WorldWideScience

Sample records for science curriculum classroom

  1. Understanding Curriculum, Instruction and Assessment within Eighth Grade Science Classrooms for Special Needs Students

    Science.gov (United States)

    Riedell, Kate Elizabeth

    The Individuals with Disabilities Education Act (IDEA, 2004) cemented the fact that students with disabilities must be placed in the least restrictive environment and be given the necessary supports to help them succeed (Lawrence-Brown, 2004). This provides significant challenges for general education teachers, especially in an era of standards based reform with the adoption of the Common Core State Standards (CCSSI, 2014) by most states, along with the Next Generation Science Standards (NGSS, 2013). While a variety of methods, strategies, and techniques are available to teachers, there is a dearth of literature that clearly investigates how teachers take into account the ability and motivation of students with special needs when planning and implementing curriculum, instruction, and assessment. Thus, this study sought to investigate this facet through the lens of differentiation, personalization, individualization and universal design for learning (UDL) (CAST, 2015), all of which are designed to meet the needs of diverse learners, including students with special needs. An embedded single-case study design (Yin, 2011) was used in this study with the case being differentiated and/or personalized curriculum, instruction and/or assessment, along with UDL for students with special needs, with each embedded unit of analysis being one eighth grade general education science teacher. Analyzing each sub-unit or case, along with a cross-case analysis, three eighth grade general education science teachers were observed over the course of two 10-day units of study in the fall and spring, as they collected artifacts and completed annotations within their electronic portfolios (ePortfolios). All three eighth grade general education science teachers collected ePortfolios as part of their participation in a larger study within California, "Measuring Next Generation Science Instruction Using Tablet-Based Teacher Portfolios," funded by the National Science Foundation. Each teacher

  2. Classroom Environment in the Implementation of an Innovative Curriculum Project in Science Education.

    Science.gov (United States)

    Suarez, Mercedes; Pias, Rosa; Membiela, Pedro; Dapia, Dolores

    1998-01-01

    Analyzes the perceptions of students, teachers, and external observers in order to study the influence of classroom environment on the implementation of an innovative project in science education. Contains 33 references. (DDR)

  3. Teachers' Sensemaking about Implementation of an Innovative Science Curriculum Across the Settings of Professional Development and Classroom Enactment

    Science.gov (United States)

    de los Santos, Xeng

    Designing professional development that effectively supports teachers in learning new and often challenging practices remains a dilemma for teacher educators. Within the context of current reform efforts in science education, such as the Next Generation Science Standards, teacher educators are faced with managing the dilemma of how to support a large number of teachers in learning new practices while also considering factors such as time, cost, and effectiveness. Implementation of educative, reform-aligned curricula is one way to reach many teachers at once. However, one question is whether large-scale curriculum implementation can effectively support teachers in learning and sustaining new teaching practices. To address this dilemma, this study used a comparative, multiple case study design to investigate how secondary science teachers engaged in sensemaking about implementation of an innovative science curriculum across the settings of professional development and classroom enactment. In using the concept of sensemaking from organizational theory, I focused specifically on how teachers' roles in social organizations influenced their decisions to implement the curriculum in particular ways, with differing outcomes for their own learning and students' engagement in three-dimensional learning. My research questions explored: (1) patterns in teachers' occasions of sensemaking, including critical noticing of interactions among themselves, the curriculum, and their students; (2) how teachers' social commitments to different communities influenced their sensemaking; and, (3) how sustained sensemaking over time could facilitate teacher learning of rigorous and responsive science teaching practices. In privileging teachers' experiences in the classroom using the curriculum with their students, I used data generated primarily from teacher interviews with their case study coaches about implementation over the course of one school year. Secondary sources of data included

  4. Implementing Curriculum-Embedded Formative Assessment in Primary School Science Classrooms

    Science.gov (United States)

    Hondrich, Annika Lena; Hertel, Silke; Adl-Amini, Katja; Klieme, Eckhard

    2016-01-01

    The implementation of formative assessment strategies is challenging for teachers. We evaluated teachers' implementation fidelity of a curriculum-embedded formative assessment programme for primary school science education, investigating both material-supported, direct application and subsequent transfer. Furthermore, the relationship between…

  5. From Prescribed Curriculum to Classroom Practice: An Examination of the Implementation of the New York State Earth Science Standards

    Science.gov (United States)

    Contino, Julie; Anderson, O. Roger

    2013-01-01

    In New York State (NYS), Earth science teachers use the "National Science Education Standards" (NSES), the NYS "Learning Standards for Mathematics, Science and Technology" (NYS Standards), and the "Physical Setting/Earth Science Core Curriculum" (Core Curriculum) to create local curricula and daily lessons. In this…

  6. The Ocean Acidification Curriculum Collection - sharing ocean science resources for k-12 classrooms

    Science.gov (United States)

    Williams, P.

    2016-02-01

    The fish and shellfish provided by ecosystems that abound in the waters of Puget Sound have sustained the Suquamish Tribe for millennia. However, years of development, pollution and over-harvest have reduced some fish and shellfish populations to just a fraction of their former abundance. Now, ocean acidification (OA) and climate change pose additional threats to these essential natural resources. Ocean acidification can't be stopped; however, many of the other human-caused stressors to ocean health can. If human behaviors that harm ocean health can be modified to reduce impacts, fish populations and ecosystems could become more resilient to the changing ocean conditions. School is arguably the best place to convey the ideas and awareness needed for people to adopt new behaviors. Students are open to new ideas and they influence their peers and parents. In addition, they are captive audiences in classrooms for many years.The Suquamish Tribe is helping to foster new generations of ocean stewards by creating an online searchable database (OACurriculumCollection.org). This site is designed to facilitate finding, reviewing and sharing free educational materials on OA. At the same time, the Next Generation Science Standards (NGSS) were released providing a great opportunity to get new materials into classrooms. OA provides highly appropriate context to teach many of the ideas in the new standards making it attractive to teachers looking for interesting and relevant materials. In this presentation, we will demonstrate how teachers can use the site as a place to find and share materials on OA. We will also present a framework developed by teachers for understanding OA, its impacts, and the many ways students can help ease the impacts on ocean ecosystems. We will provide examples of how OA can be used as context and content for the NGSS and finally, we will discuss the failures and successes on our journey to get relevant materials into the classroom.

  7. Science and Exploration in the Classroom & Beyond: An Interdisciplinary STEAM Curriculum Developed by SSERVI Educators & Scientists

    Science.gov (United States)

    Becker, Tracy M.; Runyon, Cassandra; Cynthia, Hall; Britt, Daniel; Tracy Becker

    2017-10-01

    Through NASA’s Solar System Exploration Research Virtual Institute (SSERVI), the Center for Lunar and Asteroid Surface Science (CLASS) and the SSERVI Evolution and Environment of Exploration Destinations (SEEED) nodes have developed an interdisciplinary formal and informal hands-on curriculum to bring the excitement of space exploration directly to the students.With a focus on exploring asteroids, this 5-year effort has infused art with traditional STEM practices (creating STEAM) and provides teachers with learning materials to incorporate art, social studies, English language arts, and other courses into the lesson plans. The formal curricula being developed follows Next Generation Standards and incorporates effective and engaging pedagogical strategies, such as problem-based learning (PBL), design thinking, and document based questions, using authentic data and articles, some of which are produced by the SSERVI scientists. From the materials developed for the formal education component, we have built up a collection of informal activities of varying lengths (minutes to weeks-long programs) to be used by museums, girl and boy scouts, science camps, etc.The curricula are being developed by formal and informal educators, artists, storytellers, and scientists. The continual feedback between the educators, artists, and scientists enables the program to evolve and mature such that the material will be accessible to the students without losing scientific merit. Online components will allow students to interact with SSERVI scientists and will ultimately infuse ongoing, exciting research into the student’s lessons.Our Education & Public Engagement (EPE) program makes a strong effort to make educational material accessible to all learners, including those with visual or hearing impairments. Specific activities have been included or independently developed to give all students an opportunity to experience the excitement of the universe.

  8. Windmills by Design: Purposeful Curriculum Design to Meet Next Generation Science Standards in a 9-12 Physics Classroom

    Science.gov (United States)

    Concannon, James; Brown, Patrick L.

    2017-01-01

    The "Next Generation Science Standards" (NGSS) challenges science teachers to think beyond specific content standards when considering how to design and implement curriculum. This lesson, "Windmills by Design," is an insightful lesson in how science teachers can create and implement a cross-cutting lesson to teach the concepts…

  9. Implementing a Robotics Curriculum in an Early Childhood Montessori Classroom

    Science.gov (United States)

    Elkin, Mollie; Sullivan, Amanda; Bers, Marina Umaschi

    2014-01-01

    This paper explores how robotics can be used as a new educational tool in a Montessori early education classroom. It presents a case study of one early educator's experience of designing and implementing a robotics curriculum integrated with a social science unit in her mixed-age classroom. This teacher had no prior experience using robotics in…

  10. Connecting Cultures & Classrooms. K-12 Curriculum Guide: Language Arts, Science, Social Studies. Indian Education for All

    Science.gov (United States)

    Fox, Sandra J., Ed.

    2006-01-01

    This curriculum guide is but one of the resources that the Montana Office of Public Instruction is providing to help teachers implement Indian Education for All. The philosophy of this document promotes the use of Indian literature as an instructional tool. There are no textbooks presently for including aspects of Montana Indian cultures into the…

  11. Increasing ocean sciences in K and 1st grade classrooms through ocean sciences curriculum aligned to A Framework for K-12 Science Education, and implementation support.

    Science.gov (United States)

    Pedemonte, S.; Weiss, E. L.

    2016-02-01

    Ocean and climate sciences are rarely introduced at the early elementary levels. Reasons for this vary, but include little direct attention at the national and state levels; lack of quality instructional materials; and, lack of teacher content knowledge. Recent recommendations by the National Research Council, "revise the Earth and Space sciences core ideas and grade band endpoints to include more attention to the ocean whenever possible" (NRC, 2012, p. 336) adopted in the Next Generation Science Standards (NGSS), may increase the call for ocean and climate sciences to be addressed. In response to these recommendations' and the recognition that an understanding of some of the Disciplinary Core Ideas (DCIs) would be incomplete without an understanding of processes or phenomena unique to the ocean and ocean organisms; the ocean Literacy community have created documents that show the alignment of NGSS with the Ocean Literacy Principles and Fundamental Concepts (Ocean Literacy, 2013) as well as the Ocean Literacy Scope and Sequence for Grades K-12 (Ocean Literacy, 2010), providing a solid argument for how and to what degree ocean sciences should be part of the curriculum. However, the percentage of science education curricula focused on the ocean remains very low. This session will describe a new project, that draws on the expertise of curriculum developers, ocean literacy advocates, and researchers to meet the challenges of aligning ocean sciences curriculum to NGSS, and supporting its implementation. The desired outcomes of the proposed project are to provide a rigorous standards aligned curricula that addresses all of the Life Sciences, and some Earth and Space Sciences and Engineering Design Core Ideas for Grades K and 1; and provides teachers with the support they need to understand the content and begin implementation. The process and lessons learned will be shared.

  12. Improving the Science Curriculum with Bioethics.

    Science.gov (United States)

    Lundmark, Cathy

    2002-01-01

    Explains the importance of integrating bioethics into the science curriculum for student learning. Introduces a workshop designed for middle and high school science teachers teaching bioethics, its application to case studies, and how teachers can fit bioethics into their classroom. (YDS)

  13. K-6 Science Curriculum.

    Science.gov (United States)

    Blueford, J. R.; And Others

    A unified science approach is incorporated in this K-6 curriculum mode. The program is organized into six major cycles. These include: (1) science, math, and technology cycle; (2) universe cycle; (3) life cycle; (4) water cycle; (5) plate tectonics cycle; and (6) rock cycle. An overview is provided of each cycle's major concepts. The topic…

  14. Teaching Grade Eight Science with Reference to the Science Curriculum

    Directory of Open Access Journals (Sweden)

    Rasel Babu

    2016-08-01

    Full Text Available A mixed methodological approach was used to explore to what extent the science curriculum was being reflected in science teaching-learning of grade VIII students in Bangladesh. 160 students were randomly selected and 10 science teachers were purposively selected as study respondents. Fifteen science lessons were observed. Data were collected via student questionnaires, teacher interviews, and classroom observation checklists. Grade VIII science teaching-learning activities were not conducted according to the instructions of the science curriculum. Most teachers did not adhere to the curriculum and teacher's guide. Teachers mainly depended on lecture methods for delivering lessons. Learning by doing, demonstrating experiments, scientific inquiry, rational thinking, and analysing cause-effect relationships were noticeably absent. Teachers reported huge workloads and a lack of ingredients as reasons for not practising these activities. Teachers did not use teaching aids properly. Science teaching-learning was fully classroom centred, and students were never involved in any creative activities. 

  15. The flipped classroom: practices and opportunities for health sciences librarians.

    Science.gov (United States)

    Youngkin, C Andrew

    2014-01-01

    The "flipped classroom" instructional model is being introduced into medical and health sciences curricula to provide greater efficiency in curriculum delivery and produce greater opportunity for in-depth class discussion and problem solving among participants. As educators employ the flipped classroom to invert curriculum delivery and enhance learning, health sciences librarians are also starting to explore the flipped classroom model for library instruction. This article discusses how academic and health sciences librarians are using the flipped classroom and suggests opportunities for this model to be further explored for library services.

  16. Bringing Inquiry Science to K-5 Classrooms

    Science.gov (United States)

    Schachtel, Paula L.; Messina, D. L.; McDermott, L. C.

    2006-12-01

    As a science coach in the Seattle School District, I am responsible for helping other elementary teachers teach science. For several years, I have been participating in a program that consists of intensive NSF Summer Institutes and an ongoing academic-year Continuation Course. Teachers in this program work through modules in Physics by Inquiry, a research-based curriculum developed by the Physics Education Group at the University of Washington.1 I will discuss how this type of professional development has deepened my understanding of topics in physical science, helped me to teach science by inquiry to my own students, and enabled me to assist my colleagues in implementing inquiry science in their K-5 classrooms. Sponsored by Lillian C. McDermott. 1. A research-based curriculum developed by L.C. McDermott and the Physics Education Group at the University of Washington, Physics by Inquiry, New York, NY, John Wiley & Sons, Inc. (1996.)

  17. Grade 6 Science Curriculum Specifications.

    Science.gov (United States)

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    This material describes curriculum specifications for grade 6 science in Alberta. Emphases recommended are: (1) process skills (50%); (2) psychomotor skills (10%); (3) attitudes (10%); and (4) subject matter (30%). Priorities within each category are identified. (YP)

  18. Science Curriculum Guide, Level 4.

    Science.gov (United States)

    Newark School District, DE.

    The fourth of four levels in a K-12 science curriculum is outlined. In Level 4 (grades 9-12), science areas include earth science, biology, chemistry, and physics. Six major themes provide the basis for study in all levels (K-12). These are: Change, Continuity, Diversity, Interaction, Limitation, and Organization. In Level 4, all six themes are…

  19. Science beyond the Classroom Boundaries

    Science.gov (United States)

    Feasey, Rosemary; Bianchi, Lynne

    2011-01-01

    There have been many years of innovation in primary science education. Surprisingly, however, most of this has taken place within the confines of the classroom. What primary science has not yet done with universal success is step outside the classroom boundaries to use the school grounds for teaching and learning across all aspects of the science…

  20. Learning Science beyond the Classroom.

    Science.gov (United States)

    Ramey-Gassert, Linda

    1997-01-01

    Examines a cross-section of craft knowledge and research-based literature of science learning beyond the classroom. Describes informal science education programs, and discusses implications for science teaching, focusing on the importance of informal science learning for children and in-service and preservice teachers. Proposes a model for…

  1. Everyday classroom assessment practices in science classrooms in Sweden

    Science.gov (United States)

    Gómez, María del Carmen; Jakobsson, Anders

    2014-12-01

    The focus of this study is to examine to what extent and in what ways science teachers practice assessment during classroom interactions in everyday activities in an upper-secondary school in Sweden. We are science teachers working now with a larger research project on assessment in science education that seeks to examine teachers' assessment practices in the upper-secondary school. Framing questions include: are teachers performing an integrated assessment of students' skills as the national curriculum mandates? If so, what do the instructional discourses look like in those situations and what are students' experiences regarding their agency on learning and assessment? We emphasize the social, cultural and historic character of assessment and sustain a situated character of learning instead of the notion that learning is "stored inside the head". Teacher led lessons in three science classrooms were video-recorded and analyzed by combining ethnographic and discourse methods of analysis. Both methods are appropriate to the theoretical foundation of our approach on learning and can give some answers to questions about how individuals interact socially, how their experience is passed on to next generations through language and how language use may reveal cultural changes in the studied context. Making the study of action in a classroom the focal point of sociocultural analysis supports the examination of assessment processes and identification of the social roles in which teachers and students are immersed. Such an approach requires observations of how teachers act in authentic teaching situations when they interact with their students in classroom making possible to observe negotiation processes, agencies when both teachers and students are involved in every-day activities. Our study showed that teachers mostly ignored students' questions and that students solved their own problems by helping each other. Teachers did not provide opportunities for students to discuss

  2. Factors Affecting Student Success with a Google Earth-Based Earth Science Curriculum

    Science.gov (United States)

    Blank, Lisa M.; Almquist, Heather; Estrada, Jen; Crews, Jeff

    2016-01-01

    This study investigated to what extent the implementation of a Google Earth (GE)-based earth science curriculum increased students' understanding of volcanoes, earthquakes, plate tectonics, scientific reasoning abilities, and science identity. Nine science classrooms participated in the study. In eight of the classrooms, pre- and post-assessments…

  3. Uncovering Portuguese teachers’ difficulties in implementing sciences curriculum

    Directory of Open Access Journals (Sweden)

    Clara Vasconcelos

    2015-12-01

    Full Text Available Many countries recognize the positive and effective results of improving science education through the introduction of reforms in the sciences curriculum. However, some important issues are generally neglected like, for example, the involvement of the teachers in the reform process. Taking the sciences curriculum reform under analysis and benefitting from 10 years of teachers’ experiences in teaching sciences based on this curriculum, 19 semi-structure interviews were applied so as to identify the major difficulties felt by science teachers when implementing the Portuguese sciences curriculum in the third cycle of middle school (pupils’ age range of 12–15. Some of the difficulties depicted by the data analysis include: length of the curriculum, lack of time, unsuitable laboratory facilities, insufficient means and materials for experimental work, pupils’ indiscipline and little interest in learning sciences. Although less frequently mentioned, the lack of professional development was also referred to as a constraint that seems to play an essential role in this process. Some recommendations for improving the success of sciences curriculum reforms’ implementation are given: defining and conceptualizing curricular policies by relating the reality of both the schools and the science classrooms; reorganizing and restructuring pre-service teachers’ courses; organizing professional development courses for in-service teachers.

  4. Factors influencing teacher decisions on school, classroom, and curriculum

    Science.gov (United States)

    Crocker, Robert K.; Banfield, Helen

    This article describes a study designed to explore sources of influence on the judgments made by science teachers on school characteristics, classroom features, and properties of a science curriculum. The study had its theoretical basis in the concept that members of a social organization operate under certain functional paradigms, which govern their approach to events within the organization, and particularly to the implementation of innovations. Empirically, the study formed part of the Canadian contribution to the Second International Science Study, and was based on a survey of some 2000 Canadian teachers. The survey used an adaptation of policy capturing methodology, in which teachers were presented with variations in a hypothetical scenario designed to simulate a decision-making situation. Results suggest that teachers' judgments center around a number of factors, the primary ones being concern for student ability and interest, teaching methods, and school spirit and morale. On the other hand, variations in the scientific basis of a curriculum appear to exert little influence. The results are interpreted as indicators of the major elements of teacher functional paradigms.

  5. Turkish Preservice Science Teachers' Socioscientific Issues-Based Teaching Practices in Middle School Science Classrooms

    Science.gov (United States)

    Genel, Abdulkadir; Topçu, Mustafa Sami

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle…

  6. Multimodal Scaffolding in the Secondary English Classroom Curriculum

    Science.gov (United States)

    Boche, Benjamin; Henning, Megan

    2015-01-01

    This article examines the topic of multimodal scaffolding in the secondary English classroom curriculum through the viewpoint of one teacher's experiences. With technology becoming more commonplace and readily available in the English classroom, we must pinpoint specific and tangible ways to help teachers use and teach multimodalities in their…

  7. Leading Change in the Primary Science Curriculum

    Science.gov (United States)

    Waller, Nicky; Baker, Chris

    2014-01-01

    Nicky Waller and Chris Baker believe that change can be a good thing and explain how their training has helped others to adjust to the new science curriculum. In September 2013, teachers across England received the definitive version of the new primary curriculum "Leading Change in the Primary Science Curriculum." This course aimed to…

  8. Curriculum Connection: Create a Classroom Community.

    Science.gov (United States)

    Donlan, Leni

    1991-01-01

    One elementary teacher runs her classroom as a technology-based token economy. Students hold classroom jobs and use software to track money earned, manage checking accounts, and disburse classroom cash. The strategy boosts math and technology skills. A list of software programs is included. (SM)

  9. Curriculum Integration in the General Music Classroom

    Science.gov (United States)

    Munroe, Angela

    2015-01-01

    Arts integration is a topic that has been researched and discussed by music educators and general educators alike. Some feel this is a worthwhile endeavor in both the arts classroom and the general classroom, while others feel that we should be spending what little time we have in the music classroom focusing on music goals. This article will…

  10. Water Pollution, Environmental Science Curriculum Guide Supplement.

    Science.gov (United States)

    McKenna, Harold J.

    This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers…

  11. Study and practice of flipped classroom in optoelectronic technology curriculum

    Science.gov (United States)

    Shi, Jianhua; Lei, Bing; Liu, Wei; Yao, Tianfu; Jiang, Wenjie

    2017-08-01

    "Flipped Classroom" is one of the most popular teaching models, and has been applied in more and more curriculums. It is totally different from the traditional teaching model. In the "Flipped Classroom" model, the students should watch the teaching video afterschool, and in the classroom only the discussion is proceeded to improve the students' comprehension. In this presentation, "Flipped Classroom" was studied and practiced in opto-electronic technology curriculum; its effect was analyzed by comparing it with the traditional teaching model. Based on extensive and deep investigation, the phylogeny, the characters and the important processes of "Flipped Classroom" are studied. The differences between the "Flipped Classroom" and the traditional teaching model are demonstrated. Then "Flipped Classroom" was practiced in opto-electronic technology curriculum. In order to obtain high effectiveness, a lot of teaching resources were prepared, such as the high-quality teaching video, the animations and the virtual experiments, the questions that the students should finish before and discussed in the class, etc. At last, the teaching effect was evaluated through analyzing the result of the examination and the students' surveys.

  12. The Astrobiology in Secondary Classrooms (ASC) curriculum: focusing upon diverse students and teachers.

    Science.gov (United States)

    Arino de la Rubia, Leigh S

    2012-09-01

    The Minority Institution Astrobiology Collaborative (MIAC) began working with the NASA Goddard Center for Astrobiology in 2003 to develop curriculum materials for high school chemistry and Earth science classes based on astrobiology concepts. The Astrobiology in Secondary Classrooms (ASC) modules emphasize interdisciplinary connections in astronomy, biology, chemistry, geoscience, physics, mathematics, and ethics through hands-on activities that address national educational standards. Field-testing of the Astrobiology in Secondary Classrooms materials occurred over three years in eight U.S. locations, each with populations that are underrepresented in the career fields of science, technology, engineering, and mathematics. Analysis of the educational research upon the high school students participating in the ASC project showed statistically significant increases in students' perceived knowledge and science reasoning. The curriculum is in its final stages, preparing for review to become a NASA educational product.

  13. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  14. Science curriculum formation in Denmark

    DEFF Research Database (Denmark)

    Chaiklin, Seth

    Cultural-historical theory is primarily a psychological theory about and human action and development within meaningful contexts. As a psychologically-oriented theory, it can be relevant to science education research, even if it was not been developed or elaborated specifically in relation...... to problems within science education. STEM education research can be reduced (roughly) to four major problem areas: curriculum, empirical evaluation of existing practices and conditions, didactics, and professional development, where each of these categories can be concretised further according to grade...... between research and practice, (b) the idea of developmental teaching, and (c) the idea of theoretical thinking. This paper will present an example of subject-matter analysis for food production and food chemistry to illustrate practical consequences that follow from these three points....

  15. Cascade-sea : Computer Assisted Curriculum Analysis, Design & Evaluation for Science Education in Africa.

    NARCIS (Netherlands)

    McKenney, Susan; van den Akker, Jan; Maribe, Robert; Gustafson, Kent; Nieveen, Nienke; Plomp, Tjeerd

    1999-01-01

    The CASCADE-SEA program aims to support curriculum development within the context of secondary level science and mathematics education in sub-Saharan Africa. This project focuses on the iterative design of a computer-based curriculum development support system for the creation of classroom

  16. Curriculum Design of a Flipped Classroom to Enhance Haematology Learning

    Science.gov (United States)

    Porcaro, Pauline A.; Jackson, Denise E.; McLaughlin, Patricia M.; O'Malley, Cindy J.

    2016-01-01

    A common trend in higher education is the "flipped" classroom, which facilitates active learning during class. The flipped approach to teaching was instituted in a haematology "major" class and the students' attitudes and preferences for the teaching materials were surveyed. The curriculum design was explicit and involved four…

  17. Understanding children's science identity through classroom interactions

    Science.gov (United States)

    Kim, Mijung

    2018-01-01

    Research shows that various stereotypes about science and science learning, such as science being filled with hard and dry content, laboratory experiments, and male-dominated work environments, have resulted in feelings of distance from science in students' minds. This study explores children's experiences of science learning and science identity. It asks how children conceive of doing science like scientists and how they develop views of science beyond the stereotypes. This study employs positioning theory to examine how children and their teacher position themselves in science learning contexts and develop science identity through classroom interactions. Fifteen students in grades 4-6 science classrooms in Western Canada participated in this study. Classroom activities and interactions were videotaped, transcribed, and analysed to examine how the teacher and students position each other as scientists in the classroom. A descriptive explanatory case analysis showed how the teacher's positioning acted to develop students' science identity with responsibilities of knowledge seeking, perseverance, and excitement about science.

  18. The impact of a curriculum course on pre-service primary teachers' science content knowledge and attitudes towards teaching science

    OpenAIRE

    Murphy, Clíona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students' conceptual and pedagogical knowledge of science and on their attitudes towards teaching science in the primary classroom. A questionnaire, containing closed ...

  19. Employing STEM Curriculum in an ESL Classroom: A Chinese Case Study

    Directory of Open Access Journals (Sweden)

    Gregory R. MacKinnon

    2017-01-01

    Full Text Available Mixed methods action research was undertaken in a grade 6 classroom in Shanghai, China to identify the challenges of implementing science, technology, engineering and mathematics (STEM curriculum in an English Second Language (ESL classroom. The research has shown that while students are well-motivated to learn through a child-centred problem-based approach, the schooling context has measurable deterrents linked directly to an assessment driven system. It was further determined that the language barrier sometimes mitigated the use of higher-order terminology to promote critical thinking as defined by Bloom’s taxonomy.

  20. Teaching the Social Curriculum: Classroom Management as Behavioral Instruction

    Science.gov (United States)

    Skiba, Russ; Ormiston, Heather; Martinez, Sylvia; Cummings, Jack

    2016-01-01

    Psychological science has identified positive classroom management and climate building strategies as a key element in developing and maintaining effective learning environments. In this article, we review the literature that has identified effective strategies that build classroom climates to maximize student learning and minimize disruption. In…

  1. Interdisciplinary Science in the Classroom

    Science.gov (United States)

    French, L. M.; Lopresti, V. C.; Papali, P.

    1993-05-01

    The practice of science is by its very nature interdisciplinary. Most school curricula, however, present science as a "layer cake" with one year each of biology, chemistry, earth science, and physics. Students are too often left with a fragmented, disjointed view of the sciences as separate and distinct bodies of information. The continuity of scientific thought and the importance of major ideas such as energy, rates of change, and the nature of matter are not seen. We describe two efforts to integrate the sciences in a middle school curriculum and in an introductory science course for prospective elementary teachers. Introductory physical science for eighth graders at the Park School has three major units: "Observing the Sky", "The Nature of Matter", and "The Nature of Light". The course moves from simple naked-eye observations of the Sun and Moon to an understanding of the apparent motions of the Sun and of the Earth's seasons. In "The Nature of Matter", students construct operational definitions of characteristic properties of matter such as density, boiling point, solubility, and flame color. They design and perform many experiments and conclude by separating a mixture of liquids and solids by techniques such as distillation and fractional crystallization. In studying flame tests, students learn that different materials have different color "signatures" and that the differences can be quantified with a spectroscope. They then observe solar absorption lines with their spectroscopes and discover which elements are present in the Sun. Teachers of young children are potentially some of the most powerful allies in increasing our country's scientific literacy, yet most remain at best uneasy about science. At Wheelock College we are designing a course to be called "Introduction to Natural Science" for elementary education majors. We will address special needs of many in this population, including science anxiety and poor preparation in mathematics. A broad conceptual

  2. Do science coaches promote inquiry-based instruction in the elementary science classroom?

    Science.gov (United States)

    Wicker, Rosemary Knight

    The South Carolina Mathematics and Science Coaching Initiative established a school-based science coaching model that was effective in improving instruction by increasing the level of inquiry-based instruction in elementary science classrooms. Classroom learning environment data from both teacher groups indicated considerable differences in the quality of inquiry instruction for those classrooms of teachers supported by a science coach. All essential features of inquiry were demonstrated more frequently and at a higher level of open-ended inquiry in classrooms with the support of a science coach than were demonstrated in classrooms without a science coach. However, from teacher observations and interviews, it was determined that elementary schoolteacher practice of having students evaluate conclusions and connect them to current scientific knowledge was often neglected. Teachers with support of a science coach reported changes in inquiry-based instruction that were statistically significant. This mixed ethnographic study also suggested that the Mathematics and Science Coaching Initiative Theory of Action for Instructional Improvement was an effective model when examining the work of science coaches. All components of effective school infrastructure were positively impacted by a variety of science coaching strategies intended to promote inquiry. Professional development for competent teachers, implementation of researched-based curriculum, and instructional materials support were areas highly impacted by the work of science coaches.

  3. The Efficacy of Educative Curriculum Materials to Support Geospatial Science Pedagogical Content Knowledge

    Science.gov (United States)

    Bodzin, Alec; Peffer, Tamara; Kulo, Violet

    2012-01-01

    Teaching and learning about geospatial aspects of energy resource issues requires that science teachers apply effective science pedagogical approaches to implement geospatial technologies into classroom instruction. To address this need, we designed educative curriculum materials as an integral part of a comprehensive middle school energy…

  4. The Earth Science for Tomorrows Classroom

    Science.gov (United States)

    Shanskiy, Merrit

    2015-04-01

    The Earth sciences comprises many fascinating topics that is teached to different age level pupils/students in order to bring hard core science closer to their daily life. With developing possibilities in IT, multimedia overall electronic sector the teachers/lecturers have continuous possibilities to accomplish novel approaches and utilize new ideas to make science more interesting for students in all ages. Emerging, from personal experiences, the teaching of our surrounding Environment can be very enjoyable. In our everyday life the SOIL remains invisible. The soil is covered by plant cover which makes the topic somewhat in distant that is not "visible" to an eye and its importance is underestimated. In other hand, the SOIL is valuable primary resource for food production and basis of life for healthy environment. From several studies have found that because its complications, SOIL related topics are not very often chosen topic for course or diploma works by students. The lower-school students are very open to environmental topics accordingly to the grades. Here, the good results can be obtained through complimentary materials creation, like story telling and drawing books and puzzles. The middle/ and upper/school students will experience "real science" being able to learn what the science is about which often can play a important role on making choices for future curriculum completion at university level. Current presentation shares the ideas of selected methods that had showed successful results on different Earth Science topics teaching (biodiversity, growing substrates, green house gas emissions). For some ideas the presentation introduces also the further developmental possibilities to be used in teaching at Tomorrows Classroom.

  5. A Substantiation of Macdonald's Models in Science Curriculum Development.

    Science.gov (United States)

    Searles, W. E.

    1982-01-01

    A history and analysis of science curriculum development is presented. Factors which influence the selection and organization of content in a science curriculum are discussed, including Macdonald's curriculum development models, propositions for curriculum development, and changes made in science curricula during the last century. (CJ)

  6. Exploring alternative assessment strategies in science classrooms

    Directory of Open Access Journals (Sweden)

    Michèle Stears

    2010-01-01

    Full Text Available The knowledge children bring to the classroom or construct in the classroom may find expression in a variety of activities and is often not measurable with the traditional assessment instruments used in science classrooms. Different approaches to assessment are required to accommodate the various ways in which learners construct knowledge in social settings. In our research we attempted to determine the types of outcomes achieved in a Grade 6 classroom where alternative strategies such as interactive assessments were implemented. Analyses of these outcomes show that the learners learned much more than the tests indicate, although what they learnt was not necessarily science. The implications for assessment are clear: strategies that assess knowledge of science concepts, as well as assessment of outcomes other than science outcomes, are required if we wish to gain a holistic understanding of the learning that occurs in science classrooms.

  7. Elements of Contemporary Integrated Science Curriculum: Impacts ...

    African Journals Online (AJOL)

    This paper acknowledged the vital roles played by integration of ideas and established the progress brought about when science is taught as a unified whole through knowledge integration which birthed integrated science as a subject in Nigerian school curriculum. The efforts of interest groups at regional, national and ...

  8. chemistry syllabus of the nigeria science curriculum

    African Journals Online (AJOL)

    Preferred Customer

    The senior secondary two chemistry course content of the Nigerian science curriculum was assessed ... of the students. In Nigeria, the need to re-examine both what to teach in science and how to teach it led ..... primary school. Our industries ...

  9. Georgia science curriculum alignment and accountability: A blueprint for student success

    Science.gov (United States)

    Reining-Gray, Kimberly M.

    Current trends and legislation in education indicate an increased dependency on standardized test results as a measure for learner success. This study analyzed test data in an effort to assess the impact of curriculum alignment on learner success as well as teacher perceptions of the changes in classroom instruction due to curriculum alignment. Qualitative and quantitative design methods were used to determine the impact of science curriculum alignment in grades 9-12. To determine the impact of science curriculum alignment from the Quality Core Curriculum (QCC) to the Georgia Performance Standards (GPS) test data and teacher opinion surveys from one Georgia School system were examined. Standardized test scores before and after curriculum alignment were analyzed as well as teacher perception survey data regarding the impact of curriculum change. A quantitative teacher perception survey was administered to science teachers in the school system to identify significant changes in teacher perceptions or teaching strategies following curriculum realignment. Responses to the survey were assigned Likert scale values for analysis purposes. Selected teachers were also interviewed using panel-approved questions to further determine teacher opinions of curriculum realignment and the impact on student success and teaching strategies. Results of this study indicate significant changes related to curriculum alignment. Teachers reported a positive change in teaching strategies and instructional delivery as a result of curriculum alignment and implementation. Student scores also showed improvement, but more research is recommended in this area.

  10. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    Science.gov (United States)

    Kulo, Violet; Bodzin, Alec

    2013-02-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade students classified in three ability level tracks. Data were gathered through pre/posttest content knowledge assessments, daily classroom observations, and daily reflective meetings with the teacher. Findings indicated a significant increase in the energy content knowledge for all the students. Effect sizes were large for all three ability level tracks, with the middle and low track classes having larger effect sizes than the upper track class. Learners in all three tracks were highly engaged with the curriculum. Curriculum effectiveness and practical issues involved with using geospatial technologies to support science learning are discussed.

  11. Designing a Science Curriculum Fit for Purpose

    Science.gov (United States)

    Millar, Robin

    2014-01-01

    The science curriculum to age 16 should be judged on how well it meets the needs of students who progress to A-level science courses and those (a larger number) who do not. To address the diversity of students' interests and aspirations, we need a clear view of the purposes of science education rooted in a view of the purposes of education itself.…

  12. Measuring Science Curriculum Improvement Study Teachers' Attitudinal Changes Toward Science.

    Science.gov (United States)

    Hovey, Larry Michael

    Investigated were three questions related to the relationship between a science teacher's attitude regarding the use of a newer science program, in this instance the Science Curriculum Improvement Study (SCIS): (1) Could the Projective Tests of Attitudes, originally designed for fifth-grade students, be modified for use with adults? (2) Is there a…

  13. Exploring the Associations among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum

    Science.gov (United States)

    Stage, Virginia C.; Kolasa, Kathryn M.; Díaz, Sebastián R.; Duffrin, Melani W.

    2018-01-01

    Background: Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Methods: Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across…

  14. Living in Water: An Aquatic Science Curriculum for Grades 5-7.

    Science.gov (United States)

    National Aquarium in Baltimore, MD. Dept. of Education.

    "Living in Water" is a classroom-based, scientific study of water, aquatic environments, and the plants and animals that live in water. The lessons in this curriculum integrate basic physical, biological, and earth sciences, and mathematics. The integration of language arts is also considered essential to its success. These lessons do not require…

  15. Interacting with a Suite of Educative Features: Elementary Science Teachers' Use of Educative Curriculum Materials

    Science.gov (United States)

    Arias, Anna Maria; Bismack, Amber Schultz; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2016-01-01

    New reform documents underscore the importance of learning both the practices and content of science. This integration of practices and content requires sophisticated teaching that does not often happen in elementary classrooms. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited…

  16. Social Science Disciplines. Fundamental for Curriculum Development.

    Science.gov (United States)

    McLendon, Johathan C., Ed.

    This guide is written for the social studies curriculum developer interested in developing a structured multidisciplinary program based on the concepts, methodology, and structure of social science disciplines and history. Seven 15-29 page chapters are included on each discipline: Anthropology and Psychology, by Charles R. Berryman; Economics, by…

  17. Rock Cycle. K-6 Science Curriculum.

    Science.gov (United States)

    Blueford, J. R.; And Others

    Rock Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) chemistry (introducing the topics of matter, elements, compounds, and chemical bonding); (2) characteristics (presenting hands-on activities with rocks and minerals); (3) minerals (emphasizing the aesthetic and economic…

  18. Graduate students teaching elementary earth science through interactive classroom lessons

    Science.gov (United States)

    Caswell, T. E.; Goudge, T. A.; Jawin, E. R.; Robinson, F.

    2014-12-01

    Since 2005, graduate students in the Brown University Department of Earth, Environmental, and Planetary Studies have volunteered to teach science to second-grade students at Vartan Gregorian Elementary School in Providence, RI. Initially developed to bring science into classrooms where it was not explicitly included in the curriculum, the graduate student-run program today incorporates the Providence Public Schools Grade 2 science curriculum into weekly, interactive sessions that engage the students in hypothesis-driven science. We will describe the program structure, its integration into the Providence Public Schools curriculum, and 3 example lessons relevant to geology. Lessons are structured to develop the students' ability to share and incorporate others' ideas through written and oral communication. The volunteers explain the basics of the topic and engage the students with introductory questions. The students use this knowledge to develop a hypothesis about the upcoming experiment, recording it in their "Science Notebooks." The students record their observations during the demonstration and discuss the results as a group. The process culminates in the students using their own words to summarize what they learned. Activities of particular interest to educators in geoscience are called "Volcanoes!", "The "Liquid Race," and "Phases of the Moon." The "Volcanoes!" lesson explores explosive vs. effusive volcanism using two simulated volcanoes: one explosive, using Mentos and Diet Coke, and one effusive, using vinegar and baking soda (in model volcanoes that the students construct in teams). In "Liquid Race," which explores viscosity and can be integrated into the "Volcanoes!" lesson, the students connect viscosity to flow speed by racing liquids down a ramp. "Phases of the Moon" teaches the students why the Moon has phases, using ball and stick models, and the terminology of the lunar phases using cream-filled cookies (e.g., Oreos). These lessons, among many others

  19. Teacher perceptions of usefulness of mobile learning devices in rural secondary science classrooms

    Science.gov (United States)

    Tighe, Lisa

    The internet and easy accessibility to a wide range of digital content has created the necessity for teachers to embrace and integrate digitial media in their curriculums. Although there is a call for digital media integration in curriculum by current learning standards, rural schools continue to have access to fewer resources due to limited budgets, potentially preventing teachers from having access to the most current technology and science instructional materials. This dissertation identifies the perceptions rural secondary science teachers have on the usefulness of mobile learning devices in the science classroom. The successes and challenges in using mobile learning devices in the secondary classroom were also explored. Throughout this research, teachers generally supported the integration of mobile devices in the classroom, while harboring some concerns relating to student distractability and the time required for integrating mobile devices in exisiting curriculum. Quantitative and qualitative data collected through surveys, interviews, and classroom observations revealed that teachers perceive that mobile devices bring benefits such as ease of communication and easy access to digitial information. However, there are perceived challenges with the ability to effectively communicate complex scientific information via mobile devices, distractibility of students, and the time required to develop effective curriculum to integrate digital media into the secondary science classroom.

  20. Signs of taste for science: a methodology for studying the constitution of interest in the science classroom

    Science.gov (United States)

    Anderhag, P.; Wickman, P.-O.; Hamza, K. M.

    2015-06-01

    In this paper we present a methodological approach for analyzing the transformation of interest in science through classroom talk and action. To this end, we use the construct of taste for science as a social and communicative operationalization, or proxy, to the more psychologically oriented construct of interest. To gain a taste for science as part of school science activities means developing habits of performing and valuing certain distinctions about ways to talk, act and be that are jointly construed as belonging in the school science classroom. In this view, to learn science is not only about learning the curriculum content, but also about learning a normative and aesthetic content in terms of habits of distinguishing and valuing. The approach thus complements previous studies on students' interest in science, by making it possible to analyze how taste for science is constituted, moment-by-moment, through talk and action in the science classroom. In developing the method, we supplement theoretical constructs coming from pragmatism and Pierre Bourdieu with empirical data from a lower secondary science classroom. The application of the method to this classroom demonstrates the potential that the approach has for analyzing how conceptual, normative, and aesthetic distinctions within the science classroom interact in the constitution of taste for, and thereby potentially also in the development of interest in science among students.

  1. Science Teacher Beliefs and Classroom Practice Related to Constructivism in Different School Settings

    Science.gov (United States)

    Savasci, Funda; Berlin, Donna F.

    2012-02-01

    Science teacher beliefs and classroom practice related to constructivism and factors that may influence classroom practice were examined in this cross-case study. Data from four science teachers in two schools included interviews, demographic questionnaire, Classroom Learning Environment Survey (preferred/perceived), and classroom observations and documents. Using an inductive analytic approach, results suggested that the teachers embraced constructivism, but classroom observations did not confirm implementation of these beliefs for three of the four teachers. The most preferred constructivist components were personal relevance and student negotiation; the most perceived component was critical voice. Shared control was the least preferred, least perceived, and least observed constructivist component. School type, grade, student behavior/ability, curriculum/standardized testing, and parental involvement may influence classroom practice.

  2. Teaching controversial issues in the secondary school science classroom

    Science.gov (United States)

    van Rooy, Wilhelmina

    1993-12-01

    A sample of fourteen secondary school biology teachers chosen from twelve schools were interviewed. The purpose was to determine their views on how controversial issues in science might be handled in the secondary school science classroom and whether the issues of surrogacy and human embryo experimentation were suitable controversial issues for discussion in schools. In general, teachers indicated that controversial issues deserve a more prominent place in the science curriculum because they have the potential to foster thinking, learning, and interest in science. The issues of surrogacy and human embryo experimentation were seen as appropriate contexts for learning, provided that teachers were well informed and sensitive to both the students and to the school environment.

  3. Cosmic Times: Astronomy History and Science for the Classroom

    Science.gov (United States)

    Lochner, James C.; Mattson, B.

    2008-05-01

    Cosmic Times is a series of curriculum support materials and classroom activities for upper middle school and high school students which teach the nature of science by exploring the history of our understanding of the universe during the past 100 years. Starting with the confirmation of Einstein's theory of gravity in 1919 to the current conundrum posed by the discovery of dark energy, Cosmic Times examines the discoveries, the theories, and the people involved in this changing [understanding] of the universe. Cosmic Times takes the form of 6 posters, each resembling the front page of a newspaper from a particular time in this history with articles describing the discoveries. Each poster is accompanied by 4-5 classroom lessons which enable students to examine the science concepts behind the discoveries, develop techniques to improve science literacy, and investigate the nature of science using historical examples. Cosmic Times directly connects with the IYA theme of Astronomy in the Classroom, as well as the general theme of the impact of astronomy history. Cosmic Times has been developed with a freelance writer to write the articles for the posters, a group of teachers to develop the lessons, and evaluator to provide testing of the materials with a group of rural teachers in underserved communities. This poster presentation previews the Cosmic Times materials, which are posted on http://cosmictimes.gsfc.nasa.gov/ as they become available. Cosmic Times is funded in part via a NASA IDEAS grant.

  4. Forensic Science Curriculum for High School Students

    Science.gov (United States)

    Burgess, Christiana J.

    Over the last several decades, forensic science---the application of science to civil and criminal legal matters---has become of increasing popularity with the public. The range of disciplines within the field is immense, offering individuals the potential for a unique career, regardless of their specific interests or expertise. In response to this growth, many organizations, both public and private, have recognized the need to create forensic science programs that strive to maintain and enhance the quality of forensic science education. Unfortunately, most of the emphasis placed on developing these materials relates to post-secondary education, and creates a significant lack of forensic science educational materials available in the U.S., especially in Oklahoma. The purpose of this project was to create a high school curriculum that provides the foundation for building a broad, yet comprehensive, overview of the field of forensic science and its associated disciplines. The overall goal was to create and provide course materials to high school teachers in order to increase their knowledge of forensic science such that they are able to teach its disciplines effectively and with accuracy. The Forensic Science Curriculum for High School Students includes sample lesson plans, PowerPoint presentations, and lab activities with step-by-step instructions.

  5. Science Students' Classroom Discourse: Tasha's Umwelt

    Science.gov (United States)

    Arnold, Jenny

    2012-04-01

    Over the past twenty-five years researchers have been concerned with understanding the science student. The need for such research is still grounded in contemporary issues including providing opportunities for all students to develop scientific literacy and the failure of school science to connect with student's lives, interests and personal identities. The research reported here is unusual in its use of discourse analysis in social psychology to contribute to an understanding of the way students make meaning in secondary school science. Data constructed for the study was drawn from videotapes of nine consecutive lessons in a year-seven science classroom in Melbourne, post-lesson video-stimulated interviews with students and the teacher, classroom observation and the students' written work. The classroom videotapes were recorded using four cameras and seven audio tracks by the International Centre for Classroom Research at the University of Melbourne. Student talk within and about their science lessons was analysed from a discursive perspective. Classroom episodes in which students expressed their sense of personal identity and agency, knowledge, attitude or emotion in relation to science were identified for detailed analysis of the function of the discourse used by students, and in particular the way students were positioned by others or positioned themselves. This article presents the discursive Umwelt or life-space of one middle years science student, Tasha. Her case is used here to highlight the complex social process of meaning making in science classrooms and the need to attend to local moral orders of rights and duties in research on student language use, identity and learning in science.

  6. Science for Girls: Successful Classroom Strategies

    Science.gov (United States)

    Goetz, Susan Gibbs

    2007-01-01

    "Science for Girls: Successful Classroom Strategies" looks at how girls learn, beginning with the time they are born through both the informal and formal education process. In the author's current role as professor of science education, Dr. Goetz has surveyed hundreds of female elementary education majors in their junior and senior year of…

  7. The current practice of using multiple representations in year 4 science classrooms

    Science.gov (United States)

    Chuenmanee, Chanoknat; Thathong, Kongsak

    2018-01-01

    Multiple representations have been widely used as a reasoning tool for understanding complex scientific concepts. Thus this study attempted to investigate the current practice of using multiple representations on Year 4 science classrooms in terms of modes and levels which appear in curriculum documents, teaching plans, tasks and assessments, teaching practices, and students' behaviors. Indeed, documentary analysis, classroom observation, and interview were used as the data collection methods. First of all, Year 4 science documents were analyzed. Then classroom observation was used as a collecting method to seek what actually happen in the classroom. Finally, in-depth interviews were used to gather more information and obtain meaningful data. The finding reveals that many modes of verbal, visual, and tactile representations within three levels of representations are posed in Year 4 documents. Moreover, according to classroom observations and interviews, there are three main points of applying multiple representations into classrooms. First of all, various modes of representations were used, however, a huge number of them did not come together with the levels. The levels of representations, secondly, macroscopic and cellular levels were introduced into all classrooms while symbolic level was provided only in some classrooms. Finally, the connection of modes and levels pointed out that modes of representations were used without the considerations on the levels of them. So, it seems to be that teaching practice did not meet the aims of curriculum. Therefore, these issues were being considered in order to organize and design the further science lessons.

  8. The Innovative Immersion of Mobile Learning into a Science Curriculum in Singapore: an Exploratory Study

    Science.gov (United States)

    Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting

    2016-08-01

    With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear program of school-based research. The foci of this paper is on the design principles of the curriculum and its enactment, and the establishment of a teacher learning community. Through elucidating the design features of the innovative curriculum and evaluating teacher and student involvement in science instruction and learning, we introduce the science curriculum, called Mobilized 5E Science Curriculum (M5ESC), and present a representative case study of how one experienced teacher and her class adopted the curriculum. The findings indicate the intervention promoted this teacher's questioning competency, enabled her to interact with students frequently and flexibly in class, and supported her technology use for promoting different levels of cognition. Student learning was also improved in terms of test achievement and activity performance in and out of the classroom. We propose that the study can be used to guide the learning design of mobile technology-supported curricula, as well as teacher professional development for curriculum enactment.

  9. Science Specialists or Classroom Teachers: Who Should Teach Elementary Science?

    Science.gov (United States)

    Levy, Abigail Jurist; Jia, Yueming; Marco-Bujosa, Lisa; Gess-Newsome, Julie; Pasquale, Marian

    2016-01-01

    This study examined science programs, instruction, and student outcomes at 30 elementary schools in a large, urban district in the northeast United States in an effort to understand whether there were meaningful differences in the quality, quantity and cost of science education when provided by a science specialist or a classroom teacher. Student…

  10. Assessing Students' Attitudes and Achievements in a Multicultural and Multilingual Science Classroom.

    Science.gov (United States)

    Hadi-Tabassum, Samina

    1999-01-01

    Takes a qualitative and quantitative look at the curriculum and teaching of a two-way immersion eighth-grade solar energy science classroom and examines its implications for education policy and reform. Results for a class of 25 students indicate that the approach increases the retention rate of Hispanic students. (SLD)

  11. Problem-Based Learning in the Physical Science Classroom, K-12

    Science.gov (United States)

    McConnell, Tom J.; Parker, Joyce; Eberhardt, Janet

    2018-01-01

    "Problem-Based Learning in the Physical Science Classroom, K-12" will help your students truly understand concepts such as motion, energy, and magnetism in true-to-life contexts. The book offers a comprehensive description of why, how, and when to implement problem-based learning (PBL) in your curriculum. Its 14 developmentally…

  12. Adapting the curriculum of a student in the regular classroom

    Directory of Open Access Journals (Sweden)

    Cindy Lorena Rodríguez

    2015-02-01

    Full Text Available This article is based on a research, adapting the curriculum of a student in the regular classroom, based on a multi-skilled inclusive education whose data was collected between 2010 and 2011 from Colegio Real de los Andes. The study was based on the author’s personal experience with student population inside their regular classroom activities. The author was motivated by the desire to know how one could contribute to society’s expectations on an inclusive and integrated education that takes into account the human being as a unique being endowed with different potentials, great expectations, and dreams that nurture him or her into a major player in his or her dignified project of life that will, in turn, contribute towards their full personality growth and hence strengthen their academic skills. Similarly, this will be of great value towards commitment and devotion for inclusion, construed as a paramount import to educational formation. Hence, the dedication of educators in this inclusivity is a fundamental feature not only from the conceptual point of view, but more importantly, as a fundamental element in the essence of an educator, which must be, a human being formed in the richness of values openly projected on a pedagogy without any prejudice and preconceptions during a pedagogical dispensation.

  13. Curriculum Design of a Flipped Classroom to Enhance Haematology Learning

    Science.gov (United States)

    Porcaro, Pauline A.; Jackson, Denise E.; McLaughlin, Patricia M.; O'Malley, Cindy J.

    2016-06-01

    A common trend in higher education is the "flipped" classroom, which facilitates active learning during class. The flipped approach to teaching was instituted in a haematology `major' class and the students' attitudes and preferences for the teaching materials were surveyed. The curriculum design was explicit and involved four major components (1) the preparation of the students; (2) the weekly pre-class work; (3) the in-class active learning strategies and (4) closing the learning loop using formative quizzes. Each of these components is discussed in detail and was informed by sound pedagogical strategies. Several different sources of information and several freely available software tools to engage the students are discussed. Two iterations are reported here, with improved pass rate for the final examination from 47 to 48 % in the traditional class to 56-65 % in the flipped classroom approach. The majority of students (93 and 89 %) came to the class prepared, after viewing the screencasts and engaged fully with the activities within the face-to-face time. The students perceived that solving case studies (93 %) was the most beneficial activity for their learning and this was closely followed by the production of essay plans (71 %). The majority of students recommended that this approach be repeated the following year (69 and 75 %).

  14. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    Science.gov (United States)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  15. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    Science.gov (United States)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle school science classrooms, and the research question that guided the present study is: How can we characterize Turkish PSTs' SSI-based teaching practices in middle school science classrooms (ages 11-14)? Sample: In order to address the research question of this study, we explored 10 Turkish PSTs' SSI-based teaching practices in middle school science classrooms. A purposeful sampling strategy was used, thus, PSTs were specifically chosen because they were ideal candidates to teach SSI and to integrate SSI into the science curricula since they were seniors in the science education program who had to take the field experience courses. Design and method: The participants' SSI teaching practices were characterized in light of qualitative research approach. SSI-based teaching practices were analyzed, and the transcripts of all videotape recordings were coded by two researchers. Results: The current data analysis describes Turkish PSTs' SSI-based teaching practices under five main categories: media, argumentation, SSI selection and presentation, risk analysis, and moral perspective. Most of PSTs did not use media resources in their lesson and none of them considered moral perspective in their teaching. While the risk analyses were very simple and superficial, the arguments developed in the classrooms generally remained at a simple level. PSTs did not think SSI as a central topic and discussed these issues in a very limited time and at the end of the class period. Conclusions: The findings of this study manifest the need of the reforms in science education programs. The present study provides evidence that moral, media

  16. Curriculum Implementation and Reform: Teachers' Views about Kuwait's New Science Curriculum

    Science.gov (United States)

    Alshammari, Ahmad

    2013-01-01

    The MoE (Ministry of Education) in the state of Kuwait is starting to reform the science curriculum in all school academic stages: primary (1-5) grades, intermediate (6-9) grades, and secondary (10-12) grades. The purpose of this study was to explore the opinions of science teachers about Kuwait's new sixth and seventh grade science curriculum,…

  17. COMPUTATIONAL SCIENCE IN IN THE EDUCATIONAL CURRICULUM

    Directory of Open Access Journals (Sweden)

    José Manuel Cabrera Delgado

    2017-06-01

    Full Text Available How to incorporate Computer Science (CS into the basic education curriculum continues to be subject of controversy at the European level. Without there being a defined strategy on behalf of the European Union in this respect, several countries have begun their incorporation showing us the advantages and difficulties of such action. Main elements of CS, such as computational thinking and coding, are already being taught in schools, establishing the need for a curriculum adapted to the ages of the students, training for teachers and enough resources. The purpose of this article, from the knowledge of the experience of these countries, is to respond, or at least to reflect, on the answers to the following questions: what is CS?, what are their main elements?, why is it necessary?, at what age should CS be taught?, what requirements are needed for their incorporation?

  18. Science Fiction in the Classroom.

    Science.gov (United States)

    Brake, Mark; Thornton, Rosi

    2003-01-01

    Considers science fiction as an imaginative forum to focus on the relationships between science, culture, and society. Outlines some of the ways in which using the genre can help achieve a dynamic and pluralistic understanding of the nature and evolution of science. (Author/KHR)

  19. Pedagogical Relationship in Secondary Social Science Classrooms

    Science.gov (United States)

    Girard, Brian James

    2010-01-01

    This study investigates two high school social science classrooms in order to better understand the pedagogical relationships among teachers, students, and disciplinary content, and how teachers can influence students' opportunities to learn disciplinary literacy. Drawing on conceptual resources from sociocultural theories of learning and…

  20. Using Infographics in the Science Classroom

    Science.gov (United States)

    Davidson, Rosemary

    2014-01-01

    As a chemistry teacher, Rosemary Davidson has found "infographics" (information graphics) successfully engage her students in science--not only in carrying out the research for classroom projects but also in presenting the results of their research to their peers. This article will help teachers integrate student-created infographics…

  1. In-Depth Analysis of Handwriting Curriculum and Instruction in Four Kindergarten Classrooms

    Science.gov (United States)

    Vander Hart, Nanho; Fitzpatrick, Paula; Cortesa, Cathryn

    2010-01-01

    The quality of handwriting curriculum and instructional practices in actual classrooms was investigated in an in-depth case study of four inner city kindergarten classrooms using quantitative and qualitative methods. The handwriting proficiency of students was also evaluated to assess the impact of the instructional practices observed. The…

  2. Teaching Environmental Health Science for Informed Citizenship in the Science Classroom and Afterschool Clubs

    Science.gov (United States)

    Keselman, Alla; Levin, Daniel M.; Hundal, Savreen; Kramer, Judy F.; Matzkin, Karen; Dutcher, Gale

    2013-01-01

    In the era of growing concerns about human-induced climate change and sustainable development, it is important for the schools to prepare students for meaningful engagement with environmental policies that will determine the future of our society. To do this, educators need to face a number of challenges. These include deciding on the science knowledge and skills needed for informed citizenship, identifying teaching practices for fostering such knowledge and skills, and finding ways to implement new practices into the tightly packed existing curriculum. This paper describes two collaborative efforts between the U.S. National Library of Medicine (NLM) and University of Maryland College of Education that attempt to meet these challenges. The focus of both projects is on helping students develop information seeking and evaluation and argumentation skills, and applying them to complex socio-scientific issues that have bearing on students’ daily lives. The first effort involves co-designing an afterschool environmental health club curriculum with an interdisciplinary team of middle school teachers. The second effort is the development and implementation of a week-long school drinking water quality debate activity in a high school environmental science classroom. Both projects center on Tox Town, an NLM web resource that introduces students to environmental health issues in everyday environments. The paper describes successes and challenges of environmental health curriculum development, including teachers’ and researchers’ perception of contextual constraints in the club and classroom setting, tensions inherent in co-design, and students’ experience with socio-scientific argumentation. PMID:24382985

  3. From Laboratories to Classrooms: Involving Scientists in Science Education

    Science.gov (United States)

    DeVore, E. K.

    2001-12-01

    Scientists play a key role in science education: the adventure of making new discoveries excites and motivates students. Yet, American science education test scores lag behind those of other industrial countries, and the call for better science, math and technology education is widespread. Thus, improving American science, math and technological literacy is a major educational goal for the NSF and NASA. Today, funding for research often carries a requirement that the scientist be actively involved in education and public outreach (E/PO) to enhance the science literacy of students, teachers and citizens. How can scientists contribute effectively to E/PO? What roles can scientists take in E/PO? And, how can this be balanced with research requirements and timelines? This talk will focus on these questions, with examples drawn from the author's projects that involve scientists in working with K-12 teacher professional development and with K-12 curriculum development and implementation. Experiences and strategies for teacher professional development in the research environment will be discussed in the context of NASA's airborne astronomy education and outreach projects: the Flight Opportunities for Science Teacher EnRichment project and the future Airborne Ambassadors Program for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Effective partnerships with scientists as content experts in the development of new classroom materials will be described with examples from the SETI Institute's Life in the Universe curriculum series for grades 3-9, and Voyages Through Time, an integrated high school science course. The author and the SETI Institute wish to acknowledge funding as well as scientific and technical support from the National Science Foundation, the National Aeronautics and Space Administration, the Hewlett Packard Company, the Foundation for Microbiology, and the Combined Federated Charities.

  4. Prospects and challenges in teachers’ adoption of a new modeling orientated science curriculum in lower secondary school in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Sanne Schnell

    A new science curriculum with a significant emphasis on modeling has recently been enacted in the Danish compulsory school. This design based study aims to investigate science teachers’ beliefs, practice and reflections in response to the new curriculum. The data sources include teacher...... towards the modeling emphasis in the new curriculum, but nevertheless use a restricted range of modeling practices and pay limited attention to the purpose and utility of models. Teachers raised concerns in enacting the new curriculum due to: (i) Lack of time for preparations and teamwork, (ii) Shortage...... of clarifications and examples in the curriculum materials and teacher education on how to enact modeling in practice, (iii) Overcrowded curriculum, and (iv) Lack of alignment with a national test. In addition, the results indicate an inconsistence between teachers’ intentions and their classroom practice...

  5. Science Learning outside the Classroom

    Science.gov (United States)

    Robelen, Erik W.; Sparks, Sarah D.; Cavanagh, Sean; Ash, Katie; Deily, Mary-Ellen Phelps; Adams, Caralee

    2011-01-01

    As concern mounts that U.S. students lack sufficient understanding of science and related fields, it has become increasingly clear that schools can't tackle the challenge alone. This special report explores the field often called "informal science education," which is gaining broader recognition for its role in helping young people…

  6. Avatar in the Science Classroom

    Science.gov (United States)

    Siegel, Deborah

    2011-01-01

    Students love pop culture, which is often full of science and scientific concepts that may or may not be correctly presented. When teachers tie a science project to a movie, TV series, or song, they help guide students toward correct interpretations. And, more important, teachers stimulate their creativity by tapping into their culture. This…

  7. Science in the Bilingual Classroom

    Science.gov (United States)

    Gutierrez, Patricia A.

    1996-07-01

    One in seven children in the United States speaks a language other than English at home. Their difficulties with English may seem like a barrier to science education. But science education can be the impetus they need to overcome their difficulties with English. With sidebars by Isabel Hawkins and George Musser.

  8. Surviving the Implementation of a New Science Curriculum

    Science.gov (United States)

    Lowe, Beverly; Appleton, Ken

    2015-12-01

    Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2 years getting to know the new science curriculum through meetings, training, and exploring the new Australian curriculum documents. This article examines the support and preparation for implementation provided in two regional schools, with a closer look at six specific teachers and their science teaching practices as they attempted to implement the new science curriculum. The use of a survey, field observations, and interviews revealed the schools' preparation practices and the teachers' practices, including the support provided to implement the new science curriculum. A description and analysis of school support and preparation as well as teachers' views of their experiences implementing the new science curriculum reveal both achievements and shortcomings. Problematic issues for the two schools and teachers include time to read and comprehend the curriculum documents and content expectations as well as time to train and change the current processes effectively. The case teachers' experiences reveal implications for the successful and effective implementation of new curriculum and curriculum reform.

  9. Designing Computer-Supported Complex Systems Curricula for the Next Generation Science Standards in High School Science Classrooms

    Directory of Open Access Journals (Sweden)

    Susan A. Yoon

    2016-12-01

    Full Text Available We present a curriculum and instruction framework for computer-supported teaching and learning about complex systems in high school science classrooms. This work responds to a need in K-12 science education research and practice for the articulation of design features for classroom instruction that can address the Next Generation Science Standards (NGSS recently launched in the USA. We outline the features of the framework, including curricular relevance, cognitively rich pedagogies, computational tools for teaching and learning, and the development of content expertise, and provide examples of how the framework is translated into practice. We follow this up with evidence from a preliminary study conducted with 10 teachers and 361 students, aimed at understanding the extent to which students learned from the activities. Results demonstrated gains in students’ complex systems understanding and biology content knowledge. In interviews, students identified influences of various aspects of the curriculum and instruction framework on their learning.

  10. AIAA Educator Academy - Mars Rover Curriculum: A 6 week multidisciplinary space science based curriculum

    Science.gov (United States)

    Henriquez, E.; Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.

    2013-12-01

    The Curiosity mission has captured the imagination of children, as NASA missions have done for decades. The AIAA and the University of Houston have developed a flexible curriculum program that offers children in-depth science and language arts learning culminating in the design and construction of their own model rover. The program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students learn to research Mars in order to pick a science question about Mars that is of interest to them. They learn principles of spacecraft design in order to build a model of a Mars rover to carry out their mission on the surface of Mars. The model is a mock-up, constructed at a minimal cost from art supplies. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the structure and organization of the 6 week curriculum. A set of 30 new 5E lesson plans have been written to support this project as a classroom activity. The challenge of developing interactive

  11. A Curriculum and Software Design Scaffolding Goal Directed Teaching in Classrooms

    DEFF Research Database (Denmark)

    Misfeldt, Morten; Bundsgaard, Jeppe; Slot, Marie Falkesgaard

    , the tool itself, and selected findings from qualitative and quantitative studies in the project. 2. International trends in goal oriented and data driven teaching The Danish curriculum reform builds on recent trends in school development and curriculum research suggesting the importance of a competence...... development and curriculum research suggesting the importance of a competence framework, learning goals and aggregation of classroom data to efficient teaching (Earl & Fullan 2003). Learning goals are supposed to support the student’s pace and sense of progression, inform classroom decisions, structure...... student has knowledge of text structure”). The curriculum can be presented in a number of graphical modes, e.g. in a matrix or in a hypertext structure. The curriculum reform was implemented in order to promote a goal oriented teaching and learning practice based heavily on research around data driven...

  12. Theme: The Role of Science in the Agricultural Education Curriculum.

    Science.gov (United States)

    Agricultural Education Magazine, 2002

    2002-01-01

    Thirteen theme articles discuss integration of science and agriculture, the role of science in agricultural education, biotechnology, agriscience in Tennessee and West Virginia, agriscience and program survival, modernization of agricultural education curriculum, agriscience and service learning, and biotechnology websites. (SK)

  13. Science education beyond the classroom

    International Nuclear Information System (INIS)

    Harle, E.J.; Van Natta, D.; Powell, M.L.

    1993-01-01

    The Yucca Mountain Site Characterization Project (YMP) sponsors a variety of classroom-oriented projects and activities for teachers who request them. Also available, though, are extra-curricular programs. One notably successful program is a workshop designed to award girl and boy scouts with geology and atomic energy merit badges. There was a tremendous response to this workshop--it attracted 450 requests within the first week of its announcement. Since October 1991, the YMP has sponsored five such girl scout workshops and four boy scout workshops, attended by a total of 400 scouts. These workshops demonstrate that highly technical subjects can be taught simply through hands-on activities. The idea behind them is not to teach scouts what to think but, rather, how to think. For adults meanwhile, the YMP offers a monthly lecture series, with each lecture averaging 45 minutes in length with 35 people in attendance. These lectures center on such subjects as volcanoes, earthquakes and hydrology. They are usually delivered by YMP technical staff members, who have learned that complex technical issues are best addressed in a small-group format

  14. Classroom-Level Teacher Professional Development and Satisfaction: Teachers Learn in the Context of Classroom-Level Curriculum Development

    Science.gov (United States)

    Shawer, Saad

    2010-01-01

    This qualitative study examined the impact of classroom-level teacher professional development (CTPD) and curriculum transmission on teacher professional development and satisfaction. Based on work with English-as-a-foreign-language college teachers and students, data analysis showed that CTPD significantly improved student-teacher subject,…

  15. The influence of secondary science teachers' pedagogical content knowledge, educational beliefs and perceptions of the curriculum on implementation and science reform

    Science.gov (United States)

    Bonner, Portia Selene

    2001-07-01

    Science education reform is one of the focal points of restructuring the educational system in the United States. However, research indicates a slow change in progression towards science literacy among secondary students. One of the factors contributing to slow change is how teachers implement the curriculum in the classroom. Three constructs are believed to be influential in curriculum implementation: educational beliefs, pedagogical knowledge and perception of the curriculum. Earlier research suggests that there is a strong correlation between teachers' educational beliefs and instructional practices. These beliefs can be predictors of preferred strategies employed in the classroom. Secondly, teachers' pedagogical knowledge, that is the ability to apply theory and appropriate strategies associated with implementing and evaluating a curriculum, contributes to implementation. Thirdly, perception or how the curriculum itself is perceived also effects implementation. Each of these constructs has been examined independently, but never the interplay of the three. The purpose of this qualitative study was to examine the interplay of teachers' educational beliefs, pedagogical content knowledge and perceptions of a science curriculum with respect to how these influence curriculum implementation. This was accomplished by investigating the emerging themes that evolved from classroom observations, transcripts from interview and supplementary data. Five high school biology teachers in an urban school system were observed for ten months for correspondence of teaching strategies to the curriculum. Teachers were interviewed formally and informally about their perceptions of science teaching, learning and the curriculum. Supplementary material such as lesson plans, course syllabus and notes from classroom observations were collected and analyzed. Data were transcribed and analyzed for recurring themes using a thematic matrix. A theoretical model was developed from the emerging

  16. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    Science.gov (United States)

    Zhai, Junqing; Tan, Aik-Ling

    2015-01-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers…

  17. Story - Science - Solutions: A new middle school science curriculum that promotes climate-stewardship

    Science.gov (United States)

    Cordero, E.; Centeno Delgado, D. C.

    2017-12-01

    Over the last five years, Green Ninja has been developing educational media to help motivate student interest and engagement around climate science and solutions. The adoption of the Next Generation Science Standards (NGSS) offers a unique opportunity where schools are changing both what they teach in a science class and how they teach. Inspired by the new emphasis in NGSS on climate change, human impact and engineering design, Green Ninja developed a technology focused, integrative, and yearlong science curriculum (6th, 7th and 8th grade) focused broadly around solutions to environmental problems. The use of technology supports the development of skills valuable for students, while also offering real-time metrics to help measure both student learning and environmental impact of student actions. During the presentation, we will describe the design philosophy around our middle school curriculum and share data from a series of classes that have created environmental benefits that transcend the traditional classroom. The notion that formal education, if done correctly, can be leveraged as a viable climate mitigation strategy will be discussed.

  18. On track for success: an innovative behavioral science curriculum model.

    Science.gov (United States)

    Freedy, John R; Carek, Peter J; Dickerson, Lori M; Mallin, Robert M

    2013-01-01

    This article describes the behavioral science curriculum currently in place at the Trident/MUSC Family Medicine Residency Program. The Trident/MUSC Program is a 10-10-10 community-based, university-affiliated program in Charleston, South Carolina. Over the years, the Trident/MUSC residency program has graduated over 400 Family Medicine physicians. The current behavioral science curriculum consists of both required core elements (didactic lectures, clinical observation, Balint groups, and Resident Grand Rounds) as well as optional elements (longitudinal patient care experiences, elective rotations, behavioral science editorial experience, and scholars project with a behavioral science focus). All Trident/MUSC residents complete core behavioral science curriculum elements and are free to participate in none, some, or all of the optional behavioral science curriculum elements. This flexibility allows resident physicians to tailor the educational program in a manner to meet individual educational needs. The behavioral science curriculum is based upon faculty interpretation of existing "best practice" guidelines (Residency Review Committee-Family Medicine and AAFP). This article provides sufficient curriculum detail to allow the interested reader the opportunity to adapt elements of the behavioral science curriculum to other residency training programs. While this behavioral science track system is currently in an early stage of implementation, the article discusses track advantages as well as future plans to evaluate various aspects of this innovative educational approach.

  19. Flipped Classrooms for Advanced Science Courses

    Science.gov (United States)

    Tomory, Annette; Watson, Sunnie Lee

    2015-12-01

    This article explains how issues regarding dual credit and Advanced Placement high school science courses could be mitigated via a flipped classroom instructional model. The need for advanced high school courses will be examined initially, followed by an analysis of advanced science courses and the reform they are experiencing. Finally, it will conclude with an explanation of flipped classes as well as how they may be a solution to the reform challenges teachers are experiencing as they seek to incorporate more inquiry-based activities.

  20. Teaching Planetary Sciences in Bilingual Classrooms

    Science.gov (United States)

    Lebofsky, L. A.; Lebofsky, N. R.

    1993-05-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. It also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80% feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K--3 and 38 minutes per day in 4--6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. Therefore in order to teach earth/space science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. Tucson has another, but not unique, problem. The largest public school district, the Tucson Unified School District (TUSD), provides a neighborhood school system enhanced with magnet, bilingual and special needs schools for a school population of 57,000 students that is 4.1% Native American, 6.0% Black, and 36.0% Hispanic (1991). This makes TUSD and the other school districts in and around Tucson ideal for a program that reaches students of diverse ethnic backgrounds. However, few space sciences materials exist in Spanish; most materials could not be used effectively in the classroom. To address this issue, we have translated NASA materials into Spanish and are conducting a series of workshops for bilingual classroom teachers. We will discuss in detail our bilingual classroom workshops

  1. Models and Materials: Bridging Art and Science in the Secondary Curriculum

    Science.gov (United States)

    Pak, D.; Cavazos, L.

    2006-12-01

    Creating and sustaining student engagement in science is one challenge facing secondary teachers. The visual arts provide an alternative means of communicating scientific concepts to students who may not respond to traditional formats or identify themselves as interested in science. We have initiated a three-year teacher professional development program at U C Santa Barbara focused on bridging art and science in secondary curricula, to engage students underrepresented in science majors, including girls, English language learners and non-traditional learners. The three-year format provides the teams of teachers with the time and resources necessary to create innovative learning experiences for students that will enhance their understanding of both art and science content. Models and Materials brings together ten secondary art and science teachers from six Santa Barbara County schools. Of the five participating science teachers, three teach Earth Science and two teach Life Science. Art and science teachers from each school are teamed and challenged with the task of creating integrated curriculum projects that bring visual art concepts to the science classroom and science concepts to the art classroom. Models and Materials were selected as unifying themes; understanding the concept of models, their development and limitations, is a prominent goal in the California State Science and Art Standards. Similarly, the relationship between composition, structure and properties of materials is important to both art and science learning. The program began with a 2-week institute designed to highlight the natural links between art and science through presentations and activities by both artists and scientists, to inspire teachers to develop new ways to present models in their classrooms, and for the teacher teams to brainstorm ideas for curriculum projects. During the current school year, teachers will begin to integrate science and art and the themes of modeling and materials

  2. A hybrid classroom-online curriculum format for RN-BSN students: cohort support and curriculum structure improve graduation rates.

    Science.gov (United States)

    Davidson, Susan C; Metzger, Richard; Lindgren, Katherine S

    2011-05-01

    As more registered nurses (RNs) return to school to obtain a bachelor of science in nursing (BSN), innovative ways must be found to support them in this endeavor. Barriers for RNs who return to school include scheduling of coursework and fear of failure. One school of nursing with a traditional BSN program reviewed its RN-BSN track, with its low retention and graduation rates. With input from nursing leaders and nurses in the community, the school applied for and was awarded a 3-year Health Resources and Services Administration grant to redesign the RN-BSN program. A hybrid classroom-online curriculum is offered in a structured, sequential format so that the RNs are admitted once a year and must complete the courses as a group, in a cohort. Data collected from evaluations showed that program support, technology support, and social support from peers encouraged the RNs to "stay the course," and 100% completed the requirements to graduate. Copyright 2011, SLACK Incorporated.

  3. Challenging traditional assumptions of high school science through the physics and Everyday Thinking Curriculum(TM)

    Science.gov (United States)

    Ross, Michael J.

    Science education in the U.S. has failed for over a century to bring the experience of scientific induction to classrooms, from elementary science to undergraduate courses. The achievement of American students on international comparisons of science proficiency is unacceptable, and the disparities between groups underrepresented in STEM and others are large and resistant to reform efforts. This study investigated the enactment of a physics curriculum designed upon the inductive method in a high school serving mostly students from groups underrepresented in science. The Physics and Everyday Thinking curriculum was designed to model the central practices of science and to provide opportunities for students to both extract general principles of physics and to develop scientific models from laboratory evidence. The findings of this study suggest that scientific induction is not only a process that is well within the capacity of high school students, but they enjoy it as well. Students that engaged in the central practices of science through the inductive method reported a new sense of agency and control in their learning. These findings suggest that modeling the pedagogy of the science classroom upon the epistemology of science can result in a mode of learning that can lead to positive identification with physics and the development of scientific literacy.

  4. Biological design in science classrooms

    Science.gov (United States)

    Scott, Eugenie C.; Matzke, Nicholas J.

    2007-01-01

    Although evolutionary biology is replete with explanations for complex biological structures, scientists concerned about evolution education have been forced to confront “intelligent design” (ID), which rejects a natural origin for biological complexity. The content of ID is a subset of the claims made by the older “creation science” movement. Both creationist views contend that highly complex biological adaptations and even organisms categorically cannot result from natural causes but require a supernatural creative agent. Historically, ID arose from efforts to produce a form of creationism that would be less vulnerable to legal challenges and that would not overtly rely upon biblical literalism. Scientists do not use ID to explain nature, but because it has support from outside the scientific community, ID is nonetheless contributing substantially to a long-standing assault on the integrity of science education. PMID:17494747

  5. Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalised science classroom

    Science.gov (United States)

    De Carvalho, Roussel

    2016-06-01

    Steven Vertovec (2006, 2007) has recently offered a re-interpretation of population diversity in large urban centres due to a considerable increase in immigration patterns in the UK. This complex scenario called superdiversity has been conceptualised to help illuminate significant interactions of variables such as religion, language, gender, age, nationality, labour market and population distribution on a larger scale. The interrelationships of these themes have fundamental implications in a variety of community environments, but especially within our schools. Today, London schools have over 300 languages being spoken by students, all of whom have diverse backgrounds, bringing with them a wealth of experience and, most critically, their own set of religious beliefs. At the same time, Science is a compulsory subject in England's national curriculum, where it requires teachers to deal with important scientific frameworks about the world; teaching about the origins of the universe, life on Earth, human evolution and other topics, which are often in conflict with students' religious views. In order to cope with this dynamic and thought-provoking environment, science initial teacher education (SITE)—especially those catering large urban centres—must evolve to equip science teachers with a meaningful understanding of how to handle a superdiverse science classroom, taking the discourse of inclusion beyond its formal boundaries. Thus, this original position paper addresses how the role of SITE may be re-conceptualised and re-framed in light of the immense challenges of superdiversity as well as how science teachers, as enactors of the science curriculum, must adapt to cater to these changes. This is also the first in a series of papers emerging from an empirical research project trying to capture science teacher educators' own views on religio-scientific issues and their positions on the place of these issues within science teacher education and the science classroom.

  6. SU-F-E-08: Medical Physics as a Teaching Tool for High School Science Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, L [The Ottawa Hospital Cancer Ctr., Ottawa, ON (Canada)

    2016-06-15

    Purpose: Delivering high school science curriculum in a timely manner and in way that is accessible to all students is a challenge for teachers. Although many high schools offer career workshops, these are typically directed at senior students and do not relate directly to details of the curriculum. The objective of this initiative was to create a series of lectures that use medical physics to relate many aspects of the high school science curriculum to tangible clinical applications and to introduce students to alternate pathways into a career in health sciences. Methods: A series of lectures has been developed based on the Ontario High School Science Curriculum. Each lecture uses a career in radiotherapy medical physics as the framework for discussion of topics specific to the high school course being addressed. Results: At present, these lectures have been delivered in five area high schools to students ranging from sophomores to seniors. Survey documents are given to the students before and after the lecture to assess their awareness of careers in health care, applications of physics and their general interest in the subject areas. As expected, students have limited up front awareness of the wide variety of health related career paths. The idea of combining a career lecture with topics specific to the classroom curriculum has been well-received by teachers and students alike. Conclusion: Career talks for high school students are useful for students contemplating their post- secondary career path. Relating career discussion with direct course curriculum makes their studies more relevant and engaging. Students aspiring to a career in health sciences often focus their studies on life sciences due to limited knowledge of potential careers. An early introduction to medical physics presents them with an alternate path through the physical sciences into health care.

  7. SU-F-E-08: Medical Physics as a Teaching Tool for High School Science Curriculum

    International Nuclear Information System (INIS)

    Buckley, L

    2016-01-01

    Purpose: Delivering high school science curriculum in a timely manner and in way that is accessible to all students is a challenge for teachers. Although many high schools offer career workshops, these are typically directed at senior students and do not relate directly to details of the curriculum. The objective of this initiative was to create a series of lectures that use medical physics to relate many aspects of the high school science curriculum to tangible clinical applications and to introduce students to alternate pathways into a career in health sciences. Methods: A series of lectures has been developed based on the Ontario High School Science Curriculum. Each lecture uses a career in radiotherapy medical physics as the framework for discussion of topics specific to the high school course being addressed. Results: At present, these lectures have been delivered in five area high schools to students ranging from sophomores to seniors. Survey documents are given to the students before and after the lecture to assess their awareness of careers in health care, applications of physics and their general interest in the subject areas. As expected, students have limited up front awareness of the wide variety of health related career paths. The idea of combining a career lecture with topics specific to the classroom curriculum has been well-received by teachers and students alike. Conclusion: Career talks for high school students are useful for students contemplating their post- secondary career path. Relating career discussion with direct course curriculum makes their studies more relevant and engaging. Students aspiring to a career in health sciences often focus their studies on life sciences due to limited knowledge of potential careers. An early introduction to medical physics presents them with an alternate path through the physical sciences into health care.

  8. College science teachers' views of classroom inquiry

    Science.gov (United States)

    Brown, Patrick L.; Abell, Sandra K.; Demir, Abdulkadir; Schmidt, Francis J.

    2006-09-01

    The purposes of this study were to (a) gain an understanding of the views of inquiry held by faculty members involved in undergraduate science teaching and (b) describe the challenges, constraints, and opportunities that they perceived in designing and teaching inquiry-based laboratories. Participants included 19 college professors, representing both life and physical science disciplines, from (a) 2-year community college, (b) small, private nonprofit liberal arts college, (c) public master's granting university, and (d) public doctoral/research extensive university. We collected data through semistructured interviews and applied an iterative data analysis process. College science faculty members held a full and open inquiry view, seeing classroom inquiry as time consuming, unstructured, and student directed. They believed that inquiry was more appropriate for upper level science majors than for introductory or nonscience majors. Although faculty members valued inquiry, they perceived limitations of time, class size, student motivation, and student ability. These limitations, coupled with their view of inquiry, constrained them from implementing inquiry-based laboratories. Our proposed inquiry continuum represents a broader view of inquiry that recognizes the interaction between two dimensions of inquiry: (a) the degree of inquiry and (b) the level of student directedness, and provides for a range of inquiry-based classroom activities.

  9. Curriculum Design for Inquiry: Preservice Elementary Teachers' Mobilization and Adaptation of Science Curriculum Materials

    Science.gov (United States)

    Forbes, Cory T.; Davis, Elizabeth A.

    2010-01-01

    Curriculum materials are crucial tools with which teachers engage students in science as inquiry. In order to use curriculum materials effectively, however, teachers must develop a robust capacity for pedagogical design, or the ability to mobilize a variety of personal and curricular resources to promote student learning. The purpose of this study…

  10. Teachers' sense-making of curriculum structures and its impact on the implementation of an innovative reform-based science curriculum

    Science.gov (United States)

    Beckford-Smart, Meredith

    This study discusses the social interactions involved in teachers' enactment and use of new science curricula. The teachers studied participated in the LiFE program, a university-school partnership, which is an inquiry based science and nutrition education program. In this program fifth and sixth grade students learned science through the study of food. The program used the study of food and food systems to teach life sciences and nutrition through inquiry based studies. Through the partnership teachers received professional development which aimed to deepen their conceptual understandings of life science and develop skills in implementing inquiry-base teaching. Using qualitative research methods of ethnography and narrative inquiry to study teachers' sense-making of messages from curriculum structures, the intention was to explore how teachers' sense-making of these structures guided their classroom practices. Two research questions were addressed: (a) How do teachers make sense of curriculum given their perceptions, their school context and their curricular context; (b) What influence do their identities as science teachers/learners have on their enactment of an innovative science curriculum. I used comparative analysis to examine teacher's beliefs and identities as teachers/learners. In the process of studying these teachers an understanding of how teachers' stories and identities shape their use and enactment of science curriculum came to light. The initial analysis revealed four distinct teacher identities: (a) social responsibility teacher/learner; (b) experiential teacher/learner; (c) supportive institution teacher/learner; and (d) turning point teacher. Besides these distinct teacher identities three cross cutting themes emerged: (a) creating environments conducive to their teaching visions; (b) empowering student through science teaching; and (c) dealing with the uncertainty of teaching. The information gathered from this study will illuminate how these

  11. Leading change: curriculum reform in graduate education in the biomedical sciences.

    Science.gov (United States)

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were also 15 unique curricula. Departments and programs offered courses independently, and students participated in curricula that were overlapping combinations of these courses. This system created curricula that were not coordinated and that had redundant course content as well as content gaps. A partnership of key stakeholders began a curriculum reform process to completely restructure doctoral education at the Boston University School of Medicine. The key pedagogical goals, objectives, and elements designed into the new curriculum through this reform process created a curriculum designed to foster the interdisciplinary thinking that students are ultimately asked to utilize in their research endeavors. We implemented comprehensive student and peer evaluation of the new Foundations in Biomedical Sciences integrated curriculum to assess the new curriculum. Furthermore, we detail how this process served as a gateway toward creating a more fully integrated graduate experience, under the umbrella of the Program in Biomedical Sciences. © 2015 The International Union of Biochemistry and Molecular Biology.

  12. Hydromania II: Journey of the Oncorhynchus. Summer Science Camp Curriculum 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Joan; Swerin, Rod

    1995-01-01

    The Hydromania II curriculum was written for the third in a series of summer science camp experiences targeting students in grades 4--6 who generally have difficulty accessing supplementary academic programs. The summer science camp in Portland is a collaborative effort between Bonneville Power Administration (BPA), the US Department of Energy (DOE), and the Portland Parks and Recreation Community Schools Program along with various other cooperating businesses and organizations. The curriculum has also been incorporated into other summer programs and has been used by teachers to supplement classroom activities. Camps are designed to make available, affordable learning experiences that are fun and motivating to students for the study of science and math. Inner-city, under-represented minorities, rural, and low-income families are particularly encouraged to enroll their children in the program.

  13. Curriculum Consonance and Dissonance in Technology Education Classrooms

    Science.gov (United States)

    Brown, Ryan A.

    2009-01-01

    In a time of increased accountability, a tightened curriculum, and fewer curricular choices for students, technology education in the United States is in the position of defending itself by "carving a niche" in the school curriculum. Justifying the place of technology education is becoming increasingly difficult, as there has been little…

  14. Mentoring BUGS: An Integrated Science and Technology Curriculum

    Science.gov (United States)

    Harrell, Pamela Esprivalo; Walker, Michelle; Hildreth, Bertina; Tyler-Wood, Tandra

    2004-01-01

    The current study describes an authentic learning experience designed to develop technology and science process skills through a carefully scaffolded curriculum using mealworms as a content focus. An individual mentor assigned to each 4th and 5th grade girl participating in the program delivered the curriculum. Results indicate mastery of science…

  15. Surviving the Implementation of a New Science Curriculum

    Science.gov (United States)

    Lowe, Beverly; Appleton, Ken

    2015-01-01

    Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2 years getting to know the new…

  16. Curriculum Assessment in Social Sciences at Universiti Pendidikan Sultan Idris

    Science.gov (United States)

    Saleh, Hanifah Mahat Yazid; Hashim, Mohmadisa; Yaacob, Norazlan Hadi; Kasim, Adnan Jusoh Ahmad Yunus

    2015-01-01

    The purpose of this paper is to discuss the effectiveness of the curriculum implementation for undergraduate programme in the Faculty of Human Sciences, UPSI producing quality and competitive educators. Curriculum implementation has to go through an assessment process that aims to determine the problem, select relevant information and collect and…

  17. Modelling Spark Integration in Science Classroom

    Directory of Open Access Journals (Sweden)

    Marie Paz E. Morales

    2014-02-01

    Full Text Available The study critically explored how a PASCO-designed technology (SPARK ScienceLearning System is meaningfully integrated into the teaching of selected topics in Earth and Environmental Science. It highlights on modelling the effectiveness of using the SPARK Learning System as a primary tool in learning science that leads to learning and achievement of the students. Data and observation gathered and correlation of the ability of the technology to develop high intrinsic motivation to student achievement were used to design framework on how to meaningfully integrate SPARK ScienceLearning System in teaching Earth and Environmental Science. Research instruments used in this study were adopted from standardized questionnaires available from literature. Achievement test and evaluation form were developed and validated for the purpose of deducing data needed for the study. Interviews were done to delve into the deeper thoughts and emotions of the respondents. Data from the interviews served to validate all numerical data culled from this study. Cross-case analysis of the data was done to reveal some recurring themes, problems and benefits derived by the students in using the SPARK Science Learning System to further establish its effectiveness in the curriculum as a forerunner to the shift towards the 21st Century Learning.

  18. Tracing the Policy Mediation Process in the Implementation of a Change in the Life Sciences Curriculum

    Science.gov (United States)

    Singh-Pillay, Asheena; Alant, Busisiwe

    2015-01-01

    This paper accounts for the enacted realities of curriculum reform in South Africa, in particular the mediation of curriculum change. Curriculum implementation is viewed as a complex networked process of transforming or mediating policy into classroom practice. The fact that curriculum implementation is seen as problematic requires attention for…

  19. Performance-based classrooms: A case study of two elementary teachers of mathematics and science

    Science.gov (United States)

    Jones, Kenneth W.

    This case study depicts how two elementary teachers develop classrooms devoted to performance-based instruction in mathematics and science. The purpose is to develop empirical evidence of classroom practices that leads to a conceptual framework about the nature of performance-based instruction. Performance-based assessment and instruction are defined from the literature to entail involving students in tasks that are complex and engaging, requiring them to apply knowledge and skills in authentic contexts. In elementary mathematics and science, such an approach emphasizes problem solving, exploration, inquiry, and reasoning. The body of the work examines teacher beliefs, curricular orientations, instructional strategies, assessment approaches, management and organizational skills, and interpersonal relationships. The focus throughout is on those aspects that foster student performance in elementary mathematics and science. The resulting framework describes five characteristics that contribute to performance-based classrooms: a caring classroom community, a connectionist learning theory, a thinking and doing curriculum, diverse opportunities for learning, and ongoing assessment, feedback, and adjustment. The conclusion analyzes factors external to the classroom that support or constrain the development of performance-based classrooms and discusses the implications for educational policy and further research.

  20. Noise Pollution--An Overlooked Issue in the Science Curriculum.

    Science.gov (United States)

    Treagust, David F.; Kam, Goh Ah

    1985-01-01

    Discusses the need for including noise pollution in the science curriculum and describes 10 activities for improving students' awareness and understanding of and concern for noise and its effects. (Author/JN)

  1. Exploring the Associations Among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum.

    Science.gov (United States)

    Stage, Virginia C; Kolasa, Kathryn M; Díaz, Sebastián R; Duffrin, Melani W

    2018-01-01

    Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across North Carolina and Ohio; mean age 10 years old; gender (I = 53.2% female; C = 51.6% female). Dependent variable = post-test-nutrition knowledge; independent variables = baseline-nutrition knowledge, and post-test science and mathematics knowledge. Analyses included descriptive statistics and multiple linear regression. The hypothesized model predicted post-nutrition knowledge (F(437) = 149.4, p mathematics knowledge were predictive of nutrition knowledge indicating use of an integrative science and mathematics curriculum to improve academic knowledge may also simultaneously improve nutrition knowledge among fourth-grade students. Teachers can benefit from integration by meeting multiple academic standards, efficiently using limited classroom time, and increasing nutrition education provided in the classroom. © 2018, American School Health Association.

  2. Sample classroom activities based on climate science

    Science.gov (United States)

    Miler, T.

    2009-09-01

    We present several activities developed for the middle school education based on a climate science. The first activity was designed to teach about the ocean acidification. A simple experiment can prove that absorption of CO2 in water increases its acidity. A liquid pH indicator is suitable for the demonstration in a classroom. The second activity uses data containing coordinates of a hurricane position. Pupils draw a path of a hurricane eye in a tracking chart (map of the Atlantic ocean). They calculate an average speed of the hurricane, investigate its direction and intensity development. The third activity uses pictures of the Arctic ocean on September when ice extend is usually the lowest. Students measure the ice extend for several years using a square grid printed on a plastic foil. Then they plot a graph and discuss the results. All these activities can be used to improve the natural science education and increase the climate change literacy.

  3. INTRODUCTION TO SCIENCE: A CURRICULUM APPROACH

    Directory of Open Access Journals (Sweden)

    André A. G. Bianco

    2007-05-01

    Full Text Available International and national institutions concerned with higher education recommendthe inclusion in curriculum of strategies to promote development of aditional skills thentraditionals memorazing habilities and contents reproduction. Between this, specialattention is given to stimulating the critical capacitie. To develop this skills, was given aproject, included into the Biochemistry discipline, with freshmen students in the Nutritioncourse of the Saúde Pública College of USP. The project consisted into the scientificarticles analysis and in the elaboration of research projects at the Scientific Initiation level.The first part presented the way how Science is divulged and the second, the mold that thescientific knowledge is generated. All activities was always conducted by activecommunication strategy. The general goal was bring near the students of scientificproceedings, contribute to developed scientific attitude, that is to say, critical sense. Theproceeding was evaluated by quantitative methods (questionnaire and qualitative(interview with differents participant and the results point for a significative increase ofknowledge of scientific job and a developed of yerned skills.

  4. The Social Science Curriculum of the Two-Year College.

    Science.gov (United States)

    Friedlander, Jack

    1980-01-01

    Describes a nationwide study to identify: (1) the representation of different areas within the social sciences (i.e. anthropology, economics, history, political science, psychology, social/ethnic studies, sociology, and interdisciplinary social sciences) in the two-year college curriculum, and (2) which courses were offered for transfer,…

  5. Culturally Responsive Pedagogies in the Classroom: Indigenous Student Experiences across the Curriculum

    Science.gov (United States)

    Savage, Catherine; Hindle, Rawiri; Meyer, Luanna H.; Hynds, Anne; Penetito, Wally; Sleeter, Christine E.

    2011-01-01

    There is agreement that teaching practices should be responsive to the cultural identities of their students, but less clarity regarding both the specifics of culturally responsive pedagogies and effective strategies for implementing them in classrooms across the curriculum. A mixed-methods research approach evaluated the impact of teacher…

  6. The Use of the Barclay Classroom Climate Inventory in Curriculum Planning and Intervention.

    Science.gov (United States)

    Hawn, Horace C.; Poole, Edward A.

    The Barclay Classroom Climate Inventory (BCCI) was used in the Athens Teacher Corps Project to appraise individual differences among students in grades 3-5, to guide in selecting alternative curriculum strategies for children with identified skill deficits, and to evaluate the effectiveness of those selected strategies. Intervention strategies…

  7. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    Science.gov (United States)

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  8. Streaming Seismograms into Earth-Science Classrooms

    Science.gov (United States)

    Ammon, C. J.

    2011-12-01

    Seismograms are the fundamental observations upon which seismology is based; they are central to any course in seismology and important for any discussion of earthquake-related phenomena based on seismic observations. Advances in the collection and distribution of seismic data have made the use of research-quality seismograms in any network capable classroom feasible. The development of large, deep seismogram archives place an unprecedented quantity of high-quality data within reach of the modern classroom environment. I describe and discuss several computer tools and classroom activities that I use in introductory (general education) and advanced undergraduate courses that present near real-time research-quality seismic observations in the classroom. The Earth Motion Monitor Application (EMMA), is a MacOS application that presents a visually clear seismogram display that can be projected in classrooms with internet access. Seismic signals from thousands of station are available from the IRIS data center and the bandwidth can be tailored to the particular type of signal of interest (large event, low frequencies; small event, high frequencies). In introductory classes for non-science students, the near realtime display routinely shows magnitude 4.0-5.0 earthquake-generated signals, demonstrating to students the frequency of earthquake occurrence. Over the next few minutes as the waves travel through and across the planet, their arrival on the seismogram display provides some basic data for a qualitative estimate of the event's general location. When a major or great earthquake occurs, a broad-band display of signals from nearby stations can dramatically and dynamically illuminate the frequent activity associated with the aftershock sequence. Routine use of the display (while continuing the traditional classroom activities) provides students with a significant dose of seismogram study. Students generally find all the signals, including variations in seismic

  9. Curriculum optimization of College of Optical Science and Engineering

    Science.gov (United States)

    Wang, Xiaoping; Zheng, Zhenrong; Wang, Kaiwei; Zheng, Xiaodong; Ye, Song; Zhu, Yuhui

    2017-08-01

    The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of "optoelectronics + X", according to their individual strengths and preferences.

  10. Life Skills from the Perspectives of Classroom and Science Teachers

    Science.gov (United States)

    Kurtdede-Fidan, Nuray; Aydogdu, Bülent

    2018-01-01

    The aim of this study is to determine classroom and science teachers' views about life skills. The study employed phenomenological method. The participants of the study were 24 teachers; twelve of them were classroom teachers and the remaining were science teachers. They were working at public schools in Turkey. The participants were selected…

  11. `Models of' versus `Models for'. Toward an Agent-Based Conception of Modeling in the Science Classroom

    Science.gov (United States)

    Gouvea, Julia; Passmore, Cynthia

    2017-03-01

    The inclusion of the practice of "developing and using models" in the Framework for K-12 Science Education and in the Next Generation Science Standards provides an opportunity for educators to examine the role this practice plays in science and how it can be leveraged in a science classroom. Drawing on conceptions of models in the philosophy of science, we bring forward an agent-based account of models and discuss the implications of this view for enacting modeling in science classrooms. Models, according to this account, can only be understood with respect to the aims and intentions of a cognitive agent (models for), not solely in terms of how they represent phenomena in the world (models of). We present this contrast as a heuristic— models of versus models for—that can be used to help educators notice and interpret how models are positioned in standards, curriculum, and classrooms.

  12. Teacher enactment of an inquiry-based science curriculum and its relationship to student interest and achievement in science

    Science.gov (United States)

    Dimichino, Daniela C.

    This mixed-methods case study, influenced by aspects of grounded theory, aims to explore the relationships among a teacher's attitude toward inquiry-based middle school reform, their enactment of such a curriculum, and student interest and achievement in science. A solid theoretical basis was constructed from the literature on the benefits of inquiry-based science over traditional science education, the benefits of using constructivist learning techniques in the classroom, the importance of motivating teachers to change their teaching practices to be more constructive, and the importance of motivating and exciting students in order to boost achievement in science. Data was collected using qualitative documents such as teacher and student interviews, classroom observations, and curriculum development meetings, in addition to quantitative documents such as student science interest surveys and science skills tests. The qualitative analysis focused on examining teacher attitudes toward curricular reform efforts, and the enactments of three science teachers during the initial year of an inquiry-based middle school curriculum adoption using a fidelity of implementation tool constructed from themes that emerged from the data documents utilized in this study. In addition, both qualitative and quantitative tools were used to measure an increase or decrease in student interest and student achievement over the study year, and their resulting relationships to their teachers' attitudes and enactments of the curriculum. Results from data analysis revealed a positive relationship between the teachers' attitude toward curricular change and their fidelity of implementation to the developers' intentions, or curricular enactment. In addition, strong positive relationships were also discovered among teacher attitude, student interest, and student achievement. Variations in teacher enactment also related to variations in student interest and achievement, with considerable positive

  13. Real-world experiences of nuclear science in the classroom - What an individual can do

    International Nuclear Information System (INIS)

    Fox, M.R.

    1991-01-01

    Experience is showing that the public has yet to learn about the natural world, radiation, risk analysis, and energy, as well as other issues. This has occurred during a time in which the quality of education has declined in the US. As a former college professor who is married to a schoolteacher, the author realized that the two observations are linked. A communications gap has developed between science and the schools. Scientists perceive that once scientific advancements have taken place, new curriculum materials for schools automatically adapt to include these advancements. Teachers' schedules are typically so filled during and after school that new curriculum material is slowed in being introduced in the classroom. Thus, the question becomes, how do we bridge the gulf between scientists and the classroom? Scientists can be helpful to teachers in many ways. This paper is a summary of some of the activities and lessons learned in strengthening teacher-scientist relationships

  14. Horizontal integration of the basic sciences in the chiropractic curriculum.

    Science.gov (United States)

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  15. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    Science.gov (United States)

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  16. Nuclear power and the science curriculum

    International Nuclear Information System (INIS)

    Scott, W.

    1980-01-01

    The curriculum provision in UK schools for studies of nuclear power, its scientific aspects, its technologies and its effect upon society are examined in the light of present concern for an informed lay opinion. (U.K.)

  17. Student teachers' views: what is an interesting life sciences curriculum?

    OpenAIRE

    Rian de Villiers

    2011-01-01

    In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET) phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university...

  18. Shifts in funding for science curriculum design and their (unintended) consequences

    NARCIS (Netherlands)

    Pareja Roblin, Natalie; Schunn, Christian; Bernstein, Debra; McKenney, Susan

    2016-01-01

    Federal agencies in the Unites States invest heavily in the development of science curriculum materials, which can significantly facilitate science education reform. The current study describes the characteristics of K-12 science curriculum materials produced by federally funded projects between

  19. Expanding the Reach of the Coastal Ocean Science Classroom to Teachers through Teleducation

    Science.gov (United States)

    Macko, S.; Szuba, T.

    2007-12-01

    In a first of its kind connectivity, using high speed internet connections, a summer class in Oceanography was live, interactively broadcast (teleducation) to Arcadia High School on the Eastern Shore of Virginia, allowing teachers in the Accomack County School District to receive university credit without leaving their home classrooms 250 miles from UVA. This project was an outreach and education program with a partner in the K-12 schools on the Eastern Shore of Virginia. It endeavored to build a community knowledgeable of the importance the ocean plays daily in our lives, and our own impact on the ocean. By establishing teleducation linkages with the Eastern Shore High Schools we were rigorously testing the live-Internet-based classroom with earth science teachers enabling them to remotely participate in University of Virginia classes in Oceanography. The classes were designed on a faculty development basis or to allow the teachers to acquire NSTA certification in Earth Science Education. While not without small problems of interruptions in connectivity or the occasional transmission of hardcopies of materials, the approach was seen to be extremely successful. The ability to reach school districts and teachers that are in more remote locations and with fewer resources is clearly supported by this venture. Currently we are planning to link multiple classrooms in the next iteration of this work, intending to offer the expanded classroom in more distant college-based classrooms where Ocean Sciences is a desired portion of the curriculum, but is presently only occasionally offered owing to limited resources.

  20. Multicultural Science Education and Curriculum Materials

    Science.gov (United States)

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  1. Spontaneous Play and Imagination in Everyday Science Classroom Practice

    Science.gov (United States)

    Andrée, Maria; Lager-Nyqvist, Lotta

    2013-01-01

    In science education, students sometimes create and engage in spontaneous science-oriented play where ideas about science and scientists are put to use. However, in previous research, little attention has been given to the role of informal spontaneous play in school science classrooms. We argue that, in order to enhance our understanding of…

  2. Customization of Curriculum Materials in Science: Motives, Challenges, and Opportunities

    Science.gov (United States)

    Romine, William L.; Banerjee, Tanvi

    2012-01-01

    Exemplary science instructors use inquiry to tailor content to student's learning needs; traditional textbooks treat science as a set of facts and a rigid curriculum. Publishers now allow instructors to compile pieces of published and/or self-authored text to make custom textbooks. This brings numerous advantages, including the ability to produce…

  3. Arguing for Computer Science in the School Curriculum

    Science.gov (United States)

    Fluck, Andrew; Webb, Mary; Cox, Margaret; Angeli, Charoula; Malyn-Smith, Joyce; Voogt, Joke; Zagami, Jason

    2016-01-01

    Computer science has been a discipline for some years, and its position in the school curriculum has been contested differently in several countries. This paper looks at its role in three countries to illustrate these differences. A reconsideration of computer science as a separate subject both in primary and secondary education is suggested. At…

  4. Discovery stories in the science classroom

    Science.gov (United States)

    Arya, Diana Jaleh

    School science has been criticized for its lack of emphasis on the tentative, dynamic nature of science as a process of learning more about our world. This criticism is the guiding force for this present body of work, which focuses on the question: what are the educational benefits for middle school students of reading texts that highlight the process of science in the form of a discovery narrative? This dissertation traces my journey through a review of theoretical perspectives of narrative, an analysis of first-hand accounts of scientific discovery, the complex process of developing age-appropriate, cohesive and engaging science texts for middle school students, and a comparison study (N=209) that seeks to determine the unique benefits of the scientific discovery narrative for the interest in and retained understanding of conceptual information presented in middle school science texts. A total of 209 middle school participants in nine different classrooms from two different schools participated in the experimental study. Each subject read two science texts that differed in topic (the qualities of and uses for radioactive elements and the use of telescopic technology to see planets in space) and genre (the discovery narrative and the "conceptually known exposition" comparison text). The differences between the SDN and CKE versions for each topic were equivalent in all possible ways (initial introduction, overall conceptual accuracy, elements of human interest, coherence and readability level), save for the unique components of the discovery narrative (i.e., love for their work, acknowledgement of the known, identification of the unknown and the explorative or experimental process to discovery). Participants generally chose the discovery narrative version as the more interesting of the two texts. Additional findings from the experimental study suggest that science texts in the form of SDNs elicit greater long-term retention of key conceptual information, especially

  5. Renegotiating the pedagogic contract: Teaching in digitally enhanced secondary science classrooms

    Science.gov (United States)

    Ajayi, Ajibola Oluneye

    This qualitative case study explores the effects of emerging digital technology as a teaching and learning tool in secondary school science classrooms. The study examines three teachers' perspectives on how the use of technology affects the teacher-student pedagogic relationship. The "pedagogic contract" is used as a construct to analyze the changes that took place in these teachers' classrooms amid the use of this new technology. The overarching question for this research is: How was the pedagogic contract renegotiated in three secondary science teachers' classrooms through the use of digitally enhanced science instruction. To answer this question, data was collected via semi-structured teacher interviews, classroom observations, and analysis of classroom documents such as student assignments, tests and Study Guides. This study reveals that the everyday use of digital technologies in these classrooms resulted in a re-negotiated pedagogic contract across three major dimensions: content of learning, method and management of learning activities, and assessment of learning. The extent to which the pedagogic contract was renegotiated varied with each of the teachers studied. Yet in each case, the content of learning was extended to include new topics, and greater depth of learning within the mandated curriculum. The management of learning was reshaped around metacognitive strategies, personal goal-setting, individual pacing, and small-group learning activities. With the assessment of learning, there was increased emphasis on self-directed interactive testing as a formative assessment tool. This study highlights the aspects of science classrooms that are most directly affected by the introduction of digital technologies and demonstrates how those changes are best understood as a renegotiation of the teacher-student pedagogic contract.

  6. Student cognition and motivation during the Classroom BirdWatch citizen science project

    Science.gov (United States)

    Tomasek, Terry Morton

    The purpose of this study was to examine and describe the ways various stakeholders (CBW project developer/coordinator, elementary and middle school teachers, and 5th through 8th grade students) envisioned, implemented and engaged in the citizen science project, eBird/Classroom BirdWatch. A multiple case study mixed-methods research design was used to examine student engagement in the cognitive processes associated with scientific inquiry as part of citizen science participation. Student engagement was described based on a sense of autonomy, competence, relatedness and intrinsic motivation. A goal of this study was to expand the taxonomy of differences between authentic scientific inquiry and simple inquiry to include those inquiry tasks associated with participation in citizen science by describing how students engaged in this type of science. This research study built upon the existing framework of cognitive processes associated with scientific inquiry described by Chinn and Malhotra (2002). This research provides a systematic analysis of the scientific processes and related reasoning tasks associated with the citizen science project eBird and the corresponding curriculum Classroom BirdWatch . Data consisted of responses to surveys, focus group interviews, document analysis and individual interviews. I suggest that citizen science could be an additional form of classroom-based science inquiry that can promote more authentic features of scientific inquiry and engage students in meaningful ways.

  7. Nuclear Science Curriculum and Curriculum para la Ciencia Nuclear.

    Science.gov (United States)

    American Nuclear Society, La Grange Park, IL.

    This document presents a course in the science of nuclear energy, units of which may be included in high school physics, chemistry, and biology classes. It is intended for the use of teachers whose students have already completed algebra and chemistry or physics. Included in this paper are the objectives of this course, a course outline, a…

  8. Teaching and Learning Science in Authoritative Classrooms: Teachers' Power and Students' Approval in Korean Elementary Classrooms

    Science.gov (United States)

    Lee, Jeong-A.; Kim, Chan-Jong

    2017-09-01

    This study aims to understand interactions in Korean elementary science classrooms, which are heavily influenced by Confucianism. Ethnographic observations of two elementary science teachers' classrooms in Korea are provided. Their classes are fairly traditional teaching, which mean teacher-centered interactions are dominant. To understand the power and approval in science classroom discourse, we have adopted Critical Discourse Analysis (CDA). Based on CDA, form and function analysis was adopted. After the form and function analysis, all episodes were analyzed in terms of social distance. The results showed that both teachers exercised their power while teaching. However, their classes were quite different in terms of getting approval by students. When a teacher got students' approval, he could conduct the science lesson more effectively. This study highlights the importance of getting approval by students in Korean science classrooms.

  9. Interdisciplinary Climate Change Curriculum Materials based on the Next Generation Science Standards and The Earth Charter

    Science.gov (United States)

    Barbosa, A.; Robertson, W. H.

    2013-12-01

    In the 2012, the National Research Council (NRC) of the National Academies' reported that one of the major issues associated with the development of climate change curriculum was the lack of interdisciplinary materials that also promoted a correlation between science standards and content. Therefore, in order to respond to this need, our group has developed an interdisciplinary climate change curriculum that has had as its fundamental basis the alignment with the guidelines presented by the Next Generation Science Standards (NGSS) and the ones presented by the international document entitled The Earth Charter. In this regards, while the alignment with NGSS disciplinary core ideas, cross-concepts and students' expectations intended to fulfill the need for the development of climate change curriculum activities that were directly associated with the appropriate set of NGSS guidelines, the alignment with The Earth Charter document intended to reinforce the need the for the integration of sociological, philosophical and intercultural analysis of the theme 'climate change'. Additionally, our curriculum was also developed as part of a collaborative project between climate scientists and engineers, who are responsible for the development of a Regional Arctic Simulation Model (RASM). Hence, another important curriculum constituent was the feedback, suggestions and reviews provided by these professionals, who have also contributed to these pedagogical materials' scientific accuracy by facilitating the integration of datasets and visualizations developed by RASM. Furthermore, our group has developed a climate change curriculum for two types of audience: high school and early undergraduate students. Each curriculum unit is divided into modules and each module contains a set of lesson plans. The topics selected to compose each unit and module were designated according to the surveys conducted with scientists and engineers involved with the development of the climate change

  10. Hyper-curriculum: Transcending Borders of Standardization in the Cosmopolitan Classroom

    Directory of Open Access Journals (Sweden)

    Christopher J. Kazanjian

    2016-10-01

    Full Text Available The world is not just connected; it is hyper-connected. The global flow of ideas, technology, and people are at unmatched levels in history. More classrooms are becoming cosmopolitan centers composed of students with multicultural backgrounds. However, United States public education in this hyper-connected world puts emphasis on standardization and accountability. By doing so, schools driven by federal initiatives fail in helping students to become worldly citizens. Students and teachers are derived of room for creativity or new multicultural possibilities. Hence, this paper intends to develop a theoretical framework for curriculum in the hyper-connected world, aptly named “hyper-curriculum.”

  11. Mother Tongue Tuition in Sweden - Curriculum Analysis and Classroom Experience

    Directory of Open Access Journals (Sweden)

    Anne REATH WARREN

    2013-10-01

    Full Text Available The model of Mother Tongue Tuition (MTT which has developed in Sweden since the 1970’s offers speakers of languages other than Swedish the opportunity to request tuition in their mother tongue, from kindergarten through to year 12. It is unique among the major immigrant-receiving countries of the world yet little is known about MTT and its syllabus outside of its Nordic context. This article examines the syllabus for MTT from two perspectives; firstly using the framework of Constructive Alignment, secondly from the perspective of what is hidden. The intended syllabus is revealed as well-aligned, but the hidden curriculum impedes successful enactment in many contexts. Examples from case studies in a larger on-going research project offer an alternate approach to syllabus implementation when the negative effects of the hidden curriculum are challenged. While highly context-specific, this model may represent a step in the right direction for implementation of the syllabus.

  12. Pedagogic Barriers in Cameroon Inclusive Classrooms: The Impact of Curriculum, Teachers' Attitudes and Classroom Infrastructures

    Science.gov (United States)

    Tanyi, Maureen Ebanga

    2016-01-01

    This study sought to examine if the curriculum, infrastructures and teachers' attitudes may influence school exclusion amongst disabled pupils. Three hypotheses were formulated based on the three variables: curriculum (teaching programmes), infrastructures and teachers' attitudes. 150 public primary school personnel from 12 primary schools in…

  13. Classroom Animals Provide More than Just Science Education

    Science.gov (United States)

    Herbert, Sandra; Lynch, Julianne

    2017-01-01

    Keeping classroom animals is a common practice in many classrooms. Their value for learning is often seen narrowly as the potential to involve children in learning biological science. They also provide opportunities for increased empathy, as well as socio-emotional development. Realization of their potential for enhancing primary children's…

  14. Visual, Critical, and Scientific Thinking Dispositions in a 3rd Grade Science Classroom

    Science.gov (United States)

    Foss, Stacy

    Many American students leave school without the required 21st century critical thinking skills. This qualitative case study, based on the theoretical concepts of Facione, Arheim, and Vygotsky, explored the development of thinking dispositions through the arts in science on the development of scientific thinking skills when used as a conceptual thinking routine in a rural 3rd grade classroom. Research questions examined the disposition to think critically through the arts in science and focused on the perceptions and experiences of 25 students with the Visual Thinking Strategy (VTS) process. Data were collected from classroom observations (n = 10), student interviews (n = 25), teacher interviews ( n = 1), a focus group discussion (n = 3), and artifacts of student work (n = 25); these data included perceptions of VTS, school culture, and classroom characteristics. An inductive analysis of qualitative data resulted in several emergent themes regarding disposition development and students generating questions while increasing affective motivation. The most prevalent dispositions were open-mindedness, the truth-seeking disposition, the analytical disposition, and the systematicity disposition. The findings about the teachers indicated that VTS questions in science supported "gradual release of responsibility", the internalization of process skills and vocabulary, and argumentation. This case study offers descriptive research that links visual arts inquiry and the development of critical thinking dispositions in science at the elementary level. A science curriculum could be developed, that emphasizes the development of thinking dispositions through the arts in science, which in turn, could impact the professional development of teachers and learning outcomes for students.

  15. Science Curriculum Components Favored by Taiwanese Biology Teachers

    Science.gov (United States)

    Lin, Chen-Yung; Hu, Reping; Changlai, Miao-Li

    2005-09-01

    The new 1-9 curriculum framework in Taiwan provides a remarkable change from previous frameworks in terms of the coverage of content and the powers of teachers. This study employs a modified repertory grid technique to investigate biology teachers' preferences with regard to six curriculum components. One hundred and eighty-five in-service and pre-service biology teachers were asked to determine which science curriculum components they liked and disliked most of all to include in their biology classes. The data show that the rank order of these science curriculum components, from top to bottom, was as follows: application of science, manipulation skills, scientific concepts, social/ethical issues, problem-solving skills, and the history of science. They also showed that pre-service biology teachers, as compared with in-service biology teachers, favored problem-solving skills significantly more than manipulative skills, while in-service biology teachers, as compared with pre-service biology teachers, favored manipulative skills significantly more than problem-solving skills. Some recommendations for ensuring the successful implementation of the Taiwanese 1-9 curriculum framework are also proposed.

  16. New curriculum at Nuclear Science Department, National University of Malaysia

    International Nuclear Information System (INIS)

    Shahidan bin Radiman; Ismail bin Bahari

    1995-01-01

    A new undergraduate curriculum at the Department of Nuclear Science, Universiti Kebangsaan Malaysia is discussed. It includes the rational and objective of the new curriculum, course content and expectations due to a rapidly changing job market. The major change was a move to implement only on one Nuclear Science module rather than the present three modules of Radiobiology, Radiochemistry and Nuclear Physics. This will optimise not only laboratory use of facilities but also effectiveness of co-supervision. Other related aspects like industrial training and research exposures for the undergraduates are also discussed

  17. Science on a Sphere and Data in the Classroom: A Marriage Between Limitless Learning Experiences.

    Science.gov (United States)

    Zepecki, S., III; Dean, A. F.; Pisut, D.

    2017-12-01

    NOAA and other agencies have contributed significantly to the creation and distribution of educational materials to enhance the public understanding of the interconnectedness of the Earth processes and human activities. Intended for two different learning audiences, Science on a Sphere and Data in the Classroom are both educational tools used to enhance understanding of our world and how human activity influences change. Recently, NOAA has undertaken the task of marrying Data in the Classroom's NGSS aligned curriculum, which includes topics such as El Niño, sea level rise, and coral bleaching, with Science on a Sphere's Earth and space data visualization exhibits. This partnership allows for the fluidity of NOAA's data-driven learning materials, and fosters the homogeneity of formal and informal learning experiences for varied audiences.

  18. Silencing of Voices in a Swedish Science Classroom

    Science.gov (United States)

    Ramos de Robles, S. Lizette

    2018-01-01

    From a sociocultural perspective, I discuss data from a Swedish science classroom presented in María Gómez's article "Student Explanations of their Science Teachers' Assessments, Grading Practices, and How they learn Science". In this discussion, I focus on the need to change existing conceptions of assessment in the teaching and…

  19. Greenhouse Effect in the Classroom: A Project- and Laboratory-Based Curriculum.

    Science.gov (United States)

    Lueddecke, Susann B.; Pinter, Nicholas; McManus, Scott A.

    2001-01-01

    Tests a multifaceted curriculum for use in introductory earth science classes from the secondary school to the introductory undergraduate level. Simulates the greenhouse effect with two fish tanks, heat lamps, and thermometers. Uses a hands-on science approach to develop a deeper understanding of the climate system among students. (Contains 28…

  20. INTRODUCTION TO SCIENCE: A CURRICULUM APPROACH

    OpenAIRE

    Bianco, André A. G.; Biochemistry Departament, Chemistry Institute, Sao Paulo University, Sao Paulo.; Torres, Bayardo B.; Biochemistry Departament, Chemistry Institute, Sao Paulo University, Sao Paulo.

    2007-01-01

    International and national institutions concerned with higher education recommendthe inclusion in curriculum of strategies to promote development of aditional skills thentraditionals memorazing habilities and contents reproduction. Between this, specialattention is given to stimulating the critical capacitie. To develop this skills, was given aproject, included into the Biochemistry discipline, with freshmen students in the Nutritioncourse of the Saúde Pública College of USP. The project cons...

  1. Curriculum-Dependent and Curriculum-Independent Factors in Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Science

    Science.gov (United States)

    Forbes, Cory T.

    2013-01-01

    In this nested mixed methods study I investigate factors influencing preservice elementary teachers' adaptation of science curriculum materials to better support students' engagement in science as inquiry. Analyses focus on two "reflective teaching assignments" completed by 46 preservice elementary teachers in an undergraduate elementary science…

  2. Strategies for Effective Implementation of Science Models into 6-9 Grade Classrooms on Climate, Weather, and Energy Topics

    Science.gov (United States)

    Yarker, M. B.; Stanier, C. O.; Forbes, C.; Park, S.

    2011-12-01

    As atmospheric scientists, we depend on Numerical Weather Prediction (NWP) models. We use them to predict weather patterns, to understand external forcing on the atmosphere, and as evidence to make claims about atmospheric phenomenon. Therefore, it is important that we adequately prepare atmospheric science students to use computer models. However, the public should also be aware of what models are in order to understand scientific claims about atmospheric issues, such as climate change. Although familiar with weather forecasts on television and the Internet, the general public does not understand the process of using computer models to generate a weather and climate forecasts. As a result, the public often misunderstands claims scientists make about their daily weather as well as the state of climate change. Since computer models are the best method we have to forecast the future of our climate, scientific models and modeling should be a topic covered in K-12 classrooms as part of a comprehensive science curriculum. According to the National Science Education Standards, teachers are encouraged to science models into the classroom as a way to aid in the understanding of the nature of science. However, there is very little description of what constitutes a science model, so the term is often associated with scale models. Therefore, teachers often use drawings or scale representations of physical entities, such as DNA, the solar system, or bacteria. In other words, models used in classrooms are often used as visual representations, but the purpose of science models is often overlooked. The implementation of a model-based curriculum in the science classroom can be an effective way to prepare students to think critically, problem solve, and make informed decisions as a contributing member of society. However, there are few resources available to help teachers implement science models into the science curriculum effectively. Therefore, this research project looks at

  3. Ethnographic case study of a high school science classroom: Strategies in stem education

    Science.gov (United States)

    Sohn, Lucinda N.

    Historically, science education research has promoted that learning science occurs through direct physical experiences. In recent years, the need for best practices and student motivation have been highlighted in STEM research findings. In response to the instructional challenges in STEM education, the National Research Council has provided guidelines for improving STEM literacy through best practices in science and mathematics instruction. A baseline qualitative ethnographic case study of the effect of instructional practices on a science classroom was an opportunity to understand how a teacher and students work together to learn in an International Baccalaureate life science course. This study was approached through an interpretivist lens with the assumption that learning science is socially constructed. The following were the research questions: 1.) How does the teacher implement science instruction strategies in the classroom? 2.) In what ways are students engaged in the classroom? 3.) How are science concepts communicated in the classroom? The total 35 participants included a high school science teacher and two classes of 11th grade students in the International Baccalaureate program. Using exploratory qualitative methods of research, data was collected from field notes and transcripts from a series of classroom observations, a single one-on-one interview with the teacher and two focus groups with students from each of the two classes. Three themes emerged from text coded using initial and process coding with the computer assisted qualitative data analysis software, MAXQDA. The themes were: 1.) Physical Forms of Communication Play Key Role in Instructional Strategy, 2.) Science Learning Occurs in Casual Environment Full of Distractions, and 3.) Teacher Persona Plays Vital Role in Classroom Culture. The findings provided insight into the teacher's role on students' motivation to learn science. The recommendation for STEM programs and new curriculum is a

  4. The Value of Fidelity of Implementation Criteria to Evaluate School-Based Science Curriculum Innovations

    Science.gov (United States)

    Lee, Yew-Jin; Chue, Shien

    2013-10-01

    School-based curriculum innovations, including those in science education, are usually not adequately evaluated, if at all. Furthermore, current procedures and instruments for programme evaluations are often unable to support evidence-based decision-making. We suggest that adopting fidelity of implementation (FOI) criteria from healthcare research can both characterize and narrow the separation between programme intent and actual implementation, which is a mandatory stage of evaluation before determining overall programme value. We demonstrate how such a process could be applied by science educators using data from a secondary school in Singapore that had devised a new curriculum to promote interest, investigative processes, and knowledge in science. Results showed that there were ambivalent student responses to this programme, while there were high levels of science process skill instruction and close alignment with the intended lesson design. The implementation of this programme appeared to have a satisfactory overall level of FOI, but we also detected tensions between programme intent and everyday classroom teaching. If we want to advance science education, then our argument is that applying FOI criteria is necessary when evaluating all curricular innovations, not just those that originate from schools.

  5. Student Teachers' Views: What Is an Interesting Life Sciences Curriculum?

    Science.gov (United States)

    de Villiers, Rian

    2011-01-01

    In South Africa, the Grade 12 "classes of 2008 and 2009" were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences…

  6. Consumer Citizenship Curriculum Guides for Social Studies, English, Science, Mathematics.

    Science.gov (United States)

    MacKenzie, Louise; Smith, Alice

    These four consumer citizenship curriculum guides for social studies, English, science, and mathematics incorporate consumer education into these subject matter areas in grades 8-12. Each guide is organized around 10 main component/goals. They are basic economics in the marketplace, credit, consumer law/protection, banking skills, comparison…

  7. Microsoft Excel Software Usage for Teaching Science and Engineering Curriculum

    Science.gov (United States)

    Singh, Gurmukh; Siddiqui, Khalid

    2009-01-01

    In this article, our main objective is to present the use of Microsoft Software Excel 2007/2003 for teaching college and university level curriculum in science and engineering. In particular, we discuss two interesting and fascinating examples of interactive applications of Microsoft Excel targeted for undergraduate students in: 1) computational…

  8. Mathematics and Science Learning Opportunities in Preschool Classrooms

    Science.gov (United States)

    Piasta, Shayne B.; Pelatti, Christina Yeager; Miller, Heather Lynnine

    2014-01-01

    Research findings The present study observed and coded instruction in 65 preschool classrooms to examine (a) overall amounts and (b) types of mathematics and science learning opportunities experienced by preschool children as well as (c) the extent to which these opportunities were associated with classroom and program characteristics. Results indicated that children were afforded an average of 24 and 26 minutes of mathematics and science learning opportunities, respectively, corresponding to spending approximately 25% of total instructional time in each domain. Considerable variability existed, however, in the amounts and types of mathematics and science opportunities provided to children in their classrooms; to some extent, this variability was associated with teachers’ years of experience, teachers’ levels of education, and the socioeconomic status of children served in the program. Practice/policy Although results suggest greater integration of mathematics and science in preschool classrooms than previously established, there was considerable diversity in the amounts and types of learning opportunities provided in preschool classrooms. Affording mathematics and science experiences to all preschool children, as outlined in professional and state standards, may require additional professional development aimed at increasing preschool teachers’ understanding and implementation of learning opportunities in these two domains in their classrooms. PMID:25489205

  9. Classroom

    Indian Academy of Sciences (India)

    "Classroom" is equally a forum for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science. ! Quantum Theory of the Doppler Effed. Generally text books give only the wave ...

  10. Classroom

    Indian Academy of Sciences (India)

    "Classroom" is equally a foru11J. for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science. Point Set Topological ... a new way of looking at this problem and we will prove.

  11. Classroom

    Indian Academy of Sciences (India)

    responses, or both. "Classroom" is equally a forum for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science. ... I shall give the solution to the problem, along with relevant.

  12. Classroom

    Indian Academy of Sciences (India)

    in a classroom situation. We may suggest strategies for dealing with them, or invite responses, or both. ... research, could then both inject greater vigour into teaching of ... ture, forestry and fishery sciences, management of natural resources.

  13. Teachers and Science Curriculum Materials: Where We Are and Where We Need to Go

    Science.gov (United States)

    Davis, Elizabeth A.; Janssen, Fred J. J. M.; Van Driel, Jan H.

    2016-01-01

    Curriculum materials serve as a key conceptual tool for science teachers, and better understanding how science teachers use these tools could help to improve both curriculum design and theory related to teacher learning and decision-making. The authors review the literature on teachers and science curriculum materials. The review is organised…

  14. The status of environmental education in Illinois public high school science and social studies classrooms

    Science.gov (United States)

    Carter, Jill F.

    Examines relationships among the levels of pre-service and inservice teacher preparation in various topic areas within environmental education (EE) and the levels of implementation of those topic areas in public high school science and social studies classrooms in Illinois. Measures teacher attitudes toward EE. Findings indicate that teachers who had received pre-service/inservice teacher education in EE implemented significantly more EE topics into the curriculum than did teachers who reported receiving no pre-service/inservice teacher education in EE. Findings also indicate that beginning teachers do not implement the EE topics nearly as much as veteran teachers.

  15. Student teachers' views: what is an interesting life sciences curriculum?

    Directory of Open Access Journals (Sweden)

    Rian de Villiers

    2011-01-01

    Full Text Available In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology curriculum which focuses on outcomes-based education (OBE. This paper presents an exploration of what students (as learners considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university responded to a questionnaire in regard to their experiences with the newly implemented FET Life Sciences curricula. The responses to the questions were analysed qualitatively and/or quantitatively. Friedman tests were used to compare the mean rankings of the four different content knowledge areas within each curriculum, and to make cross-curricular comparisons of the mean rankings of the same content knowledge area for all three curricula. All four content areas of Grade 12 were considered as being more interesting than the other two grades. In terms of difficulty, the students found the Grade 10 curriculum themes the most difficult, followed by the Grade 12 and the Grade 11 curricula. Most of the students found the themes under the content area Diversity, change and continuity (Grades 10-12 more difficult to learn than the other three content areas. It is recommended that more emphasis needs to be placed on what learners are interested in, and on having this incorporated into Life Sciences curricula.

  16. Energy matters: An investigation of drama pedagogy in the science classroom

    Science.gov (United States)

    Alrutz, Megan

    The purpose of this study is to explore and document how informal and improvisational drama techniques affect student learning in the science classroom. While implementing a drama-based science unit, I examined multiple notions of learning, including, but not limited to, traditional notions of achievement, student understanding, student participation in the science classroom, and student engagement with, and knowledge of, science content. Employing an interpretivist research methodology, as outlined by Fredrick Erickson for qualitative analysis in the classroom, I collected data through personal observations; student and teacher interviews; written, artistic and performed class work; video-recorded class work; written tests; and questionnaires. In analyzing the data, I found strong support for student engagement during drama-based science instruction. The drama-based lessons provided structures that drew students into lessons, created enthusiasm for the science curriculum, and encouraged meaningful engagement with, and connections to, the science content, including the application and synthesis of science concepts and skills. By making student contributions essential to each of the lessons, and by challenging students to justify, explain, and clarify their understandings within a dramatic scenario, the classroom facilitators created a conducive learning environment that included both support for student ideas and intellectual rigor. The integration of drama-based pedagogy most affected student access to science learning and content. Students' participation levels, as well as their interest in both science and drama, increased during this drama-based science unit. In addition, the drama-based lessons accommodated multiple learning styles and interests, improving students' access to science content and perceptions of their learning experience and abilities. Finally, while the drama-based science lessons provided multiple opportunities for solidifying understanding of

  17. Translanguaging in a middle school science classroom: Constructing scientific arguments in English and Spanish

    Science.gov (United States)

    Licona, Peter R.

    This dissertation investigates translanguaging in an English/Spanish dual language middle school science classroom as the teacher and students worked through a curriculum unit focusing on socioscientific issues and implementing a scientific argumentation framework. Translanguaging is the process in which bilingual speakers fluidly and dynamically draw from their full linguistic repertoire to perform a communicative act. Using ethnographically informed data collection in conjunction with discourse analysis, teacher translanguaging was examined for its related functions in the science classroom and how teacher translanguaging afforded opportunities for framing and supporting scientific argumentation. Results suggest that the functions of teacher translanguaging fell into three main themes: maintaining classroom culture, facilitating the academic task, and framing epistemic practices. Of the three categories of translanguaging, framing epistemic practices proved to be of paramount importance in the teacher presenting and supporting the practice of scientific argumentation. Implications from this study are relevant for pre-service science teacher preparation and in-service science teacher professional development for teachers working with emergent bilingual students.

  18. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    Science.gov (United States)

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-06-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS) curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  19. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    Directory of Open Access Journals (Sweden)

    Fred Goldberg1

    2012-05-01

    Full Text Available We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET, for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  20. Middle school girls: Experiences in a place-based education science classroom

    Science.gov (United States)

    Shea, Charlene K.

    The middle school years are a crucial time when girls' science interest and participation decrease (Barton, Tan, O'Neill, Bautista-Guerra, & Brecklin, 2013). The purpose of this study was to examine the experiences of middle school girls and their teacher in an eighth grade place-based education (PBE) science classroom. PBE strives to increase student recognition of the importance of educational concepts by reducing the disconnection between education and community (Gruenewald, 2008; Smith, 2007; Sobel, 2004). The current study provides two unique voices---the teacher and her students. I describe how this teacher and her students perceived PBE science instruction impacting the girls' participation in science and their willingness to pursue advanced science classes and science careers. The data were collected during the last three months of the girls' last year of middle school by utilizing observations, interviews and artifacts of the teacher and her female students in their eighth grade PBE science class. The findings reveal how PBE strategies, including the co-creation of science curriculum, can encourage girls' willingness to participate in advanced science education and pursue science careers. The implications of these findings support the use of PBE curricular strategies to encourage middle school girls to participate in advance science courses and science careers.

  1. elements of contemporary integrated science curriculum

    African Journals Online (AJOL)

    both science and technology (Hurd, 1975). Discoveries in nature are made easier through integration of ideas, thoughts and concepts. To this end, science teaching in the modern world ought to be interdisciplinary, unified, society based and aspire above all to achieve scientific literacy (Arokoyu and Dike, 2009). These are.

  2. Scientists in the classroom: Curriculum reform and the Cold War, 1949--1963

    Science.gov (United States)

    Rudolph, John Laurence

    This dissertation focuses on the origins of the National Science Foundation-supported curriculum reform movement of the 1950s and 1960s. Using the Physical Science Study Committee (PSSC) and the Biological Sciences Curriculum Study (BSCS) as exemplars of the curriculum projects that proliferated during this era, this work provides a historical analysis of the shift in school curriculum from the life adjustment, functional approach to schooling prevalent after World War II to the discipline-centered approach characteristic of the 1960s. Important factors in this shift include the rising technological threat posed by the Soviet Union along with the Red Scare in the United States, which aroused public suspicion of the ideological underpinnings of the life adjustment curricular program. The efforts of the scientific elite to develop new science curricula were welcomed as a means to combat both the technological threat of the Soviets and, through science's identification with free inquiry and democracy, the ideological threat of communism. This dissertation specifically illustrates how the key elements of the new science curriculum materials---the focus on inquiry, laboratory work, and instructional technology---were shaped by the social and political atmosphere of the Cold War and how those elements were designed to advance the interests of the American scientific community in the postwar period. This social and political atmosphere, this work argues, was not only responsible for moving science instruction away from an emphasis on the every-day applications of science toward the disciplinary structure of scientific knowledge, but also contributed to a fundamental restructuring of the substantive content of the scientific knowledge itself that made up the subject matter of the new curricula.

  3. Cultural Diversity in the Classroom: Implications for Curriculum Literacy in South African Classrooms

    Science.gov (United States)

    Modiba, Maropeng; Van Rensburg, Wilhelm

    2009-01-01

    Cultural literacy is considered as crucial in the process of redress, and of equal recognition, affirmation and nurturing of different cultural symbols and other forms of expression within South Africa. In this paper we reflect conceptually on what the new curriculum policy in Arts and Culture education proposes with regard to acknowledging and…

  4. A comparative analysis of Science-Technology-Society standards in elementary, middle and high school state science curriculum frameworks

    Science.gov (United States)

    Tobias, Karen Marie

    An analysis of curriculum frameworks from the fifty states to ascertain the compliance with the National Science Education Standards for integrating Science-Technology-Society (STS) themes is reported within this dissertation. Science standards for all fifty states were analyzed to determine if the STS criteria were integrated at the elementary, middle, and high school levels of education. The analysis determined the compliance level for each state, then compared each educational level to see if the compliance was similar across the levels. Compliance is important because research shows that using STS themes in the science classroom increases the student's understanding of the concepts, increases the student's problem solving skills, increases the student's self-efficacy with respect to science, and students instructed using STS themes score well on science high stakes tests. The two hypotheses for this study are: (1) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school levels. (2) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school level when examined individually. The Analysis of Variance F ratio was used to determine the variance between and within the three educational levels. This analysis addressed hypothesis one. The Analysis of Variance results refused to reject the null hypothesis, meaning there is significant difference in the compliance to STS themes between the elementary, middle and high school educational levels. The Chi-Square test was the statistical analysis used to compare the educational levels for each individual criterion. This analysis addressed hypothesis two. The Chi-Squared results showed that none of the states were equally compliant with each

  5. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    Science.gov (United States)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  6. Supports and Concerns for Teacher Professional Growth During the Implementation of a Science Curriculum Innovation

    Science.gov (United States)

    Peers, Cheryl (Shelley) E.; Diezmann, Carmel M.; Watters, James J.

    2003-02-01

    Internationally, considerable reform in science education is occurring which promotes constructivist philosophies and advocates constructivist-inspired pedagogical strategies that are new to many teachers. This paper reports on the supporting factors necessary for teacher professional growth and the issues of concern that were evident during one primary teacher''s successful implementation of a unit of work based on a draft of a new state-wide science syllabus which proposes such approaches. One researcher (CEP) provided guidance during the writing and implementation of the unit through professional development workshops complemented by ongoing collegial support. The analysis of the teacher''s practice reveals that professional growth required a willingness of the teacher to engage with change and modify his professional practice. The support factors for teacher growth consisted of an appropriate program of professional development, teacher understanding of the elements of the curriculum innovation, and successful experiences in implementing new approaches. In contrast, the issues of concern were: the adequacy of support for planning including the time required to understand the innovation and make changes to teaching practice; science equipment; teacher knowledge; classroom management strategies; and ways to cope with change. Understanding of these support factors and issues of concern is vital for the successful implementation of science curriculum innovations.

  7. Science and Technology Teachers' Views of Primary School Science and Technology Curriculum

    Science.gov (United States)

    Yildiz-Duban, Nil

    2013-01-01

    This phenomenographic study attempts to explicit science and technology teachers' views of primary school science and technology curriculum. Participants of the study were selected through opportunistic sampling and consisted of 30 science and technology teachers teaching in primary schools in Afyonkarahisar, Turkey. Data were collected through an…

  8. Environmental Science for All? Considering Environmental Science for Inclusion in the High School Core Curriculum

    Science.gov (United States)

    Edelson, Daniel C.

    2007-01-01

    With the dramatic growth of environmental science as an elective in high schools over the last decade, educators have the opportunity to realistically consider the possibility of incorporating environmental science into the core high school curriculum. Environmental science has several characteristics that make it a candidate for the core…

  9. Metacognitive Strategies in the Introduction to Political Science Classroom

    Science.gov (United States)

    Lusk, Adam

    2016-01-01

    This article examines metacognitive-based teaching strategies and provides preliminary evidence about their effectiveness in the political science classroom. In a 2013 Fall semester Introduction to Political Science course, three metacognitive-based teaching strategies were designed and implemented for improving student learning through greater…

  10. Students' Regulation of Their Emotions in a Science Classroom

    Science.gov (United States)

    Tomas, Louisa; Rigano, Donna; Ritchie, Stephen M.

    2016-01-01

    Research aimed at understanding the role of the affective domain in student learning in classrooms has undergone a recent resurgence due to the need to understand students' affective response to science instruction. In a case study of a year 8 science class in North Queensland, students worked in small groups to write, film, edit, and produce…

  11. Implementing Concepts of Pharmaceutical Engineering into High School Science Classrooms

    Science.gov (United States)

    Kimmel, Howard; Hirsch, Linda S.; Simon, Laurent; Burr-Alexander, Levelle; Dave, Rajesh

    2009-01-01

    The Research Experience for Teachers was designed to help high school science teachers develop skills and knowledge in research, science and engineering with a focus on the area of pharmaceutical particulate and composite systems. The experience included time for the development of instructional modules for classroom teaching. Results of the…

  12. Language games: Christian fundamentalism and the science curriculum

    Science.gov (United States)

    Freund, Cheryl J.

    Eighty years after the Scope's Trial, the debate over evolution in the public school curriculum is alive and well. Historically, Christian fundamentalists, the chief opponents of evolution in the public schools, have used the court system to force policymakers, to adopt their ideology regarding evolution in the science curriculum. However, in recent decades their strategy has shifted from the courts to the local level, where they pressure teachers and school boards to include "alternate theories" and the alleged "flaws" and "inconsistencies" of evolution in the science curriculum. The purpose of this content analysis study was to answer the question: How do Christian fundamentalists employ rhetorical strategies to influence the science curriculum? The rhetorical content of several public legal and media documents resulting from a lawsuit filed against the Athens Public Schools by the American Center of Law and Justice were analyzed for the types of rhetorical strategies employed by the participants engaged in the scientific, legal, and public discourse communities. The study employed an analytical schema based on Ludwig Wittgenstein's theory of language games, Lawrence Prelli's theory of discourse communities, and Michael Apple's notion of constitutive and preference rules. Ultimately, this study revealed that adroit use of the constitutive and preference rules of the legal and public discourse communities allowed the school district to reframe the creation-evolution debate, thereby avoiding a public spectacle and ameliorating the power of creationist language to affect change in the science curriculum. In addition, the study reinforced the assertion that speakers enjoy the most persuasive power when they attend to the preference rules of the public discourse community.

  13. Teacher change and professional development: A case study of teachers engaged in an innovative constructivist science curriculum

    Science.gov (United States)

    Akura, Okong'o. Gabriel

    This study examined both the changes that elementary school teachers experienced when they implemented a reform-based science curriculum and the impact of professional development on this transformation. The research involved a case study of three purposefully selected teachers implementing the Linking Food and the Environment (LIFE) program during the 2002--2003 school year. The LIFE program is a curriculum designed to enhance science literacy among learners from high poverty urban environments. While the study was grounded in the tradition of critical theory (Carspecken, 1996), the theoretical perspective of hermeneutic phenomenology (van Manen, 1990) guided data collection and analysis. Extensive observations of the teachers were made in order to capture and record the teacher change phenomenon. Data were recorded by means of field notes, audio and videotapes, semi-structured interviews, classroom observations, and video Stimulated Recall (SR) interviews. Emerging themes relating to teacher change, knowledge interests, constructivist pedagogy, and professional development illustrated how teachers grapple with various aspects of implementing a reform-based science curriculum. The teachers in this study were similar to those in earlier investigations, which found that sustained professional development programs involving mentoring and constant reflection enable elementary science teachers to change their instructional strategies from the technical-realist orientation towards the practical-hermeneutic and emancipatory-liberatory orientations. The study has implications for science curriculum developers and designers of professional development programs.

  14. Struggles with learning about scientific models in a middle school science classroom

    Science.gov (United States)

    Loper, Suzanna Jane

    Two important goals in science education are teaching students about the nature of science and teaching students to do scientific inquiry. Learning about scientific models is central to both of these endeavors, but studies have shown that students have very flawed and limited understandings of the nature and purposes of scientific models (Carey & Smith, 1993; Grosslight, Unger, & Jay, 1991; Lederman, 1992). In this dissertation I investigate the processes of teaching and learning about scientific models in an 8th grade classroom in an urban middle school. In order to do so, I examine recordings of student and teacher talk about models across a period of two months in which students completed two independent inquiry projects, using the Inquiry Island software and curriculum (Eslinger, 2004; Shimoda, White, & Frederiksen, 2002; White, Shimoda, & Frederiksen, 2000). My analysis draws on video records of small-group work and whole-class interactions, as well as on students' written work. I find that in this classroom, students struggled to understand the nature and purpose of scientific models. I analyze episodes in the classroom talk in which models appeared to be a source of trouble or confusion, and describe the ways in which the teacher attempted to respond to these troubles. I find that in many cases students appeared to be able to produce scientific models of the proper form, yet still struggled with displaying an understanding of what a model was, or of the functions of models in scientific research. I propose directions for further research and curriculum development in order to build on these findings. In particular, I argue, we need to design ways to help students engage in scientific modeling as a social and communicative practice, and to find ways to build from their everyday reasoning and argumentation practices. My research also reinforces the importance of looking at classroom talk, not just pre- and post-assessments, in order to understand teaching and

  15. Mapping Science in Discourse-based Inquiry Classrooms

    Science.gov (United States)

    Yeneayhu, Demeke Gesesse

    Abstract The purpose of this study was to investigate how discourse-based inquiry science lessons provided opportunities for students to develop a network of semantic relations among core ideas and concepts in science. It was a naturalistic inquiry classroom lessons observation study on three science teachers--- a middle school science teacher and two high school physics teachers in an urban school district located in the Western New York region. Discourse and thematic analysis drawn from the theory of Systemic Functional Linguistics were utilized as guiding framework and analysis tools. Analysis of the pre-observation and post-observation interviews of the participant teachers revealed that all of the three teachers participated in at least one inquiry-based science teaching teacher professional development program and they all thought their classroom teaching practice was inquiry-based. Analysis of their classroom lesson videos that each participant teacher taught on a specific science topic revealed that the middle school teacher was found to be a traditional teacher-dominated classroom whereas the two high school physics teachers' classroom teaching approach was found to be discourse-based inquiry. One of the physics teachers who taught on a topic of Magnetic Interaction used relatively structured and guided-inquiry classroom investigations. The other physics teacher who taught on a topic of Color Mixing utilized open-ended classroom investigations where the students planned and executed the series of classroom science investigations with minimal guidance from the teacher. The traditional teacher-based classroom communicative pattern was found to be dominated by Triadic Dialogue and most of the science thematics were jointly developed by the teacher and the students, but the students' role was limited to providing responses to the teacher's series questions. In the guided-inquiry classroom, the common communicative pattern was found to be True Dialogue and most

  16. Addressing Health Literacy Challenges With a Cutting-Edge Infectious Disease Curriculum for the High School Biology Classroom.

    Science.gov (United States)

    Jacque, Berri; Koch-Weser, Susan; Faux, Russell; Meiri, Karina

    2016-02-01

    This study reports the secondary analysis of evaluation data from an innovative high school biology curriculum focused on infectious disease (ID) to examine the health literacy implications of teaching claims evaluation, data interpretation, and risk assessment skills in the context of 21st-Century health science. The curriculum was implemented between 2010 and 2013 in Biology II classes held in four public high schools (three in Massachusetts and one in Ohio), plus a private school in Virginia. A quasi-experimental design was used in which student participants (n = 273) were compared to an age-matched, nonparticipant, peer group (N = 125). Participants in each school setting demonstrated increases in conceptual content knowledge (Cohen's d > 1.89) as well as in understanding how to apply scientific principles to health claims evaluation and risk assessment (Cohen's d > 1.76) and in self-efficacy toward learning about ID (Cohen's d > 2.27). Participants also displayed enhanced communication about ID within their social networks relative to the comparison group (p biology classrooms is effective at fostering both the skills and self-efficacy pertinent to health literacy learning in diverse populations. © 2015 Society for Public Health Education.

  17. Group Projects and the Computer Science Curriculum

    Science.gov (United States)

    Joy, Mike

    2005-01-01

    Group projects in computer science are normally delivered with reference to good software engineering practice. The discipline of software engineering is rapidly evolving, and the application of the latest 'agile techniques' to group projects causes a potential conflict with constraints imposed by regulating bodies on the computer science…

  18. Science Teacher Beliefs and Classroom Practice Related to Constructivism in Different School Settings

    Science.gov (United States)

    Savasci, Funda; Berlin, Donna F.

    2012-01-01

    Science teacher beliefs and classroom practice related to constructivism and factors that may influence classroom practice were examined in this cross-case study. Data from four science teachers in two schools included interviews, demographic questionnaire, Classroom Learning Environment Survey (preferred/perceived), and classroom observations and…

  19. Changing Curriculum: A Critical Inquiry into the Revision of the British Columbia Science Curriculum For Grades K-9

    Science.gov (United States)

    Searchfield, Mary A.

    In 2010 British Columbia's Ministry of Education started the process of redesigning the provincial school curriculum, Kindergarten to Grade 12. Mandatory implementation of the new curriculum was set for the 2016/17 school year for Grades K-9, and 2017/18 for Grades 10-12. With a concerted emphasis on personalized learning and through the frame of a Know-Do-Understand curriculum model, the new curriculum aims to meet the needs of today's learners, described as living in a technology-rich, fast-paced and ever-changing world, through a concept-based and competency-driven emphasis. This thesis is a critical analysis of the BC K-9 Science curriculum as written and published, looking specifically at how science is treated as a form of knowledge, its claimed presentation as a story, and on whether the intentions claimed by the designers are matched in the curriculum's final form.

  20. The Role of Common Culture and Cultural Diversity in the Creation of the Anti-Biased Classroom and Curriculum: A Case Study and Guidelines.

    Science.gov (United States)

    Creamier-Wilhelm, Billie Lois; Karr-Kidwell, PJ

    This paper first explores the problem of increased cultural diversity in public education and then offers suggestions and guidelines for educators in the creation of an anti-biased classroom and curriculum. Case studies of two Hispanic students illustrate the role of acculturation and the middle school classroom setting and curriculum on academic…

  1. The Global Systems Science High School Curriculum

    Science.gov (United States)

    Gould, A. D.; Sneider, C.; Farmer, E.; Erickson, J.

    2015-12-01

    Global Systems Science (GSS), a high school integrated interdisciplinary science project based at Lawrence Hall of Science at UC Berkeley, began in the early 1990s as a single book "Planet at Risk" which was only about climate change. Federal grants enabled the project to enlist about 150 teachers to field test materials in their classes and then meeting in summer institutes to share results and effect changes. The result was a series of smaller modules dealing not only with climate change, but other related topics including energy flow, energy use, ozone, loss of biodiversity, and ecosystem change. Other relevant societal issues have also been incorporated including economics, psychology and sociology. The course has many investigations/activities for student to pursue, interviews with scientists working in specific areas of research, and historical contexts. The interconnectedness of a myriad of small and large systems became an overarching theme of the resulting course materials which are now available to teachers for free online at http://www.globalsystemsscience.org/

  2. The Curriculum Customization Service: A Tool for Customizing Earth Science Instruction and Supporting Communities of Practice

    Science.gov (United States)

    Melhado, L. C.; Devaul, H.; Sumner, T.

    2010-12-01

    Accelerating demographic trends in the United States attest to the critical need to broaden access to customized learning: reports refer to the next decade as the era of “extreme diversity” in K-12 classrooms, particularly in large urban school districts. This diverse student body possesses a wide range of knowledge, skills, and abilities in addition to cultural differences. A single classroom may contain students with different levels of quantitative skills, different levels of English language proficiency, and advanced students preparing for college-level science. A uniform curriculum, no matter how well designed and implemented, cannot possibly serve the needs of such diverse learners equally well. Research has shown positive learning outcomes when pedagogical strategies that customize instruction to address specific learner needs are implemented, with under-achieving students often benefiting most. Supporting teachers in the effective adoption and use of technology to meet these instructional challenges is the underlying goal of the work to be presented here. The Curriculum Customization Service (CCS) is an integrated web-based platform for middle and high school Earth science teachers designed to facilitate teachers’ instructional planning and delivery; enhancing existing curricula with digital library resources and shared teacher-contributed materials in the context of articulated learning goals. The CCS integrates interactive resources from the Digital Library for Earth System Education (DLESE) with an inquiry-based curriculum component developed by the American Geological Institute (EarthComm and Investigating Earth Systems). The digital library resources emphasize visualizations and animations of Earth processes that often challenge students’ understanding, offering multiple representations of phenomena to address different learning styles, reading abilities, and preconceived ideas. Teachers can access these materials, as well as those created or

  3. Mentoring and Argumentation in a Game-Infused Science Curriculum

    Science.gov (United States)

    Gould, Deena L.; Parekh, Priyanka

    2018-04-01

    Engaging in argumentation from evidence is challenging for most middle school students. We report the design of a media-based mentoring system to support middle school students in engaging in argumentation in the context of a game-infused science curriculum. Our design emphasizes learners apprenticing with college student mentors around the socio-scientific inquiry of a designed video game. We report the results of a mixed-methods study examining the use of this media-based mentoring system with students ages 11 through 14. We observed that the discourse of groups of students that engaged with the game-infused science curriculum while interacting with college student mentors via a social media platform demonstrated statistically significant higher ratings of cognitive, epistemic, and social aspects of argumentation than groups of students that engaged with the social media platform and game-infused science curriculum without mentors. We further explored the differences between the Discourses of the mentored and non-mentored groups. This analysis showed that students in the mentored groups were invited, guided, and socialized into roles of greater agency than students in the non-mentored groups. This increased agency might explain why mentored groups demonstrated higher levels of scientific argumentation than non-mentored groups. Based on our analyses, we argue that media-based mentoring may be designed around a video game to support middle school students in engaging in argumentation from evidence.

  4. Scientists in the Classroom Mentor Model Program - Bringing real time science into the K - 12 classroom

    Science.gov (United States)

    Worssam, J. B.

    2017-12-01

    Field research finally within classroom walls, data driven, hands on with students using a series of electronic projects to show evidence of scientific mentor collaboration. You do not want to miss this session in which I will be sharing the steps to develop an interactive mentor program between scientists in the field and students in the classroom. Using next generation science standards and common core language skills you will be able to blend scientific exploration with scientific writing and communication skills. Learn how to make connections in your own community with STEM businesses, agencies and organizations. Learn how to connect with scientists across the globe to make your classroom instruction interactive and live for all students. Scientists, you too will want to participate, see how you can reach out and be a part of the K-12 educational system with students learning about YOUR science, a great component for NSF grants! "Scientists in the Classroom," a model program for all, bringing real time science, data and knowledge into the classroom.

  5. Examining classroom interactions related to difference in students' science achievement

    Science.gov (United States)

    Zady, Madelon F.; Portes, Pedro R.; Ochs, V. Dan

    2003-01-01

    The current study examines the cognitive supports that underlie achievement in science by using a cultural historical framework (L. S. Vygotsky (1934/1986), Thought and Language, MIT Press, Cambridge, MA.) and the activity setting (AS) construct (R. G. Tharp & R. Gallimore (1988), Rousing minds to life: Teaching, learning and schooling in social context, Cambridge University Press, Cambridge, MA.) with its five features: personnel, motivations, scripts, task demands, and beliefs. Observations were made of the classrooms of seventh-grade science students, 32 of whom had participated in a prior achievement-related parent-child interaction or home study (P. R. Portes, M. F. Zady, & R. M. Dunham (1998), Journal of Genetic Psychology, 159, 163-178). The results of a quantitative analysis of classroom interaction showed two features of the AS: personnel and scripts. The qualitative field analysis generated four emergent phenomena related to the features of the AS that appeared to influence student opportunity for conceptual development. The emergent phenomenon were science activities, the building of learning, meaning in lessons, and the conflict over control. Lastly, the results of the two-part classroom study were compared to those of the home science AS of high and low achievers. Mismatches in the AS features in the science classroom may constrain the opportunity to learn. Educational implications are discussed.

  6. Specifying a curriculum for biopolitical critical literacy in science teacher education: exploring roles for science fiction

    Science.gov (United States)

    Gough, Noel

    2017-12-01

    In this essay I suggest some ways in which science teacher educators in Western neoliberal economies might facilitate learners' development of a critical literacy concerning the social and cultural changes signified by the concept of biopolitics. I consider how such a biopolitically inflected critical literacy might find expression in a science teacher education curriculum and suggest a number of ways of materializing such a curriculum in specific literatures, media, procedures, and assessment tasks, with particular reference to the contributions of science fiction in popular media.

  7. Design of the Information Science and Systems (IS Curriculum in a Computer and Information Sciences Department

    Directory of Open Access Journals (Sweden)

    Behrooz Seyed-Abbassi

    2004-12-01

    Full Text Available Continuous technological changes have resulted in a rapid turnover of knowledge in the computing field. The impact of these changes directly affects the computer-related curriculum offered by educational institutions and dictates that curriculum must evolve to keep pace with technology and to provide students with the skills required by businesses. At the same time, accreditations of curricula from reviewing organizations provide additional guidelines and standardization for computing science as well as information science programs. One of the areas significantly affected by these changes is the field of information systems. This paper describes the evaluation and course structure for the undergraduate information science and systems program in the Computer and Information Sciences Department at the University of North Florida. A list of the major required and elective courses as well as an overview of the challenges encountered during the revision of the curriculum is given.

  8. The impact of podcasts, screencasts, and vodcasts on student achievement in the science classroom

    Science.gov (United States)

    Pena, Ruben, Jr.

    Educators in today's society are in search for different ways to reach their students in order to keep them engaged and active in the learning process. There are several strategies that teachers have utilized in the classroom in order to reach all students. Now seen more in the classroom is the use of technology in one form or another. There are several types of technologies that one may employ while in the classroom, but seen more recently is the use of podcasts, screencasts, and vodcasts. The major purpose of the study was to investigate the impact of using podcasts, screencasts, and vodcasts in conjunction with science curriculum on student academic achievement. Two intermediate schools from the south Texas region were chosen as a convenience sample for the study because one school utilized the technology of podcasts, screencasts, and vodcasts at the student created level while the other school did not utilize podcasts, screencasts, and vodcasts at the student created level. The researcher collected scores from curriculum based assessments that were aligned with the Texas Essential Knowledge and Skills (TEKS) for comparison between the two different groups, while controlling grade five science TAKS scores for group equalization. Once all data was collected, scores were entered into the Statistical Package for the Social Sciences (SPSS) and were analyzed using an analysis of covariance. The ANCOVA allowed the researcher to see that differences among curriculum based assessments scores existed between the two different schools. Scores were higher for the students who utilized podcasts, screencasts, and vodcasts at the student created level when compared to those scores for students who did not utilize podcasts, screencasts, and vodcasts at the student created level. This study showed the benefits reaped of having students create their own podcasts, screencasts, and vodcasts. Having students create their own technology has them actively engaged in the learning

  9. ["Flipped classroom" teaching model into the curriculum of Theories of Different Schools of Acupuncture and Moxibustion:exploration and practice].

    Science.gov (United States)

    Liu, Mailan; Yuan, Yiqin; Chang, Xiaorong; Tang, Yulan; Luo, Jian; Li, Nan; Yu, Jie; Yang, Qianyun; Liu, Mi

    2016-08-12

    The "flipped classroom" teaching model practiced in the teaching of Theories of Different Schools of Acupuncture and Moxibustion curriculum was introduced. Firstly, the roles and responsibilities of teachers were clarified, indicating teachers provided examples and lectures, and a comprehensive assessment system was established. Secondly, the "flipped classroom" teaching model was split into online learning, classroom learning and offline learning. Online learning aimed at forming a study report by a wide search of relevant information, which was submitted to teachers for review and assessment. Classroom learning was designed to communicate study ideas among students and teachers. Offline learning was intended to revise and improve the study report and refined learning methods. Lastly, the teaching practice effects of "flip classroom" were evaluated by comprehensive rating and questionnaire assessment, which assessed the overall performance of students and overall levels of paper; the learning ability was enhanced, and the interest and motivation of learning were also improved. Therefore, "flipped classroom" teaching mode was suitable for the curriculum of Theories of Different Schools of Acupuncture and Moxibustion , and could be recommended into the teaching practice of related curriculum of acupuncture and tuina.

  10. How Elementary Teachers' Beliefs About the Nature of Science Mediate Implementing Prescribed Science Curricula in Their Classrooms

    Science.gov (United States)

    Giglio, Kathleen Rose Fitzgerald

    This is an in depth study of two elementary school teachers, who are generalists because they teach multiple subjects to their classes, in addition to science, respectively in grade 3 and grade 6. The teachers taught and their students learned using a contemporary understanding of the nature of science (NOS), which they learned by actually doing science investigations, rather than being explicitly told about NOS (contrary to what some scholars claim). Neither teacher completed any formal/informal science training/experiences, especially connected to the construct NOS. Even though the teachers did not explicitly reference NOS in the classroom, their teaching about NOS was made possible through their implementation of the FOSS ( Full Option Science System) curriculum. Although their students enthusiastically demonstrated competence in both science process and content, as prescribed by the FOSS curriculum, the teachers' felt undermined by the state mandated assessments and the inclusion of student performance as a criterion for the state teacher evaluation system. This research was designed to answer the following questions: (1) What are elementary teachers' conceptions about NOS? (2) How are the teachers' NOS views manifested in their implementation of the FOSS program and their choices of instructional methods/materials? (3) What factors may have enhanced or hindered how the teachers sustained their NOS conceptions as they implemented the FOSS program? To explicate the relationship between teachers' views of NOS and the extent to which constructivist practices were employed in their science instruction, a multiple research methodology using grounded theory as the foundation and employing both quantitative and qualitative measures, was needed. Sources of quantitative data were written survey results using the Student Understanding of Science and Scientific Inquiry Questionnaire (SUSSI; Liang et al., 2008) Likert scale responses and constructed responses. Face

  11. The book of science mysteries classroom science activities to support student enquiry-based learning

    CERN Document Server

    McOwan, Peter; Olivotto, Cristina

    2015-01-01

    In this booklet, you will be introduced to an exciting new way to teach science in your classroom. The TEMI project (Teaching Enquiry with Mysteries Incorporated) is an EU-funded project that brings together experts in teacher training from across Europe to help you introduce enquiry-based learning successfully in the classroom and improve student engagement and skills.

  12. Hal in the Classroom: Science Fiction Films.

    Science.gov (United States)

    Amelio, Ralph J.

    The articles in this book provide political, social, sociological, psychological, sexual, mythical, literary, and filmic approaches to the study of science fiction film. "Journey into Science Fiction" by W. Johnson and "The Imagination of Disaster" by S. Sontag treat broadly the essentials of science fiction films. "For the Future: The Science…

  13. Building "Science Capital" in the Classroom

    Science.gov (United States)

    Nomikou, Effrosyni; Archer, Louise; King, Heather

    2017-01-01

    In this article we share insights from our ongoing research on the concept of "science capital"--a term that refers to an individual's science-related resources and dispositions. We have been working in collaboration with secondary teachers in England to explore the applications of the concept in science teaching practice. Underpinned by…

  14. Laboratory Notebooks in the Science Classroom

    Science.gov (United States)

    Roberson, Christine; Lankford, Deanna

    2010-01-01

    Lab notebooks provide students with authentic science experiences as they become active, practicing scientists. Teachers gain insight into students' understanding of science content and processes, while students create a lasting personal resource. This article provides high school science teachers with guidelines for implementing lab notebooks in…

  15. A Theoretical Understanding of the Literature on Student Voice in the Science Classroom

    Science.gov (United States)

    Laux, Katie

    2018-01-01

    Background: Incorporating student voice into the science classroom has the potential to positively impact science teaching and learning. However, students are rarely consulted on school and classroom matters. This literature review examines the effects of including student voice in the science classroom. Purpose: The purpose of this literature…

  16. Collaborative CPD and inquiry-based science in the classroom

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    on the teaching of science and on collaboration. Qualitative data obtained by following the same teacher teaching Science & Technology from 4th to 6th grade are used to discuss changes in her classroom practice; in particular concerning inquiry-based methods shown in earlier QUEST-research to be understood......Continuous Professional Development (CPD) is crucial for reforming science teaching, but more knowledge is needed about how to embed CPD in teachers’ daily work. The Danish QUEST-project is a long-term collaborative CPD-project designed informed by research and with activities changing rhythmically...... between seminars, individual trials in own classroom, and collaborative activities in the science-team at local schools. The QUEST research is aimed at understanding the relation between individual and social changes. In this study, quantitative data are used to compare the perceived effect from QUEST...

  17. Cultivating characters (moral value) through internalization strategy in science classroom

    Science.gov (United States)

    Ibrahim, M.; Abadi

    2018-01-01

    It is still in a crucial debate that characters play an important learning outcome to be realized by design. So far, most people think that characters were reached as nurturance effect with the assumption that students who are knowledgeable and skillful will have good characters automatically. Lately, obtained evidence that this assumption is not true. Characters should be taught deliberately or by design. This study was designed to culture elementary school students’ characters through science classroom. The teaching-learning process was conducted to facilitate and bridge the students from the known (concrete images: Science phenomena) to the unknown (abstract ideas: characters: care, and tolerance. Characters were observed five weeks before and after the intervention. Data were analyzed from observation of 24 students in internalization strategy-based courses. Qualitative and quantitative data suggested that the internalization strategy that use of science phenomena to represent abstract ideas (characters) in science classroom positively cultivating characters.

  18. Intelligent Design in the Public School Science Classroom

    Science.gov (United States)

    Hickey, Wesley D.

    2013-01-01

    The ongoing battle to insert intelligent causes into the science classrooms has been met with political approval and scientific rejection. Administrators in the United States need to be aware of the law related to creationism and intelligent design in order to lead in local curricular battles. Although unlikely to appease the ID proponents, there…

  19. Fostering Critical Thinking Practices at Primary Science Classrooms in Nepal

    Science.gov (United States)

    Acharya, Kamal Prasad

    2016-01-01

    This article examines the socio-cultural activities that have direct and indirect impacts on critical thinking practices in primary science classrooms and what kinds of teachers' activities help to foster the development of critical thinking practices in children. Meanwhile, the constructivist and the socio-cultural theoretical dimensions have…

  20. Continuing Professional Development and Learning in Primary Science Classrooms

    Science.gov (United States)

    Fraser, Christine A.

    2010-01-01

    This article explores the effects of continuing professional development (CPD) on teachers' and pupils' experiences of learning and teaching science in primary classrooms. During 2006-2007, quantitative and qualitative data were elicited from two primary teachers in Scotland using questionnaires, semi-structured interviews and video-stimulated…

  1. The Effectiveness of a Technology-Enhanced Flipped Science Classroom

    Science.gov (United States)

    Sezer, Baris

    2017-01-01

    This study examined the effect on the learning and motivation of students of a flipped classroom environment enriched with technology. A mixed research design using a pretest or posttest experimental model, combined with qualitative data, was conducted in a public middle school in Turkey for 2 weeks (three class hours) within a science course.…

  2. Backyard Botany: Using GPS Technology in the Science Classroom

    Science.gov (United States)

    March, Kathryn A.

    2012-01-01

    Global Positioning System (GPS) technology can be used to connect students to the natural world and improve their skills in observation, identification, and classification. Using GPS devices in the classroom increases student interest in science, encourages team-building skills, and improves biology content knowledge. Additionally, it helps…

  3. Teaching and learning science in linguistically diverse classrooms

    Science.gov (United States)

    Moore, Emilee; Evnitskaya, Natalia; Ramos-de Robles, S. Lizette

    2017-01-01

    In this paper we reflect on the article, Science education in a bilingual class: problematising a translational practice, by Zeynep Ünsal, Britt Jakobson, Bengt-Olav Molander and Per-Olaf Wickman (Cult Stud Sci Educ, 10.1007/s11422-016-9747-3). In their article, the authors present the results of a classroom research project by responding to one main question: How is continuity between everyday language and the language of science construed in a bilingual science classroom where the teacher and the students do not speak the same minority language? Specifically, Ünsal et al. examine how bilingual students construe relations between everyday language and the language of science in a class taught in Swedish, in which all students also spoke Turkish, whereas the teacher also spoke Bosnian, both being minority languages in the context of Swedish schools. In this forum, we briefly discuss why close attention to bilingual dynamics emerging in classrooms such as those highlighted by Ünsal et al. matters for science education. We continue by discussing changing ontologies in relation to linguistic diversity and education more generally. Recent research in bilingual immersion classroom settings in so-called "content" subjects such as Content and Language Integrated Learning, is then introduced, as we believe this research offers some significant insights in terms of how bilingualism contributes to knowledge building in subjects such as science. Finally, we offer some reflections in relation to the classroom interactional competence needed by teachers in linguistically diverse classrooms. In this way, we aim to further the discussion initiated by Ünsal et al. and to offer possible frameworks for future research on bilingualism in science education. In their article, Ünsal et al. conclude the analysis of the classroom data by arguing in favor of a translanguaging pedagogy, an approach to teaching and learning in which students' whole language repertoires are used as

  4. Exploring the role of curriculum materials to support teachers in science education reform

    Science.gov (United States)

    Schneider, Rebecca M.

    2001-07-01

    For curriculum materials to succeed in promoting large-scale science education reform, teacher learning must be supported. Materials were designed to reflect desired reforms and to be educative by including detailed lesson descriptions that addressed necessary content, pedagogy, and pedagogical content knowledge for teachers. The goal of this research was to describe how such materials contributed to classroom practices. As part of an urban systemic reform effort, four middle school teachers' initial enactment of an inquiry-based science unit on force and motion were videotaped. Enactments focused on five lesson sequences containing experiences with phenomena, investigation, technology use, or artifact development. Each sequence spanned three to five days across the 10-week unit. For each lesson sequence, intended and actual enactment were compared using ratings of (1) accuracy and completeness of science ideas presented, (2) amount student learning opportunities, similarity of learning opportunities with those intended, and quality of adaptations , and (3) amount of instructional supports offered, appropriateness of instructional supports and source of ideas for instructional supports. Ratings indicated two teachers' enactments were consistent with intentions and two teachers' enactments were not. The first two were in school contexts supportive of the reform. They purposefully used the materials to guide enactment, which tended to be consistent with standards-based reform. They provided students opportunities to use technology tools, design investigations, and discuss ideas. However, enactment ratings were less reflective of curriculum intent when challenges were greatest, such as when teachers attempted to present challenging science ideas, respond to students' ideas, structure investigations, guide small-group discussions, or make adaptations. Moreover, enactment ratings were less consistent in parts of lessons where materials did not include lesson specific

  5. Integrated Assessment for an Integrated Curriculum.

    Science.gov (United States)

    Mockrish, Rob

    1989-01-01

    In a sixth grade science classroom for able students, major grades are broken down into four categories: lab reports, projects, creative writing, and written tests. These four components of assessment structure how the curriculum content is presented. (JDD)

  6. Question Asking in the Science Classroom: Teacher Attitudes and Practices

    Science.gov (United States)

    Eshach, Haim; Dor-Ziderman, Yair; Yefroimsky, Yana

    2014-02-01

    Despite the wide agreement among educators that classroom learning and teaching processes can gain much from student and teacher questions, their potential is not fully utilized. Adopting the view that reporting both teachers' (of varying age groups) views and actual classroom practices is necessary for obtaining a more complete view of the phenomena at hand, the present study closely examines both cognitive and affective domains of: (a) teachers' views (via interviews) concerning: (1) importance and roles of teacher and student questions, (2) teacher responses, and (3) planning and teacher training; and (b) teachers' actual practices (via classroom observations) concerning: (1) number and (2) level of teacher and student questions, as well as (3) teachers' responses to questions. The data were collected from 3 elementary, 3 middle, and 3 high school science teachers and their respective classroom students. The findings lay out a wide view of classroom questioning and teachers' responses, and relate what actually occurs in classes to teachers' stated views. Some of the study's main conclusions are that a gap exists between how science researchers and teachers view the role of teacher questions: the former highlight the cognitive domain, while the latter emphasize the affective domain.

  7. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    Science.gov (United States)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  8. Evolution: Its Treatment in K-12 State Science Curriculum Standards

    Science.gov (United States)

    Lerner, L. S.

    2001-12-01

    State standards are the basis upon which states and local schools build curricula. Usually taking the form of lists of what students are expected to learn at specified grades or clusters of grades, they influence statewide examinations, textbooks, teacher education and credentialing, and other areas in which states typically exercise control over local curriculum development. State science standards vary very widely in overall quality.1,2 This is especially true in their treatment of evolution, both in the life sciences and to a somewhat lesser extent in geology and astronomy. Not surprisingly, a detailed evaluation of the treatment of evolution in state science standards3 has evoked considerably more public interest than the preceding studies of overall quality. We here consider the following questions: What constitutes a good treatment of evolution in science standards and how does one evaluate the standards? Which states have done well, and which less well? What nonscientific influences have been brought to bear on standards, for what reasons, and by whom? What strategies have been used to obscure or distort the role of evolution as the central organizing principle of the historical sciences? What are the effects of such distortions on students' overall understanding of science? What can the scientific community do to assure the publication of good science standards and to counteract attacks on good science teaching? 1. Lerner, L. S., State Science Standards: An Appraisal of Science Standards in 36 States, The Thomas B. Fordham Foundation, Washington, D.C., March 1998. 2. Lerner, L. S. et al ., The State of State Standards 2000, ibid., January 2000. 3. Lerner, L. S., Good Science, Bad Science: Teaching Evolution In the States, ibid., September 2000.

  9. An exploration of the science teaching orientations of Indian science teachers in the context of curriculum reform

    Science.gov (United States)

    Nargund-Joshi, Vanashri

    This study explores the concepts and behaviors, otherwise referred to as orientations, of six Indian science teachers and the alignment of these orientations to the 2005 India National Curriculum Framework (NCF-2005). Differences in teachers' orientations across grade bands (elementary, middle, and secondary) and school types (public versus private) are also examined to determine how contextual factors may influence this alignment. First, a content analysis of the NCF-2005 was completed to identify the overarching principles of the NCF-2005 and goals specific to the teaching and learning of science. Interviews with school principals were also analyzed to understand how the goals of NCF-2005 were communicated to schools and teachers. Together, these data sources served to answer research question one. Next, profiles were created based on three interviews with each teacher and several observations of their teaching. These profiles provide a point of reference for answering the remaining three research questions. Findings include teacher's orientations falling along a continuum from traditionalist in nature to inquiry/constructivist in nature. Stark contrasts were found between traditionalist orientations and the goals of NCF-2005, with much of this contrast due to the limited pedagogical content knowledge these teachers have regarding students' scientific thinking, curriculum design, instructional strategies, and assessment. Inquiry/constructivist teachers' orientations, while more in line with reform, still have a few key areas of pedagogical content knowledge needing attention (e.g., knowledge of assessment and a variety of purposes for constructivist instructional strategies). In response to the final research question, several contextual factors contributed to teachers' orientations including environmental constraints, such as limited resources and large class sizes, cultural testing pressures, and limited accessibility to professional development. Suggestions

  10. The Failure of Progressive Classroom Reform: Lessons from the Curriculum Reform Implementation Project in Papua New Guinea

    Science.gov (United States)

    Guthrie, Gerard

    2012-01-01

    Progressive education has been an article of educational faith in Papua New Guinea during the last 50 years but the best available evidence indicates that major reforms to formalistic curriculum and teaching in primary and secondary classrooms have failed during this period despite large-scale professional, administrative and financial support. In…

  11. Assessment Strategies for Implementing Ngss in K12 Earth System Science Classrooms

    Science.gov (United States)

    McAuliffe, C.

    2016-12-01

    Several science education researchers have led assessment efforts that provide strategies particularly useful for evaluating the threedimensional learning that is central to NGSS (DeBarger, A. H., Penuel, W. R., Harris, C. J., Kennedy, C. K., 2016; Knight, A. M. & McNeill, K. L., 2015; McNeill, K. L., KatshSinger, R. & Pelletier, P., 2015; McNeill K.L., et.al., 2015; McNeill, K.L., & Krajcik, J.S., 2011; Penuel, W., 2016). One of the basic premises of these researchers is that, "Assessment is a practice of argument from evidence based on what students say, do, and write" and that "the classroom is the richest place to gather evidence of what students know (Penuel, W., 2016). The implementation of the NGSS in Earth System Science provides a unique opportunity for geoscience education researchers to study student learning and contribute to the development of this research as well as for geoscience educators to apply these approaches and strategies in their own work with K12 inservice and preservice educators. DeBarger, A. H., Penuel, W. R., Harris, C. J., Kennedy, C. K. (2016). Building an Assessment Argument to Design and Use Next Generation Science Assessments in Efficacy Studies of Curriculum Interventions. American†Journal†of†Evaluation†37(2) 174192Æ Knight, A. M. & McNeill, K. L. (2015). Comparing students' individual written and collaborative oral socioscientific arguments. International Journal of Environmental and Science Education.10(5), 23647. McNeill, K. L., KatshSinger, R. & Pelletier, P. (2015). Assessing science practices-Moving your class along a continuum. Science Scope. McNeill, K.L., & Krajcik, J.S. (2011). Supporting Grade 5-8 Students in Constructing Explanations in Science: The Claim, Evidence, and Reasoning Framework for Talk and Writing. Upper Saddle River, New Jersey: Pearson. Penuel, W. (2016). Classroom Assessment Strategies for NGSS Earth and Space Sciences. Implementing†the†NGSS†Webinar†Series, February 11, 2016.

  12. Controversial Issues in the Science Classroom

    Science.gov (United States)

    Owens, David C.; Sadler, Troy D.; Zeidler, Dana L.

    2018-01-01

    As the partisan divide becomes more toxic to civil discourse, the role of science in that conversation also suffers from collateral damage, becoming suspect at best, and marginalized at worse, in terms of its contribution to resolving issues rooted in science having national and global significance. The authors suggest ameliorating that damage by…

  13. Revidert læreplan i naturfag – Økt fokus på grunnleggende ferdigheter og forskerspirenRevised Norwegian science curriculum – Increased focus on literacy and inquiry skills

    Directory of Open Access Journals (Sweden)

    Sonja M. Mork

    2013-11-01

    Full Text Available One of the main consequences of the large Norwegian curriculum reform in 2006 is that teachers in all subjects are now responsible for focusing on the basic skills of reading, writing, oral, arithmetic and the use of digital tools. However, research following the implementation of the reform report a gap between curriculum intentions and classroom practice regarding basic skills. Hence the curriculum in science and four other subjects are now revised to clarify basic skills. This article describes some of the background for the revision, the revision process and some main changes in the revised curriculum.

  14. A Longitudinal Study of Implementing Reality Pedagogy in an Urban Science Classroom: Effects, Challenges, and Recommendations for Science Teaching and Learning

    Science.gov (United States)

    Borges, Sheila Ivelisse

    tools of reality pedagogy were implemented the teacher-student relationship in the science classroom changed from negative to positive. This then impacted the teachers' decision whether to stay in the teaching profession. Where initially she wanted to leave teaching due to the disconnect with her culturally diverse urban students she decided to stay teaching in urban schools as a consequence of implementing reality pedagogy. In addition, students together with their science teacher were able to redefine the traditional science curriculum by including their community health and science concerns. This led to an increase in students' interest in school science because their urban science interests were incorporated in the science curriculum. Moreover, in order to inform other science teacher educators and teachers on how to implement reality pedagogy this study describes how it was implemented, the challenges that were encountered, and recommendations of an effective sequence of the tools.

  15. Revising and Updating the Plant Science Components of the Connecticut Vocational Agriculture Curriculum.

    Science.gov (United States)

    Connecticut Univ., Storrs. Dept. of Educational Leadership.

    This curriculum guide provides the plant science components of the vocational agriculture curriculum for Regional Vocational Agriculture Centers. The curriculum is divided into exploratory units for students in the 9th and 10th grades and specialized units for students in grades 11 and 12. The five exploratory units are: agricultural pest control;…

  16. What Are Critical Features of Science Curriculum Materials That Impact Student and Teacher Outcomes?

    Science.gov (United States)

    Roblin, Natalie Pareja; Schunn, Christian; McKenney, Susan

    2018-01-01

    Large investments are made in curriculum materials with the goal of supporting science education reform. However, relatively little evidence is available about what features of curriculum materials really matter to impact student and teacher learning. To address this need, the current study examined curriculum features associated with student and…

  17. Teacher-led relaxation response curriculum in an urban high school: impact on student behavioral health and classroom environment.

    Science.gov (United States)

    Wilson, H Kent; Scult, Matthew; Wilcher, Marilyn; Chudnofsky, Rana; Malloy, Laura; Drewel, Emily; Riklin, Eric; Saul, Southey; Fricchione, Gregory L; Benson, Herbert; Denninger, John W

    2015-01-01

    Recent data suggest that severe stress during the adolescent period is becoming a problem of epidemic proportions. Elicitation of the relaxation response (RR) has been shown to be effective in treating anxiety, reducing stress, and increasing positive health behaviors. The research team's objective was to assess the impact of an RR-based curriculum, led by teachers, on the psychological status and health management behaviors of high-school students and to determine whether a train-the-trainer model would be feasible in a high-school setting. The research team designed a pilot study. The setting was a Horace Mann charter school within Boston's public school system. Participants were teachers and students at the charter school. The team taught teachers a curriculum that included (1) relaxation strategies, such as breathing and imagery; (2) psychoeducation regarding mind-body pathways; and (3) positive psychology. Teachers implemented this curriculum with students. The research team assessed changes in student outcomes (eg, stress, anxiety, and stress management behaviors) using preintervention/postintervention surveys, including the Perceived Stress Scale (PSS), the State-Trait Anxiety Inventory-Form Y (STAI-Y), the stress management subscale of the Health-promoting Lifestyle Profile II (HPLP-II), the Rosenberg Self-Esteem Scale (RSES), the Locus of Control (LOC) questionnaire, and the Life Orientation Test-Revised (LOTR). Classroom observations using the Classroom Assessment Scoring System (CLASS)-Secondary were also completed to assess changes in classroom environment. Using a Bonferroni correction (P management behaviors at that point. Using a Bonferroni correction (P management behaviors (P classroom productivity (eg, increased time spent on activities and instruction from pre- to postintervention). This study showed that teachers can lead an RR curriculum with fidelity and suggests that such a curriculum has positive benefits on student emotional and behavioral

  18. Science Fiction in the Political Science Classroom: A Comment

    Science.gov (United States)

    Landers, Clifford E.

    1977-01-01

    Science fiction can be used for introducing and analyzing political concepts at the undergraduate level for either a specialized theory-oriented course such as Political Science Fiction or an Introduction to Political Science course. (Author/RM)

  19. Classroom Demonstrations in Materials Science/Engineering.

    Science.gov (United States)

    Hirschhorn, J. S.; And Others

    Examples are given of demonstrations used at the University of Wisconsin in a materials science course for nontechnical students. Topics include crystal models, thermal properties, light, and corrosion. (MLH)

  20. Classroom Implementation of Science, Technology, Engineering ...

    African Journals Online (AJOL)

    Zimbabwe Journal of Educational Research ... Understanding science, technology, engineering, and mathematics (STEM) education as a ... life skills in general and scientific literacy, along with a productive disposition and sense of social ...

  1. Silencing of voices in a Swedish science classroom

    Science.gov (United States)

    Ramos de Robles, S. Lizette

    2018-03-01

    From a sociocultural perspective, I discuss data from a Swedish science classroom presented in María Gómez's article "Student Explanations of their Science Teachers' Assessments, Grading Practices, and How they learn Science". In this discussion, I focus on the need to change existing conceptions of assessment in the teaching and learning of science. Next, I talk about the importance of taking into consideration the dialectic between agency and passivity as filters in order to understand what student silence may signify in science classes as well as in relation to their perceptions of assessment. I conclude with the importance of the teacher's role in developing formative assessment, along with the challenges in developing assessments which transform science education into a relevant field of knowledge for both students and society at large.

  2. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    Science.gov (United States)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  3. The Impact of Science Integrated Curriculum Supplements on Early Childhood Teachers' Attitudes and Beliefs towards Science while In-Service: A Multiple Case

    Science.gov (United States)

    Collins, Kellian L.

    Science at the early childhood level has been rarely taught as a single subject or integrated into the curriculum. One reason why early childhood educators avoid teaching science are their attitudes, beliefs, and lack of understanding scientific concepts as presented in traditional science curriculums. The intervention used by researchers for improving beliefs and attitudes in K-6 pre-service teachers towards teaching science in early childhood has been science method courses. For in service teachers, the intervention has been professional development workshops, seminars, and symposiums. Though these interventions have had a positive impact on teachers' attitudes and beliefs toward teaching science, the interventions have not necessarily guaranteed more science being taught in the preschool classroom. The specific problem investigated for this study was how to improve the interventions designed to improve preschool teachers' attitudes and beliefs so that they would feel more confident in teaching science to young children. The purpose of this study was to examine how implementing a one-week science integrated curriculum supplement could be an effective tool for improving preschool teachers' attitudes and beliefs toward teaching science. This study utilized the qualitative multiple case study research method. A logical model was created based on negative teacher attitudes and beliefs attributes that were the core components of the Preschool Teachers' Attitudes and Beliefs toward Science teaching (P-TABS) questionnaire. The negative attributes were paired with positive interventions and encapsulated in a one-week science integrated curriculum supplement based on the factors of teacher comfort, child benefit and challenges. The primary source of evidence for this study was the semi-structured interview. The researcher contacted 24 early childhood facilities, 44 emails were sent to preschool teachers, four teachers agreed to participate in the study. The results of the

  4. Changes in science classrooms resulting from collaborative action research initiatives

    Science.gov (United States)

    Oh, Phil Seok

    Collaborative action research was undertaken over two years between a Korean science teacher and science education researchers at the University of Iowa. For the purpose of realizing science learning as envisioned by constructivist principles, Group-Investigations were implemented three or five times per project year. In addition, the second year project enacted Peer Assessments among students. Student perceptions of their science classrooms, as measured by the Constructivist Learning Environment Survey (CLES), provided evidence that the collaborative action research was successful in creating constructivist learning environments. Student attitudes toward science lessons, as examined by the Enjoyment of Science Lessons Scale (ESLS), indicated that the action research also contributed to developing more positive attitudes of students about science learning. Discourse analysis was conducted on video-recordings of in-class presentations and discussions. The results indicated that students in science classrooms which were moving toward constructivist learning environments engaged in such discursive practices as: (1) Communicating their inquiries to others, (2) Seeking and providing information through dialogues, and (3) Negotiating conflicts in their knowledge and beliefs. Based on these practices, science learning was viewed as the process of constructing knowledge and understanding of science as well as the process of engaging in scientific inquiry and discourse. The teacher's discursive practices included: (1) Wrapping up student presentations, (2) Addressing misconceptions, (3) Answering student queries, (4) Coaching, (5) Assessing and advising, (6) Guiding students discursively into new knowledge, and (7) Scaffolding. Science teaching was defined as situated acts of the teacher to facilitate the learning process. In particular, when the classrooms became more constructivist, the teacher intervened more frequently and carefully in student activities to fulfill a

  5. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    Science.gov (United States)

    Weiss, E.; Skene, J.; Tran, L.

    2011-12-01

    aligns with the Ocean Literacy and Climate Literacy Frameworks, as well as multiple core ideas in the new National Academy of Sciences Framework for K-12 Science Education. In brief, the curriculum comprises 33 45-minute sessions organized into three thematic units that are each driven by an exploratory question: Unit 1 (11 sessions)-How do the ocean and atmosphere interact?; Unit 2 (8 sessions)-How does carbon flow through the ocean, land, and atmosphere?; and Unit 3 (12 sessions)-What are the causes and effects of climate change? The curriculum deliberately explores the ocean and climate as global systems, and challenges students to use scientific evidence to make explanations about climate change. The Ocean Sciences Sequence for Grades 6-8 is currently being classroom tested by teachers across the United States in a wide variety of classroom settings. Evaluation is also being undertaken to determine the efficacy of the sequence in addressing the curriculum's learning goals.

  6. Influences on teachers' curricular choices in project-based science classrooms

    Science.gov (United States)

    Laba, Karen Anne

    This descriptive research will present two case studies of experienced science teachers using project-based curricula in all or part of their secondary life science/biology courses. The purpose of this study is to reveal the underlying relationships between teachers' conceptions of the nature of science, their understanding of their role as science teachers and their expectations for appropriate and worthwhile student learning, and to describe the influence of these factors on their curricular choices within the project-based framework. Using a modification of Hewson, Kerby and Cook's (1995) Conceptions of Teaching Science protocol as a model, teachers' beliefs and intentions are classified and examined to identify organizing themes. Comparisons between teachers' beliefs and the actions they take in their project-based classroom are used to reveal relationships among the choices that result in students' learning experiences. Finally, the curricula presented by these two exemplary teachers are compared with the teaching standards and content goals defined in the National Science Education Standards (NRC, 1996). Recommendations for the application of the case study perspective of the evolution of learning experiences to reform efforts are offered to practitioners, policy makers, curriculum developers and teacher educators.

  7. More than "Cool Science": Science Fiction and Fact in the Classroom

    Science.gov (United States)

    Singh, Vandana

    2014-01-01

    The unfortunate negative attitude toward physics among many students, including science majors, warrants creative approaches to teaching required physics courses. One such approach is to integrate science fiction into the curriculum, either in the form of movies or the written word. Historically this has been done since at least the 1970s, and by…

  8. Girls Doing Science: A Case Study of Science Literacy in All-Female Middle Grade Classrooms

    Science.gov (United States)

    Faller, Susan Elisabeth

    In the face of low adolescent literacy rates (NCES, 2012), concerns about the nation's prospects of remaining competitive in science and technology (Hill, Corbett, & St. Rose, 2010), a persistent gender gap in science (NCES, 2012; Reilly, 2012), and the continued rollout of college- and career-ready standards, there is a need to focus on adolescent girls' science literacy. Such science literacy involves not only general knowledge about science, but also the ability to engage in the advanced reading and writing practices fundamental to doing science (Norris & Phillips, 2003). In this thesis, I present three articles with findings that respond to this need. They are the results of a multiple-case embedded (Yin, 2009) study that I conducted over the course of 7 months in four science classrooms (grades 5 through 8; 50 students) taught by a single teacher in a small all-female middle school. I collected in-depth data focused on science literacy from multiple sources, including (a) fieldnotes (Emerson, Fretz & Shaw, 2011), (b) videorecorded classroom observations (102 classes, 113 hours, recorded on 29 days), (c) a survey of all students, (d) semi-structured interviews with the subsample of 12 focal students (ranging from 18 to 37 minutes) and (e) photographs of classroom artifacts and student work. In the first article, I provide a window into standard literacy practices in science classrooms by examining the reading and writing genres to which students are exposed. In the second article, I examine how a teacher's language and instructional practices within her classrooms, and popular images of science from the world beyond their classrooms might shape adolescent girls' science identities. Finally, in the third article, I explore different aspects of science identity using the words of three case study students. Taken together, these studies fill gaps in the literature by investigating science literacy in an understudied context, all-female classrooms. In addition

  9. A Reexamination of Ontario's Science Curriculum: Toward a More Inclusive Multicultural Science Education?

    Science.gov (United States)

    Mujawamariya, Donatille; Hujaleh, Filsan; Lima-Kerckhoff, Ashley

    2014-01-01

    The rapid diversification of communities in Ontario has necessitated the provincial government to reevaluate public school curriculums and policies to make schools more inclusive and reflective of its diverse population. This article critically analyzes the content of the latest revised science curricula for Grades 1 to 10 and assesses the degree…

  10. Towards a Philosophically and a Pedagogically Reasonable Nature of Science Curriculum

    Science.gov (United States)

    Yacoubian, Hagop Azad

    This study, primarily theoretical in nature, explores a philosophically and pedagogically reasonable way of addressing nature of science (NOS) in school science. NOS encompasses what science is and how scientific knowledge develops. I critically evaluate consensus frameworks of NOS in school science, which converge contentious philosophical viewpoints into general NOS-related ideas. I argue that they (1) lack clarity in terms of how NOS-related ideas could be applied for various ends, (2) portray a distorted image of the substantive content of NOS and the process of its development, and (3) lack a developmental trajectory for how to address NOS at different grade levels. As a remedy to these problems, I envision a NOS curriculum that (1) explicates and targets both NOS as an educational end and NOS as a means for socioscientific decision making, (2) has critical thinking as its foundational pillar, and (3) provides a developmental pathway for NOS learning using critical thinking as a progression unit. Next, I illustrate a framework for addressing NOS in school science referred to as the critical thinking—nature of science (CT-NOS) framework. This framework brings together the first two of the three elements envisioned in the NOS curriculum. I address the third element by situating the CT-NOS framework in a developmental context, borrowing from the literature on learning progressions in science and using critical thinking as a progression unit. Finally, I present an empirical study of experienced secondary science teachers’ views of a NOS lesson prepared using the CT-NOS framework. The teachers attended a professional development workshop at which the lesson, and the characteristics of the CT-NOS framework, were presented. The analysis of the qualitative data revealed that most teachers found the lesson to be somewhat feasible for a secondary science classroom, useful or somewhat useful to their students, and interesting. The teachers focused on 14 features of

  11. Informal Science Learning in the Formal Classroom

    Science.gov (United States)

    Walsh, Lori; Straits, William

    2014-01-01

    In this article the authors share advice from the viewpoints of both a formal and informal educator that will help teachers identify the right Informal Science Institutions (ISIs)--institutions that specialize in learning that occurs outside of the school setting--to maximize their students' learning and use informal education to their…

  12. University Students' Perceptions of Their Science Classrooms

    Science.gov (United States)

    Kaya, Osman Nafiz; Kilic, Ziya; Akdeniz, Ali Riza

    2004-01-01

    The purpose of this study was to investigate the dimensions of the university students' perceptions of their science classes and whether or not the students' perceptions differ significantly as regards to the gender and grade level in six main categories namely; (1) pedagogical strategies, (2) faculty interest in teaching, (3) students interest…

  13. Blogging in the Political Science Classroom

    Science.gov (United States)

    Lawrence, Christopher N.; Dion, Michelle L.

    2010-01-01

    Weblogs (or blogs), as a form of communication on the Internet, have recently risen in prominence but may be poorly understood by both faculty and students. This article explains how blogs differ from other online communication tools and how political science faculty can make use of blogs in their classes. The focus is on using blogs as part of…

  14. An interactional ethnographic study of the construction of literate practices of science and writing in a university science classroom

    Science.gov (United States)

    Sena, Nuno Afonso De Freitas Lopes De

    An interactional ethnographic study informed by a sociocultural perspective was conducted to examine how a professor and students discursively and interactionally shaped the basis for engaging in the work of a community of geologists. Specifically, the study examined the role the Question of the Day, an interactive writing activity in the lecture, in affording students opportunities for learning the literate practices of science and how to incorporate them in thinking critically. A writing-intensive, introductory oceanography course given in the Geological Sciences Department was chosen because the professor designed it to emphasize writing in the discipline and science literacy within a science inquiry framework. The study was conducted in two phases: a pilot in 2002 and the current study in the Spring Quarter of 2003. Grounded in the view that members in a classroom construct a culture, this study explored the daily construction of the literate practices of science and writing. This view of classrooms was informed by four bodies of research: interactional ethnography, sociolinguistics sociology of science and Writing In the Disciplines. Through participant observation, data were collected in the lecture and laboratory settings in the form of field notes, video, interviews, and artifacts to explore issues of science literacy in discourse, social action, and writing. Examination of participation in the Question of the Day interactive writing activity revealed that it played a key role in initiating and supporting a view of science and inquiry. As the activity permitted collaboration, it encouraged students to engage in the social process to critically explore a discourse of science and key practices with and through their writing. In daily interaction, participants were shown to take up social positions as scientist and engage in science inquiry to explore theory, examine data, and articulately reformulate knowledge in making oral and written scientific arguments

  15. Engaging Nature of Science to Preservice Teachers through Inquiry-Based Classroom

    Science.gov (United States)

    Nuangchalerm, Prasart

    2013-01-01

    Inquiry-based classroom is widely distributed in the school science based on its useful and effective instruction. Science teachers are key elements allowing students to have scientific inquiry. If teachers understand and imply inquiry-based learning into science classroom, students will learn science as scientific inquiry and understand nature of…

  16. The materiality of materials and artefacts used in science classrooms

    DEFF Research Database (Denmark)

    Cowie, Bronwen; Otrel-Cass, Kathrin; Moreland, Judy

    Material objects and artefacts receive limited attention in science education (Roehl, 2012) though they shape emerging interactions. This is surprising given science has material and a social dimensions (Pickering, 1995) whereby new knowledge develops as a consensus explanation of natural phenomena...... that is mediated significantly through materials and instruments used. Here we outline the ways teachers deployed material objects and artefacts by identifying their materiality to provide scenarios and resources (Roth, 2005) for interactions. Theoretical framework We use Ingold's (2011) distinction between...... materials as natural objects in this world and artefacts as manmade objects. We are aware that in a classroom material objects and artefacts shape, and are shaped by classroom practice through the way they selectively present scientific explanations. However, materials and artefacts have no intrinsic...

  17. Professional Learning Communities (PLCs) as a Means for School-Based Science Curriculum Change

    Science.gov (United States)

    Browne, Christi L.

    The challenge of school-based science curriculum change and educational reform is often presented to science teachers and departments who are not necessarily prepared for the complexity of considerations that change movements require. The development of a Professional Learning Community (PLC) focused on a science department's curriculum change efforts, may provide the necessary tools to foster sustainable school-based curriculum science changes. This research presents a case study of an evolving science department PLC consisting of 10 middle school science teachers from the same middle school and their efforts of school-based science curriculum change. A transformative mixed model case study with qualitative data and deepened by quantitative analysis, was chosen to guide the investigation. Collected data worked to document the essential developmental steps, the occurrence and frequency of the five essential dimensions of successful PLCs, and the influences the science department PLC had on the middle school science department's progression through school-based science curriculum change, and the barriers, struggles and inhibiting actions of the science department PLC. Findings indicated that a science department PLC was unique in that it allowed for a focal science departmental lens of science curriculum change to be applied to the structure and function of the PLC and therefore the process, proceedings, and results were directly aligned to and driven by the science department. The science PLC, while logically difficult to set-up and maintain, became a professional science forum where the middle school science teachers were exposed to new science teaching and learning knowledge, explored new science standards, discussed effects on student science learning, designed and critically analyzed science curriculum change application. Conclusions resulted in the science department PLC as an identified tool providing the ability for science departmental actions to lead to

  18. Effective Lesson Planning: Field Trips in the Science Curriculum

    Science.gov (United States)

    Rieger, C. R.

    2010-10-01

    Science field trips can positively impact and motivate students. However, if a field trip is not executed properly, with appropriate preparation and follow-up reinforcement, it can result in a loss of valuable educational time and promote misconceptions in the students. This study was undertaken to determine if a classroom lesson before an out-of-the-classroom activity would affect learner gain more or less than a lesson after the activity. The study was based on the immersive theater movie ``Earth's Wild Ride'' coupled with a teacher-led Power Point lesson. The participants in the study were students in a sixth grade physical science class. The order of lessons showed no detectable effect on final learner outcomes. Based on pre- and post-testing, improvement in mean learning gain came from the teacher-led lesson independent of the movie. The visit to the immersive theater, however, had significant positive effects that did not show up in the quantitative results of the testing.

  19. Associate in science degree education programs: organization, structure, and curriculum.

    Science.gov (United States)

    Galvin, William F

    2005-09-01

    After years of discussion, debate, and study, the respiratory care curriculum has evolved to a minimum of an associate degree for entry into practice. Although programs are at liberty to offer the entry-level or advanced level associate degree, most are at the advanced level. The most popular site for sponsorship of the associate degree in respiratory care is the community college. The basis for community college sponsorship seems to be its comprehensive curriculum, which focuses on a strong academic foundation in writing, communication, and the basic sciences as well as supporting a career-directed focus in respiratory care. Issues facing the community college are tied to literacy, outcomes, assessment, placement,cooperation with the community, partnerships with industry, and articulation arrangements with granting institutions granting baccalaureate degrees. Community colleges must produce a literate graduate capable of thriving in an information-saturated society. Assessment and placement will intensify as the laissez-faire attitudes toward attendance and allowing students to select courses without any accountability and evaluation of outcome become less acceptable. Students will be required to demonstrate steady progress toward established outcomes. Maintaining relations and cooperation with the local community and the health care industry will continue to be a prominent role for the community college. The challenge facing associate degree education in respiratory care at the community college level is the ability to continue to meet the needs of an expanding professional scope of practice and to provide a strong liberal arts or general education core curriculum. The needs for a more demanding and expanding respiratory care curriculum and for a rich general education core curriculum have led to increased interest in baccalaureate and graduate degree education. The value of associate degree education at the community college level is well established. It is

  20. Bringing Data Science, Xinformatics and Semantic eScience into the Graduate Curriculum

    Science.gov (United States)

    Fox, P.

    2012-04-01

    Committee on Information and Data (SCCID), features this excerpt from section 4.2.4 Data scientists and professionals: "An unfortunate state in the recognition of data science, is that there is a lack of appreciation of the need for a set of professional knowledge in skill in key areas, many of which have not been emphasized to date, e.g. professional approaches to the management of data over its lifecycle. As such, the effort required to be a data scientists is not valued sufficiently by the remainder of the scientific community." SCCID Recommendation 6 reads: "We recommend the development of education at university level in the new and vital field of data science. The curriculum included in appendix D can be used as a starting point for curriculum development. Appendix D. is entitled "Example curriculum for data science" and explicitly uses the "Curriculum for Data Science taught at Rensselaer Polytechnic Institute, USA" . This contribution will present relevant curriculum offerings at the Rensselaer Polytechnic Institute. http://tw.rpi.edu/web/Courses

  1. Novel Emergency Medicine Curriculum Utilizing Self-Directed Learning and the Flipped Classroom Method: Gastrointestinal Emergencies Small Group Module

    Directory of Open Access Journals (Sweden)

    Andrew King

    2017-01-01

    Full Text Available Audience and type of curriculum: This curriculum created and implemented at The Ohio State University Wexner Medical Center was designed to educate our emergency medicine (EM residents, PGY-1 to PGY-3, as well as medical students and attending physicians. Introduction/Background: Gastrointestinal (GI emergencies comprise approximately 12% of emergency department (ED visits.1 Residents must be proficient in the differential diagnosis and management of the wide variety of GI emergencies. The flipped classroom curricular model emphasizes self-directed learning activities completed by learners, followed by small group discussions pertaining to the topic reviewed. The active learning fostered by this curriculum increases faculty and learner engagement and interaction time typically absent in traditional lecture-based formats.2-4 Studies have revealed that the application of knowledge through case studies, personal interaction with content experts, and integrated questions are effective learning strategies for emergency medicine residents.4-6 The Ohio State University EM Residency didactic curriculum recently transitioned to a “flipped classroom” approach.7-10 We created this innovative curriculum aimed to improve our residency education program and to share educational resources with other EM residency programs. This proposed curriculum utilizes an 18-month curricular cycle. The flipped classroom curriculum maximizes didactic time and resident engagement, fosters intellectual curiosity and active learning, and meets the needs of today’s learners. 3,6,11 Objectives: We aim to teach the presentation and management of GI emergencies through the creation of a flipped classroom design. This unique, innovative curriculum utilizes resources chosen by education faculty and resident learners, study questions, real-life experiences, and small group discussions in place of traditional lectures. In doing so, a goal of the curriculum is to encourage self

  2. Interchangeable Positions in Interaction Sequences in Science Classrooms

    Directory of Open Access Journals (Sweden)

    Carol Rees

    2017-03-01

    Full Text Available Triadic dialogue, the Initiation, Response, Evaluation sequence typical of teacher /student interactions in classrooms, has long been identified as a barrier to students’ access to learning, including science learning. A large body of research on the subject has over the years led to projects and policies aimed at increasing opportunities for students to learn through interactive dialogue in classrooms. However, the triadic dialogue pattern continues to dominate, even when teachers intend changing this. Prior quantitative research on the subject has focused on identifying independent variables such as style of teacher questioning that have an impact, while qualitative researchers have worked to interpret the use of dialogue within the whole context of work in the classroom. A recent paper offers an alternative way to view the triadic dialogue pattern and its origin; the triadic dialogue pattern is an irreducible social phenomenon that arises in a particular situation regardless of the identity of the players who inhabit the roles in the turn-taking sequence (Roth & Gardner, 2012. According to this perspective, alternative patterns of dialogue would exist which are alternative irreducible social phenomena that arise in association with different situations. The aim of this paper is to examine as precisely as possible, the characteristics of dialogue patterns in a seventh-eighth grade classroom during science inquiry, and the precise situations from which these dialogue patterns emerge, regardless of the staffing (teacher or students in the turn-taking sequence. Three different patterns were identified each predominating in a particular situation. This fine-grained analysis could offer valuable insights into ways to support teachers working to alter the kinds of dialogue patterns that arise in their classrooms.

  3. Computer Science (CS) in the Compulsory Education Curriculum: Implications for Future Research

    Science.gov (United States)

    Passey, Don

    2017-01-01

    The subject of computer science (CS) and computer science education (CSE) has relatively recently arisen as a subject for inclusion within the compulsory school curriculum. Up to this present time, a major focus of technologies in the school curriculum has in many countries been on applications of existing technologies into subject practice (both…

  4. Electromagnetic Spectrum. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    Science.gov (United States)

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the second in a set of six, contains teacher and student materials for a unit on the electromagnetic spectrum prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for…

  5. History of Science in the Physics Curriculum: A Directed Content Analysis of Historical Sources

    Science.gov (United States)

    Seker, Hayati; Guney, Burcu G.

    2012-01-01

    Although history of science is a potential resource for instructional materials, teachers do not have a tendency to use historical materials in their lessons. Studies showed that instructional materials should be adaptable and consistent with curriculum. This study purports to examine the alignment between history of science and the curriculum in…

  6. The Implementation of the New Lower Secondary Science Curriculum in Three Schools in Rwanda

    Science.gov (United States)

    Nsengimana, Théophile; Ozawa, Hiroaki; Chikamori, Kensuke

    2014-01-01

    In 2006, Rwanda began implementing an Outcomes Based Education (OBE) lower secondary science curriculum that emphasises a student-centred approach. The new curriculum was designed to transform Rwandan society from an agricultural to a knowledge-based economy, with special attention to science and technology education. Up until this point in time…

  7. Leaving the classroom: a didactic framework for education in environmental sciences

    Science.gov (United States)

    Dopico, Eduardo; Garcia-Vazquez, Eva

    2011-06-01

    In Continuous Education curricula in Spain, the programs on sciences of the environment are aimed toward understandings of sustainability. Teaching practice rarely leaves the classroom for outdoor field studies. At the same time, teaching practice is generally focused on examples of how human activities are harmful for ecosystems. From a pedagogic point of view, it is less effective to teach environmental science with negative examples such as catastrophe, tragedy, and crisis. Rather, teaching environmental sciences and sustainable development might be focused on positive human-environment relationships, which is both important for the further development of students and educators. Within rural settings, there are many such examples of positive relationships that can be emphasized and integrated into the curriculum. In this article, we propose teaching environmental sciences through immersion in rural cultural life. We discuss how fieldwork serves as a learning methodology. When students are engaged through research with traditional cultural practices of environmental management, which is a part of the real and traditional culture of a region, they better understand how positive pedagogy instead of pedagogy structured around how not-to-do examples, can be used to stimulate the interactions between humans and the environment with their students. In this way, cultural goods serve as teaching resources in science and environmental education. What we present is authentic cases where adults involved in a course of Continuous Education explore `environmentally-friendly' practices of traditional agriculture in Asturias (north of Spain), employing methodologies of cultural studies.

  8. Exploring the Effectiveness of Curriculum Provided Through Transmedia Books for Increasing Students' Knowledge and Interest in Science

    Science.gov (United States)

    Ponners, Pamela Jones

    Transmedia books are new and emerging technologies which are beginning to be used in current classrooms. Transmedia books are a traditional printed book that uses multiple media though the use of Quick Response (QR) codes and augmented reality (AR) triggers to access web-based technology. Using the transmedia book Skills That Engage Me students in kindergarten through second grade engage in curriculum designed to introduce science skills and careers. Using the modified Draw-a-Scientist Test (mDAST), observations and interviews, researchers analyzed pre and post data to describe changes students have about science and scientists. Future study may include the development and validation of a new instrument, Draw a Science Student, and examining the mDAST checklist with the intention of updating the parameters of what is considered positive and negative in relationship with work a scientist conducts.

  9. Examining student-generated questions in an elementary science classroom

    Science.gov (United States)

    Diaz, Juan Francisco, Jr.

    This study was conducted to better understand how teachers use an argument-based inquiry technique known as the Science Writing Heuristic (SWH) approach to address issues on teaching, learning, negotiation, argumentation, and elaboration in an elementary science classroom. Within the SWH framework, this study traced the progress of promoting argumentation and negotiation (which led to student-generated questions) during a discussion in an elementary science classroom. Speech patterns during various classroom scenarios were analyzed to understand how teacher--student interactions influence learning. This study uses a mixture of qualitative and quantitative methods. The qualitative aspect of the study is an analysis of teacher--student interactions in the classroom using video recordings. The quantitative aspect uses descriptive statistics, tables, and plots to analyze the data. The subjects in this study were fifth grade students and teachers from an elementary school in the Midwest, during the academic years 2007/2008 and 2008/2009. The three teachers selected for this study teach at the same Midwestern elementary school. These teachers were purposely selected because they were using the SWH approach during the two years of the study. The results of this study suggest that all three teachers moved from using teacher-generated questions to student-generated questions as they became more familiar with the SWH approach. In addition, all three promoted the use of the components of arguments in their dialogs and discussions and encouraged students to elaborate, challenge, and rebut each other's ideas in a non-threatening environment. This research suggests that even young students, when actively participating in class discussions, are capable of connecting their claims and evidence and generating questions of a higher-order cognitive level. These findings demand the implementation of more professional development programs and the improvement in teacher education to help

  10. The third space: The use of self-study to examine the culture of a science classroom

    Science.gov (United States)

    Magee, Dashia M.

    Science educators are in the position to create bridges between their students and the world of science (Aikenhead, 1996, 1999). This connection has often been described as the third space (Bhabha, 1994; Moje, Collazo, Carrillo, & Marx, 2001; Wallace, 2004), which is represented as a combination or a meeting of the students' world and the world of science. In this study, I examined my role in creating the third space through the use of self-study. Self-study is a form of research, educators use to understand their practice (Austin & Senese, 2004; Loughran, 2004; Northfield & Loughran, 1996). It is a means of describing, analyzing, and interpreting a teacher's actions within his or her classroom (Tidwell, 2002). The focal point of this self-study is to understand my actions found within my past and present teaching experiences and the underlying beliefs that are expressed through those actions. In this self-study, I collected data from my life history, classroom observations, and member check interview. My life history described my influences that shaped my philosophy of teaching and learning, while the classroom observations provided a means of understanding my interactions with the science curriculum and my English Language Learner (ELL) students. And finally, a member check focus group interview occurred to confirm the results occurring in the classroom observations. Once the data were collected, I used grounded theory methods to analyze my results and answer the research questions. This self-study became the means of exploring my philosophy of teaching and learning and my teaching practices as they occurred in an ELL science classroom. I examined my own practice through a comparison between my past experiences and my current teaching situation and through this exploration, I identified my actions and the beliefs associated with those actions as they informed my teaching practices.

  11. Novel Emergency Medicine Curriculum Utilizing Self-Directed Learning and the Flipped Classroom Method: Genitourinary Emergencies Small Group Module

    Directory of Open Access Journals (Sweden)

    Andrew King

    2017-07-01

    Full Text Available Audience: This curriculum, created and implemented at The Ohio State University Wexner Medical Center, was designed to educate our emergency medicine (EM residents, PGY-1 to PGY-3, as well as medical students. Introduction: In 2013, there were over 6 million Emergency Department visits in the United States which resulted in a primary diagnosis of the genitourinary system. This represents 5.2% of all Emergency Department visits.1 Residents must be proficient in the differential diagnosis and management of the wide variety of genitourinary emergencies. This flipped classroom curricular model emphasizes self-directed learning activities completed by learners, followed by small group discussions pertaining to the topic reviewed. The active learning fostered by this curriculum increases faculty and learner engagement and interaction time typically absent in traditional lecture-based formats.2-4 Studies have revealed that the application of knowledge through case studies, personal interaction with content experts, and integrated questions are effective learning strategies for emergency medicine residents.4-6 The Ohio State University Wexner Medical Center EM Residency didactic curriculum recently transitioned to a “flipped classroom” approach.7-10 We created this innovative curriculum aimed to improve our residency education program and to share educational resources with other EM residency programs. Our curriculum utilizes an 18-month curricular cycle to cover the defined emergency medicine content. The flipped classroom curriculum maximizes didactic time and resident engagement, fosters intellectual curiosity and active learning, and meets the needs of today’s learners. 3,6,11 Objectives: We aim to teach the presentation and management of genitourinary emergencies through the creation of a flipped classroom design. This unique, innovative curriculum utilizes resources chosen by education faculty and resident learners, study questions, real

  12. Novel Emergency Medicine Curriculum Utilizing Self-Directed Learning and the Flipped Classroom Method: Psychiatric Emergencies Small Group Module

    Directory of Open Access Journals (Sweden)

    Andrew King

    2017-07-01

    Full Text Available Audience: This curriculum created and implemented at The Ohio State University Wexner Medical Center was designed to educate our emergency medicine (EM residents, PGY-1 to PGY-3, as well as medical students and attending physicians. Introduction: In 2007, there were 12 million adult Emergency Department visits for mental health and substance abuse complaints. This represents 12.5% of all adult emergency department visits.1 Residents must be proficient in the differential diagnosis and management of the wide variety of psychiatric emergencies. The flipped classroom curricular model emphasizes self-directed learning activities completed by learners, followed by small group discussions pertaining to the topic reviewed. The active learning fostered by this curriculum increases faculty and learner engagement and interaction time typically absent in traditional lecture-based formats.2-4 Studies have revealed that the application of knowledge through case studies, personal interaction with content experts, and integrated questions are effective learning strategies for emergency medicine residents.4-6 The Ohio State University EM Residency didactic curriculum recently transitioned to a “flipped classroom” approach.7-10 We created this innovative curriculum aimed to improve our residency education program and to share educational resources with other EM residency programs. Our curriculum utilizes an 18-month curricular cycle to cover the defined emergency medicine content. The flipped classroom curriculum maximizes didactic time and resident engagement, fosters intellectual curiosity and active learning, and meets the needs of today’s learners. 3,6,11 Objectives: We aim to teach the presentation and management of psychiatric emergencies through the creation of a flipped classroom design. This unique, innovative curriculum utilizes resources chosen by education faculty and resident learners, study questions, real-life experiences, and small group

  13. Building bridges: how research may improve curriculum policies and classroom practices

    NARCIS (Netherlands)

    van den Akker, Jan; Stoney, Sheila M.

    2010-01-01

    Curriculum development is almost notorious for its weak relationship with research. Socio-political arguments usually dominate curriculum decision making (in most, including European, countries, with all their variety). Priorities for curriculum projects seldom arise from systematic monitoring and

  14. Ka Hana `Imi Na`auao: A Science Curriculum Project

    Science.gov (United States)

    Napeahi, K.; Roberts, K. D.; Galloway, L. M.; Stodden, R. A.; Akuna, J.; Bruno, B.

    2005-12-01

    In antiquity, the first people to step foot on what are now known as the Hawaiian islands skillfully traversed the Pacific Ocean using celestial navigation and learned observations of scientific phenomena. Long before the Western world ventured beyond the horizon, Hawaiians had invented the chronometer, built aqueduct systems (awai) that continue to amaze modern engineers, and had preventive health systems as well as a comprehensive knowledge of medicinal plants (including antivirals) which only now are working their way through trials for use in modern pharmacopia. Yet, today, Native Hawaiians are severely underrepresented in science-related fields, reflecting (in part) a failure of the Western educational system to nurture the potential of these resourceful students, particularly the many "at-risk" students who are presently over-represented in special education. A curriculum which draws from and incorporates traditional Hawaiian values and knowledge is needed to reinforce links to the inquiry process which nurtured creative thinking during the renaissance of Polynesian history. The primary goal of the Ka Hana `Imi Na`auao Project (translation: `science` or `work in which you seek enlightenment, knowledge or wisdom`) is to increase the number of Native Hawaiian adults in science-related postsecondary education and employment fields. Working closely with Native Hawaiian cultural experts and our high school partners, we will develop and implement a culturally responsive 11th and 12th grade high school science curriculum, infused with math, literacy and technology readiness skills. Software and assistive technology will be used to adapt instruction to individual learners` reading levels, specific disabilities and learning styles. To ease the transition from secondary to post-secondary education, selected grade 12 students will participate in planned project activities that link high school experiences with college science-related programs of study. Ka Hana `Imi Na

  15. Single-sex middle school science classrooms: Separate and equal?

    Science.gov (United States)

    Glasser, Howard M.

    The U.S. Department of Education's amended regulations to Title IX have attempted to expand the circumstances in which single-sex classes are permissible in public schools. This ethnographic study uses grounded theory to investigate aspects of one single-sex offering at a public, coeducational middle school. Applying elements of postmodern, queer, and sociocultural lenses, it examines the perspectives for this offering, shedding insight into the cultures of two single-sex classrooms and what it meant to be a boy or girl in this setting. Additionally, it focuses attention on the all-boy and all-girl science classes that were taught by the same teacher and examines what it meant to learn science as boys and girls in this program. Although participants supplied financial, socio-emotional, and academic reasons for these classes, the initial motivation for these classes stemmed from the teachers' desire to curb the amount of sex talk and related behaviors that were exhibited in their classrooms. Through these conversations and classroom events, the girls were constructed as idealized students, academically and behaviorally, who needed to be protected from boys' behaviors---both boys' dominating classroom behaviors and aggressive (hetero)sexual behaviors. Conversely, boys were constructed as needing help both academically and behaviorally, but in the specific discipline of science boys were identified as the sex that was more interested in the content and gained greater exposure to skills that could assist them in future science courses and careers. Overall, boys and girls, and the culture of their two classrooms, were regularly defined relative to each other and efforts were made to maintain these constructed differences. As a result, the classes and students were hierarchically ranked in ways that often pitted one sex of students, or the entire class, as better or worse than the other. The theory emerging from this study is that single-sex policies arise and survive

  16. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  17. Dialogical argumentation in elementary science classrooms

    Science.gov (United States)

    Kim, Mijung; Roth, Wolff-Michael

    2018-02-01

    To understand students' argumentation abilities, there have been practices that focus on counting and analyzing argumentation schemes such as claim, evidence, warrant, backing, and rebuttal. This analytic approach does not address the dynamics of epistemic criteria of children's reasoning and decision-making in dialogical situations. The common approach also does not address the practice of argumentation in lower elementary grades (K-3) because these children do not master the structure of argumentation and, therefore, are considered not ready for processing argumentative discourse. There is thus little research focusing on lower elementary school students' argumentation in school science. This study, drawing on the societal-historical approach by L. S. Vygotsky, explored children's argumentation as social relations by investigating the genesis of evidence-related practices (especially burden of proof) in second- and third-grade children. The findings show (a) students' capacity for connecting claim and evidence/responding to the burden of proof and critical move varies and (b) that teachers play a significant role to emphasize the importance of evidence but experience difficulties removing children's favored ideas during the turn taking of argumentative dialogue. The findings on the nature of dialogical reasoning and teacher's role provide further insights about discussions on pedagogical approaches to children's reasoning and argumentation.

  18. Professional Vision of Classroom Management and Learning Support in Science Classrooms--Does Professional Vision Differ across General and Content-Specific Classroom Interactions?

    Science.gov (United States)

    Steffensky, Mirjam; Gold, Bernadette; Holdynski, Manfred; Möller, Kornelia

    2015-01-01

    The present study investigates the internal structure of professional vision of in-service teachers and student teachers with respect to classroom management and learning support in primary science lessons. Classroom management (including monitoring, managing momentum, and rules and routines) and learning support (including cognitive activation…

  19. The value of storytelling in the science classroom

    Science.gov (United States)

    Isabelle, Aaron David

    The "traditional science classroom" asks students, "What do we know in science?," and ignores the question, "How do we know what we know?" The purpose of this research is to combine the powerful structure of narrative with the history of science in junior high school science classrooms. This study investigates whether history-of-science-based stories have advantages over traditional, lecture-style presentations. The storytelling approach aims to present science concepts in a meaningful and memorable context and in a coherent and connected manner. The research program employed parallel curricula: science concepts were taught through novel stories and through lectures, at different times, to eight different groups of seventh and eighth grade students at Holy Name Junior High School in Worcester, Massachusetts. Students were assessed with pre- and post-tests and through individual interviews: Before, immediately after, and two weeks after the lessons, students were given short-answer questionnaires. Two weeks after each lesson, individual interviews were also conducted with a sampling of the students. The questionnaires were coded according to a clear set of written standards and the interviews were transformed into concept maps. Student learning and retention levels, gender differences, and alternate conceptions were quantitatively analyzed. The results reveal that the students who were taught through stories learned the science concepts, on the average, 21% better and retained close to 48% more than the students who were taught through traditional lessons. Fewer alternate conceptions were expressed after story lessons than after lectures. Investigation of gender differences in learning science through the two methods revealed that boys profited more than girls did from the story lessons. The union of narrative with the history of science in the form of story lessons seems natural since the spatiotemporal structure of a narrative mirrors the unfolding of actions in

  20. Exploring the classroom: Teaching science in early childhood

    Directory of Open Access Journals (Sweden)

    Peter J.N. DEJONCKHEERE

    2016-06-01

    Full Text Available This study tested and integrated the effects of an inquiry-based didactic method for preschool science in a real practical classroom setting. Four preschool classrooms participated in the experiment (N= 57 and the children were 4–6 years old. In order to assess children’s attention for causal events and their understanding at the level of scientific reasoning skills, we designed a simple task in which a need for information gain was created. Compared to controls, children in the post-test showed significant learning gains in the development of the so-called control of variables strategy. Indeed, they executed more informative and less uninformative explorations during their spontaneous play. Furthermore, the importance of such programmes was discussed in the field of STEM education.

  1. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    Science.gov (United States)

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-08-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by prominent policy documents. Specifically, we examined the opportunities present in Montessori classrooms for students to develop an interest in the natural world, generate explanations in science, and communicate about science. Using ethnographic research methods in four Montessori classrooms at the primary and elementary levels, this research captured a range of scientific learning opportunities. The study found that the Montessori learning environment provided opportunities for students to develop enduring interests in scientific topics and communicate about science in various ways. The data also indicated that explanation was largely teacher-driven in the Montessori classroom culture. This study offers lessons for both conventional and Montessori classrooms and suggests further research that bridges educational contexts.

  2. Family and Consumer Sciences Teacher Needs Assessment of a STEM-Enhanced Food and Nutrition Sciences Curriculum

    OpenAIRE

    Merrill, Cathy A.

    2016-01-01

    Science, technology, engineering and mathematics (STEM) education concepts are naturally contextualized in the study of food and nutrition. In 2014 a pilot group of Utah high school Career and Technical Education Family and Consumer Sciences teachers rewrote the Food and Nutrition Sciences curriculum to add and enhance the STEM-related content. This study is an online needs assessment by Utah Food and Nutrition 1 teachers on the implementation of the STEM-enhanced curriculum after its first y...

  3. An evaluative study of the impact of the "Curriculum Alignment Toolbox" on middle school science achievement

    Science.gov (United States)

    Jones, Carol L.

    The number of computer-assisted education programs on the market is overwhelming science teachers all over the Michigan. Though the need is great, many teachers are reluctant to procure computer-assisted science education programs because they are unsure of the effectiveness of such programs. The Curriculum Alignment Toolbox (CAT) is a computer-based program, aligned to the Michigan Curriculum Framework's Benchmarks for Science Education and designed to supplement science instruction in Michigan middle schools. The purpose of this study was to evaluate the effectiveness of CAT in raising the standardized test scores of Michigan students. This study involved 419 students from one urban, one suburban and one rural middle school. Data on these students was collected from 4 sources: (1) the 8th grade Michigan Education Assessment Program (MEAP) test, (2) a 9 question, 5-point Likert-type scale student survey, (3) 4 open-response student survey questions and (4) classroom observations. Results of this study showed that the experimental group of 226 students who utilized the CAT program in addition to traditional instruction did significantly better on the Science MEAP test than the control group of 193 students who received only traditional instruction. The study also showed that the urban students from a "high needs" school seemed to benefit most from the program. Additionally, though both genders and all identified ethnic groups benefited from the program, males benefited more than females and whites, blacks and Asian/Pacific Islander students benefited more than Hispanic and multi-racial students. The CAT program's success helping raise the middle school MEAP scores may well be due to some of its components. CAT provided students with game-like experiences all based on the benchmarks required for science education and upon which the MEAP test is based. The program also provided visual and auditory stimulation as well as numerous references which students indicated

  4. The Impact of a Curriculum Course on Pre-Service Primary Teachers' Science Content Knowledge and Attitudes towards Teaching Science

    Science.gov (United States)

    Murphy, Cliona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students'…

  5. Teaching Ocean Sciences in the 21st Century Classroom: Lab to Classroom Videoconferencing

    Science.gov (United States)

    Peach, C. L.; Gerwick, W.; Gerwick, L.; Senise, M.; Jones, C. S.; Malloy, K.; Jones, A.; Trentacoste, E.; Nunnery, J.; Mendibles, T.; Tayco, D.; Justice, L.; Deutscher, R.

    2010-12-01

    Teaching Ocean Science in the 21st Century Classroom (TOST) is a Center for Ocean Sciences Education Excellence (COSEE CA) initiative aimed at developing and disseminating technology-based instructional strategies, tools and ocean science resources for both formal and informal science education. San Diego Unified School District (SDUSD), Scripps Institution of Oceanography (SIO) and the Lawrence Hall of Science (LHS) have established a proving ground for TOST activities and for development of effective, sustainable solutions for researchers seeking to fulfill NSF and other funding agency broader impact requirements. Lab to Classroom Videoconferencing: Advances in Information and Communications Technology (ICT) are making it easier to connect students and researchers using simple online tools that allow them to interact in novel ways. COSEE CA is experimenting with these tools and approaches to identify effective practices for providing students with insight into the research process and close connections to researchers and their laboratory activities. At the same time researchers, including graduate students, are learning effective communication skills and how to align their presentations to specific classroom needs - all from the comfort of their own lab. The lab to classroom videoconferencing described here is an ongoing partnership between the Gerwick marine biomedical research lab and a group of three life science teachers (7th grade) at Pershing Middle School (SDUSD) that started in 2007. Over the last 5 years, the Pershing science teachers have created an intensive, semester-long unit focused on drug discovery. Capitalizing on the teacher team’s well-developed unit of study and the overlap with leading-edge research at SIO, COSEE CA created the videoconferencing program as a broader impact solution for the lab. The team has refined the program over 3 iterations, experimenting with structuring the activities to most effectively reach the students. In the

  6. Student Engagement in a Computer Rich Science Classroom

    Science.gov (United States)

    Hunter, Jeffrey C.

    The purpose of this study was to examine the student lived experience when using computers in a rural science classroom. The overarching question the project sought to examine was: How do rural students relate to computers as a learning tool in comparison to a traditional science classroom? Participant data were collected using a pre-study survey, Experience Sampling during class and post-study interviews. Students want to use computers in their classrooms. Students shared that they overwhelmingly (75%) preferred a computer rich classroom to a traditional classroom (25%). Students reported a higher level of engagement in classes that use technology/computers (83%) versus those that do not use computers (17%). A computer rich classroom increased student control and motivation as reflected by a participant who shared; "by using computers I was more motivated to get the work done" (Maggie, April 25, 2014, survey). The researcher explored a rural school environment. Rural populations represent a large number of students and appear to be underrepresented in current research. The participants, tenth grade Biology students, were sampled in a traditional teacher led class without computers for one week followed by a week using computers daily. Data supported that there is a new gap that separates students, a device divide. This divide separates those who have access to devices that are robust enough to do high level class work from those who do not. Although cellular phones have reduced the number of students who cannot access the Internet, they may have created a false feeling that access to a computer is no longer necessary at home. As this study shows, although most students have Internet access, fewer have access to a device that enables them to complete rigorous class work at home. Participants received little or no training at school in proper, safe use of a computer and the Internet. It is clear that the majorities of students are self-taught or receive guidance

  7. Science classroom inquiry (SCI simulations: a novel method to scaffold science learning.

    Directory of Open Access Journals (Sweden)

    Melanie E Peffer

    Full Text Available Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  8. Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.

    Science.gov (United States)

    Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  9. Inquiry in early years science teaching and learning: Curriculum design and the scientific story

    Science.gov (United States)

    McMillan, Barbara Alexander

    2001-07-01

    Inquiry in school science, as conceived by the authors of the Common Framework of Science Learning Outcomes K--12, is dependent upon four areas of skills. These are the skills of initiating and planning, performing and recording, analysing and interpreting, and communication and teamwork that map onto what Hodson calls the five phases of scientific inquiry in school science: initiation, design and planning, performance, interpretation, and reporting and communicating. This study looked at initiation in a multiage (Grades 1--3) classroom, and the curriculum, design tools, and inquiry acts believed to be necessary precursors of design and planning phases whether the inquiry in which young children engage is archival or laboratory investigation. The curriculum was designed to build upon children's everyday biological knowledge and through a series of carefully organized lessons to help them to begin to build scientifically valid conceptual models in the area of animal life cycles. The lessons began with what is called benchmark-invention after the historical work of Robert Karplus and the contemporary work of Earl Hunt and Jim Minstrell. The introduction of a biological concept was followed by a series of exploration activities in which children were encouraged to apply the concept invented in the benchmark lesson. Enlargement followed. This was the instructional phase in which children were helped to establish scientifically valid relationships between the invented concept and other biological concepts. The pre-instruction and post-instruction interview data suggest that the enacted curriculum and sequence in which the biological knowledge was presented helped the nineteen children in the study to recognize the connections and regularities within the life cycles of the major groupings of animals, and to begin to build scientific biological conceptual models. It is, however, argued that everyday biology, in the form of the person analogy, acts as an obstacle to

  10. Relationships Between the Way Students Are Assessed in Science Classrooms and Science Achievement Across Canada

    Science.gov (United States)

    Chu, Man-Wai; Fung, Karen

    2018-04-01

    Canadian students experience many different assessments throughout their schooling (O'Connor 2011). There are many benefits to using a variety of assessment types, item formats, and science-based performance tasks in the classroom to measure the many dimensions of science education. Although using a variety of assessments is beneficial, it is unclear exactly what types, format, and tasks are used in Canadian science classrooms. Additionally, since assessments are often administered to help improve student learning, this study identified assessments that may improve student learning as measured using achievement scores on a standardized test. Secondary analyses of the students' and teachers' responses to the questionnaire items asked in the Pan-Canadian Assessment Program were performed. The results of the hierarchical linear modeling analyses indicated that both students and teachers identified teacher-developed classroom tests or quizzes as the most common types of assessments used. Although this ranking was similar across the country, statistically significant differences in terms of the assessments that are used in science classrooms among the provinces were also identified. The investigation of which assessment best predicted student achievement scores indicated that minds-on science performance-based tasks significantly explained 4.21% of the variance in student scores. However, mixed results were observed between the student and teacher responses towards tasks that required students to choose their own investigation and design their own experience or investigation. Additionally, teachers that indicated that they conducted more demonstrations of an experiment or investigation resulted in students with lower scores.

  11. A "Resident-as-Teacher" Curriculum Using a Flipped Classroom Approach: Can a Model Designed for Efficiency Also Be Effective?

    Science.gov (United States)

    Chokshi, Binny D; Schumacher, Heidi K; Reese, Kristen; Bhansali, Priti; Kern, Jeremy R; Simmens, Samuel J; Blatt, Benjamin; Greenberg, Larrie W

    2017-04-01

    The Accreditation Council for Graduate Medical Education requires training that enhances resident teaching skills. Despite this requirement, many residency training programs struggle to implement effective resident-as-teacher (RAT) curricula, particularly within the context of the 80-hour resident workweek. In 2013, the authors developed and evaluated an intensive one-day RAT curriculum using a flipped classroom approach. Twenty-nine second-year residents participated in daylong RAT sessions. The curriculum included four 1-hour workshops focusing on adult learning principles, giving feedback, teaching a skill, and orienting a learner. Each workshop, preceded by independent reading, featured peer co-teaching, application, and feedback. The authors evaluated the curriculum using pre- and postworkshop objective structured teaching examinations (OSTEs) and attitudinal and self-efficacy teaching questionnaires. Residents demonstrated statistically significant improvements in performance between pre- and postworkshop OSTEs on each of three core skills: giving feedback (P = .005), orienting a learner (P flipped classroom approach is an efficient and effective method for training residents to improve teaching skills, especially in an era of work hour restrictions. They have committed to the continuation of this curriculum and are planning to include assessment of its long-term effects on resident behavior change and educational outcomes.

  12. A behavioral science/behavioral medicine core curriculum proposal for Japanese undergraduate medical education

    OpenAIRE

    Tsutsumi, Akizumi

    2015-01-01

    Behavioral science and behavioral medicine have not been systematically taught to Japanese undergraduate medical students. A working group under the auspices of Japanese Society of Behavioral Medicine developed an outcome-oriented curriculum of behavioral science/behavioral medicine through three processes: identifying the curriculum contents, holding a joint symposium with related societies, and defining outcomes and proposing a learning module. The behavioral science/behavioral medicine cor...

  13. Science-based occupations and the science curriculum: Concepts of evidence

    Science.gov (United States)

    Aikenhead, Glen S.

    2005-03-01

    What science-related knowledge is actually used by nurses in their day-to-day clinical reasoning when attending patients? The study investigated the knowledge-in-use of six acute-care nurses in a hospital surgical unit. It was found that the nurses mainly drew upon their professional knowledge of nursing and upon their procedural understanding that included a common core of concepts of evidence (concepts implicitly applied to the evaluation of data and the evaluation of evidence - the focus of this research). This core included validity triangulation, normalcy range, accuracy, and a general predilection for direct sensual access to a phenomenon over indirect machine-managed access. A cluster of emotion-related concepts of evidence (e.g. cultural sensitivity) was also discovered. These results add to a compendium of concepts of evidence published in the literature. Only a small proportion of nurses (one of the six nurses in the study) used canonical science content in their clinical reasoning, a result consistent with other research. This study also confirms earlier research on employees in science-rich workplaces in general, and on professional development programs for nurses specifically: canonical science content found in a typical science curriculum (e.g. high school physics) does not appear relevant to many nurses' knowledge-in-use. These findings support a curriculum policy that gives emphasis to students learning how to learn science content as required by an authentic everyday or workplace context, and to students learning concepts of evidence.

  14. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    Science.gov (United States)

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-01-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by…

  15. Inventing Creativity: An Exploration of the Pedagogy of Ingenuity in Science Classrooms

    Science.gov (United States)

    Meyer, Allison Antink; Lederman, Norman G.

    2013-01-01

    Concerns with the ability of U.S. classrooms to develop learners who will become the next generation of innovators, particularly given the present climate of standardized testing, warrants a closer look at creativity in science classrooms. The present study explored these concerns associated with teachers' classroom practice by addressing the…

  16. Bridging the Gap: Embedding Communication Courses in the Science Undergraduate Curriculum

    Science.gov (United States)

    Jandciu, Eric; Stewart, Jaclyn J.; Stoodley, Robin; Birol, Gülnur; Han, Andrea; Fox, Joanne A.

    2015-01-01

    The authors describe a model for embedding science communication into the science curriculum without displacing science content. They describe the rationale, development, design, and implementation of two courses taught by science faculty addressing these criteria. They also outline the evaluation plan for these courses, which emphasize broad…

  17. Student use of Web 2.0 tools to support argumentation in a high school science classroom

    Science.gov (United States)

    Weible, Jennifer L.

    This ethnographic study is an investigation into how two classes of chemistry students (n=35) from a low-income high school with a one-to-one laptop initiative used Web 2.0 tools to support participation in the science practice of argumentation (i.e., sensemaking, articulating understandings, and persuading an audience) during a unit on alternative energy. The science curriculum utilized the Technology-Enhanced Inquiry Tools for Science Education as a pedagogical framework (Kim, Hannafin, & Bryan, 2007). Video recordings of the classroom work, small group discussions, and focus group interviews, documents, screen shots, wiki evidence, and student produced multi-media artifacts were the data analyzed for this study. Open and focused coding techniques, counts of social tags and wiki moves, and interpretive analyses were used to find patterns in the data. The study found that the tools of social bookmarking, wiki, and persuasive multimedia artifacts supported participation in argumentation. In addition, students utilized the affordances of the technologies in multiple ways to communicate, collaborate, manage the work of others, and efficiently complete their science project. This study also found that technologically enhanced science curriculum can bridge students' everyday and scientific understandings of making meaning, articulating understandings, and persuading others of their point of view. As a result, implications from this work include a set of design principles for science inquiry learning that utilize technology. This study suggests new consideration of analytical methodology that blends wiki data analytics and video data. It also suggests that utilizing technology as a bridging strategy serves two roles within classrooms: (a) deepening students' understanding of alternative energy science content and (b) supporting students as they learn to participate in the practices of argumentation.

  18. Revision of Primary I-III Science Curriculum in Somalia. African Studies in Curriculum Development & Evaluation No. 83.

    Science.gov (United States)

    Abdi, Ahmed Ali

    This study was designed to evaluate: (1) the content of the primary I-III science curriculum in Somalia; (2) the instructional materials that back up the content and methodologies; and (3) the professional competence of the teachers in charge of teaching this subject. Data were collected by means of a questionnaire, observations, and unstructured…

  19. Customization of Curriculum Materials in Science: Motives, Challenges, and Opportunities

    Science.gov (United States)

    Romine, William L.; Banerjee, Tanvi

    2012-02-01

    Exemplary science instructors use inquiry to tailor content to student's learning needs; traditional textbooks treat science as a set of facts and a rigid curriculum. Publishers now allow instructors to compile pieces of published and/or self-authored text to make custom textbooks. This brings numerous advantages, including the ability to produce smaller, cheaper text and added flexibility on the teaching models used. Moreover, the internet allows instructors to decentralize textbooks through easy access to educational objects such as audiovisual simulations, individual textbook chapters, and scholarly research articles. However, these new opportunities bring with them new problems. With educational materials easy to access, manipulate and duplicate, it is necessary to define intellectual property boundaries, and the need to secure documents against unlawful copying and use is paramount. Engineers are developing and enhancing information embedding technologies, including steganography, cryptography, watermarking, and fingerprinting, to label and protect intellectual property. While these are showing their utility in securing information, hackers continue to find loop holes in these protection schemes, forcing engineers to constantly assess the algorithms to make them as secure as possible. As newer technologies rise, people still question whether custom publishing is desirable. Many instructors see the process as complex, costly, and substandard in comparison to using traditional text. Publishing companies are working to improve attitudes through advertising. What lacks is peer reviewed evidence showing that custom publishing improves learning. Studies exploring the effect of custom course materials on student attitude and learning outcomes are a necessary next step.

  20. Using Evolution as a Context for Teaching the Nature of Science to Diverse Student Populations: A High School Unit of Curriculum

    Science.gov (United States)

    Metcalfe, Angela C.

    Teaching evolution provides teachers with the opportunity to educate students on how science aims to understand the natural world. Rooted in research, the purpose of this project was to create NGSS-aligned curriculum focused on teaching the nature of science (NOS) within the context of biological evolution. Field testing and review of the unit resulted in revisions aimed at creating more comprehensive teacher resource materials and explicit inclusion of NOS. Emphasizing NOS in curriculum development and teaching scientific qualities through an evolutionary context has taken the focus off belief or disbelief, keeping the attention on the scientific concept at hand. Designing curriculum around compelling subject matter and embracing student-led learning increased and maintained student interest in the classroom. Implementation of this curriculum not only requires the teacher to be knowledgeable in conventional educational pedagogy, but also the subjects of NGSS and NOS. Additional training and support centered around NGSS is recommended for science educators interested in integrating NOS into their curriculum and instruction.

  1. Learning Science through Talking Science in Elementary Classroom

    Science.gov (United States)

    Tank, Kristina Maruyama; Coffino, Kara

    2014-01-01

    Elementary students in grade two make sense of science ideas and knowledge through their contextual experiences. Mattis Lundin and Britt Jakobson find in their research that early grade students have sophisticated understandings of human anatomy and physiology. In order to understand what students' know about human body and various systems,…

  2. The Multicultural Science Framework: Research on Innovative Two-Way Immersion Science Classrooms.

    Science.gov (United States)

    Hadi-Tabassum, Samina

    2000-01-01

    Reviews the different approaches to multicultural science teaching that have emerged in the past decade, focusing on the Spanish-English two-way immersion classroom, which meets the needs of Spanish speakers learning English and introduces students to the idea of collaboration across languages and cultures. Two urban two-way immersion classrooms…

  3. The Social Science Teacher. 1972. Collected Conference Papers: Social Science Concepts Classroom Methods.

    Science.gov (United States)

    Noble, Pat, Ed.; And Others

    Papers in this publication are collected from a conference on social science concepts and classroom methods which focused on the theories of Jerome Bruner. The first article, entitled "Jerome Bruner," outlines four of Bruner's themes--structure, readiness, intuition, and interest--which relate to cognitive learning. Three…

  4. Using online pedagogy to explore student experiences of Science-Technology-Society-Environment (STSE) issues in a secondary science classroom

    Science.gov (United States)

    Ayyavoo, Gabriel Roman

    With the proliferation of 21st century educational technologies, science teaching and learning with digitally acclimatized learners in secondary science education can be realized through an online Science-Technology-Society-Environment (STSE)-based issues approach. STSE-based programs can be interpreted as the exploration of socially-embedded initiatives in science (e.g., use of genetically modified foods) to promote the development of critical cognitive processes and to empower learners with responsible decision-making skills. This dissertation presents a case study examining the online environment of a grade 11 physics class in an all-girls' school, and the outcomes from those online discursive opportunities with STSE materials. The limited in-class discussion opportunities are often perceived as low-quality discussions in traditional classrooms because they originate from an inadequate introduction and facilitation of socially relevant issues in science programs. Hence, this research suggests that the science curriculum should be inclusive of STSE-based issue discussions. This study also examines the nature of students' online discourse and, their perceived benefits and challenges of learning about STSE-based issues through an online environment. Analysis of interviews, offline classroom events and online threaded discussion transcripts draws from the theoretical foundations of critical reflective thinking delineated in the Practical Inquiry (P.I.) Model. The PI model of Cognitive Presence is situated within the Community of Inquiry framework, encompassing two other core elements, Teacher Presence and Social Presence. In studying Cognitive Presence, the online STSE-based discourses were examined according to the four phases of the P.I. Model. The online discussions were measured at macro-levels to reveal patterns in student STSE-based discussions and content analysis of threaded discussions. These analyses indicated that 87% of the students participated in

  5. DLESE Teaching Boxes: Earth System Science Resources And Strategies For Using Data In The Classroom

    Science.gov (United States)

    Olds, S. E.; Weingroff, M.

    2005-12-01

    The DLESE Teaching Box project is both a professional development opportunity and an educational resource development project providing a pedagogic context that support teachers' use of data in the classroom. As a professional development opportunity, it is designed to augment teachers' science content knowledge, enhance their use of inquiry teaching strategies, and increase their confidence and facility with using digital libraries and online learning resources. Teams of educators, scientists, and instructional designers work together during a three part Teaching Box Development Workshop series to create Teaching Boxes on Earth system science topics. The resulting Teaching Boxes use Earth system science conceptual frameworks as their core and contain inquiry-based lessons which model scientific inquiry and process by focusing on the gathering and analysis of evidence. These lines of evidence employ an Earth systems approach to show how processes across multiple spheres, for example, how the biosphere, atmosphere, and geosphere interact in a complex Earth process. Each Teaching Box has interconnected lessons that provide 3-6 weeks of instruction, incorporate National and California science standards, and offer guidance on teaching pathways through the materials. They contain up-to-date digital materials including archived and real-time data sets, simulations, images, lesson plans, and other resources available through DLESE, NSDL, and the participating scientific institutions. Background information provided within the Box supports teacher learning and guides them to facilitate student access to the tools and techniques of authentic, modern science. In developing Teaching Boxes, DLESE adds value to existing educational resources by helping teachers more effectively interpret their use in a variety of standards-based classroom settings. In the past twelve months we have had over 100 requests for Teaching Box products from teachers and curriculum developers from

  6. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    Science.gov (United States)

    Katz, Phyllis; McGinnis, J. Randy; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-01-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews,…

  7. Curriculum

    Directory of Open Access Journals (Sweden)

    Robi Kroflič

    1997-12-01

    Full Text Available Modern curriculum theories emphasize that if we understand the curriculum as a real core substance of education. We have to bear in mind, when planning the curriculum, the whole multitude of factors (curricula which have an influence on the educational impact. In the field of andragogy, we especially have to consider educational needs, and linking the strategies of instruction with those of learning. The best way of realizing this principle is the open strategy of planning the national curriculum and process-developmental strategy of planning with the microandragogic situation. This planning strategy is S1m1lar to the system-integration strategy and Jarvis's model of negotiated curriculum, which derive from the basic andragogic principle: that the interests and capacities of adults for education increase if we enable them to cooperate in the planning and production of the curriculum.

  8. Bringing nursing science to the classroom: a collaborative project.

    Science.gov (United States)

    Reams, Susan; Bashford, Carol

    2009-01-01

    This project resulted as a collaborative effort on the part of a public school system and nursing faculty. The fifth grade student population utilized in this study focused on the skeletal, muscular, digestive, circulatory, respiratory, and nervous systems as part of their school system's existing science and health curriculum. The intent of the study was to evaluate the impact on student learning outcomes as a result of nursing-focused, science-based, hands-on experiential activities provided by nursing faculty in the public school setting. An assessment tool was created for pretesting and posttesting to evaluate learning outcomes resulting from the intervention. Over a two day period, six classes consisting of 25 to 30 students each were divided into three equal small groups and rotated among three interactive stations. Students explored the normal function of the digestive system, heart, lungs, and skin. Improvement in learning using the pretest and posttest assessment tools were documented.

  9. What are critical features of science curriculum materials that impact student and teacher outcomes?

    NARCIS (Netherlands)

    Roblin, Natalie Pareja; Schunn, Christian; McKenney, Susan

    2018-01-01

    Large investments are made in curriculum materials with the goal of supporting science education reform. However, relatively little evidence is available about what features of curriculum materials really matter to impact student and teacher learning. To address this need, the current study examined

  10. The Politics of Developing and Maintaining Mathematics and Science Curriculum Content Standards. Research Monograph.

    Science.gov (United States)

    Kirst, Michael W.; Bird, Robin L.

    The movement toward math and science curriculum standards is inextricably linked with high-stakes politics. There are two major types of politics discussed in this paper: the allocation of curriculum content, and the political issues involved in systemic change. Political strategies for gaining assent to national, state, and local content…

  11. An Exploratory Analysis of a Middle School Science Curriculum: Implications for Students with Learning Disabilities

    Science.gov (United States)

    Taylor, Gregory S.; Hord, Casey

    2016-01-01

    An exploratory study of a middle school curriculum directly aligned with the Next Generation Science Standards was conducted with a focus on how the curriculum addresses the instructional needs of students with learning disabilities. A descriptive analysis of a lesson on speed and velocity was conducted and implications discussed for students with…

  12. Taiwanese Science and Life Technology Curriculum Standards and Earth Systems Education

    Science.gov (United States)

    Chang, Chun-Yen

    2005-01-01

    In the past several years, curriculum reform has received increasing attention from educators in many countries around the world. Recently, Taiwan has developed new Science and Life Technology Curriculum Standards (SaLTS) for grades 1-9. SaLTS features a systematic way for developing students' understanding and appreciation of…

  13. KUSPACE: Embedding Science Technology and Mathematics Ambassador Activities in the Undergradiuate Engineering Curriculum

    Science.gov (United States)

    Welch, C.; Osborne, B.

    The UK national STEM Ambassadors programme provides inspiring role models for school students in science, technology, engineering, mathematics (STEM) subjects. STEMNET, the national body responsible for STEM Ambassa- dors aims to provide more than 27,000 STEM Ambassadors nationwide by the end of 2011. This paper reports on a project at Kingston University to embed STEM Ambassador training and activity in Year 2 of the undergraduate Aerospace Engineering, Astronautics and Space Technology degree. The project, known as KUSPACE (Kingston University Students Providing Amazing Classroom Experiences), was conceived to develop students' communication, planning and presentation skills and build links between different cohort years, while providing a valuable contribution to local primary schools' STEM programmes and simultaneously raising the public engagement profile of the university. This paper describes the pedagogical conception of the KUSPACE, its implementation in the curriculum, the delivery of it in the university and schools and its effect on the undergraduate students, as well as identifying good practice and drawing attention to lessons learned.STEMNET (www.stemnet.org) is the UK's Science, Technol- ogy, Engineering and Mathematics Network. Working with a broad range of UK partners and funded by the UK govern- ment's Department for Business Innovation and Skills, STEMNET plays a significant role in ensuring that five to nineteen year olds and their teachers can experience a wide range of activities and schemes which enhance and enrich the school curriculum [1]. Covering all aspects of Science, Tech- nology, Engineering and Maths (STEM), these activities and schemes are designed both to increase STEM awareness and literacy in the young people and also to encourage more of them to undertake post-16 STEM qualifications and associated careers [2]. STEMNET operates through forty-five local con- tract holders around the UK which help the network deliver its

  14. The Utility of Inquiry-Based Exercises in Mexican Science Classrooms: Reports from a Professional Development Workshop for Science Teachers in Quintana Roo, Mexico

    Science.gov (United States)

    Racelis, A. E.; Brovold, A. A.

    2010-12-01

    The quality of science teaching is of growing importance in Mexico. Mexican students score well below the world mean in math and science. Although the government has recognized these deficiencies and has implemented new policies aimed to improve student achievement in the sciences, teachers are still encountering in-class barriers to effective teaching, especially in public colleges. This paper reports on the utility of inquiry based exercises in Mexican classrooms. In particular, it describes a two-day professional development workshop with science teachers at the Instituto Tecnologico Superior in Felipe Carrillo Puerto in the Mexican state of Quintana Roo. Felipe Carrillo Puerto is an indigenous municipality where a significant majority of the population speak Maya as their first language. This alone presents a unique barrier to teaching science in the municipality, but accompanied with other factors such as student apathy, insufficient prior training of both students and teachers, and pressure to deliver specific science curriculum, science teachers have formidable challenges for effective science teaching. The goals of the workshop were to (1) have a directed discussion regarding science as both content and process, (2) introduce inquiry based learning as one tool of teaching science, and (3) get teachers to think about how they can apply these techniques in their classes.

  15. Animals in the Classroom

    Science.gov (United States)

    Roy, Ken

    2011-01-01

    Use of animals in middle school science classrooms is a curriculum component worthy of consideration, providing proper investigation and planning are addressed. A responsible approach to this action, including safety, must be adopted for success. In this month's column, the author provides some suggestions on incorporating animals into the…

  16. The Study of Literacy Reinforcement of Science Teachers in Implementing 2013 Curriculum

    Science.gov (United States)

    Dewi, W. S.; Festiyed, F.; Hamdi, H.; Sari, S. Y.

    2018-04-01

    This research aims to study and collect data comprehensively, new and actual about science literacy to improve the ability of educators in implementing the 2013 Curriculum at Junior High School Padang Pariaman District. The specific benefit of this research is to give description and to know the problem of science literacy problem in interaction among teacher, curriculum, facilities and infrastructure, evaluation, learning technology and students. This study uses explorative in deep study approach, studying and collecting data comprehensively from the interaction of education process components (curriculum, educator, learner, facilities and infrastructure, learning media technology, and evaluation) that influence the science literacy. This research was conducted in the districts of Padang Pariaman consisting of 17 subdistricts and 84 junior high schools managed by the government and private. The sample of this research is science teachers of Padang Pariaman District with sampling technique is stratified random sampling. The instrument used in this study is a questionnaire to the respondents. Research questionnaire data are processed by percentage techniques (quantitative). The results of this study explain that the understanding of science teachers in Padang Pariaman District towards the implementation of 2013 Curriculum is still lacking. The science teachers of Padang Pariaman District have not understood the scientific approach and the effectiveness of 2013 Curriculum in shaping the character of the students. To improve the understanding of the implementation of Curriculum 2013, it is necessary to strengthen the literacy toward science teachers at the Junior High School level in Padang Pariaman District.

  17. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  18. Pre-Service Secondary Science and Mathematics Teachers' Classroom Management Styles in Turkey

    Science.gov (United States)

    Yilmaz, Kursad

    2009-01-01

    The aim of this study is to determine Pre-service secondary science and mathematics teachers' classroom management styles in Turkey. In addition, differences in pre-service secondary science and mathematics teachers' classroom management styles by gender, and field of study were examined. In the study, the survey model was employed. The research…

  19. The Relationship between Teachers' Knowledge and Beliefs about Science and Inquiry and Their Classroom Practices

    Science.gov (United States)

    Saad, Rayana; BouJaoude, Saouma

    2012-01-01

    The purpose of this study was to investigate relationships between teachers' attitudes toward science, knowledge and beliefs about inquiry, and science classroom teaching practices. Specifically, the study addressed three questions: What are teachers' beliefs and knowledge about inquiry? What are teachers' teaching related classroom practices? Do…

  20. Re-visioning Curriculum and Pedagogy in a University Science and ...

    African Journals Online (AJOL)

    Re-visioning Curriculum and Pedagogy in a University Science and Technology Education Setting: Case Studies Interrogating Socio-Scientific Issues. Overson Shumba, George Kasali, Yaki Namiluko, Beauty Choobe, Gezile Mbewe, Moola Mutondo, Kenneth Maseka ...

  1. Professional development as a strategy for curriculum implementation in multidisciplinary science education

    NARCIS (Netherlands)

    Visser, Talitha Christine

    2012-01-01

    Schoolteachers must deal with curriculum innovations during their teaching careers. In 2005, the Dutch Ministry of Education, Culture and Science introduced committees to develop and redesign the curricula for chemistry, biology, physics, and mathematics in secondary education. The purpose of

  2. Makiguchian pedagogy in the middle school science classroom

    Science.gov (United States)

    Pagan, Iris Teresa

    In an atmosphere of multi-culturism and the increasing need for innovative methods for science teaching, investigating educators from different parts of the world is well regarded. Tsunesaburo Makiguchi (1871--1944) was a prescient thinker who foreshadowed many of the modern social constructivist ideals of teaching before they became formalized in Western thought. He believed in the harmonious balance between an individual and society as the only viable goal of education. With this in mind, he introduced the concepts of "evaluation," "cognition" and "value creation" that embody this balance. "Cognition" is associated with "truth" and "evaluation" is involved with the subject-object relationship. Moreover, Makiguchian pedagogy's concept of "value creation" offers a sociological and philosophical basis for "classroom inclusion." Additionally, Makiguchian pedagogy is compared to John Dewey's philosophy as well as the educational philosophy expressed in The National Science Standards. In this teacher participant study, classroom observational data showed that several dimensions of Makiguchian pedagogical practice occurred conjointly with relatively high frequencies. These included frequent occurrences of interactional conversation between students and teacher merged within a context of expressions of personal and collective values, social contextual references, valuing and personal evaluative statements, and episodic information that the students contributed from personal experiences relevant to the science topics. Additionally, Likert-type questionnaire data collected from the students who experienced the Makiguchian lessons, and observational data from professional colleagues who viewed video taped records of the lessons, provided additional corroborative evidence supporting the researcher's findings. A content analysis of lesson plans containing Makiguchian principles of teaching and learning in relation to the ensuing classroom performance of the teacher showed a

  3. Scientific Management as part of the curriculum of Pedagogical Sciences.

    Directory of Open Access Journals (Sweden)

    Martha Margarita López Ruiz

    2013-07-01

    Full Text Available The Psychology and Pedagogy carer is developed in pedagogical sciences Cuban universities and the plan of the teaching learning process is organized on disciplines, subjects and activities from the working practice are distributed during the five years of the career which guarantee the fulfilment of the objectives in the professional qualification degree. Scientific educational management is included as part of the curriculum of this specialty in Pedagogical Universities. Scientific educational management has a great importance in the existence of state who is worried for the preparation and training of pedagogical specialists to whom ethics becomes a daily practice in their jobs in a society in which the formation and development of Cuban citizens is carried out by social programs encouraged by the government. The growing of this specialist is supported on the existence of a government that is interested on teaching, innovate and develop human beings by means of putting into practice social and cultural activities. The main goal of this article is to exemplify how to organize the contents of scientific educational management and the way of planning the teaching learning process to better future Cuban teacher trainers and managers.

  4. Multicultural science education in Lesotho high school biology classrooms

    Science.gov (United States)

    Nthathakane, Malefu Christina

    2001-12-01

    This study investigated how Basotho high school biology students responded to a multicultural science education (MCSE) approach. Students' home language---Sesotho---and cultural experiences were integrated into the teaching of a unit on alcohol, tobacco and other drugs (ATOD) abuse. The focus was on students whose cultural background is African and who are English second language users. The study was conducted in three high school biology classrooms in Lesotho where the ATOD unit was taught using MCSE. A fourth biology classroom was observed for comparison purposes. In this classroom the regular biology teacher taught ATOD using typical instructional strategies. The study was framed by the general question: How does a multicultural science education approach affect Basotho high school biology students? More specifically: How does the use of Sesotho (or code-switching between Sesotho and English) and integration of Basotho students' cultural knowledge and experiences with respect to ATOD affect students' learning? In particular how does the approach affect students' participation and academic performance? A qualitative research method was used in this study. Data were drawn from a number of different sources and analyzed inductively. The data sources included field-notes, transcripts of ATOD lessons, research assistant lesson observation notes and interviews, regular biology teachers' interviews and notes from observing a few of their lessons, students' interviews and pre and posttest scripts, and other school documents that recorded students' performance throughout the year. Using the students' home language---Sesotho---was beneficial in that it enabled them to share ideas, communicate better and understand each other, the teacher and the material that was taught. Integrating students' cultural and everyday experiences was beneficial because it enabled students to anchor the new ATOD ideas in what was familiar and helped them find the relevance of the unit by

  5. The Future Curriculum for School Science: What Can Be Learnt from the Past?

    Science.gov (United States)

    Fensham, Peter J.

    2016-01-01

    In the 1960s, major reforms of the curriculum for school science education occurred that set a future for school science education that has been astonishingly robust at seeing off alternatives. This is not to say that there are not a number of good reasons for such alternative futures. The sciences, their relation to the socio-scientific context,…

  6. Assessing Bilingual Knowledge Organization in Secondary Science Classrooms =

    Science.gov (United States)

    Wu, Jason S.

    Improving outcomes for English language learners (ELLs) in secondary science remains an area of high need. The purpose of this study is to investigate bilingual knowledge organization in secondary science classrooms. This study involved thirty-nine bilingual students in three biology classes at a public high school in The Bronx, New York City. Methods included an in-class survey on language use, a science content and English proficiency exam, and bilingual free-recalls. Fourteen students participated in bilingual free-recalls which involved a semi-structured process of oral recall of information learned in science class. Free-recall was conducted in both English and Spanish and analyzed using flow-map methods. Novel methods were developed to quantify and visualize the elaboration and mobilization of ideas shared across languages. It was found that bilingual narratives displayed similar levels of organizational complexity across languages, though English recalls tended to be longer. English proficiency was correlated with narrative complexity in English. There was a high degree of elaboration on concepts shared across languages. Finally, higher Spanish proficiency correlated well with greater overlapping elaboration across languages. These findings are discussed in light of current cognitive theory before presenting the study's limitations and future directions of research.

  7. Undergraduate-driven interventions to increase representation in science classrooms

    Science.gov (United States)

    Freilich, M.; Aluthge, D.; Bryant, R. M.; Knox, B.; McAdams, J.; Plummer, A.; Schlottman, N.; Stanley, Z.; Suglia, E.; Watson-Daniels, J.

    2014-12-01

    Recognizing that racial, ethnic, and gender underrepresentation in science classrooms persists despite intervention programs and institutional commitments to diversity, a group of undergraduates from a variety of backgrounds and academic disciplines came together for a group independent study to (a) study the theoretical foundations of the current practice of science and of programs meant to increase diversity, (b) utilize the experiences of course participants and our peers to better understand the drivers of underrepresentation, and (c) design and implement interventions at Brown University. We will present on individual and small group projects designed by course members in collaboration with faculty. The projects emerged from an exploration of literature in history, philosophy, and sociology of science, as well as an examination of anthropological and psychological studies. We also evaluated the effectiveness of top-down and bottom-up approaches that have already been attempted in developing our projects. They focus on the specific problems faced by underrepresented minorities, women, LGBTQ+ people, and well-represented minorities. We will share experiences of faculty-student collaboration and engaged scholarship focused on representation in science and discuss student-designed interventions.

  8. Students' Evaluation of Classroom Interactions of Their Biology ...

    African Journals Online (AJOL)

    Nekky Umera

    teacher classroom interactions were positively correlated and uncertainty, ... implementation is that, if biology teachers were to display more leadership, helpful and ... Accepted methods to overcome poor academic achievement in science have ... activities and experiences through which teachers; curriculum, materials, and.

  9. Exploring Ivorian perspectives on the effectiveness of the current Ivorian science curriculum in addressing issues related to HIV/AIDS

    Science.gov (United States)

    Ado, Gustave Firmin

    School-based HIV/AIDS science education has the potential to impact students when integrated into the science curriculum. However, this mixed method study shows that school-based HIV/AIDS science education is often not infused into career subjects such as science education but integrated into civics education and taught by teachers who lack the skills, knowledge, and the training in the delivery of effective school HIV/AIDS education. Since science is where biological events take place, it is suggested that HIV/AIDS science merits being taught in the science education classroom. This study took place in nine public middle schools within two school districts in Abidjan, Ivory Coast, one major urban city in the southern region. The study utilized triangulation of multiple data sources---both qualitative and quantitative. To substantiate the claims made in this study, a range of qualitative methods such as field notes and individual interviews with 39 teachers, 63 sixth grade students, 8 school administrators, and 20 community elders were used. For the quantitative portion 140 teachers and 3510 sixth grade students were surveyed. The findings from the study prioritize science education that includes HIV/AIDS science education for all, with emphasis on HIV/AIDS prevention in Ivory Coast. The factors that influence the implementation of HIV/AIDS curricula within the Ivorian sixth grade classrooms are discussed. Interview and survey data from students, teachers, school administrators, and community elders indicate that in the Ivorian school setting, "gerontocratic" cultural influences, religious beliefs, personal cultural beliefs, and time spent toward the discourse on HIV/AIDS have led to HIV/AIDS education that is often insufficient to change either misconceptions about HIV/AIDS or risky practices. It was also found that approaches to teaching HIV/AIDS does not connect with youth cultures. By reframing and integrating current HIV/AIDS curricula into the science

  10. Re-visioning Curriculum and Pedagogy in a University Science and ...

    African Journals Online (AJOL)

    Southern African Journal of Environmental Education, Vol. 32, 2016 ... prosperous Africa based on inclusive growth and sustainable development where people have ..... real world science and technology investigations into classrooms.

  11. Emerging identities: A proposed model for an interactive science curriculum for First Nations students

    Science.gov (United States)

    Sable, Trudy

    including language itself This identity is based on personal, cultural, historical and social factors that come to bear on each student's definition of who they are and what knowledge is pertinent to survival and well being. Five fundamental themes emerged from the interviews and field trips---fragile ontologies, multiple layers of identity (personal, cultural, pan-tribal, and societal), border crossings, the continuing and emerging aspects of culture, and beyond borders to a spiritual narrative---and became the foundation for a culturally interactive science education model of learning. The model assists educators through a visualization of layers of identity, porous borders and seeming paradoxes, and "narrative unity" beyond boundaries---all of which affect the learning of science. The content of a culturally interactive curriculum is drawn from the cultural heritage of the students, giving them an historical context with which to identify. Working with Mi'kmaw language and notational representation is shown to assist educators in cultural border crossing and creating cultural continuity for the students. Taken into the classroom, this interactive paradigm could be adapted to pedagogical methods as "speaking together" times, in which students explore the processes of doing science while appreciating their own cultural traditions. In so doing, educators can come to know the larger narrative that gives shape to student's identities and ways of relating to the world. Then it becomes possible for educators to recognize the boundaries that obstruct or open a path to meaningful learning experiences.

  12. The Effects of Gender and Type of Inquiry Curriculum on Sixth Grade Students' Science Process Skills and Epistemological Beliefs in Science

    Science.gov (United States)

    Zaleta, Kristy L.

    The purpose of this study was to investigate the impact of gender and type of inquiry curriculum (open or structured) on science process skills and epistemological beliefs in science of sixth grade students. The current study took place in an urban northeastern middle school. The researcher utilized a sample of convenience comprised of 303 sixth grade students taught by four science teachers on separate teams. The study employed mixed methods with a quasi-experimental design, pretest-posttest comparison group with 17 intact classrooms of students. Students' science process skills and epistemological beliefs in science (source, certainty, development, and justification) were measured before and after the intervention, which exposed different groups of students to different types of inquiry (structured or open). Differences between comparison and treatment groups and between male and female students were analyzed after the intervention, on science process skills, using a two-way analysis of covariance (ANCOVA), and, on epistemological beliefs in science, using a two-way multivariate analysis of covariance (MANCOVA). Responses from two focus groups of open inquiry students were cycle coded and examined for themes and patterns. Quantitative measurements indicated that girls scored significantly higher on science process skills than boys, regardless of type of inquiry instruction. Neither gender nor type of inquiry instruction predicted students' epistemological beliefs in science after accounting for students' pretest scores. The dimension Development accounted for 10.6% of the variance in students' science process skills. Qualitative results indicated that students with sophisticated epistemological beliefs expressed engagement with the open-inquiry curriculum. Students in both the sophisticated and naive beliefs groups identified challenges with the curriculum and improvement in learning as major themes. The types of challenges identified differed between the groups

  13. Student perception of writing in the science classroom

    Science.gov (United States)

    Deakin, Kathleen J.

    This study examines factors that shape four student's perceptions of writing tasks in their science classroom. This qualitative retrospective interview study focuses on four students concurrently enrolled in honors English and honors biology. This research employs a phenomenological perspective on writing, examining whether the writing strategies students acquire in the Language Arts classroom manifest in the content areas. I also adopt Bandura's theoretical perspective on self-efficacy as well as Hillock's notion of writing as inquiry and meaning making. This study concludes that students need ample opportunity to generate content and language that will help reveal a purpose and genre for writing tasks in the content areas. Although all four students approached the writing tasks differently in this study, the tasks set before them were opportunities for replication rather than inquiry Through the case studies of four students as well as current research on content writing, this project works to inform all content area teachers about student perceptions of writing in the content areas.

  14. Promoting Argumentation in Middle School Science Classrooms: A Project SEPIA Evaluation.

    Science.gov (United States)

    Duschl, Richard A.; Ellenbogen, Kirsten; Erduran, Sibel

    Effective argumentation is the distinguishing feature of a classroom that employs discovery teaching and student inquiry methodologies. In the long term, the objective of the program is to understand how to design learning environments and curriculum, instruction, and assessment models that promote student self-reflection. The study evaluates the…

  15. Integration of the primary health care approach into a community nursing science curriculum.

    Science.gov (United States)

    Vilakazi, S S; Chabeli, M M; Roos, S D

    2000-12-01

    The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994: 155). Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.

  16. Integration of the primary health care approach into a community nursing science curriculum

    Directory of Open Access Journals (Sweden)

    SS Vilakazi

    2000-09-01

    Full Text Available The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994:155. Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/ goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.

  17. A behavioral science/behavioral medicine core curriculum proposal for Japanese undergraduate medical education.

    Science.gov (United States)

    Tsutsumi, Akizumi

    2015-01-01

    Behavioral science and behavioral medicine have not been systematically taught to Japanese undergraduate medical students. A working group under the auspices of Japanese Society of Behavioral Medicine developed an outcome-oriented curriculum of behavioral science/behavioral medicine through three processes: identifying the curriculum contents, holding a joint symposium with related societies, and defining outcomes and proposing a learning module. The behavioral science/behavioral medicine core curriculum consists of 11 units of lectures and four units of practical study. The working group plans to improve the current core curriculum by devising formative assessment methods so that students can learn and acquire attitude as well as the skills and knowledge necessary for student-centered clinical practice.

  18. Good Intentions: AN Experiment in Middle School Single-Sex Science and Mathematics Classrooms with High Minority Enrollment

    Science.gov (United States)

    Baker, Dale

    This study examined the effects of single-sex middle school science and mathematics classrooms with high minority enrollment on achievement, affect, peer, and teacher-student interactions. All students earned higher grades in mathematics than in science. Girls earned higher grades than boys. The higher grades of girls were not clearly attributable to the singlesex environment, and aspects of the single-sex environment interfered with boys' achievement. The single-sex environment contributed to girls', but not boys', feelings of empowerment, peer support, and positive self-concept. The curriculum and pedagogy were better suited to girls than to boys, leading to discipline problems and hostile interactions. However, boys were more engaged in technology-based activities than girls. Overall, all-boy classes were less supportive learning environments than all-girl classes. Although the results replicate findings elsewhere, this is the only study to look at minority students in middle school.

  19. Teaching and Learning in the Mixed-Reality Science Classroom

    Science.gov (United States)

    Tolentino, Lisa; Birchfield, David; Megowan-Romanowicz, Colleen; Johnson-Glenberg, Mina C.; Kelliher, Aisling; Martinez, Christopher

    2009-12-01

    As emerging technologies become increasingly inexpensive and robust, there is an exciting opportunity to move beyond general purpose computing platforms to realize a new generation of K-12 technology-based learning environments. Mixed-reality technologies integrate real world components with interactive digital media to offer new potential to combine best practices in traditional science learning with the powerful affordances of audio/visual simulations. This paper introduces the realization of a learning environment called SMALLab, the Situated Multimedia Arts Learning Laboratory. We present a recent teaching experiment for high school chemistry students. A mix of qualitative and quantitative research documents the efficacy of this approach for students and teachers. We conclude that mixed-reality learning is viable in mainstream high school classrooms and that students can achieve significant learning gains when this technology is co-designed with educators.

  20. Student attitudes to UNDP Social Science curriculum in Fiji — Personal and environmental influences

    Science.gov (United States)

    Baba, Tupeni L.; Fraser, Barry J.

    1983-12-01

    A sample of 834 seventh grade students in Fiji participated in an evaluation of the UNDP Social Science curriculum by responding to questionnaires measuring attitudes to or perceptions of three important curriculum process criteria (Interest, Ease and Adequacy of Time). The three major purposes of the evaluation were to provide formative information to guide curriculum revision, to provide summative information about the overall efficacy of the curriculum, and to explore the differential suitability of the curriculum for students varying in personal and environmental characteristics. Examination of means on individual questionnaire items led to the identification of certain curriculum activities requiring modification to improve their level of Interest, Ease, or Adequacy of Time. The finding that the mean score was relatively high for most questionnaire items suggested that the majority of activities in the curriculum were perceived by students as interesting and easy and having sufficient time for completion. Multiple regression analyses revealed that a block of personal variables and a block of environmental variables, but not a block of person-environment interactions, accounted for a significant amount of variance in the three process criteria. In particular, it was found that student attitudes to the curriculum varied systematically with certain personal variables (e.g., student general interest in social science, student ethnicity) and environmental variables (e.g., school location, teacher training).

  1. The effect of classroom instruction, attitudes towards science and motivation on students' views of uncertainty in science

    Science.gov (United States)

    Schroeder, Meadow

    This study examined developmental and gender differences in Grade 5 and 9 students' views of uncertainty in science and the effect of classroom instruction on attitudes towards science, and motivation. Study 1 examined views of uncertainty in science when students were taught science using constructivist pedagogy. A total of 33 Grade 5 (n = 17, 12 boys, 5 girls) and Grade 9 (n = 16, 8 boys, 8 girls) students were interviewed about the ideas they had about uncertainty in their own experiments (i.e., practical science) and in professional science activities (i.e., formal science). Analysis found an interaction between grade and gender in the number of categories of uncertainty identified for both practical and formal science. Additionally, in formal science, there was a developmental shift from dualism (i.e., science is a collection of basic facts that are the result of straightforward procedures) to multiplism (i.e., there is more than one answer or perspective on scientific knowledge) from Grade 5 to Grade 9. Finally, there was a positive correlation between the understanding uncertainty in practical and formal science. Study 2 compared the attitudes and motivation towards science and motivation of students in constructivist and traditional classrooms. Scores on the measures were also compared to students' views of uncertainty for constructivist-taught students. A total of 28 students in Grade 5 (n = 13, 11 boys, 2 girls) and Grade 9 (n = 15, 6 boys, 9 girls), from traditional science classrooms and the 33 constructivist students from Study 1 participated. Regardless of classroom instruction, fifth graders reported more positive attitudes towards science than ninth graders. Students from the constructivist classrooms reported more intrinsic motivation than students from the traditional classrooms. Constructivist students' views of uncertainty in formal and practical science did not correlate with their attitudes towards science and motivation.

  2. Making Earth Science Relevant in the K-8 Classroom. The Development of an Instructional Soils Module for Pre-Service Elementary Teachers Using the Next Generation Science Standards

    Science.gov (United States)

    Baldwin, K. A.; Hauge, R.; Dechaine, J. M.; Varrella, G.; Egger, A. E.

    2013-12-01

    The development and adoption of the Next Generation Science Standards (NGSS) raises a challenge in teacher preparation: few current teacher preparation programs prepare students to teach science the way it is presented in the NGSS, which emphasize systems thinking, interdisciplinary science, and deep engagement in the scientific process. In addition, the NGSS include more geoscience concepts and methods than previous standards, yet this is a topic area in which most college students are traditionally underprepared. Although nationwide, programmatic reform is needed, there are a few targets where relatively small, course-level changes can have a large effect. One of these targets is the 'science methods' course for pre-service elementary teachers, a requirement in virtually all teacher preparation programs. Since many elementary schools, both locally and across the country, have adopted a kit based science curriculum, examining kits is often a part of a science methods course. Unfortunately, solely relying on a kit based curriculum may leave gaps in science content curriculum as one prepares teachers to meet the NGSS. Moreover, kits developed at the national level often fall short in connecting geoscientific content to the locally relevant societal issues that engage students. This highlights the need to train pre-service elementary teachers to supplement kit curriculum with inquiry based geoscience investigations that consider relevant societal issues, promote systems thinking and incorporate connections between earth, life, and physical systems. We are developing a module that teaches geoscience concepts in the context of locally relevant societal issues while modeling effective pedagogy for pre-service elementary teachers. Specifically, we focus on soils, an interdisciplinary topic relevant to multiple geoscience-related societal grand challenges (e.g., water, food) that is difficult to engage students in. Module development is funded through InTeGrate, NSF

  3. The Science of Serious Gaming: Exploring the Benefits of Science-Based Games in the Classroom

    Science.gov (United States)

    Kurtz, N.

    2016-02-01

    Finding ways to connect scientists with the classroom is an important part of sharing enthusiasm for science with the public. Utilizing the visual arts and serious gaming techniques has benefits for all participants including the engagement of multiple learning sectors and the involvement of whole-brain teaching methods. The activities in this presentation draw from real-world events that require higher level thinking strategies to discover and differential naturally occurring patterns.

  4. Implementation of a Research-Based Lab Module in a High School Chemistry Curriculum: A Study of Classroom Dynamics

    Science.gov (United States)

    Pilarz, Matthew

    2013-01-01

    For this study, a research-based lab module was implemented in two high school chemistry classes for the purpose of examining classroom dynamics throughout the process of students completing the module. A research-based lab module developed for use in undergraduate laboratories by the Center for Authentic Science Practice in Education (CASPiE) was…

  5. Science for Survival: The Modern Synthesis of Evolution and The Biological Sciences Curriculum Study

    Science.gov (United States)

    Green, Lisa Anne

    In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called "the modern synthesis of evolution." Building primarily on the work of historians Vassiliki Smocovitis and John L. Rudolph, I used the archival papers and published writings of the four architects of the modern synthesis and the four most influential leaders of the BSCS in regards to evolution to investigate how the modern synthetic theory of evolution shaped the BSCS curriculum. The central question was "Why was evolution so important to the BSCS to make it the central theme of the texts?" Important answers to this question had already been offered in the historiography, but it was still not clear why every citizen in the world needed to understand evolution. I found that the emphasis on natural selection in the modern synthesis shifted the focus away from humans as passive participants to the recognition that humans are active agents in their own cultural and biological evolution. This required re-education of the world citizenry, which was accomplished in part by the BSCS textbooks. I also found that BSCS leaders Grobman, Glass, and Muller had serious concerns regarding the effects of nuclear radiation on the human gene pool, and were actively involved in informing th public. Lastly, I found that concerns of 1950s reform eugenicists were addressed in the BSCS textbooks, without mentioning eugenics by name. I suggest that the leaders of the BSCS, especially Bentley Glass and Hermann J. Muller, thought that students needed to understand genetics and evolution to be able to make some of the tough choices they might be called on to make as the dominant species on earth and the next reproductive generation in the nuclear age. This

  6. Voices from inside the elementary classroom: Three teachers' perspectives on the Alabama Reading Initiative and elementary science

    Science.gov (United States)

    Webb, Brenda Hainley

    The influences of mandates, particularly the Alabama Reading Initiative (ARI) as the response to No Child Left Behind (2002), on elementary science education in Alabama were investigated. Teachers' voices provided insights to the status of science education in kindergarten, second grade, and third grade, and all three case participants reported negative influences of ARI on science education in their classrooms. The multiple case study, framed by critical theory and critical pedagogy, indicated that these teachers sometimes accepted marginalized roles in determining curriculum and pedagogy yet at other times made the decisions to empower themselves and negotiate or discard mandates in favor of meeting their children's learning needs or their own professional needs as they perceived them to be. Whether the case participants reached a threshold of resisting mandates or not, they struggled with the view of the political hierarchy that continues to force them into the status of being a technician rather than being a teaching professional. NCLB currently mandates standardized science testing, beginning in the spring of 2008. Historically, standardized testing reduces learning to low-level recall and teaching to rigid, uncreative, uncritical strategies. All of this intersects with science education reform and a national call for more attention to be given to science, technology, and mathematics learning. Research should track the continued influences of intersecting mandates on science education at every level.

  7. How Does Science Learning Occur in the Classroom? Students' Perceptions of Science Instruction during the Implementation of REAPS Model

    Science.gov (United States)

    Gomez-Arizaga, Maria P.; Bahar, A. Kadir; Maker, C. June; Zimmerman, Robert; Pease, Randal

    2016-01-01

    In this qualitative study the researchers explored children's perceptions of their participation in a science class in which an elementary science curriculum, the Full Option Science System (FOSS), was combined with an innovative teaching model, Real Engagement in Active Problem Solving (REAPS). The children were capable of articulating views…

  8. The Central Nervous System and Alcohol Use. Science of Alcohol Curriculum for American Indians. Training Unit [and] Participant Booklet.

    Science.gov (United States)

    Jacobs, Cecelia; And Others

    The Science of Alcohol Curriculum for American Indians uses the Medicine Circle and the "new science paradigm" to study the science of alcohol through a culturally relevant holistic approach. Intended for teachers and other educational personnel involved with American Indians, this curriculum aims to present a framework for alcohol…

  9. The Digestive System and Alcohol Use. Science of Alcohol Curriculum for American Indians. Training Unit [and] Participant Booklet.

    Science.gov (United States)

    Jacobs, Cecelia; And Others

    The Science of Alcohol Curriculum for American Indians uses the Medicine Circle and the "new science paradigm" to study the science of alcohol through a culturally relevant holistic approach. Intended for teachers and other educational personnel involved with American Indians, this curriculum presents a framework for alcohol education…

  10. The effects of geographic information system (GIS) technologies on students' attitudes, self-efficacy, and achievement in middle school science classrooms

    Science.gov (United States)

    Baker, Thomas Ray

    . Instructor effects, despite controlling for the curriculum, instruction, and technology were still very strong. Results of the study suggest that GIS can enhance student outcomes when engaged in scientific inquiry, enriching student achievement through improved classroom data analysis activities. Finally, study implications direct future efforts to consider the need a science curriculum aimed at spatial reasoning and pattern seeking activities, ultimately allowing students to more completely leverage the powerful analytics of GIS and similar technologies.

  11. More than "Cool Science": Science Fiction and Fact in the Classroom

    Science.gov (United States)

    Singh, Vandana

    2014-02-01

    The unfortunate negative attitude toward physics among many students, including science majors, warrants creative approaches to teaching required physics courses. One such approach is to integrate science fiction into the curriculum, either in the form of movies or the written word. Historically this has been done since at least the 1970s, and by now many universities and colleges have courses that incorporate science fiction stories or film. The intent appears to be to a) increase student interest in physics, b) increase the imaginative grasp of the student, and c) enable a clearer understanding of physics concepts. Reports on these experiments, from Freedman and Little's classic 1980 paper to more recent work like that of Dubeck et al.,2 Dark,3 and Smith,4 indicate that such innovative approaches do work. I was curious as to whether a combination of science fiction and science fact (in the form of a science news article) might enhance the benefits of including science fiction. Below I describe how I used a science fiction story along with a science article on a related theme to pique the interest of students in a new and exciting area of research that was nevertheless connected to the course material.

  12. The Analysis of Curriculum Development Studies Which are Applied For Effective Science Teaching at Primary Level in Turkey and Suggestions to Problems Encountered

    OpenAIRE

    Rahmi YAĞBASAN; Murat DEMİRBAŞ

    2005-01-01

    In this study, curriculum development studies for effective science teaching were analyzed in Turkey, solution suggestions were made by determining the confronted problems. The studies for curriculum analysis toward science teaching were done by covering applications of modern science teaching started in 1970s, curriculum of science teaching made in 1990s and applications of science teaching curriculum put into practice in 2000. It was determined that new science teaching studies that will be...

  13. Rad World -- computer-animated video radiation and hazardous waste-management science curriculum

    International Nuclear Information System (INIS)

    Powell, B.

    1996-01-01

    The Rad World computer-animated video and curriculum materials were developed through a grant from the Waste-management Education and Research Consortium. The package, which includes a computer-animated video, hands-on activities, and multidisciplinary lessons concerning radiation and hazardous-waste management, was created to approach these subjects in an informative, yet entertaining, manner. The lessons and video, designed to supplement studies of energy and physical science at the middle school and high school level, also implement quality and consistent science education as outlined by the New Mexico Science Standards and Benchmarks (1995). Consistent with the curriculum standards and benchmarks, the curriculum includes library research, collaborative learning, hands-on-science, and discovery learning. Pre- and post-tests are included

  14. Curriculum Package: Elementary Science Lessons. [A Visit to the Louisville, Kentucky Airports: Standiford and Bowman Fields.

    Science.gov (United States)

    Squires, Frances H.

    This science curriculum was written for teachers of children in the elementary grades. It contains science activities for the following lessons: (1) Whirly Birds and the Concept of Lift; (2) Parachutes; (3) Weather Vanes; (4) Paper Airplanes; (5) Flying an Airplane; (6) Jet Engine; (7) Identifying Flying Objects; (8) It's a Bird! It's a Plane; (9)…

  15. Application of the Reggio Emilia Approach to Early Childhood Science Curriculum.

    Science.gov (United States)

    Stegelin, Dolores A.

    2003-01-01

    This article focuses on the relevance of the Reggio Emilia approach to early childhood education for science knowledge and content standards for the preK-12 student population. The article includes: (1) a summary of key concepts; (2) a description of the science curriculum standards for K-3 in the United States; and (3) an example of an in-depth…

  16. An Ecological System Curriculum: An Integrated MST Approach to Environmental Science Education.

    Science.gov (United States)

    Leonhardt, Nina A.

    This paper describes an inquiry-based, student-centered mathematics, science, and technology curriculum guide. It features activities addressing such environmental science topics as groundwater modeling, water filtration, soil permeability and porosity, water temperature and salinity, and quadrant studies. Activities are organized so that the…

  17. Systematic Testing should not be a Topic in the Computer Science Curriculum!

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2003-01-01

    In this paper we argue that treating "testing" as an isolated topic is a wrong approach in computer science and software engineering teaching. Instead testing should pervade practical topics and exercises in the computer science curriculum to teach students the importance of producing software...

  18. When Are Students Ready for Research Methods? A Curriculum Mapping Argument for the Political Science Major

    Science.gov (United States)

    Bergbower, Matthew L.

    2017-01-01

    For many political science programs, research methods courses are a fundamental component of the recommended undergraduate curriculum. However, instructors and students often see these courses as the most challenging. This study explores when it is most appropriate for political science majors to enroll and pass a research methods course. The…

  19. The Innovative Immersion of Mobile Learning into a Science Curriculum in Singapore: An Exploratory Study

    Science.gov (United States)

    Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting

    2016-01-01

    With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear…

  20. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    Science.gov (United States)

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  1. Developing Oral and Written Communication Skills in Undergraduate Computer Science and Information Systems Curriculum

    Science.gov (United States)

    Kortsarts, Yana; Fischbach, Adam; Rufinus, Jeff; Utell, Janine M.; Yoon, Suk-Chung

    2010-01-01

    Developing and applying oral and written communication skills in the undergraduate computer science and computer information systems curriculum--one of the ABET accreditation requirements - is a very challenging and, at the same time, a rewarding task that provides various opportunities to enrich the undergraduate computer science and computer…

  2. Engagerande samtal i det naturvetenskapliga klassrummetInquiry based dialouge in science classroom

    Directory of Open Access Journals (Sweden)

    Ragnhild Löfgren

    2014-10-01

    Full Text Available This study focuses on classroom communication within an inquiry-based science education (IBSE program, called NTA (Naturvetenskap och Teknik för Alla. The overall aim of the study is to highlight the ways in which productive and engaging conversations are conducted in the classroom. We have analysed the work within the unit ”The Chemistry of food” and the theme testing of fat in food in grade five and six in a Swedish and a Danish science classroom. We have used video cameras and mp3-players to follow the classroom interaction. Our findings indicate that the classroom communication was focused on everyday science content and that the introduction and the summary of the theme were very important for the pupils’ possibilities to productive disciplinary engagement.

  3. Revising laboratory work: sociological perspectives on the science classroom

    Science.gov (United States)

    Jobér, Anna

    2017-09-01

    This study uses sociological perspectives to analyse one of the core practices in science education: schoolchildren's and students' laboratory work. Applying an ethnographic approach to the laboratory work done by pupils at a Swedish compulsory school, data were generated through observations, field notes, interviews, and a questionnaire. The pupils, ages 14 and 15, were observed as they took a 5-week physics unit (specifically, mechanics). The analysis shows that the episodes of laboratory work could be filled with curiosity and exciting challenges; however, another picture emerged when sociological concepts and notions were applied to what is a very common way of working in the classroom. Laboratory work is characterised as a social activity that is expected to be organised as a group activity. This entails groups becoming, to some extent, `safe havens' for the pupils. On the other hand, this way of working in groups required pupils to subject to the groups and the peer effect, sometimes undermining their chances to learn and perform better. In addition, the practice of working in groups when doing laboratory work left some pupils and the teacher blaming themselves, even though the outcome of the learning situation was a result of a complex interplay of social processes. This article suggests a stronger emphasis on the contradictions and consequences of the science subjects, which are strongly influenced by their socio-historical legacy.

  4. Effect of an environmental science curriculum on students' leisure time activities

    Science.gov (United States)

    Blum, Abraham

    Cooley and Reed's active interest measurement approach was combined with Guttman's Facet Design to construct a systematic instrument for the assessment of the impact of an environmental science course on students' behavior outside school. A quasimatched design of teacher allocation to the experimental and control groups according to their preferred teaching style was used. A kind of dummy control curriculum was devised to enable valid comparative evaluation of a new course which differs from the traditional one in both content and goal. This made it possible to control most of the differing factors inherent in the old and new curriculum. The research instrument was given to 1000 students who were taught by 28 teachers. Students who learned according to the experimental curriculum increased their leisure time activities related to the environmental science curriculum significantly. There were no significant differences between boys and girls and between students with different achievement levels.

  5. Elementary Teachers' Beliefs about Teaching Science and Classroom Practice: An Examination of Pre/Post NCLB Testing in Science

    Science.gov (United States)

    Milner, Andrea R.; Sondergeld, Toni A.; Demir, Abdulkadir; Johnson, Carla C.; Czerniak, Charlene M.

    2012-01-01

    The impact of No Child Left Behind (NCLB) mandated state science assessment on elementary teachers' beliefs about teaching science and their classroom practice is relatively unknown. For many years, the teaching of science has been minimized in elementary schools in favor of more emphasis on reading and mathematics. This study examines the…

  6. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    Science.gov (United States)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-01-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to…

  7. Improvement on a science curriculum including experimental demonstration of environmental radioactivity for secondary school students

    International Nuclear Information System (INIS)

    Watanabe, Kenji; Matsubara, Shizuo; Aiba, Yoshio; Eriguchi, Hiroshi; Kiyota, Saburo; Takeyama, Tetsuji.

    1988-01-01

    A science curriculum previously prepared for teaching environmental radioactivity was modified on the basis of the results of trial instructions in secondary schools. The main subject of the revised curriculum is an understanding of the natural radioactivity through the experimental demonstration about air-borne β and γ ray emitters. The other subjects included are the radioactive decay, the biological effects of radiation, the concept of risk-benefit balance (acceptable level) and the peaceful uses of nuclear energy and radiation. The work sheets and reference data prepared as learning materials are in two levels corresponding to the ability of students for this curriculum. (author)

  8. Japanese Family and Consumer Sciences Teachers' Lived Experiences: Self-Disclosure in the Classroom

    Science.gov (United States)

    Katadae, Ayako

    2008-01-01

    The purpose of this phenomenological study was to understand the lived experiences of Japanese family and consumer sciences teachers' self-disclosure in the classroom. Twelve secondary school teachers were interviewed, beginning with this primary question, "Think about a specific time and space when you self-disclosed in the classroom. Would you…

  9. It's in the Bag!: Going beyond the Science Classroom with Take-Home Literacy Bags

    Science.gov (United States)

    Martin, Susan Ferguson; Daughenbaugh, Lynda; Shaw, Edward L., Jr.; Burch, Katrina

    2013-01-01

    Although literacy plays a large role in elementary science classrooms, one thing that offers a challenge for educators is meeting the linguistic needs of English language learners (ELLs) while also meeting their content needs. An additional challenge is ensuring that academic literacy extends beyond the classroom. This article presents ways of…

  10. Girls in Primary School Science Classrooms: Theorising beyond Dominant Discourses of Gender

    Science.gov (United States)

    Cervoni, Cleti; Ivinson, Gabrielle

    2011-01-01

    The paper explores the ways girls appropriate gender through actions, gesture and talk to achieve things in primary school science classrooms. It draws on socio-cultural approaches to show that when everyday classroom practices are viewed from multiple planes of analysis, historical, institutional and in the micro dynamics of classroom…

  11. Identifying the Factors Leading to Success: How an Innovative Science Curriculum Cultivates Student Motivation

    Science.gov (United States)

    Scogin, Stephen C.

    2016-01-01

    "PlantingScience" is an award-winning program recognized for its innovation and use of computer-supported scientist mentoring. Science learners work on inquiry-based experiments in their classrooms and communicate asynchronously with practicing plant scientist-mentors about the projects. The purpose of this study was to identify specific…

  12. Teaching about Nature of Science in Secondary Education: A View from Multicultural Classrooms

    Science.gov (United States)

    Gandolfi, Haira Emanuela

    2017-01-01

    Teaching about nature of science (NOS) within a science curriculum that is primarily concerned with developing scientific content continues to provide a challenge for teachers. This study of science lessons focuses on whether NOS is being incorporated implicitly or explicitly, and whether epistemic aspects (e.g. models, theories) and social…

  13. The impact of single-gender classrooms on science achievement of middle school gifted girls

    Science.gov (United States)

    Ulkins, David S.

    Studies indicate a gap in science achievement and positive attitudes towards science between gifted male and female students with females performing less than the males. This study investigated the impact of a single-gender classroom environment as opposed to a mixed-gender classroom, on motivation, locus of control, self-concept, and science achievement of middle school gifted girls. The Motivated Strategies for Learning Questionnaire (MSLQ), Review of Personal Effectiveness with Locus of Control (ROPELOC), Test of Science Related Attitudes (TOSRA), and Stanford Achievement Test 10th Edition, were used to measure the dependent variables respectively. The independent-measure t test was used to compare the differences between girls in a single-gender classroom with the ones in a mixed-gender classroom. A significant difference in the external locus of control resulted for girls in the single gender classroom. However, there were no significant differences found in science achievement, motivation, and the attitudes toward science between the two groups. The implication is that a single-gender learning environment and the use of differentiated teaching strategies can help lessen the negative effects of societal stereotypes in today's classrooms. These, along with being cognizant of the differences in learning styles of girls and their male counterparts, will result in a greater level of success for gifted females in the area of science education.

  14. Incorporating nanoscale science and technology into secondary school curriculum: Views of nano-trained science teachers

    Directory of Open Access Journals (Sweden)

    Antti Laherto

    2011-09-01

    Full Text Available The growing societal significance of nanoscience and nanotechnology (NST entails needs for addressing these topics in school curricula. This study lays groundwork for responding to those needs in Finland. The purpose was to analyse the appropriateness of NST for secondary school curriculum contents. First, a week-long in-service teacher training course was arranged on content knowledge of NST. After attending the course, 23 experienced science teachers were surveyed regarding their views on the educational significance of these issues, and on prospects for including them into the curriculum. A questionnaire with open-ended questions was used. Qualitative content analysis of the responses revealed that the respondents considered NST as desirable contents for secondary school, but arranging instruction is problematic. The teachers emphasised the educational significance of many applications, scientific principles and ethical issues related to NST. The outcomes are discussed with reference to recent studies on teachers’ barriers and educational concerns regarding NST.

  15. Science and Literacy: Incorporating Vocabulary, Reading Comprehension, Research Methods, and Writing into the Science Curriculum

    Science.gov (United States)

    Nieser, K.; Carlson, C.; Bering, E. A.; Slagle, E.

    2012-12-01

    Part of preparing the next generation of STEM researchers requires arming these students with the requisite literacy and research skills they will need. In a unique collaboration, the departments of Physics (ECE) and Psychology at the University of Houston have teamed up with NASA in a grant to develop a supplemental curriculum for elementary (G3-5) and middle school (G6-8) science teachers called Mars Rover. During this six week project, students work in teams to research the solar system, the planet Mars, design a research mission to Mars, and create a model Mars Rover to carry out this mission. Targeted Language Arts skills are embedded in each lesson so that students acquire the requisite academic vocabulary and research skills to enable them to successfully design their Mars Rover. Students learn academic and scientific vocabulary using scientifically based reading research. They receive direct instruction in research techniques, note-taking, summarizing, writing and other important language skills. The interdisciplinary collaboration empowers students as readers, writers and scientists. After the curriculum is completed, a culminating Mars Rover event is held at a local university, bringing students teams in contact with real-life scientists who critique their work, ask questions, and generate excite about STEM careers. Students have the opportunity to showcase their Mars Rover and to orally demonstrate their knowledge of Mars. Students discover the excitement of scientific research, STEM careers, important research and writing tools in a practical, real-life setting.

  16. The Most Common Patterns of Classroom Dialogue Used by Science Teachers in Omani Cycle Two Schools

    Science.gov (United States)

    Alshaqsi, Hanan; Ambusaidi, Abdullah

    2018-01-01

    This study aimed to identify the patterns of classroom dialogue used by science teachers in science classes at Omani schools with respect to their gender. The study sample consisted of science teachers: three males and three females. To achieve the aims of the study, mixed methods with three instruments were used. These are an observation card or…

  17. Multimodal Teacher Input and Science Learning in a Middle School Sheltered Classroom

    Science.gov (United States)

    Zhang, Ying

    2016-01-01

    This article reports the results of an ethnographic research about the multimodal science discourse in a sixth-grade sheltered classroom involving English Language Learners (ELLs) only. Drawing from the perspective of multimodality, this study examines how science learning is constructed in science lectures through multiple semiotic resources,…

  18. Integrating Explicit Learning about the Culture of Science into the Pre-Service Teacher Curriculum through Readings and Reflections

    Science.gov (United States)

    Egger, A. E.

    2014-12-01

    Teachers provide foundational science experiences that spark interest in some students to pursue science and serve as an endpoint for others. For both groups, getting a glimpse into the culture of science is important to their futures as citizens, but this glimpse is not something all teachers are equipped to offer. Explicit instruction in the culture of science is generally not part of college-level science courses; to reach future teachers, it should be incorporated into the curriculum for pre-service teachers. I have incorporated readings from Visionlearning's peer-reviewed, freely available, web-based Process of Science series (http://www.visionlearning.com/en/library/Process-of-Science/49) into my class for pre-service middle-level and secondary science teachers. The readings describe the development of the culture and process of science using deeply embedded examples of scientists and their work. Students reflected on each reading by describing what they learned and something they will use in their future teaching. Responses were graded for thoughtfulness and completeness and later compiled. In general, students with more science courses had a better initial understanding of the culture of science and found the readings engaging stories that explained in more depth what they already knew. However, all students reported learning some fundamental aspects of the culture and nature of science. Most commonly, they learned scientific language, often words with both colloquial and scientific definitions: theory, hypothesis, law, uncertainty, error, confidence. Other learning gains were reported in defining the difference between scientific controversy and social controversy over science, interactions between historical events and the scientific enterprise, how much scientists work in groups and interact at meetings, and the role that funding plays in guiding research. On their own, students struggled to describe explicit ways to incorporate these concepts into their

  19. Classroom

    Indian Academy of Sciences (India)

    Classroom. In this section of Resonance, we in'Vite readers to pose questions likely to be raised in a classroom situation. We may suggest strategies for dealing with them, or in'Vite responses, or ... "Classroom" is equally a forum for raising broader issues and .... Now we can approach the question from a different viewpoint.

  20. Classrooms.

    Science.gov (United States)

    Butin, Dan

    This paper addresses classroom design trends and the key issues schools should consider for better classroom space flexibility and adaptability. Classroom space design issues when schools embrace technology are discussed, as are design considerations when rooms must accommodate different grade levels, the importance of lighting, furniture…

  1. Implementing Technology for Science Classrooms in Sao Tome and Principe

    Science.gov (United States)

    Jardim, Maria Dolores Rodrigues

    This qualitative bounded case study was designed to understand how technology integration in schools could be addressed in a first-wave country. The integration of educational technology in Sao Tome and Principe (STP), a first-wave agricultural civilization, can narrow the divide between STP and third-wave information age societies. The conceptual framework was based on theories of change, learning, and context. Toffler's wave theory described how societies changed while Fullan's change theory examined how the people might change. Roger's diffusion of innovations addressed how processes change. Bandura, Vygotsky, and Siemen provided the framework for the learning within the model of change. Finally, the context theories of Tessmer and Richey's instructional design, Lave and Wenger's situated learning, and Sticht's functional context theory were applied. Twenty five individuals from 5 schools, including teachers, school directors, key educational stakeholders, and the minister of education were involved in a pilot project to integrate technology into the science curriculum. The data were collected via interviews, reflective summaries, and confidential narratives. The resulting data were analyzed to find emerging patterns. The results of this analysis showed that a first-wave civilization can adopt a third-wave civilization's features in terms of technology integration, when there is the support of opinion leaders and most of the necessary contextual requirements are in place. The study contributes to social change by providing access to knowledge through technology integration, which empowers both teachers and students.

  2. Integrating Gender into the Political Science Core Curriculum

    Science.gov (United States)

    Cassese, Erin C.; Bos, Angela L.; Duncan, Lauren E.

    2012-01-01

    The New Research on Gender in Political Psychology Conference brought together new and experienced teachers with interests in gender politics. The conference session "Teaching Gender throughout the Curriculum" generated a great deal of discussion concerning the pedagogical practice of gender mainstreaming. Gender mainstreaming--the integration of…

  3. Sublime science: Teaching for scientific sublime experiences in middle school classrooms

    Science.gov (United States)

    Cavanaugh, Shane

    Due to a historical separation of cognition and emotion, the affective aspects of learning are often seen as trivial in comparison to the more 'essential' cognitive qualities - particularly in the domain of science. As a result of this disconnect, feelings of awe, wonder, and astonishment as well as appreciation have been largely ignored in the working lives of scientists. In turn, I believe that science education has not accurately portrayed the world of science to our students. In an effort to bring the affective qualities of science into the science classroom, I have drawn on past research in the field of aesthetic science teaching and learning as well as works by, Burke, Kant, and Dewey to explore a new construct I have called the "scientific sublime". Scientific sublime experiences represent a sophisticated treatment of the cognitive as well as affective qualities of science learning. The scientific sublime represents feelings of awe, wonder, and appreciation that come from a deep understanding. It is only through this understanding of a phenomenon that we can appreciate its true complexity and intricacies, and these understandings when mixed with the emotions of awe and reverence, are sublime. Scientific sublime experiences are an attempt at the re-integration of cognition and feeling. The goal of this research was twofold: to create and teach a curriculum that fosters scientific sublime experiences in middle school science classes, and to better understand how these experiences are manifested in students. In order to create an approach to teaching for scientific sublime experiences, it was first necessary for me to identify key characteristics of such an experience and a then to create a pedagogical approach, both of which are described in detail in the dissertation. This research was conducted as two studies in two different middle schools. My pedagogical approach was used to create and teach two five-week 7 th grade science units---one on weather

  4. An overview of conceptual understanding in science education curriculum in Indonesia

    Science.gov (United States)

    Widiyatmoko, A.; Shimizu, K.

    2018-03-01

    The purpose of this article is to discuss the term of “conceptual understanding” in science education curriculum in Indonesia. The implementation of 2013 Curriculum focuses on the acquisition of contextual knowledge in respective areas and environments. The curriculum seeks to develop students' evaluation skills in three areas: attitude, technical skills, and scientific knowledge. It is based on two layers of competencies: core and basic competencies. The core competencies in the curriculum 2013 represent the ability level to achieve the gradute competency standards of a students at each grade level. There are four mandatory core competencies for all educational levels and all subjects including science, which are spiritual, social, knowledge and skills competencies. In terms of knowledge competencies, conceptual understanding is an inseparable part of science concept since conceptual understanding is one of the basic competencies in science learning. This competency is a part of science graduation standard indicated in MoEC article number 20 in 2016. Therefore, conceptual understanding is needed by students for learning science successfully.

  5. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    Science.gov (United States)

    Katz, Phyllis; Randy McGinnis, J.; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-12-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews, electronic communications, and drawing prompts. We found that our two participants referenced as important the ISE experiences in their development of classroom science identities that included resilience, excitement and engagement in science teaching and learning-qualities that are emphasized in ISE contexts. The data support our conclusion that the ISE experiences proved especially memorable to teacher education interns during the implementation of the No Child Left Behind policy which concentrated on school-tested subjects other than science.

  6. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum

    Science.gov (United States)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.

    2017-12-01

    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  7. Enhancing graphical literacy skills in the high school science classroom via authentic, intensive data collection and graphical representation exposure

    Science.gov (United States)

    Palmeri, Anthony

    This research project was developed to provide extensive practice and exposure to data collection and data representation in a high school science classroom. The student population engaged in this study included 40 high school sophomores enrolled in two microbiology classes. Laboratory investigations and activities were deliberately designed to include quantitative data collection that necessitated organization and graphical representation. These activities were embedded into the curriculum and conducted in conjunction with the normal and expected course content, rather than as a separate entity. It was expected that routine practice with graph construction and interpretation would result in improved competency when graphing data and proficiency in analyzing graphs. To objectively test the effectiveness in achieving this goal, a pre-test and post-test that included graph construction, interpretation, interpolation, extrapolation, and analysis was administered. Based on the results of a paired T-Test, graphical literacy was significantly enhanced by extensive practice and exposure to data representation.

  8. Randomized Controlled Study of a Remote Flipped Classroom Neuro-otology Curriculum

    Directory of Open Access Journals (Sweden)

    Frederick Robert Carrick

    2017-07-01

    Full Text Available ContextMedical Education can be delivered in the traditional classroom or via novel technology including an online classroom.ObjectiveTo test the hypothesis that learning in an online classroom would result in similar outcomes as learning in the traditional classroom when using a flipped classroom pedagogy.DesignRandomized controlled trial. A total of 274 subjects enrolled in a Neuro-otology training program for non-Neuro-otologists of 25 h held over a 3-day period. Subjects were randomized into a “control” group attending a traditional classroom and a “trial” group of equal numbers participating in an online synchronous Internet streaming classroom using the Adobe Connect e-learning platform.InterventionsSubjects were randomized into a “control” group attending a traditional classroom and a “treatment” group of equal numbers participating in an online synchronous Internet streaming classroom.Main outcome measuresPre- and post-multiple choice examinations of VOR, Movement, Head Turns, Head Tremor, Neurodegeneration, Inferior Olivary Complex, Collateral Projections, Eye Movement Training, Visual Saccades, Head Saccades, Visual Impairment, Walking Speed, Neuroprotection, Autophagy, Hyperkinetic Movement, Eye and Head Stability, Oscilllatory Head Movements, Gaze Stability, Leaky Neural Integrator, Cervical Dystonia, INC and Head Tilts, Visual Pursuits, Optokinetic Stimulation, and Vestibular Rehabilitation.MethodsAll candidates took a pretest examination of the subject material. The 2–9 h and 1–8 h sessions over three consecutive days were given live in the classroom and synchronously in the online classroom using the Adobe Connect e-learning platform. Subjects randomized to the online classroom attended the lectures in a location of their choice and viewed the sessions live on the Internet. A posttest examination was given to all candidates after completion of the course. Two sample unpaired t tests with equal variances

  9. Randomized Controlled Study of a Remote Flipped Classroom Neuro-otology Curriculum.

    Science.gov (United States)

    Carrick, Frederick Robert; Abdulrahman, Mahera; Hankir, Ahmed; Zayaruzny, Maksim; Najem, Kinda; Lungchukiet, Palita; Edwards, Roger A

    2017-01-01

    Medical Education can be delivered in the traditional classroom or via novel technology including an online classroom. To test the hypothesis that learning in an online classroom would result in similar outcomes as learning in the traditional classroom when using a flipped classroom pedagogy. Randomized controlled trial. A total of 274 subjects enrolled in a Neuro-otology training program for non-Neuro-otologists of 25 h held over a 3-day period. Subjects were randomized into a "control" group attending a traditional classroom and a "trial" group of equal numbers participating in an online synchronous Internet streaming classroom using the Adobe Connect e-learning platform. Subjects were randomized into a "control" group attending a traditional classroom and a "treatment" group of equal numbers participating in an online synchronous Internet streaming classroom. Pre- and post-multiple choice examinations of VOR, Movement, Head Turns, Head Tremor, Neurodegeneration, Inferior Olivary Complex, Collateral Projections, Eye Movement Training, Visual Saccades, Head Saccades, Visual Impairment, Walking Speed, Neuroprotection, Autophagy, Hyperkinetic Movement, Eye and Head Stability, Oscilllatory Head Movements, Gaze Stability, Leaky Neural Integrator, Cervical Dystonia, INC and Head Tilts, Visual Pursuits, Optokinetic Stimulation, and Vestibular Rehabilitation. All candidates took a pretest examination of the subject material. The 2-9 h and 1-8 h sessions over three consecutive days were given live in the classroom and synchronously in the online classroom using the Adobe Connect e-learning platform. Subjects randomized to the online classroom attended the lectures in a location of their choice and viewed the sessions live on the Internet. A posttest examination was given to all candidates after completion of the course. Two sample unpaired t tests with equal variances were calculated for all pretests and posttests for all groups including gender differences. All 274

  10. Teaching Climate Science in Non-traditional Classrooms

    Science.gov (United States)

    Strybos, J.

    2015-12-01

    San Antonio College is the oldest, largest and centrally-located campus of Alamo Colleges, a network of five community colleges based around San Antonio, Texas with a headcount enrollment of approximately 20,000 students. The student population is diverse in ethnicity, age and income; and the Colleges understand that they play a salient role in educating its students on the foreseen impacts of climate change. This presentation will discuss the key investment Alamo Colleges has adopted to incorporate sustainability and climate science into non-traditional classrooms. The established courses that cover climate-related course material have historically had low enrollments. One of the most significant challenges is informing the student population of the value of this class both in their academic career and in their personal lives. By hosting these lessons in hands-on simulations and demonstrations that are accessible and understandable to students of any age, and pursuing any major, we have found an exciting way to teach all students about climate change and identify solutions. San Antonio College (SAC) hosts the Bill R. Sinkin Eco Centro Community Center, completed in early 2014, that serves as an environmental hub for Alamo Colleges' staff and students as well as the San Antonio community. The center actively engages staff and faculty during training days in sustainability by presenting information on Eco Centro, personal sustainability habits, and inviting faculty to bring their classes for a tour and sustainability primer for students. The Centro has hosted professors from diverse disciplines that include Architecture, Psychology, Engineering, Science, English, Fine Arts, and International Studies to bring their classes to center to learn about energy, water conservation, landscaping, and green building. Additionally, Eco Centro encourages and assists students with research projects, including a solar-hydroponic project currently under development with the support

  11. The perception of science teachers on the role of student relationships in the classroom

    Science.gov (United States)

    Mattison, Cheryl Ann

    With the increased accountability of educators comes the responsibility of the entire educational community to find ways in which we can help our students succeed in the classroom. In addition, it is important to discover what it takes to keep those students in school Many science teachers enter the profession unprepared to handle the regular classroom routine. Classroom management, grading, lesson planning, setting up labs, and the myriad of other obligations, can leave teachers overwhelmed and sometimes can get in the way of actually helping students be successful. This study investigated how science teachers viewed the importance of developing strong teacher/student relationships to the increase of student success in a science classroom. I attempted to answer 4 major questions: · How do science teachers in a select high school community view the role of interactive relationships in their classrooms and how that might impact their students? · How do science teachers in a select high school community believe they establish successful interactive relationships with their students? · What do science teachers in a select high school community believe are some of the outcomes of those relationships? · What do science teachers suggest to increase the teacher's ability to form good relationships with their students? A qualitative research method was used including observations, interviews and group discussions of 5 high school science teachers in a small urban school.

  12. Integrating technology, curriculum, and online resources: A multilevel model study of impacts on science teachers and students

    Science.gov (United States)

    Ye, Lei

    This scale-up study investigated the impact of a teacher technology tool (Curriculum Customization Service, CCS), curriculum, and online resources on earth science teachers' attitudes, beliefs, and practices and on students' achievement and engagement with science learning. Participants included 73 teachers and over 2,000 ninth-grade students within five public school districts in the western U.S. To assess the impact on teachers, changes between pre- and postsurveys were examined. Results suggest that the CCS tool appeared to significantly increase both teachers' awareness of other earth science teachers' practices and teachers' frequency of using interactive resources in their lesson planning and classroom teaching. A standard multiple regression model was developed. In addition to "District," "Training condition" (whether or not teachers received CCS training) appeared to predict teachers' attitudes, beliefs, and practices. Teachers who received CCS training tended to have lower postsurvey scores than their peers who had no CCS training. Overall, usage of the CCS tool tended to be low, and there were differences among school districts. To assess the impact on students, changes were examined between pre- and postsurveys of (1) knowledge assessment and (2) students' engagement with science learning. Students showed pre- to postsurvey improvements in knowledge assessment, with small to medium effect sizes. A nesting effect (students clustered within teachers) in the Earth's Dynamic Geosphere (EDG) knowledge assessment was identified and addressed by fitting a two-level hierarchical linear model (HLM). In addition, significant school district differences existed for student post-knowledge assessment scores. On the student engagement questionnaire, students tended to be neutral or to slightly disagree that science learning was important in terms of using science in daily life, stimulating their thinking, discovering science concepts, and satisfying their own

  13. Effects of a Research-Infused Botanical Curriculum on Undergraduates’ Content Knowledge, STEM Competencies, and Attitudes toward Plant Sciences

    Science.gov (United States)

    Clarke, H. David; Horton, Jonathan L.

    2014-01-01

    In response to the American Association for the Advancement of Science's Vision and Change in Undergraduate Biology Education initiative, we infused authentic, plant-based research into majors’ courses at a public liberal arts university. Faculty members designed a financially sustainable pedagogical approach, utilizing vertically integrated curricular modules based on undergraduate researchers’ field and laboratory projects. Our goals were to 1) teach botanical concepts, from cells to ecosystems; 2) strengthen competencies in statistical analysis and scientific writing; 3) pique plant science interest; and 4) allow all undergraduates to contribute to genuine research. Our series of inquiry-centered exercises mitigated potential faculty barriers to adopting research-rich curricula, facilitating teaching/research balance by gathering publishable scholarly data during laboratory class periods. Student competencies were assessed with pre- and postcourse quizzes and rubric-graded papers, and attitudes were evaluated with pre- and postcourse surveys. Our revised curriculum increased students’ knowledge and awareness of plant science topics, improved scientific writing, enhanced statistical knowledge, and boosted interest in conducting research. More than 300 classroom students have participated in our program, and data generated from these modules’ assessment allowed faculty and students to present 28 contributed talks or posters and publish three papers in 4 yr. Future steps include analyzing the effects of repeated module exposure on student learning and creating a regional consortium to increase our project's pedagogical impact. PMID:25185223

  14. An analysis of teaching competence in science teachers involved in the design of context-based curriculum materials

    NARCIS (Netherlands)

    Putter - Smits, de L.G.A.; Taconis, R.; Driel, van J.H.; Jochems, W.M.G.

    2012-01-01

    The committees for the current Dutch context-based innovation in secondary science education employed teachers to design context-based curriculum materials. A study on the learning of science teachers in design teams for context-based curriculum materials is presented in this paper. In a correlation

  15. Go Ask Alice: Uncovering the Role of a University Partner in an Informal Science Curriculum Support Network

    Science.gov (United States)

    Baker-Doyle, Kira J.

    2013-01-01

    This article describes a study from the Linking Instructors Networks of Knowledge in Science Education project, which aims to examine the informal science curriculum support networks of teachers in a school-university curriculum reform partnership. We used social network analysis and qualitative methods to reveal characteristics of the informal…

  16. Boundary Interaction: Towards Developing a Mobile Technology-Enabled Science Curriculum to Integrate Learning in the Informal Spaces

    Science.gov (United States)

    Sun, Daner; Looi, Chee-Kit

    2018-01-01

    This paper explores the crossover between formal learning and learning in informal spaces supported by mobile technology, and proposes design principles for educators to carry out a science curriculum, namely Boundary Activity-based Science Curriculum (BAbSC). The conceptualization of the boundary object, and the principles of boundary activity as…

  17. Using the earth system for integrating the science curriculum

    Science.gov (United States)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.

  18. Lessons learned from curriculum changes and setting curriculum objectives at the University of Pennsylvania's Earth and Environmental Science Department

    Science.gov (United States)

    Dmochowski, J. E.

    2009-12-01

    Recent restructuring of the University of Pennsylvania’s curriculum, including a revised multi-disciplinary Environmental Studies major and a proposed Environmental Science major has led to several changes, including a mandatory junior research seminar. Feedback from students indicates that a more structured curriculum has helped guide them through the multi-disciplinary Environmental Studies major. The addition of mandatory courses in Statistics, Geographical and Environmental Modeling, as well as Economics and Policy has ensured that students have important skills needed to succeed after graduation. We have compiled a curriculum objective matrix to clarify both the broad and focused objectives of our curriculum and how each course helps to fulfill these objectives. An important aspect of both majors is the Senior Thesis. The junior research seminar was recently revised to help students prepare for their thesis research. Topic selection, library research, data presentation, basic research methods, advisor identification, and funding options are discussed. Throughout the course, faculty from within the department lecture about their research and highlight opportunities for undergraduates. In one assignment, students are given a few types of datasets and asked to present the data and error analysis in various formats using different software (SPSS and Excel). The final paper was a research proposal outlining the student’s Senior Thesis. Based on both the university and instructor written course evaluations, students felt they benefited most from writing their senior thesis proposal; doing assignments on data analysis, library research and critical analysis; and the faculty research lectures. The lessons learned in restructuring this flexible major and providing a research seminar in the junior year may benefit other departments considering such changes.

  19. Question Asking in the Science Classroom: Teacher Attitudes and Practices

    Science.gov (United States)

    Eshach, Haim; Dor-Ziderman, Yair; Yefroimsky, Yana

    2014-01-01

    Despite the wide agreement among educators that classroom learning and teaching processes can gain much from student and teacher questions, their potential is not fully utilized. Adopting the view that reporting both teachers' (of varying age groups) views and actual classroom practices is necessary for obtaining a more complete view of the…

  20. Dissemination of an innovative mastery learning curriculum grounded in implementation science principles: a case study.

    Science.gov (United States)

    McGaghie, William C; Barsuk, Jeffrey H; Cohen, Elaine R; Kristopaitis, Theresa; Wayne, Diane B

    2015-11-01

    Dissemination of a medical education innovation, such as mastery learning, from a setting where it has been used successfully to a new and different medical education environment is not easy. This article describes the uneven yet successful dissemination of a simulation-based mastery learning (SBML) curriculum on central venous catheter (CVC) insertion for internal medicine and emergency medicine residents across medical education settings. The dissemination program was grounded in implementation science principles. The article begins by describing implementation science which addresses the mechanisms of medical education and health care delivery. The authors then present a mastery learning case study in two phases: (1) the development, implementation, and evaluation of the SBML CVC curriculum at a tertiary care academic medical center; and (2) the dissemination of the SBML CVC curriculum to an academic community hospital setting. Contextual information about the drivers and barriers that affected the SBML CVC curriculum dissemination is presented. This work demonstrates that dissemination of mastery learning curricula, like all other medical education innovations, will fail without active educational leadership, personal contacts, dedication, hard work, rigorous measurement, and attention to implementation science principles. The article concludes by presenting a set of lessons learned about disseminating an SBML CVC curriculum across different medical education settings.

  1. A statistical analysis of the characteristics of the intended curriculum for Japanese primary science and its relationship to the attained curriculum

    Directory of Open Access Journals (Sweden)

    Kenji Matsubara

    2016-08-01

    Full Text Available Abstract This study statistically investigates the characteristics of the intended curriculum for Japanese primary science, focusing on the learning content. The study used the TIMSS 2011 Grade 4 Curriculum Questionnaire data as a major source for the learning content prescribed at the national level. Confirmatory factor analysis was used to determine the extent to which a topic area was covered, as compared to the average among the 59 TIMSS 2011 participating countries. The study revealed that the topic areas of “Human Health” and “Changes in Environments,” both in the life science domain, showed statistically less coverage in the Japanese primary science curriculum when compared to the international average. Furthermore, in discussion, the study relates the characteristics found in the intended curriculum to those in the attained curriculum, examining the percent correct statistics for relevant items from the science assessment. Based on these findings, the study proposes two recommendations for revision of the Japanese primary science curriculum.

  2. A case study on the formation and sharing process of science classroom norms

    Science.gov (United States)

    Chang, Jina; Song, Jinwoong

    2016-03-01

    The teaching and learning of science in school are influenced by various factors, including both individual factors, such as member beliefs, and social factors, such as the power structure of the class. To understand this complex context affected by various factors in schools, we investigated the formation and sharing process of science classroom norms in connection with these factors. By examining the developmental process of science classroom norms, we identified how the norms were realized, shared, and internalized among the members. We collected data through classroom observations and interviews focusing on two elementary science classrooms in Korea. From these data, factors influencing norm formation were extracted and developed as stories about norm establishment. The results indicate that every science classroom norm was established, shared, and internalized differently according to the values ingrained in the norms, the agent of norm formation, and the members' understanding about the norm itself. The desirable norms originating from values in science education, such as having an inquiring mind, were not established spontaneously by students, but were instead established through well-organized norm networks to encourage concrete practice. Educational implications were discussed in terms of the practice of school science inquiry, cultural studies, and value-oriented education.

  3. Interdependence and Management in Bilingual Classrooms. Final Report.

    Science.gov (United States)

    Cohen, Elizabeth G.; Intili, Jo Ann

    Applying industrial organizational theory to classroom management, the authors examined the organization of a complex bilingual curriculum for the effects of shared authority among students and teachers and the effects of shared decision-making among staff. Using a math-science curriculum called "Finding Out: Descubrimiento," the nine…

  4. Airway Science curriculum demonstration project : summary of initial evaluation findings.

    Science.gov (United States)

    1988-10-01

    The performance, perceptions, and characteristics of Airway Science hires were compared with those of traditional hires. As of May 12, 1987. a total of 197 Airway Science candidates had been selected into FAA occupations. The demographic characterist...

  5. Oceanography for Landlocked Classrooms. Monograph V.

    Science.gov (United States)

    Madrazo, Gerry M., Jr., Ed.; Hounshell, Paul B., Ed.

    This monograph attempts to show the importance of bringing marine biology into science classrooms, discusses what makes the ocean so important and explains why oceanography should be included in the science curriculum regardless of where students live. Section I, "Getting Started," includes discussions on the following: (1) "Why Marine Biology?";…

  6. Signs of Taste for Science: A Methodology for Studying the Constitution of Interest in the Science Classroom

    Science.gov (United States)

    Anderhag, P.; Wickman, P.-O.; Hamza, K. M.

    2015-01-01

    In this paper we present a methodological approach for analyzing the transformation of interest in science through classroom talk and action. To this end, we use the construct of "taste for science" as a social and communicative operationalization, or proxy, to the more psychologically oriented construct of interest. To gain a taste for…

  7. Model program for the recruitment and preparation of high ability elementary mathematics/science teachers: A collaborative project among scientists, teacher educators and classroom teachers

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This teacher education program will provide a model for recruiting, educating and retaining high ability students to become mathematics and science lead teachers in elementary schools. The quality experiences and support provided these students will help them develop the knowledge and attitudes necessary to provide leadership for elementary mathematics and science programs. Students will have research experiences at the Ames Laboratory, high quality field experiences with nationally recognized mathematics and science teachers in local schools and opportunities to meaningfully connect these two experiences. This program, collaboratively designed and implemented by scientists, teacher educators and classroom teachers, should provide a replicatable model for other teacher education institutions. In addition, materials developed for the project should help other laboratories interface more effectively with K-8 schools and help other teacher education programs incorporate real science and mathematics experience into their curriculum.

  8. Fostering Student Sense Making in Elementary Science Learning Environments: Elementary Teachers' Use of Science Curriculum Materials to Promote Explanation Construction

    Science.gov (United States)

    Zangori, Laura; Forbes, Cory T.; Biggers, Mandy

    2013-01-01

    While research has shown that elementary (K-5) students are capable of engaging in the scientific practice of explanation construction, commonly-used elementary science curriculum materials may not always afford them opportunities to do so. As a result, elementary teachers must often adapt their science curriculum materials to better support…

  9. Study of graduate curriculum in the radiological science: problems and suggestions

    International Nuclear Information System (INIS)

    Ko, Seong Jin; Kim, Hwa Gon; Kang, Se Sik; Park, Byeong Rae; Kim, Chang Soo

    2006-01-01

    Currently, Educational program of radiological science is developed in enormous growth, our educational environments leading allied health science education program in the number of super high speed medical industry. Radiological science may be the fastest growing technologies in our medical department today. In this way, Medical industry fields converged in the daily quick, the fact that department of radiological science didn't discharged ones duties on current educational environments. The curriculum of radiological technologists that play an important part between skill and occupation's education as major and personality didn't performed one's part most effectively on current medical environments and digital radiological equipment interface. We expect improvement and suggestion to grow natural disposition as studies in the graduate of radiological science. Therefore, in this paper, current curriculum of radiological science are catched hold of trend and problems on digital radiology environments, on fact the present state of problems, for Graduate program of radiological science, graduate courses of MS and ph.D. are suggested a reform measure of major education curriculum introduction

  10. Integrating Felting in Elementary Science Classrooms to Facilitate Understanding of the Polar Auroras

    Directory of Open Access Journals (Sweden)

    Brandy Terrill

    2017-10-01

    Full Text Available The Next Generation Science Standards (NGSS emphasize conceptual science instruction that draws on students’ ability to make observations, explain natural phenomena, and examine concept relationships. This paper explores integrating the arts, in the form of felting, in elementary science classrooms as a way for students to model and demonstrate understanding of the complex scientific processes that cause the polar auroras. The steps for creating felting, and using the felting artwork students create for assessing science learning, are described.

  11. Creating effective environmental education: A case study utilizing an integrative teaching methodology to develop positive environmental attitudes and behaviors in the secondary general science curriculum

    Science.gov (United States)

    O'Connor, Teresa M.

    Many years of teaching environmental issues years has revealed that giving students only "the facts" frequently leaves them with a sense of hopelessness about the future of life on this planet. Problems of the environment often seem large and complex, and student's feel there is nothing "they" can do. In response, a curriculum was developed that permits students to learn about action strategies they can partake in that would make a small contribution towards a solution, as well as exploring their own values and attitudes about environmental issues. The curriculum also attempts to foster positive attitudes and beliefs about the natural world. The curriculum contains three distinct units, focusing on energy, atmospheric issues, and the loss of habitat and rainforest. It was taught in sixty-one sessions over a fourteen week period in a standard level ninth grade General Science class of twenty-four students, at Harriton High School in the Lower Merion School District in the suburbs of Philadelphia. The dissertation is presented as a case study that is the author's construction of the actual experience, developed from audio tapes of the classroom sessions, personal logs, and data collected from the students. The dissertation presents an in-depth case study of the development, the actual implementation, and subsequent evaluation of this environmental curriculum, and gives an in-depth view of life in this class.

  12. WISE Science: Web-based Inquiry in the Classroom. Technology, Education--Connections

    Science.gov (United States)

    Slotta, James D.; Linn, Marcia C.

    2009-01-01

    This book shares the lessons learned by a large community of educational researchers and science teachers as they designed, developed, and investigated a new technology-enhanced learning environment known as WISE: The Web-Based Inquiry Science Environment. WISE offers a collection of free, customizable curriculum projects on topics central to the…

  13. Fossil Fuels. A Supplement to the "Science 100, 101" Curriculum Guide. Curriculum Support Series.

    Science.gov (United States)

    Soprovich, William, Comp.

    When the fossil fuels unit was first designed for Science 101 (the currently approved provincial guide for grade 10 science in Manitoba), Canadian support materials were very limited. Since students are asked to interpret data concerning energy consumption and sources for certain fossil fuels, the need for appropriate Canadian data became obvious.…

  14. Senior science teachers' experience of teaching in a changing multicultural classroom: A case study

    Science.gov (United States)

    Ryan, Mark

    Demographic changes within the US are bringing significant changes in the cultural make-up of the classrooms in our schools. Results from national and state assessments indicate a growing achievement gap between the science scores of white students and students from minority communities. This gap indicates a disconnect somewhere in the science classrooms. This study examines the teacher's perspective of the changing learning environment. The study focuses on senior teachers with traditional Midwestern backgrounds and little multicultural experience assuming these teachers had little or no education in multicultural education. Senior teachers are also more likely to have completed their science education within a traditional Universalist perspective of science and likewise have little or no education in multicultural science. The research method was comparative case studies of a purposeful sample of nine science teachers within a community experiencing significant demographic change, seven core senior teachers and two frame of reference teachers. The interviews examined the teachers' awareness of their own cultural beliefs and the impact of those beliefs on classroom practices, the teachers' understanding of cultural influences on the students' academic performance, and the relationships between the teachers' understanding of the cultural aspects of the nature of science and their classroom practices. Analysis of the interview data revealed that the teachers maintain a strong, traditional Midwestern worldview for classroom expectations and they are generally unaware of the impact of those standards on the classroom environment. The teachers were supportive of minority students within their classroom, changing several practices to accommodate student needs, but they were unaware of the broader cultural influences on student learning. The teachers had a poor understanding of the nature of science and none of them recognized a cultural element of NOS. They maintained a

  15. Probing the Natural World, Level III, Teacher's Edition: Investigating Variation. Intermediate Science Curriculum Study.

    Science.gov (United States)

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit focuses on diversity in human populations, measurement, and data collection. Optional excursions are described for students who wish to study a topic in greater depth. An introduction describes…

  16. Probing the Natural World, Level III, Student Guide: Investigating Variation. Intermediate Science Curriculum Study.

    Science.gov (United States)

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's text of one unit of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit focuses on diversity in human populations, measurement, and data collection. Numerous activities are given and optional excursions encourage students to pursue a topic in greater depth. Data tables within the…

  17. Science Education Curriculum Development Principles in Taiwan: Connecting with Aboriginal Learning and Culture

    Science.gov (United States)

    Huang, Tzu-Hua; Liu, Yuan-Chen

    2017-01-01

    This paper reflects thorough consideration of cultural perspectives in the establishment of science curriculum development principles in Taiwan. The authority explicitly states that education measures and activities of aboriginal peoples' ethnic group should be implemented consistently to incorporate their history, language, art, living customs,…

  18. Science teachers designing context-based curriculum materials : developing context-based teaching competence

    NARCIS (Netherlands)

    Putter - Smits, de L.G.A.

    2012-01-01

    The intended new context-based curriculum for four science subjects (AS-MaT1, biology, chemistry, and physics) in senior general secondary education and pre-university education has been the subject of numerous research and teacher professionalisation efforts in the Netherlands for the last seven

  19. A Look at the Relationship of Curriculum and Instruction and the Art and Science of Teaching

    Science.gov (United States)

    Flake, Lee Hatch

    2017-01-01

    The definition of instruction and curriculum may take on different meanings based on the purpose or interpretation whether political, social, or educational. Teaching effectively requires the skill of a knowledgeable and experienced educator. Teaching can be convincingly debated as being an art or a science or defined collectively as an art and a…

  20. Perspective of Lecturers in Implementing PISMP Science Curriculum in Malaysia's IPG

    Science.gov (United States)

    Yahya, Fauziah Hj; Bin Hamdan, Abdul Rahim; Jantan, Hafsah Binti; Saleh, Halimatussadiah Binti

    2015-01-01

    The article aims to identify lecturers' perspectives in implementing PISMP science curriculum in IPG Malaysia based on teaching experience with KIPP model. The respondents consisted of 105 lecturers from 20 IPG Malaysia. The study used a questionnaire consisting of 74 items covering the four dimensions (Context, Input, Process and Product). Data…

  1. The Biome Project: Developing a Legitimate Parallel Curriculum for Physical Education and Life Sciences

    Science.gov (United States)

    Hastie, Peter Andrew

    2013-01-01

    The purpose of this article is to describe the outcomes of a parallel curriculum project between life sciences and physical education. Throughout a 6-week period, students in grades two through five became members of teams that represented different animal species and biomes, and concurrently participated in a season of gymnastics skills and…

  2. A Study of Changes in the Library and Information Science Curriculum with Evaluation of Its Practicality

    Science.gov (United States)

    Noh, Younghee; Ahn, In-Ja; Choi, Sang-Ki

    2012-01-01

    Purpose: This study analyzed the process of changes in Korean Library and Information Science curriculum and evaluated the courses currently available by using a perception survey of librarians in the field. It also explored a possible demand for new courses, while suggesting compulsory, core, and optional courses for Bachelor's degree curriculum…

  3. Ethics Instruction in Library and Information Science: The Role of "Ethics across the Curriculum"

    Science.gov (United States)

    Smith, Bernie Todd

    2010-01-01

    Ethics is an important element of most graduate professional training programs. In the field of Library and Information Science (LIS) the inclusion of ethics in the curriculum is supported by a position paper by library educators and is monitored in the accreditation of graduate programs. Despite the many LIS programs which claim to integrate…

  4. The MORPG-Based Learning System for Multiple Courses: A Case Study on Computer Science Curriculum

    Science.gov (United States)

    Liu, Kuo-Yu

    2015-01-01

    This study aimed at developing a Multiplayer Online Role Playing Game-based (MORPG) Learning system which enabled instructors to construct a game scenario and manage sharable and reusable learning content for multiple courses. It used the curriculum of "Introduction to Computer Science" as a study case to assess students' learning…

  5. Access, Astronomy and Science Fiction. A Case Study in Curriculum Design

    Science.gov (United States)

    Saunders, Danny; Brake, Mark; Griffiths, Martin; Thornton, Rosi

    2004-01-01

    It is argued that a positive response to lifelong learning policies involves the use of imaginative curriculum design in order to attract learners from disadvantaged backgrounds who are otherwise alienated from higher education. In this article a case study is presented based on the popularity of science fiction within popular culture, beginning…

  6. Mapping Physical Sciences Teachers' Concerns Regarding the New Curriculum in South Africa

    Science.gov (United States)

    Gudyanga, Remeredzayi; Jita, Loyiso C.

    2018-01-01

    This article reports on a study investigating physical sciences teachers' stages of concern (SoC) profiles during the implementation of the curriculum and assessment policy statement (CAPS) in South Africa. Throughout reform implementation, it is conceivable that teachers go through different SoC, ranging from giving low priority to the reform…

  7. Life Sciences Teachers Negotiating Professional Development Agency in Changing Curriculum Times

    Science.gov (United States)

    Singh-Pillay, Asheena; Samuel, Michael Anthony

    2017-01-01

    This article probes teacher responses to three curricular reform initiatives from a South African situated contextual perspective. It focuses on Life Sciences teachers who have initially reported feeling overwhelmed by this rapidly changing curriculum environment: adopting and re-adapting to the many expected shifts. The research question posed…

  8. Design of a social constructivism-based curriculum for primary science education in Confucian heritage culture

    NARCIS (Netherlands)

    Vu Thu Hang, N.

    2014-01-01

    This study is about the application of social constructivism in primary science curriculum in Confucian heritage culture. It was found that the implementation of social constructivism in Confucian heritage culture was low and influenced by cultural divergences between Confucian cultural philosophy

  9. The "Curriculum for Excellence": A Major Change for Scottish Science Education

    Science.gov (United States)

    Brown, Sally

    2014-01-01

    The Curriculum for Excellence and new National Qualifications offer innovative reform, based on widely supported ideas and aims, for Scottish preschool, primary and secondary education levels. "Objectives and syllabuses" for science are replaced by "experiences and outcomes". Most strikingly, central prescription makes way for…

  10. Probing the Natural World, Level III, Student Guide: What's Up? Intermediate Science Curriculum Study.

    Science.gov (United States)

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's text of one unit of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). The chapters contain basic information about rockets, space, and principles of physics, as well as activities related to the subject and optional excursions. A section of introductory notes to the student discusses how the…

  11. Nurturing At-Risk Youth in Math and Science: Curriculum and Teaching Considerations.

    Science.gov (United States)

    Tobias, Randolf

    The social environment of today has necessitated revision in educators' beliefs about what students are considered to be at risk of failing to complete their education with adequate levels of skills. This book addresses this issue in the areas of mathematics and science and is intended as a curriculum and teacher training accompaniment that can…

  12. Experiencing Wireless Sensor Network Concepts in an Undergraduate Computer Science Curriculum

    NARCIS (Netherlands)

    Zwartjes, G.J.; van de Voort, M.; Dil, B.J.; Havinga, Paul J.M.

    2009-01-01

    Incorporating Embedded Systems courses in a general and broad Computer Science undergraduate curriculum can be a challenging task. The lack of experience with relevant tools and programming languages tends to limit the amount material that can be included in courses on this area. This, combined with

  13. Critical classroom structures for empowering students to participate in science discourse

    Science.gov (United States)

    Belleau, Shelly N.; Otero, Valerie K.

    2013-01-01

    We compared contextual characteristics that impacted the nature and substance of "summarizing discussions" in a physics and a chemistry classroom in an Hispanic-serving urban high school. Specifically, we evaluated structural components of curricula and classrooms necessary to develop a culture of critical inquiry. Using the Physics and Everyday Thinking (PET) curriculum in the physics course, we found that students demonstrated critical thinking, critical evaluation, and used laboratory evidence to support ideas in whole-class summarizing discussions. We then implemented a model similar to PET in the chemistry course. However, chemistry students' statements lacked evidence, opposition and critical evaluation, and required greater teacher facilitation. We hypothesize that the designed laboratories and the research basis of PET influenced the extent to which physics students verbalized substantive scientific thought, authentic appeals to evidence, and a sense of empowerment to participate in the classroom scientific community.

  14. Literacy learning in secondary school science classrooms: A cross-case analysis of three qualitative studies

    Science.gov (United States)

    Dillon, Deborah R.; O'Brien, David G.; Moje, Elizabeth B.; Stewart, Roger A.

    The purpose of this cross-case analysis is to illustrate how and why literacy was incorporated into science teaching and learning in three secondary classrooms. Research questions guiding the analysis include: (a) How were literacy events shaped by the teachers' philosophies about teaching science content and teaching students? and (b) How was literacy (reading, writing, and oral language) structured by the teachers and manifested in science lessons? The methodology of ethnography and the theoretical framework of symbolic interactionism were employed in the three studies on which the cross-case analysis was based. The researchers assumed the role of participant observers, collecting data over the period of 1 year in each of the three classrooms. Data, in the form of fieldnotes, interviews, and artifacts, were collected. In each study, data were analyzed using the constant comparative method (Glaser & Strauss, 1967) to determine patterns in the teachers' beliefs about learning and how these influenced their choice of literacy activities. The cross-case analysis was conducted to determine patterns across the three teachers and their classrooms. The findings from this analysis are used to compare how the teachers' philosophies of teaching science and their beliefs about how students learn influenced their use of literacy practices during lessons. Specifically, each teacher's use of literacy activities varied based on his or her beliefs about teaching science concepts. Furthermore, reading, writing, and oral language were important vehicles to learning science concepts within daily classroom activities in the three classrooms.Received: 1 April 1993; Revised: 30 August 1993;

  15. Talking about science: An interpretation of the effects of teacher talk in a high school science classroom

    Science.gov (United States)

    Moje, Elizabeth B.

    This paper builds on research in science education, secondary education, and sociolinguistics by arguing that high school classrooms can be considered speech communities in which language may be selectively used and imposed on students as a means of fostering academic speech community identification. To demonstrate the ways in which a high school teacher's language use may encourage subject area identification, the results of an interactionist analysis of data from a 2-year ethnographic study of one high school chemistry classroom are presented. Findings indicate that this teacher's uses of language fell into three related categories. These uses of language served to foster identification with the academic speech community of science. As a result of the teacher's talk about science according to these three patterns, students developed or reinforced particular views of science. In addition, talking about science in ways that fostered identity with the discipline promoted the teacher as expert and built classroom solidarity or community. These results are discussed in light of sociolinguistic research on classroom competence and of the assertions of science educators regarding social and ideologic implications of language use in science instruction.Received: 23 September 1993; Revised: 15 September 1994;

  16. Investigating the Role of the Teacher in Science Curriculum: New Evidence for an Old Debate

    Science.gov (United States)

    Penuel, W.; McAuliffe, C.; McWilliams, H.

    2007-12-01

    It is widely believed that teachers need high-quality curriculum materials to improve teaching and learning. Professional development designs differ, however, in whether they emphasize preparing teachers to use expert- designed curricula or preparing teachers with the tools needed to design and implement high-quality science units themselves. Evidence exists for the effectiveness of providing teachers with training in how to implement expert-designed curricula (Bredderman, 1983; Shymansky, Hedges, & Woodworth, 1990; Weinstein, Boulanger, & Walberg, 1982) and for providing teachers with professional development aimed at preparing teachers to design instruction and assessments (Black & Harrison, 2001; Shepard, 1997; Sneider, Adams, Ibanez, Templeton, & Porter, 1996). However, no studies, however, have compared explicitly these different approaches to preparing teachers to plan and enact instruction in science. The Transforming Instruction by Design in Earth Science (TIDES) project is an experimental study comparing the efficacy of three different approaches to professional development. The approaches differ with respect to the role that teachers are expected to play in curriculum. In one condition (Earth Science by Design), teachers learn how to design curriculum units in Earth science. In a second condition (Investigating Earth Systems), teachers learn how to adopt and implement curriculum materials developed by experts. In the third condition (Hybrid), teachers learn a principled approach to adapt expert-developed curriculum materials. The TIDES study is examining the impacts of each of the approaches to professional development on instructional planning and on the quality of assignments and assessments they give to students. We measured impacts on instructional planning using an end-of-unit questionnaire that focused on changes to teachers" overall approach to planning units of instruction, their strategies for organizing assignment, and materials they use in

  17. Bringing the Flipped Classroom to Day 1: A Novel Didactic Curriculum for Emergency Medicine Intern Orientation

    Directory of Open Access Journals (Sweden)

    Michael G. Barrie

    2017-12-01

    Full Text Available Most emergency medicine (EM residency programs provide an orientation program for their incoming interns, with the lecture being the most common education activity during this period. Our orientation program is designed to bridge the gap between undergraduate and graduate medical education by ensuring that all learners demonstrate competency on Level 1 Milestones, including medical knowledge (MK. To teach interns core medical knowledge in EM, we reformulated orientation using the flipped-classroom model by replacing lectures with small group, case-based discussions. Interns demonstrated improvement in medical knowledge through higher scores on a posttest. Evaluation survey results were also favorable for the flipped-classroom teaching format.

  18. Bringing the Flipped Classroom to Day 1: A Novel Didactic Curriculum for Emergency Medicine Intern Orientation.

    Science.gov (United States)

    Barrie, Michael G; Amick, Christopher; Mitzman, Jennifer; Way, David P; King, Andrew M

    2018-01-01

    Most emergency medicine (EM) residency programs provide an orientation program for their incoming interns, with the lecture being the most common education activity during this period. Our orientation program is designed to bridge the gap between undergraduate and graduate medical education by ensuring that all learners demonstrate competency on Level 1 Milestones, including medical knowledge (MK). To teach interns core medical knowledge in EM, we reformulated orientation using the flipped-classroom model by replacing lectures with small group, case-based discussions. Interns demonstrated improvement in medical knowledge through higher scores on a posttest. Evaluation survey results were also favorable for the flipped-classroom teaching format.

  19. Creating a contemporary clerkship curriculum: the flipped classroom model in emergency medicine.

    Science.gov (United States)

    Lew, Edward K

    2016-12-01

    The teaching modality of "flipping the classroom" has garnered recent attention in medical education. In this model, the lecture and homework components are reversed. The flipped classroom lends itself to more interaction in "class" and theoretically improved clinical decision-making. Data is lacking for this model for students in emergency medicine clerkships. We trialed the flipped classroom in our fourth-year student clerkship. Our aim was to learn student and faculty facilitator perceptions of the experience, as it has not been done previously in this setting. We evaluated this in two ways: (1) participant perception of the experience and (2) facilitator (EM physician educator) perception of student preparation, participation, and knowledge synthesis. With permission from its creators, we utilized an online video series derived from the Clerkship Directors in Emergency Medicine. Students were provided the link to these 1 week prior to the classroom experience as the "homework." We developed patient cases generated from the videos that we discussed during class in small-group format. Afterward, students were surveyed about the experience using four-point Likert items and free-text comments and also were evaluated by the facilitator on a nine-point scale. Forty-six clerkship students participated. Students deemed the online modules useful at 2.9 (95 % CI 2.7-3.2). Further, they reported the in-class discussion to be of high value at 3.9 (95 % CI 3.8-4.0), much preferred the flipped classroom to traditional lecturing at 3.8 (95 % CI 3.6-3.9), and rated the overall experience highly at 3.8 (95 % CI 3.7-3.9). Based on preparation, participation, and knowledge synthesis, the facilitator judged participants favorably at 7.4 (95 % CI 7.0-7.8). Students commented that the interactivity, discussion, and medical decision-making were advantages of this format. Students found high value in the flipped classroom and prefer it to traditional lecturing, citing

  20. The Third World Perspective on the Cold War: Making Curriculum and Pedagogy Relevant in History Classrooms

    Science.gov (United States)

    Ahmad, Iftikhar

    2017-01-01

    American and global history curriculum frameworks for high schools across the 50 states generally present the topic of the Cold War from the Western political perspective and contain material about the impact of the US-Soviet ideological rivalry on American society. This article argues that since the Cold War impacted the lives of people in the…

  1. Classrooms as Sites of Curriculum Delivery or Meaning-Making: Whose Knowledge Counts?

    Science.gov (United States)

    Yandell, John

    2014-01-01

    Whereas the previous government, regarding education primarily as a means to an end, showed little interest in questions of curriculum content, Gove's counter-revolution involves the enforcement of a deeply authoritarian politics of knowledge. An adequate response to such cultural and curricular conservatism needs to expose the falsity of Gove's…

  2. How WebQuests Can Enhance Science Learning Principles in the Classroom

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2012-01-01

    This article examines the merits of WebQuests in facilitating students' in-depth understanding of science concepts using the four principles of learning gathered from the National Research Council reports "How People Learn: Brain, Mind, Experience, and School" (1999) and the "How Students Learn: Science in the Classroom" (2005) as an analytic…

  3. The Development of Qualitative Classroom Action Research Workshop for In-Service Science Teachers

    Science.gov (United States)

    Buaraphan, Khajornsak

    2016-01-01

    In-service science teachers in Thailand are mandated to conduct classroom research, which can be quantitative and qualitative research, to improve teaching and learning. Comparing to quantitative research, qualitative research is a research approach that most of the Thai science teachers are not familiar with. This situation impedes science…

  4. Addressing Next Generation Science Standards: A Method for Supporting Classroom Teachers

    Science.gov (United States)

    Pellien, Tamara; Rothenburger, Lisa

    2014-01-01

    The Next Generation Science Standards (NGSS) will define science education for the foreseeable future, yet many educators struggle to see the bridge between current practice and future practices. The inquiry-based methods used by Extension professionals (Kress, 2006) can serve as a guide for classroom educators. Described herein is a method of…

  5. Ways to Prepare Future Teachers to Teach Science in Multicultural Classrooms

    Science.gov (United States)

    Billingsley, Berry

    2016-01-01

    Roussel De Carvalho uses the notion of superdiversity to draw attention to some of the pedagogical implications of teaching science in multicultural schools in cosmopolitan cities such as London. De Carvalho makes the case that if superdiverse classrooms exist then Science Initial Teacher Education has a role to play in helping future science…

  6. Ambitious Teachers' Design and Use of Classrooms as a Place of Science

    Science.gov (United States)

    Stroupe, David

    2017-01-01

    This multicase study examines how three teachers enacting ambitious instruction purposefully designed and used their classroom as a "place of science" in which students participated in disciplinary practices. A place of science is a location that shapes the norms, values, and history of disciplinary practices. Each participant's…

  7. Problem-Based Learning in the Life Science Classroom, K-12

    Science.gov (United States)

    McConnell, Tom; Parker, Joyce; Eberhardt, Janet

    2016-01-01

    "Problem-Based Learning in the Life Science Classroom, K-12" offers a great new way to ignite your creativity. Authors Tom McConnell, Joyce Parker, and Janet Eberhardt show you how to engage students with scenarios that represent real-world science in all its messy, thought-provoking glory. The scenarios prompt K-12 learners to immerse…

  8. Multilevel Effects of Student and Classroom Factors on Elementary Science Achievement in Five Countries

    Science.gov (United States)

    Kaya, Sibel; Rice, Diana C.

    2010-07-01

    This study examined the effects of individual student factors and classroom factors on elementary science achievement within and across five countries. The student-level factors included gender, self-confidence in science and home resources. The classroom-level factors included teacher characteristics, instructional variables and classroom composition. Results for the USA and four other countries, Singapore, Japan, Australia and Scotland, were reported. Multilevel effects were examined through Hierarchical Linear Modelling, using the Trends in International Mathematics and Science Study 2003 fourth grade dataset. Overall, the results showed that selected student background characteristics were consistently related to elementary science achievement in countries investigated. At the student level, higher levels of home resources and self-confidence and at the classroom level, higher levels of class mean home resources yielded higher science scores on the TIMSS 2003. In general, teacher and instructional variables were minimally related to science achievement. There was evidence of positive effects of teacher support in the USA and Singapore. The emphasis on science inquiry was positively related to science achievement in Singapore and negatively related in the USA and Australia. Recommendations for practice and policy were discussed.

  9. Elementary Students Using a Tablet-Based Note-Taking Application in the Science Classroom

    Science.gov (United States)

    Paek, Seungoh; Fulton, Lori A.

    2016-01-01

    This exploratory study investigates the potential of a tablet-based note-taking application (TbNA) to serve as a digital notebook in support of students' classroom science practices. An elementary teacher (Grades 4-5) from a public charter school integrated a TbNA into her science class for one semester while participating in professional…

  10. Students' Perceptions of the Learning Environment in Tertiary Science Classrooms in Myanmar

    Science.gov (United States)

    Khine, Myint Swe; Fraser, Barry J.; Afari, Ernest; Oo, Zeya; Kyaw, Thein Thein

    2018-01-01

    We investigated students' perceptions of their science classroom environments with the use of the What Is Happening In this Class? (WIHIC) questionnaire at the university level in Myanmar. The translated questionnaire was administered to 251 students in first-year science classes at a university. Both exploratory factor analysis and confirmatory…

  11. Facilitating Conceptual Change through Modeling in the Middle School Science Classroom

    Science.gov (United States)

    Carrejo, David J.; Reinhartz, Judy

    2014-01-01

    Engaging students in both hands-on and minds-on experiences is needed for education that is relevant and complete. Many middle school students enter science classrooms with pre-conceived ideas about their world. Some of these ideas are misconceptions that hinder students from developing accepted concepts in science, such as those related to…

  12. Exploring the meaning of practicing classroom inquiry from the perspectives of National Board Certified Science Teachers

    Science.gov (United States)

    Karaman, Ayhan

    Inquiry has been one of the most prominent terms of the contemporary science education reform movement (Buck, Latta, & Leslie-Pelecky, 2007; Colburn, 2006; Settlage, 2007). Practicing classroom inquiry has maintained its central position in science education for several decades because science education reform documents promote classroom inquiry as the potential savior of science education from its current problems. Likewise, having the capabilities of teaching science through inquiry has been considered by National Board for Professional Teaching Standards [NBPTS] as one of the essential elements of being an accomplished science teacher. Successful completion of National Board Certification [NBC] assessment process involves presenting a clear evidence of enacting inquiry with students. Despite the high-profile of the word inquiry in the reform documents, the same is not true in schools (Crawford, 2007). Most of the science teachers do not embrace this type of approach in their everyday teaching practices of science (Johnson, 2006; Luera, Moyer, & Everett, 2005; Smolleck, Zembal-Saul, & Yoder, 2006; Trumbull, Scarano, & Bonney, 2006). And the specific meanings attributed to inquiry by science teachers do not necessarily match with the original intentions of science education reform documents (Matson & Parsons, 2006; Wheeler, 2000; Windschitl, 2003). Unveiling the various meanings held by science teachers is important in developing better strategies for the future success of science education reform efforts (Jones & Eick, 2007; Keys & Bryan, 2001). Due to the potential influences of National Board Certified Science Teachers [NBCSTs] on inexperienced science teachers as their mentors, examining inquiry conceptions of NBCSTs is called for. How do these accomplished practitioners understand and enact inquiry? The purpose of this dissertation research study was twofold. First, it investigated the role of NBC performance assessment process on the professional development

  13. Science in Hawaii/Haawina Hoopapau: A Culturally Responsive Curriculum Project

    Science.gov (United States)

    Galloway, L. M.; Roberts, K.; Leake, D. W.; Stodden, R. S.; Crabbe, V.

    2005-12-01

    The marvels of modern science often fail to engage indigenous students, as the content and instructional style are usually rooted in the Western experience. This 3 year project, funded by the US Dept. of Education for the Education of Native Hawaiians, offers a curriculum that teaches science through (rather than just about) Native Hawaiian culture. The curriculum focuses on the interdependence of natural resources in our ahupuaa, or watersheds, and helps students strengthen their sense of place and self to malama i ka aina, to care for the land. Further, the curriculum is designed to: engage students in scientific study with relevant, interesting content and activities; improve student achievement of state department of education standards; increase student knowledge and skills in science, math and language arts; respond to the learning needs of Native Hawaiian and/or at-risk students. The project will be presented by a curriculum writer who created and adapted more than a year's worth of materials by teaming with kupuna (respected elders), local cultural experts and role models, educators (new, veteran, Hawaiian, non-Hawaiian, mainland, general and special education teachers), and professionals at the Center on Disability Studies at the University of Hawaii and ALU LIKE, Inc, a non-profit organization to assist Native Hawaiians. The materials created thus far are available for viewing at: www.scihi.hawaii.edu The curriculum, designed for grades 8-11 science classes, can be used to teach a year-long course, a unit, or single lesson related to astronomy, biology, botany, chemistry, geology, oceanography, physical and environmental sciences. This project is in its final year of field testing, polishing and dissemination, and therefore this session will encourage idea sharing, as does our copyright free Web site.

  14. Understanding Science Teaching Effectiveness: Examining How Science-Specific and Generic Instructional Practices Relate to Student Achievement in Secondary Science Classrooms

    Science.gov (United States)

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-01-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student…

  15. Leading Change: Curriculum Reform in Graduate Education in the Biomedical Sciences

    Science.gov (United States)

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were…

  16. Understanding Children's Science Identity through Classroom Interactions

    Science.gov (United States)

    Kim, Mijung

    2018-01-01

    Research shows that various stereotypes about science and science learning, such as science being filled with hard and dry content, laboratory experiments, and male-dominated work environments, have resulted in feelings of distance from science in students' minds. This study explores children's experiences of science learning and science identity.…

  17. Instructional strategies in science classrooms of specialized secondary schools for the gifted

    Science.gov (United States)

    Poland, Donna Lorraine

    This study examined the extent to which science teachers in Academic Year Governor's Schools were adhering to the national standards for suggested science instruction and providing an appropriate learning environment for gifted learners. The study asked 13 directors, 54 instructors of advanced science courses, and 1190 students of advanced science courses in 13 Academic Year Governor's Schools in Virginia to respond to researcher-developed surveys and to participate in classroom observations. The surveys and classroom observations collected demographic data as well as instructors' and students' perceptions of the use of various instructional strategies related to national science reform and gifted education recommendations. Chi-square analyses were used to ascertain significant differences between instructors' and students' perceptions. Findings indicated that instructors of advanced science classes in secondary schools for the gifted are implementing nationally recognized gifted education and science education instructional strategies with less frequency than desired. Both students and instructors concur that these strategies are being implemented in the classroom setting, and both concur as to the frequency with which the implementation occurs. There was no significant difference between instructors' and students' perceptions of the frequency of implementation of instructional strategies. Unfortunately, there was not a single strategy that students and teachers felt was being implemented on a weekly or daily basis across 90% of the sampled classrooms. Staff development in gifted education was found to be minimal as an ongoing practice. While this study offers some insights into the frequency of strategy usage, the study needs more classroom observations to support findings; an area of needed future research. While this study was conducted at the secondary level, research into instructional practices at the middle school and elementary school gifted science

  18. Persuasive Writing with Mobile-Based Graphic Organizers in Inclusive Classrooms across the Curriculum

    Science.gov (United States)

    Regan, Kelley; Evmenova, Anya S.; Good, Kevin; Legget, Alicia; Ahn, Soo Y.; Gafurov, Boris; Mastropieri, Margo

    2018-01-01

    As writing instruction expands beyond the language arts classroom, students with disabilities, English language learners, and others who struggle with writing continue to need support with written expression. A timely practice to support student writing is the use of technology. This study used a quasi-experimental group design to examine the…

  19. Group work in the English language curriculum sociocultural and ecological perspectives on second language classroom learning

    CERN Document Server

    Chappell, P

    2014-01-01

    This book explores how using small groups in second language classrooms supports language learning. Chappell's experience as a language teacher equips him to present a clear, evidence-based argument for the powerful influence group work has upon the opportunities for learning, and how it should therefore be an integral part of language lessons.

  20. Implementing the Finnish Literacy Curriculum in a First-Grade Classroom

    Science.gov (United States)

    Räisänen, Sari; Korkeamäki, Riitta-Liisa

    2015-01-01

    This study investigated the first author's process of implementing new literacy practices as a teacher in a Finnish first-grade classroom from a poststructuralist perspective by using nexus analysis (NA). We concentrated on two essential concepts in NA, Bourdieu's habitus and Goffman's interaction order, which we linked to Grundy's curriculum…

  1. Curriculum Integration versus Educating for Global Citizenship: A (Disciplinary) View from the International Relations Classroom

    Science.gov (United States)

    Gordon, Dennis R.

    2014-01-01

    This paper offers a view from the classroom and departmental chair's office, using the teaching of introductory "International Relations" and some basic theoretical foundations of the field, "Realism," "Cosmopolitanism," and "Constructivism," to explore how study abroad can balance calls to educate for…

  2. Learning to write in science: A study of English language learners' writing experience in sixth-grade science classrooms

    Science.gov (United States)

    Qi, Yang

    Writing is a predictor of academic achievement and is essential for student success in content area learning. Despite its importance, many students, including English language learners (ELLs), struggle with writing. There is thus a need to study students' writing experience in content area classrooms. Informed by systemic functional linguistics, this study examined 11 ELL students' writing experience in two sixth grade science classrooms in a southeastern state of the United States, including what they wrote, how they wrote, and why they wrote in the way they did. The written products produced by these students over one semester were collected. Also collected were teacher interviews, field notes from classroom observations, and classroom artifacts. Student writing samples were first categorized into extended and nonextended writing categories, and each extended essay was then analyzed with respect to its schematic structure and grammatical features. Teacher interviews and classroom observation notes were analyzed thematically to identify teacher expectations, beliefs, and practices regarding writing instruction for ELLs. It was found that the sixth-grade ELLs engaged in mostly non-extended writing in the science classroom, with extended writing (defined as writing a paragraph or longer) constituting roughly 11% of all writing assignments. Linguistic analysis of extended writing shows that the students (a) conveyed information through nouns, verbs, adjectives, adverbial groups and prepositional phrases; (b) constructed interpersonal context through choices of mood, modality, and verb tense; and (c) structured text through thematic choices and conjunctions. The appropriateness of these lexicogrammatical choices for particular writing tasks was related to the students' English language proficiency levels. The linguistic analysis also uncovered several grammatical problems in the students' writing, including a limited range of word choices, inappropriate use of mood

  3. Using constructivist teaching strategies in high school science classrooms to cultivate positive attitudes toward science

    Science.gov (United States)

    Heron, Lory Elen

    This study investigated the premise that the use of constructivist teaching strategies (independent variable) in high school science classrooms can cultivate positive attitudes toward science (dependent variable) in high school students. Data regarding the relationship between the use of constructivist strategies and change in student attitude toward science were collected using the Science Attitude Assessment Tool (SAAT) (Heron & Beauchamp, 1996). The format of this study used the pre-test, post-test, control group-experimental group design. The subjects in the study were high school students enrolled in biology, chemistry, or environmental science courses in two high schools in the western United States. Ten teachers and twenty-eight classes, involving a total of 249 students participated in the study. Six experimental group teachers and four control group teachers were each observed an average of six times using the Science Observation Guide (Chapman, 1995) to measure the frequency of observed constructivist behaviors. The mean for the control group teachers was 12.89 and the mean for experimental group teachers was 20.67; F(1, 8) = 16.2, p =.004, revealing teaching behaviors differed significantly between the two groups. After a four month experimental period, the pre-test and post-test SAAT scores were analyzed. Students received a score for their difference in positive attitude toward science. The null hypothesis stating there would be no change in attitude toward science as a subject, between students exposed to constructivist strategies, and students not exposed to constructivist strategies was rejected F(1, 247) = 8.04, p =.005. The control group had a generally higher reported grade in their last science class than the experimental group, yet the control group attitude toward science became more negative (-1.18) while attitude toward science in the experimental group became more positive (+1.34) after the four-month period. An analysis of positive

  4. How a science methods course may influence the curriculum decisions of preservice teachers in the Bahamas

    Science.gov (United States)

    Wisdom, Sonya L.

    The purpose of this study was to examine how a science methods course in primary education might influence the curriculum decisions of preservice teachers in The Bahamas related to unit plan development on environmental science topics. Grounded in a social constructivist theoretical framework for teaching and learning science, this study explored the development of the confidence and competence of six preservice teachers to teach environmental science topics at the primary school level. A qualitative case study using action research methodologies was conducted. The perspectives of preservice teachers about the relevancy of methods used in a science methods course were examined as I became more reflective about my practice. Using constant comparative analysis, data from student-written documents and interviews as well as my field notes from class observations and reflective journaling were analyzed for emerging patterns and themes. Findings of the study indicated that while preservice teachers showed a slight increase in interest regarding learning and teaching environmental science, their primary focus during the course was learning effective teaching strategies in science on topics with which they already had familiarity. Simultaneously, I gained a deeper understanding of the usefulness of reflection in my practice. As a contribution to the complexity of learning to teach science at the primary school level, this study suggests some issues for consideration as preservice teachers are supported to utilize more of the national primary science curriculum in The Bahamas.

  5. Exploring the contexts of urban science classrooms: Cogenerative dialogues, coteaching, and cosmopolitanism

    Science.gov (United States)

    Emdin, Christopher

    The body of work presented in this dissertation is a response to the reported association between poor outcomes in science achievement and students of color in urban schools. By presenting counterexamples to the cultural motif that urban students of color perform poorly in science, I argue that poor achievement cannot be traced to a group of people but can be linked to institutions promoting subject delivery methods that instill distaste for science and compel students to display an illusion of disinterest in school. There are two major goals of this study. First, I plan to demonstrate how plans of action generated by coteachers and cogenerative dialogue groups can coalesce under the ethos of making science and schooling accessible to populations that are traditionally marginalized from science achievement. My second aim is to develop mechanisms for transforming science learning contexts into cosmopolitan learning communities that develop student success in science. Through a three-year ethnographic study of physics and chemistry classrooms in a high school in New York City, I present explorations of the culture and context of the urban classroom as a chief means to meet my goals. In my research, I find that obstacles to identity development around science can be tied to corporate understandings of teaching and learning that are amenable to local efforts toward change. This change is facilitated through the use of transformative tools like cogenerative dialogues, coteaching, and cosmopolitanism. Through the application of these research tools, I uncover and investigate how various misalignments that present themselves in physics and chemistry classrooms serve as signifiers of macro issues that permeate science classrooms from larger fields. By utilizing cogenerative dialogues as a tool for investigating both micro enactments within classrooms and the macro structures that generate these enactments, I show how students and teachers can work together as co

  6. Exploring Ivorian Perspectives on the Effectiveness of the Current Ivorian Science Curriculum in Addressing Issues Related to HIV/AIDS

    Science.gov (United States)

    Ado, Gustave Firmin

    2014-01-01

    School-based HIV/AIDS science education has the potential to impact students when integrated into the science curriculum. However, this mixed method study shows that school-based HIV/AIDS science education is often not infused into career subjects such as science education but integrated into civics education and taught by teachers who lack the…

  7. Optimizing biomedical science learning in a veterinary curriculum: a review.

    Science.gov (United States)

    Warren, Amy L; Donnon, Tyrone

    2013-01-01

    As veterinary medical curricula evolve, the time dedicated to biomedical science teaching, as well as the role of biomedical science knowledge in veterinary education, has been scrutinized. Aside from being mandated by accrediting bodies, biomedical science knowledge plays an important role in developing clinical, diagnostic, and therapeutic reasoning skills in the application of clinical skills, in supporting evidence-based veterinary practice and life-long learning, and in advancing biomedical knowledge and comparative medicine. With an increasing volume and fast pace of change in biomedical knowledge, as well as increased demands on curricular time, there has been pressure to make biomedical science education efficient and relevant for veterinary medicine. This has lead to a shift in biomedical education from fact-based, teacher-centered and discipline-based teaching to applicable, student-centered, integrated teaching. This movement is supported by adult learning theories and is thought to enhance students' transference of biomedical science into their clinical practice. The importance of biomedical science in veterinary education and the theories of biomedical science learning will be discussed in this article. In addition, we will explore current advances in biomedical teaching methodologies that are aimed to maximize knowledge retention and application for clinical veterinary training and practice.

  8. Use of the Outdoor Classroom and Nature-Study to Support Science and Literacy Learning: A Narrative Case Study of a Third-Grade Classroom

    Science.gov (United States)

    Eick, Charles J.

    2012-01-01

    A case study of an exemplary third grade teacher's use of the outdoor classroom for meeting both state science and language arts standards is described. Data from the researcher's field journal, teacher lesson plans, and teacher interviews document how this teacher used nature-study to bridge outdoor classroom experiences with the state science…

  9. Aristotle, alive and well in Papua New Guinea science classrooms

    Science.gov (United States)

    Boeha, Beno B.

    1990-09-01

    National High School students from Papua New Guinea were interviewed about two situations; the results of their Aristotle-like views regarding `forced' and `natural' motion are presented and discussed. Twenty-one National High School Students were interviewed about two situations similarly used elsewhere (Osborne and Gibert 1979, 1980, Osborne 1980a) and the results of these Aristotle-like views possessed by students have been presented and discussed above. With each of the six summary statements some extracts have been provided from interviews conducted by the author with students who had come from various parts of Pupua New Guinea. Students' views have been compiled to give a composite picture of the Aristotle-like ideas. Some impression of the commonality of the ideas/beliefs has been provided by reference to the work of others who have reported similar tendencies in testing and interviewing physics students. Throughout the study, students' Aristotlean-like views have been given a respected status that reflects their widespread use, their internal coherence and their tenacity in the face of classroom teaching in a Pupua New Guinea National High School. In analysing individual interview transcripits, attempts were made to construct ideas/beliefs that can account for statements by each student in a manner that statements are consistent with each other. The assumption that all of a student's statements are logically compatible to a listener or reader is difficult to maintain. However, it is one that has to be made as a hypothesis to work with, otherwise it is too easy to discount sections of a student's discourse that seem inconsistent with understandable parts. The aims of this part of the study have been to provide science educationalists with a repertoire of common Aristolean-like beliefs which have persisted in students. These views differ in some ways from the orthodox physics views. By better understanding of the students' beliefs and commitments about

  10. Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration

    Science.gov (United States)

    Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.

    2017-12-01

    "Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of

  11. "Finding the Joy in the Unknown": Implementation of STEAM Teaching Practices in Middle School Science and Math Classrooms

    Science.gov (United States)

    Quigley, Cassie F.; Herro, Dani

    2016-06-01

    In response to a desire to strengthen the economy, educational settings are emphasizing science, technology, engineering, and mathematics (STEM) curriculum and programs. Yet, because of the narrow approach to STEM, educational leaders continue to call for a more balanced approach to teaching and learning, which includes the arts, design, and humanities. This desire created space for science, technology, engineering, arts, and mathematics (STEAM) education, a transdisciplinary approach that focuses on problem-solving. STEAM-based curricula and STEAM-themed schools are appearing all over the globe. This growing national and global attention to STEAM provides an opportunity for teacher education to explore the ways in which teachers implement STEAM practices, examining the successes and challenges, and how teachers are beginning to make sense of this innovative teaching practice. The purpose of this paper is to examine the implementation of STEAM teaching practices in science and math middle school classrooms, in hopes to provide research-based evidence on this emerging topic to guide teacher educators.

  12. "This Is a Tool for You to Use": Expansive Framing and Adaptive Transfer in Two PBL Science Classrooms

    Science.gov (United States)

    Becherer, Kendall

    This dissertation is a qualitative, comparative case study investigating productive disciplinary engagement, framing for transfer, and tool use in two high school science classrooms. My goal was to investigate the implementation of material resources that were developed to support students' engagement, driven by my primary research question: How does the implementation of material tools as a learning resource support or impede students' productive disciplinary engagement in a project-based learning setting? Using a grounded theory approach, I analyzed video transcriptions and interviews of two teachers and their students at the same school as they enacted a coordinated project-based, advanced placement curriculum as part of a design-based implementation research project. Findings suggest that intentional framing and use of tools may help teachers support students in making connections across multiple parts of a project in ways that facilitate productive engagement in the discipline of science as well as students building on and adapting their knowledge over time. Keywords: Project-based learning, advanced placement, environmental science, scientific practices, dialogic discourse, grammar of schooling, situative theory, student engagement, productive disciplinary engagement, material resources, student authorship, framing for transfer, expansive framing, near transfer, adaptive transfer.

  13. Incorporating climate change and technology into the science classroom: Lessons from my year as a GK-12 Fellow

    Science.gov (United States)

    Abramoff, R. Z.

    2012-12-01

    Climate change is not included in the K-8 science standards in Massachusetts; as a result, students learn what climate is, but not how human activities affect it. Starting in 2010, Boston University launched the GK-12 GLACIER program, funded with 2.9M from the National Science Foundation. The purpose of the program is to incorporate the fundamentals of climate change into the K-12 curriculum, focusing on grades 5-8 when quantitative science enters the curriculum. Graduate students are partnered with teachers in Boston public schools for 10 hours a week of teaching with additional curriculum development. I will focus on the curriculum that I developed as a part of this program for the 5th grade science class at The Curley School in Jamaica Plain, MA, where I worked with Grades 3-5, ESL, and PACE autism program science teacher, Stephanie Selznick. The Curley School is an ethnically and economically diverse Boston public school with about 800 students and an 83% minority population. At the Curley, I taught two full days a week, meeting with all of the 5th grade classes and some of the 4th grade classes of all academic levels. The lessons that I created were designed to fit into the state standards and enrich student understanding plant ecology and earth science, as well as develop their capacity to design experiments and use technology. These include Question of the Day, Digital Field Guide to the Outdoor Classroom, Phototropism, Solar System Weather Report, Soil and Water, Local Landforms, and the Earth as a Closed System Unit for which materials and lesson plans are available on my website. Our secondary goals were to improve tech literacy at Curley. Due to funding restrictions, there were few technology resources available to the students at the beginning of the 2011/2012 school year. To improve technology resources at Curley, I organized a fundraiser at Boston University, selling donated items from graduate students and faculty; the 1000 raised was used to supply

  14. Differences in the classroom: learning about practices of two science teachers

    Directory of Open Access Journals (Sweden)

    Elaine Soares França

    2012-12-01

    Full Text Available In this research, a case study, we adopted ethnography as logic of inquiry to learn about teaching for diverse groups in middle school science classrooms. Multiple data sources were used: participant observation, video and audio records, field notes and semi-structured interviews. We analyzed interviews with two teachers, as well as classroom episodes to construct, through contrast, a characterization of two types of practice involving diversity in the classroom. The first teacher show concerns with introducing students in school culture. She tried to “translate” terms that students do not understand, explaining their meanings. In this process, teaching subject matter knowledge (SMK is a secondary goal. The other teacher emphasized SMK, trying to establish connections between science content and students’ everyday life experiences. Both teachers do not acknowledge significant influences in science learning related to gender, social class, and ethnicity.

  15. Student control ideology and the science classroom environment in urban secondary schools of sudan

    Science.gov (United States)

    Harty, Harold; Hassan, Hassan A.

    An examination was made concerning the relationships between Sudanese secondary science teachers' pupil control ideology and their students' perceptions/observations of the psychosocial environment of their science classrooms. One hundred secondary science teachers were classified as possessing humanistic (N = 20) or custodial (N = 20) control ideologies. A class (N = 40) of students was randomly selected for every teacher in both groups. The findings revealed that no significant relationships existed between the control ideologies of the teachers and their students' perceptions/observations of the classroom environment. Custodialism in control ideology was significantly related to the classroom environment psychosocial aspect of low support. Discussion and implications of the findings have been approached from both Sudanese and American perspectives.

  16. Effects of a research-infused botanical curriculum on undergraduates' content knowledge, STEM competencies, and attitudes toward plant sciences.

    Science.gov (United States)

    Ward, Jennifer Rhode; Clarke, H David; Horton, Jonathan L

    2014-01-01

    In response to the American Association for the Advancement of Science's Vision and Change in Undergraduate Biology Education initiative, we infused authentic, plant-based research into majors' courses at a public liberal arts university. Faculty members designed a financially sustainable pedagogical approach, utilizing vertically integrated curricular modules based on undergraduate researchers' field and laboratory projects. Our goals were to 1) teach botanical concepts, from cells to ecosystems; 2) strengthen competencies in statistical analysis and scientific writing; 3) pique plant science interest; and 4) allow all undergraduates to contribute to genuine research. Our series of inquiry-centered exercises mitigated potential faculty barriers to adopting research-rich curricula, facilitating teaching/research balance by gathering publishable scholarly data during laboratory class periods. Student competencies were assessed with pre- and postcourse quizzes and rubric-graded papers, and attitudes were evaluated with pre- and postcourse surveys. Our revised curriculum increased students' knowledge and awareness of plant science topics, improved scientific writing, enhanced statistical knowledge, and boosted interest in conducting research. More than 300 classroom students have participated in our program, and data generated from these modules' assessment allowed faculty and students to present 28 contributed talks or posters and publish three papers in 4 yr. Future steps include analyzing the effects of repeated module exposure on student learning and creating a regional consortium to increase our project's pedagogical impact. © 2014 J. R. Ward et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http

  17. The quest for balanced curriculum: The perceptions of secondary students and teachers who experienced an integrated art and science curriculum

    Science.gov (United States)

    Schramm, Susan Lynn

    The purpose of this study was to describe how an integrated high school curriculum unit connecting the different subject areas of art and science could be used to give students a voice in the decisions about learning. Through the data generated I examined the obstacles of integrating curriculum in a traditionally subject-centered high school. Forty-one students, nineteen biology students in the ninth grade, and twenty-two art students ranging from the tenth grade through the twelfth grade, along with their two teachers and a student teacher, were the subjects of the research. An integrated curricular unit, "Genetic Robotics," was designed specifically for this research to enable students to integrate scientific and artistic processes such as communication skills, problem-solving, critical thinking, creativity and responsiveness to the aesthetic; thus empowering them for future learning. Semi-structured interviews, surveys, questionnaires, informal conversations, reaction journals, field observations, video tapes, and official documents from the school, provided the data for this research. Data were collected using a strategy of participant-observation. The constant comparative analysis method was employed to explore emerging themes. Oak Park students' adaptability to an integrated art and science unit was found to be limited because of their inability to conceptualize curricular structures that are different from the traditional ones to which they are accustomed. Students typically scored high on standardized proficiency tests and college entrance exams. Therefore, for them to experience an innovation that is not based on the memorize-and-recall mode of learning is to risk failure and many are unwilling to do so, especially the high achieving students.

  18. Science is just around the corner: Outside and inside the classroom

    Science.gov (United States)

    Raposo, Cristina; Florêncio, Elsa; Roussado, Eduarda

    2016-04-01

    In this poster two activities will be presented, one outside and the other inside the classroom, both showing how science is easy to understand and takes part in everyday life. Sintra is a geological/biological rich area to explore. The Sintra hills are a small igneous intrusion, metamorphosing and deforming the surrounding sedimentary rocks. They have an E-W orientation and form a natural barrier to the N-NW winds, promoting a micro-climate that is moderately humid in the Sintra hills and semi-arid in Cabo da Roca. Teachers consider this area as an outdoor laboratory due to its geological and biological diversity. A Geo-Paper was developed (a walk evolving through a set of stops with observations/clues/questions), so participating students are able to observe and understand the importance of rocks in the village's buildings and their relation to the local/regional/national geology. The final stop is a guided tour to Sintra Natural History Museum. This is one of many activities to explore the wide choice of resources this area has to offer. Others include: walks in the forest to photograph species, recognize biodiversity and spot/report environmental issues; field-trips to visit geological spots in the Sintra-Cascais Natural Park that will enable students to make a virtual tour in Google maps and elaborate the geological history of the area. 'Science in Action' club: Where Primary School Meets Science The 'Science in Action' Club is an extra curriculum activity for 7th, 8th and 9th grade students, which takes place once a week and is run by a Biology/Geology and a Physics/Chemistry teacher. One or two activities are chosen, per week, to be carried out by the students, under the supervision of the teachers, in compliance with the rules for behaviour and safety in the laboratory. The main goals to be achieved are: motivating students towards Science, giving them the opportunity to learn by doing, complementing the knowledge acquired during the science classes and

  19. Classroom

    Indian Academy of Sciences (India)

    In this section of Resonance, we invite readers to pose questions likely to be raised in a classroom ... sharing personal experiences and viewpoints on matters related to teaching and learning ... Is there any well charaderised example of.

  20. Classroom

    Indian Academy of Sciences (India)

    responses, or both. "Classroom" is equally a forum for raising broader issues and .... Research Institute, Bangalore ... From Bohr's theory we can calculate v = (En - En -1) / h the ... important reason for the failure of the qualitative arguments. An.

  1. Is there a correlation between students' perceptions of their middle school science classroom learning environment and their classroom grades?

    Science.gov (United States)

    Snyder, Wayne

    The purpose of this study was to determine if the marking period grades of middle school science students are correlated with their perception of the classroom learning environment, and if so could such an indicator be used in feedback loops for ongoing classroom learning environment evaluation and evolution. The study examined 24 classrooms in three districts representing several different types of districts and a diverse student population. The independent variable was the students' perceptions of their classroom learning environment (CLE). This variable was represented by their responses on the WIHIC (What Is Happening In This Class) questionnaire. The dependent variable was the students' marking period grades. Background data about the students was included, and for further elaboration and clarification, qualitative data was collected through student and teacher interviews. Middle school science students in this study perceived as most positive those domains over which they have more locus of control. Perceptions showed some variance by gender, ethnicity, teacher/district, and socio-economic status when viewing the absolute values of the domain variables. The patterns of the results show consistency between groups. Direct correlation between questionnaire responses and student grades was not found to be significant except for a small significance with "Task Orientation". This unexpected lack of correlation may be explained by inconsistencies between grading schemes, inadequacies of the indicator instrument, and/or by the one-time administration of the variables. Analysis of the qualitative and quantitative data led to the conclusion that this instrument is picking up information, but that revisions in both the variables and in the process are needed. Grading schemes need to be decomposed, the instrument needs to be revised, and the process needs to be implemented as a series of regular feed-back loops.

  2. Classroom to Community: Field Studies for Exercise Science Students

    Science.gov (United States)

    Melton, Deana; Dail, Teresa K.

    2017-01-01

    The field of kinesiology has seen growth in terms of the number of highly specialized subdisciplines, such as exercise physiology, motor learning, biomechanics, sport and exercise psychology, and fitness management. While some undergraduate students may be comfortable with a chosen concentration, others may enter the kinesiology curriculum lacking…

  3. Work-Based Curriculum to Broaden Learners' Participation in Science: Insights for Designers

    Science.gov (United States)

    Bopardikar, Anushree; Bernstein, Debra; Drayton, Brian; McKenney, Susan

    2018-05-01

    Around the globe, science education during compulsory schooling is envisioned for all learners regardless of their educational and career aspirations, including learners bound to the workforce upon secondary school completion. Yet, a major barrier in attaining this vision is low learner participation in secondary school science. Because curricula play a major role in shaping enacted learning, this study investigated how designers developed a high school physics curriculum with positive learning outcomes in learners with varied inclinations. Qualitative analysis of documents and semistructured interviews with the designers focused on the curriculum in different stages—from designers' ideas about learning goals to their vision for enactment to the printed materials—and on the design processes that brought them to fruition. This revealed designers' emphases on fostering workplace connections via learning goals and activities, and printed supports. The curriculum supported workplace-inspired, hands-on design-and-build projects, developed to address deeply a limited set of standards aligned learning goals. The curriculum also supported learners' interactions with relevant workplace professionals. To create these features, the designers reviewed other curricula to develop vision and printed supports, tested activities internally to assess content coverage, surveyed states in the USA receiving federal school-to-work grants and reviewed occupational information to choose unit topics and career contexts, and visited actual workplaces to learn about authentic praxis. Based on the worked example, this paper offers guidelines for designing work-based science curriculum products and processes that can serve the work of other designers, as well as recommendations for research serving designers and policymakers.

  4. Science in the Elementary School Classroom: Portraits of Action Research.

    Science.gov (United States)

    McDonald, Jane B., Ed.; Gilmer, Penny J., Ed.

    Teacher knowledge and skills are critical elements in the student learning process. Action research serves as an increasingly popular technique to engage teachers in educational change in classrooms. This document focuses on action research reports of elementary school teachers. Chapters include: (1) "First Graders' Beliefs and Perceptions of…

  5. Lab-on-a-Chip: Frontier Science in the Classroom

    Science.gov (United States)

    Wietsma, Jan Jaap; van der Veen, Jan T.; Buesink, Wilfred; van den Berg, Albert; Odijk, Mathieu

    2018-01-01

    Lab-on-a-chip technology is brought into the classroom through development of a lesson series with hands-on practicals. Students can discover the principles of microfluidics with different practicals covering laminar flow, micromixing, and droplet generation, as well as trapping and counting beads. A quite affordable novel production technique…

  6. Generating Testable Questions in the Science Classroom: The BDC Model

    Science.gov (United States)

    Tseng, ChingMei; Chen, Shu-Bi Shu-Bi; Chang, Wen-Hua

    2015-01-01

    Guiding students to generate testable scientific questions is essential in the inquiry classroom, but it is not easy. The purpose of the BDC ("Big Idea, Divergent Thinking, and Convergent Thinking") instructional model is to to scaffold students' inquiry learning. We illustrate the use of this model with an example lesson, designed…

  7. Technology-Supported Learning Environments in Science Classrooms in India

    Science.gov (United States)

    Gupta, Adit; Fisher, Darrell

    2012-01-01

    The adoption of technology has created a major impact in the field of education at all levels. Technology-supported classroom learning environments, involving modern information and communication technologies, are also entering the Indian educational system in general and the schools in Jammu region (Jammu & Kashmir State, India) in…

  8. Flipped Instruction in a High School Science Classroom

    Science.gov (United States)

    Leo, Jonathan; Puzio, Kelly

    2016-01-01

    This paper reports on a quasi-experimental study examining the effectiveness of flipped instruction in a 9th grade biology classroom. This study included four sections of freshmen-level biology taught by the first author at a private secondary school in the Pacific Northwest. Using a block randomized design, two sections were flipped and two…

  9. A Science Classroom That's More than a Game

    Science.gov (United States)

    Barlow, Tim; Fleming, Barry

    2016-01-01

    "Blended" and "flipped" pedagogies are becoming more common features of classrooms as the technological revolution continues. While the appropriate use of technology in the learning environment can serve to motivate some students, significant problems surrounding student motivation and engagement remain. As such, the…

  10. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    Science.gov (United States)

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  11. Collaborative curriculum design to increase science teaching self-efficacy

    NARCIS (Netherlands)

    Velthuis, C.H.

    2014-01-01

    The focus in this study is on developing a teacher training program for improving teachers’ science teaching self-efficacy. Teachers with a high sense of self-efficacy will set higher goals for themselves, are less afraid of failure and will find new strategies when old ones fail. If their sense of

  12. Integrating Leadership Development throughout the Undergraduate Science Curriculum

    Science.gov (United States)

    Reed, Kelynne E.; Aiello, David P.; Barton, Lance F.; Gould, Stephanie L.; McCain, Karla S.; Richardson, John M.

    2016-01-01

    This article discusses the STEM (science, technology, engineering, and mathematics) Teaching and Research (STAR) Leadership Program, developed at Austin College, which engages students in activities integrated into undergraduate STEM courses that promote the development of leadership behaviors. Students focus on interpersonal communication,…

  13. Fifteen years medical information sciences: the Amsterdam curriculum

    NARCIS (Netherlands)

    Jaspers, Monique W.; Fockens, Paul; Ravesloot, Jan H.; Limburg, Martien; Abu-Hanna, Ameen

    2004-01-01

    Objectives: To inform the medical informatics community on the rational, goals, evolution and present contents of the Medical Information Sciences program of the University of Amsterdam and our achievements. Methods: We elaborate on the history of our program, the philosophy, contents and

  14. Curriculum challenges faced by rural-origin health science students ...

    African Journals Online (AJOL)

    This article is one of a series of investigations into various aspects of university life and career choices of health science students. Data were collected at three South African universities by the Collaboration for Health Equity through Education and Research (CHEER) collaborators. Ethical permission was sought from each ...

  15. Food-Based Science Curriculum Yields Gains in Nutrition Knowledge

    Science.gov (United States)

    Carraway-Stage, Virginia; Hovland, Jana; Showers, Carissa; Díaz, Sebastián; Duffrin, Melani W.

    2015-01-01

    Background: Students may be receiving less than an average of 4?hours of nutrition instruction per year. Integrating nutrition with other subject areas such as science may increase exposure to nutrition education, while supporting existing academics. Methods: During the 2009-2010 school year, researchers implemented the Food, Math, and Science…

  16. A New Look at Genre and Authenticity: Making Sense of Reading and Writing Science News in High School Classrooms

    Science.gov (United States)

    Kohnen, Angela M.

    2012-01-01

    This qualitative study examined the importance of the genre and authenticity as teachers sought to bring science journalism to the high school science classroom. Undertaken as part of the National Science Foundation-funded grant "Science Literacy through Science Journalism (SciJourn)," this work was conducted as a series of smaller…

  17. Research on same-gender grouping in eighth-grade science classrooms

    Science.gov (United States)

    Friend, Jennifer Ingrid

    This study examined two hypotheses related to same-gender grouping of eighth-grade science classes in a public middle-school setting in suburban Kansas City. The first hypothesis, male and female students enrolled in same-gender eighth-grade science classes demonstrate more positive science academic achievement than their male and female peers enrolled in mixed-gender science classes. The second hypothesis, same-gender grouping of students in eighth-grade science has a positive effect on classroom climate. The participants in this study were randomly assigned to class sections of eighth-grade science. The first experimental group was an eighth-grade science class of all-male students (n = 20) taught by a male science teacher. The control group used for comparison to the male same-gender class consisted of the male students (n = 42) in the coeducational eighth-grade science classes taught by the same male teacher. The second experimental group was an eighth-grade science class of all-female students (n = 23) taught by a female science teacher. The control group for the female same-gender class consisted of female students (n = 61) in the coeducational eighth-grade science classes taught by the same female teacher. The male teacher and the female teacher did not vary instruction for the same-gender and mixed-gender classes. Science academic achievement was measured for both groups through a quantitative analysis using grades on science classroom assessment and overall science course grades. Classroom climate was measured through qualitative observations and through qualitative and quantitative analysis of a twenty-question student survey administered at the end of each trimester grading period. The results of this study did not indicate support for either hypothesis. Data led to the conclusions that same-gender grouping did not produce significant differences in student science academic achievement, and that same-gender classes did not create a more positive

  18. Facilitating cultural border crossing in urban secondary science classrooms: A study of inservice teachers

    Science.gov (United States)

    Monteiro, Anna Karina

    Research acknowledges that if students are to be successful science, they must learn to navigate and cross cultural borders that exist between their own cultures and the subculture of science. This dissertation utilized a mixed methods approach to explore how inservice science teachers working in urban schools construct their ideas of and apply the concepts about the culture of science and cultural border crossing as relevant to the teaching and learning of science. The study used the lenses of cultural capital, social constructivism, and cultural congruency in the design and analysis of each of the three phases of data collection. Phase I identified the perspectives of six inservice science teachers on science culture, cultural border crossing, and which border crossing methods, if any, they used during science teaching. Phase II took a dialectical approach as the teachers read about science culture and cultural border crossing during three informal professional learning community meetings. This phase explored how teachers constructed their understanding of cultural border crossing and how the concept applied to the teaching and learning of science. Phase III evaluated how teachers' perspectives changed from Phase I. In addition, classroom observations were used to determine whether teachers' practices in their science classrooms changed from Phase I to Phase III. All three phases collected data through qualitative (i.e., interviews, classroom observations, and surveys) and quantitative (Likert items) means. The findings indicated that teachers found great value in learning about the culture of science and cultural border crossing as it pertained to their teaching methods. This was not only evidenced by their interviews and surveys, but also in the methods they used in their classrooms. Final conclusions included how the use of student capital resources (prior experiences, understandings and knowledge, ideas an interests, and personal beliefs), if supported by

  19. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    Science.gov (United States)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-06-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to evaluate the (HIC) system, which incorporates augmented reality, virtual reality and cloud-classroom to teach basic materials science courses. The study followed a pretest-posttest quasi-experimental research design. A total of 92 students (aged 19-20 years), in a second-year undergraduate program, participated in this 18-week-long experiment. The students were divided into an experimental group and a control group. The experimental group (36 males and 10 females) was instructed utilizing the HIC system, while the control group (34 males and 12 females) was led through traditional teaching methods. Pretest, posttest, and delayed posttest scores were evaluated by multivariate analysis of covariance. The results indicated that participants in the experimental group who used the HIC system outperformed the control group, in the both posttest and delayed posttest, across three learning dimensions. Based on these results, the HIC system is recommended to be incorporated in formal materials science learning settings.

  20. Updating the immunology curriculum in clinical laboratory science.

    Science.gov (United States)

    Stevens, C D

    2000-01-01

    To determine essential content areas of immunology/serology courses at the clinical laboratory technician (CLT) and clinical laboratory scientist (CLS) levels. A questionnaire was designed which listed all major topics in immunology and serology. Participants were asked to place a check beside each topic covered. For an additional list of serological and immunological laboratory testing, participants were asked to indicate if each test was performed in either the didactic or clinical setting, or not performed at all. A national survey of 593 NAACLS approved CLT and CLS programs was conducted by mail under the auspices of ASCLS. Responses were obtained from 158 programs. Respondents from all across the United States included 60 CLT programs, 48 hospital-based CLS programs, 45 university-based CLS programs, and 5 university-based combined CLT and CLS programs. The survey was designed to enumerate major topics included in immunology and serology courses by a majority of participants at two distinct educational levels, CLT and CLS. Laboratory testing routinely performed in student laboratories as well as in the clinical setting was also determined for these two levels of practitioners. Certain key topics were common to most immunology and serology courses. There were some notable differences in the depth of courses at the CLT and CLS levels. Laboratory testing associated with these courses also differed at the two levels. Testing requiring more detailed interpretation, such as antinuclear antibody patterns (ANAs), was mainly performed by CLS students only. There are certain key topics as well as specific laboratory tests that should be included in immunology/serology courses at each of the two different educational levels to best prepare students for the workplace. Educators can use this information as a guide to plan a curriculum for such courses.