.

    Science.gov (United States)

    Ginossar, Tamar; Heckman, Carolyn J; Cragun, Deborah; Quintiliani, Lisa M; Proctor, Enola K; Chambers, David A; Skolarus, Ted; Brownson, Ross C

    2018-01-01

    Physicians are charged with implementing evidence-based medicine, yet few are trained in the science of Dissemination and Implementation (D&I). In view of the potential of evidence-based training in D&I to help close the gap between research and practice, the goal of this review is to examine the importance of D&I training in medical education, describe challenges to implementing such training, and provide strategies and resources for building D&I capacity. We conducted (1) a systematic review to identify US-based D&I training efforts and (2) a critical review of additional literature to inform our evaluation of the challenges and opportunities of integrating D&I training in medical education. Out of 269 unique articles reviewed, 11 described US-based D&I training. Although vibrant and diverse training opportunities exist, their capacity is limited, and they are not designed to meet physicians' needs. Synthesis of relevant literature using a critical review approach identified challenges inherent to changing medical education, as well as challenges related to D&I science. Finally, selected strategies and resources are available for facilitating incorporation of D&I training into medical education and overcoming existing challenges. Integrating D&I training in the medical education curriculum, and particularly in residency and fellowship training, holds promise for bridging the chasm between scientific discoveries and improved patient care and outcomes. However, unique challenges should be addressed, including the need for greater evidence.

  5. Innovating Science Teaching by Participatory Action Research--Reflections from an Interdisciplinary Project of Curriculum Innovation on Teaching about Climate Change

    Science.gov (United States)

    Feierabend, Timo; Eilks, Ingo

    2011-01-01

    This paper describes a three-year curriculum innovation project on teaching about climate change. The innovation for this study focused on a socio-critical approach towards teaching climate change in four different teaching domains (biology, chemistry, physics and politics). The teaching itself explicitly aimed at general educational objectives,…

  6. The Process of Becoming an Embedded Curriculum Librarian in Multiple Health Sciences Programs.

    Science.gov (United States)

    Wilson, Gwen

    2015-01-01

    Higher education is moving to offer more fully online programs, and the health science fields are no different. These programs are either hybrid or completely online. It is up to the health sciences librarian to adapt services offered by the academic library to these types of courses. This column discusses the multiple ways a librarian can be an embedded librarian in a course using a learning management system (LMS). The process of creating a customized embedded librarian program, results, and lessons learned from the different embedded librarian roles are also discussed.

  7. Into the Curriculum. Art: Pueblo Storyteller Figures [and] Physical Education: Games That Rely on Feet [and] Reading/Language Arts: Movie Reviews [and] Reading/Language Arts: Reader's Choice [and] Science: Float or Sink [and] Social Studies: Buildings and Designs.

    Science.gov (United States)

    Crane, Jean; Rains, Annette

    1996-01-01

    Presents six curriculum guides for art, physical education, reading/language arts, science, and social studies. Each guide identifies library media skills objectives; curriculum objectives; grade levels; print and nonprint resources; instructional roles; the activity; and procedures for completion, evaluation, and follow-up activities. (AEF)

  8. Integration of Cognitive Skills as a Cross-Cutting Theme Into the Undergraduate Medical Curriculum at Tehran University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Akbar Soltani

    2017-02-01

    Full Text Available Nowadays, improvement of thinking skills of students is one of the universally supported aims in the majority of medical schools. This study aims to design longitudinal theme of reasoning, problem-solving and decision-making into the undergraduate medical curriculum at Tehran University of Medical Sciences (TUMS. A participatory approach was applied to design the curriculum during 2009-2011. The project was conducted by the contribution of representatives of both basic and clinical faculty members, students and graduates at Tehran University of Medical Sciences. The first step toward integrating cognitive skills into the curriculum was to assemble a taskforce of different faculty and students, including a wide variety of fields with multidisciplinary expertise using nonprobability sampling and the snowball method. Several meetings with the contribution of experts and some medical students were held to generate the draft of expected outcomes. Subsequently, the taskforce also determined what content would fit best into each phase of the program and what teaching and assessment methods would be more appropriate for each outcome. After a pilot curriculum with a small group of second-year medical students, we implemented this program for all first-year students since 2011 at TUMS. Based on findings, the teaching of four areas, including scientific and critical thinking skills (Basic sciences, problem-solving and reasoning (Pathophysiology, evidence-based medicine (Clerkship, and clinical decision-making (Internship were considered in the form of a longitudinal theme. The results of this study could be utilized as a useful pattern for integration of psycho-social subjects into the medical curriculum.

  9. Integrate Science and Arts Process Skills in the Early Childhood Curriculum

    Science.gov (United States)

    Morrison, Kathy

    2012-01-01

    Linking science and art explorations makes sense in early childhood education for a number of reasons. Young children have a natural curiosity about their world and how it works. Young children are also natural artists. Most are delighted to participate in open-ended art activities, dramatic play, singing, and dancing. For young children, the…

  10. Crossroads: Quality of Life in a Nuclear World. A High School Science Curriculum.

    Science.gov (United States)

    French, Dan; Phillips, Connie

    One of a set of high school curricula on nuclear issues, this 10-day science unit helps students understand the interrelationship between the economy, the arms race, military spending, and the threat of nuclear war. Through activities such as role playing, discussion, brainstorming, and problem solving, students develop their ability to evaluate…

  11. Physical Computing and Its Scope--Towards a Constructionist Computer Science Curriculum with Physical Computing

    Science.gov (United States)

    Przybylla, Mareen; Romeike, Ralf

    2014-01-01

    Physical computing covers the design and realization of interactive objects and installations and allows students to develop concrete, tangible products of the real world, which arise from the learners' imagination. This can be used in computer science education to provide students with interesting and motivating access to the different topic…

  12. Framing Education for a Science of Social Work: Missions, Curriculum, and Doctoral Training

    Science.gov (United States)

    Fong, Rowena

    2012-01-01

    Social work education has historically been grounded in professional practice but recent discussions have urged a reconsideration of social work as a science. Social work is progressively doing more intervention work, service systems research, implementation research, and translational research which are elevating research standards to new levels…

  13. Leading Change: Curriculum Reform in Graduate Education in the Biomedical Sciences

    Science.gov (United States)

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were…

  14. Towards a Post-Modern Science Education Curriculum-Discourse: Repetition of a Dream Catcher.

    Science.gov (United States)

    Blades, David W.

    1997-01-01

    Discusses Kierkegaard's idea of repetition as a dynamic conversation between groups that reveals possible changes in a discourse. Describes an instructor's experiences imparting a science education methods course in a Native American school in Saskatchewan, highlighting the conversation between the instructors' past and Native American culture.…

  15. "Gaa-Noodin-Oke" (Alternative Energy/Wind Power): A Curriculum Implementation on the White Earth Reservation

    Science.gov (United States)

    Guzey, Siddika Selcen; Nyachwaya, James; Moore, Tamara J.; Roehrig, Gillian H.

    2014-01-01

    A wind energy focused curriculum for grades 4-8 was designed and implemented to promote the understanding of wind energy concepts with American Indian students. 57 students who participated in the 2009 summer program of the "Reach for the Sky" (RFTS) Science, Technology, Engineering, and Mathematics (STEM) received the curriculum. The…

  16. Executing and teaching science---The breast cancer genetics and technology-rich curriculum professional development studies of a science educator

    Science.gov (United States)

    Wragg, Regina E.

    This dissertation presents my explorations in both molecular biology and science education research. In study one, we determined the ADIPOQ and ADIPORI genotypes of 364 White and 148 Black BrCa patients and used dominant model univariate logistic regression analyses to determine individual SNP and haplotype associations with tumor or patient characteristics in a case-case comparison. We found twelve associations between individual SNPs and patient or tumor characteristics that impact BrCa prognosis. For example, the ADIPOQ rs1501299 C allele was associated with ER+ tumors (OR=4.73, p=0.001) among White women >50 years of age at their time of diagnosis. Also, the A allele was more frequent in the Black patient population among whom more aggressive subtypes are common. Similarly, the ADIPORI rs12733285 T allele was associated with both PR+ and ER+ tumors. (OR=2.18 p=0.001; OR=1.88 p=0.019, respectively). Our data suggest that several polymorphisms individually or as specific ADIPOQ and ADIPOR1 haplotypes are associated with tumor characteristics that impact prognosis in BrCa patients. Thus, genotyping additional groups of patients for these SNPs could offer insight into the involvement of adiponectin signaling allele variance in BrCa outcomes. In our second study, we examined 1) how teachers' beliefs about themselves and their students influence the fidelity of implementation of their enactment of a technology-rich curriculum, and 2) how professional development support during the enactment leads to changes in teacher beliefs. From the analysis of two teachers' experiences through interviews, surveys, journal entries, and video recordings of their enactments, several different themes were identified. For example, teachers' beliefs regarding students' ability to learn using the curriculum influenced the fidelity of implementation and student learning. These observations led to the development of a model of professional development that would promote faithful

  17. Focus: global currents in national histories of science: the "global turn" and the history of science in Latin America.

    Science.gov (United States)

    McCook, Stuart

    2013-12-01

    The "global turn" in the history of science offers new ways to think about how to do national and regional histories of science, in this case the history of science in Latin America. For example, it questions structuralist and diffusionist models of the spread of science and shows the often active role that people in Latin America (and the rest of the Global South) played in the construction of "universal" scientific knowledge. It suggests that even national or regional histories of science must be situated in a global context; all too often, such histories have treated global processes as a distant backdrop. At the same time, historians need to pay constant attention to the role of power in the construction of scientific knowledge. Finally, this essay highlights a methodological tool for writing globally inflected histories of science: the method of "following".

  18. Evaluating the Effects of Medical Explorers a Case Study Curriculum on Critical Thinking, Attitude Toward Life Science, and Motivational Learning Strategies in Rural High School Students

    Science.gov (United States)

    Brand, Lance G.

    2011-12-01

    The purpose of this study was three-fold: to measure the ability of the Medical Explorers case-based curriculum to improve higher order thinking skills; to evaluate the impact of the Medical Explorers case-based curriculum to help students be self directed learners; and to investigate the impact of the Medical Explorers case-based curriculum to improve student attitudes of the life sciences. The target population for this study was secondary students enrolled in advanced life science programs. The resulting sample (n = 71) consisted of 36 students in the case-based experimental group and 35 students in the control group. Furthermore, this study employed an experimental, pretest-posttest control group research design. The treatment consisted of two instructional strategies: case-based learning and teacher-guided learning. Analysis of covariance indicated no treatment effect on critical thinking ability or Motivation and Self-regulation of Learning. However, the Medical Explorers case-based curriculum did show a treatment effect on student attitudes toward the life sciences. These results seem to indicate that case-based curriculum has a positive impact on students' perspectives and attitudes about the study of life science as well as their interest in life science based careers. Such outcomes are also a good indicator that students enjoy and perceive the value to use of case studies in science, and because they see value in the work that they do they open up their minds to true learning and integration. Of additional interest was the observationthat on average eleventh graders showed consistently stronger gains in critical thinking, motivation and self-regulation of learning strategies, and attitudes toward the life sciences as compared to twelfth grade students. In fact, twelfth grade students showed a pre to post loss on the Watson-Glaser and the MSLQ scores while eleventh grade students showed positive gains on each of these instruments. This decline in twelfth

  19. Challenging the Science Curriculum Paradigm: Teaching Primary Children Atomic-Molecular Theory

    Science.gov (United States)

    Haeusler, Carole; Donovan, Jennifer

    2017-11-01

    Solutions to global issues demand the involvement of scientists, yet concern exists about retention rates in science as students pass through school into University. Young children are curious about science, yet are considered incapable of grappling with abstract and microscopic concepts such as atoms, sub-atomic particles, molecules and DNA. School curricula for primary (elementary) aged children reflect this by their limitation to examining only what phenomena are without providing any explanatory frameworks for how or why they occur. This research challenges the assumption that atomic-molecular theory is too difficult for young children, examining new ways of introducing atomic theory to 9 year olds and seeks to verify their efficacy in producing genuine learning in the participants. Early results in three cases in different schools indicate these novel methods fostered further interest in science, allowed diverse children to engage and learn aspects of atomic theory, and satisfied the children's desire for intellectual challenge. Learning exceeded expectations as demonstrated in the post-interview findings. Learning was also remarkably robust, as demonstrated in two schools 8 weeks after the intervention and, in one school, 1 year after their first exposure to ideas about atoms, elements and molecules.

  20. IAEA Meeting Focuses on Nuclear and Isotopic Science to Protect Oceans

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: The marine ecosystems that keep the oceans healthy are subject to increasing stress. Levels of acidity are rising in a process that is taking place at a more rapid pace than ever observed before. This poses risks to all life in the ocean - and all who depend on the oceans. Starting today, some of the world's top marine scientists are meeting in Vienna to discuss this multi-faceted problem and ways to tackle it. Science conducted and coordinated by the IAEA that uses isotopic techniques plays a key role in learning about ocean acidification and its effects. ''In dealing with threats to the health of the seas, governments need accurate data. For that, they need skilled researchers who can devise accurate models to help predict future conditions. That way, governments can start implementing the appropriate strategies to protect the seas and oceans,'' IAEA Director General Yukiya Amano told participants in the IAEA's Scientific Forum, titled The Blue Planet - Nuclear Applications for a Sustainable Marine Environment. ''The IAEA helps to make this possible. We promote a comprehensive approach to the study, monitoring and protection of marine, coastal and terrestrial ecosystems. We support effective global cooperation to address the threats to our oceans.'' The oceans not only produce as much as half of the world's oxygen; they also absorb more than a quarter of man-made CO 2 . This reduces the greenhouse effect, but it also increases the acidity of seawater, resulting in a hostile environment for calciferous plankton, crustaceans, molluscs and coral reefs. With all parts of the ecosystem connected, all life in the oceans suffers from the increased level of acidity. The two-day Forum, held on the sidelines of the IAEA's annual General Conference, is divided into three sessions. The first session focuses on the pressures faced by the coastal and marine systems and the need for partnerships and science to develop targeted responses. The second session addresses

  1. Using focus groups to design systems science models that promote oral health equity.

    Science.gov (United States)

    Kum, Susan S; Northridge, Mary E; Metcalf, Sara S

    2018-06-04

    While the US population overall has experienced improvements in oral health over the past 60 years, oral diseases remain among the most common chronic conditions across the life course. Further, lack of access to oral health care contributes to profound and enduring oral health inequities worldwide. Vulnerable and underserved populations who commonly lack access to oral health care include racial/ethnic minority older adults living in urban environments. The aim of this study was to use a systematic approach to explicate cause and effect relationships in creating a causal map, a type of concept map in which the links between nodes represent causality or influence. To improve our mental models of the real world and devise strategies to promote oral health equity, methods including system dynamics, agent-based modeling, geographic information science, and social network simulation have been leveraged by the research team. The practice of systems science modeling is situated amidst an ongoing modeling process of observing the real world, formulating mental models of how it works, setting decision rules to guide behavior, and from these heuristics, making decisions that in turn affect the state of the real world. Qualitative data were obtained from focus groups conducted with community-dwelling older adults who self-identify as African American, Dominican, or Puerto Rican to elicit their lived experiences in accessing oral health care in their northern Manhattan neighborhoods. The findings of this study support the multi-dimensional and multi-level perspective of access to oral health care and affirm a theorized discrepancy in fit between available dental providers and patients. The lack of information about oral health at the community level may be compromising the use and quality of oral health care among racial/ethnic minority older adults. Well-informed community members may fill critical roles in oral health promotion, as they are viewed as highly credible

  2. Understanding public opinion in debates over biomedical research: looking beyond political partisanship to focus on beliefs about science and society.

    Directory of Open Access Journals (Sweden)

    Matthew Nisbet

    Full Text Available As social scientists have investigated the political and social factors influencing public opinion in science-related policy debates, there has been growing interest in the implications of this research for public communication and outreach. Given the level of political polarization in the United States, much of the focus has been on partisan differences in public opinion, the strategies employed by political leaders and advocates that promote those differences, and the counter-strategies for overcoming them. Yet this focus on partisan differences tends to overlook the processes by which core beliefs about science and society impact public opinion and how these schema are often activated by specific frames of reference embedded in media coverage and popular discourse. In this study, analyzing cross-sectional, nationally representative survey data collected between 2002 and 2010, we investigate the relative influence of political partisanship and science-related schema on Americans' support for embryonic stem cell research. In comparison to the influence of partisan identity, our findings suggest that generalized beliefs about science and society were more chronically accessible, less volatile in relation to media attention and focusing events, and an overall stronger influence on public opinion. Classifying respondents into four unique audience groups based on their beliefs about science and society, we additionally find that individuals within each of these groups split relatively evenly by partisanship but differ on other important dimensions. The implications for public engagement and future research on controversies related to biomedical science are discussed.

  3. Understanding public opinion in debates over biomedical research: looking beyond political partisanship to focus on beliefs about science and society.

    Science.gov (United States)

    Nisbet, Matthew; Markowitz, Ezra M

    2014-01-01

    As social scientists have investigated the political and social factors influencing public opinion in science-related policy debates, there has been growing interest in the implications of this research for public communication and outreach. Given the level of political polarization in the United States, much of the focus has been on partisan differences in public opinion, the strategies employed by political leaders and advocates that promote those differences, and the counter-strategies for overcoming them. Yet this focus on partisan differences tends to overlook the processes by which core beliefs about science and society impact public opinion and how these schema are often activated by specific frames of reference embedded in media coverage and popular discourse. In this study, analyzing cross-sectional, nationally representative survey data collected between 2002 and 2010, we investigate the relative influence of political partisanship and science-related schema on Americans' support for embryonic stem cell research. In comparison to the influence of partisan identity, our findings suggest that generalized beliefs about science and society were more chronically accessible, less volatile in relation to media attention and focusing events, and an overall stronger influence on public opinion. Classifying respondents into four unique audience groups based on their beliefs about science and society, we additionally find that individuals within each of these groups split relatively evenly by partisanship but differ on other important dimensions. The implications for public engagement and future research on controversies related to biomedical science are discussed.

  4. Understanding Public Opinion in Debates over Biomedical Research: Looking beyond Political Partisanship to Focus on Beliefs about Science and Society

    Science.gov (United States)

    Nisbet, Matthew; Markowitz, Ezra M.

    2014-01-01

    As social scientists have investigated the political and social factors influencing public opinion in science-related policy debates, there has been growing interest in the implications of this research for public communication and outreach. Given the level of political polarization in the United States, much of the focus has been on partisan differences in public opinion, the strategies employed by political leaders and advocates that promote those differences, and the counter-strategies for overcoming them. Yet this focus on partisan differences tends to overlook the processes by which core beliefs about science and society impact public opinion and how these schema are often activated by specific frames of reference embedded in media coverage and popular discourse. In this study, analyzing cross-sectional, nationally representative survey data collected between 2002 and 2010, we investigate the relative influence of political partisanship and science-related schema on Americans' support for embryonic stem cell research. In comparison to the influence of partisan identity, our findings suggest that generalized beliefs about science and society were more chronically accessible, less volatile in relation to media attention and focusing events, and an overall stronger influence on public opinion. Classifying respondents into four unique audience groups based on their beliefs about science and society, we additionally find that individuals within each of these groups split relatively evenly by partisanship but differ on other important dimensions. The implications for public engagement and future research on controversies related to biomedical science are discussed. PMID:24558393

  5. Currículo de Ciências: estabilidade e mudança em livros didáticos Science curriculum: stability and change in textbooks

    Directory of Open Access Journals (Sweden)

    Maria Margarida Gomes

    2013-06-01

    Full Text Available O estudo focaliza aspectos relacionados aos conteúdos de ensino presentes em livros didáticos de Ciências no período entre as décadas de 1970 e 2000. A partir de questões que buscam compreender como vem se dando sócio-historicamente a valorização dos conhecimentos ecológicos nos currículos dessa disciplina, a análise prioriza as relações estabelecidas entre tais conhecimentos e outras temáticas também ensinadas. Para tanto, os conteúdos de ecologia selecionados para ensino são considerados resultantes de aspectos relativos à produção científica da ecologia biológica, ao ensino de Ciências, ao campo educacional e aos movimentos ambientais. Assim, com a finalidade de compreender a inserção de conhecimentos ecológicos nos currículos brasileiros de Ciências, identificam-se enfoques curriculares articulados às seleções de conteúdos de ensino e investigam-se as relações estabelecidas entre esses conhecimentos e outras temáticas dessa disciplina escolar em livros didáticos destinados ao ensino fundamental. Com base principalmente nas discussões de Ivor Goodson, evidencia-se a trajetória sócio-histórica dos currículos de Ciências por uma relação interdependente entre padrões de estabilidade e de mudança. Argumenta-se que os conteúdos de ecologia são introduzidos, causando mudança, na medida em que se inserem num padrão de estabilidade. Nessa perspectiva, tais materiais são tratados como fontes históricas importantes para entender a produção curricular escolar desenvolvida no período em questão.This study focuses on aspects related to the contents present in Science textbooks during the period between the 1970s and 2000s. Based on questions that seek to understand how the valuation of ecological knowledge has taken place socio-historically in the curricula of this discipline, the analysis gives priority to the relations established between such knowledge and other themes also taught. For that, the

  6. Innovations in the Teaching of Behavioral Sciences in the Preclinical Curriculum

    Science.gov (United States)

    Mack, Kevin

    2005-01-01

    Objective: In problem-based learning curricula, cases are usually clustered into identified themes or organ systems. While this method of aggregating cases presents clear advantages in terms of resource alignment and student focus, an alternative "hidden cluster" approach provides rich opportunities for content integration. Method: The author…

  7. How the Chemistry Modeling Curriculum Engages Students in Seven Science Practices Outlined by the College Board

    Science.gov (United States)

    Posthuma-Adams, Erica

    2014-01-01

    As advanced placement (AP) teachers strive to implement the changes outlined in the AP chemistry redesign, they will have the opportunity to reflect on and evaluate their current practices. For many AP teachers, the new focus on conceptual understanding, reasoning, inquiry, and critical thinking over memorization and algorithmic problem solving…

  8. Examples of learning activities for Earth and Space Sciences in the new Italian National curriculum

    Science.gov (United States)

    Macario, Maddalena

    2016-04-01

    In the last few years, starting from 2010, science curricula were changed dramatically in the secondary Italian school as consequence of a radical law reform. In particular, Earth Science and Astronomy subjects have been shifted from the last to the previous school years; in addition, these subjects have been integrated with other natural sciences learning, such as biology and chemistry. As a consequence, Italian teachers felt forced to totally revise their teaching methods for all of these disciplines. The most demanding need was adapting content to younger learners, as those of the first years are, who usually do have neither pre-knowledge in physics nor high level maths skills. Secondly, content learning was progressively driven toward a greater attention to environmental issues in order to raise more awareness in learners about global changes as examples of fragile equilibrium of our planet. In this work some examples of activities are shown, to introduce students to some astronomical phenomena in a simpler way, which play a key role in influencing other Earth's events, in order to make pupils more conscious about how and to what extent our planet depends on space, at different time scales. The activities range from moon motions affecting tides, to secondary Earth motions, which are responsible for climate changes, to the possibility to find life forms in other parts of the Universe, to the possibility for humans to live in the space for future space missions. Students are involved in hands-on inquiry-based laboratories that scaffold both theoretic knowledge and practical skills for a deeper understanding of cause-effect relationships existing in the Earth.

  9. Teacher Implementation and the Impact of Game-Based Science Curriculum Materials

    Science.gov (United States)

    Wilson, Christopher D.; Reichsman, Frieda; Mutch-Jones, Karen; Gardner, April; Marchi, Lisa; Kowalski, Susan; Lord, Trudi; Dorsey, Chad

    2018-01-01

    Research-based digital games hold great potential to be effective tools in supporting next-generation science learning. However, as with all instructional materials, teachers significantly influence their implementation and contribute to their effectiveness. To more fully understand the contributions and challenges of teacher implementation of digital games, we studied the replacement of existing high school biology genetics lessons over a 3- to 6-week period with Geniverse, an immersive, game-like learning environment designed to be used in classrooms. The Geniverse materials infuse virtual experimentation in genetics with a narrative of a quest to heal a genetic disease; incorporate the topics of meiosis and protein synthesis with inheritance; and include the science practices of explanation and argumentation. The research design involved a quasi-experiment with 48 high school teachers and about 2000 students, student science content knowledge and argumentation outcome measures, and analysis using hierarchical linear modeling. Results indicate that when Geniverse was implemented as the designers intended, student learning of genetics content was significantly greater than in the comparison, business-as-usual group. However, a wide range of levels of Geniverse implementation resulted in no significant difference between the groups as a whole. Students' abilities to engage in scientific explanation and argumentation were greater in the Geniverse group, but these differences were not statistically significant. Observation, survey, and interview data indicate a range of barriers to implementation and teacher instructional decisions that may have influenced student outcomes. Implications for the role of the teacher in the implementation of game-based instructional materials are discussed.

  10. Earth Systems Science Curriculum Choices for Pre-Service Teachers at San Jose State University

    Science.gov (United States)

    Messina, P.; Metzger, E. P.

    2008-12-01

    San José State University was a member of the original ESSEA consortium (2003-05), and it continues its participation with the broadening ESSEA community. Having hosted the original Middle- and High School Teachers' ESSEA courses, the Geology Department and Program in Science Education have maintained their commitments toward supporting pre- and in-service teachers in geoscience concept competency and effective pedagogy. We have witnessed an encouraging trend in the numbers of K-8 (multiple subject) pre-service teachers who have enrolled in our in-house ESSEA-inspired course: Geology 103 (Earth Systems and the Environment). We have also seen an influx of prospective secondary (single subject) teachers seeking credentials in non- geoscience disciplines. California teacher credentialing requirements, especially when layered on the increasing demands of major fields of study and the California State University System's hefty General Education mandates, give prospective teachers little latitude in their academic programs. Geology 103 was developed to satisfy three logistical objectives: to comply with "geoscience content competency" as defined by the California Commission on Teacher Credentialing (CCTC); to fulfill one of the CSU's upper-division General Education requirements, and to develop science process skills in a population that may never have had similar prior opportunities. The course is offered in two modalities: online and on-campus. The Web-based sections are currently comparing the relative effectiveness of two dissimilar online learning modalities and assessments: one delivers video/audio/animated "podcasts," while the other requires student involvement through interactive Flash media. The course is taught by professors with joint appointments in the Department of Geology and Program in Science Education, and by current and former classroom teachers to ensure that geoscience content knowledge is achieved through inquiry, systems analyses, and other

  11. Developments in Education for Library and Information Science and Curriculum Changes

    Directory of Open Access Journals (Sweden)

    Yaşar Tonta

    2013-11-01

    Full Text Available The first university-level library schools were opened during the last quarter of the 19th century. The number of such schools has gradually increased during the first half of the 20th century, especially after the Second World War, both in the USA and elsewhere. The first department of librarianship in Turkey was opened in 1954. As information has gained further importance in scientific endeavors and social life, librarianship became a more interdisciplinary field and library schools were renamed as schools of library and information science/information studies/information management/information to better reflect the range of education provided. The departments of librarianship in Turkey, too, have revised their curricula and changed their names. In this paper, we review the major developments in education for library and information science (LIS in the world as well as in Turkey, and the impact of these developments on the curricula of LIS schools along with subsequent changes under three historicalperiods. We discuss some of the external and internal factors that should be dealt with in revising the curricula of LIS schools.

  12. Mathematical Knowledge and Skills Expected by Higher Education in Engineering and the Social Sciences: Implications for High School Mathematics Curriculum

    Science.gov (United States)

    Basaran, Mehmet; Özalp, Gülümser; Kalender, Ilker; Alacaci, Cengiz

    2015-01-01

    One important function of school mathematics curriculum is to prepare high school students with the knowledge and skills needed for university education. Identifying them empirically will help making sound decisions about the contents of high school mathematics curriculum. It will also help students to make informed choices in course selection at…

  13. A Study of EFL Curriculum of China's Science and Technology Institutes under Graded Teaching Model

    Science.gov (United States)

    He, Chunyan; Han, Fei

    2018-01-01

    Recent years, most universities and colleges have been reforming the English as a foreign language (EFL) curriculum system in China. Some reformed EFL curriculum into English for Specific Purposes (ESP) courses, for instance, while some conducted a graded teaching model in EFL teaching. However, the effect of this reform was not so good,…

  14. Finding the Connections between a High-School Chemistry Curriculum and Nano-Scale Science and Technology

    Science.gov (United States)

    Blonder, Ron; Sakhnini, Sohair

    2017-01-01

    The high-school chemistry curriculum is loaded with many important chemical concepts that are taught at the high-school level and it is therefore very difficult to add modern contents to the existing curriculum. However, many studies have underscored the importance of integrating modern chemistry contents such as nanotechnology into a high-school…

  15. Curriculum: Toward New Identities. Critical Education Practice, Volume 12. Garland Reference Library of Social Science, Volume 1135.

    Science.gov (United States)

    Pinar, William F., Ed.

    This collection of essays draws upon research in political, feminist, theological, literary, and racial theory to examine research methodologies relating to curriculum studies. The essays are: (1) "Storying the Self: Life Politics and the Study of the Teacher's Life and Work" (Ivor F. Goodson); (2) "Curriculum, Transcendence, and Zen/Taoism:…

  16. Workplace skills and the skills gaps related to employee critical thinking ability and science education curriculum

    Science.gov (United States)

    Alexander, William A.

    In recent years, business and industry have been vocal critics of education. Critics complain the American workforce, particularly young people, are deficient in workplace skills. A survey of 500 randomly selected Ohio businesses was used to determine opinions of respondents related to workplace skills gaps, rising skill levels, and level and type of critical thinking used on the job by all employees and entry-level employees. Four of 18 science outcomes promoted by the Ohio Department of Education had an application in business and these required critical-thinking skills to complete. These four formed the foundation in the survey because they provided a connection between thinking skills required on the Ohio 12 th Grade Proficiency Test and those required on the job. Pearson correlation coefficient was used to identify correlation between responses. The alpha level was p ≤ .05. Stepwise multiple linear regression analysis was conducted to identify significant (p ≤ .05) relationships between variables as represented by responses. In addition, one version of the Science Section of the Ohio 12th Grade Proficiency Test was analyzed for use of critical thinking using the SCAN's critical-thinking attributes as a standard. There were several findings related to workplace skills and critical thinking. Only 17.1% of respondents indicated dissatisfaction with the basic academic skill level of their employees. A majority (71.1%) of responding businesses perceived a lack of work ethic as more important than deficient academic skills. Only 17.1% of respondents reported the skill level of their entry-level employees was rising. Approximately 1/3 of responding businesses required no critical thinking at all from their entry-level employees. Small businesses were significantly more likely to require higher levels of critical thinking from their entry level employees than larger businesses. Employers who reported rising skill levels in entry-level employees required all of

  17. Methods and Tools to Align Curriculum to the Skills and Competencies Needed by the Workforce - an Example from Geospatial Science and Technology

    Science.gov (United States)

    Johnson, A. B.

    2012-12-01

    Geospatial science and technology (GST) including geographic information systems, remote sensing, global positioning systems and mobile applications, are valuable tools for geoscientists and students learning to become geoscientists. GST allows the user to analyze data spatially and temporarily and then visualize the data and outcomes in multiple formats (digital, web and paper). GST has evolved rapidly and it has been difficult to create effective curriculum as few guidelines existed to help educators. In 2010, the US Department of Labor (DoL), in collaboration with the National Geospatial Center of Excellence (GeoTech Center), a National Science Foundation supported grant, approved the Geospatial Technology Competency Mode (GTCM). The GTCM was developed and vetted with industry experts and provided the structure and example competencies needed across the industry. While the GTCM was helpful, a more detailed list of skills and competencies needed to be identified in order to build appropriate curriculum. The GeoTech Center carried out multiple DACUM events to identify the skills and competencies needed by entry-level workers. DACUM (Developing a Curriculum) is a job analysis process whereby expert workers are convened to describe what they do for a specific occupation. The outcomes from multiple DACUMs were combined into a MetaDACUM and reviewed by hundreds of GST professionals. This provided a list of more than 320 skills and competencies needed by the workforce. The GeoTech Center then held multiple workshops across the U.S. where more than 100 educators knowledgeable in teaching GST parsed the list into Model Courses and a Model Certificate Program. During this process, tools were developed that helped educators define which competency should be included in a specific course and the depth of instruction for that competency. This presentation will provide details about the process, methodology and tools used to create the Models and suggest how they can be used

  18. The need for a behavioural science focus in research on mental health and mental disorders

    NARCIS (Netherlands)

    Wittchen, H.U.; Knappe, S.; Andersson, G.; Araya, R.; Banos Rivera, R.M.; Barkham, M.; Bech, P.; Beckers, T.; Berger, T.; Berking, M.; Berrocal, C.; Botella, C.; Carlbring, P.; Chouinard, G.; Colom, F.; Csillag, C.; Cuijpers, P.; David, D.; Emmelkamp, P.M.G; Essau, C.A.; Fava, G.A.; Goschke, T.; Hermans, D.; Hofmann, S.G.; Lutz, W.; Muris, P.; Ollendick, T.H.; Raes, F.; Rief, W.; Riper, H.; Tossani, E.; van der Oord, S.; Vervliet, B.; Haro, J.M.; Schumann, G.

    2014-01-01

    Psychology as a science offers an enormous diversity of theories, principles, and methodological approaches to understand mental health, abnormal functions and behaviours and mental disorders. A selected overview of the scope, current topics as well as strength and gaps in Psychological Science may

  19. Beliefs and Willingness to Act about Global Warming: Where to Focus Science Pedagogy?

    Science.gov (United States)

    Skamp, Keith; Boyes, Eddie; Stanisstreet, Martin

    2013-01-01

    Science educators have a key role in empowering students to take action to reduce global warming. This involves assisting students to understand its causes as well as taking pedagogical decisions that have optimal probabilities of leading to students being motivated to take actions based on empirically based science beliefs. To this end New South…

  20. Topics in library and information science in Brazil: focus on electronic scientific journals

    Directory of Open Access Journals (Sweden)

    Marina Alves de Mendonça

    2016-04-01

    Full Text Available Accents the national electronic journals of library and information science with purpose of identifying the questions most debated in information science through the analysis of articles published from 2003 to 2013, in addition to detecting the subjects of the articles analyzed in order to detect thematic similarities and differences in the scope of interdisciplinarity, including the identification of "empty", i.e. important issues not contemplated. Include the library science journals for the reason of the relevant titles currently be originated of publications before dedicated to the library science and then concentrated on studies in information science. To achieve this quali-quantitative research, nature descriptive and case study, resort to documentary analysis and thematic content analysis as collection techniques and data analysis, respectively. Verifies that the increase in research in this field follows with the expansion of the Graduate Program in Information Science and expands as found in electronic journals, the means to intensify scientific communication and ratify interdisciplinary relations. Registers 48 themes, among which Management has the highest incidence (191 articles as opposed to the classes; Administration and Environment and Sustainability, both with only seven studies each. Library Science has the highest number of interdisciplinary relations. It is recommended that researchers in the field turn their attention to topics on the rise not yet explored in the context of information science, like Cognitive and Behavioral Studies; and Information Architecture, in view of the prospects for growth and contribution to the field.

  1. Argumentation Tasks in Secondary English Language Arts, History, and Science: Variations in Instructional Focus and Inquiry Space

    Science.gov (United States)

    Litman, Cindy; Greenleaf, Cynthia

    2018-01-01

    This study drew on observations of 40 secondary English language arts, history, and science lessons to describe variation in opportunities for students to engage in argumentation and possible implications for student engagement and learning. The authors focused their analysis on two broad dimensions of argumentation tasks: (1) "Instructional…

  2. Family and Consumer Sciences Focus on the Human Dimension: The Expanded Food and Nutrition Education Program Example

    Science.gov (United States)

    Cason, Katherine L.; Chipman, Helen; Forstadt, Leslie A.; Rasco, Mattie R.; Sellers, Debra M.; Stephenson, Laura; York, De'Shoin A.

    2017-01-01

    The history of family and consumer sciences (FCS) and the Expanded Food and Nutrition Education Program (EFNEP) is discussed with an emphasis on the critical importance of the human dimension. EFNEP's focus on people, education for change, accountability, strategic partnerships, and public value are highlighted as an example and model for…

  3. Determination of rate of customer focus in educational programs at Isfahan University of Medical Sciences(1) based on students' viewpoints.

    Science.gov (United States)

    Shams, Assadollah; Yarmohammadian, Mohammad Hosein; Abbarik, Hadi Hayati

    2012-01-01

    Today, the challenges of quality improvement and customer focus as well as systems development are important and inevitable matters in higher education institutes. There are some highly competitive challenges among educational institutes, including accountability to social needs, increasing costs of education, diversity in educational methods and centers and their consequent increasing competition, and the need for adaptation of new information and knowledge to focus on students as the main customers. Hence, the purpose of this study was to determine the rate of costumer focus based on Isfahan University of Medical Sciences students' viewpoints and to suggest solutions to improve this rate. This was a cross-sectional study carried out in 2011. The statistical population included all the students of seven faculties of Isfahan University of Medical Sciences. According to statistical formulae, the sample size consisted of 384 subjects. Data collection tools included researcher-made questionnaire whose reliability was found to be 87% by Cronbach's alpha coefficient. Finally, using the SPSS statistical software and statistical methods of independent t-test and one-way analysis of variance (ANOVA), Likert scale based data were analyzed. The mean of overall score for customer focus (student-centered) of Isfahan University of Medical Sciences was 46.54. Finally, there was a relation between the mean of overall score for customer focus and gender, educational levels, and students' faculties. Researcher suggest more investigation between Medical University and others. It is a difference between medical sciences universities and others regarding the customer focus area, since students' gender must be considered as an effective factor in giving healthcare services quality. In order to improve the customer focus, it is essential to take facilities, field of study, faculties, and syllabus into consideration.

  4. Determination of rate of customer focus in educational programs at Isfahan University of Medical Sciences1 based on students’ viewpoints

    Science.gov (United States)

    Shams, Assadollah; Yarmohammadian, Mohammad Hosein; Abbarik, Hadi Hayati

    2012-01-01

    Background: Today, the challenges of quality improvement and customer focus as well as systems development are important and inevitable matters in higher education institutes. There are some highly competitive challenges among educational institutes, including accountability to social needs, increasing costs of education, diversity in educational methods and centers and their consequent increasing competition, and the need for adaptation of new information and knowledge to focus on students as the main customers. Hence, the purpose of this study was to determine the rate of costumer focus based on Isfahan University of Medical Sciences students’ viewpoints and to suggest solutions to improve this rate. Materials and Methods: This was a cross-sectional study carried out in 2011. The statistical population included all the students of seven faculties of Isfahan University of Medical Sciences. According to statistical formulae, the sample size consisted of 384 subjects. Data collection tools included researcher-made questionnaire whose reliability was found to be 87% by Cronbach's alpha coefficient. Finally, using the SPSS statistical software and statistical methods of independent t-test and one-way analysis of variance (ANOVA), Likert scale based data were analyzed. Results: The mean of overall score for customer focus (student-centered) of Isfahan University of Medical Sciences was 46.54. Finally, there was a relation between the mean of overall score for customer focus and gender, educational levels, and students’ faculties. Researcher suggest more investigation between Medical University and others. Conclusion: It is a difference between medical sciences universities and others regarding the customer focus area, since students’ gender must be considered as an effective factor in giving healthcare services quality. In order to improve the customer focus, it is essential to take facilities, field of study, faculties, and syllabus into consideration. PMID

  5. A Global Approach to STEM Education: ASTA Science Teachers Exchange--Japan 2015

    Science.gov (United States)

    Teaching Science, 2015

    2015-01-01

    The new Australian Curriculum includes among its three cross-curriculum priorities a focus on Asia and Australia's engagement with Asia. The Australian Science Teachers Association (ASTA)'s Science Teachers Exchange--JAPAN program provides teachers with direct, personal insight into one of Australia's key Asian neighbours.

  6. The effectiveness of digital microscopy as a teaching tool in medical laboratory science curriculum.

    Science.gov (United States)

    Castillo, Demetra

    2012-01-01

    A fundamental component to the practice of Medical Laboratory Science (MLS) is the microscope. While traditional microscopy (TM) is gold standard, the high cost of maintenance has led to an increased demand for alternative methods, such as digital microscopy (DM). Slides embedded with blood specimens are converted into a digital form that can be run with computer driven software. The aim of this study was to investigate the effectiveness of digital microscopy as a teaching tool in the field of Medical Laboratory Science. Participants reviewed known study slides using both traditional and digital microscopy methods and were assessed using both methods. Participants were randomly divided into two groups. Group 1 performed TM as the primary method and DM as the alternate. Group 2 performed DM as the primary and TM as the alternate. Participants performed differentials with their primary method, were assessed with both methods, and then performed differentials with their alternate method. A detailed assessment rubric was created to determine the accuracy of student responses through comparison of clinical laboratory and instructor results. Student scores were reflected as a percentage correct from these methods. This assessment was done over two different classes. When comparing results between methods for each, independent of the primary method used, results were not statistically different. However, when comparing methods between groups, Group 1 (n = 11) (TM = 73.79% +/- 9.19, DM = 81.43% +/- 8.30; paired t10 = 0.182, p < 0.001) showed a significant difference from Group 2 (n = 14) (TM = 85.64% +/- 5.30, DM = 85.91% +/- 7.62; paired t13 = 3.647, p = 0.860). In the subsequent class, results between both groups (n = 13, n = 16, respectively) did not show any significant difference between groups (Group 1 TM = 86.38% +/- 8.17, Group 1 DM = 88.69% +/- 3.86; paired t12 = 1.253, p = 0.234; Group 2 TM = 86.75% +/- 5.37, Group 2 DM = 86.25% +/- 7.01, paired t15 = 0.280, p

  7. Developments and departures in the philosophy of soil science

    Science.gov (United States)

    Traditional soil science curriculums provide comprehensive instruction on soil properties, soil classification, and the physical, chemical, and biological processes that occur in soils. This reductionist perspective is sometimes balanced with a more holistic perspective that focuses on soils as natu...

  8. AFRREV STECH An International Journal of Science and ...

    African Journals Online (AJOL)

    User

    curriculum, students are actively involved in their learning to reach new understandings. ... focusing on applications of constructivist theory in teaching science. In attempt to fill ..... retrieving atomic masses from the periodic table. c. The checker ...

  9. Exploring Corn-Ethanol As A Complex Problem To Teach Sustainability Concepts Across The Science-Business-Liberal Arts Curriculum

    Science.gov (United States)

    Oches, E. A.; Szymanski, D. W.; Snyder, B.; Gulati, G. J.; Davis, P. T.

    2012-12-01

    The highly interdisciplinary nature of sustainability presents pedagogic challenges when sustainability concepts are incorporated into traditional disciplinary courses. At Bentley University, where over 90 percent of students major in business disciplines, we have created a multidisciplinary course module centered on corn ethanol that explores a complex social, environmental, and economic problem and develops basic data analysis and analytical thinking skills in several courses spanning the natural, physical, and social sciences within the business curriculum. Through an NSF-CCLI grant, Bentley faculty from several disciplines participated in a summer workshop to define learning objectives, create course modules, and develop an assessment plan to enhance interdisciplinary sustainability teaching. The core instructional outcome was a data-rich exercise for all participating courses in which students plot and analyze multiple parameters of corn planted and harvested for various purposes including food (human), feed (animal), ethanol production, and commodities exchanged for the years 1960 to present. Students then evaluate patterns and trends in the data and hypothesize relationships among the plotted data and environmental, social, and economic drivers, responses, and unintended consequences. After the central data analysis activity, students explore corn ethanol production as it relates to core disciplinary concepts in their individual classes. For example, students in Environmental Chemistry produce ethanol using corn and sugar as feedstocks and compare the efficiency of each process, while learning about enzymes, fermentation, distillation, and other chemical principles. Principles of Geology students examine the effects of agricultural runoff on surface water quality associated with extracting greater agricultural yield from mid-continent croplands. The American Government course examines the role of political institutions, the political process, and various

  10. The Ocean Acidification Curriculum Collection - sharing ocean science resources for k-12 classrooms

    Science.gov (United States)

    Williams, P.

    2016-02-01

    The fish and shellfish provided by ecosystems that abound in the waters of Puget Sound have sustained the Suquamish Tribe for millennia. However, years of development, pollution and over-harvest have reduced some fish and shellfish populations to just a fraction of their former abundance. Now, ocean acidification (OA) and climate change pose additional threats to these essential natural resources. Ocean acidification can't be stopped; however, many of the other human-caused stressors to ocean health can. If human behaviors that harm ocean health can be modified to reduce impacts, fish populations and ecosystems could become more resilient to the changing ocean conditions. School is arguably the best place to convey the ideas and awareness needed for people to adopt new behaviors. Students are open to new ideas and they influence their peers and parents. In addition, they are captive audiences in classrooms for many years.The Suquamish Tribe is helping to foster new generations of ocean stewards by creating an online searchable database (OACurriculumCollection.org). This site is designed to facilitate finding, reviewing and sharing free educational materials on OA. At the same time, the Next Generation Science Standards (NGSS) were released providing a great opportunity to get new materials into classrooms. OA provides highly appropriate context to teach many of the ideas in the new standards making it attractive to teachers looking for interesting and relevant materials. In this presentation, we will demonstrate how teachers can use the site as a place to find and share materials on OA. We will also present a framework developed by teachers for understanding OA, its impacts, and the many ways students can help ease the impacts on ocean ecosystems. We will provide examples of how OA can be used as context and content for the NGSS and finally, we will discuss the failures and successes on our journey to get relevant materials into the classroom.

  11. Teaching research ethics better: focus on excellent science, not bad scientists.

    Science.gov (United States)

    Yarborough, Mark; Hunter, Lawrence

    2013-06-01

    A recent report of the United States' Presidential Commission for the Study of Bioethical Issues highlights how important it is for the research community to enjoy the "earned confidence" of the public and how creating a "culture of responsibility" can contribute to that confidence. It identifies a major role for "creative, flexible, and innovative" ethics education in creating such a culture. Other recent governmental reports from various nations similarly call for a renewed emphasis on ethics education in the sciences. We discuss why some common approaches to ethics education in the graduate sciences fail to meet the goals envisioned in the reports and we describe an approach, animated by primary attention on excellent science as opposed to bad scientists, that we have employed in our ethics teaching that we think is better suited for inspiring and sustaining responsible, trustworthy science. © 2013 Wiley Periodicals, Inc.

  12. The Effects of Research-Based Curriculum Materials and Curriculum-Based Professional Development on High School Science Achievement: Results of a Cluster-Randomized Trial

    Science.gov (United States)

    Taylor, Joseph; Kowalski, Susan; Getty, Stephen; Wilson, Christopher; Carlson, Janet

    2013-01-01

    Effective instructional materials can be valuable interventions to improve student interest and achievement in science (National Research Council [NRC], 2007); yet, analyses indicate that many science instructional materials and curricula are fragmented, lack coherence, and are not carefully articulated through a sequence of grade levels (AAAS,…

  13. Agriculture/Hydroaquaoponic Bioscience Sensor - Mobile App with Simulations and Software for Industry and Science Education Curriculum Module

    Directory of Open Access Journals (Sweden)

    Christine M. Yukech

    2015-02-01

    Full Text Available There is a lot of technological buzz over the past few years regarding taking care of lettuce and hydroponic greenhouse plants and fish. We first review and discuss the recent technologies in the field of hydroponics, especially the hydroponic sensor curriculum project. The College of Engineering at The University of Akron developed a sensor that can detect hydrology, ph, electrical conductivity, nutrient levels, and temperature of hydroponic plants and aquaponic systems. The sensor can optimize the healthy monitoring of plants and fish in greenhouses, homes, schools, and universities anywhere in the world. The goal is to provide sustainable monitoring for growing healthy greenhouse foods 24/7. In this paper, we propose a sustainable solution for optimizing plant growth by using computer simulations and smart phone applications for plant growers and fisheries to access data in real-time and provide guidance on how to manage healthy environments for plants, such as "electric conductivity is lower than the standard for the tomato, so please add 5ml of nutrients". The app will be extended to social media connection, which is enabled by the web access features, where the user can network with hydroponic and aquarium user groups to share information (how to grow a lettuce, ask questions (where can I buy seeds, and gaming for virtual fish and plant growing. The app can be used on a computer, a smart phone or a tablet and provides numerous features that currently need many separate apps, especially in emerging areas such as hydroponics and aquaponics. The data visualization component in the app can enhance the analysis of the variables and data collection. Using the app, plant growers can track results and grow better crops. The app also provides hands-on interactive simulations that connect to the national science standards, providing optimal use of nutrients by taking care of greenhouse plants and fish for hydroponics and aquaponics.

  14. Innovating Science Teaching by Participatory Action Research – Reflections from an Interdisciplinary Project of Curriculum Innovation on Teaching about Climate Change

    Directory of Open Access Journals (Sweden)

    Timo Feierabend

    2011-01-01

    Full Text Available This paper describes a three-year curriculum innovation project on teaching about climate change. The innovation for this study focused on a socio-critical approach towards teaching climate change in four different teaching domains (biology, chemistry, physics and politics. The teaching itself explicitly aimed at general educational objectives, i.e., fostering students’ communication and evaluation abilities as essential components for preparing young people for active participation in society. Participatory Action Research has been used as a collaborative strategy of cyclical curriculum innovation and research. Using past experiences and selected results from accompanying research, this project and its methodology will be reflected upon from the viewpoint of the chemistry group taking part in the project. Core issues reflected upon include how the project contributed to the creation of feasible curriculum materials, how it led to innovative structures in practice, and whether it supported experienced teachers’ ongoing professional development. General considerations for the process of curriculum innovation will also be derived.

  15. Positive attitudinal shifts with the Physics by Inquiry curriculum across multiple implementations

    Directory of Open Access Journals (Sweden)

    Beth A. Lindsey

    2012-01-01

    Full Text Available Recent publications have documented positive attitudinal shifts on the Colorado Learning Attitudes about Science Survey (CLASS among students enrolled in courses with an explicit epistemological focus. We now report positive attitudinal shifts in classes using the Physics by Inquiry (PbI curriculum, which has only an implicit focus on student epistemologies and nature of science issues. These positive shifts have occurred in several different implementations of the curriculum, across multiple institutions and multiple semesters. In many classes, students experienced significant attitudinal shifts in the problem-solving categories of the CLASS, despite the conceptual focus of most PbI courses.

  16. Solar Fireworks - Integrating an Exhibit on Solar Physics and Space Science into the Science and Astronomy Curriculum of High-School and College Students

    Science.gov (United States)

    Denker, C.; Wang, H.; Conod, K. D.; Wintemberg, T.; Calderon, I.

    2005-05-01

    Astronomers at The Newark Museum's Alice and Leonard Dreyfuss Planetarium teamed up with the New Jersey Institute of Technology's (NJIT) Center for Solar-Terrestrial Research (CSTR) and the Big Bear Solar Observatory in presenting Solar Fireworks. The exhibit opened on May 15, 2004 and features two exhibition kiosks with interactive touch screen displays, where students and other visitors can take "virtual tours" in the fields of solar physics, solar activity, Sun-Earth connection, and geo-sciences. Planetarium and museum visits are an integral part of the introductory physics and astronomy classes at NJIT and the exhibition has been integrated in the astronomy curriculum. For example, NJIT students of the Astronomy Club and regular astronomy courses were closely involved in the design and development of the exhibit. The exhibit is the latest addition to the long-running natural science exhibit "Dynamic Earth: Revealing Nature's Secrets" at the museum. More than 30,000 people per year attend various programs offered by the planetarium including public shows, more than a dozen programs for school groups, after school activities, portable planetarium outreach, outdoor sky watches, solar observing and other family events. More than 1,000 high school students visited the planetarium in 2004. The exhibit is accompanied by a yearly teacher workshop (the first one was held on October 18-20, 2004) to enhance the learning experience of classes visiting the Newark Museum. The planetarium and museum staff has been working with teachers of Newark high schools and has presented many workshops for educators on a wide range of topics from astronomy to zoology. At the conclusion of the exhibit in December 2005, the exhibit will go "on the road" and will be made available to schools or other museums. Finally, the exhibit will find its permanent home at the new office complex of CSTR at NJIT. Acknowledgements: Solar Fireworks was organized by The Newark Museum and the New Jersey

  17. Use of tactual materials on the achievement of content specific vocabulary and terminology acquisition within an intermediate level science curriculum

    Science.gov (United States)

    Terry, Brian H.

    In this quasi-experimental study, the researcher investigated the effectiveness of three tactual strategies and one non-tactual strategy of content specific vocabulary acquisition. Flash cards, task cards, and learning wheels served as the tactual strategies, and vocabulary review sheets served as a non-tactual strategy. The sample (n=85) consisted of all middle school students in a small high performing middle school located in the northern suburbs of New York City. All of the vocabulary words and terms came from the New York State Intermediate Level Science Core Curriculum. Pre-tests and post-tests were used to collect the data. A repeated measures ANOVA was conducted on the gain scores from each of the treatments. Multiple paired sample t-tests were conducted to analyze the results. Repeated measures ANOVAs were used to determine if there was a variance between the academic achievement levels of the students, gender, and grade level for each of the treatments. All of the treatments significantly improved the science achievement of the students, but significance was found between them. Significance was found between the achievement groups with the above average students attaining a higher mean on the pre-test and post-test for each treatment, whereas the below average students had the lowest mean on both assessments. The sixth grade students showed significant improvement over the seventh grade students while using the flash cards (p=.004) and learning wheel (p=.007). During the learning wheel treatment, the males scored significantly better (p=.021) than the females on the pre-test and post-test. During the worksheet treatment, significance (p=.034) was found between gender and achievement group. The below average male students had the greatest gain from the pre-test to the post-test, but the post-test mean was still the lowest of the groups. Limitations, implications for future research and current practice are discussed. Key words are: flash cards, task cards

  18. Preparing graduate student teaching assistants in the sciences: An intensive workshop focused on active learning.

    Science.gov (United States)

    Roden, Julie A; Jakob, Susanne; Roehrig, Casey; Brenner, Tamara J

    2018-03-12

    In the past ten years, increasing evidence has demonstrated that scientific teaching and active learning improve student retention and learning gains in the sciences. Graduate teaching assistants (GTAs), who play an important role in undergraduate education at many universities, require training in these methods to encourage implementation, long-term adoption, and advocacy. Here, we describe the design and evaluation of a two-day training workshop for first-year GTAs in the life sciences. This workshop combines instruction in current research and theory supporting teaching science through active learning as well as opportunities for participants to practice teaching and receive feedback from peers and mentors. Postworkshop assessments indicated that GTA participants' knowledge of key topics increased during the workshop. In follow-up evaluations, participants reported that the workshop helped them prepare for teaching. This workshop design can easily be adapted to a wide range of science disciplines. Overall, the workshop prepares graduate students to engage, include, and support undergraduates from a variety of backgrounds when teaching in the sciences. © 2018 by The International Union of Biochemistry and Molecular Biology, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  19. ``I Didn't Realize that Science Could Be So Useful'': Integrating Service Learning and Student Research on Water-Quality Issues within an Undergraduate Geoscience Curriculum (Invited)

    Science.gov (United States)

    Lea, P. D.; Urquhart, J.

    2010-12-01

    The title quote, from a senior geoscience major, illustrates one of the important aspects of service learning. The associated authentic research experiences benefit not only learning of geoscience concepts, but also students’ perceptions of the role of science in society. For the past two years, a wide-ranging study of water-quality dynamics in the Androscoggin Lake watershed of Maine has engaged (1) introductory students and non-science majors in spring-semester courses, (2) upper-level geoscience majors in fall-semester courses, and (3) seniors undertaking independent summer research. The overall focus of the research is to understand nutrient loading to Androscoggin Lake, which receives back-flooded water from the industrialized Androscoggin River, as well as from agricultural lands in the connecting Dead River valley. Stakeholders include the local lake association, the state DEP, pulp-mill and wastewater-plant operators, and local farmers. A key element in the project is the role adopted by the student researchers vis-à-vis policy options. Following the taxonomy of Pielke (2007, The Honest Broker: Cambridge University Press), students doing service learning may serve as issue advocates, seeking to provide scientific support for the policy positions of community partners. In contrast, we have adopted explicitly the position of honest brokers who seek to understand and communicate the workings of this complex system without advocating specific policy solutions. This approach has facilitated buy-in from a larger range of stakeholders, and encouraged students to address choices in the roles and responsibilities of scientists in policy decisions—a valuable perspective for future scientists and non-scientists alike. In service-learning courses, groups of 3 to 5 students engage in a variety of sub-projects, such as lake-bottom sediment studies, nutrient sampling in streams and lakes, developing rating curves for streamflow, and calculating phosphorus fluxes

  20. How Science and Hollywood Can Work Together Is Focus of Fall Meeting Panel

    Science.gov (United States)

    Showstack, Randy

    2011-01-01

    Jon Amiel, director of the 2003 science fiction blockbuster movie The Core, told a room packed with geophysicists at the recent AGU Fall Meeting that he had a confession to make. The confession had nothing to do with what he called the “preposterous premises” of the movie, including that humans could start or stop the spinning of Earth's core. Rather, he told the crowd at the Tuesday evening presentation “Science and the Cinema: AGU Sciences Meet Hollywood” about his recurring dream of being on stage wearing nothing but a skimpy T-shirt. “This dream now has come true. Here I am, I'm talking to a whole room of geophysicists about The Core. I've never felt like the T-shirt was this short,” he said.

  1. The need for a behavioural science focus in research on mental health and mental disorders

    DEFF Research Database (Denmark)

    Wittchen, Hans-Ulrich; Knappe, Susanne; Andersson, Gerhard

    2014-01-01

    of patients who already have developed a disease to improve medical treatment, the proposed framework model, linked to a concerted funding programme of the "Science of Behaviour Change", carries the promise of improved diagnosis, treatment and prevention of health-risk behaviour constellations as well......Psychology as a science offers an enormous diversity of theories, principles, and methodological approaches to understand mental health, abnormal functions and behaviours and mental disorders. A selected overview of the scope, current topics as well as strength and gaps in Psychological Science may...... help to depict the advances needed to inform future research agendas specifically on mental health and mental disorders. From an integrative psychological perspective, most maladaptive health behaviours and mental disorders can be conceptualized as the result of developmental dysfunctions...

  2. Social networks as a tool for science communication and public engagement: focus on Twitter.

    Science.gov (United States)

    López-Goñi, Ignacio; Sánchez-Angulo, Manuel

    2018-02-01

    Social networks have been used to teach and engage people about the importance of science. The integration of social networks in the daily routines of faculties and scientists is strongly recommended to increase their personal brand, improve their skills, enhance their visibility, share and communicate science to society, promote scientific culture, and even as a tool for teaching and learning. Here we review the use of Twitter in science and comment on our previous experience of using this social network as a platform for a Massive Online Open Course (MOOC) in Spain and Latin America. We propose to extend this strategy to a pan-European Microbiology MOOC in the near future. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Development of tomographic reconstruction methods in materials science with focus on advanced scanning methods

    DEFF Research Database (Denmark)

    Lyckegaard, Allan

    Techniques for obtaining 3 dimensional information of individual crystals, socalled grains, in polycrystalline materials are important within the field of materials science for understanding and modeling the behavior of materials.In the last decade, a number of nondestructive X-ray diffraction...

  4. Proposing an Evaluation Framework for Interventions: Focusing on Students' Behaviours in Interactive Science Exhibitions

    Science.gov (United States)

    Hauan, Nils Petter; DeWitt, Jennifer; Kolstø, Stein Dankert

    2017-01-01

    Materials designed for self-guided experiences such as worksheets and digital applications are widely used as tools to enable interactive science exhibitions to support students' progress towards conceptual understanding. However, there is a need to find expedient ways to evaluate the quality of educational experiences resulting from the use of…

  5. Evaluation of authentic science projects on climate change in secondary schools : a focus on gender differences

    NARCIS (Netherlands)

    Dijkstra, Elma; Goedhart, Martin

    2011-01-01

    Background and purpose: This study examines secondary-school students' opinions on participating in authentic science projects, which are part of an international EU project on climate change research in seven countries. Partnerships between schools and research institutes result in student projects

  6. Using Newspapers and Advertisement as a Focus for Science Teaching and Learning

    Science.gov (United States)

    Akcay, Hakan; Kapici, Hasan Ozgur; Yager, Robert E.

    2017-01-01

    The purpose of this article is to provide a brief literature review and useful suggestions for using advertisements as tools for organizing and accomplishing science teaching and learning. Newspapers and advertisements can be used as a context for developing scientific literacy and for promoting the development of critical thinking skills, through…

  7. Evaluation of Authentic Science Projects on Climate Change in Secondary Schools: A Focus on Gender Differences

    Science.gov (United States)

    Dijkstra, Elma; Goedhart, Martin

    2011-01-01

    Background and purpose: This study examines secondary-school students' opinions on participating in authentic science projects which are part of an international EU project on climate change research in seven countries. Partnerships between schools and research institutes result in student projects, in which students work with and learn from…

  8. A Talk Focus for Promoting Enjoyment and Developing Understanding in Science

    Science.gov (United States)

    Dawes, Lyn; Dore, Babs; Loxley, Peter; Nicholls, Linda

    2010-01-01

    In this paper we suggest a practical, talk-based model for the successful pursuit of teaching science in primary classrooms (Loxley et al., 2010). This model is not only based on our own experience of teaching in primary schools, and of training teachers to do so, but is also based substantially on research on classroom talk, which has built upon…

  9. Mentoring a new science teacher in reform-based ways: A focus on inquiry

    Science.gov (United States)

    Schomer, Scott D.

    The processes, understandings, and uses of inquiry are identified by the National Science Education Standards (National Research Council, 1996) as a key component of science instruction. Currently, there are few examples in the literature demonstrating how teachers go about co-constructing inquiry-based activities and how mentors can promote the use of reform-based practices by novices. The purpose of this interpretive case study was to investigate how a mentor and her protege collaboratively developed, implemented and assessed three inquiry-based experiences. The questions that guided this research were: (1) How does the mentor assist protege growth in the development, implementation and assessment of inquiry-based experiences for secondary science students? (2) How are the protege's perceptions of inquiry influenced by her participation in developing, implementing and assessing inquiry-based experiences for secondary science students? The co-construction of the inquiry activities and the facilitation provided by the mentor represented Lev Vygotsky's (1978) social construction of information as the mentor guided the protege beyond her cognitive zone of proximal development. The participants in this study were a veteran science teacher who was obtaining her mentor certification, or Teacher Support Specialist, and her protege who was a science teacher in the induction phase of her career. Data were collected through in-depth, semi-structured interviews, tape recordings of planning sessions, researcher field notes, and email reflections during the co-construction process. Inductive analysis of the data led to the identification of common categories and subsequent findings, which reflected what the mentor and protege discussed about inquiry and the process of collaboration. The six themes that emerged from this study led to several implications that are significant for science teacher preparation and the mentoring community. The teachers indicated tools, such as the

  10. Teaching to the Next Generation Science Standards with Energy, Climate, and Water Focused Games

    Science.gov (United States)

    Mayhew, M. A.; Hall, M.; Civjan, N.

    2015-12-01

    We produced two fun-to-play card games with the theme, The Nexus of Energy, Water, and Climate, that directly support teaching to the NGSS. In the games, players come to understand how demand for energy, water use, and climate change are tightly intertwined. Analysis by scientists from the national laboratories ensured that the games are reflect current data and research. The games have been tested with high school and informal science educators and their students and have received a formal evaluation. The games website http://isenm.org/games-for-learning shows how the games align with the NGSS, the Common Core, and the NRC's Strands of Science Learning. It also contains an extensive collection of accessible articles on the nexus to support use of the games in instruction. Thirst for Power is a challenging resource management game. Players, acting as governors of regions, compete to be the first to meet their citizens' energy needs. A governor can choose from a variety of carbon-based or renewable energy sources, but each source uses water and has an environmental—including climate change—impact. Energy needs must be met using only the water resources allocated to the region and without exceeding the environmental impact limit. "ACTION" cards alter game play and increase competition. Challenge and Persuade is a game of scientific argumentation, using evidence on nexus-related fact cards. Players must evaluate information, develop fact-based arguments, and communicate their findings. One card deck contains a set of adjectives, a second a series of fact cards. Players use their fact cards to make the best argument that aligns with an adjective selected by the "Judge". Players take turns being the "Judge," who determines who made the best argument. The games particularly align with NGSS elements: Connections to Engineering, Technology, and Application of Science. Players come to understand the science and engineering behind many energy sources and their impacts

  11. STEM Projects: Should We Add the "TEM" to Science?

    Science.gov (United States)

    Hall, Angela

    2012-01-01

    A recent curriculum development from the Nuffield Foundation rose to the challenge of producing a set of resources to establish STEM (Science, Technology, Engineering and Mathematics) as a curriculum focus. The result is two STEM cross-curricular projects: "Games," inspired by the London Olympics, and "Futures," a novel…

  12. Into the Curriculum. Reading/Language Arts: Hans Christian Andersen [and] Science: Bat Research [and] Science: The Library Media Center Rocks! An Introduction to Rocks, Minerals, and Gemstones [and] Social Studies: Ticket to the Olympics: Exploring Sydney and the 2000 Summer Games [and] Social Studies/Music: Sounds of the Election: Presidential Campaign Songs.

    Science.gov (United States)

    Germain, Claudia; Mayo, Jeanne B.; Hart, Lisa

    2000-01-01

    Provides five fully developed library media activities that are designed for use with specific curriculum units in reading and language arts, science, social studies, and music. Library media skills, curriculum objectives, grade levels, resources, instructional roles, procedures, evaluation, and follow-up are described for each activity. (LRW)

  13. Into the Curriculum. Reading/Language Arts: Three Little Kittens and the Lost Mittens; Reading/Language Arts: A Caldecott Archaeological Dig; Science: Discovering the Periodic Table of Elements; Science: The Red-Eyed Tree Frog Jumps into Nonfiction; Social Studies: Our Nation's Beginnings-Jamestown and Plymouth Settlements.

    Science.gov (United States)

    Cherry, Carolyn; Louk, Cathy; Barwick, Martha; Kidd, Gentry E.

    2001-01-01

    Provides five fully developed school library media activities that are designed for use with specific curriculum units in reading/language arts, science, and social studies. Library media skills objectives, curriculum (subject area) objectives, grade levels, resources, instructional roles, activity and procedures for completion, evaluation, and…

  14. Considerations of multicultural science and curriculum reform: A content analysis of state-adopted biology textbooks in Florida

    Science.gov (United States)

    Delgato, Margaret H.

    standardized testing appeared in the six textbooks representing the most recent adoption cycle. Recommendations included increased efforts to identify quality of content by including input from scholars in the field of multicultural education as well as indigenous peoples in the creation of textbook content. Recommendations also included further clarification of the definition of science within multicultural science education frameworks, indigenous knowledge as compared to Western science and pseudoscienc e, and scientific literacy as a central focus to a multicultural science education meant to address the needs of an increasingly diverse student population and prime-age workforce.

  15. The process of growing in opinion for radioactive waste disposal. Focusing on science communication and education

    International Nuclear Information System (INIS)

    Amemiya, Kiyoshi; Murakami, Yoichiro

    2004-01-01

    The choice of geological disposal of high level radioactive waste is based on science. So, public understanding of science (PUS) becomes important issue in public acceptance (PA). Considering PUS, there are two problems. One is the literacy to understand scientific information and the other is the paradigm of the public on which the knowledge formed in the public depends heavily. In this research, survey of awareness and attitude to geological disposal on the postgraduate students was conducted. They have been studying civil and rock engineering, so they belong to 'the group' that acquires high education, culture and faculty. The results of questionnaires show that the awareness of danger is affected strongly by given information even in this groups, but they become thoughtful and prudent in their opinion and decision-making as increasing information. (author)

  16. PIV and PTV measurements in hydro-sciences with focus on turbulent open-channel flows

    OpenAIRE

    Nezu, Iehisa; Sanjou, Michio

    2011-01-01

    PIV is one of the most popular measurement techniques in hydraulic engineering as well as in fluid sciences. It has been applied to study various turbulent phenomena in laboratory experiments related to natural rivers, e.g., bursting phenomena near the bed, mixing layers observed at confluences, wake turbulence around dikes and piers, and so on. In these studies, PIV plays important roles in revealing the space-time structure of velocity fluctuations and coherent vortices. This review article...

  17. Reflections on the history of indoor air science, focusing on the last 50 years.

    Science.gov (United States)

    Sundell, J

    2017-07-01

    The scientific articles and Indoor Air conference publications of the indoor air sciences (IAS) during the last 50 years are summarized. In total 7524 presentations, from 79 countries, have been made at Indoor Air conferences held between 1978 (49 presentations) and 2014 (1049 presentations). In the Web of Science, 26 992 articles on indoor air research (with the word "indoor" as a search term) have been found (as of 1 Jan 2016) of which 70% were published during the last 10 years. The modern scientific history started in the 1970s with a question: "did indoor air pose a threat to health as did outdoor air?" Soon it was recognized that indoor air is more important, from a health point of view, than outdoor air. Topics of concern were first radon, environmental tobacco smoke, and lung cancer, followed by volatile organic compounds, formaldehyde and sick building syndrome, house dust-mites, asthma and allergies, Legionnaires disease, and other airborne infections. Later emerged dampness/mold-associated allergies and today's concern with "modern exposures-modern diseases." Ventilation, thermal comfort, indoor air chemistry, semi-volatile organic compounds, building simulation by computational fluid dynamics, and fine particulate matter are common topics today. From their beginning in Denmark and Sweden, then in the USA, the indoor air sciences now show increasing activity in East and Southeast Asia. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Focusing on the Processes of Science Using Inquiry-oriented Astronomy Labs for Learning Astronomy

    Science.gov (United States)

    Speck, Angela; Ruzhitskaya, L.; Whittington, A.; Witzig, S.

    2010-01-01

    The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. We present two projects designed to develop learning materials for laboratory experiences in an undergraduate astronomy course. First, we engage students in inquiry-based learning by using "mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. This mini-journal format more directly reflects and encourages scientific practice. We use this technique in both introductory and upper level courses. The second project develops 3D virtual reality environments to help students interact with scientific constructs, and the use of collaborative learning tools to motivate student activity, deepen understanding and support knowledge building.

  19. The Bremen International Graduate School for Marine Sciences (GLOMAR) - Postgraduate education with an interdisciplinary focus

    Science.gov (United States)

    Klose, Christina

    2013-04-01

    The Bremen International Graduate School for Marine Sciences (GLOMAR) provides a dedicated research training programme for PhD students in all fields related the marine realm combined with an exceptional supervision and support programme in a stimulating research environment. The graduate school is part of MARUM - Center for Marine Environmental Sciences which is funded by the Deutsche Forschungsgemeinschaft (DFG) within the frame of the Excellence Initiative by the German federal and state governments to promote top-level research at German universities. GLOMAR hosts approx. 75 PhD students from different research institutions in Bremen and Bremerhaven. 50% of them are German, 50% have an international background. All students are a member of one of the four GLOMAR research areas: (A) Ocean & Climate, (B) Ocean & Seafloor, (C) Ocean & Life and (D) Ocean & Society. Their academic background ranges from the classical natural sciences to law, social and political sciences. The research areas are supervised by research associates who share their experience and offer advice for their younger colleagues. GLOMAR students work in an interdisciplinary and international context. They spend several months at a foreign research institution and are encouraged to actively participate in international conferences and publish their research results in international scientific journals. The services GLOMAR offers for its PhD students include team supervision by a thesis committee, a comprehensive course programme, research seminars and retreats, a family support programme, a mentoring programme for women in science, an ombudsperson and a funding system for conference trips, research residencies and publication costs. The graduate school offers different formats for interdisciplinary exchange within the PhD student community. Monthly research seminars, which are conducted by the GLOMAR research associates, provide an opportunity to discuss research results, practice oral and poster

  20. An Examination of the Science Curriculum As It Reflects Social/Industrial Change: A Proposal for Curriculum Involving Social Interactions and Utilitarian Outcomes.

    Science.gov (United States)

    Seale, Thomas Scott

    Chapter I of this master's thesis examines aspects of the changing lifestyle that was inaugerated by the Industrial and Scientific Revolutions. Chapter II picks up the transition in general schooling that accompanied the revolutions. Chapter III traces the role of the evolving science curricula in this transition. Chapter IV presents proposals…

  1. Mars Rover Curriculum: Teacher Self Reporting of Increased Frequency and Confidence in their Science and Language Arts Instruction

    Science.gov (United States)

    Bering, E. A.; Carlson, C.; Nieser, K.; Slagle, E.

    2013-12-01

    The University of Houston is in the process of developing a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model Mars rover. The program is called the Mars Rover Model Celebration (MRC). It focuses on students, teachers and parents in grades 3-8. Students design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. A total of 65 Mars Rover teachers from the 2012-2013 cohort were invited to complete the Mars Rover Teacher Evaluation Survey. The survey was administered online and could be taken at the convenience of the participant. In total, 29 teachers participated in the survey. Teachers were asked to rate their current level of confidence in their ability to teach specific topics within the Earth and Life Science realms, as well as their confidence in their ability to implement teaching strategies with their students. In addition, they were asked to rate the degree to which they felt their confidence increased in the past year as a result of their participation in the MRC program. The majority of teachers (81-90%) felt somewhat to very confident in their ability to effectively teach concepts related to earth and life sciences to their students. In addition, many of the teachers felt that their confidence in teaching these concepts increased somewhat to quite a bit as a result of their participation in the MRC program (54-88%). The most striking increase in this area was the reported 48% of teachers who felt their confidence in teaching 'Earth and the solar system and universe' increased 'Quite a bit' as a result of their participation in the MRC program. The vast majority of teachers (86-100%) felt somewhat to very confident in their ability to effectively implement all of the listed teaching strategies. In addition, the vast majority reported believing that their confidence increased somewhat to quite a bit as a result of their

  2. Educational experiences in Chemistry with Adult and Youth: incursions at science, work and ideology and its curriculums implications

    Directory of Open Access Journals (Sweden)

    Alceu Júnior Paz da Silva

    2015-11-01

    Full Text Available The contemporary setting of huge unemployment and precarization of work has brought to Adult and Youth Education courses an imaginary that secondary education is fundamental for professional qualification and achievement of (better jobs. The objective of this work is to problematize the Chemistry curriculum according to young and adults interests in order to qualify them to the world of work. For that purpose, we adopted some contributions of Gramsci’s Marxist social theory as methodological and theoretical tools to investigate hegemonic aspects in which the curriculum is immersed. By analyzing the curriculum as a space of struggle for social hegemony, we conclude that is promising to explore the historical approach of the chemical knowledge as a mediator element of counter-hegemonic educational practices.

  3. Research focus and trends in nuclear science and technology in Ghana: a bibliometric study based on the INIS database

    International Nuclear Information System (INIS)

    Agyeman, E. A.; Bilson, A.

    2015-01-01

    The peaceful application of atomic energy was introduced into Ghana about fifty years ago. This is the first bibliometric study of nuclear science and technology research publications originating from Ghana and listed in the International Nuclear Information System (INIS) Database. The purpose was to use the simple document counting method to determine the geographical distribution, annual growth and the subject areas of the publications as well as communication channels, key journals and authorship trends. The main findings of the study were that, a greater number of the nuclear science and technology records listed in the Database were published in Ghana (598 or 56.57% against 459 or 43.43% published outside Ghana). There has been a steady growth in the number of publications over the years with the most productive year being 2012. The main focus of research has been in the area of applied life sciences, comprising plant cultivation & breeding, pest & disease control, food protection and preservation, human nutrition and animal husbandry; followed by chemistry; environmental sciences; radiation protection; nuclear reactors; physics; energy; and radiology and nuclear medicine. The area with the least number of publications was safeguards and physical protection. The main channel of communicating research results was peer reviewed journals and a greater number of the journal articles were published in Ghana followed by the United Kingdom, Hungary and the Netherlands. The core journals identified in this study were Journal of Applied Science and Technology; Journal of Radioanalytical and Nuclear Chemistry; Journal of the Ghana Science Association; Radiation Protection Dosimetry; Journal of the Kumasi University of Science and Technology; West African Journal of Applied Ecology; Ghana Journal of Science; Applied Radiation and Isotopes; Annals of Nuclear Energy, IOP Conference Series (Earth and Environmental Science) and Radiation Physics and Chemistry. Eighty percent

  4. Technologies and Reformed-Based Science Instruction: The Examination of a Professional Development Model Focused on Supporting Science Teaching and Learning with Technologies

    Science.gov (United States)

    Campbell, Todd; Longhurst, Max L.; Wang, Shiang-Kwei; Hsu, Hui-Yin; Coster, Dan C.

    2015-10-01

    While access to computers, other technologies, and cyber-enabled resources that could be leveraged for enhancing student learning in science is increasing, generally it has been found that teachers use technology more for administrative purposes or to support traditional instruction. This use of technology, especially to support traditional instruction, sits in opposition to most recent standards documents in science education that call for student involvement in evidence-based sense-making activities. Many see technology as a potentially powerful resource that is reshaping society and has the potential to do the same in science classrooms. To consider the promise of technology in science classrooms, this research investigated the impact of a professional development project focused on enhancing teacher and student learning by using information and communication technologies (ICTs) for engaging students in reformed-based instruction. More specifically, these findings revealed positive teacher outcomes with respect to reformed-based and technology-supported instruction and increased ICT and new literacies skills. When considering students, the findings revealed positive outcomes with respect to ICT and new literacies skills and student achievement in science.

  5. The need for a behavioural science focus in research on mental health and mental disorders.

    Science.gov (United States)

    Wittchen, Hans-Ulrich; Knappe, Susanne; Andersson, Gerhard; Araya, Ricardo; Banos Rivera, Rosa M; Barkham, Michael; Bech, Per; Beckers, Tom; Berger, Thomas; Berking, Matthias; Berrocal, Carmen; Botella, Christina; Carlbring, Per; Chouinard, Guy; Colom, Francesc; Csillag, Claudio; Cujipers, Pim; David, Daniel; Emmelkamp, Paul M G; Essau, Cecilia A; Fava, Giovanni A; Goschke, Thomas; Hermans, Dirk; Hofmann, Stefan G; Lutz, Wolfgang; Muris, Peter; Ollendick, Thomas H; Raes, Filip; Rief, Winfried; Riper, Heleen; Tossani, Eliana; van der Oord, Saskia; Vervliet, Bram; Haro, Josep M; Schumann, Gunter

    2014-01-01

    Psychology as a science offers an enormous diversity of theories, principles, and methodological approaches to understand mental health, abnormal functions and behaviours and mental disorders. A selected overview of the scope, current topics as well as strength and gaps in Psychological Science may help to depict the advances needed to inform future research agendas specifically on mental health and mental disorders. From an integrative psychological perspective, most maladaptive health behaviours and mental disorders can be conceptualized as the result of developmental dysfunctions of psychological functions and processes as well as neurobiological and genetic processes that interact with the environment. The paper presents and discusses an integrative translational model, linking basic and experimental research with clinical research as well as population-based prospective-longitudinal studies. This model provides a conceptual framework to identify how individual vulnerabilities interact with environment over time, and promote critical behaviours that might act as proximal risk factors for ill-health and mental disorders. Within the models framework, such improved knowledge is also expected to better delineate targeted preventive and therapeutic interventions that prevent further escalation in early stages before the full disorder and further complications thereof develop. In contrast to conventional "personalized medicine" that typically targets individual (genetic) variation of patients who already have developed a disease to improve medical treatment, the proposed framework model, linked to a concerted funding programme of the "Science of Behaviour Change", carries the promise of improved diagnosis, treatment and prevention of health-risk behaviour constellations as well as mental disorders. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Graduates from a reformed undergraduate medical curriculum based on Tomorrow's Doctors evaluate the effectiveness of their curriculum 6 years after graduation through interviews

    Directory of Open Access Journals (Sweden)

    Taylor David CM

    2010-09-01

    Full Text Available Abstract Background In 1996 Liverpool reformed its medical curriculum from a traditional lecture based course to a curriculum based on the recommendations in Tomorrow's Doctors. A project has been underway since 2000 to evaluate this change. This paper focuses on the views of graduates from that reformed curriculum 6 years after they had graduated. Methods Between 2007 and 2009 45 interviews took place with doctors from the first two cohorts to graduate from the reformed curriculum. Results The interviewees felt like they had been clinically well prepared to work as doctors and in particular had graduated with good clinical and communication skills and had a good knowledge of what the role of doctor entailed. They also felt they had good self directed learning and research skills. They did feel their basic science knowledge level was weaker than traditional graduates and perceived they had to work harder to pass postgraduate exams. Whilst many had enjoyed the curriculum and in particular the clinical skills resource centre and the clinical exposure of the final year including the "shadowing" and A & E attachment they would have liked more "structure" alongside the PBL when learning the basic sciences. Conclusion According to the graduates themselves many of the aims of curriculum reform have been met by the reformed curriculum and they were well prepared clinically to work as doctors. However, further reforms may be needed to give confidence to science knowledge acquisition.

  7. Graduates from a reformed undergraduate medical curriculum based on Tomorrow's Doctors evaluate the effectiveness of their curriculum 6 years after graduation through interviews.

    Science.gov (United States)

    Watmough, Simon D; O'Sullivan, Helen; Taylor, David C M

    2010-09-29

    In 1996 Liverpool reformed its medical curriculum from a traditional lecture based course to a curriculum based on the recommendations in Tomorrow's Doctors. A project has been underway since 2000 to evaluate this change. This paper focuses on the views of graduates from that reformed curriculum 6 years after they had graduated. Between 2007 and 2009 45 interviews took place with doctors from the first two cohorts to graduate from the reformed curriculum. The interviewees felt like they had been clinically well prepared to work as doctors and in particular had graduated with good clinical and communication skills and had a good knowledge of what the role of doctor entailed. They also felt they had good self directed learning and research skills. They did feel their basic science knowledge level was weaker than traditional graduates and perceived they had to work harder to pass postgraduate exams. Whilst many had enjoyed the curriculum and in particular the clinical skills resource centre and the clinical exposure of the final year including the "shadowing" and A & E attachment they would have liked more "structure" alongside the PBL when learning the basic sciences. According to the graduates themselves many of the aims of curriculum reform have been met by the reformed curriculum and they were well prepared clinically to work as doctors. However, further reforms may be needed to give confidence to science knowledge acquisition.

  8. When Science is Not Enough: A Framework Towards More Customer-Focused Drug Development.

    Science.gov (United States)

    Oraiopoulos, Nektarios; Dunlop, William C N

    2017-07-01

    The purpose of this study was to identify the key barriers to a customer-focused drug development process and develop a comprehensive framework to overcome them. The paper draws on existing literature, both academic and practitioner, across a range of disciplines (innovation management, marketing, organizational behavior, behavioral economics, health economics, industry reports). On the basis of this extensive review, a conceptual framework is developed that offers concrete suggestions on how organizations can overcome the barriers and enable a more customer-focused development process. The barriers to collaboration are organized into three distinct categories (economic, behavioral, organizational), and within each category, a one-to-one mapping between barriers and solutions is developed. The framework is specifically designed with the objective of offering actionable and practical advice to executives who face these challenges in their organizations. The paper provides a unique theoretical contribution by synthesizing findings from several academic disciplines with concrete examples from the pharmaceutical industry. Mundipharma International Limited.

  9. Learning to Critique and Adapt Science Curriculum Materials: Examining the Development of Preservice Elementary Teachers' Pedagogical Content Knowledge

    Science.gov (United States)

    Beyer, Carrie J.; Davis, Elizabeth A.

    2012-01-01

    Teachers often engage in curricular planning by critiquing and adapting existing curriculum materials to contextualize lessons and compensate for their deficiencies. Designing instruction for students is shaped by teachers' ability to apply a variety of personal resources, including their pedagogical content knowledge (PCK). This study…

  10. An Evaluation of the Agriculture Science Project in Mauritius. African Studies in Curriculum Development & Evaluation No. 102.

    Science.gov (United States)

    Jeeroburkhan, M. Fazal

    This study evaluated the Agricultural Curriculum Project which is being implemented in 16 secondary schools in Mauritius. Specific areas examined included: (1) the relevance, appropriateness, and practicability of the project's general objectives; (2) the relevance, balance, and organization of the course content; (3) the effectiveness and…

  11. A Study of Curriculum Literacy and Information Literacy Levels of Teacher Candidates in Department of Social Sciences Education

    Science.gov (United States)

    Sural, Serhat; Dedebali, Nurhak Cem

    2018-01-01

    The present study aims to investigate information literacy and curriculum literacy levels of teacher candidates and to identify the relationship between them through their course of study at Faculty of Education. The research model was designed as quantitative one and general screening model was employed. The study group is 895 students, who were…

  12. Dynamics of Clothing I. Curriculum Guide. A Family and Consumer Sciences Education Course of Study for Grades 9-12.

    Science.gov (United States)

    Hunger, Dean-Ellen, Ed.; Hancey, Helen-Louise; Hendrickson, Diane; Hicks, Camille; Munns, Barbara; Price, Barbara

    This document is a six-unit curriculum guide for a high school (grades 9-12) course in clothing instruction. The units contain one to three lessons on the following topics: (1) psychology of clothing and appearance (role of clothing and clothing choices, personal grooming); (2) design principles (line and design, color); (3) construction…

  13. Curriculum and instruction in nuclear waste disposal

    International Nuclear Information System (INIS)

    Robinson, M.; Lugaski, T.; Pankratius, B.

    1991-01-01

    Curriculum and instruction in nuclear waste disposal is part of the larger problem of curriculum and instruction in science. At a time when science and technological literacy is crucial to the nation's economic future fewer students are electing to take needed courses in science that might promote such literacy. The problem is directly related to what science teachers teach and how they teach it. Science content that is more relevant and interesting to students must be a part of the curriculum. Science instruction must allow students to be actively involved in investigating or playing the game of science

  14. Earth Expeditions: Telling the stories of eight NASA field campaigns by focusing on the human side of science

    Science.gov (United States)

    Bell, S.

    2016-12-01

    NASA's Earth Right Now communication team kicked off an ambitious multimedia campaign in March 2016 to tell the stories of eight major field campaigns studying regions of critical change from the land, sea and air. Earth Expeditions focused on the human side of science, with live reporting from the field, behind-the-scenes images and videos, and extended storytelling over a six-month period. We reported from Greenland to Namibia, from the eastern United States to the South Pacific. Expedition scientists explored ice sheets, air quality, coral reefs, boreal forests, marine ecosystems and greenhouse gases. All the while the campaign communications team was generating everything from blog posts and social media shareables, to Facebook Live events and a NASA TV series. We also participated in community outreach events and pursued traditional media opportunities. A massive undertaking, we will share lessons learned, best practices for social media and some of our favorite moments when science communication touched our audience's lives.

  15. Teachers' Views of the Nature of Science: A Study on Pre-Service Science Teachers in Sabah, Malaysia

    Science.gov (United States)

    Fah, Lay Yoon; Hoon, Khoo Chwee

    2011-01-01

    Science education in Malaysia nurtures a science and technology culture by focusing on the development of individuals who are competitive, dynamic, robust, resilient and able to master scientific knowledge and technological competency. To this end, the science curriculum in Malaysia gives conscious emphasis to the acquisition of scientific skills…

  16. Effects of Teacher Lesson Introduction on Second Graders' Creativity in a Science/Literacy Integrated Unit on Health and Nutrition

    Science.gov (United States)

    Webb, Angela Naomi; Rule, Audrey C.

    2014-01-01

    The focus on standardized testing in the areas of reading and mathematics in early elementary education often minimalizes science and the arts in the curriculum. The science topics of health and nutrition were integrated into the reading curriculum through read aloud books. Inclusion of creativity skills through figural transformation drawings…

  17. Models for Instruction and Curriculum.

    Science.gov (United States)

    Toth, Elizabeth L.

    1999-01-01

    Proposes three models of course-specific curricula and a content-curriculum model for undergraduate public-relations education, and proposes core and elective areas for a master's of public-relations curriculum. Agrees that public-relations curricula should have a broad liberal arts and science basis, and recommended more attention to ethics,…

  18. The Integrated Early Childhood Curriculum.

    Science.gov (United States)

    Krogh, Suzanne

    This textbook provides an outline of an integrated curriculum for early childhood education. Part 1 discusses the human element in school: the child and the teacher and child development. Part 2 contains the curriculum itself and covers the subjects of language, mathematics, science, social studies, art, music, and movement. Guidelines provide…

  19. Focused science shop - Potential environmental impact of radioactive waste disposal in comparison with other hazardous wastes. Deliverable 7

    International Nuclear Information System (INIS)

    Vojtechova, Hana

    2008-07-01

    An important part of the ARGONA project is the testing and application of novel participation and dialogue approaches. The Czech Republic is one of the countries where these approaches will be applied and tested. The ways in this is being done include a series of events involving different stakeholders such as a focused science shop, a consensus panel and an interaction panel. In the framework of these activities in the Czech Republic the focused science shop was held on March 12, 2008 in the Nuclear Research Institute (NRI) in Rez, and addressed the theme: 'Radioactive waste management and radiation risk in comparison with other hazardous waste and risks'. The main goal of this focused science shop was to increase awareness amongst the public of actual and potential effects of radioactive and toxic wastes and to prioritise questions/uncertainties that people might have in this field. The following topics were discussed: - Differences in the general perception of nuclear waste in comparison with other toxic wastes; - General public awareness of the issue of nuclear waste management and other toxic wastes management; - Management and ultimate disposal of radioactive waste and other toxic waste in terms of the technology employed; - NIMBY effect. A broader audience was selected with a suitable mixture of specialists and interested technical and non-technical peers including representatives from NRI, universities, Ministry of Industry and Trade, Ministry of the Environment, State Office for Nuclear Safety and Radioactive Waste Repository Authority, representatives of municipalities and NGOs, and waste producers such as CEZ plc etc. In the Czech Republic there is a general unwillingness by the public to actively participate in the NWM decision-making process. Therefore, despite all the efforts made by the project team, not all invited stakeholders attended the meeting. Despite this, the meeting was very positively received by those who did attend and indicates the

  20. Whose interests and under whose control?: Interest convergence in science-focused school-community collaborations

    Science.gov (United States)

    Morrison, Deb

    2018-03-01

    In this dialogue with Monica Ridgeway and Randy Yerrick's Whose banner are we waving?: exploring STEM partnerships for marginalized urban youth, I engage the critical race theory (CRT) tenet of interest convergence. I first expand Derrick Bell's (1980) initial statement of interest convergence with subsequent scholarly work in this area. I then explore ways CRT in general and interest convergence specifically have been applied in the field of education. Using this framing, I examine how interest convergence may be shed new insights into Monica Ridgeway and Randy Yerrick's study. For example, the tenet of interest convergence is used to frame why it was beneficial for the White artist, Jacob, and the Achievement Scholars to collaborate in the service-learning mural. Then the idea of interest divergence is brought into explore the ways in which Jacob benefitted from his participation in the service learning project while the Achievement Scholars were left with an unfinished project which they had to problem solve. To conclude, I provide future directions for the application of interest convergence and divergence to issues facing science education.