WorldWideScience

Sample records for science curiosity scale

  1. Science Curiosity in Learning Environments: Developing an Attitudinal Scale for Research in Schools, Homes, Museums, and the Community

    Science.gov (United States)

    Weible, Jennifer L.; Zimmerman, Heather Toomey

    2016-01-01

    Although curiosity is considered an integral aspect of science learning, researchers have debated how to define, measure, and support its development in individuals. Prior measures of curiosity include questionnaire type scales (primarily for adults) and behavioral measures. To address the need to measure scientific curiosity, the Science…

  2. Science curiosity in learning environments: developing an attitudinal scale for research in schools, homes, museums, and the community

    Science.gov (United States)

    Weible, Jennifer L.; Toomey Zimmerman, Heather

    2016-05-01

    Although curiosity is considered an integral aspect of science learning, researchers have debated how to define, measure, and support its development in individuals. Prior measures of curiosity include questionnaire type scales (primarily for adults) and behavioral measures. To address the need to measure scientific curiosity, the Science Curiosity in Learning Environments (SCILE) scale was created and validated as a 12-item scale to measure scientific curiosity in youth. The scale was developed through (a) adapting the language of the Curiosity and Exploration Inventory-II [Kashdan, T. B., Gallagher, M. W., Silvia, P. J., Winterstein, B. P., Breen, W. E., Terhar, D., & Steger, M. F. (2009). The curiosity and exploration inventory-II: Development, factor structure, and psychometrics. Journal of Research in Personality, 43(6), 987-998] for youth and (b) crafting new items based on scientific practices drawn from U.S. science standards documents. We administered a preliminary set of 30 items to 663 youth ages 8-18 in the U.S.A. Exploratory and confirmatory factor analysis resulted in a three-factor model: stretching, embracing, and science practices. The findings indicate that the SCILE scale is a valid measure of youth's scientific curiosity for boys and girls as well as elementary, middle school, and high school learners.

  3. Curiosity: the Mars Science Laboratory Project

    Science.gov (United States)

    Cook, Richard A.

    2012-01-01

    The Curiosity rover landed successfully in Gale Crater, Mars on August 5, 2012. This event was a dramatic high point in the decade long effort to design, build, test and fly the most sophisticated scientific vehicle ever sent to Mars. The real achievements of the mission have only just begun, however, as Curiosity is now searching for signs that Mars once possessed habitable environments. The Mars Science Laboratory Project has been one of the most ambitious and challenging planetary projects that NASA has undertaken. It started in the successful aftermath of the 2003 Mars Exploration Rover project and was designed to take significant steps forward in both engineering and scientific capabilities. This included a new landing system capable of emplacing a large mobile vehicle over a wide range of potential landing sites, advanced sample acquisition and handling capabilities that can retrieve samples from both rocks and soil, and a high reliability avionics suite that is designed to permit long duration surface operations. It also includes a set of ten sophisticated scientific instruments that will investigate both the geological context of the landing site plus analyze samples to understand the chemical & organic composition of rocks & soil found there. The Gale Crater site has been specifically selected as a promising location where ancient habitable environments may have existed and for which evidence may be preserved. Curiosity will spend a minimum of one Mars year (about two Earth years) looking for this evidence. This paper will report on the progress of the mission over the first few months of surface operations, plus look retrospectively at lessons learned during both the development and cruise operations phase of the mission..

  4. Science Curiosity as a Correlate of Academic Performance in Mathematics Education: Insights from Nigerian Higher Education

    OpenAIRE

    Abakpa , Benjamin ,; Abah , Joshua ,; Okoh Agbo-Egwu , Abel

    2018-01-01

    International audience; This study investigated the relationship between the science curiosity levels of undergraduate of mathematics education in a Nigerian higher educational institution and their academic grade point averages. The study employed a correlational survey research design on a random sample of 104 mathematics education students. The Science Curiosity Scale – Comparative Self Report was adapted to measure the students' distinctive appetite for consuming science-related media for...

  5. Pathways from Parental Stimulation of Children's Curiosity to High School Science Course Accomplishments and Science Career Interest and Skill

    Science.gov (United States)

    Gottfried, Adele Eskeles; Preston, Kathleen Suzanne Johnson; Gottfried, Allen W.; Oliver, Pamella H.; Delany, Danielle E.; Ibrahim, Sirena M.

    2016-01-01

    Curiosity is fundamental to scientific inquiry and pursuance. Parents are important in encouraging children's involvement in science. This longitudinal study examined pathways from parental stimulation of children's curiosity per se to their science acquisition (SA). A latent variable of SA was indicated by the inter-related variables of high…

  6. Pathways from parental stimulation of children's curiosity to high school science course accomplishments and science career interest and skill

    Science.gov (United States)

    Eskeles Gottfried, Adele; Johnson Preston, Kathleen Suzanne; Gottfried, Allen W.; Oliver, Pamella H.; Delany, Danielle E.; Ibrahim, Sirena M.

    2016-08-01

    Curiosity is fundamental to scientific inquiry and pursuance. Parents are important in encouraging children's involvement in science. This longitudinal study examined pathways from parental stimulation of children's curiosity per se to their science acquisition (SA). A latent variable of SA was indicated by the inter-related variables of high school science course accomplishments, career interest, and skill. A conceptual model investigated parental stimulation of children's curiosity as related to SA via science intrinsic motivation and science achievement. The Fullerton Longitudinal Study provided data spanning school entry through high school (N = 118). Parental stimulation of curiosity at age 8 years comprised exposing children to new experiences, promoting curiosity, encouraging asking questions, and taking children to a museum. Intrinsic motivation was measured at ages 9, 10, and 13 years, and achievement at ages 9, 10, and 11 years. Structural equation modelling was used for analyses. Controlling for socio-economic status, parental stimulation of curiosity bore positive and significant relations to science intrinsic motivation and achievement, which in turn related to SA. Gender neither related to stimulation of curiosity nor contributed to the model. Findings highlight the importance of parental stimulation of children's curiosity in facilitating trajectories into science, and relevance to science education is discussed.

  7. Science and Scientific Curiosity in Pre-school—The teacher's point of view

    Science.gov (United States)

    Spektor-Levy, Ornit; Kesner Baruch, Yael; Mevarech, Zemira

    2013-09-01

    Nowadays, early science education is well-accepted by researchers, education professionals and policy makers. Overall, teachers' attitudes and conceptions toward the science subject domain and science education influence their ways of teaching and engagement. However, there is a lack of research regarding factors that affect this engagement in pre-school years. The main assumption of this study is that teachers' attitudes regarding science in pre-school can shape children's engagement in science and develop their scientific curiosity. Therefore, the main objectives of this study are to investigate the attitudes of pre-school teachers toward engaging in science and to explore their views about the nature of curiosity: who is a curious child and how can a child's natural curiosity be fostered? An extensive survey was conducted among 146 pre-school teachers by employing both qualitative and quantitative approaches. Results indicate that most of the participants believe that scientific education should begin in early childhood; very young children can investigate and take part in a process of inquiry; and scientific activities in pre-school can influence children's long-term attitudes toward science. Despite these views, most participants felt they did not possess sufficient scientific knowledge. Furthermore, participants expressed diverse opinions when asked to identify what constitutes curiosity, how the curious child can be identified and how a child's curiosity can be fostered. The research findings carry significant implications regarding how to implement scientific activities in pre-school, and how to encourage pre-school teachers to engage children in scientific activities in a way that will nurture their natural curiosity.

  8. Effects of Outdoor School Ground Lessons on Students' Science Process Skills and Scientific Curiosity

    Science.gov (United States)

    Ting, Kan Lin; Siew, Nyet Moi

    2014-01-01

    The purpose of this study was to investigate the effects of outdoor school ground lessons on Year Five students' science process skills and scientific curiosity. A quasi-experimental design was employed in this study. The participants in the study were divided into two groups, one subjected to the experimental treatment, defined as…

  9. Mars' surface radiation environment measured with the Mars science laboratory's curiosity rover

    NARCIS (Netherlands)

    Hassler, D.M.; Zeitlin, C.; Wimmer-Schweingruber, R.F.; Ehresmann, B.; Rafkin, S.; Eigenbrode, J.L.; Brinza, D.E.; Weigle, G.; Böttcher, S.; Böhm, E.; Burmeister, S.; Guo, J.; Köhler, J.; Martin, C.; Reitz, G.; Cucinotta, F.A.; Kim, M.-H.; Grinspoon, D.; Bullock, M.A.; Posner, A.; Gómez-Elvira, J.; Vasavada, A.; Grotzinger, J.P.; MSL Science Team, the|info:eu-repo/dai/nl/292012217

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory’s Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose

  10. Mineralogical Results from the Mars Science Laboratory Rover Curiosity

    Science.gov (United States)

    Blake, David Frederick.

    2017-01-01

    NASA's CheMin instrument, the first X-ray Diffractometer flown in space, has been operating on Mars for nearly five years. CheMin was first to establish the quantitative mineralogy of the Mars global soil (1). The instrument was next used to determine the mineralogy of a 3.7 billion year old lacustrine mudstone, a result that, together with findings from other instruments on the MSL Curiosity rover, documented the first habitable environment found on another planet (2). The mineralogy of this mudstone from an ancient playa lake was also used to derive the maximum concentration of CO2 in the early Mars atmosphere, a surprisingly low value that calls into question the current theory that CO2 greenhouse warming was responsible for the warm and wet environment of early Mars. CheMin later identified the mineral tridymite, indicative of silica-rich volcanism, in mudstones of the Murray formation on Mt. Sharp. This discovery challenges the paradigm of Mars as a basaltic planet and ushers in a new chapter of comparative terrestrial planetology (3). CheMin is now being used to systematically sample the sedimentary layers that comprise the lower strata of Mt. Sharp, a 5,000 meter sequence of sedimentary rock laid down in what was once a crater lake, characterizing isochemical sediments that through their changing mineralogy, document the oxidation and drying out of the Mars in early Hesperian time.

  11. In praise of science: curiosity, understanding, and progress

    NARCIS (Netherlands)

    Bais, S.

    2010-01-01

    In this engaging, lyrical book, physicist Sander Bais shows how science can liberate us from our cultural straitjacket of prejudice and intolerance. We're living in a time in which technology is taken for granted, yet belief in such standard scientific facts as evolution is actually decreasing. How

  12. In praise of science: curiosity, understanding, and progress

    NARCIS (Netherlands)

    Bais, S.

    2009-01-01

    In this book, author and physicist Sander Bais shows how science can liberate us from our cultural straitjacket of prejudice and intolerance. We're living in a time in which technology is taken for granted, yet belief in such standard scientific facts as evolution is actually decreasing. How is it

  13. The effectiveness of Family Science and Technology Workshops on parental involvement, student achievement, and student curiosity

    Science.gov (United States)

    Kosten, Lora Bechard

    The literature suggests that parental involvement in schools results in positive changes in students and that schools need to provide opportunities for parents to share in the learning process. Workshops are an effective method of engaging parents in the education of their children. This dissertation studies the effects of voluntary Family Science and Technology Workshops on elementary children's science interest and achievement, as well as on parents' collaboration in their child's education. The study involved 35 second and third-grade students and their parents who volunteered to participate. The parental volunteers were randomly assigned to either the control group (children attending the workshops without a parent) or the treatment group (children attending the workshops with a parent). The study was conducted in the Fall of 1995 over a four-week period. The Analysis of Variance (ANOVA) and Kruskal-Wallis tests were used to determine the effects of the workshops on children's science achievement and science curiosity, as well as on parents' involvement with their child's education. The study revealed that there was no significant statistical difference at the.05 level between the treatment/control groups in children's science achievement or science curiosity, or in parent's involvement with their children's education. However, the study did focus parental attention on effective education and points the way to more extensive research in this critical learning area. This dual study, that is, the effects of teaching basic technology to young students with the support of their parents, reflects the focus of the Salve Regina University Ph.D. program in which technology is examined in its effects on humans. In essence, this program investigates what it means to be human in an age of advanced technology.

  14. The penultimate curiosity how science swims in the slipstream of ultimate questions

    CERN Document Server

    Wagner, Roger

    2016-01-01

    This book sets out to answer one of the most important, vexed, and profound questions about the development of human thought: What lies at the root of the long entanglement between science and religion? Why throughout our journey from cave painting to quantum physics have attempts to describe the physical world that we can see been so closely enmeshed with the aspiration to see beyond the rim of the visible world? The university cities of Oxford and Cambridge each contain a remarkable invocation with a fascinating history. Both are set in the seminal scientific buildings of the university, and both articulate a connection between science and faith. How did they come to be there, and what connects them? The curiosity that leads to the search for religious understanding and the curiosity that leads to the search for scientific understanding have common origins in aspects of the human mind that go back as far as the earliest records of human intellectual endeavour. Their relationship developed as the categories ...

  15. CERN Library | Roy Calne presents: "The Ratchet of Science - Curiosity killed the cat" | 26 October

    CERN Multimedia

    CERN Library

    2015-01-01

    Sir Roy Calne will discuss his most recent book: “The Ratchet of Science - Curiosity killed the cat. Can human nature cope with the rapid and accelerated advances of science?”   Monday, 26 October - 4.30 p.m. CERN Filtration plant, Room 222-R-001 There is a limited number of seats. Please register here. The book’s premise is that huge scientific advances throughout history occur in spurts or “ratchets”. It reflects on the good and the evil consequences of discoveries. Due to the worrying nature of human beings, each ratchet in our knowledge is too often accompanied by dangerous applications. Knowledge, once established by a reliable scientific method, cannot be unlearned. The cat is out of the bag and the curiosity may kill the cat – so to speak. Professor Roy Calne illustrates this with the example of the young physicist known to all at CERN: Lise Meitner, who discovered and named nucle...

  16. Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover

    Science.gov (United States)

    Hassler, Donald M.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L.; Brinza, David E.; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A.; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A.; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P.; MSL Science Team; Kemppinen, Osku; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; Berger, Thomas; Matthia, Daniel; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Hamilton, Victoria; Peterson, Joseph; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; García, César Martín; Mueller-Mellin, Reinhold; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  17. Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.

    Science.gov (United States)

    Hassler, Donald M; Zeitlin, Cary; Wimmer-Schweingruber, Robert F; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L; Brinza, David E; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P

    2014-01-24

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  18. The Case of Curiosity and the Night Sky: Relationship between Noctcaelador and Three Forms of Curiosity

    Science.gov (United States)

    Kelly, William E.; Daughtry, Don

    2016-01-01

    The purpose of this study is to examine the relationship between noctcaelador (psychological attachment to the night sky) and curiosity. A measure of noctcaelador and three curiosity scales (perceptual curiosity, epistemic curiosity, and curiosity as a feeling of deprivation) were administered to 233 university students. Correlations indicated…

  19. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fabre, C., E-mail: cecile.fabre@g2r.uhp-nancy.fr [G2R, Nancy Universite (France); Maurice, S.; Cousin, A. [IRAP, Toulouse (France); Wiens, R.C. [LANL, Los Alamos, NM (United States); Forni, O. [IRAP, Toulouse (France); Sautter, V. [MNHN, Paris (France); Guillaume, D. [GET, Toulouse (France)

    2011-03-15

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD < 5% for concentration variations > 0.1 wt.% using electronic microprobe, and < 10% for concentration variations > 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor

  20. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    International Nuclear Information System (INIS)

    Fabre, C.; Maurice, S.; Cousin, A.; Wiens, R.C.; Forni, O.; Sautter, V.; Guillaume, D.

    2011-01-01

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD 0.1 wt.% using electronic microprobe, and 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor elements.

  1. Science-Relevant Curiosity Expression and Interest in Science: An Exploratory Study

    Science.gov (United States)

    Luce, Megan R.; Hsi, Sherry

    2015-01-01

    In efforts to understand and promote long-term interest in science, much work has focused on measuring students' interest in topics of science, typically with surveys. This approach has challenges, as interest in a topic may not necessarily indicate interest in scientific practices and pursuits. An underexplored and perhaps productive way to…

  2. The Development of the Chemin Mineralogy Instrument and Its Deployment on Mars (and Latest Results from the Mars Science Laboratory Rover Curiosity)

    Science.gov (United States)

    Blake, David F.

    2014-01-01

    The CheMin instrument (short for "Chemistry and Mineralogy") on the Mars Science Laboratory rover Curiosity is one of two "laboratory quality" instruments on board the Curiosity rover that is exploring Gale crater, Mars. CheMin is an X-ray diffractometer that has for the first time returned definitive and fully quantitative mineral identifications of Mars soil and drilled rock. I will describe CheMin's 23-year development from an idea to a spacecraft qualified instrument, and report on some of the discoveries that Curiosity has made since its entry, descent and landing on Aug. 6, 2012, including the discovery and characterization of the first habitable environment on Mars.

  3. Curiosity About People : The Development of a Social Curiosity Measure in Adults

    OpenAIRE

    Renner, Britta

    2006-01-01

    Curiosity refers to the desire for acquiring new information. The aim of this study was to develop a questionnaire to assess social curiosity, that is, interest in how other people think, feel, and behave. The questionnaire was administered to 312 participants. Factor analyses of the 10-item Social Curiosity Scale (SCS) yielded 2 factors: General Social Curiosity and Covert Social Curiosity. Evidence of convergent validity was provided by moderately high correlations of the SCS with other mea...

  4. Curiosity Questions

    Science.gov (United States)

    Nelsen, Jane; DeLorenzo, Chip

    2010-01-01

    Have you ever found yourself lecturing a child, with the best of intentions, in an attempt to help him or her learn a lesson or process a situation in a manner that you feel will be productive? Curiosity questions, which the authors also call What and How questions, help children process an experience, event, or natural consequence so that they…

  5. Supporting Three-Dimensional Science Learning: The Role of Curiosity-Driven Classroom Discourse

    Science.gov (United States)

    Johnson, Wendy Renae

    2017-01-01

    The National Research Council's "Framework for K-12 Science Education" (2011) presents a new vision for science education that calls for the integration of the three dimensions of science learning: science and engineering practices, crosscutting concepts, and disciplinary core ideas. Unlike previous conceptions of science learning that…

  6. Science and Scientific Curiosity in Pre-School--The Teacher's Point of View

    Science.gov (United States)

    Spektor-Levy, Ornit; Baruch, Yael Kesner; Mevarech, Zemira

    2013-01-01

    Nowadays, early science education is well-accepted by researchers, education professionals and policy makers. Overall, teachers' attitudes and conceptions toward the science subject domain and science education influence their ways of teaching and engagement. However, there is a lack of research regarding factors that affect this engagement in…

  7. Fostering Curiosity in Science Classrooms: Inquiring into Practice Using Cogenerative Dialoguing

    Science.gov (United States)

    Higgins, Joanna; Moeed, Azra

    2017-01-01

    Developing students' scientific literacy requires teachers to use a variety of pedagogical approaches including video as a form of instruction. In addition, using video is a way of engaging students in science ideas not otherwise accessible to them. This study investigated the merit of video clips representing scientific ideas in a secondary…

  8. Children's Question Asking and Curiosity: A Training Study

    Science.gov (United States)

    Jirout, Jamie; Klahr, David

    2011-01-01

    A primary instructional objective of most early science programs is to foster children's scientific curiosity and question-asking skills (Jirout & Klahr, 2011). However, little is known about the relationship between curiosity, question-asking behavior, and general inquiry skills. While curiosity and question asking are invariably mentioned in…

  9. Curiosity and Interaction

    NARCIS (Netherlands)

    Tieben, R.; Bekker, M.M.; Schouten, B.A.M.

    2011-01-01

    We explore the concepts of curiosity and interaction: how can we elicit curiosity in public spaces through interactive systems? We have developed a model consisting of five curiosity-evoking principles. In an iterative design research approach, we have explored the design implementations of these

  10. Development Instrument’s Learning of Physics Through Scientific Inquiry Model Based Batak Culture to Improve Science Process Skill and Student’s Curiosity

    Science.gov (United States)

    Nasution, Derlina; Syahreni Harahap, Putri; Harahap, Marabangun

    2018-03-01

    This research aims to: (1) developed a instrument’s learning (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) of physics learning through scientific inquiry learning model based Batak culture to achieve skills improvement process of science students and the students’ curiosity; (2) describe the quality of the result of develop instrument’s learning in high school using scientific inquiry learning model based Batak culture (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) to achieve the science process skill improvement of students and the student curiosity. This research is research development. This research developed a instrument’s learning of physics by using a development model that is adapted from the development model Thiagarajan, Semmel, and Semmel. The stages are traversed until retrieved a valid physics instrument’s learning, practical, and effective includes :(1) definition phase, (2) the planning phase, and (3) stages of development. Test performed include expert test/validation testing experts, small groups, and test classes is limited. Test classes are limited to do in SMAN 1 Padang Bolak alternating on a class X MIA. This research resulted in: 1) the learning of physics static fluid material specially for high school grade 10th consisted of (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) and quality worthy of use in the learning process; 2) each component of the instrument’s learning meet the criteria have valid learning, practical, and effective way to reach the science process skill improvement and curiosity in students.

  11. Reflections on curiosity.

    Science.gov (United States)

    van Bemmel, J H

    2008-01-01

    The purpose of this article is to show that curiosity is the driving force behind all scientific endeavors. The second purpose is to show that all science is constrained on its underlying assumptions. Three examples are used to illustrate the above theses: one from cosmology, the second from biomedical research, and the third from the formalization of human reasoning in a computer. The three examples are supported by quotes from Albert Einstein. Research in cosmology shows that the horizon of our knowledge is continuously expanding but that major scientific questions remain to be solved. The second example from biomedicine explains that the more we discover of the details of living phenomena, the more complex they appear to be. The example involving human reasoning makes clear that the brain is still largely unknown territory. Like Einstein, who said he held 'humble admiration of the illimitable superior spirit who reveals himself in the slight details we are able to perceive with our frail and feeble mind', I have a deep admiration for the Architect who reveals himself in the details that we are privileged to study in our research. As Albert Einstein said: The important thing is not to stop questioning. Curiosity has its own reason for existing.

  12. Curiosity: How to Boldly Go...

    Science.gov (United States)

    Pyrzak, Guy

    2013-01-01

    Operating a one-ton rover on the surface of Mars requires more than just a joystick and an experiment. With 10 science instruments, 17 cameras, a radioisotope thermoelectric generator and lasers, Curiosity is the largest and most complex rover NASA has sent to Mars. Combined with a 1 way light time of 4 to 20 minutes and a distributed international science and engineering team, it takes a lot of work to operate this mega-rover. The Mars Science Lab's operations team has developed an organization and process that maximizes science return and safety of the spacecraft. These are the voyages of the rover Curiosity, its 2 year mission, to determine the habitability of Gale Crater, to understand the role of water, to study the climate and geology of Mars.

  13. From the Voices of Kindergarten Teachers: Factors That Impact Decisions about When to Engage the Natural Curiosities of Their Students in Science

    Science.gov (United States)

    Hamilton, Frances A.

    Students enter kindergarten as natural-born scientists, curious about the world around them. They enter middle school disliking science. Although implementing science in kindergarten has the potential to improve learning in other subjects in addition to science, it is not taught much in kindergarten. There are many reasons for this according to the literature. The purpose of the study is to gain insight into teachers' thinking as they decide when and how to engage their students in science, to better understand why student enjoyment of science fades in early grades; to contribute teachers' voices to the existing literature on teaching science in the early grades; and to investigate how teachers' science teaching methods align with current research regarding how students learn best. The key research question is "What are the factors that impact teachers' decisions about when to engage the natural curiosities of their students?" Broken down, the supporting research questions include: 1. What factors impact teacher decisions about when to teach science? 2. Under what conditions do teachers engage students' natural curiosities in science? 3. How do teachers describe engagement in their classrooms? This was a participatory action research study that used autoethnography, case studies, and grounded theory methods. Five co-researchers took part in the process. Purposeful sampling was used to select a range of kindergarten teachers in Tennessee and Alabama with different perspectives on teaching science--some from county systems and some from city systems; some using Alabama Math, Science, and Technology Initiative (AMSTI) kits and some not using kits. Co-researchers were selected during initial meetings, interviewed, collected journal entry data, and interviewed again at the culmination of the study. Interviews were transcribed and coded. Analysis included individual cases, each co-researcher, as well as across-case analysis. Results indicated that co-researchers did not

  14. Assessing Weather Curiosity in University Students

    Science.gov (United States)

    Stewart, A. E.

    2017-12-01

    This research focuses upon measuring an individual's level of trait curiosity about the weather using the Weather Curiosity Scale (WCS). The measure consists of 15 self-report items that describe weather preferences and/or behaviors that people may perform more or less frequently. The author reports on two initial studies of the WCS that have used the responses of 710 undergraduate students from a large university in the southeastern United States. In the first study, factor analysis of the 15 items indicated that the measure was unidimensional - suggesting that its items singularly assessed weather curiosity. The WCS also was internally consistent as evidenced by an acceptable Cronbach's alpha, a = .81). The second study sought to identify other personality variables that may relate with the WCS scores and thus illuminate the nature of weather curiosity. Several clusters of personality variables appear to underlie the curiosity levels people exhibited, the first of which related to perceptual curiosity (r = .59). Being curious about sights, sounds, smells, and textures generally related somewhat to curiosity about weather. Two measures of trait sensitivity to environmental stimulation, the Highly Sensitive Person Scale (r = .47) and the Orientation Sensitivity Scale of the Adult Temperament Questionnaire (r = .43), also predicted weather curiosity levels. Finally, possessing extraverted personality traits (r = .34) and an intense style of experiencing one's emotions (r = .33) related to weather curiosity. How can this measure be used in K-12 or post-secondary settings to further climate literacy? First, the WCS can identify students with natural curiosities about weather and climate so these students may be given more challenging instruction that will leverage their natural interests. Second, high-WCS students may function as weather and climate ambassadors during inquiry-based learning activities and thus help other students who are not as oriented to the

  15. The Case for Curiosity

    Science.gov (United States)

    Engel, Susan

    2013-01-01

    When the author and her colleague asked teachers to list which qualities were most important without giving them a list to choose from, almost none mentioned curiosity. Many teachers endorse curiosity when they are asked about it, but it is not uppermost on their minds--or shaping their teaching plans. Why is this disturbing? Because research…

  16. Curiosity and Comprehension

    Science.gov (United States)

    Butler, John H. Montagu

    2012-01-01

    Most people have an innate curiosity about things and ideas, people and events. When they read stories, especially those concerning crime, love, or adventure, they not only want to find out what is happening or has happened, but they generally make some kind of guess as to what is likely to happen next. Where there is no such curiosity on the part…

  17. Tracing Curiosity with a Value Perspective

    Directory of Open Access Journals (Sweden)

    Soern F. Menning

    2017-09-01

    Full Text Available Several have challenged the idea that the act of educating is a neutral endeavour. Following this line of thought, this article intends to examine a common concept often taken for granted: curiosity. The aim of this article is to explore the notion of curiosity in an early-childhood-education-and-care (ECEC context in Norway in order to provide new perspectives on how value aspects of curiosity are communicated in official documents. Four ECEC documents from different organisational levels will be analysed. Informed by qualitative content analysis with a concept-driven strategy, this document analysis seeks to explore connections between the notion of curiosity and prominent value fields in ECEC, such as competence, democracy and care. Analysis of the documents suggests that curiosity is a value-loaded notion here, one which often has a competence-related value and which is frequently understood as a tool for gaining knowledge, especially in natural science and mathematics. Other value aspects, such as nurturing democracy, are represented to a minor degree. At the same time, the documents do not include possible ethical aspects of curiosity, such as connections to interpersonal caring, nor do they mention any existential or intrinsic value. In the final discussion, the article therefore explores these possible alternatives.

  18. The Mars Science Laboratory Curiosity rover Mastcam instruments: Preflight and in-flight calibration, validation, and data archiving

    Science.gov (United States)

    Bell, James F.; Godber, A.; McNair, S.; Caplinger, M.A.; Maki, J.N.; Lemmon, M.T.; Van Beek, J.; Malin, M.C.; Wellington, D.; Kinch, K.M.; Madsen, M.B.; Hardgrove, C.; Ravine, M.A.; Jensen, E.; Harker, D.; Anderson, Ryan; Herkenhoff, Kenneth E.; Morris, R.V.; Cisneros, E.; Deen, R.G.

    2017-01-01

    The NASA Curiosity rover Mast Camera (Mastcam) system is a pair of fixed-focal length, multispectral, color CCD imagers mounted ~2 m above the surface on the rover's remote sensing mast, along with associated electronics and an onboard calibration target. The left Mastcam (M-34) has a 34 mm focal length, an instantaneous field of view (IFOV) of 0.22 mrad, and a FOV of 20° × 15° over the full 1648 × 1200 pixel span of its Kodak KAI-2020 CCD. The right Mastcam (M-100) has a 100 mm focal length, an IFOV of 0.074 mrad, and a FOV of 6.8° × 5.1° using the same detector. The cameras are separated by 24.2 cm on the mast, allowing stereo images to be obtained at the resolution of the M-34 camera. Each camera has an eight-position filter wheel, enabling it to take Bayer pattern red, green, and blue (RGB) “true color” images, multispectral images in nine additional bands spanning ~400–1100 nm, and images of the Sun in two colors through neutral density-coated filters. An associated Digital Electronics Assembly provides command and data interfaces to the rover, 8 Gb of image storage per camera, 11 bit to 8 bit companding, JPEG compression, and acquisition of high-definition video. Here we describe the preflight and in-flight calibration of Mastcam images, the ways that they are being archived in the NASA Planetary Data System, and the ways that calibration refinements are being developed as the investigation progresses on Mars. We also provide some examples of data sets and analyses that help to validate the accuracy and precision of the calibration

  19. The Mars Science Laboratory Curiosity rover Mastcam instruments: Preflight and in-flight calibration, validation, and data archiving

    Science.gov (United States)

    Bell, J. F.; Godber, A.; McNair, S.; Caplinger, M. A.; Maki, J. N.; Lemmon, M. T.; Van Beek, J.; Malin, M. C.; Wellington, D.; Kinch, K. M.; Madsen, M. B.; Hardgrove, C.; Ravine, M. A.; Jensen, E.; Harker, D.; Anderson, R. B.; Herkenhoff, K. E.; Morris, R. V.; Cisneros, E.; Deen, R. G.

    2017-07-01

    The NASA Curiosity rover Mast Camera (Mastcam) system is a pair of fixed-focal length, multispectral, color CCD imagers mounted 2 m above the surface on the rover's remote sensing mast, along with associated electronics and an onboard calibration target. The left Mastcam (M-34) has a 34 mm focal length, an instantaneous field of view (IFOV) of 0.22 mrad, and a FOV of 20° × 15° over the full 1648 × 1200 pixel span of its Kodak KAI-2020 CCD. The right Mastcam (M-100) has a 100 mm focal length, an IFOV of 0.074 mrad, and a FOV of 6.8° × 5.1° using the same detector. The cameras are separated by 24.2 cm on the mast, allowing stereo images to be obtained at the resolution of the M-34 camera. Each camera has an eight-position filter wheel, enabling it to take Bayer pattern red, green, and blue (RGB) "true color" images, multispectral images in nine additional bands spanning 400-1100 nm, and images of the Sun in two colors through neutral density-coated filters. An associated Digital Electronics Assembly provides command and data interfaces to the rover, 8 Gb of image storage per camera, 11 bit to 8 bit companding, JPEG compression, and acquisition of high-definition video. Here we describe the preflight and in-flight calibration of Mastcam images, the ways that they are being archived in the NASA Planetary Data System, and the ways that calibration refinements are being developed as the investigation progresses on Mars. We also provide some examples of data sets and analyses that help to validate the accuracy and precision of the calibration.

  20. The CheMin XRD on the Mars Science Laboratory Rover Curiosity: Construction, Operation, and Quantitative Mineralogical Results from the Surface of Mars

    Science.gov (United States)

    Blake, David F.

    2015-01-01

    The Mars Science Laboratory mission was launched from Cape Canaveral, Florida on Nov. 26, 2011 and landed in Gale crater, Mars on Aug. 6, 2012. MSL's mission is to identify and characterize ancient "habitable" environments on Mars. MSL's precision landing system placed the Curiosity rover within 2 km of the center of its 20 X 6 km landing ellipse, next to Gale's central mound, a 5,000 meter high pile of laminated sediment which may contain 1 billion years of Mars history. Curiosity carries with it a full suite of analytical instruments, including the CheMin X-ray diffractometer, the first XRD flown in space. CheMin is essentially a transmission X-ray pinhole camera. A fine-focus Co source and collimator transmits a 50µm beam through a powdered sample held between X-ray transparent plastic windows. The sample holder is shaken by a piezoelectric actuator such that the powder flows like a liquid, each grain passing in random orientation through the beam over time. Forward-diffracted and fluoresced X-ray photons from the sample are detected by an X-ray sensitive Charge Coupled Device (CCD) operated in single photon counting mode. When operated in this way, both the x,y position and the energy of each photon are detected. The resulting energy-selected Co Kalpha Debye-Scherrer pattern is used to determine the identities and amounts of minerals present via Rietveld refinement, and a histogram of all X-ray events constitutes an X-ray fluorescence analysis of the sample.The key role that definitive mineralogy plays in understanding the Martian surface is a consequence of the fact that minerals are thermodynamic phases, having known and specific ranges of temperature, pressure and composition within which they are stable. More than simple compositional analysis, definitive mineralogical analysis can provide information about pressure/temperature conditions of formation, past climate, water activity and the like. Definitive mineralogical analyses are necessary to establish

  1. Drawing on Curiosity: Between Two Worlds

    Science.gov (United States)

    Wigglesworth, Ron

    2017-01-01

    This narrative of my research on drawing shares my experience of relearning drawing by hand and how the act of drawing can stimulate curiosity. This article examines its potential to enhance learning/observation in science. It describes a kinaesthetic drawing methodology and addresses pedagogical solutions for overcoming a student's declaration…

  2. Killing Curiosity? An Analysis of Celebrated Identity Performances among Teachers and Students in Nine London Secondary Science Classrooms

    Science.gov (United States)

    Archer, Louise; Dawson, Emily; DeWitt, Jennifer; Godec, Spela; King, Heather; Mau, Ada; Nomikou, Effrosyni; Seakins, Amy

    2017-01-01

    In this paper, we take the view that school classrooms are spaces that are constituted by complex power struggles (for voice, authenticity, and recognition), involving multiple layers of resistance and contestation between the "institution," teachers and students, which can have profound implications for students' science identity and…

  3. Celebrate Mathematical Curiosity

    Science.gov (United States)

    Redford, Christine

    2011-01-01

    Children's mathematical questions are often based in real-world experiences, as they instinctively make connections to the world around them. In teaching math methods courses, this author recently started to emphasize the importance of fostering curiosity in, and activating the thinking of, the students. In this article, she describes how to tap…

  4. Compassion and Curiosity - TCGA

    Science.gov (United States)

    William Kim, M.D., is motivated by two things: compassion and curiosity. Dr. Kim has taken these dual motivations and created a career in which he cares directly for patients and spearheads research that may lead to improved treatment options.

  5. The Epistemic Value of Curiosity

    Science.gov (United States)

    Schmitt, Frederick F.; Lahroodi, Reza

    2008-01-01

    In this essay, Frederick Schmitt and Reza Lahroodi explore the value of curiosity for inquiry and knowledge. They defend an appetitive account of curiosity, viewing curiosity as a motivationally original desire to know that arises from having one's attention drawn to the object and that in turn sustains one's attention to it. Distinguishing…

  6. CFD Analysis for Assessing the Effect of Wind on the Thermal Control of the Mars Science Laboratory Curiosity Rover

    Science.gov (United States)

    Bhandari, Pradeep; Anderson, Kevin

    2013-01-01

    The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, requires a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to 50 C range. The RHRS harnesses some of the waste heat generated from the rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 W of electrical power while generating waste heat equivalent to approximately 2000 W. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer. Winds on Mars can be as fast as 15 m/s for extended periods. They can lead to significant heat loss from the MMRTG and the hot plates due to convective heat pick up from these surfaces. Estimation of this convective heat loss cannot be accurately and adequately achieved by simple textbook based calculations because of the very complicated flow fields around these surfaces, which are a function of wind direction and speed. Accurate calculations necessitated the employment of sophisticated Computational Fluid Dynamics (CFD) computer codes. This paper describes the methodology and results of these CFD calculations. Additionally, these results are compared to simple textbook based calculations that served as benchmarks and sanity checks for them. And finally, the overall RHRS system performance predictions will be shared to show how these results affected the overall rover thermal performance.

  7. The Pandora Effect: The Power and Peril of Curiosity.

    Science.gov (United States)

    Hsee, Christopher K; Ruan, Bowen

    2016-05-01

    Curiosity-the desire for information-underlies many human activities, from reading celebrity gossip to developing nuclear science. Curiosity is well recognized as a human blessing. Is it also a human curse? Tales about such things as Pandora's box suggest that it is, but scientific evidence is lacking. In four controlled experiments, we demonstrated that curiosity could lead humans to expose themselves to aversive stimuli (even electric shocks) for no apparent benefits. The research suggests that humans possess an inherent desire, independent of consequentialist considerations, to resolve uncertainty; when facing something uncertain and feeling curious, they will act to resolve the uncertainty even if they expect negative consequences. This research reveals the potential perverse side of curiosity, and is particularly relevant to the current epoch, the epoch of information, and to the scientific community, a community with high curiosity. © The Author(s) 2016.

  8. Curiosity's Mars Hand Lens Imager (MAHLI) Investigation

    Science.gov (United States)

    Edgett, Kenneth S.; Yingst, R. Aileen; Ravine, Michael A.; Caplinger, Michael A.; Maki, Justin N.; Ghaemi, F. Tony; Schaffner, Jacob A.; Bell, James F.; Edwards, Laurence J.; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sullivan, Robert J.; Sumner, Dawn Y.; Thomas, Peter C.; Jensen, Elsa H.; Simmonds, John J.; Sengstacken, Aaron J.; Wilson, Reg G.; Goetz, Walter

    2012-01-01

    The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) investigation will use a 2-megapixel color camera with a focusable macro lens aboard the rover, Curiosity, to investigate the stratigraphy and grain-scale texture, structure, mineralogy, and morphology of geologic materials in northwestern Gale crater. Of particular interest is the stratigraphic record of a ?5 km thick layered rock sequence exposed on the slopes of Aeolis Mons (also known as Mount Sharp). The instrument consists of three parts, a camera head mounted on the turret at the end of a robotic arm, an electronics and data storage assembly located inside the rover body, and a calibration target mounted on the robotic arm shoulder azimuth actuator housing. MAHLI can acquire in-focus images at working distances from ?2.1 cm to infinity. At the minimum working distance, image pixel scale is ?14 μm per pixel and very coarse silt grains can be resolved. At the working distance of the Mars Exploration Rover Microscopic Imager cameras aboard Spirit and Opportunity, MAHLI?s resolution is comparable at ?30 μm per pixel. Onboard capabilities include autofocus, auto-exposure, sub-framing, video imaging, Bayer pattern color interpolation, lossy and lossless compression, focus merging of up to 8 focus stack images, white light and longwave ultraviolet (365 nm) illumination of nearby subjects, and 8 gigabytes of non-volatile memory data storage.

  9. The curious case of curiosity: unpleasant advertising and curiosity

    OpenAIRE

    Van den Driessche, Liesbet; Vermeir, Iris; Pandelaere, Mario

    2013-01-01

    Previous research demonstrated that advertisements that induce positive feelings are effective. However, unpleasant advertising are frequently used and can be effective as well. This research examines whether evoked curiosity can explain the effectiveness of unpleasant advertising. Our results indicate that although unpleasant advertising did not lead to behavioral intention with regard to the advertised product, unpleasant advertising did evoke curiosity. Curiosity itself proves to be a stro...

  10. The Curiosity Effect

    Science.gov (United States)

    Smith, Kimberly Ennico

    2017-01-01

    This conference aims to improve how we learn through integrative project and discovery-based methods. My talk highlights areas in my experience as a scientist, and most recently working for our national space agency, NASA, where we work in teams with a "discovery-based" mindset. When you demonstrate broad curiosity, you become open to different viewpoints and ways to approach and manage situations. Sometimes working only from "what you have been trained to do" or "what you know" is not enough, especially when the rules may be changing. Increasing our openness in our learning, and sharing what we know, can lead to a more diverse and innovative community, solving problems in new ways, overcoming resistance to new ideas, and hopefully creating a dynamic and faring-forward society. Let us not kill curiosity, at any age, in any situation. Let us remind ourselves, at any time, in any circumstance, to continue to learn, to mentor, to stimulate, to engage and reconnect with that "open sense of possibility."

  11. Eye movements reveal epistemic curiosity in human observers.

    Science.gov (United States)

    Baranes, Adrien; Oudeyer, Pierre-Yves; Gottlieb, Jacqueline

    2015-12-01

    Saccadic (rapid) eye movements are primary means by which humans and non-human primates sample visual information. However, while saccadic decisions are intensively investigated in instrumental contexts where saccades guide subsequent actions, it is largely unknown how they may be influenced by curiosity - the intrinsic desire to learn. While saccades are sensitive to visual novelty and visual surprise, no study has examined their relation to epistemic curiosity - interest in symbolic, semantic information. To investigate this question, we tracked the eye movements of human observers while they read trivia questions and, after a brief delay, were visually given the answer. We show that higher curiosity was associated with earlier anticipatory orienting of gaze toward the answer location without changes in other metrics of saccades or fixations, and that these influences were distinct from those produced by variations in confidence and surprise. Across subjects, the enhancement of anticipatory gaze was correlated with measures of trait curiosity from personality questionnaires. Finally, a machine learning algorithm could predict curiosity in a cross-subject manner, relying primarily on statistical features of the gaze position before the answer onset and independently of covariations in confidence or surprise, suggesting potential practical applications for educational technologies, recommender systems and research in cognitive sciences. With this article, we provide full access to the annotated database allowing readers to reproduce the results. Epistemic curiosity produces specific effects on oculomotor anticipation that can be used to read out curiosity states. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Curiosity analyzes Martian soil samples

    Science.gov (United States)

    Showstack, Randy; Balcerak, Ernie

    2012-12-01

    NASA's Mars Curiosity rover has conducted its first analysis of Martian soil samples using multiple instruments, the agency announced at a 3 December news briefing at the AGU Fall Meeting in San Francisco. "These results are an unprecedented look at the chemical diversity in the area," said NASA's Michael Meyer, program scientist for Curiosity.

  13. Curiosity rover LEGO® version could land soon

    Science.gov (United States)

    Showstack, Randy

    2012-09-01

    Now that NASA's Curiosity rover has landed on Mars, a smaller LEGO® plastic brick construction version could be landing in toy stores. Less than 2 weeks after Curiosity set down on 5 August, a LEGO® set concept model designed by a mechanical and aerospace engineer who worked on the real rover garnered its 10,000th supporter on the Web site of CUUSOO, a Japanese partner of the LEGO® group. That milestone triggered a company review that began in September 2012 to test the model's “playability, safety, and ft with the LEGO® brand,” according to a congratulatory statement from the company to designer Stephen Pakbaz. Pakbaz told Eos that he has been an avid LEGO® and space exploration fan for most of his life. “For me, creating a LEGO® model of Curiosity using my firsthand knowledge of the rover was inevitable. What I enjoyed most was being able to faithfully replicate and subsequently demonstrate the rocker-bogie suspension system to friends, family, and coworkers,” he noted, referring to the suspension system that allows the rover to climb over obstacles while keeping its wheels on the ground. Pakbaz, who is currently with Orbital Sciences Corporation, was involved with aspects of the rover while working at the Jet Propulsion Laboratory from 2007 to 2011 as a mechanical engineer.

  14. Do individual differences in children's curiosity relate to their inquiry-based learning?

    Science.gov (United States)

    van Schijndel, Tessa J. P.; Jansen, Brenda R. J.; Raijmakers, Maartje E. J.

    2018-06-01

    This study investigates how individual differences in 7- to 9-year-olds' curiosity relate to the inquiry-learning process and outcomes in environments differing in structure. The focus on curiosity as individual differences variable was motivated by the importance of curiosity in science education, and uncertainty being central to both the definition of curiosity and the inquiry-learning environment. Curiosity was assessed with the Underwater Exploration game (Jirout, J., & Klahr, D. (2012). Children's scientific curiosity: In search of an operational definition of an elusive concept. Developmental Review, 32, 125-160. doi:10.1016/j.dr.2012.04.002), and inquiry-based learning with the newly developed Scientific Discovery task, which focuses on the principle of designing informative experiments. Structure of the inquiry-learning environment was manipulated by explaining this principle or not. As intelligence relates to learning and possibly curiosity, it was taken into account. Results showed that children's curiosity was positively related to their knowledge acquisition, but not to their quality of exploration. For low intelligent children, environment structure positively affected their quality of exploration, but not their knowledge acquisition. There was no interaction between curiosity and environment structure. These results support the existence of two distinct inquiry-based learning processes - the designing of experiments, on the one hand, and the reflection on performed experiments, on the other - and link children's curiosity to the latter process.

  15. Did Curiosity Kill the Cat? Relationship Between Trait Curiosity, Creative Self-Efficacy and Creative Personal Identity

    Directory of Open Access Journals (Sweden)

    Maciej Karwowski

    2012-11-01

    Full Text Available The main objective of the study presented in this article was to examine the relationship between trait curiosity and two self-concept constructs which are gaining popularity in the creativity literature – creative self-efficacy (CSE and creative personal identity (CPI. Although the role of curiosity in creativity seems well established, in fact there is little empirical evidence of the relationship between curiosity treated as a trait and both CSE and CPI. In a study conducted on a sample of middle and high school Polish students (N = 284; 55% female, aged 13–18, M = 14.74, SD = 1.14, curiosity was measured by the Curiosity and Exploration Inventory (CEI-II: Kashdan, Gallagher, Silvia, Winterstein, Breen, Terhar, & Steger, 2009 and CSE and CPI by the Short Scale of Creative Self (SSCS; Karwowski, Lebuda, & Wiśniewska, in press. Confirmatory factor analysis revealed the existence of substantial correlations between measured constructs. Latent factor of CSE correlated strongly with a tendency to seek out new experiences (stretching, r = .72 and an acceptance of unpredictability (embracing, r = .67, while CPI correlated substantially with stretching (r = .62 and slightly less with embracing (r = .48 – all correlations were highly reliable (p < .001. Hierarchical confirmatory factor analysis showed the existence of a strong relationship between the higher-order factor of curiosity (composed of stretching and embracing and creative self (composed of CSE and CPI: r = .75, which may indicate common basis of creativity and curiosity. The consequences of curiosity for the development of CSE and CPI are discussed.

  16. Curiosity's Mars Hand Lens Imager (MAHLI): Inital Observations and Activities

    Science.gov (United States)

    Edgett, K. S.; Yingst, R. A.; Minitti, M. E.; Robinson, M. L.; Kennedy, M. R.; Lipkaman, L. J.; Jensen, E. H.; Anderson, R. C.; Bean, K. M.; Beegle, L. W.; hide

    2013-01-01

    MAHLI (Mars Hand Lens Imager) is a 2-megapixel focusable macro lens color camera on the turret on Curiosity's robotic arm. The investigation centers on stratigraphy, grain-scale texture, structure, mineralogy, and morphology of geologic materials at Curiosity's Gale robotic field site. MAHLI acquires focused images at working distances of 2.1 cm to infinity; for reference, at 2.1 cm the scale is 14 microns/pixel; at 6.9 cm it is 31 microns/pixel, like the Spirit and Opportunity Microscopic Imager (MI) cameras.

  17. Dune and ripple migration along Curiosity's traverse in Gale Crater on Mars

    Science.gov (United States)

    Silvestro, S.; Vaz, D.; Ewing, R. C.; Fenton, L. K.; Michaels, T. I.; Ayoub, F.; Bridges, N. T.

    2013-12-01

    The NASA Mars Science Laboratory (MSL) rover, Curiosity, has safely landed near a 35-km-long dark dune field in Gale Crater on Mars. This dune field lies along Curiosity's traverse to Aeolis Mons (Mt. Sharp). Here we present new evidence of aeolian activity and further estimate wind directions within the dune field through analysis of ripple migration with the COSI-Corr technique, which provides precise measurements of ripple displacement at the sub-pixel scale.The area analyzed is located ~10 km southwest of rover Curiosity's current position and ~4 km SW of its selected path through Aeolis Mons (Mt. Sharp) (Fig. 1a). Here barchan dunes with elongated horns and seif dunes coexist with more typical barchan and dome dunes (Fig. 1a, b), with slopes sculpted by two intersecting ripple crestline orientations trending at 45° and 330°. The range of dune types and ripple orientations indicate the dune field morphology is influenced by at least two winds from the NW and the NE. The direction of migration is toward the SW, suggesting the most recent sand transporting winds were from the NE (Fig. 1c). These results match previous predictions and can be used to forecast the wind conditions close to the entry point to Mt. Sharp. Fig. 1: a-b) Study area c) Ripple migration direction computed using the COSI-Corr technique

  18. A blow to curiosity

    Science.gov (United States)

    Moriarty, Philip

    2011-01-01

    Andre Geim is correct to highlight the fact that the UK's Engineering and Physical Sciences Research Council (EPSRC) has long been an excellent model of how a funding body should operate with a minimum of bureaucracy (November 2010 p7).

  19. Value of curiosity-oriented research.

    Science.gov (United States)

    Gibbons, M; Greer, J R; Jevons, F R; Langrish, J; Watkins, D S

    1970-03-14

    Is the most profit to be had from research inspired by curiosity or by foresight of practical applications? A recent suggestion that the answer could be found by evaluating curiosity-oriented projects has proved hard to follow up.

  20. Developing Critical Curiosity in Adolescents

    Science.gov (United States)

    Clark, Shelby; Seider, Scott

    2017-01-01

    Critical consciousness refers to the ways in which individuals come to understand and challenge oppressive social forces. Philosopher-educator Paulo Freire argued that critical curiosity--an eagerness to learn more about and develop a deep understanding of issues of social justice--serves as an important catalyst to critical consciousness…

  1. Capitalizing on Curiosity

    Science.gov (United States)

    Devitt, Adam

    2011-01-01

    State and national standards have shifted what science learning should be from "plug and chug" formulas, to deep understanding of natural phenomena, competence developing ideas through the inquiry process, and even communicating scientific ideas among their communities (NRC 2007). By inquiring into his own teaching endeavors, the author continues…

  2. Curiosity and the end of discrimination

    Science.gov (United States)

    Prescod-Weinstein, Chanda

    2017-06-01

    Systemic discrimination on the basis of gender and race, among other ascribed identities, harms minoritized people. This is a structural problem in society, and astronomy is not immune to it. Although we talk about the challenges faced by 'women and minorities', it is all too rare to acknowledge intersecting realities: some of us are minority women and our experiences are different from both white women and minority men, with sexism and racism compounding in nonlinear ways. Confronting the challenges associated with invoking an intersectional analysis can be daunting if the mainstream community continues to ignore helpful work from the social sciences, which can teach us new ways of understanding how we produce scientific knowledge. Rather than failing to question how science is done, we should let curiosity be our guide.

  3. Curiosities of the sky

    CERN Document Server

    Serviss, Garrett P

    2012-01-01

    Long before figures like Carl Sagan and Neil deGrasse Tyson simplified astronomy for popular consumption, Garrett P. Serviss was traveling the United States with an early version of a PowerPoint presentation to teach people about eclipses, the orbit of the planets, and other celestial concepts. This basic introduction to the subject is simple and enjoyable enough to ensure that science-phobes or young readers won't be turned off.

  4. Using Citizen Science Observations to Model Species Distributions Over Space, Through Time, and Across Scales

    Science.gov (United States)

    Kelling, S.

    2017-12-01

    The goal of Biodiversity research is to identify, explain, and predict why a species' distribution and abundance vary through time, space, and with features of the environment. Measuring these patterns and predicting their responses to change are not exercises in curiosity. Today, they are essential tasks for understanding the profound effects that humans have on earth's natural systems, and for developing science-based environmental policies. To gain insight about species' distribution patterns requires studying natural systems at appropriate scales, yet studies of ecological processes continue to be compromised by inadequate attention to scale issues. How spatial and temporal patterns in nature change with scale often reflects fundamental laws of physics, chemistry, or biology, and we can identify such basic, governing laws only by comparing patterns over a wide range of scales. This presentation will provide several examples that integrate bird observations made by volunteers, with NASA Earth Imagery using Big Data analysis techniques to analyze the temporal patterns of bird occurrence across scales—from hemisphere-wide views of bird distributions to the impact of powerful city lights on bird migration.

  5. Building a Mentorship-Based Research Program Focused on Individual Interests, Curiosity, and Professional Skills at the North Carolina School of Science and Mathematics

    Science.gov (United States)

    Shoemaker, Sarah E.; Thomas, Christopher; Roberts, Todd; Boltz, Robin

    2016-01-01

    The North Carolina School of Science and Mathematics (NCSSM) offers students a wide variety of real-world opportunities to develop skills and talent critical for students to gain the essential professional and personal skills that lead to success in science, technology, engineering, and mathematics (STEM) careers. One of the key avenues available…

  6. Principle of Parsimony, Fake Science, and Scales

    Science.gov (United States)

    Yeh, T. C. J.; Wan, L.; Wang, X. S.

    2017-12-01

    Considering difficulties in predicting exact motions of water molecules, and the scale of our interests (bulk behaviors of many molecules), Fick's law (diffusion concept) has been created to predict solute diffusion process in space and time. G.I. Taylor (1921) demonstrated that random motion of the molecules reach the Fickian regime in less a second if our sampling scale is large enough to reach ergodic condition. Fick's law is widely accepted for describing molecular diffusion as such. This fits the definition of the parsimony principle at the scale of our concern. Similarly, advection-dispersion or convection-dispersion equation (ADE or CDE) has been found quite satisfactory for analysis of concentration breakthroughs of solute transport in uniformly packed soil columns. This is attributed to the solute is often released over the entire cross-section of the column, which has sampled many pore-scale heterogeneities and met the ergodicity assumption. Further, the uniformly packed column contains a large number of stationary pore-size heterogeneity. The solute thus reaches the Fickian regime after traveling a short distance along the column. Moreover, breakthrough curves are concentrations integrated over the column cross-section (the scale of our interest), and they meet the ergodicity assumption embedded in the ADE and CDE. To the contrary, scales of heterogeneity in most groundwater pollution problems evolve as contaminants travel. They are much larger than the scale of our observations and our interests so that the ergodic and the Fickian conditions are difficult. Upscaling the Fick's law for solution dispersion, and deriving universal rules of the dispersion to the field- or basin-scale pollution migrations are merely misuse of the parsimony principle and lead to a fake science ( i.e., the development of theories for predicting processes that can not be observed.) The appropriate principle of parsimony for these situations dictates mapping of large-scale

  7. Dementia communication using empathic curiosity.

    Science.gov (United States)

    McEvoy, Phil; Eden, John; Plant, Rachel

    Communication skills training materials in dementia care usually focus on reminiscence. This is important because talking about past events can help people with dementia to retain their sense of self. This article examines the use of an alternative set of communication skills known as empathic curiosity, which may help to promote meaningful communication in the here and now with people who are living with dementia.

  8. Scale and scaling in agronomy and environmental sciences

    Science.gov (United States)

    Scale is of paramount importance in environmental studies, engineering, and design. The unique course covers the following topics: scale and scaling, methods and theories, scaling in soils and other porous media, scaling in plants and crops; scaling in landscapes and watersheds, and scaling in agro...

  9. A Concept Map of Curiosity Literature

    OpenAIRE

    Bai, Zhen

    2018-01-01

    Curiosity is a commonly studied topic in psychology. I produced the following mind map to categorize and understand key contributions to curiosity literature, to inform the design of technology-enhanced learning technologies to evoke curiosity that we are presently undertaking. Just as the mind map categorizes the literature, the literature de?fines the shape and nature of the mind map presented here-in.

  10. The Geologic Exploration of the Bagnold Dune Field at Gale Crater by the Curiosity Rover.

    Science.gov (United States)

    Chojnacki, Matthew; Fenton, Lori K

    2017-11-01

    The Mars Science Laboratory rover Curiosity engaged in a monthlong campaign investigating the Bagnold dune field in Gale crater. What represents the first in situ investigation of a dune field on another planet has resulted in a number of discoveries. Collectively, the Curiosity rover team has compiled the most comprehensive survey of any extraterrestrial aeolian system visited to date with results that yield important insights into a number of processes, including sediment transport, bed form morphology and structure, chemical and physical composition of aeolian sand, and wind regime characteristics. These findings and more are provided in detail by the JGR-Planets Special Issue Curiosity's Bagnold Dunes Campaign, Phase I.

  11. Physics curiosities, oddities, and novelties

    CERN Document Server

    Kimball, John

    2015-01-01

    An Enlightening Way to Navigate through Mind-Boggling Physics ConceptsPhysics Curiosities, Oddities, and Novelties highlights unusual aspects of physics and gives a new twist to some fundamental concepts. The book covers both classical and modern physics in an engaging, straightforward style.The author presents perplexing questions that often lack satisfying answers. He also delves into the stories of famous and eccentric past scientists. Many examples reveal interesting ideas, including how:Newton had trouble determining the mass of the moonAn electric motor is an electric generator run in re

  12. Leibniz on the unicorn and various other curiosities.

    Science.gov (United States)

    Ariew, R

    1998-11-01

    I discuss some of Leibniz's pronouncements about fringe phenomena--various monsters; talking dogs; genies and prophets; unicorns, glossopetrae, and other games of nature--in order to understand better Leibniz's views on science and the role these curiosities play in his plans for scientific academies and societies. However, given that Leibniz's sincerity has been called into question in twentieth-century secondary literature, I begin with a few historiographical remarks so as to situate these pronouncements within the Leibnizian corpus. What emerges is an image of Leibniz as a sober, cautious interpreter, a skeptic one might say but one who is prepared to concede the possibility of many strange phenomena. Leibniz expects these fringe phenomena to take their place among the natural curiosities catalogued as part of a hoped for empirical database intended as means toward the perfection of the sciences.

  13. Performance of the Mechanically Pumped Fluid Loop Rover Heat Rejection System Used for Thermal Control of the Mars Science Laboratory Curiosity Rover on the Surface of Mars

    Science.gov (United States)

    Bhandari, Pradeep; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Miller, Jennifer; Karlmann, Paul; Liu, Yuanming; Anderson, Kevin

    2013-01-01

    The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, required a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to +50 C range. The RHRS harnesses some of the waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer and supply it to the rover. This design is the first instance of use of a RHRS for thermal control of a rover or lander on the surface of a planet. After an extremely successful landing on Mars (August 5), the rover and the RHRS have performed flawlessly for close to an earth year (half the nominal mission life). This paper will share the performance of the RHRS on the Martian surface as well as compare it to its predictions.

  14. Pre-Schoolers' Verbal and Behavioral Responses as Indicators of Attitudes and Scientific Curiosity

    Science.gov (United States)

    Baruch, Yael Kesner; Spektor-Levy, Ornit; Mashal, Nira

    2016-01-01

    Today, early science education is a well-accepted view. Enhancing children's curiosity about the natural world and fostering positive attitudes toward science are primary goals of science education. However, questions remain regarding the appropriate ways to identify, nurture, and study these emotional states in pre-schoolers. This study examines…

  15. Development of Teachers' Attitude Scale towards Science Fair

    Science.gov (United States)

    Tortop, Hasan Said

    2013-01-01

    This study was conducted to develop a new scale for measuring teachers' attitude towards science fair. Teacher Attitude Scale towards Science Fair (TASSF) is an inventory made up of 19 items and five dimensions. The study included such stages as literature review, the preparation of the item pool and the reliability and validity analysis. First of…

  16. European Space Science Scales New Heights

    Science.gov (United States)

    1995-06-01

    been approved by all ESA's Member States. Outside Europe, the stability and solidity of Horizon 2000 have made ESA an extremely credible and reliable partner, arousing ever greater interest in international - including transatlantic - co-operation. Given that the first results look positive, it makes sense to think about continuing the work done to date. Which is why this year, half-way through Horizon 2000, it is time to look ahead to the next twenty-year period and embark on the follow-up programme which will lead to further missions being carried out between 2006 and 2016. At ESA Council meeting to be held in October in Toulouse, European ministers responsible for space will therefore have to take a decision on a "Horizon 2000 PLUS " programme designed to ensure successful European space science over a further ten-year period. The proposal being put forward by ESA's directorate of scientific programmes involves setting up three large-scale missions: * a mission to explore Mercury, the least known of the inner solar planets, 60iln of whose surface has yet to be mapped * an interferometry observatory designed to map the sky a hundred times more accurately than the Hipparcos satellite * a gravitational observatory able to pick up the space time waves emitted by the universe at the precise moment of the Big Bang. In parallel four medium-size missions - their content still to be defined - would be carried out. As with its forerunner, Horizon 2000 PLUS has been defined on the basis of proposals submitted by the scientific community following open competition. In all, I10 mission concepts were proposed by a total of 2500 scientists. These were then examined by peer-review groups, involving 75 scientists in all who announced their final choice on I October 1994. The agency is proposing to start preparing for Horizon 2000 PLUS on the basis of level funding up to the year 2000. This means that ESA would undertake to conduct preliminary Horizon 2000 PLUS technological studies

  17. Collaborating for Multi-Scale Chemical Science

    Energy Technology Data Exchange (ETDEWEB)

    William H. Green

    2006-07-14

    Advanced model reduction methods were developed and integrated into the CMCS multiscale chemical science simulation software. The new technologies were used to simulate HCCI engines and burner flames with exceptional fidelity.

  18. The Relationship between Optimism, Pre-Entrepreneurial Curiosity and Entrepreneurial Curiosity

    Directory of Open Access Journals (Sweden)

    Jeraj Mitja

    2014-08-01

    Full Text Available Background: Entrepreneurship and entrepreneurs become more and more interesting fields for a scientific research. This paper addresses the relationship between optimism, pre-entrepreneurial curiosity and entrepreneurial curiosity as three determinants of entrepreneurial psychology. Literature review showed optimism is important for entrepreneurs and influence them mostly in a positive way. Although entrepreneurial curiosity is important determinant for entrepreneurs and it was connected with entrepreneurial self-efficacy, openness, and company's growth the connection with optimism remained unexplored until this research.

  19. Curiosity Is Not Good--But It's Not Bad, Either

    Science.gov (United States)

    Wong, David

    2012-01-01

    Curiosity is vital quality of the creative work. However, in the classroom, educators seem to view curiosity as alternately amoral, virtuous, or dangerous. Education's stance towards curiosity is, in a word, curious. Conversely, the author says, curiosity is inherently amoral--neither good nor bad--and the subject is ripe for an exploration of the…

  20. The Psychology and Neuroscience of Curiosity.

    Science.gov (United States)

    Kidd, Celeste; Hayden, Benjamin Y

    2015-11-04

    Curiosity is a basic element of our cognition, but its biological function, mechanisms, and neural underpinning remain poorly understood. It is nonetheless a motivator for learning, influential in decision-making, and crucial for healthy development. One factor limiting our understanding of it is the lack of a widely agreed upon delineation of what is and is not curiosity. Another factor is the dearth of standardized laboratory tasks that manipulate curiosity in the lab. Despite these barriers, recent years have seen a major growth of interest in both the neuroscience and psychology of curiosity. In this Perspective, we advocate for the importance of the field, provide a selective overview of its current state, and describe tasks that are used to study curiosity and information-seeking. We propose that, rather than worry about defining curiosity, it is more helpful to consider the motivations for information-seeking behavior and to study it in its ethological context. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Male bisexual arousal: a matter of curiosity?

    Science.gov (United States)

    Rieger, Gerulf; Rosenthal, Allen M; Cash, Brian M; Linsenmeier, Joan A W; Bailey, J Michael; Savin-Williams, Ritch C

    2013-12-01

    Conflicting evidence exists regarding whether bisexual-identified men are sexually aroused to both men and women. We hypothesized that a distinct characteristic, level of curiosity about sexually diverse acts, distinguishes bisexual-identified men with and without bisexual arousal. Study 1 assessed men's (n=277) sexual arousal via pupil dilation to male and female sexual stimuli. Bisexual men were, on average, higher in their sexual curiosity than other men. Despite this general difference, only bisexual-identified men with elevated sexual curiosity showed bisexual arousal. Those lower in curiosity had responses resembling those of homosexual men. Study 2 assessed men's (n=72) sexual arousal via genital responses and replicated findings of Study 1. Study 3 provided information on the validity on our measure of sexual curiosity by relating it to general curiosity and sexual sensation seeking (n=83). Based on their sexual arousal and personality, at least two groups of men identify as bisexual. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Integrated Results from Analysis of the Rocknest Aeolian Deposit by the Curiosity Rover

    Science.gov (United States)

    Leshin, L. A.; Grotzinger, J. P.; Blake, D. F.; Edgett, K. S.; Gellert, R.; Mahaffy, P. R.; Malin, M. C.; Wiens, R. C.; Treiman, A. H.; Ming, D. W.; hide

    2013-01-01

    The Mars Science Laboratory Curiosity rover spent 45 sols (from sol 56-101) at an area called Rocknest (Fig. 1), characterizing local geology and ingesting its aeolian fines into the analytical instruments CheMin and SAM for mineralogical and chemical analysis. Many abstracts at this meeting present the contextual information and detailed data on these first solid samples analyzed in detail by Curiosity at Rocknest. Here, we present an integrated view of the results from Rocknest - the general agreement from discussions among the entire MSL Science Team.

  3. Exploration of Mars with the ChemCam LIBS Instrument and the Curiosity Rover

    Science.gov (United States)

    Newsom, Horton E.

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity rover landed on Mars in August 2012, and has been exploring the planet ever since. Dr. Horton E. Newsom will discuss the MSL's design and main goal, which is to characterize past environments that may have been conducive to the evolution and sustainability of life. He will also discuss Curiosity's science payload, and remote sensing, analytical capabilities, and direct discoveries of the Chemistry & Camera (ChemCam) instrument, which is the first Laser Induced Breakdown Spectrometer (LIBS) to operate on another planetary surface and determine the chemistry of the rocks and soils.

  4. Plasma Science Contribution to the SCaLeS Report

    International Nuclear Information System (INIS)

    Jardin, S.C.

    2003-01-01

    In June of 2003, about 250 computational scientists and mathematicians being funded by the DOE Office of Science met in Arlington, VA, to attend a 2-day workshop on the Science Case for Large-scale Simulation (SCaLeS). This document was the output of the Plasma Science Section of that workshop. The conclusion is that exciting and important progress can be made in the field of Plasma Science if computer power continues to grow and algorithmic development continues to occur at the rate that it has in the past. Full simulations of burning plasma experiments could be possible in the 5-10 year time frame if an aggressive growth program is launched in this area

  5. Calcium Sulfate Characterized by ChemCam/Curiosity at Gale Crater, Mars

    Science.gov (United States)

    Nachon, M.; Clegg, S. N.; Mangold, N.; Schroeder, S.; Kah, L. C.; Dromart, G.; Ollila, A.; Johnson, J. R.; Oehler, D. Z.; Bridges, J. C.; hide

    2014-01-01

    Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of :(1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of the targets [1;2] and (2) a Remote Micro Imager (RMI), for the imaging context of laser analysis [3]. Within the Gale crater, Curiosity traveled from Bradbury Landing through the Rocknest region and into Yellowknife Bay (YB). In the latter, abundant light-toned fracture-fill material were seen [4;5]. ChemCam analysis demonstrate that those fracture fills consist of calcium sulfates [6].

  6. Scales and scaling in turbulent ocean sciences; physics-biology coupling

    Science.gov (United States)

    Schmitt, Francois

    2015-04-01

    Geophysical fields possess huge fluctuations over many spatial and temporal scales. In the ocean, such property at smaller scales is closely linked to marine turbulence. The velocity field is varying from large scales to the Kolmogorov scale (mm) and scalar fields from large scales to the Batchelor scale, which is often much smaller. As a consequence, it is not always simple to determine at which scale a process should be considered. The scale question is hence fundamental in marine sciences, especially when dealing with physics-biology coupling. For example, marine dynamical models have typically a grid size of hundred meters or more, which is more than 105 times larger than the smallest turbulence scales (Kolmogorov scale). Such scale is fine for the dynamics of a whale (around 100 m) but for a fish larvae (1 cm) or a copepod (1 mm) a description at smaller scales is needed, due to the nonlinear nature of turbulence. The same is verified also for biogeochemical fields such as passive and actives tracers (oxygen, fluorescence, nutrients, pH, turbidity, temperature, salinity...) In this framework, we will discuss the scale problem in turbulence modeling in the ocean, and the relation of Kolmogorov's and Batchelor's scales of turbulence in the ocean, with the size of marine animals. We will also consider scaling laws for organism-particle Reynolds numbers (from whales to bacteria), and possible scaling laws for organism's accelerations.

  7. Dreaming on Mars: How Curiosity Performs Actuator Warm-Up While Sleeping

    Science.gov (United States)

    Lee, Gene Y.; Donaldson, James A.

    2013-01-01

    Before the Curiosity rover can perform its science activities for the day, such as driving, moving its robotic arm, or drilling, it first has to ensure that its actuators are within their allowable flight temperatures (AFTs). When the rover is awake, flight software uses heaters to warm up and maintain thermal zones at operational temperatures. However, Curiosity spends about 70% of its time sleeping, with the flight computer off, in order to conserve energy. Dream Mode is a special behavior that allows the rover to execute warm-up activities while sleeping. Using Dream Mode, actuators can be warmed up to their AFTs before the flight computer wakes up and uses them - saving power and improving operational efficiency. This paper describes the motivation behind Dream Mode, how it was implemented and tested on Curiosity, and the challenges and lessons learned along the way.

  8. Teaching Inquiry with a Lens toward Curiosity

    Science.gov (United States)

    von Renesse, Christine; Ecke, Volker

    2017-01-01

    This paper links educational psychology research about curiosity to teacher moves that are effective in an inquiry-based mathematics classroom. Three vignettes will show explicit teacher moves (staging disagreement, intriguing anecdotes, and creating a safe space) for different audiences (math majors, mathematics for liberal arts students, and…

  9. Measuring epistemic curiosity in young children

    NARCIS (Netherlands)

    Piotrowski, J.; Litman, J.A.; Valkenburg, P.

    2014-01-01

    Epistemic curiosity (EC) is the desire to obtain new knowledge capable of either producing positive experiences of intellectual interest (I-type) or of reducing undesirable conditions of informational deprivation (D-type). Although researchers acknowledge that there are individual differences in

  10. Children's Need to Know: Curiosity in Schools

    Science.gov (United States)

    Engel, Susan

    2011-01-01

    In this essay, Susan Engel argues that curiosity is both intrinsic to children's development and unfolds through social interactions. Thus, it should be cultivated in schools, even though it is often almost completely absent from classrooms. Calling on well-established research and more recent studies, Engel argues that interactions between…

  11. Questions, Curiosity and the Inquiry Cycle

    Science.gov (United States)

    Casey, Leo

    2014-01-01

    This article discusses the conceptual relationship between questions, curiosity and learning as inquiry elaborated in the work of Chip Bruce and others as the Inquiry Cycle. The Inquiry Cycle describes learning in terms of a continuous dynamic of ask, investigate, create, discuss and reflect. Of these elements "ask" has a privileged…

  12. The Curiosity Mars Rover's Fault Protection Engine

    Science.gov (United States)

    Benowitz, Ed

    2014-01-01

    The Curiosity Rover, currently operating on Mars, contains flight software onboard to autonomously handle aspects of system fault protection. Over 1000 monitors and 39 responses are present in the flight software. Orchestrating these behaviors is the flight software's fault protection engine. In this paper, we discuss the engine's design, responsibilities, and present some lessons learned for future missions.

  13. Research Says/Curiosity Is Fleeting, but Teachable

    Science.gov (United States)

    Goodwin, Bryan

    2014-01-01

    Psychologists and researchers have long puzzled over questions regarding "curiosity" and have more or less settled on a two-pronged definition as: (1) trait curiosity (an intrinsic drive for exploration and learning); and (2) state curiosity (an interest sparked by external conditions). Many studies have shown that human beings are…

  14. Curiositas and Studiositas: Investigating Student Curiosity and the Design Studio

    Science.gov (United States)

    Smith, Korydon

    2011-01-01

    Curiosity is often considered the foundation of learning. There is, however, little understanding of how (or if) pedagogy in higher education affects student curiosity, especially in the studio setting of architecture, interior design and landscape architecture. This article provides a brief cultural history of curiosity and its role in the design…

  15. Identifying Relevant Anti-Science Perceptions to Improve Science-Based Communication: The Negative Perceptions of Science Scale

    Directory of Open Access Journals (Sweden)

    Melanie Morgan

    2018-04-01

    Full Text Available Science communicators and scholars have struggled to understand what appears to be increasingly frequent endorsement of a wide range of anti-science beliefs and a corresponding reduction of trust in science. A common explanation for this issue is a lack of science literacy/knowledge among the general public (Funk et al. 2015. However, other possible explanations have been advanced, including conflict with alternative belief systems and other contextual factors, and even cultural factors (Gauchat 2008; Kahan 2015 that are not necessarily due to knowledge deficits. One of the challenges is that there are limited tools available to measure a range of possible underlying negative perceptions of science that could provide a more nuanced framework within which to improve communication around important scientific topics. This project describes two studies detailing the development and validation of the Negative Perceptions of Science Scale (NPSS, a multi-dimensional instrument that taps into several distinct sets of negative science perceptions: Science as Corrupt, Science as Complex, Science as Heretical, and Science as Limited. Evidence for the reliability and validity of the NPSS is described. The sub-dimensions of the NPSS are associated with a range of specific anti-science beliefs across a broad set of topic areas above and beyond that explained by demographics (including education, sex, age, and income, political, and religious ideology. Implications for these findings for improving science communication and science-related message tailoring are discussed.

  16. How Evolution May Work Through Curiosity-Driven Developmental Process.

    Science.gov (United States)

    Oudeyer, Pierre-Yves; Smith, Linda B

    2016-04-01

    Infants' own activities create and actively select their learning experiences. Here we review recent models of embodied information seeking and curiosity-driven learning and show that these mechanisms have deep implications for development and evolution. We discuss how these mechanisms yield self-organized epigenesis with emergent ordered behavioral and cognitive developmental stages. We describe a robotic experiment that explored the hypothesis that progress in learning, in and for itself, generates intrinsic rewards: The robot learners probabilistically selected experiences according to their potential for reducing uncertainty. In these experiments, curiosity-driven learning led the robot learner to successively discover object affordances and vocal interaction with its peers. We explain how a learning curriculum adapted to the current constraints of the learning system automatically formed, constraining learning and shaping the developmental trajectory. The observed trajectories in the robot experiment share many properties with those in infant development, including a mixture of regularities and diversities in the developmental patterns. Finally, we argue that such emergent developmental structures can guide and constrain evolution, in particular with regard to the origins of language. Copyright © 2016 Cognitive Science Society, Inc.

  17. Scale of Academic Emotion in Science Education: Development and Validation

    Science.gov (United States)

    Chiang, Wen-Wei; Liu, Chia-Ju

    2014-04-01

    Contemporary research into science education has generally been conducted from the perspective of 'conceptual change' in learning. This study sought to extend previous work by recognizing that human rationality can be influenced by the emotions generated by the learning environment and specific actions related to learning. Methods used in educational psychology were adopted to investigate the emotional experience of science students as affected by gender, teaching methods, feedback, and learning tasks. A multidisciplinary research approach combining brain activation measurement with multivariate psychological data theory was employed in the development of a questionnaire intended to reveal the academic emotions of university students in three situations: attending science class, learning scientific subjects, and problem solving. The reliability and validity of the scale was evaluated using exploratory and confirmatory factor analyses. Results revealed differences between the genders in positive-activating and positive-deactivating academic emotions in all three situations; however, these differences manifested primarily during preparation for Science tests. In addition, the emotions experienced by male students were more intense than those of female students. Finally, the negative-deactivating emotions associated with participation in Science tests were more intense than those experienced by simply studying science. This study provides a valuable tool with which to evaluate the emotional response of students to a range of educational situations.

  18. Curiosity's Autonomous Surface Safing Behavior Design

    Science.gov (United States)

    Neilson, Tracy A.; Manning, Robert M.

    2013-01-01

    The safing routines on all robotic deep-space vehicles are designed to put the vehicle in a power and thermally safe configuration, enabling communication with the mission operators on Earth. Achieving this goal is made a little more difficult on Curiosity because the power requirements for the core avionics and the telecommunication equipment exceed the capability of the single power source, the Multi-Mission Radioisotope Thermoelectric Generator. This drove the system design to create an operational mode, called "sleep mode", where the vehicle turns off most of the loads in order to charge the two Li-ion batteries. The system must keep the vehicle safe from over-heat and under-heat conditions, battery cell failures, under-voltage conditions, and clock failures, both while the computer is running and while the system is sleeping. The other goal of a safing routine is to communicate. On most spacecraft, this simply involves turning on the receiver and transmitter continuously. For Curiosity, Earth is above the horizon only a part of the day for direct communication to the Earth, and the orbiter overpass opportunities only occur a few times a day. The design must robustly place the Rover in a communicable condition at the correct time. This paper discusses Curiosity's autonomous safing behavior and describes how the vehicle remains power and thermally safe while sleeping, as well as a description of how the Rover communicates with the orbiters and Earth at specific times.

  19. Interpreting the Third International Mathematics and Science Study (TIMSS) achievement scales using scale anchoring

    Science.gov (United States)

    Kelly, Dana L.

    1999-11-01

    The scale anchoring method was used to analyze and describe the TIMSS primary and middle school (Populations 1 and 2) mathematics and science achievement scales. Scale anchoring is a way of attaching meaning to a scale by describing what students know and can do at specific points on the scale. Student achievement was scrutinized at four points on the TIMSS primary and middle school achievement scales---the 25th, 50th, 75th, and 90th international percentiles for fourth and eighth grades. The scale anchoring method was adapted for the TIMSS data and items that students scoring at each of the four scale points were likely to answer correctly (with a 65 percent probability) were identified. The items were assembled in binders organized by anchor level and content area. Two ten-member panels of subject-matter specialists were convened to scrutinize the items, draft descriptions of student proficiency at the four scale points, and identify example TIMSS items to illustrate performance at each level. Following the panel meetings, the descriptions were refined through an iterative review process. The result is a content-referenced interpretation of the TIMSS scales through which TIMSS achievement results can be better communicated and understood.

  20. Neural mechanisms underlying the induction and relief of perceptual curiosity

    Directory of Open Access Journals (Sweden)

    Marieke eJepma

    2012-02-01

    Full Text Available Curiosity is one of the most basic biological drives in both animals and humans, and has been identified as a key motive for learning and discovery. Despite the importance of curiosity and related behaviors, the topic has been largely neglected in human neuroscience; hence little is known about the neurobiological mechanisms underlying curiosity. We used functional magnetic resonance imaging (fMRI to investigate what happens in our brain during the induction and subsequent relief of perceptual curiosity. Our core findings were that (i the induction of perceptual curiosity, through the presentation of ambiguous visual input, activated the anterior insula and anterior cingulate cortex, brain regions sensitive to conflict and arousal; (ii the relief of perceptual curiosity, through visual disambiguation, activated regions of the striatum that have been related to reward processing; and (iii the relief of perceptual curiosity was associated with hippocampal activation and enhanced incidental memory. These findings provide the first demonstration of the neural basis of human perceptual curiosity. Our results provide neurobiological support for a classic psychological theory of curiosity, which holds that curiosity is an aversive condition of increased arousal whose termination is rewarding and facilitates memory.

  1. Web-based Visual Analytics for Extreme Scale Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Steed, Chad A [ORNL; Evans, Katherine J [ORNL; Harney, John F [ORNL; Jewell, Brian C [ORNL; Shipman, Galen M [ORNL; Smith, Brian E [ORNL; Thornton, Peter E [ORNL; Williams, Dean N. [Lawrence Livermore National Laboratory (LLNL)

    2014-01-01

    In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via new visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.

  2. Large-scale networks in engineering and life sciences

    CERN Document Server

    Findeisen, Rolf; Flockerzi, Dietrich; Reichl, Udo; Sundmacher, Kai

    2014-01-01

    This edited volume provides insights into and tools for the modeling, analysis, optimization, and control of large-scale networks in the life sciences and in engineering. Large-scale systems are often the result of networked interactions between a large number of subsystems, and their analysis and control are becoming increasingly important. The chapters of this book present the basic concepts and theoretical foundations of network theory and discuss its applications in different scientific areas such as biochemical reactions, chemical production processes, systems biology, electrical circuits, and mobile agents. The aim is to identify common concepts, to understand the underlying mathematical ideas, and to inspire discussions across the borders of the various disciplines.  The book originates from the interdisciplinary summer school “Large Scale Networks in Engineering and Life Sciences” hosted by the International Max Planck Research School Magdeburg, September 26-30, 2011, and will therefore be of int...

  3. The effects of curiosity-evoking events on activity enjoyment.

    Science.gov (United States)

    Isikman, Elif; MacInnis, Deborah J; Ülkümen, Gülden; Cavanaugh, Lisa A

    2016-09-01

    Whereas prior literature has studied the positive effects of curiosity-evoking events that are integral to focal activities, we explore whether and how a curiosity-evoking event that is incidental to a focal activity induces negative outcomes for enjoyment. Four experiments and 1 field study demonstrate that curiosity about an event that is incidental to an activity in which individuals are engaged, significantly affects enjoyment of a concurrent activity. The reason why is that curiosity diverts attention away from the concurrent activity and focuses attention on the curiosity-evoking event. Thus, curiosity regarding an incidental event decreases enjoyment of a positive focal activity but increases enjoyment of a negative focal activity. PsycINFO Database Record (c) 2016 APA, all rights reserved

  4. The Role of the Curiosity in Interviews with Drug Users

    Directory of Open Access Journals (Sweden)

    Jozsef Racz

    2008-05-01

    Full Text Available In studies with questionnaires the main reason reported for trying drugs is the curiosity. However, curiosity does not have an unambiguous meaning. The word itself (in English as well as in Hungarian has more, sometimes contradictory meanings. In my own research I examined the usage of the term curiosity among injecting and non-injecting drug users in qualitative interviews, conducted in Hungary. I encountered different functions of curiosity: in accounts it appeared as an excuse or, less frequently, as justification of drug use behaviour. Contrary to dominant contemporary drug policy literature, drug users themselves rarely used curiosity as the cause of their drug use in the context of its risk or dangers. The results of this research on curiosity demonstrate that the normalisation of drug use, which is already in progress in Western countries, has not yet taken place in Hungary. URN: urn:nbn:de:0114-fqs0802166

  5. Nitrogen on Mars: Insights from Curiosity

    Science.gov (United States)

    Stern, J. C.; Sutter, B.; Jackson, W. A.; Navarro-Gonzalez, Rafael; McKay, Chrisopher P.; Ming, W.; Archer, P. Douglas; Glavin, D. P.; Fairen, A. G.; Mahaffy, Paul R.

    2017-01-01

    Recent detection of nitrate on Mars indicates that nitrogen fixation processes occurred in early martian history. Data collected by the Sample Analysis at Mars (SAM) instrument on the Curiosity Rover can be integrated with Mars analog work in order to better understand the fixation and mobility of nitrogen on Mars, and thus its availability to putative biology. In particular, the relationship between nitrate and other soluble salts may help reveal the timing of nitrogen fixation and post-depositional behavior of nitrate on Mars. In addition, in situ measurements of nitrogen abundance and isotopic composition may be used to model atmospheric conditions on early Mars.

  6. Journalism Curiosity and Story Telling Frame

    DEFF Research Database (Denmark)

    Grunwald, Ebbe; Rupar, Verica

    2009-01-01

    This comparative study of journalism practices in Australia and Denmark explores the interplay between two concepts relevant for journalism's meaning-making activity: a curiosity seen as an action meant to close an information gap, and a story telling frame seen as a form of structuring information...... the epistemological and organisational dimension of frames relates to the process of  meaning-making. We suggest refining the concept of frame in journalism studies by making a distinction between a frame (an epistemological category) and an angle (a textual organisation category). Our investigation shows...... that this distinction better serves the analysis and understanding of the mechanisms behind journalism in comparative contexts. Udgivelsesdato: December...

  7. A Scale to Assess Science Activity Videos (SASAV): The Study of Validity and Reliability

    Science.gov (United States)

    Kara, Yilmaz; Bakirci, Hasan

    2018-01-01

    The purpose of the study was to develop an assessment scale for science activity videos that can be used to determine qualified science activity videos that can fulfill the objectives of activity based science education, help teachers to evaluate any science activity videos and decide whether to include into science learning process. The subjects…

  8. Volatiles and Isotopes and the Exploration of Ancient and Modern Martian Habitability with the Curiosity Rover

    Science.gov (United States)

    Mhaffy, P. R.

    2015-01-01

    The Mars Science Laboratory Mission was designed to pave the way for the study of life beyond Earth through a search for a habitable environment in a carefully selected landing site on Mars. Its ongoing exploration of Gale Crater with the Curiosity Rover has provided a rich data set that revealed such an environment in an ancient lakebed [1]. Volatile and isotope measurements of both the atmosphere and solids contribute to our growing understanding of both modern and ancient environments.

  9. Compositional Variations in Sands of the Bagnold Dunes, Gale Crater, Mars, from Visible-Shortwave Infrared Spectroscopy and Comparison to Ground-Truth from the Curiosity Rover

    OpenAIRE

    Lapotre, M. G. A.; Ehlmann, B. L.; Minson, S. E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.

    2017-01-01

    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single-scattering albedo spectra and a Markov chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity ...

  10. The Development of Motivational Thought in the Study of Curiosity.

    Science.gov (United States)

    Vidler, Derek C.

    1981-01-01

    Presents an overview of the development of motivational thought in the study of exploratory behavior and curiosity. Traces the way in which concepts of curiosity were considered from the perspectives of instinct and drive-reduction theories to the more recent notions of optimal stimulation. (Author)

  11. A Potential Way of Enquiry into Human Curiosity

    Science.gov (United States)

    Guo, Shesen; Zhang, Ganzhou; Zhai, Run

    2010-01-01

    A powerful search for "curiosity" or its related topics at the online American Psychological Association PsycNET database will produce comparatively disappointing meagreness of resource. This reflects our scanty knowledge in this field though curiosity is widely recognised as one of the most important factors that contribute to motivation and…

  12. Architectural Strategies for Enabling Data-Driven Science at Scale

    Science.gov (United States)

    Crichton, D. J.; Law, E. S.; Doyle, R. J.; Little, M. M.

    2017-12-01

    The analysis of large data collections from NASA or other agencies is often executed through traditional computational and data analysis approaches, which require users to bring data to their desktops and perform local data analysis. Alternatively, data are hauled to large computational environments that provide centralized data analysis via traditional High Performance Computing (HPC). Scientific data archives, however, are not only growing massive, but are also becoming highly distributed. Neither traditional approach provides a good solution for optimizing analysis into the future. Assumptions across the NASA mission and science data lifecycle, which historically assume that all data can be collected, transmitted, processed, and archived, will not scale as more capable instruments stress legacy-based systems. New paradigms are needed to increase the productivity and effectiveness of scientific data analysis. This paradigm must recognize that architectural and analytical choices are interrelated, and must be carefully coordinated in any system that aims to allow efficient, interactive scientific exploration and discovery to exploit massive data collections, from point of collection (e.g., onboard) to analysis and decision support. The most effective approach to analyzing a distributed set of massive data may involve some exploration and iteration, putting a premium on the flexibility afforded by the architectural framework. The framework should enable scientist users to assemble workflows efficiently, manage the uncertainties related to data analysis and inference, and optimize deep-dive analytics to enhance scalability. In many cases, this "data ecosystem" needs to be able to integrate multiple observing assets, ground environments, archives, and analytics, evolving from stewardship of measurements of data to using computational methodologies to better derive insight from the data that may be fused with other sets of data. This presentation will discuss

  13. Preliminary Geological Map of the Peace Vallis Fan Integrated with In Situ Mosaics From the Curiosity Rover, Gale Crater, Mars

    Science.gov (United States)

    Sumner, D. Y.; Palucis, M.; Dietrich, B.; Calef, F.; Stack, K. M.; Ehlmann, B.; Bridges, J.; Dromart, J.; Eigenbrode, J.; Farmer, J.; hide

    2013-01-01

    A geomorphically defined alluvial fan extends from Peace Vallis on the NW wall of Gale Crater, Mars into the Mars Science Laboratory (MSL) Curiosity rover landing ellipse. Prior to landing, the MSL team mapped the ellipse and surrounding areas, including the Peace Vallis fan. Map relationships suggest that bedded rocks east of the landing site are likely associated with the fan, which led to the decision to send Curiosity east. Curiosity's mast camera (Mastcam) color images are being used to refine local map relationships. Results from regional mapping and the first 100 sols of the mission demonstrate that the area has a rich geological history. Understanding this history will be critical for assessing ancient habitability and potential organic matter preservation at Gale Crater.

  14. Potential Cement Phases in Sedimentary Rocks Drilled by Curiosity at Gale Crater, Mars

    Science.gov (United States)

    Rampe, E. B.; Morris, R. V.; Bish, D. L.; Chipera, S. J.; Ming, D. W.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; Cavanagh, P.; Farmer, J. D.; hide

    2015-01-01

    The Mars Science Laboratory rover Curiosity has encountered a variety of sedimentary rocks in Gale crater with different grain sizes, diagenetic features, sedimentary structures, and varying degrees of resistance to erosion. Curiosity has drilled three rocks to date and has analyzed the mineralogy, chemical composition, and textures of the samples with the science payload. The drilled rocks are the Sheepbed mudstone at Yellowknife Bay on the plains of Gale crater (John Klein and Cumberland targets), the Dillinger sandstone at the Kimberley on the plains of Gale crater (Windjana target), and a sedimentary unit in the Pahrump Hills in the lowermost rocks at the base of Mt. Sharp (Confidence Hills target). CheMin is the Xray diffractometer on Curiosity, and its data are used to identify and determine the abundance of mineral phases. Secondary phases can tell us about aqueous alteration processes and, thus, can help to elucidate past aqueous environments. Here, we present the secondary mineralogy of the rocks drilled to date as seen by CheMin and discuss past aqueous environments in Gale crater, the potential cementing agents in each rock, and how amorphous materials may play a role in cementing the sediments.

  15. Diagenetic Features Analyzed by ChemCam/Curiosity at Pahrump Hills, Gale Crater, Mars

    Science.gov (United States)

    Nachon, M.; Mangold, N.; Cousin, A.; Forni, O.; Anderson, R. B.; Blank, J. G.; Calef, F.; Clegg, S.; Fabre, C.; Fisk, M.; hide

    2015-01-01

    Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of : (1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of targets and (2) a Remote Micro Imager (RMI), which provides imaging context for the LIBS. The LIBS/ChemCam performs analysis typically of spot sizes 350-550 micrometers in diameter, up to 7 meters from the rover. Within Gale crater, Curiosity traveled from Bradbury Landing toward the base of Mount Sharp, reaching Pahrump Hills outcrop circa sol 750. This region, as seen from orbit, represents the first exposures of lower Mount Sharp. In this abstract we focus on two types of features present within the Pahrump Hills outcrop: concretion features and light-toned veins.

  16. Personal Professional Development Efforts Scale for Science and Technology Teachers Regarding Their Fields

    Science.gov (United States)

    Bilgin, Aysegül; Balbag, Mustafa Zafer

    2016-01-01

    This study has developed "Personal Professional Development Efforts Scale for Science and Technology Teachers Regarding Their Fields". Exploratory factor analysis of the scale has been conducted based on the data collected from 200 science and technology teachers across Turkey. The scale has been observed through varimax rotation method,…

  17. Proportional Reasoning Ability and Concepts of Scale: Surface Area to Volume Relationships in Science

    Science.gov (United States)

    Taylor, Amy; Jones, Gail

    2009-01-01

    The "National Science Education Standards" emphasise teaching unifying concepts and processes such as basic functions of living organisms, the living environment, and scale. Scale influences science processes and phenomena across the domains. One of the big ideas of scale is that of surface area to volume. This study explored whether or not there…

  18. Zooniverse - Web scale citizen science with people and machines. (Invited)

    Science.gov (United States)

    Smith, A.; Lynn, S.; Lintott, C.; Simpson, R.

    2013-12-01

    The Zooniverse (zooniverse.org) began in 2007 with the launch of Galaxy Zoo, a project in which more than 175,000 people provided shape analyses of more than 1 million galaxy images sourced from the Sloan Digital Sky Survey. These galaxy 'classifications', some 60 million in total, have since been used to produce more than 50 peer-reviewed publications based not only on the original research goals of the project but also because of serendipitous discoveries made by the volunteer community. Based upon the success of Galaxy Zoo the team have gone on to develop more than 25 web-based citizen science projects, all with a strong research focus in a range of subjects from astronomy to zoology where human-based analysis still exceeds that of machine intelligence. Over the past 6 years Zooniverse projects have collected more than 300 million data analyses from over 1 million volunteers providing fantastically rich datasets for not only the individuals working to produce research from their project but also the machine learning and computer vision research communities. The Zooniverse platform has always been developed to be the 'simplest thing that works' implementing only the most rudimentary algorithms for functionality such as task allocation and user-performance metrics - simplifications necessary to scale the Zooniverse such that the core team of developers and data scientists can remain small and the cost of running the computing infrastructure relatively modest. To date these simplifications have been appropriate for the data volumes and analysis tasks being addressed. This situation however is changing: next generation telescopes such as the Large Synoptic Sky Telescope (LSST) will produce data volumes dwarfing those previously analyzed. If citizen science is to have a part to play in analyzing these next-generation datasets then the Zooniverse will need to evolve into a smarter system capable for example of modeling the abilities of users and the complexities of

  19. Challenges in Managing Trustworthy Large-scale Digital Science

    Science.gov (United States)

    Evans, B. J. K.

    2017-12-01

    The increased use of large-scale international digital science has opened a number of challenges for managing, handling, using and preserving scientific information. The large volumes of information are driven by three main categories - model outputs including coupled models and ensembles, data products that have been processing to a level of usability, and increasingly heuristically driven data analysis. These data products are increasingly the ones that are usable by the broad communities, and far in excess of the raw instruments data outputs. The data, software and workflows are then shared and replicated to allow broad use at an international scale, which places further demands of infrastructure to support how the information is managed reliably across distributed resources. Users necessarily rely on these underlying "black boxes" so that they are productive to produce new scientific outcomes. The software for these systems depend on computational infrastructure, software interconnected systems, and information capture systems. This ranges from the fundamentals of the reliability of the compute hardware, system software stacks and libraries, and the model software. Due to these complexities and capacity of the infrastructure, there is an increased emphasis of transparency of the approach and robustness of the methods over the full reproducibility. Furthermore, with large volume data management, it is increasingly difficult to store the historical versions of all model and derived data. Instead, the emphasis is on the ability to access the updated products and the reliability by which both previous outcomes are still relevant and can be updated for the new information. We will discuss these challenges and some of the approaches underway that are being used to address these issues.

  20. Cooperation, curiosity and creativity as virtues in participatory design

    NARCIS (Netherlands)

    Steen, M.G.D.

    2011-01-01

    In this essay, I explore how virtue ethics can help to better understand design processes. Three virtues are discussed that people need in order to become participatory design virtuosos: cooperation, curiosity and creativity.

  1. Impact of SCALE-UP on science teaching self-efficacy of students in general education science courses

    Science.gov (United States)

    Cassani, Mary Kay Kuhr

    The objective of this study was to evaluate the effect of two pedagogical models used in general education science on non-majors' science teaching self-efficacy. Science teaching self-efficacy can be influenced by inquiry and cooperative learning, through cognitive mechanisms described by Bandura (1997). The Student Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP) model of inquiry and cooperative learning incorporates cooperative learning and inquiry-guided learning in large enrollment combined lecture-laboratory classes (Oliver-Hoyo & Beichner, 2004). SCALE-UP was adopted by a small but rapidly growing public university in the southeastern United States in three undergraduate, general education science courses for non-science majors in the Fall 2006 and Spring 2007 semesters. Students in these courses were compared with students in three other general education science courses for non-science majors taught with the standard teaching model at the host university. The standard model combines lecture and laboratory in the same course, with smaller enrollments and utilizes cooperative learning. Science teaching self-efficacy was measured using the Science Teaching Efficacy Belief Instrument - B (STEBI-B; Bleicher, 2004). A science teaching self-efficacy score was computed from the Personal Science Teaching Efficacy (PTSE) factor of the instrument. Using non-parametric statistics, no significant difference was found between teaching models, between genders, within models, among instructors, or among courses. The number of previous science courses was significantly correlated with PTSE score. Student responses to open-ended questions indicated that students felt the larger enrollment in the SCALE-UP room reduced individual teacher attention but that the large round SCALE-UP tables promoted group interaction. Students responded positively to cooperative and hands-on activities, and would encourage inclusion of more such activities in all of the

  2. Self-Efficacy for Science Teaching Scale Development: Construct Validation with Elementary School Teachers

    Science.gov (United States)

    Yangin, Selami; Sidekli, Sabri

    2016-01-01

    The measurement of teacher self-efficacy has a history of more than 30 years. The purpose of this research is to evaluate the development and validation of a new scale to measure the science teaching self-efficacy of elementary school teachers. Therefore, a scale has been created to measure elementary teachers' science teaching self-efficacy and…

  3. The Mars Hand Lens Imager (MAHLI) aboard the Mars rover, Curiosity

    Science.gov (United States)

    Edgett, K. S.; Ravine, M. A.; Caplinger, M. A.; Ghaemi, F. T.; Schaffner, J. A.; Malin, M. C.; Baker, J. M.; Dibiase, D. R.; Laramee, J.; Maki, J. N.; Willson, R. G.; Bell, J. F., III; Cameron, J. F.; Dietrich, W. E.; Edwards, L. J.; Hallet, B.; Herkenhoff, K. E.; Heydari, E.; Kah, L. C.; Lemmon, M. T.; Minitti, M. E.; Olson, T. S.; Parker, T. J.; Rowland, S. K.; Schieber, J.; Sullivan, R. J.; Sumner, D. Y.; Thomas, P. C.; Yingst, R. A.

    2009-08-01

    The Mars Science Laboratory (MSL) rover, Curiosity, is expected to land on Mars in 2012. The Mars Hand Lens Imager (MAHLI) will be used to document martian rocks and regolith with a 2-megapixel RGB color CCD camera with a focusable macro lens mounted on an instrument-bearing turret on the end of Curiosity's robotic arm. The flight MAHLI can focus on targets at working distances of 20.4 mm to infinity. At 20.4 mm, images have a pixel scale of 13.9 μm/pixel. The pixel scale at 66 mm working distance is about the same (31 μm/pixel) as that of the Mars Exploration Rover (MER) Microscopic Imager (MI). MAHLI camera head placement is dependent on the capabilities of the MSL robotic arm, the design for which presently has a placement uncertainty of ~20 mm in 3 dimensions; hence, acquisition of images at the minimum working distance may be challenging. The MAHLI consists of 3 parts: a camera head, a Digital Electronics Assembly (DEA), and a calibration target. The camera head and DEA are connected by a JPL-provided cable which transmits data, commands, and power. JPL is also providing a contact sensor. The camera head will be mounted on the rover's robotic arm turret, the DEA will be inside the rover body, and the calibration target will be mounted on the robotic arm azimuth motor housing. Camera Head. MAHLI uses a Kodak KAI-2020CM interline transfer CCD (1600 x 1200 active 7.4 μm square pixels with RGB filtered microlenses arranged in a Bayer pattern). The optics consist of a group of 6 fixed lens elements, a movable group of 3 elements, and a fixed sapphire window front element. Undesired near-infrared radiation is blocked using a coating deposited on the inside surface of the sapphire window. The lens is protected by a dust cover with a Lexan window through which imaging can be ac-complished if necessary, and targets can be illuminated by sunlight or two banks of two white light LEDs. Two 365 nm UV LEDs are included to search for fluores-cent materials at night. DEA

  4. Network science of biological systems at different scales: A review

    Science.gov (United States)

    Gosak, Marko; Markovič, Rene; Dolenšek, Jurij; Slak Rupnik, Marjan; Marhl, Marko; Stožer, Andraž; Perc, Matjaž

    2018-03-01

    Network science is today established as a backbone for description of structure and function of various physical, chemical, biological, technological, and social systems. Here we review recent advances in the study of complex biological systems that were inspired and enabled by methods of network science. First, we present

  5. Molecular Science Computing Facility Scientific Challenges: Linking Across Scales

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.; Windus, Theresa L.

    2005-07-01

    The purpose of this document is to define the evolving science drivers for performing environmental molecular research at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and to provide guidance associated with the next-generation high-performance computing center that must be developed at EMSL's Molecular Science Computing Facility (MSCF) in order to address this critical research. The MSCF is the pre-eminent computing facility?supported by the U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research (BER)?tailored to provide the fastest time-to-solution for current computational challenges in chemistry and biology, as well as providing the means for broad research in the molecular and environmental sciences. The MSCF provides integral resources and expertise to emerging EMSL Scientific Grand Challenges and Collaborative Access Teams that are designed to leverage the multiple integrated research capabilities of EMSL, thereby creating a synergy between computation and experiment to address environmental molecular science challenges critical to DOE and the nation.

  6. Using Smartphones as Experimental Tools—Effects on Interest, Curiosity, and Learning in Physics Education

    Science.gov (United States)

    Hochberg, Katrin; Kuhn, Jochen; Müller, Andreas

    2018-04-01

    Smartphones as experimental tools (SETs) offer inspiring possibilities for science education, as their built-in sensors allow many different measurements, but until now, there has been little research that studies this approach. Due to current interest in their development, it seems necessary to provide empirical evidence about potential effects of SETs by a well-controlled study. For the present investigation, experiments were developed that use the smartphones' acceleration sensors to investigate an important topic of classical mechanics (pendulum). A quasi-experimental repeated-measurement design, consisting of an experimental group using SETs (smartphone group, SG, N SG = 87) and a control group working with traditional experimental tools (CG, N CG = 67), was used to study the effects on interest, curiosity, and learning achievement. Moreover, various control variables were taken into account. With multiple-regression analyses and ANCOVA, we found significantly higher levels of interest in the SG (small to medium effect size). Pupils that were less interested at the beginning of the study profited most from implementing SETs. Moreover, the SG showed higher levels of topic-specific curiosity (small effect size). No differences were found for learning achievement. This means that the often-supposed cognitive disadvantage of distracting learners with technological devices did not lead to reduced learning, whereas interest and curiosity were apparently fostered. Moreover, the study contributes evidence that could reduce potential concerns related to classroom use of smartphones and similar devices (increased cognitive load, mere novelty effect). In sum, the study presents encouraging results for the under-researched topic of SET use in science classrooms.

  7. Large-Scale Sequencing: The Future of Genomic Sciences Colloquium

    Energy Technology Data Exchange (ETDEWEB)

    Margaret Riley; Merry Buckley

    2009-01-01

    Genetic sequencing and the various molecular techniques it has enabled have revolutionized the field of microbiology. Examining and comparing the genetic sequences borne by microbes - including bacteria, archaea, viruses, and microbial eukaryotes - provides researchers insights into the processes microbes carry out, their pathogenic traits, and new ways to use microorganisms in medicine and manufacturing. Until recently, sequencing entire microbial genomes has been laborious and expensive, and the decision to sequence the genome of an organism was made on a case-by-case basis by individual researchers and funding agencies. Now, thanks to new technologies, the cost and effort of sequencing is within reach for even the smallest facilities, and the ability to sequence the genomes of a significant fraction of microbial life may be possible. The availability of numerous microbial genomes will enable unprecedented insights into microbial evolution, function, and physiology. However, the current ad hoc approach to gathering sequence data has resulted in an unbalanced and highly biased sampling of microbial diversity. A well-coordinated, large-scale effort to target the breadth and depth of microbial diversity would result in the greatest impact. The American Academy of Microbiology convened a colloquium to discuss the scientific benefits of engaging in a large-scale, taxonomically-based sequencing project. A group of individuals with expertise in microbiology, genomics, informatics, ecology, and evolution deliberated on the issues inherent in such an effort and generated a set of specific recommendations for how best to proceed. The vast majority of microbes are presently uncultured and, thus, pose significant challenges to such a taxonomically-based approach to sampling genome diversity. However, we have yet to even scratch the surface of the genomic diversity among cultured microbes. A coordinated sequencing effort of cultured organisms is an appropriate place to begin

  8. Curiosity and time: from not knowing to almost knowing.

    Science.gov (United States)

    Noordewier, Marret K; van Dijk, Eric

    2017-04-01

    How does it feel to be curious? We reasoned that there are two sides to curiosity: not knowing something (i.e. information-gap) and almost knowing something (i.e. anticipation of resolution). In three experiments, we showed that time affects the relative impact of these two components: When people did not expect to close their information-gap soon (long time-to-resolution) not knowing affected the subjective experience of curiosity more strongly than when they expected to close their information-gap quickly (short time-to-resolution). As such, people experienced less positive affect, more discomfort, and more annoyance with lack of information in a long than a short time-to-resolution situation. Moreover, when time in the long time-to-resolution setting passed, the anticipation of the resolution became stronger, positive affect increased, and discomfort and annoyance with lack of information decreased. Time is thus a key factor in the experience of curiosity.

  9. Scale of Academic Emotion in Science Education: Development and Validation

    Science.gov (United States)

    Chiang, Wen-Wei; Liu, Chia-Ju

    2014-01-01

    Contemporary research into science education has generally been conducted from the perspective of "conceptual change" in learning. This study sought to extend previous work by recognizing that human rationality can be influenced by the emotions generated by the learning environment and specific actions related to learning. Methods used…

  10. Science for action at the local landscape scale

    Science.gov (United States)

    Paul Opddam; Joan Iverson Nassauer; Zhifang Wang; Christian Albert; Gary Bentrup; Jean-Christophe Castella; Clive McAlpine; Jianguo Liu; Stephen Sheppard; Simon Swaffield

    2013-01-01

    For landscape ecology to produce knowledge relevant to society, it must include considerations of human culture and behavior, extending beyond the natural sciences to synthesize with many other disciplines. Furthermore, it needs to be able to support landscape change processes which increasingly take the shape of deliberative and collaborative decision making by local...

  11. Investigating and Stimulating Primary Teachers' Attitudes Towards Science: Summary of a Large-Scale Research Project

    Science.gov (United States)

    Walma van der Molen, Juliette; van Aalderen-Smeets, Sandra

    2013-01-01

    Attention to the attitudes of primary teachers towards science is of fundamental importance to research on primary science education. The current article describes a large-scale research project that aims to overcome three main shortcomings in attitude research, i.e. lack of a strong theoretical concept of attitude, methodological flaws in…

  12. Investigating and stimulating primary teachers’ attitudes towards science: Summary of a large-scale research project

    NARCIS (Netherlands)

    Walma van der Molen, Julie Henriëtte; van Aalderen-Smeets, Sandra

    2013-01-01

    Attention to the attitudes of primary teachers towards science is of fundamental importance to research on primary science education. The current article describes a large-scale research project that aims to overcome three main shortcomings in attitude research, i.e. lack of a strong theoretical

  13. Multi-scale modeling strategies in materials science

    Indian Academy of Sciences (India)

    The problem of prediction of finite temperature properties of materials poses great computational challenges. The computational treatment of the multitude of length and time scales involved in determining macroscopic properties has been attempted by several workers with varying degrees of success. This paper will review ...

  14. Construct Validity and Reliability Measures of Scores from the Science Teachers' Pedagogical Discontentment (STPD) Scale

    Science.gov (United States)

    Kahveci, Murat; Kahveci, Ajda; Mansour, Nasser; Mohammed, Maher

    2016-01-01

    The Science Teachers' Pedagogical Discontentment (STPD) scale has formerly been developed in the United States and used since 2006. Based on the perceptions of selected teachers, the scale is deeply rooted in the cultural and national standards. Given these limitations, the measurement integrity of its scores has not yet been conclusively…

  15. Validation of the Domains of Creativity Scale for Nigerian Preservice Science, Technology, and Mathematics Teachers

    Science.gov (United States)

    Awofala, Adeneye O. A.; Fatade, Alfred O.

    2015-01-01

    Introduction: Investigation into the factor structure of Domains of Creativity Scale has been on for sometimes now. The purpose of this study was to test the validity of the Kaufman Domains of Creativity Scale on Nigerian preservice science, technology, and mathematics teachers. Method: Exploratory and confirmatory factor analyses were performed…

  16. Curiosity and Its Role in Cross-Cultural Knowledge Creation

    Science.gov (United States)

    Mikhaylov, Natalie S.

    2016-01-01

    This paper explores the role of curiosity in promoting cross-cultural knowledge creation and competence development. It is based on a study with four international higher educational institutions, all of which offer management and business education for local and international students. The reality of multicultural and intercultural relationships…

  17. Curiosity: A Prerequisite for the Attainment of Formal Operations?

    Science.gov (United States)

    Hawkins, Vincent J.

    1982-01-01

    Research on Piaget's four stages of cognitive development has shown that although nearly everyone passes through sensorimotor, preoperational, and concrete operational stages, most do not reach the stage of formal operations. Those people who do attain formal operations seem to have a curiosity factor not operative in those who don't. (Author/BRR)

  18. Curiosity and Pedagogy: A Mixed-Methods Study of Student Experiences in the Design Studio

    Science.gov (United States)

    Smith, Korydon H.

    2010-01-01

    Curiosity is often considered the foundation of learning. There is, however, little understanding of how (or if) pedagogy in higher education affects student curiosity, especially in the studio setting of architecture, interior design, and landscape architecture. This study used mixed-methods to investigate curiosity among design students in the…

  19. Beyond the Sensible World: A Discussion of Mark Zuss' The Practice of Theoretical Curiosity

    Science.gov (United States)

    Fellner, Gene; Pitts, Wesley; Zuss, Mark

    2012-01-01

    In this article, Gene Fellner reviews Mark Zuss's recently published "The practice of theoretical curiosity" (2012) and provides a synopsis of the book's structure. These two sections are followed by a metalogue in which Mark Zuss, Welsey Pitts, and Fellner discuss curiosity and the conundrum of establishing limits beyond which curiosity should…

  20. A Conceptualization of Entrepreneurial Curiosity and Construct Development: A Multi-Country Empirical Validation

    Science.gov (United States)

    Jeraj, Mitja; Antoncic, Bostjan

    2013-01-01

    The purpose of this article was to fill a gap in the literature regarding the conceptualization and measurement of entrepreneurial curiosity. Although research in other fields suggest that different types of curiosity exist, no conceptualization research has yet been done in the field of entrepreneurial curiosity. This research aimed to develop a…

  1. Children's Scientific Curiosity: In Search of an Operational Definition of an Elusive Concept

    Science.gov (United States)

    Jirout, Jamie; Klahr, David

    2012-01-01

    Although curiosity is an undeniably important aspect of children's cognitive development, a universally accepted operational definition of children's curiosity does not exist. Almost all of the research on measuring curiosity has focused on adults, and has used predominately questionnaire-type measures that are not appropriate for young children.…

  2. Curiosity, Interest and Engagement in Technology-Pervasive Learning Environments: A New Research Agenda

    Science.gov (United States)

    Arnone, Marilyn P.; Small, Ruth V.; Chauncey, Sarah A.; McKenna, H. Patricia

    2011-01-01

    This paper identifies the need for developing new ways to study curiosity in the context of today's pervasive technologies and unprecedented information access. Curiosity is defined in this paper in a way which incorporates the concomitant constructs of interest and engagement. A theoretical model for curiosity, interest and engagement in new…

  3. Large-scale Labeled Datasets to Fuel Earth Science Deep Learning Applications

    Science.gov (United States)

    Maskey, M.; Ramachandran, R.; Miller, J.

    2017-12-01

    Deep learning has revolutionized computer vision and natural language processing with various algorithms scaled using high-performance computing. However, generic large-scale labeled datasets such as the ImageNet are the fuel that drives the impressive accuracy of deep learning results. Large-scale labeled datasets already exist in domains such as medical science, but creating them in the Earth science domain is a challenge. While there are ways to apply deep learning using limited labeled datasets, there is a need in the Earth sciences for creating large-scale labeled datasets for benchmarking and scaling deep learning applications. At the NASA Marshall Space Flight Center, we are using deep learning for a variety of Earth science applications where we have encountered the need for large-scale labeled datasets. We will discuss our approaches for creating such datasets and why these datasets are just as valuable as deep learning algorithms. We will also describe successful usage of these large-scale labeled datasets with our deep learning based applications.

  4. The Preparation for and Execution of Engineering Operations for the Mars Curiosity Rover Mission

    Science.gov (United States)

    Samuels, Jessica A.

    2013-01-01

    The Mars Science Laboratory Curiosity Rover mission is the most complex and scientifically packed rover that has ever been operated on the surface of Mars. The preparation leading up to the surface mission involved various tests, contingency planning and integration of plans between various teams and scientists for determining how operation of the spacecraft (s/c) would be facilitated. In addition, a focused set of initial set of health checks needed to be defined and created in order to ensure successful operation of rover subsystems before embarking on a two year science journey. This paper will define the role and responsibilities of the Engineering Operations team, the process involved in preparing the team for rover surface operations, the predefined engineering activities performed during the early portion of the mission, and the evaluation process used for initial and day to day spacecraft operational assessment.

  5. Bringing a Chemical Laboratory Named Sam to Mars on the 2011 Curiosity Rover

    Science.gov (United States)

    Mahaffy, P. R.; Bleacher, L.; Jones, A.; Atreya, S. K.; Manning, H. L.; Cabane, M.; Webster, C. R.; Sam Team

    2010-12-01

    Introduction: An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers. SAM Instrument Suite: SAM’s instruments are a Quadrupole Mass Spectrometer (QMS), a 6-column Gas Chromatograph (GC), and a 2-channel Tunable Laser Spectrometer (TLS). SAM can identify organic compounds in Mars rocks to sub-ppb sensitivity and secure precise isotope ratios for C, H, and O in carbon dioxide and water and measure trace levels of methane and its carbon 13 isotope. The SAM gas processing system consists of valves, heaters, pressure sensors, gas scrubbers and getters, traps, and gas tanks used for calibration or combustion experiments [2]. A variety of calibrant compounds interior and exterior to SAM will allow the science and engineering teams to assess SAM’s performance. SAM has been calibrated and tested in a Mars-like environment. Keeping Educators and the Public Informed: The Education and Public Outreach (EPO) goals of the SAM team are to make this complex chemical laboratory and its data widely available to educators, students, and the public. Formal education activities include developing templates for professional development workshops for educators to teach them about SAM and Curiosity, incorporating data into Mars Student Data Teams, and writing articles

  6. Science at the Time-scale of the Electron

    Science.gov (United States)

    Murnane, Margaret

    2010-03-01

    Replace this text with your abstract Ever since the invention of the laser 50 years ago and its application in nonlinear optics, scientists have been striving to extend coherent laser beams into the x-ray region of the spectrum. Very recently however, the prospects for tabletop coherent sources, with attosecond pulse durations, at very short wavelengths even in the hard x-ray region of the spectrum at wavelengths movie of how electron orbitals in a molecule change shape as a molecule breaks apart, following how fast a magnetic material can flip orientation, understanding how fast heat flows in a nanocircuit, or building a microscope without lenses. [4pt] [1] T. Popmintchev et al., ``Phase matched upconversion of coherent ultrafast laser light into the soft and hard x-ray regions of the spectrum'', PNAS 106, 10516 (2009). [0pt] [2] C. LaOVorakiat et al., ``Ultrafast Soft X-Ray Magneto-Optics at the M-edge Using a Tabletop High-Harmonic Source'', Physical Review Letters 103, 257402 (2009). [0pt] [3] M. Siemens et al. ``Measurement of quasi-ballistic heat transport across nanoscale interfaces using ultrafast coherent soft x-ray beams'', Nature Materials 9, 26 (2010). [0pt] [4] K. Raines et al., ``Three-dimensional structure determination from a single view,'' Nature 463, 214 (2010). [0pt] [5] W. Li et al., ``Time-resolved Probing of Dynamics in Polyatomic Molecules using High Harmonic Generation'', Science 322, 1207 (2008).

  7. On the Large-Scaling Issues of Cloud-based Applications for Earth Science Dat

    Science.gov (United States)

    Hua, H.

    2016-12-01

    Next generation science data systems are needed to address the incoming flood of data from new missions such as NASA's SWOT and NISAR where its SAR data volumes and data throughput rates are order of magnitude larger than present day missions. Existing missions, such as OCO-2, may also require high turn-around time for processing different science scenarios where on-premise and even traditional HPC computing environments may not meet the high processing needs. Additionally, traditional means of procuring hardware on-premise are already limited due to facilities capacity constraints for these new missions. Experiences have shown that to embrace efficient cloud computing approaches for large-scale science data systems requires more than just moving existing code to cloud environments. At large cloud scales, we need to deal with scaling and cost issues. We present our experiences on deploying multiple instances of our hybrid-cloud computing science data system (HySDS) to support large-scale processing of Earth Science data products. We will explore optimization approaches to getting best performance out of hybrid-cloud computing as well as common issues that will arise when dealing with large-scale computing. Novel approaches were utilized to do processing on Amazon's spot market, which can potentially offer 75%-90% costs savings but with an unpredictable computing environment based on market forces.

  8. Chromatographic, Spectroscopic and Mass Spectrometric Approaches for Exploring the Habitability of Mars in 2012 and Beyond with the Curiosity Rover

    Science.gov (United States)

    Mahaffy, Paul

    2012-01-01

    The Sample Analysis at Mars (SAM) suite of instruments on the Curiosity Rover of Mars Science Laboratory Mission is designed to provide chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples. The goals of the science investigation enabled by the gas chromatograph mass spectrometer and tunable laser spectrometer instruments of SAM are to work together with the other MSL investigations is to quantitatively assess habitability through a series of chemical and geological measurements. We describe the multi-column gas chromatograph system employed on SAM and the approach to extraction and analysis of organic compounds that might be preserved in ancient martian rocks.

  9. Enabling Wide-Scale Computer Science Education through Improved Automated Assessment Tools

    Science.gov (United States)

    Boe, Bryce A.

    There is a proliferating demand for newly trained computer scientists as the number of computer science related jobs continues to increase. University programs will only be able to train enough new computer scientists to meet this demand when two things happen: when there are more primary and secondary school students interested in computer science, and when university departments have the resources to handle the resulting increase in enrollment. To meet these goals, significant effort is being made to both incorporate computational thinking into existing primary school education, and to support larger university computer science class sizes. We contribute to this effort through the creation and use of improved automated assessment tools. To enable wide-scale computer science education we do two things. First, we create a framework called Hairball to support the static analysis of Scratch programs targeted for fourth, fifth, and sixth grade students. Scratch is a popular building-block language utilized to pique interest in and teach the basics of computer science. We observe that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale deployment of computer science curriculum. Second, we create a real-time feedback and assessment system utilized in university computer science classes to provide better feedback to students while reducing assessment time. Insights from our analysis of student submission data show that modifications to the system configuration support the way students learn and progress through course material, making it possible for instructors to tailor assignments to optimize learning in growing computer science classes.

  10. Describing medical student curiosity across a four year curriculum: An exploratory study.

    Science.gov (United States)

    Sternszus, Robert; Saroyan, Alenoush; Steinert, Yvonne

    2017-04-01

    Intellectual curiosity can be defined as a desire for knowledge that leads to exploratory behavior and consists of an inherent and stable trait (i.e. trait curiosity) and a variable context-dependent state (i.e. state curiosity). Although intellectual curiosity has been considered an important aspect of medical education and practice, its relationship to medical education has not been empirically investigated. The purpose of this exploratory study was to describe medical students' intellectual curiosity across a four-year undergraduate program. We employed a cross-sectional design in which medical students, across a four-year undergraduate program at McGill University, completed the Melbourne Curiosity Inventory as a measure of their state and trait intellectual curiosity. A Mixed Models ANOVA was used to compare students across year of training. Four hundred and two out of 751 students completed the inventory (53.5%). Trait curiosity was significantly higher than state curiosity (M = 64.5, SD = 8.5 versus M = 58.5, SD = 11.6) overall, and within each year of training. This study is the first to describe state and trait intellectual curiosity in undergraduate medical education. Findings suggest that medical students' state curiosity may not be optimally supported and highlight avenues for further research.

  11. Body dysmorphic disorder: history and curiosities.

    Science.gov (United States)

    França, Katlein; Roccia, Maria Grazia; Castillo, David; ALHarbi, Mana; Tchernev, Georgi; Chokoeva, Anastasia; Lotti, Torello; Fioranelli, Massimo

    2017-10-01

    Body dysmorphic disorder is a chronic psychiatric disorder characterized by excessive preoccupation with an absent or minimal physical deformity. It causes severe distress and impairs normal functioning. In the last centuries, this disorder has been mentioned in the medical literature by important mental health practitioners by different names, such as "dysmorphophobia" or "dermatologic hypochondriasis". However, not until the last century was it included among the obsessive-compulsive disorders, although its classification has changed over time.Patients with body dysmorphic disorder constantly seek cosmetic treatments in order to improve their physical appearance, which more often deteriorates their mental condition. The high prevalence of psychiatric disorders in cosmetic medical practice has led in this field of study to the new science "cosmetic psychodermatology". This paper presents a summary of important facts about body dysmorphic disorder and its description throughout the history of medicine.

  12. The Challenges in Applying Magnetroesistive Sensors on the 'Curiosity' Rover

    Science.gov (United States)

    Johnson, Michael R.

    2013-01-01

    Magnetoresistive Sensors were selected for use on the motor encoders throughout the Curiosity Rover for motor position feedback devices. The Rover contains 28 acuators with a corresponding number of encoder assemblies. The environment on Mars provides opportunities for challenges to any hardware design. The encoder assemblies presented several barriers that had to be vaulted in order to say the rover was ready to fly. The environment and encoder specific design features provided challenges that had to be solved in time to fly.

  13. Unexpected Expectations The Curiosities of a Mathematical Crystal Ball

    CERN Document Server

    Wapner, Leonard M

    2012-01-01

    Unexpected Expectations: The Curiosities of a Mathematical Crystal Ball explores how paradoxical challenges involving mathematical expectation often necessitate a reexamination of basic premises. The author takes you through mathematical paradoxes associated with seemingly straightforward applications of mathematical expectation and shows how these unexpected contradictions may push you to reconsider the legitimacy of the applications. The book requires only an understanding of basic algebraic operations and includes supplemental mathematical background in chapter appendices. After a history o

  14. Virtues in participatory design: cooperation, curiosity, creativity, empowerment and reflexivity.

    Science.gov (United States)

    Steen, Marc

    2013-09-01

    In this essay several virtues are discussed that are needed in people who work in participatory design (PD). The term PD is used here to refer specifically to an approach in designing information systems with its roots in Scandinavia in the 1970s and 1980s. Through the lens of virtue ethics and based on key texts in PD, the virtues of cooperation, curiosity, creativity, empowerment and reflexivity are discussed. Cooperation helps people in PD projects to engage in cooperative curiosity and cooperative creativity. Curiosity helps them to empathize with others and their experiences, and to engage in joint learning. Creativity helps them to envision, try out and materialize ideas, and to jointly create new products and services. Empowerment helps them to share power and to enable other people to flourish. Moreover, reflexivity helps them to perceive and to modify their own thoughts, feelings and actions. In the spirit of virtue ethics-which focuses on specific people in concrete situations-several examples from one PD project are provided. Virtue ethics is likely to appeal to people in PD projects because it is practice-oriented, provides room for exploration and experimentation, and promotes professional and personal development. In closing, some ideas for practical application, for education and for further research are discussed.

  15. Martian Surface Mineralogy from Rovers with Spirit, Opportunity, and Curiosity

    Science.gov (United States)

    Morris, Richard V.

    2016-01-01

    Beginning in 2004, NASA has landed three well-instrumented rovers on the equatorial martian surface. The Spirit rover landed in Gusev crater in early January, 2004, and the Opportunity rover landed on the opposite side of Mars at Meridian Planum 21 days later. The Curiosity rover landed in Gale crater to the west of Gusev crater in August, 2012. Both Opportunity and Curiosity are currently operational. The twin rovers Spirit and Opportunity carried Mossbauer spectrometers to determine the oxidation state of iron and its mineralogical composition. The Curiosity rover has an X-ray diffraction instrument for identification and quantification of crystalline materials including clay minerals. Instrument suites on all three rovers are capable of distinguishing primary rock-forming minerals like olivine, pyroxene and magnetite and products of aqueous alteration in including amorphous iron oxides, hematite, goethite, sulfates, and clay minerals. The oxidation state of iron ranges from that typical for unweathered rocks and soils to nearly completely oxidized (weathered) rocks and soils as products of aqueous and acid-sulfate alteration. The in situ rover mineralogy also serves as ground-truth for orbital observations, and orbital mineralogical inferences are used for evaluating and planning rover exploration.

  16. Youth curiosity about cigarettes, smokeless tobacco, and cigars: prevalence and associations with advertising.

    Science.gov (United States)

    Portnoy, David B; Wu, Charles C; Tworek, Cindy; Chen, Jiping; Borek, Nicolette

    2014-08-01

    Curiosity about cigarettes is a reliable predictor of susceptibility to smoking and established use among youth. Related research has been limited to cigarettes, and lacks national-level estimates. Factors associated with curiosity about tobacco products, such as advertising, have been postulated but rarely tested. To describe the prevalence of curiosity about cigarettes, smokeless tobacco, and cigars among youth and explore the association between curiosity and self-reported tobacco advertising exposure. Data from the 2012 National Youth Tobacco Survey, a nationally representative survey of 24,658 students, were used. In 2013, estimates weighted to the national youth school population were calculated for curiosity about cigarettes, smokeless tobacco, and cigars among never users of any tobacco product. Associations between tobacco advertising and curiosity were explored using multivariable regressions. Curiosity about cigarettes (28.8%); cigars (19.5%); and smokeless tobacco (9.7%) was found, and many youth were curious about more than one product. Exposure to point-of-sale advertising (e.g., OR=1.35, 95% CI=1.19, 1.54 for cigarette curiosity); tobacco company communications (e.g., OR=1.70, 95% CI=1.38, 2.09 for cigarette curiosity); and tobacco products, as well as viewing tobacco use in TV/movies (e.g., OR=1.37, 95% CI=1.20, 1.58 for cigarette curiosity) were associated with curiosity about each examined tobacco product. Despite decreasing use of tobacco products, youth remain curious about them. Curiosity is associated with various forms of tobacco advertising. These findings suggest the importance of measuring curiosity as an early warning signal for potential future tobacco use and evaluating continued efforts to limit exposure to tobacco marketing among youth. Published by Elsevier Inc.

  17. The Mathematics of Networks Science: Scale-Free, Power-Law Graphs and Continuum Theoretical Analysis

    Science.gov (United States)

    Padula, Janice

    2012-01-01

    When hoping to initiate or sustain students' interest in mathematics teachers should always consider relevance, relevance to students' lives and in the middle and later years of instruction in high school and university, accessibility. A topic such as the mathematics behind networks science, more specifically scale-free graphs, is up-to-date,…

  18. Wide Range Vacuum Pumps for the SAM Instrument on the MSL Curiosity Rover

    Science.gov (United States)

    Sorensen, Paul; Kline-Schoder, Robert; Farley, Rodger

    2014-01-01

    Creare Incorporated and NASA Goddard Space Flight Center developed and space qualified two wide range pumps (WRPs) that were included in the Sample Analysis at Mars (SAM) instrument. This instrument was subsequently integrated into the Mars Science Laboratory (MSL) "Curiosity Rover," launched aboard an Atlas V rocket in 2011, and landed on August 6, 2012, in the Gale Crater on Mars. The pumps have now operated for more than 18 months in the Gale Crater and have been evacuating the key components of the SAM instrument: a quadrupole mass spectrometer, a tunable laser spectrometer, and six gas chromatograph columns. In this paper, we describe the main design challenges and the ways in which they were solved. This includes the custom design of a miniaturized, high-speed motor to drive the turbo drag pump rotor, analysis of rotor dynamics for super critical operation, and bearing/lubricant design/selection.

  19. From Aristotle to Schrödinger the curiosity of physics

    CERN Document Server

    Modinos, Antonis

    2014-01-01

    From Aristotle to Schrödinger: The Curiosity of Physics offers a novel introduction to the topics commonly encountered in the first two years of an undergraduate physics course, including classical mechanics, thermodynamics and statistical mechanics, electromagnetism, relativity, quantum mechanics, atomic and molecular physics, and astrophysics. The book presents physics as it evolved historically; it covers in considerable depth the development of the subject from ancient Greece to the present day. Though the emphasis is on the observations, experiments, theories, and applications of physics, there are additionally short sections on the life and times of the main protagonists of physics. This book grew out of the author's long experience in giving undergraduate and graduate courses in classical physics and in quantum mechanics and its elementary applications. Although meant primarily for the student and teacher of physics, it will be of interest to other scientists and to historians of science, and to those...

  20. States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit.

    Science.gov (United States)

    Gruber, Matthias J; Gelman, Bernard D; Ranganath, Charan

    2014-10-22

    People find it easier to learn about topics that interest them, but little is known about the mechanisms by which intrinsic motivational states affect learning. We used functional magnetic resonance imaging to investigate how curiosity (intrinsic motivation to learn) influences memory. In both immediate and one-day-delayed memory tests, participants showed improved memory for information that they were curious about and for incidental material learned during states of high curiosity. Functional magnetic resonance imaging results revealed that activity in the midbrain and the nucleus accumbens was enhanced during states of high curiosity. Importantly, individual variability in curiosity-driven memory benefits for incidental material was supported by anticipatory activity in the midbrain and hippocampus and by functional connectivity between these regions. These findings suggest a link between the mechanisms supporting extrinsic reward motivation and intrinsic curiosity and highlight the importance of stimulating curiosity to create more effective learning experiences. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit

    Science.gov (United States)

    Gruber, Matthias J.; Gelman, Bernard D.; Ranganath, Charan

    2014-01-01

    Summary People find it easier to learn about topics that interest them, but little is known about the mechanisms by which intrinsic motivational states affect learning. We used functional magnetic resonance imaging to investigate how curiosity (intrinsic motivation to learn) influences memory. In both immediate and one-day delayed memory tests, participants showed improved memory for information that they were curious about, and also for incidental material learned during states of high curiosity. FMRI results revealed that activity in the midbrain and the nucleus accumbens was enhanced during states of high curiosity. Importantly, individual variability in curiosity-driven memory benefits for incidental material was supported by anticipatory activity in the midbrain and hippocampus and by functional connectivity between these regions. These findings suggest a link between the mechanisms supporting extrinsic reward motivation and intrinsic curiosity and highlight the importance of stimulating curiosity in order to create more effective learning experiences. PMID:25284006

  2. A Confirmatory Factor Analysis on the Attitude Scale of Constructivist Approach for Science Teachers

    Directory of Open Access Journals (Sweden)

    E. Evrekli

    2010-11-01

    Full Text Available Underlining the importance of teachers for the constructivist approach, the present study attempts to develop “Attitude Scale of Construc¬tivist Approach for Science Teachers (ASCAST”. The pre-applications of the scale were administered to a total of 210 science teachers; however, the data obtained from 5 teachers were excluded from the analysis. As a result of the analysis of the data obtained from the pre-applications, it was found that the scale could have a single factor structure, which was tested using the confir¬matory factor analysis. As a result of the initial confirmatory factor analysis, the values of fit were examined and found to be low. Subsequently, by exam¬ining the modification indices, error covariance was added between items 23 and 24 and the model was tested once again. The added error covariance led to a significant improvement in the model, producing values of fit suitable for limit values. Thus, it was concluded that the scale could be employed with a single factor. The explained variance value for the scale developed with a sin¬gle factor structure was calculated to be 50.43% and its reliability was found to be .93. The results obtained suggest that the scale possesses reliable-valid characteristics and could be used in further studies.

  3. The level of new science leadership behaviors of school principals: A scale development

    Directory of Open Access Journals (Sweden)

    Akpil Şerife

    2016-01-01

    Full Text Available Einstein’s theory of relativity and quantum physics opened Newton physics up for discussion, thus triggering the new science at the beginning of the 20th century. Philosophy of science, which was named as the new science in the 20th century, caused fundamental changes in research methods and paradigms. The methods and set of values brought by the new science affected social sciences as well. In conjunction with this mentioned change and development, the field of education and the view of schools were influenced. In the same vein, identifying the thoughts of school principals on leadership styles based on new science was considered as a primary need and set the objective of this research. In this regard, a “The Levels of New Science Leadership Behaviors of School Principals Scale” was developed. Following the literature review, the scale with 54 items was prepared and underwent expert review. Finally it was applied to 200 school principals who were working in primary and secondary schools in the Anatolian side of Istanbul. The data acquired were analyzed through SPSS 15.0 and Lisrel 8.51 programs. The results of the analysis revealed that the scale was comprised of a total of 27 items and had 5 factors (dimensions. The reliability analysis indicated internal consistency value (Cronbach Alpha as .94. Confirmatory factor analysis was carried out in Lisrel program. According to results of confirmatory factor analysis, the X2/df ratio was calculated as 2, 24 which showed that the measurement model was in accord with the data.

  4. Quantitative Analysis of Complex Multiple-Choice Items in Science Technology and Society: Item Scaling

    Directory of Open Access Journals (Sweden)

    Ángel Vázquez Alonso

    2005-05-01

    Full Text Available The scarce attention to assessment and evaluation in science education research has been especially harmful for Science-Technology-Society (STS education, due to the dialectic, tentative, value-laden, and controversial nature of most STS topics. To overcome the methodological pitfalls of the STS assessment instruments used in the past, an empirically developed instrument (VOSTS, Views on Science-Technology-Society have been suggested. Some methodological proposals, namely the multiple response models and the computing of a global attitudinal index, were suggested to improve the item implementation. The final step of these methodological proposals requires the categorization of STS statements. This paper describes the process of categorization through a scaling procedure ruled by a panel of experts, acting as judges, according to the body of knowledge from history, epistemology, and sociology of science. The statement categorization allows for the sound foundation of STS items, which is useful in educational assessment and science education research, and may also increase teachers’ self-confidence in the development of the STS curriculum for science classrooms.

  5. Terry Turbopump Expanded Operating Band Full-Scale Component and Basic Science Detailed Test Plan - Final.

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Solom, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

  6. Green infrastructure and its catchment-scale effects: an emerging science.

    Science.gov (United States)

    Golden, Heather E; Hoghooghi, Nahal

    2018-01-01

    Urbanizing environments alter the hydrological cycle by redirecting stream networks for stormwater and wastewater transmission and increasing impermeable surfaces. These changes thereby accelerate the runoff of water and its constituents following precipitation events, alter evapotranspiration processes, and indirectly modify surface precipitation patterns. Green infrastructure, or low-impact development (LID), can be used as a standalone practice or in concert with gray infrastructure (traditional stormwater management approaches) for cost-efficient, decentralized stormwater management. The growth in LID over the past several decades has resulted in a concomitant increase in research evaluating LID efficiency and effectiveness, but mostly at localized scales. There is a clear research need to quantify how LID practices affect water quantity (i.e., runoff and discharge) and quality at the scale of catchments. In this overview, we present the state of the science of LID research at the local scale, considerations for scaling this research to catchments, recent advances and findings in scaling the effects of LID practices on water quality and quantity at catchment scales, and the use of models as novel tools for these scaling efforts.

  7. Empathic curiosity: resolving goal conflicts that generate emotional distress.

    Science.gov (United States)

    McEvoy, P; Baker, D; Plant, R; Hylton, K; Mansell, W

    2013-04-01

    The quality of the therapeutic alliance between therapist and client is consistently identified as a key component of cognitive behavioural interventions. However, relatively little is known about the causal mechanisms that generate the effects that are ascribed to the therapeutic alliance. This paper outlines how one such causal mechanism, empathic curiosity, may operate. The explanation is rooted in control theory, a theory that explains the link between our experiences and our goal-directed behaviour. Empathic curiosity is underpinned by the core skills of empathic listening and maintaining a curious attitude. From a control theory perspective, the value of this type of listening may be reinforced when speak to people about their salient concerns, as they perceive them in the current flow of their conscious thoughts. This can be facilitated by linking curious questions to the non-verbal disruptions in their body posture and conversational flow. The approach is illustrated using three case examples. In all three examples, the clients involved were able to reflect upon and re-organize conflicting goals that had been a source of significant emotional distress. © 2012 Blackwell Publishing.

  8. Disentangling Curiosity: Dimensionality, Definitions, and Distinctions from Interest in Educational Contexts

    Science.gov (United States)

    Grossnickle, Emily M.

    2016-01-01

    Curiosity has received increasing attention in the educational literature, yet empirical investigations have been limited by inconsistent conceptualizations and the use of curiosity synonymously with other constructs, particularly interest. The purpose of this review is to critically examine the dimensionality, definitions, and measures of…

  9. Students' Level of Boredom, Boredom Coping Strategies, Epistemic Curiosity, and Graded Performance

    Science.gov (United States)

    Eren, Altay; Coskun, Hamit

    2016-01-01

    The authors examined the relationships among students' levels of boredom, boredom coping strategies, epistemic curiosity, and graded performance regarding mathematics lessons, with the intention to explore the mediating roles of boredom coping strategies and epistemic curiosity in the relationship between the level of boredom and graded…

  10. Investigating the Relationship between Curiosity Level and Computer Self Efficacy Beliefs of Elementary Teachers Candidates

    Science.gov (United States)

    Gulten, Dilek Cagirgan; Yaman, Yavuz; Deringol, Yasemin; Ozsari, Ismail

    2011-01-01

    Nowadays, "lifelong learning individual" concept is gaining importance in which curiosity is one important feature that an individual should have as a requirement of learning. It is known that learning will naturally occur spontaneously when curiosity instinct is awakened during any learning-teaching process. Computer self-efficacy…

  11. The Effect of Teaching Strategies and Curiosity on Students' Achievement in Reading Comprehension

    Science.gov (United States)

    Gurning, Busmin; Siregar, Aguslani

    2017-01-01

    The objectives of this study were to find out whether 1) students' achievement in reading comprehension taught by using INSERT strategy was higher than those taught by using SQ3R strategy, 2) Students' achievement in reading comprehension having high curiosity was higher than those having low curiosity, 3) there was an interaction between teaching…

  12. Curiosity improves coping efficacy and reduces suicidal ideation severity among military veterans at risk for suicide.

    Science.gov (United States)

    Denneson, Lauren M; Smolenski, Derek J; Bush, Nigel E; Dobscha, Steven K

    2017-03-01

    Curiosity, the tendency to engage in novel and challenging opportunities, may be an important source of resilience for those at risk for suicide. We hypothesized that curiosity would have a buffering effect against risk conferred by multiple sources of distress, whereby curiosity would be associated with reduced suicidal ideation and increased coping efficacy. As part of a larger intervention trial designed to improve coping skills and reduce suicidal ideation, 117 military veterans with suicidal ideation completed measures of curiosity and distress (perceived stress, depression, anxiety, and sleep disturbances) at baseline, and completed measures of suicidal ideation and coping efficacy (to stop negative thoughts, to enlist support from friends and family) at baseline and 3-, 6-, and 12-week follow up. Growth curve models showed that curiosity moderated the association between distress and suicidal ideation at baseline and that curiosity moderated the association between distress and increased coping efficacy to stop negative thoughts over time. Findings suggest that curiosity may buffer against the effect of heightened levels of distress on suicidal ideation and help facilitate stronger gains in coping efficacy over time. Additional work should further examine the role of curiosity as a protective factor for veterans with suicidal ideation. Published by Elsevier B.V.

  13. Teaching with Pensive Images: Rethinking Curiosity in Paulo Freire's "Pedagogy of the Oppressed"

    Science.gov (United States)

    Lewis, Tyson E.

    2012-01-01

    Often when the author is teaching philosophy of education, his students begin the process of inquiry by prefacing their questions with something along the lines of "I'm just curious, but ...." Why do teachers and students feel compelled to express their curiosity as "just" curiosity? Perhaps there is a slight embarrassment in proclaiming their…

  14. The Role of Curiosity-Triggering Events in Game-Based Learning for Mathematics

    NARCIS (Netherlands)

    Wouters, Pieter; van Oostendorp, Herre; ter Vrugte, Judith; Vandercruysse, Sylke; de Jong, Anthonius J.M.; Elen, Jan; Torbeyns, Joke; Lehtinen, Erno; Elen, Jan

    2015-01-01

    In this study, we investigate whether cognitive conflicts induced by curiosity-triggering events have a positive impact on learning and motivation. In two experiments, we tested a game about proportional reasoning for secondary prevocational students. Experiment 1 used a curiosity-triggering vs.

  15. Role of curiosity and openness to experience the big five traits on ...

    African Journals Online (AJOL)

    Role of curiosity and openness to experience the big five traits on sport media consumption behaviours. Seong-Hee Park, Yukyoum Kim, Won-Jae Seo. Abstract. The purpose of this study was to examine the mediation effect of curiosity on the relationship between Openness to Experience (OE) and media consumption ...

  16. III. FROM SMALL TO BIG: METHODS FOR INCORPORATING LARGE SCALE DATA INTO DEVELOPMENTAL SCIENCE.

    Science.gov (United States)

    Davis-Kean, Pamela E; Jager, Justin

    2017-06-01

    For decades, developmental science has been based primarily on relatively small-scale data collections with children and families. Part of the reason for the dominance of this type of data collection is the complexity of collecting cognitive and social data on infants and small children. These small data sets are limited in both power to detect differences and the demographic diversity to generalize clearly and broadly. Thus, in this chapter we will discuss the value of using existing large-scale data sets to tests the complex questions of child development and how to develop future large-scale data sets that are both representative and can answer the important questions of developmental scientists. © 2017 The Society for Research in Child Development, Inc.

  17. Project BudBurst: Continental-scale citizen science for all seasons

    Science.gov (United States)

    Henderson, S.; Newman, S. J.; Ward, D.; Havens-Young, K.; Alaback, P.; Meymaris, K.

    2011-12-01

    Project BudBurst's (budburst.org) recent move to the National Ecological Observatory Network (NEON) has benefitted both programs. NEON has been able to use Project BudBurst as a testbed to learn best practices, network with experts in the field, and prototype potential tools for engaging people in continental-scale ecology as NEON develops its citizen science program. Participation in Project BudBurst has grown significantly since the move to NEON. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. This presentation will provide an overview of Project BudBurst and will report on the results of the 2010 field campaign and discuss plans to expand Project BudBurst in 2012 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst is co-managed by the National Ecological Observatory Network and the Chicago

  18. It's not rocket science : developing pupils’ science talent in out-of-school science education for primary schools

    NARCIS (Netherlands)

    Geveke, Carla

    2017-01-01

    Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates

  19. It's not rocket science : Developing pupils’ science talent in out-of-school science education for Primary Schools

    NARCIS (Netherlands)

    Geveke, Catherina

    2017-01-01

    Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates

  20. Mars Science Laboratory Mission and Science Investigation

    Science.gov (United States)

    Grotzinger, John P.; Crisp, Joy; Vasavada, Ashwin R.; Anderson, Robert C.; Baker, Charles J.; Barry, Robert; Blake, David F.; Conrad, Pamela; Edgett, Kenneth S.; Ferdowski, Bobak; Gellert, Ralf; Gilbert, John B.; Golombek, Matt; Gómez-Elvira, Javier; Hassler, Donald M.; Jandura, Louise; Litvak, Maxim; Mahaffy, Paul; Maki, Justin; Meyer, Michael; Malin, Michael C.; Mitrofanov, Igor; Simmonds, John J.; Vaniman, David; Welch, Richard V.; Wiens, Roger C.

    2012-09-01

    -bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Samples of the crater wall and rim rock, and more recent to currently active surface materials also may be studied. Gale has a well-defined regional context and strong evidence for a progression through multiple potentially habitable environments. These environments are represented by a stratigraphic record of extraordinary extent, and insure preservation of a rich record of the environmental history of early Mars. The interior mountain of Gale Crater has been informally designated at Mount Sharp, in honor of the pioneering planetary scientist Robert Sharp. The major subsystems of the MSL Project consist of a single rover (with science payload), a Multi-Mission Radioisotope Thermoelectric Generator, an Earth-Mars cruise stage, an entry, descent, and landing system, a launch vehicle, and the mission operations and ground data systems. The primary communication path for downlink is relay through the Mars Reconnaissance Orbiter. The primary path for uplink to the rover is Direct-from-Earth. The secondary paths for downlink are Direct-to-Earth and relay through the Mars Odyssey orbiter. Curiosity is a scaled version of the 6-wheel drive, 4-wheel steering, rocker bogie system from the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Pathfinder Sojourner. Like Spirit and Opportunity, Curiosity offers three primary modes of navigation: blind-drive, visual odometry, and visual odometry with hazard avoidance. Creation of terrain maps based on HiRISE (High Resolution Imaging Science Experiment) and other remote sensing data were used to conduct simulated driving with Curiosity in these various modes, and allowed selection of the Gale crater landing site which requires climbing the base of a

  1. Proceedings of joint meeting of the 6th simulation science symposium and the NIFS collaboration research 'large scale computer simulation'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    Joint meeting of the 6th Simulation Science Symposium and the NIFS Collaboration Research 'Large Scale Computer Simulation' was held on December 12-13, 2002 at National Institute for Fusion Science, with the aim of promoting interdisciplinary collaborations in various fields of computer simulations. The present meeting attended by more than 40 people consists of the 11 invited and 22 contributed papers, of which topics were extended not only to fusion science but also to related fields such as astrophysics, earth science, fluid dynamics, molecular dynamics, computer science etc. (author)

  2. Sparking Curiosity – Librarians’ Role in Encouraging Exploration

    Directory of Open Access Journals (Sweden)

    Anne-Marie Deitering

    2017-02-01

    Full Text Available In Brief Students often struggle to approach research in an open-minded, exploratory way and instead rely on safe topics and strategies. Traditional research assignments often emphasize and reward information-seeking behaviors that are highly prescribed and grounded in disciplinary practices new college students don’t yet have the skills to navigate. Librarians understand that the barriers to research are multidimensional and usually involve affective, cognitive, and technical concerns. In this article we discuss how a deeper understanding of curiosity can inspire instructional strategies and classroom-based activities that provide learners with a new view of the research process. We share strategies we have implemented at Oregon State University, and we propose that working with teaching faculty and instructors to advocate for different approaches to helping students solve information problems is a crucial role for librarians to embrace.

  3. NASA Curiosity rover hits organic pay dirt on Mars

    Science.gov (United States)

    Voosen, Paul

    2018-06-01

    Since NASA's Curiosity rover landed on Mars in 2012, it has sifted samples of soil and ground-up rock for signs of organic molecules—the complex carbon chains that on Earth form the building blocks of life. Past detections have been so faint that they could be just contamination. Now, samples taken from two different drill sites on an ancient lakebed have yielded complex organic macromolecules that look strikingly similar to kerogen, the goopy fossilized building blocks of oil and gas on Earth. At a few dozen parts per million, the detected levels are 100 times higher than previous finds, but scientists still cannot say whether they have origins in biology or geology. The discovery positions scientists to begin searching for direct evidence of past life on Mars and bolsters the case for returning rock samples from the planet, an effort that begins with the Mars 2020 rover.

  4. Belowground Carbon Cycling Processes at the Molecular Scale: An EMSL Science Theme Advisory Panel Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Nancy J.; Brown, Gordon E.; Plata, Charity

    2014-02-21

    As part of the Belowground Carbon Cycling Processes at the Molecular Scale workshop, an EMSL Science Theme Advisory Panel meeting held in February 2013, attendees discussed critical biogeochemical processes that regulate carbon cycling in soil. The meeting attendees determined that as a national scientific user facility, EMSL can provide the tools and expertise needed to elucidate the molecular foundation that underlies mechanistic descriptions of biogeochemical processes that control carbon allocation and fluxes at the terrestrial/atmospheric interface in landscape and regional climate models. Consequently, the workshop's goal was to identify the science gaps that hinder either development of mechanistic description of critical processes or their accurate representation in climate models. In part, this report offers recommendations for future EMSL activities in this research area. The workshop was co-chaired by Dr. Nancy Hess (EMSL) and Dr. Gordon Brown (Stanford University).

  5. Networking for large-scale science: infrastructure, provisioning, transport and application mapping

    International Nuclear Information System (INIS)

    Rao, Nageswara S; Carter, Steven M; Wu Qishi; Wing, William R; Zhu Mengxia; Mezzacappa, Anthony; Veeraraghavan, Malathi; Blondin, John M

    2005-01-01

    Large-scale science computations and experiments require unprecedented network capabilities in the form of large bandwidth and dynamically stable connections to support data transfers, interactive visualizations, and monitoring and steering operations. A number of component technologies dealing with the infrastructure, provisioning, transport and application mappings must be developed and/or optimized to achieve these capabilities. We present a brief account of the following technologies that contribute toward achieving these network capabilities: (a) DOE UltraScienceNet and NSF CHEETAH network testbeds that provide on-demand and scheduled dedicated network connections; (b) experimental results on transport protocols that achieve close to 100% utilization on dedicated 1Gbps wide-area channels; (c) a scheme for optimally mapping a visualization pipeline onto a network to minimize the end-to-end delays; and (d) interconnect configuration and protocols that provides multiple Gbps flows from Cray X1 to external hosts

  6. Networking for large-scale science: infrastructure, provisioning, transport and application mapping

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Carter, Steven M [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wu Qishi [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wing, William R [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhu Mengxia [Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803 (United States); Mezzacappa, Anthony [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Veeraraghavan, Malathi [Department of Computer Science, University of Virginia, Charlottesville, VA 22904 (United States); Blondin, John M [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States)

    2005-01-01

    Large-scale science computations and experiments require unprecedented network capabilities in the form of large bandwidth and dynamically stable connections to support data transfers, interactive visualizations, and monitoring and steering operations. A number of component technologies dealing with the infrastructure, provisioning, transport and application mappings must be developed and/or optimized to achieve these capabilities. We present a brief account of the following technologies that contribute toward achieving these network capabilities: (a) DOE UltraScienceNet and NSF CHEETAH network testbeds that provide on-demand and scheduled dedicated network connections; (b) experimental results on transport protocols that achieve close to 100% utilization on dedicated 1Gbps wide-area channels; (c) a scheme for optimally mapping a visualization pipeline onto a network to minimize the end-to-end delays; and (d) interconnect configuration and protocols that provides multiple Gbps flows from Cray X1 to external hosts.

  7. Large-Scale Science Observatories: Building on What We Have Learned from USArray

    Science.gov (United States)

    Woodward, R.; Busby, R.; Detrick, R. S.; Frassetto, A.

    2015-12-01

    With the NSF-sponsored EarthScope USArray observatory, the Earth science community has built the operational capability and experience to tackle scientific challenges at the largest scales, such as a Subduction Zone Observatory. In the first ten years of USArray, geophysical instruments were deployed across roughly 2% of the Earth's surface. The USArray operated a rolling deployment of seismic stations that occupied ~1,700 sites across the USA, made co-located atmospheric observations, occupied hundreds of sites with magnetotelluric sensors, expanded a backbone reference network of seismic stations, and provided instruments to PI-led teams that deployed thousands of additional seismic stations. USArray included a comprehensive outreach component that directly engaged hundreds of students at over 50 colleges and universities to locate station sites and provided Earth science exposure to roughly 1,000 landowners who hosted stations. The project also included a comprehensive data management capability that received, archived and distributed data, metadata, and data products; data were acquired and distributed in real time. The USArray project was completed on time and under budget and developed a number of best practices that can inform other large-scale science initiatives that the Earth science community is contemplating. Key strategies employed by USArray included: using a survey, rather than hypothesis-driven, mode of observation to generate comprehensive, high quality data on a large-scale for exploration and discovery; making data freely and openly available to any investigator from the very onset of the project; and using proven, commercial, off-the-shelf systems to ensure a fast start and avoid delays due to over-reliance on unproven technology or concepts. Scope was set ambitiously, but managed carefully to avoid overextending. Configuration was controlled to ensure efficient operations while providing consistent, uniform observations. Finally, community

  8. Scaling up Three-Dimensional Science Learning through Teacher-Led Study Groups across a State

    Science.gov (United States)

    Reiser, Brian J.; Michaels, Sarah; Moon, Jean; Bell, Tara; Dyer, Elizabeth; Edwards, Kelsey D.; McGill, Tara A. W.; Novak, Michael; Park, Aimee

    2017-01-01

    The vision for science teaching in the Framework for K-12 Science Education and the Next Generation Science Standards requires a radical departure from traditional science teaching. Science literacy is defined as three-dimensional (3D), in which students engage in science and engineering practices to develop and apply science disciplinary ideas…

  9. Using Analytics to Support Petabyte-Scale Science on the NASA Earth Exchange (NEX)

    Science.gov (United States)

    Votava, P.; Michaelis, A.; Ganguly, S.; Nemani, R. R.

    2014-12-01

    NASA Earth Exchange (NEX) is a data, supercomputing and knowledge collaboratory that houses NASA satellite, climate and ancillary data where a focused community can come together to address large-scale challenges in Earth sciences. Analytics within NEX occurs at several levels - data, workflows, science and knowledge. At the data level, we are focusing on collecting and analyzing any information that is relevant to efficient acquisition, processing and management of data at the smallest granularity, such as files or collections. This includes processing and analyzing all local and many external metadata that are relevant to data quality, size, provenance, usage and other attributes. This then helps us better understand usage patterns and improve efficiency of data handling within NEX. When large-scale workflows are executed on NEX, we capture information that is relevant to processing and that can be analyzed in order to improve efficiencies in job scheduling, resource optimization, or data partitioning that would improve processing throughput. At this point we also collect data provenance as well as basic statistics of intermediate and final products created during the workflow execution. These statistics and metrics form basic process and data QA that, when combined with analytics algorithms, helps us identify issues early in the production process. We have already seen impact in some petabyte-scale projects, such as global Landsat processing, where we were able to reduce processing times from days to hours and enhance process monitoring and QA. While the focus so far has been mostly on support of NEX operations, we are also building a web-based infrastructure that enables users to perform direct analytics on science data - such as climate predictions or satellite data. Finally, as one of the main goals of NEX is knowledge acquisition and sharing, we began gathering and organizing information that associates users and projects with data, publications, locations

  10. Comparison of three web-scale discovery services for health sciences research*

    Directory of Open Access Journals (Sweden)

    Rosie Hanneke, MLS

    2016-11-01

    Full Text Available Objective: The purpose of this study was to investigate the relative effectiveness of three web-scale discovery (WSD tools in answering health sciences search queries. Methods: Simple keyword searches, based on topics from six health sciences disciplines, were run at multiple real-world implementations of EBSCO Discovery Service (EDS, Ex Libris’s Primo, and ProQuest’s Summon. Each WSD tool was evaluated in its ability to retrieve relevant results and in its coverage of MEDLINE content. Results: All WSD tools returned between 50%–60% relevant results. Primo returned a higher number of duplicate results than the other 2WSD products. Summon results were more relevant when search terms were automatically mapped to controlled vocabulary. EDS indexed the largest number of MEDLINE citations, followed closely by Summon. Additionally, keyword searches in all 3 WSD tools retrieved relevant material that was not found with precision (Medical Subject Headings searches in MEDLINE. Conclusions: None of the 3 WSD products studied was overwhelmingly more effective in returning relevant results. While difficult to place the figure of 50%–60% relevance in context, it implies a strong likelihood that the average user would be able to find satisfactory sources on the first page of search results using a rudimentary keyword search. The discovery of additional relevant material beyond that retrieved from MEDLINE indicates WSD tools’ value as a supplement to traditional resources for health sciences researchers.

  11. Comparison of three web-scale discovery services for health sciences research*

    Science.gov (United States)

    Hanneke, Rosie; O'Brien, Kelly K.

    2016-01-01

    Objective The purpose of this study was to investigate the relative effectiveness of three web-scale discovery (WSD) tools in answering health sciences search queries. Methods Simple keyword searches, based on topics from six health sciences disciplines, were run at multiple real-world implementations of EBSCO Discovery Service (EDS), Ex Libris's Primo, and ProQuest's Summon. Each WSD tool was evaluated in its ability to retrieve relevant results and in its coverage of MEDLINE content. Results All WSD tools returned between 50%–60% relevant results. Primo returned a higher number of duplicate results than the other 2 WSD products. Summon results were more relevant when search terms were automatically mapped to controlled vocabulary. EDS indexed the largest number of MEDLINE citations, followed closely by Summon. Additionally, keyword searches in all 3 WSD tools retrieved relevant material that was not found with precision (Medical Subject Headings) searches in MEDLINE. Conclusions None of the 3 WSD products studied was overwhelmingly more effective in returning relevant results. While difficult to place the figure of 50%–60% relevance in context, it implies a strong likelihood that the average user would be able to find satisfactory sources on the first page of search results using a rudimentary keyword search. The discovery of additional relevant material beyond that retrieved from MEDLINE indicates WSD tools' value as a supplement to traditional resources for health sciences researchers. PMID:27076797

  12. Comparison of three web-scale discovery services for health sciences research.

    Science.gov (United States)

    Hanneke, Rosie; O'Brien, Kelly K

    2016-04-01

    The purpose of this study was to investigate the relative effectiveness of three web-scale discovery (WSD) tools in answering health sciences search queries. Simple keyword searches, based on topics from six health sciences disciplines, were run at multiple real-world implementations of EBSCO Discovery Service (EDS), Ex Libris's Primo, and ProQuest's Summon. Each WSD tool was evaluated in its ability to retrieve relevant results and in its coverage of MEDLINE content. All WSD tools returned between 50%-60% relevant results. Primo returned a higher number of duplicate results than the other 2 WSD products. Summon results were more relevant when search terms were automatically mapped to controlled vocabulary. EDS indexed the largest number of MEDLINE citations, followed closely by Summon. Additionally, keyword searches in all 3 WSD tools retrieved relevant material that was not found with precision (Medical Subject Headings) searches in MEDLINE. None of the 3 WSD products studied was overwhelmingly more effective in returning relevant results. While difficult to place the figure of 50%-60% relevance in context, it implies a strong likelihood that the average user would be able to find satisfactory sources on the first page of search results using a rudimentary keyword search. The discovery of additional relevant material beyond that retrieved from MEDLINE indicates WSD tools' value as a supplement to traditional resources for health sciences researchers.

  13. Enabling Extreme Scale Earth Science Applications at the Oak Ridge Leadership Computing Facility

    Science.gov (United States)

    Anantharaj, V. G.; Mozdzynski, G.; Hamrud, M.; Deconinck, W.; Smith, L.; Hack, J.

    2014-12-01

    The Oak Ridge Leadership Facility (OLCF), established at the Oak Ridge National Laboratory (ORNL) under the auspices of the U.S. Department of Energy (DOE), welcomes investigators from universities, government agencies, national laboratories and industry who are prepared to perform breakthrough research across a broad domain of scientific disciplines, including earth and space sciences. Titan, the OLCF flagship system, is currently listed as #2 in the Top500 list of supercomputers in the world, and the largest available for open science. The computational resources are allocated primarily via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, sponsored by the U.S. DOE Office of Science. In 2014, over 2.25 billion core hours on Titan were awarded via INCITE projects., including 14% of the allocation toward earth sciences. The INCITE competition is also open to research scientists based outside the USA. In fact, international research projects account for 12% of the INCITE awards in 2014. The INCITE scientific review panel also includes 20% participation from international experts. Recent accomplishments in earth sciences at OLCF include the world's first continuous simulation of 21,000 years of earth's climate history (2009); and an unprecedented simulation of a magnitude 8 earthquake over 125 sq. miles. One of the ongoing international projects involves scaling the ECMWF Integrated Forecasting System (IFS) model to over 200K cores of Titan. ECMWF is a partner in the EU funded Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA) project. The significance of the research carried out within this project is the demonstration of techniques required to scale current generation Petascale capable simulation codes towards the performance levels required for running on future Exascale systems. One of the techniques pursued by ECMWF is to use Fortran2008 coarrays to overlap computations and communications and

  14. Large-scale theoretical calculations in molecular science - design of a large computer system for molecular science and necessary conditions for future computers

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, H [Institute for Molecular Science, Okazaki, Aichi (Japan)

    1982-06-01

    A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience.

  15. Large-scale theoretical calculations in molecular science - design of a large computer system for molecular science and necessary conditions for future computers

    International Nuclear Information System (INIS)

    Kashiwagi, H.

    1982-01-01

    A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience. (orig.)

  16. Large-scale laser-microwave synchronization for attosecond photon science facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shafak, Kemal

    2017-04-15

    Low-noise transfer of time and frequency standards over large distances provides high temporal resolution for ambitious scientific explorations such as sensitive imaging of astronomical objects using multi-telescope arrays, comparison of distant optical clocks or gravitational-wave detection using large laser interferometers. In particular, rapidly expanding photon science facilities such as X-ray free-electron lasers (FELs) and attoscience centers have the most challenging synchronization requirements of sub-fs timing precision to generate ultrashort X-ray pulses for the benefit of creating super-microscopes with sub-atomic spatiotemporal resolution. The critical task in these facilities is to synchronize various pulsed lasers and microwave sources across multi-kilometer distances as required for seeded FELs and attosecond pump-probe experiments. So far, there has been no timing distribution system meeting this strict requirement. Therefore, insufficient temporal precision provided by the current synchronization systems hinders the development of attosecond hard X-ray photon science facilities. The aim of this thesis is to devise a timing distribution system satisfying the most challenging synchronization requirements in science mandated by the next-generation photon science facilities. Using the pulsed-optical timing distribution approach, attosecond timing precision is realized by thoroughly investigating and eliminating the remaining noise sources in the synchronization system. First, optical and microwave timing detection schemes are further developed to support long-term stable, attosecond-precision measurements. Second, the feasibility of the master laser to support a kilometer-scale timing network with attosecond precision is examined by experimentally characterizing its free-running timing jitter and improving its long-term frequency stability with a sophisticated environmental insulation. Third, nonlinear pulse propagation inside optical fibers is studied

  17. Large-scale laser-microwave synchronization for attosecond photon science facilities

    International Nuclear Information System (INIS)

    Shafak, Kemal

    2017-04-01

    Low-noise transfer of time and frequency standards over large distances provides high temporal resolution for ambitious scientific explorations such as sensitive imaging of astronomical objects using multi-telescope arrays, comparison of distant optical clocks or gravitational-wave detection using large laser interferometers. In particular, rapidly expanding photon science facilities such as X-ray free-electron lasers (FELs) and attoscience centers have the most challenging synchronization requirements of sub-fs timing precision to generate ultrashort X-ray pulses for the benefit of creating super-microscopes with sub-atomic spatiotemporal resolution. The critical task in these facilities is to synchronize various pulsed lasers and microwave sources across multi-kilometer distances as required for seeded FELs and attosecond pump-probe experiments. So far, there has been no timing distribution system meeting this strict requirement. Therefore, insufficient temporal precision provided by the current synchronization systems hinders the development of attosecond hard X-ray photon science facilities. The aim of this thesis is to devise a timing distribution system satisfying the most challenging synchronization requirements in science mandated by the next-generation photon science facilities. Using the pulsed-optical timing distribution approach, attosecond timing precision is realized by thoroughly investigating and eliminating the remaining noise sources in the synchronization system. First, optical and microwave timing detection schemes are further developed to support long-term stable, attosecond-precision measurements. Second, the feasibility of the master laser to support a kilometer-scale timing network with attosecond precision is examined by experimentally characterizing its free-running timing jitter and improving its long-term frequency stability with a sophisticated environmental insulation. Third, nonlinear pulse propagation inside optical fibers is studied

  18. Large Scale Monte Carlo Simulation of Neutrino Interactions Using the Open Science Grid and Commercial Clouds

    International Nuclear Information System (INIS)

    Norman, A.; Boyd, J.; Davies, G.; Flumerfelt, E.; Herner, K.; Mayer, N.; Mhashilhar, P.; Tamsett, M.; Timm, S.

    2015-01-01

    Modern long baseline neutrino experiments like the NOvA experiment at Fermilab, require large scale, compute intensive simulations of their neutrino beam fluxes and backgrounds induced by cosmic rays. The amount of simulation required to keep the systematic uncertainties in the simulation from dominating the final physics results is often 10x to 100x that of the actual detector exposure. For the first physics results from NOvA this has meant the simulation of more than 2 billion cosmic ray events in the far detector and more than 200 million NuMI beam spill simulations. Performing these high statistics levels of simulation have been made possible for NOvA through the use of the Open Science Grid and through large scale runs on commercial clouds like Amazon EC2. We details the challenges in performing large scale simulation in these environments and how the computing infrastructure for the NOvA experiment has been adapted to seamlessly support the running of different simulation and data processing tasks on these resources. (paper)

  19. Loosening the shackles of scientific disciplines with network science. Reply to comments on "Network science of biological systems at different scales: A review"

    Science.gov (United States)

    Gosak, Marko; Markovič, Rene; Dolenšek, Jurij; Rupnik, Marjan Slak; Marhl, Marko; Stožer, Andraž; Perc, Matjaž

    2018-03-01

    We would like to thank all the experts for their insightful and very interesting comments that have been submitted in response to our review "Network science of biological systems at different scales" [1]. We are delighted with the number of comments that have been written, and even more so with the positive opinions that these comments communicate to the wider audience [2-9]. Although methods of network science have long proven their value in relevantly addressing various challenges in the biological sciences, such interdisciplinary research often still struggles for funding and recognition at many academic levels.

  20. Biogenic iron mineralization at Iron Mountain, CA with implications for detection with the Mars Curiosity rover

    Science.gov (United States)

    Williams, Amy J.; Sumner, Dawn Y.; Alpers, Charles N.; Campbell, Kate M.; Nordstrom, D. Kirk

    2014-01-01

    (Introduction) Microbe-mineral interactions and biosignature preservation in oxidized sulfidic ore bodies (gossans) are prime candidates for astrobiological study. Such oxidized iron systems have been proposed as analogs for some Martian environments. Recent studies identified microbial fossils preserved as mineral-coated filaments. This study documents microbially-mediated mineral biosignatures in hydrous ferric oxide (HFO) and ferric oxyhydroxysulfates (FOHS) in three environments at Iron Mountain, CA. We investigated microbial community preservation via HFO and FOHS precipitation and the formation of filamentous mineral biosignatures. These environments included 1) actively precipitating (1000's yrs), naturally weathered HFO from in situ gossan, and 3) remobilized iron deposits, which contained lithified clastics and zones of HFO precipitate. We used published biogenicity criteria as guidelines to characterize the biogenicity of mineral filaments. These criteria included A) an actively precipitating environment where microbes are known to be coated in minerals, B) presence of extant microbial communities with carbon signatures, C) structures observable as a part of the host rock, and D) biological morphology, including cellular lumina, multiple member population, numerous taxa, variable and 3-D preservation, biological size ranges, uniform diameter, and evidence of flexibility. This study explores the relevance and detection of these biosignatures to possible Martian biosignatures. Similar filamentous biosignatures are resolvable by the Mars Hand Lens Imager (MAHLI) onboard the Mars Science Laboratory (MSL) rover, Curiosity, and may be identifiable as biogenic if present on Mars.

  1. The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam Onboard Curiosity

    Science.gov (United States)

    Le Deit, Laetitia; Mangold, Nicolas; Forni, Olivier; Cousin, Agnes; Lasue, Jeremie; Schröder, Susanne; Wiens, Roger C.; Sumner, Dawn Y.; Fabre, Cecile; Stack, Katherine M.; Anderson, Ryan; Blaney, Diana L.; Clegg, Samuel M.; Dromart, Gilles; Fisk, Martin; Gasnault, Olivier; Grotzinger, John P.; Gupta, Sanjeev; Lanza, Nina; Le Mouélic, Stephane; Maurice, Sylvestre; McLennan, Scott M.; Meslin, Pierre-Yves; Nachon, Marion; Newsom, Horton E.; Payre, Valerie; Rapin, William; Rice, Melissa; Sautter, Violaine; Treiman, Alan H.

    2016-01-01

    The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. From ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations reveals that the mean K2O abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.

  2. Pervasive aeolian activity along Curiosity's traverse in Gale Crater on Mars

    Science.gov (United States)

    Silvestro, S.; Vaz, D.; Ewing, R. C.; Rossi, A.; Flahaut, J.; Fenton, L. K.; Geissler, P. E.; Michaels, T. I.

    2012-12-01

    The NASA Mars Science Laboratory (MSL) has safely landed in Gale Crater (Mars). This crater has been severely modified by the action of the wind which has led to the development of several dark dune fields. One of these fields crosses the landing ellipse from the NE to the SW, and despite its fresh appearance, no evidence of sand movement has been detected until recently. Here we present evidence of current aeolian activity in the form of ripple and dune migration close to the expected traverse of the MSL rover, Curiosity. We calculate a minimum ripple displacement of 1.16 m and a dune migration rate of 0.4 meters/Earth year. Both ripples and dunes migrated toward the SW, suggesting winds above the saltation threshold from the NE. Such winds are predicted by the MRAMS atmospheric model (Fig. 1). The dunes are undergoing changes on a timescale of weeks to a few years that should be detectable by rover instruments. Using theoretical and experimental considerations, we calculate a wind gust velocity of 35 m/s at 1.5 m of height. In addition, we estimate that saltating grains would reach a distance of ~27 m and extend a maximum height of 2 m above the surface. Our constraints on the wind regime provide a unique opportunity to use ground measurements from MSL to test the accuracy of winds predicted from orbital data.RAMS modeled winds in the MSL landing site

  3. Effect of the Presence of Chlorates and Perchlorates on the Pyrolysis of Organic Compounds: Implications for Measurements Done with the SAM Experiment Onboard the Curiosity Rover

    Science.gov (United States)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Coll, P.; Glavin, D. P.; Freissinet, C.; Archer, P. D., Jr.; Sutter, B.; Summons, R. E.; hide

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity Rover carries a suite of instruments, one of which is the Sample Analysis at Mars (SAM) experiment. SAM is devoted to the in situ molecular analysis of gases evolving from solid samples collected by Curiosity on Mars surface/sub-surface. Among its three analytical devices, SAM has a gaschromatograph coupled to a quadrupole mass spectrometer (GC-QMS). The GC-QMS is devoted to the separation and identification of organic and inorganic material. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. Depending on the sample, a derivatization method by wet chemistry: MTBSTFA of TMAH can also be applied to analyze the most refractory compounds. The GC is able to separate the organic molecules which are then detected and identified by the QMS (Figure 1). For the second time after the Viking landers in 1976, SAM detected chlorinated organic compounds with the pyrolysis GC-QMS experiment. The detection of perchlorates salts (ClO4-) in soil at the Phoenix Landing site suggests that the chlorohydrocarbons detected could come from the reaction of organics with oxychlorines. Indeed, laboratory pyrolysis experiments have demonstrated that oxychlorines decomposed into molecular oxygen and volatile chlorine (HCl and/or Cl2) when heated which then react with the organic matter in the solid samples by oxidation and/or chlorination processes.

  4. Choosing the negative: A behavioral demonstration of morbid curiosity

    Science.gov (United States)

    2017-01-01

    This paper examined, with a behavioral paradigm, to what extent people choose to view stimuli that portray death, violence or harm. Based on briefly presented visual cues, participants made choices between highly arousing, negative images and positive or negative alternatives. The negative images displayed social scenes that involved death, violence or harm (e.g., war scene), or decontextualized, close-ups of physical harm (e.g., mutilated face) or natural threat (e.g., attacking shark). The results demonstrated that social negative images were chosen significantly more often than other negative categories. Furthermore, participants preferred social negative images over neutral images. Physical harm images and natural threat images were not preferred over neutral images, but were chosen in about thirty-five percent of the trials. These results were replicated across three different studies, including a study that presented verbal descriptions of images as pre-choice cues. Together, these results show that people deliberately subject themselves to negative images. With this, the present paper demonstrates a dynamic relationship between negative information and behavior and advances new insights into the phenomenon of morbid curiosity. PMID:28683147

  5. Problems of collegial learning in psychoanalysis: narcissism and curiosity.

    Science.gov (United States)

    Poland, Warren S

    2009-04-01

    Despite clinical sensitivity when listening to patients, analysts have not fared well in hearing and talking to each other with respectful open-mindedness. Underlying factors are considered with particular focus on the interplay between self-aimed forces of narcissism and outward-aimed forces of curiosity. Included in examination of problems of collegial communication are limitations structurally inherent to the human mind (such as the need to abstract aspects of experience in order to focus attention plus the mind's tendency to categorical thinking), those derived from individual psychology (such as vulnerability of self-esteem), and those related to group dynamics (such as the problems attendant to new ideas and the allegiances they stir, parochialism and the development of radical schools, the competitiveness between schools). The contribution of cultural influences and the multiply determined uses of language are also highlighted. The core sense of smallness in the strangeness of the universe and in the presence of others is seen as a common thread.

  6. Curiosity driven reinforcement learning for motion planning on humanoids

    Science.gov (United States)

    Frank, Mikhail; Leitner, Jürgen; Stollenga, Marijn; Förster, Alexander; Schmidhuber, Jürgen

    2014-01-01

    Most previous work on artificial curiosity (AC) and intrinsic motivation focuses on basic concepts and theory. Experimental results are generally limited to toy scenarios, such as navigation in a simulated maze, or control of a simple mechanical system with one or two degrees of freedom. To study AC in a more realistic setting, we embody a curious agent in the complex iCub humanoid robot. Our novel reinforcement learning (RL) framework consists of a state-of-the-art, low-level, reactive control layer, which controls the iCub while respecting constraints, and a high-level curious agent, which explores the iCub's state-action space through information gain maximization, learning a world model from experience, controlling the actual iCub hardware in real-time. To the best of our knowledge, this is the first ever embodied, curious agent for real-time motion planning on a humanoid. We demonstrate that it can learn compact Markov models to represent large regions of the iCub's configuration space, and that the iCub explores intelligently, showing interest in its physical constraints as well as in objects it finds in its environment. PMID:24432001

  7. Taking Stock: Marie Nimier’s Textual Cabinet of Curiosities

    Directory of Open Access Journals (Sweden)

    Adrienne Angelo

    2014-01-01

    Full Text Available In many life-writing projects, the seemingly innocuous description of heteroclite objects and how those objects are stored and recalled in fact plays an important role in demonstrating their importance to the process of memory work. At once the lingering traces of one’s past and also an aggregation of stories evoked by an examination of them, these curios focus attention on the relationship between the individual and the storage of memories. This article will focus on certain collectibles, collections and collectors that appear throughout the fictional, autobiographical and autofictional world that Marie Nimier has scripted to date. This textual cabinet of curiosities and the act of collecting more generally serve as a trope to connect memory with materiality, despite the numerous narrative voices that Nimier assumes—voices that move from a first-person “Marie Nimier” to an unnamed, although clearly identifiable first-person and even float between genders. Despite this nominal and narrational fluidity, objects function to guarantee recognition, both for the reader, and, especially, for the author herself. What is at stake in this intertextual assemblage of objects is not only the roles that they play in allowing the narrator to revisit past traumas and loss, but also in connecting the author’s presence to other, more fictionalized voices that above all signify the primacy of life-writing in her corpus.

  8. In Situ Analysis of Mars Soil and Rocks Sample with the Sam Gcms Instrumentation Onboard Curiosity : Interpretation and Comparison of Measurements Done during the First Martian Year of Curiosity on Mars

    Science.gov (United States)

    Szopa, C.; Coll, P. J.; Cabane, M.; Buch, A.; Coscia, D.; Millan, M.; Francois, P.; Belmahadi, I.; Teinturier, S.; Navarro-Gonzalez, R.; Glavin, D. P.; Freissinet, C.; Steele, A.; Eigenbrode, J. L.; Mahaffy, P. R.

    2014-12-01

    The characterisation of the chemical and mineralogical composition of solid surface samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, SAM-GC analytical channels composed of thermal-desorption injector, and a MXT-CLP or a MXT-Q chromatographic column was chosen to achieve all the measurements done up today, with the aim to separate of a wide range of volatile inorganic and organic molecules. Four solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller, and one rock sample collected at the Kimberly site. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013

  9. Are large-scale flow experiments informing the science and management of freshwater ecosystems?

    Science.gov (United States)

    Olden, Julian D.; Konrad, Christopher P.; Melis, Theodore S.; Kennard, Mark J.; Freeman, Mary C.; Mims, Meryl C.; Bray, Erin N.; Gido, Keith B.; Hemphill, Nina P.; Lytle, David A.; McMullen, Laura E.; Pyron, Mark; Robinson, Christopher T.; Schmidt, John C.; Williams, John G.

    2013-01-01

    Greater scientific knowledge, changing societal values, and legislative mandates have emphasized the importance of implementing large-scale flow experiments (FEs) downstream of dams. We provide the first global assessment of FEs to evaluate their success in advancing science and informing management decisions. Systematic review of 113 FEs across 20 countries revealed that clear articulation of experimental objectives, while not universally practiced, was crucial for achieving management outcomes and changing dam-operating policies. Furthermore, changes to dam operations were three times less likely when FEs were conducted primarily for scientific purposes. Despite the recognized importance of riverine flow regimes, four-fifths of FEs involved only discrete flow events. Over three-quarters of FEs documented both abiotic and biotic outcomes, but only one-third examined multiple taxonomic responses, thus limiting how FE results can inform holistic dam management. Future FEs will present new opportunities to advance scientifically credible water policies.

  10. Tracking global change at local scales: Phenology for science, outreach, conservation

    Science.gov (United States)

    Sharron, Ed; Mitchell, Brian

    2011-06-01

    A Workshop Exploring the Use of Phenology Studies for Public Engagement; New Orleans, Louisiana, 14 March 2011 ; During a George Wright Society Conference session that was led by the USA National Phenology Network (USANPN; http://www.usanpn.org) and the National Park Service (NPS), professionals from government organizations, nonprofits, and higher-education institutions came together to explore the possibilities of using phenology monitoring to engage the public. One of the most visible effects of global change on ecosystems is shifts in phenology: the timing of biological events such as leafing and flowering, maturation of agricultural plants, emergence of insects, and migration of birds. These shifts are already occurring and reflect biological responses to climate change at local to regional scales. Changes in phenology have important implications for species ecology and resource management and, because they are place-based and tangible, serve as an ideal platform for education, outreach, and citizen science.

  11. Learning Science through Computer Games and Simulations

    Science.gov (United States)

    Honey, Margaret A., Ed.; Hilton, Margaret, Ed.

    2011-01-01

    At a time when scientific and technological competence is vital to the nation's future, the weak performance of U.S. students in science reflects the uneven quality of current science education. Although young children come to school with innate curiosity and intuitive ideas about the world around them, science classes rarely tap this potential.…

  12. What Can the Curiosity Rover Tell Us About the Climate of Mars?

    Science.gov (United States)

    Haberle, Robert M.

    2013-01-01

    What Can the Curiosity Rover Tell Us About the Climate of Mars? Assessing the habitability of Gale Crater is the goal of the Curiosity Rover, which has been gathering data since landing on the Red Planet last August. To meet that goal, Curiosity brought with it a suite of instruments to measure the biological potential of the landing site, the geology and chemistry of its surface, and local environmental conditions. Some of these instruments illuminate the nature of the planet fs atmosphere and climate system, both for present day conditions as well as for conditions that existed billions of years ago. For present day conditions, Curiosity has a standard meteorology package that measures pressure, temperature, winds and humidity, plus a sensor the measures the UV flux. These data confirm what we learned from previous missions namely that today Mars is a cold, dry, and barren desert-like planet. For past conditions, however, wetter and probably warmer conditions are indicated. Curiosities cameras reveal gravel beds that must have formed by flowing rivers, and sedimentary deposits of layered sand and mudstones possibly associated with lakes. An ancient aqueous environment is further supported by the presence of sulfate veins coursing through some of the rocks in Yellowknife Bay where Curiosity is planning its first drilling activity. I will discuss these results and their implications in this lecture.

  13. Intrinsic motivation, curiosity, and learning: Theory and applications in educational technologies.

    Science.gov (United States)

    Oudeyer, P-Y; Gottlieb, J; Lopes, M

    2016-01-01

    This chapter studies the bidirectional causal interactions between curiosity and learning and discusses how understanding these interactions can be leveraged in educational technology applications. First, we review recent results showing how state curiosity, and more generally the experience of novelty and surprise, can enhance learning and memory retention. Then, we discuss how psychology and neuroscience have conceptualized curiosity and intrinsic motivation, studying how the brain can be intrinsically rewarded by novelty, complexity, or other measures of information. We explain how the framework of computational reinforcement learning can be used to model such mechanisms of curiosity. Then, we discuss the learning progress (LP) hypothesis, which posits a positive feedback loop between curiosity and learning. We outline experiments with robots that show how LP-driven attention and exploration can self-organize a developmental learning curriculum scaffolding efficient acquisition of multiple skills/tasks. Finally, we discuss recent work exploiting these conceptual and computational models in educational technologies, showing in particular how intelligent tutoring systems can be designed to foster curiosity and learning. © 2016 Elsevier B.V. All rights reserved.

  14. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a

  15. Global-scale Observations of the Limb and Disk (GOLD): Science Implementation

    Science.gov (United States)

    Solomon, S. C.; McClintock, W. E.; Eastes, R.; Anderson, D. N.; Andersson, L.; Burns, A. G.; Codrescu, M.; Daniell, R. E.; England, S.; Eparvier, F. G.; Evans, J. S.; Krywonos, A.; Lumpe, J. D.; Richmond, A. D.; Rusch, D. W.; Siegmund, O.; Woods, T. N.

    2017-12-01

    The Global-scale Observations of the Limb and Disk (GOLD) is a NASA mission of opportunity that will image the Earth's thermosphere and ionosphere from geostationary orbit. GOLD will investigate how the thermosphere-ionosphere (T-I) system responds to geomagnetic storms, solar radiation, and upward propagating tides and how the structure of the equatorial ionosphere influences the formation and evolution of equatorial plasma density irregularities. GOLD consists of a pair of identical imaging spectrographs that will measure airglow emissions at far-ultraviolet wavelengths from 132 to 162 nm. On the disk, temperature and composition will be determined during the day using emissions from molecular nitrogen Lyman-Birge-Hopfield (LBH) band and atomic oxygen 135.6 nm, and electron density will be derived at night from 135.6 nm emission. On the limb, exospheric temperature will be derived from LBH emission profiles, and molecular oxygen density will be measured using stellar occultations. This presentation describes the GOLD mission science implementation including the as-built instrument performance and the planned observing scenario. It also describes the results of simulations performed by the GOLD team to validate that the measured instrument performance and observing plan will return adequate data to address the science objectives of the mission.

  16. Paleo-environmental Setting of the Murray Formation of Aeolis Mons, Gale Crater, Mars, as Explored by the Curiosity Rover

    Science.gov (United States)

    Lewis, K. W.; Fedo, C.; Grotzinger, J. P.; Gupta, S.; Stein, N.; Rivera-Hernandez, F.; Watkins, J. A.; Banham, S.; Edgett, K. S.; Minitti, M. E.; Schieber, J.; Edgar, L. A.; Siebach, K. L.; Stack, K.; Newsom, H. E.; House, C. H.; Sumner, D. Y.; Vasavada, A. R.

    2017-12-01

    Since landing, the Mars Science Laboratory Curiosity rover climbed 300 meters in elevation from the floor of north Gale crater up the lower northwest flank of Aeolis Mons ("Mount Sharp"). Nearly 200 meters of this ascent was accomplished in the 1.5 years alone, as the rover was driven up-section through the sedimentary rocks of the informally designated "Murray" formation. This unit comprises a large fraction of the lower strata of Mt. Sharp along the rover traverse. Our exploration of the Murray formation reveals a diverse suite of fine-grained facies. Grain sizes range from finer grains than can be resolved by the MAHLI imager (particles bearing Vera Rubin Ridge, continues to reveal the complex and long-lived depositional history of the Gale crater basin.

  17. Mineralogy of Fluvio-Lacustrine Sediments Investigated by Curiosity During the Prime Mission: Implications for Diagenesis

    Science.gov (United States)

    Rampe, Elizabeth B.; Morris, R. V.; Bish, D. L.; Vaniman, D. T.; Bristow, T. F.; Chipera, S. J.; Blake, D. F.; Ming, D. W.; Farmer, J. D.; Morrison, S. M.; hide

    2014-01-01

    The Mars Science Laboratory rover Curiosity investigated sedimentary rocks that were deposited in a diversity of fluvio-lacustrine settings. The entire science payload was employed to characterize the mineralogy and chemistry of the Sheepbed mudstone at Yellowknife Bay and the Windjana sandstone at the Kimberley. Data from the CheMin instrument, a transmission Xray diffractometer, were used to determine the quantitative mineralogy of both samples. The Sheepbed mudstone contains detrital basaltic minerals, calcium sulfates, iron oxides or hydroxides, iron sulfides, trioctahedral smectite, and amorphous material. The mineral assemblage and chemical data from APXS suggest that the trioctahedral smectite and magnetite formed authigenically as a result of alteration of olivine. The apparent lack of higher-grade phyllosilicates (e.g., illite and chlorite) and the presence of anhydrite indicate diagenesis at 50- 80 ºC. The mineralogy of the Windjana sandstone is different than the Sheepbed mudstone. Windjana contains significant abundances of K-feldspar, low- and high-Ca pyroxenes, magnetite, phyllosilicates, and amorphous material. At least two distinct phyllosilicate phases exist: a 10 Å phase and a component that is expanded with a peak at 11.8 Å. The identity of the expanded phase is currently unknown, but could be a smectite with interlayer H2O, and the 10 Å phase could be illite or collapsed smectite. Further work is necessary to characterize the phyllosilicates, but the presence of illite could suggest that Windjana experienced burial diagenesis. Candidates for the cementing agents include fine-grained phyllosilicates, Fe-oxides, and/or amorphous material. Interpretations of CheMin data from the Windjana sandstone are ongoing at the time of writing, but we will present an estimate of the composition of the amorphous material from mass balance calculations using the APXS bulk chemistry and quantitative mineralogy from CheMin.

  18. Toward Open Science at the European Scale: Geospatial Semantic Array Programming for Integrated Environmental Modelling

    Science.gov (United States)

    de Rigo, Daniele; Corti, Paolo; Caudullo, Giovanni; McInerney, Daniel; Di Leo, Margherita; San-Miguel-Ayanz, Jesús

    2013-04-01

    Interfacing science and policy raises challenging issues when large spatial-scale (regional, continental, global) environmental problems need transdisciplinary integration within a context of modelling complexity and multiple sources of uncertainty [1]. This is characteristic of science-based support for environmental policy at European scale [1], and key aspects have also long been investigated by European Commission transnational research [2-5]. Parameters ofthe neededdata- transformations ? = {?1????m} (a.5) Wide-scale transdisciplinary modelling for environment. Approaches (either of computational science or of policy-making) suitable at a given domain-specific scale may not be appropriate for wide-scale transdisciplinary modelling for environment (WSTMe) and corresponding policy-making [6-10]. In WSTMe, the characteristic heterogeneity of available spatial information (a) and complexity of the required data-transformation modelling (D- TM) appeal for a paradigm shift in how computational science supports such peculiarly extensive integration processes. In particular, emerging wide-scale integration requirements of typical currently available domain-specific modelling strategies may include increased robustness and scalability along with enhanced transparency and reproducibility [11-15]. This challenging shift toward open data [16] and reproducible research [11] (open science) is also strongly suggested by the potential - sometimes neglected - huge impact of cascading effects of errors [1,14,17-19] within the impressively growing interconnection among domain-specific computational models and frameworks. From a computational science perspective, transdisciplinary approaches to integrated natural resources modelling and management (INRMM) [20] can exploit advanced geospatial modelling techniques with an awesome battery of free scientific software [21,22] for generating new information and knowledge from the plethora of composite data [23-26]. From the perspective

  19. Harnessing Petaflop-Scale Multi-Core Supercomputing for Problems in Space Science

    Science.gov (United States)

    Albright, B. J.; Yin, L.; Bowers, K. J.; Daughton, W.; Bergen, B.; Kwan, T. J.

    2008-12-01

    The particle-in-cell kinetic plasma code VPIC has been migrated successfully to the world's fastest supercomputer, Roadrunner, a hybrid multi-core platform built by IBM for the Los Alamos National Laboratory. How this was achieved will be described and examples of state-of-the-art calculations in space science, in particular, the study of magnetic reconnection, will be presented. With VPIC on Roadrunner, we have performed, for the first time, plasma PIC calculations with over one trillion particles, >100× larger than calculations considered "heroic" by community standards. This allows examination of physics at unprecedented scale and fidelity. Roadrunner is an example of an emerging paradigm in supercomputing: the trend toward multi-core systems with deep hierarchies and where memory bandwidth optimization is vital to achieving high performance. Getting VPIC to perform well on such systems is a formidable challenge: the core algorithm is memory bandwidth limited with low compute-to-data ratio and requires random access to memory in its inner loop. That we were able to get VPIC to perform and scale well, achieving >0.374 Pflop/s and linear weak scaling on real physics problems on up to the full 12240-core Roadrunner machine, bodes well for harnessing these machines for our community's needs in the future. Many of the design considerations encountered commute to other multi-core and accelerated (e.g., via GPU) platforms and we modified VPIC with flexibility in mind. These will be summarized and strategies for how one might adapt a code for such platforms will be shared. Work performed under the auspices of the U.S. DOE by the LANS LLC Los Alamos National Laboratory. Dr. Bowers is a LANL Guest Scientist; he is presently at D. E. Shaw Research LLC, 120 W 45th Street, 39th Floor, New York, NY 10036.

  20. Scales

    Science.gov (United States)

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that ...

  1. How Technicians Can Lead Science Improvements in Any School: A Small-Scale Study in England

    Science.gov (United States)

    Jones, Beth; Quinnell, Simon

    2015-01-01

    This article describes how seven schools in England improved their science provision by focusing on the professional development of their science technicians. In September 2013, the Gatsby Charitable Foundation funded the National Science Learning Centre to lead a project connecting secondary schools with experienced senior science technicians…

  2. Guidelines for enhancing learning curiosity of non-formal student using daily life context

    Directory of Open Access Journals (Sweden)

    Mongkondaw Ornwipa

    2016-01-01

    Full Text Available The purposes of this study were: to study learning curiosity within student, teacher and administrators, and to suggest the student of non-formal education learning curiosity by using daily life context. A sample was selected from a group of student of non-formal education for 400 students, categorized to 184 students of secondary education, students of high school education 216, 40 teachers of non-formal education and 20 administrators with district level of the office of the Non - Formal and Informal Education by Multi - Stage Sampling. The research tools were surveyed by using questionnaire of students. The results of the study were as follows and the questionnaire as learning curiosity of the teacher and administrator from the Non - Formal and Informal Education awareness, and transcribing from focus group discussion. The quantitative analysis by the computer program (SPSS for statistical analysis and analyzing qualitative data by content analysis were included. The results of the study were as follows a student learning curiosity was in high level, a student supporting for learning curiosity in occupation was in high level, the teacher opinion for learning curiosity of student was in middle level. The supporting should be academic, Work and family consecutive. The administrator of the Non - Formal and Informal Education thought, learning curiosity of student was in middle level. The student should be gained occupation knowledge for the first, because of their lifestyle in the north eastern of Thailand; they needed to support their family. Almost citizens were agriculturist, gardener, farmer or merchandiser, and then to permit academic education, family and socialization, the occupation developing was given precedence.

  3. Developing partnerships for implementing continental-scale citizen science programs at the local-level

    Science.gov (United States)

    Newman, S. J.; Henderson, S.; Ward, D.

    2012-12-01

    Project BudBurst is a citizen science project focused on monitoring plant phenology that resides at the National Ecological Observatory Network (NEON, Inc). A central question for Project BudBurst and other national outreach programs is: what are the most effective means of engaging and connecting with diverse communities throughout the country? How can continental scale programs like NEON's Project BudBurst engage audiences in such a way as to be relevant at both the local and continental scales? Staff with Project BudBurst pursued partnerships with several continental scale organizations: the National Wildlife Refuge System, the National Park Service, and botanic gardens to address these questions. The distributed nature of wildlife refuges, national parks, and botanic gardens around the country provided the opportunity to connect with participants locally while working with leadership at multiple scales. Project BudBurst staff talked with hundreds of staff and volunteers prior to setting a goal of obtaining and developing resources for several Refuge Partners, a pilot National Park partner, and an existing botanic garden partner during 2011. We were especially interested in learning best practices for future partnerships. The partnership efforts resulted in resource development for 12 Refuge partners, a pilot National Park partner, and 2 botanic garden partners. Early on, the importance of working with national level leaders to develop ownership of the partner program and input about resource needs became apparent. Once a framework for the partnership program was laid out, it became critical to work closely with staff and volunteers on the ground to ensure needs were met. In 2012 we began to develop an online assessment to allow our current and potential partners to provide feedback about whether or not the partnership program was meeting their needs and how the program could be improved. As the year progressed, the timeline for resource development became more

  4. Curiosity Search: Producing Generalists by Encouraging Individuals to Continually Explore and Acquire Skills throughout Their Lifetime.

    Science.gov (United States)

    Stanton, Christopher; Clune, Jeff

    2016-01-01

    Natural animals are renowned for their ability to acquire a diverse and general skill set over the course of their lifetime. However, research in artificial intelligence has yet to produce agents that acquire all or even most of the available skills in non-trivial environments. One candidate algorithm for encouraging the production of such individuals is Novelty Search, which pressures organisms to exhibit different behaviors from other individuals. However, we hypothesized that Novelty Search would produce sub-populations of specialists, in which each individual possesses a subset of skills, but no one organism acquires all or most of the skills. In this paper, we propose a new algorithm called Curiosity Search, which is designed to produce individuals that acquire as many skills as possible during their lifetime. We show that in a multiple-skill maze environment, Curiosity Search does produce individuals that explore their entire domain, while a traditional implementation of Novelty Search produces specialists. However, we reveal that when modified to encourage intra-life behavioral diversity, Novelty Search can produce organisms that explore almost as much of their environment as Curiosity Search, although Curiosity Search retains a significant performance edge. Finally, we show that Curiosity Search is a useful helper objective when combined with Novelty Search, producing individuals that acquire significantly more skills than either algorithm alone.

  5. Qualitative approaches to large scale studies and students' achievements in Science and Mathematics - An Australian and Nordic Perspective

    DEFF Research Database (Denmark)

    Davidsson, Eva; Sørensen, Helene

    Large scale studies play an increasing role in educational politics and results from surveys such as TIMSS and PISA are extensively used in medial debates about students' knowledge in science and mathematics. Although this debate does not usually shed light on the more extensive quantitative...... analyses, there is a lack of investigations which aim at exploring what is possible to conclude or not to conclude from these analyses. There is also a need for more detailed discussions about what trends could be discern concerning students' knowledge in science and mathematics. The aim of this symposium...... is therefore to highlight and discuss different approaches to how data from large scale studies could be used for additional analyses in order to increase our understanding of students' knowledge in science and mathematics, but also to explore possible longitudinal trends, hidden in the data material...

  6. Connecting science, policy, and implementation for landscape-scale habitat connectivity.

    Science.gov (United States)

    Brodie, Jedediah F; Paxton, Midori; Nagulendran, Kangayatkarasu; Balamurugan, G; Clements, Gopalasamy Reuben; Reynolds, Glen; Jain, Anuj; Hon, Jason

    2016-10-01

    We examined the links between the science and policy of habitat corridors to better understand how corridors can be implemented effectively. As a case study, we focused on a suite of landscape-scale connectivity plans in tropical and subtropical Asia (Malaysia, Singapore, and Bhutan). The process of corridor designation may be more efficient if the scientific determination of optimal corridor locations and arrangement is synchronized in time with political buy-in and establishment of policies to create corridors. Land tenure and the intactness of existing habitat in the region are also important to consider because optimal connectivity strategies may be very different if there are few, versus many, political jurisdictions (including commercial and traditional land tenures) and intact versus degraded habitat between patches. Novel financing mechanisms for corridors include bed taxes, payments for ecosystem services, and strategic forest certifications. Gaps in knowledge of effective corridor design include an understanding of how corridors, particularly those managed by local communities, can be protected from degradation and unsustainable hunting. There is a critical need for quantitative, data-driven models that can be used to prioritize potential corridors or multicorridor networks based on their relative contributions to long-term metacommunity persistence. © 2016 Society for Conservation Biology.

  7. Trajectory Reconstruction and Uncertainty Analysis Using Mars Science Laboratory Pre-Flight Scale Model Aeroballistic Testing

    Science.gov (United States)

    Lugo, Rafael A.; Tolson, Robert H.; Schoenenberger, Mark

    2013-01-01

    As part of the Mars Science Laboratory (MSL) trajectory reconstruction effort at NASA Langley Research Center, free-flight aeroballistic experiments of instrumented MSL scale models was conducted at Aberdeen Proving Ground in Maryland. The models carried an inertial measurement unit (IMU) and a flush air data system (FADS) similar to the MSL Entry Atmospheric Data System (MEADS) that provided data types similar to those from the MSL entry. Multiple sources of redundant data were available, including tracking radar and on-board magnetometers. These experimental data enabled the testing and validation of the various tools and methodologies that will be used for MSL trajectory reconstruction. The aerodynamic parameters Mach number, angle of attack, and sideslip angle were estimated using minimum variance with a priori to combine the pressure data and pre-flight computational fluid dynamics (CFD) data. Both linear and non-linear pressure model terms were also estimated for each pressure transducer as a measure of the errors introduced by CFD and transducer calibration. Parameter uncertainties were estimated using a "consider parameters" approach.

  8. Droning on about the Weather: Meteorological Science on a School-Friendly Scale

    Science.gov (United States)

    Murphy, Phil; O'Neill, Ashley; Brown, Abby

    2016-01-01

    Meteorology is an important branch of science that offers exciting career opportunities and yet is not usually included in school curricula. The availability of multi-rotor model aircraft (drones) offers an exciting opportunity to bring meteorology into school science.

  9. Thermophysical Properties Along Curiosity's Traverse in Gale Crater, Mars, Derived from the REMS Ground Temperature Sensor

    Science.gov (United States)

    Vasavada, Ashwin R.; Piqueux, Sylvain; Lewis, Kevin W.; Lemmon, Mark T.; Smith, Michael Doyle

    2016-01-01

    The REMS instrument onboard the Mars Science Laboratory rover, Curiosity, has measured ground temperature nearly continuously at hourly intervals for two Mars years. Coverage of the entire diurnal cycle at 1 Hz is available every few martian days. We compare these measurements with predictions of surface atmosphere thermal models to derive the apparent thermal inertia and thermally derived albedo along the rovers traverse after accounting for the radiative effects of atmospheric water ice during fall and winter, as is necessary to match the measured seasonal trend. The REMS measurements can distinguish between active sand, other loose materials, mudstone, and sandstone based on their thermophysical properties. However, the apparent thermal inertias of bedrock dominated surfaces [approx. 350-550 J m(exp. -2) K(exp. -1 s(exp. -1/2 )] are lower than expected. We use rover imagery and the detailed shape of the diurnal ground temperature curve to explore whether lateral or vertical heterogeneity in the surface materials within the sensor footprint might explain the low inertias. We find that the bedrock component of the surface can have a thermal inertia as high as 650-1700 J m(exp. -2) K(exp. -1) s(exp. -1/2) for mudstone sites and approx. 700 J m(exp. -2) K(exp. -1) s(exp. - 1/2) for sandstone sites in models runs that include lateral and vertical mixing. Although the results of our forward modeling approach may be non-unique, they demonstrate the potential to extract information about lateral and vertical variations in thermophysical properties from temporally resolved measurements of ground temperature.

  10. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    Science.gov (United States)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J. L.; Graham, H. V.; Archer, P. D., Jr.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; hide

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precise measurements of the abundance and carbon isotopic composition (delta(sup 13)C) of the evolved CO2 and hydrogen isotopic composition (deltaD) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx.550 C and above approx.550 C. The combustion experiment on SAM, if properly designed and executed, has the potential to answer multiple questions regarding the origins of volatiles seen thus far in SAM evolved gas analysis (EGA) on Mars. Constraints imposed by SAM and MSL time and power resources, as well as SAM consumables (oxygen gas), will limit the number of SAM combustion experiments, so it is imperative to design an experiment targeting the most pressing science questions. Low temperature combustion experiments will primarily target the quantification of carbon (and nitrogen) contributed by SAM wet chemistry reagants MTBSTFA (N-Methyl-N-tert-butyldimethylsilyltrifluoroacetamide) and DMF (Dimethylformamide), which have been identified in the background of blank and sample runs and may adsorb to the sample while the cup is in the Sample Manipulation System (SMS). In addition, differences between the sample and "blank" may yield information regarding abundance and delta(sup 13)C of bulk (both organic and inorganic) martian carbon. High temperature combustion experiments primarily aim to detect refractory organic matter, if present in Cumberland fines, as well as address the question of quantification and deltaD value of water evolution associated with hydroxyl hydrogen in clay minerals.

  11. The Development of the Nature of Science View Scale (NOSvs) at University Level

    Science.gov (United States)

    Temel, Senar; Sen, Senol; Özcan, Özgür

    2018-01-01

    Background: Determining individuals' views of the nature of science is quite important for researchers since it is both a component of scientific literacy and a fundamental aim of science education. Purpose: This study aims to develop a NOSvs for assessing prospective teachers' views of the nature of science and to analyse their psychometric…

  12. Mars Methane at Gale Crater Shows Strong Seasonal Cycle: Updated Results from TLS-SAM on Curiosity

    Science.gov (United States)

    Webster, C. R.; Mahaffy, P. R.; Atreya, S. K.; Flesch, G.; Malespin, C.; McKay, C.; Martinez, G.; Moores, J.; Smith, C. L.; Martin-Torres, F. J.; Gomez-Elvira, J.; Zorzano, M. P.; Wong, M. H.; Trainer, M. G.; Eigenbrode, J. L.; Glavin, D. P.; Steele, A.; Archer, D., Jr.; Sutter, B.; Coll, P. J.; Freissinet, C.; Meslin, P. Y.; Pavlov, A.; Keymeulen, D.; Christensen, L. E.; Gough, R. V.; Schwenzer, S. P.; Navarro-Gonzalez, R.; Pla-García, J.; Rafkin, S. C.; Vicente-Retortillo, Á.; Kahanpää, H.; Viudez-Moreiras, D.; Smith, M. D.; Harri, A. M.; Genzer, M.; Hassler, D.; Lemmon, M. T.; Crisp, J. A.; Zurek, R. W.; Vasavada, A. R.

    2017-12-01

    In situ measurements of atmospheric methane have been made over a 5-year period at Gale Crater on Mars using the Tunable Laser Spectrometer (TLS) instrument in the Sample Analysis at Mars (SAM) suite on the Curiosity rover. We report two important observations: (i) a background level of mean value of 0.41 ±0.11 (2sem) that is about 5 times lower than some model predictions based on generation from UV degradation of micro-meteorites or interplanetary dust delivered to the martian surface; (ii) "spikes" of elevated levels of 7 ppbv attributed to episodic releases from small local sources, probably to the north of Gale crater1. Reports of plumes, patches or episodic releases of methane in the Martian atmosphere have to date eluded explanation in part because of their lack of repeatability in time or location. Our in situ measurements of the background methane levels exhibit a strong, repeatable seasonal variability. The amplitude of the observed seasonal cycle is 3 times greater than both that expected from the annual sublimation and freezing of polar carbon dioxide and that expected from methane production from ultraviolet (UV) degradation of exogenously-delivered surface material. The observed large seasonal variation in the background, and sporadic observations of higher pulses of 7 ppbv appear consistent with localized small sources of methane release from Martian surface reservoirs that may be occurring throughout the planet. We will present our updated data set, correlations of Mars methane with various other measurements from SAM, REMS, RAD and ChemCam instruments on Curiosity, as well as empirical models of UV surface insolation, and provide preliminary interpretation of results. 1 "Mars Methane Detection and Variability at Gale Crater", C. R. Webster et al., Science, 347, 415-417 (2015) and references therein. The research described here was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the

  13. Side effects of problem-solving strategies in large-scale nutrition science: towards a diversification of health.

    Science.gov (United States)

    Penders, Bart; Vos, Rein; Horstman, Klasien

    2009-11-01

    Solving complex problems in large-scale research programmes requires cooperation and division of labour. Simultaneously, large-scale problem solving also gives rise to unintended side effects. Based upon 5 years of researching two large-scale nutrigenomic research programmes, we argue that problems are fragmented in order to be solved. These sub-problems are given priority for practical reasons and in the process of solving them, various changes are introduced in each sub-problem. Combined with additional diversity as a result of interdisciplinarity, this makes reassembling the original and overall goal of the research programme less likely. In the case of nutrigenomics and health, this produces a diversification of health. As a result, the public health goal of contemporary nutrition science is not reached in the large-scale research programmes we studied. Large-scale research programmes are very successful in producing scientific publications and new knowledge; however, in reaching their political goals they often are less successful.

  14. Development and Large-Scale Validation of an Instrument to Assess Arabic-Speaking Students' Attitudes Toward Science

    Science.gov (United States)

    Abd-El-Khalick, Fouad; Summers, Ryan; Said, Ziad; Wang, Shuai; Culbertson, Michael

    2015-11-01

    This study is part of a large-scale project focused on 'Qatari students' Interest in, and Attitudes toward, Science' (QIAS). QIAS aimed to gauge Qatari student attitudes toward science in grades 3-12, examine factors that impact these attitudes, and assess the relationship between student attitudes and prevailing modes of science teaching in Qatari schools. This report details the development and validation of the 'Arabic-Speaking Students' Attitudes toward Science Survey' (ASSASS), which was specifically developed for the purposes of the QIAS project. The theories of reasoned action and planned behavior (TRAPB) [Ajzen, I., & Fishbein, M. (2005). The influence of attitudes on behavior. In D. Albarracín, B. T. Johnson, & M. P. Zanna (Eds.), The handbook of attitudes (pp. 173-221). Mahwah, NJ: Erlbaum] guided the instrument development. Development and validation of the ASSASS proceeded in 3 phases. First, a 10-member expert panel examined an initial pool of 74 items, which were revised and consolidated into a 60-item version of the instrument. This version was piloted with 369 Qatari students from the target schools and grade levels. Analyses of pilot data resulted in a refined version of the ASSASS, which was administered to a national probability sample of 3027 participants representing all students enrolled in grades 3-12 in the various types of schools in Qatar. Of the latter, 1978 students completed the Arabic version of the instrument. Analyses supported a robust, 5-factor model for the instrument, which is consistent with the TRAPB framework. The factors were: Attitudes toward science and school science, unfavorable outlook on science, control beliefs about ability in science, behavioral beliefs about the consequences of engaging with science, and intentions to pursue science.

  15. Curiosity and the Four Seasons: In Situ Measurements of the Atmospheric Composition over Three Mars Years

    Science.gov (United States)

    Trainer, M. G.; Franz, H. B.; Mahaffy, P. R.; Malespin, C.; Wong, M. H.; Atreya, S. K.; Becker, R. H.; Conrad, P. G.; Lefèvre, F.; Manning, H. L. K.; Martin-Torres, F. J.; McConnochie, T.; McKay, C.; Navarro-Gonzalez, R.; Pepin, R. O.; Webster, C. R.; Zorzano, M. P.

    2017-12-01

    The Sample Analysis at Mars (SAM) instrument onboard the Mars Science Laboratory Curiosity rover measures the chemical composition of major atmospheric species in the vicinity of the rover through a dedicated atmospheric inlet. We report here on measurements of atmospheric volume mixing ratios in Gale Crater using the SAM quadrupole mass spectrometer (QMS), over a period of nearly three Mars years (5 Earth years) from landing. The observation period spans the southern winter of MY 31, solar longitude (Ls) of 175° through southern fall of MY 34, Ls = 12°. The initial mixing ratios measured by the SAM QMS were reported for the first 105 sols of the mission [1], and were updated to account for newly developed calibration factors [2]. The SAM QMS atmospheric measurements were continued, periodically interspersed between solid sample measurements and other rover activities, with a cumulative coverage of 4 or 5 experiments per season. The three major volatiles - CO2, N2, and 40Ar - are compatible with the annual pressure cycle but with a repeatable lag that indicates incomplete mixing and the influences of seasonal circulation patterns. The mixing ratios for the two inert, non-condensable species are qualitatively consistent with what is predicted from annual cycle of CO2 deposition and sublimation at the poles, which is manifested in a large enhancement of Ar mixing ratio at the winter poles (and assumed for N2) [3]. The mixing ratio for the minor species O2 appears to follow a distinct seasonal trend and may be indicative of possible deviations from known atmospheric chemistry or a surface flux of oxygen from an unknown source, or both. This unprecedented seasonal coverage and precision in mixing ratio determination provides valuable data for understanding the seasonal chemical and dynamics cycles. Further, this measurement campaign supplies useful ground-truth data for global climate model simulations, which can study atmospheric effects for other locations on Mars

  16. Social Curiosity and Gossip: Related but Different Drives of Social Functioning

    Science.gov (United States)

    Hartung, Freda-Marie; Renner, Britta

    2013-01-01

    The present online-questionnaire study examined two fundamental social behaviors, social curiosity and gossip, and their interrelations in an English (n = 218) and a German sample (n = 152). Analyses showed that both samples believed that they are less gossipy but more curious than their peers. Multidimensional SEM of self and trait conceptions indicated that social curiosity and gossip are related constructs but with different patterns of social functions. Gossip appears to serve predominantly entertainment purposes whereas social curiosity appears to be more driven by a general interest in gathering information about how other people feel, think, and behave and the need to belong. Relationships to other personality traits (N, E, O) provided additional evidence for divergent validity. The needs for gathering and disseminating social information might represent two interlinked but different drives of cultural learning. PMID:23936130

  17. Bringing a Chemical Laboratory Named Sam to Mars on the 2011 Curiosity Rover

    Science.gov (United States)

    Mahaffy, P. R.; Bleacher, L.; Jones, A.; Conrad, P. G.; Cabane, M.; Webster, C. R.; Atreya, S. A.; Manning, H.

    2010-01-01

    An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers.

  18. Social curiosity and gossip: related but different drives of social functioning.

    Directory of Open Access Journals (Sweden)

    Freda-Marie Hartung

    Full Text Available The present online-questionnaire study examined two fundamental social behaviors, social curiosity and gossip, and their interrelations in an English (n = 218 and a German sample (n = 152. Analyses showed that both samples believed that they are less gossipy but more curious than their peers. Multidimensional SEM of self and trait conceptions indicated that social curiosity and gossip are related constructs but with different patterns of social functions. Gossip appears to serve predominantly entertainment purposes whereas social curiosity appears to be more driven by a general interest in gathering information about how other people feel, think, and behave and the need to belong. Relationships to other personality traits (N, E, O provided additional evidence for divergent validity. The needs for gathering and disseminating social information might represent two interlinked but different drives of cultural learning.

  19. Social curiosity and gossip: related but different drives of social functioning.

    Science.gov (United States)

    Hartung, Freda-Marie; Renner, Britta

    2013-01-01

    The present online-questionnaire study examined two fundamental social behaviors, social curiosity and gossip, and their interrelations in an English (n = 218) and a German sample (n = 152). Analyses showed that both samples believed that they are less gossipy but more curious than their peers. Multidimensional SEM of self and trait conceptions indicated that social curiosity and gossip are related constructs but with different patterns of social functions. Gossip appears to serve predominantly entertainment purposes whereas social curiosity appears to be more driven by a general interest in gathering information about how other people feel, think, and behave and the need to belong. Relationships to other personality traits (N, E, O) provided additional evidence for divergent validity. The needs for gathering and disseminating social information might represent two interlinked but different drives of cultural learning.

  20. Generic, Extensible, Configurable Push-Pull Framework for Large-Scale Science Missions

    Science.gov (United States)

    Foster, Brian M.; Chang, Albert Y.; Freeborn, Dana J.; Crichton, Daniel J.; Woollard, David M.; Mattmann, Chris A.

    2011-01-01

    different underlying communication middleware (at present, both XMLRPC, and RMI). In addition, the framework is entirely suitable in a multi-mission environment and is supporting both NPP Sounder PEATE and the OCO Mission. Both systems involve tasks such as high-throughput job processing, terabyte-scale data management, and science computing facilities. NPP Sounder PEATE is already using the push-pull framework to accept hundreds of gigabytes of IASI (infrared atmospheric sounding interferometer) data, and is in preparation to accept CRIMS (Cross-track Infrared Microwave Sounding Suite) data. OCO will leverage the framework to download MODIS, CloudSat, and other ancillary data products for use in the high-performance Level 2 Science Algorithm. The National Cancer Institute is also evaluating the framework for use in sharing and disseminating cancer research data through its Early Detection Research Network (EDRN).

  1. Enhancing Science Education through Art

    Science.gov (United States)

    Merten, Susan

    2011-01-01

    Augmenting science with the arts is a natural combination when one considers that both scientists and artists rely on similar attitudes and values. For example, creativity is often associated with artists, but scientists also use creativity when seeking a solution to a problem or creating a new product. Curiosity is another common trait shared…

  2. Season Spotter: Using Citizen Science to Validate and Scale Plant Phenology from Near-Surface Remote Sensing

    Directory of Open Access Journals (Sweden)

    Margaret Kosmala

    2016-09-01

    Full Text Available The impact of a rapidly changing climate on the biosphere is an urgent area of research for mitigation policy and management. Plant phenology is a sensitive indicator of climate change and regulates the seasonality of carbon, water, and energy fluxes between the land surface and the climate system, making it an important tool for studying biosphere–atmosphere interactions. To monitor plant phenology at regional and continental scales, automated near-surface cameras are being increasingly used to supplement phenology data derived from satellite imagery and data from ground-based human observers. We used imagery from a network of phenology cameras in a citizen science project called Season Spotter to investigate whether information could be derived from these images beyond standard, color-based vegetation indices. We found that engaging citizen science volunteers resulted in useful science knowledge in three ways: first, volunteers were able to detect some, but not all, reproductive phenology events, connecting landscape-level measures with field-based measures. Second, volunteers successfully demarcated individual trees in landscape imagery, facilitating scaling of vegetation indices from organism to ecosystem. And third, volunteers’ data were used to validate phenology transition dates calculated from vegetation indices and to identify potential improvements to existing algorithms to enable better biological interpretation. As a result, the use of citizen science in combination with near-surface remote sensing of phenology can be used to link ground-based phenology observations to satellite sensor data for scaling and validation. Well-designed citizen science projects targeting improved data processing and validation of remote sensing imagery hold promise for providing the data needed to address grand challenges in environmental science and Earth observation.

  3. Translating the Science of Measuring Ecosystems at a National Scale: Developing NEON's Online Learning Portal

    Science.gov (United States)

    Wasser, L. A.; Gram, W.; Goehring, L.

    2014-12-01

    "Big Data" are becoming increasingly common in many fields. The National Ecological Observatory Network (NEON) will be collecting data over the 30 years, using consistent, standardized methods across the United States. These freely available new data provide an opportunity for increased understanding of continental- and global scale processes such as changes in vegetation structure and condition, biodiversity and landuse. However, while "big data" are becoming more accessible and available, integrating big data into the university courses is challenging. New and potentially unfamiliar data types and associated processing methods, required to work with a growing diversity of available data, may warrant time and resources that present a barrier to classroom integration. Analysis of these big datasets may further present a challenge given large file sizes, and uncertainty regarding best methods to properly statistically summarize and analyze results. Finally, teaching resources, in the form of demonstrative illustrations, and other supporting media that might help teach key data concepts, take time to find and more time to develop. Available resources are often spread widely across multi-online spaces. This presentation will overview the development of NEON's collaborative University-focused online education portal. Portal content will include 1) videos and supporting graphics that explain key concepts related to NEON data products including collection methods, key metadata to consider and consideration of potential error and uncertainty surrounding data analysis; and 2) packaged "lab" activities that include supporting data to be used in an ecology, biology or earth science classroom. To facilitate broad use in classrooms, lab activities will take advantage of freely and commonly available processing tools, techniques and scripts. All NEON materials are being developed in collaboration with existing labs and organizations.

  4. Adoptees' Curiosity and Information-Seeking about Birth Parents in Emerging Adulthood: Context, Motivation, and Behavior

    Science.gov (United States)

    Wrobel, Gretchen Miller; Grotevant, Harold D.; Samek, Diana R.; Von Korff, Lynn

    2013-01-01

    The Adoption Curiosity Pathway (ACP) model was used to test the potential mediating effect of curiosity on adoption information-seeking in a sample of 143 emerging adult adoptees (mean age = 25.0 years) who were adopted as infants within the United States by parents of the same race. Adoptees were interviewed about their intentions and actions…

  5. The Pedagogy of the Heart and the Mind--Cultivating Curiosity and a Love of Learning, Part 1

    Science.gov (United States)

    Carmichael, Patricia

    2009-01-01

    The cultivation of curiosity and interest in children for their own pleasure and for their place in the world around them is a significant factor in each student's well-being as well as the future of society. Many educators think that schools no longer provide a curriculum that develops curiosity, creativity, and personal interests in young…

  6. Web-Scale Discovery Services Retrieve Relevant Results in Health Sciences Topics Including MEDLINE Content

    Directory of Open Access Journals (Sweden)

    Elizabeth Margaret Stovold

    2017-06-01

    Full Text Available A Review of: Hanneke, R., & O’Brien, K. K. (2016. Comparison of three web-scale discovery services for health sciences research. Journal of the Medical Library Association, 104(2, 109-117. http://dx.doi.org/10.3163/1536-5050.104.2.004 Abstract Objective – To compare the results of health sciences search queries in three web-scale discovery (WSD services for relevance, duplicate detection, and retrieval of MEDLINE content. Design – Comparative evaluation and bibliometric study. Setting – Six university libraries in the United States of America. Subjects – Three commercial WSD services: Primo, Summon, and EBSCO Discovery Service (EDS. Methods – The authors collected data at six universities, including their own. They tested each of the three WSDs at two data collection sites. However, since one of the sites was using a legacy version of Summon that was due to be upgraded, data collected for Summon at this site were considered obsolete and excluded from the analysis. The authors generated three questions for each of six major health disciplines, then designed simple keyword searches to mimic typical student search behaviours. They captured the first 20 results from each query run at each test site, to represent the first “page” of results, giving a total of 2,086 total search results. These were independently assessed for relevance to the topic. Authors resolved disagreements by discussion, and calculated a kappa inter-observer score. They retained duplicate records within the results so that the duplicate detection by the WSDs could be compared. They assessed MEDLINE coverage by the WSDs in several ways. Using precise strategies to generate a relevant set of articles, they conducted one search from each of the six disciplines in PubMed so that they could compare retrieval of MEDLINE content. These results were cross-checked against the first 20 results from the corresponding query in the WSDs. To aid investigation of overall

  7. The Use of Illustrations in Large-Scale Science Assessment: A Comparative Study

    Science.gov (United States)

    Wang, Chao

    2012-01-01

    This dissertation addresses the complexity of test illustrations design across cultures. More specifically, it examines how the characteristics of illustrations used in science test items vary across content areas, assessment programs, and cultural origins. It compares a total of 416 Grade 8 illustrated items from the areas of earth science, life…

  8. Coordinated Multi-layer Multi-domain Optical Network (COMMON) for Large-Scale Science Applications (COMMON)

    Energy Technology Data Exchange (ETDEWEB)

    Vokkarane, Vinod [University of Massachusetts

    2013-09-01

    We intend to implement a Coordinated Multi-layer Multi-domain Optical Network (COMMON) Framework for Large-scale Science Applications. In the COMMON project, specific problems to be addressed include 1) anycast/multicast/manycast request provisioning, 2) deployable OSCARS enhancements, 3) multi-layer, multi-domain quality of service (QoS), and 4) multi-layer, multidomain path survivability. In what follows, we outline the progress in the above categories (Year 1, 2, and 3 deliverables).

  9. Terry Turbopump Expanded Operating Band Full-Scale Component and Basic Science Detailed Test Plan-Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Solom, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.; Ross, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.; Cardoni, Jeffrey N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.; Osborn, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.

    2017-08-01

    This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

  10. An eleventh-century Egyptian guide to the universe the book of curiosities

    CERN Document Server

    Rapoport, Yossef

    2013-01-01

    The Book of Curiosities is an eleventh-century Arabic account of the heavens and the Earth, illustrated by remarkable maps and astronomical diagrams. This authoritative edition and translation opens a unique window onto the geographical and astrological knowledge of medieval Islam.

  11. Intellectual Curiosity in Action: A Framework to Assess First-Year Seminars in Liberal Arts Settings

    Science.gov (United States)

    Kolb, Kenneth H.; Longest, Kyle C.; Barnett, Jenna C.

    2014-01-01

    Fostering students' intellectual curiosity is a common goal of first-year seminar programs--especially in liberal arts settings. The authors propose an alternative method to assess this ambiguous, value-laden concept. Relying on data gathered from pre- and posttest in-depth interviews of 34 students enrolled in first-year seminars, they construct…

  12. Curiosity and reward: Valence predicts choice and information prediction errors enhance learning.

    Science.gov (United States)

    Marvin, Caroline B; Shohamy, Daphna

    2016-03-01

    Curiosity drives many of our daily pursuits and interactions; yet, we know surprisingly little about how it works. Here, we harness an idea implied in many conceptualizations of curiosity: that information has value in and of itself. Reframing curiosity as the motivation to obtain reward-where the reward is information-allows one to leverage major advances in theoretical and computational mechanisms of reward-motivated learning. We provide new evidence supporting 2 predictions that emerge from this framework. First, we find an asymmetric effect of positive versus negative information, with positive information enhancing both curiosity and long-term memory for information. Second, we find that it is not the absolute value of information that drives learning but, rather, the gap between the reward expected and reward received, an "information prediction error." These results support the idea that information functions as a reward, much like money or food, guiding choices and driving learning in systematic ways. (c) 2016 APA, all rights reserved).

  13. Appreciation of Authenticity Promotes Curiosity: Implications for Object-Based Learning in Museums

    Science.gov (United States)

    Bunce, Louise

    2016-01-01

    Museum professionals suppose that interacting with authentic objects promotes curiosity and engagement, but this has not been tested. In this research, children and adults visiting the Oxford University Museum of Natural History were shown a taxidermied rabbit or rabbit skeleton. They were asked "Is it real?," "Why?" and were…

  14. Validation of the early childhood attitude toward women in science scale (ECWiSS): A pilot administration

    Science.gov (United States)

    Mulkey, Lynn M.

    The intention of this research was to measure attitudes of young children toward women scientists. A 27-item instrument, the Early Childhood Women in Science Scale (ECWiSS) was validated in a test case of the proposition that differential socialization predicts entry into the scientific talent pool. Estimates of internal consistency indicated that the scale is highly reliable. Known groups and correlates procedures, employed to determine the validity of the instrument, revealed that the scale is able to discriminate significant differences between groups and distinguishes three dimensions of attitude (role-specific self-concept, home-related sex-role conflict, and work-related sex-role conflict). Results of the analyses also confirmed the anticipated pattern of correlations with measures of another construct. The findings suggest the utility of the ECWiSS for measurement of early childhood attitudes in models of the ascriptive and/or meritocratic processes affecting recruitment to science and more generally in program and curriculum evaluation where attitude toward women in science is the construct of interest.

  15. Britain should not abandon curiosity-driven research

    CERN Multimedia

    Fabian, Andy

    2008-01-01

    I am pleased that the recent Wakeham Review of Physics acknowledges the strengh of UK astronomy and space science. I also welcome the clear statement that basic research in the United Kingdom should be funded at a level needed to maintain the country's international standing. (1/2 page)

  16. EPOS Multi-Scale Laboratory platform: a long-term reference tool for experimental Earth Sciences

    Science.gov (United States)

    Trippanera, Daniele; Tesei, Telemaco; Funiciello, Francesca; Sagnotti, Leonardo; Scarlato, Piergiorgio; Rosenau, Matthias; Elger, Kirsten; Ulbricht, Damian; Lange, Otto; Calignano, Elisa; Spiers, Chris; Drury, Martin; Willingshofer, Ernst; Winkler, Aldo

    2017-04-01

    With continuous progress on scientific research, a large amount of datasets has been and will be produced. The data access and sharing along with their storage and homogenization within a unique and coherent framework is a new challenge for the whole scientific community. This is particularly emphasized for geo-scientific laboratories, encompassing the most diverse Earth Science disciplines and typology of data. To this aim the "Multiscale Laboratories" Work Package (WP16), operating in the framework of the European Plate Observing System (EPOS), is developing a virtual platform of geo-scientific data and services for the worldwide community of laboratories. This long-term project aims at merging the top class multidisciplinary laboratories in Geoscience into a coherent and collaborative network, facilitating the standardization of virtual access to data, data products and software. This will help our community to evolve beyond the stage in which most of data produced by the different laboratories are available only within the related scholarly publications (often as print-version only) or they remain unpublished and inaccessible on local devices. The EPOS multi-scale laboratory platform will provide the possibility to easily share and discover data by means of open access, DOI-referenced, online data publication including long-term storage, managing and curation services and to set up a cohesive community of laboratories. The WP16 is starting with three pilot cases laboratories: (1) rock physics, (2) palaeomagnetic, and (3) analogue modelling. As a proof of concept, first analogue modelling datasets have been published via GFZ Data Services (http://doidb.wdc-terra.org/search/public/ui?&sort=updated+desc&q=epos). The datasets include rock analogue material properties (e.g. friction data, rheology data, SEM imagery), as well as supplementary figures, images and movies from experiments on tectonic processes. A metadata catalogue tailored to the specific communities

  17. Curiosity predicts smoking experimentation independent of susceptibility in a US national sample.

    Science.gov (United States)

    Nodora, Jesse; Hartman, Sheri J; Strong, David R; Messer, Karen; Vera, Lisa E; White, Martha M; Portnoy, David B; Choiniere, Conrad J; Vullo, Genevieve C; Pierce, John P

    2014-12-01

    To improve smoking prevention efforts, better methods for identifying at-risk youth are needed. The widely used measure of susceptibility to smoking identifies at-risk adolescents; however, it correctly identifies only about one third of future smokers. Adding curiosity about smoking to this susceptibility index may allow us to identify a greater proportion of future smokers while they are still pre-teens. We use longitudinal data from a recent national study on parenting to prevent problem behaviors. Only oldest children between 10 and 13years of age were eligible. Participants were identified by RDD survey and followed for 6years. All baseline never smokers with at least one follow-up assessment were included (n=878). The association of curiosity about smoking with future smoking behavior was assessed. Then, curiosity was added to form an enhanced susceptibility index and sensitivity, specificity and positive predictive value were calculated. Among committed never smokers at baseline, those who were 'definitely not curious' were less likely to progress toward smoking than both those who were 'probably not curious' (ORadj=1.89; 95% CI=1.03-3.47) or 'probably/definitely curious' (ORadj=2.88; 95% CI=1.11-7.45). Incorporating curiosity into the susceptibility index increased the proportion identified as at-risk to smoke from 25.1% to 46.9%. The sensitivity (true positives) for this enhanced susceptibility index for both experimentation and established smoking increased from 37-40% to over 50%, although the positive predictive value did not improve. The addition of curiosity significantly improves the identification and classification of which adolescents will experiment with smoking or become established smokers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Education, Outreach, and Diversity Partnerships and Science Education Resources From the Center for Multi-scale Modeling of Atmospheric Processes

    Science.gov (United States)

    Foster, S. Q.; Randall, D.; Denning, S.; Jones, B.; Russell, R.; Gardiner, L.; Hatheway, B.; Johnson, R. M.; Drossman, H.; Pandya, R.; Swartz, D.; Lanting, J.; Pitot, L.

    2007-12-01

    The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. The new National Science Foundation- funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is a major research program addressing this problem over the next five years through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interactions among the many physical and chemical processes that are active in cloud systems. At the end of its first year, CMMAP has established effective partnerships between scientists, students, and teachers to meet its goals to: (1) provide first-rate graduate education in atmospheric science; (2) recruit diverse undergraduates into graduate education and careers in climate science; and (3) develop, evaluate, and disseminate educational resources designed to inform K-12 students, teachers, and the general public about the nature of the climate system, global climate change, and career opportunities in climate science. This presentation will describe the partners, our challenges and successes, and measures of achievement involved in the integrated suite of programs launched in the first year. They include: (1) a new high school Colorado Climate Conference drawing prestigious climate scientists to speak to students, (2) a summer Weather and Climate Workshop at CSU and the National Center for Atmospheric Research introducing K-12 teachers to Earth system science and a rich toolkit of teaching materials, (3) a program from CSU's Little Shop of Physics reaching 50 schools and 20,000 K-12 students through the new "It's Up In the Air" program, (4) expanded content, imagery, and interactives on clouds, weather, climate, and modeling for students, teachers, and the public on The Windows to the Universe web site at University Corporation for Atmospheric Research

  19. Nitrogen and Martian Habitability: Insights from Five Years of Curiosity Measurements

    Science.gov (United States)

    Stern, J. C.; Sutter, B.; Navarro-Gonzalez, R.; McKay, C.; Ming, D. W.; Mahaffy, P. R.; Archer, D., Jr.; Franz, H. B.; Freissinet, C.; Jackson, W. A.; Conrad, P. G.; Glavin, D. P.; Trainer, M. G.; Malespin, C.; McAdam, A.; Eigenbrode, J. L.; Teinturier, S.; Manning, C.

    2017-12-01

    The detection of "fixed" N on Mars in the form of nitrate by the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover [1] has major implications for martian habitability. "Follow the nitrogen" has been proposed as a strategy in the search for both extant and extinct life on Mars [e.g., 2]. Nitrogen is so crucial to life on Earth that life developed metabolic pathways to break the triple bond of N2 and "fix" atmospheric nitrogen to more biologically available molecules for use in proteins and informational polymers. Sequestration of nitrate in regolith has long been predicted to contribute to the removal of N from the martian atmosphere [e.g., 3], and our detections confirm that nitrogen fixation was occurring on ancient Mars. Detections of fixed nitrogen, particularly within the context of the habitable environment in Yellowknife Bay characterized by the MSL payload, are an important tool to assess whether life ever could have existed on ancient Mars. We present 5 years of analyses and interpretation of nitrate in solid martian drilled and scooped samples by SAM on MSL. Nitrate abundance reported by SAM in situ measurements ranges from non-detection to 681 ± 304 mg/kg [1,4] in the samples examined to date. The measured abundances are consistent with nitrogen fixation via impact generated thermal shock on ancient Mars and/or dry deposition from photochemistry of thermospheric NO. We review the integration of SAM data with terrestrial Mars analog work in order to better understand the timing of nitrogen fixation and mobility of nitrogen on Mars, and thus its availability to putative biology. In particular, the relationship between nitrate and other soluble salts, such as perchlorate, may help reveal the timing of nitrogen fixation and post-depositional behavior of nitrate on Mars [4]. Finally, we present a comparison of isotopic composition (δ15N) of nitrate with δ15N of atmospheric nitrogen (δ15N ≈ 574‰, [5

  20. Localized Scale Coupling and New Educational Paradigms in Multiscale Mathematics and Science

    Energy Technology Data Exchange (ETDEWEB)

    Ingber, Marc; Vorobieff, Peter

    2014-03-14

    We have experimentally demonstrated how microscale phenomena affect suspended particle behavior on the mesoscale, and how particle group behavior on the mesoscale influences the macroscale suspension behavior. Semi-analytical and numerical methods to treat flows on different scales have been developed, and a framework to combine these scale-dependent treatment has been described.

  1. Compositional variations in sands of the Bagnold Dunes, Gale Crater, Mars, from visible-shortwave infrared spectroscopy and comparison with ground truth from the Curiosity Rover

    Science.gov (United States)

    Lapotre, Mathieu G.A.; Ehlmann, B. L.; Minson, Sarah E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.

    2017-01-01

    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single scattering albedo spectra and a Markov-Chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that XRD-measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are non-unique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold dunes, consistent with a mafic enrichment of sands with cumulative transport distance by sorting of olivine, pyroxene, and plagioclase grains during aeolian saltation. Furthermore, the large variations in Fe and Mg abundances (~20 wt%) at the Bagnold Dunes suggest that compositional variability induced by wind sorting may be enhanced by local mixing with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within martian aeolian sandstones.

  2. Compositional variations in sands of the Bagnold Dunes, Gale crater, Mars, from visible-shortwave infrared spectroscopy and comparison with ground truth from the Curiosity rover

    Science.gov (United States)

    Lapotre, M. G. A.; Ehlmann, B. L.; Minson, S. E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.

    2017-12-01

    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single-scattering albedo spectra and a Markov chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that X-ray diffraction-measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are nonunique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold Dunes, consistent with a mafic enrichment of sands with cumulative aeolian-transport distance by sorting of olivine, pyroxene, and plagioclase grains. Furthermore, the large variations in Fe and Mg abundances ( 20 wt %) at the Bagnold Dunes suggest that compositional variability may be enhanced by local mixing of well-sorted sand with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within Martian aeolian sandstones.

  3. A "post-psychological" curiosity of subjectivities and standards

    DEFF Research Database (Denmark)

    Nissen, Morten; Staunæs, Dorthe; Bank, Mads

    2016-01-01

    a division between standardizing sciences and off-standard qualitative research. Yet, a “postpsychological curiosity” suggests a reflexive stance, admitting to complicity in the “intra-actions” of standards and subjectivity, in theoretical psychology as in practices such as management, counseling, or self......-help. Objectifying values, standards can reach out to the image of infinity; even posited as immanent to practices, they can be seen as expressions of hope. They both shake and establish temporalities and spatial distributions that feed into affective economies and help or force us to focus and forget. We use them...

  4. Representing scale: What should be special about the heritage of mass science?

    Science.gov (United States)

    Bud, Robert

    2016-02-01

    This symposium marks the achievement of a transformation in the history of science. Whereas in the 1960s, the study of modern developments was marginal to the field, it has now become a key part of the discipline's central concerns. The contrast between this conference and a 1960 symposium is illuminating. The paper reflects on the tensions over the future direction of the discipline expressed at the 1974 semi-centenary conference of the History of Science Society. Today, genomics with its vast demand for resources and its challenges to traditional boundaries is not untypical of a wide range of scientific activities. Its study can serve as a pioneering case study interesting for itself and important for a wider understanding of science. Papers at this meeting show the implications for the understanding of methods, appropriate targets of study, the interpretation of images and the preservation of archives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Large-Scale Sentinel-1 Processing for Solid Earth Science and Urgent Response using Cloud Computing and Machine Learning

    Science.gov (United States)

    Hua, H.; Owen, S. E.; Yun, S. H.; Agram, P. S.; Manipon, G.; Starch, M.; Sacco, G. F.; Bue, B. D.; Dang, L. B.; Linick, J. P.; Malarout, N.; Rosen, P. A.; Fielding, E. J.; Lundgren, P.; Moore, A. W.; Liu, Z.; Farr, T.; Webb, F.; Simons, M.; Gurrola, E. M.

    2017-12-01

    With the increased availability of open SAR data (e.g. Sentinel-1 A/B), new challenges are being faced with processing and analyzing the voluminous SAR datasets to make geodetic measurements. Upcoming SAR missions such as NISAR are expected to generate close to 100TB per day. The Advanced Rapid Imaging and Analysis (ARIA) project can now generate geocoded unwrapped phase and coherence products from Sentinel-1 TOPS mode data in an automated fashion, using the ISCE software. This capability is currently being exercised on various study sites across the United States and around the globe, including Hawaii, Central California, Iceland and South America. The automated and large-scale SAR data processing and analysis capabilities use cloud computing techniques to speed the computations and provide scalable processing power and storage. Aspects such as how to processing these voluminous SLCs and interferograms at global scales, keeping up with the large daily SAR data volumes, and how to handle the voluminous data rates are being explored. Scene-partitioning approaches in the processing pipeline help in handling global-scale processing up to unwrapped interferograms with stitching done at a late stage. We have built an advanced science data system with rapid search functions to enable access to the derived data products. Rapid image processing of Sentinel-1 data to interferograms and time series is already being applied to natural hazards including earthquakes, floods, volcanic eruptions, and land subsidence due to fluid withdrawal. We will present the status of the ARIA science data system for generating science-ready data products and challenges that arise from being able to process SAR datasets to derived time series data products at large scales. For example, how do we perform large-scale data quality screening on interferograms? What approaches can be used to minimize compute, storage, and data movement costs for time series analysis in the cloud? We will also

  6. Generation of large-scale maps of science and associated indicators.

    Energy Technology Data Exchange (ETDEWEB)

    Klavans, Richard (SciTech Strategies, Inc., Berwyn, PA); Boyack, Kevin W.

    2005-12-01

    Over the past several years, techniques have been developed for clustering very large segments of the technical literature using sources such as Thomson ISI's Science Citation Index. The primary objective of this work has been to develop indicators of potential impact at the paper level to enhance planning and evaluation of research. These indicators can also be aggregated at different levels to enable profiling of departments, institutions, agencies, etc. Results of this work are presented as maps of science and technology with various overlays corresponding to the indicators associated with a particular search or question.

  7. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard

    2014-05-02

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

  8. Fault Tolerance and Scaling in e-Science Cloud Applications: Observations from the Continuing Development of MODISAzure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Computer Science; Humphrey, Marty [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Computer Science; Cheah, You-Wei [Indiana Univ., Bloomington, IN (United States); Ryu, Youngryel [Univ. of California, Berkeley, CA (United States). Dept. of Environmental Science, Policy, and Management; Agarwal, Deb [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jackson, Keith [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); van Ingen, Catharine [Microsoft Research. San Francisco, CA (United States)

    2010-04-01

    It can be natural to believe that many of the traditional issues of scale have been eliminated or at least greatly reduced via cloud computing. That is, if one can create a seemingly wellfunctioning cloud application that operates correctly on small or moderate-sized problems, then the very nature of cloud programming abstractions means that the same application will run as well on potentially significantly larger problems. In this paper, we present our experiences taking MODISAzure, our satellite data processing system built on the Windows Azure cloud computing platform, from the proof-of-concept stage to a point of being able to run on significantly larger problem sizes (e.g., from national-scale data sizes to global-scale data sizes). To our knowledge, this is the longest-running eScience application on the nascent Windows Azure platform. We found that while many infrastructure-level issues were thankfully masked from us by the cloud infrastructure, it was valuable to design additional redundancy and fault-tolerance capabilities such as transparent idempotent task retry and logging to support debugging of user code encountering unanticipated data issues. Further, we found that using a commercial cloud means anticipating inconsistent performance and black-box behavior of virtualized compute instances, as well as leveraging changing platform capabilities over time. We believe that the experiences presented in this paper can help future eScience cloud application developers on Windows Azure and other commercial cloud providers.

  9. Proceedings of joint meeting of the 6th simulation science symposium and the NIFS collaboration research 'large scale computer simulation'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    Joint meeting of the 6th Simulation Science Symposium and the NIFS Collaboration Research 'Large Scale Computer Simulation' was held on December 12-13, 2002 at National Institute for Fusion Science, with the aim of promoting interdisciplinary collaborations in various fields of computer simulations. The present meeting attended by more than 40 people consists of the 11 invited and 22 contributed papers, of which topics were extended not only to fusion science but also to related fields such as astrophysics, earth science, fluid dynamics, molecular dynamics, computer science etc. (author)

  10. The good, the bad (and the ugly): The role of curiosity in subjective well-being and risky behaviors among adolescents.

    Science.gov (United States)

    Jovanović, Veljko; Gavrilov-Jerković, Vesna

    2014-02-01

    Previous studies have shown that enhanced trait curiosity has positive influence on well-being. It remains an open question, however, whether curiosity has any detrimental effects on behavioral outcomes in adolescence. The main aim of this research was to investigate the role of trait curiosity in the prediction of risky behavior engagement and subjective well-being (SWB) among adolescents. A total of 371 Serbian adolescents (mean age 15.5, SD = 0.57) participated in the 5-month follow up study. The results showed that the embracing component of curiosity (but not stretching) predicted risky behavior engagement, while the stretching component of curiosity (but not embracing) predicted positive affect. In addition, neither embracing nor stretching was a significant predictor of negative affect and life satisfaction. The results of this study call into question the conceptualization of curiosity as a completely positive emotional-motivational system, and suggest that curiosity can contribute to negative outcomes in adolescence.

  11. Implementation of Large-Scale Science Curricula: A Study in Seven European Countries

    Science.gov (United States)

    Pilling, G. M.; Waddington, D. J.

    2005-01-01

    The Salters Chemistry courses, context-led curricula for 13-16 and 17-18 year old students, first developed by the Science Education Group at the University of York in the UK, have now been translated and/or adapted in seven other European countries. This paper describes and discusses the different reasons for taking up the courses, the ways in…

  12. Validating a Scale That Measures Scientists' Self-Efficacy for Public Engagement with Science

    Science.gov (United States)

    Robertson Evia, Jane; Peterman, Karen; Cloyd, Emily; Besley, John

    2018-01-01

    Self-efficacy, or the beliefs people hold about their ability to succeed in certain pursuits, is a long-established construct. Self-efficacy for science communication distinguishes scientists who engage with the public and relates to scientists' attitudes about the public. As such, self-efficacy for public engagement has the potential to serve as…

  13. The challenges associated with developing science-based landscape scale management plans.

    Science.gov (United States)

    Robert C. Szaro; Douglas A. Jr. Boyce; Thomas. Puchlerz

    2005-01-01

    Planning activities over large landscapes poses a complex of challenges when trying to balance the implementation of a conservation strategy while still allowing for a variety of consumptive and nonconsumptive uses. We examine a case in southeast Alaska to illustrate the breadth of these challenges and an approach to developing a science-based resource plan. Not only...

  14. The Development of Paranormal Belief Scale (PBS) for Science Education in the Context of Turkey

    Science.gov (United States)

    Sen, Mehmet; Yesilyurt, Ezgi

    2014-01-01

    Present study aims to translate and develop Paranormal Belief Questions (Rice, 2003) measuring students' non-scientific beliefs which threat science education. Original version of these questions was asked in Southern Focus Poll (1998). 17 questions about paranormal beliefs were administered to 114 university students from different departments.…

  15. Performance on large-scale science tests: Item attributes that may impact achievement scores

    Science.gov (United States)

    Gordon, Janet Victoria

    Significant differences in achievement among ethnic groups persist on the eighth-grade science Washington Assessment of Student Learning (WASL). The WASL measures academic performance in science using both scenario and stand-alone question types. Previous research suggests that presenting target items connected to an authentic context, like scenario question types, can increase science achievement scores especially in underrepresented groups and thus help to close the achievement gap. The purpose of this study was to identify significant differences in performance between gender and ethnic subgroups by question type on the 2005 eighth-grade science WASL. MANOVA and ANOVA were used to examine relationships between gender and ethnic subgroups as independent variables with achievement scores on scenario and stand-alone question types as dependent variables. MANOVA revealed no significant effects for gender, suggesting that the 2005 eighth-grade science WASL was gender neutral. However, there were significant effects for ethnicity. ANOVA revealed significant effects for ethnicity and ethnicity by gender interaction in both question types. Effect sizes were negligible for the ethnicity by gender interaction. Large effect sizes between ethnicities on scenario question types became moderate to small effect sizes on stand-alone question types. This indicates the score advantage the higher performing subgroups had over the lower performing subgroups was not as large on stand-alone question types compared to scenario question types. A further comparison examined performance on multiple-choice items only within both question types. Similar achievement patterns between ethnicities emerged; however, achievement patterns between genders changed in boys' favor. Scenario question types appeared to register differences between ethnic groups to a greater degree than stand-alone question types. These differences may be attributable to individual differences in cognition

  16. Integrating Traditional Ecological Knowledge and Ecological Science: a Question of Scale

    Directory of Open Access Journals (Sweden)

    Catherine A. Gagnon

    2009-12-01

    Full Text Available The benefits and challenges of integrating traditional ecological knowledge and scientific knowledge have led to extensive discussions over the past decades, but much work is still needed to facilitate the articulation and co-application of these two types of knowledge. Through two case studies, we examined the integration of traditional ecological knowledge and scientific knowledge by emphasizing their complementarity across spatial and temporal scales. We expected that combining Inuit traditional ecological knowledge and scientific knowledge would expand the spatial and temporal scales of currently documented knowledge on the arctic fox (Vulpes lagopus and the greater snow goose (Chen caerulescens atlantica, two important tundra species. Using participatory approaches in Mittimatalik (also known as Pond Inlet, Nunavut, Canada, we documented traditional ecological knowledge about these species and found that, in fact, it did expand the spatial and temporal scales of current scientific knowledge for local arctic fox ecology. However, the benefits were not as apparent for snow goose ecology, probably because of the similar spatial and temporal observational scales of the two types of knowledge for this species. Comparing sources of knowledge at similar scales allowed us to gain confidence in our conclusions and to identify areas of disagreement that should be studied further. Emphasizing complementarities across scales was more powerful for generating new insights and hypotheses. We conclude that determining the scales of the observations that form the basis for traditional ecological knowledge and scientific knowledge represents a critical step when evaluating the benefits of integrating these two types of knowledge. This is also critical when examining the congruence or contrast between the two types of knowledge for a given subject.

  17. Determination of foreign broadening coefficients for Methane Lines Targeted by the Tunable Laser Spectrometer (TLS) on the Mars Curiosity Rover

    International Nuclear Information System (INIS)

    Manne, Jagadeeshwari; Bui, Thinh Q.; Webster, Christopher R.

    2017-01-01

    Molecular line parameters of foreign- broadening by air, carbon dioxide, and helium gas have been experimentally determined for infrared ro-vibrational spectral lines of methane isotopologues ("1"2CH_4 and "1"3CH_4) at 3057 cm"−"1 targeted by the Tunable Laser Spectrometer (TLS) in the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover. From multi-spectrum analyses with the speed-dependent Voigt line profile with Rosenkrantz line-mixing, speed-dependence and line-mixing effects were quantified for methane spectra at total pressures up to 200 mbar. The fitted air-broadening coefficients deviated from 8–25% to those reported in the HITRAN-2012 database. - Highlights: • Measurements of foreign broadening coefficients for Mars-TLS specific methane lines. • Spectral parameters were deduced from Speed-dependent Voigt profile with line mixing effects taken into account. • A thorough comparison of different line profile fits for the Mars-TLS methane lines. The fitted broadening coefficients and areas deviated up to 30% and 4%, respectively, when comparing the speed-dependent Voigt profile (with Rosenkrantz line-mixing) with the simplest Voigt profile. • Foreign broadening coefficients were measured within a precision of 2.2%.

  18. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    International Nuclear Information System (INIS)

    Sobrado, J. M.; Martín-Soler, J.; Martín-Gago, J. A.

    2015-01-01

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration

  19. Mars Hand Lens Imager (MAHLI) Efforts and Observations at the Rocknest Eolian Sand Shadow in Curiosity's Gale Crater Field Site

    Science.gov (United States)

    Edgett, K. S.; Yingst, R. A.; Minitti, M. E.; Goetz, W.; Kah, L. C.; Kennedy, M. R.; Lipkaman, L. J.; Jensen, E. H.; Anderson, R. C.; Beegle, L. W.; hide

    2013-01-01

    The Mars Science Laboratory (MSL) mission is focused on assessing the past or present habitability of Mars, through interrogation of environment and environmental records at the Curiosity rover field site in Gale crater. The MSL team has two methods available to collect, process and deliver samples to onboard analytical laboratories, the Chemistry and Mineralogy instrument (CheMin) and the Sample Analysis at Mars (SAM) instrument suite. One approach obtains samples by drilling into a rock, the other uses a scoop to collect loose regolith fines. Scooping was planned to be first method performed on Mars because materials could be readily scooped multiple times and used to remove any remaining, minute terrestrial contaminants from the sample processing system, the Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA). Because of this cleaning effort, the ideal first material to be scooped would consist of fine to very fine sand, like the interior of the Serpent Dune studied by the Mars Exploration Rover (MER) Spirit team in 2004 [1]. The MSL team selected a linear eolian deposit in the lee of a group of cobbles they named Rocknest (Fig. 1) as likely to be similar to Serpent Dune. Following the definitions in Chapter 13 of Bagnold [2], the deposit is termed a sand shadow. The scooping campaign occurred over approximately 6 weeks in October and November 2012. To support these activities, the Mars Hand Lens Imager (MAHLI) acquired images for engineering support/assessment and scientific inquiry.

  20. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars

    Science.gov (United States)

    Stern, Jennifer C.; Sutter, Brad; Freissinet, Caroline; Navarro-González, Rafael; McKay, Christopher P.; Archer, P. Douglas; Buch, Arnaud; Brunner, Anna E.; Coll, Patrice; Eigenbrode, Jennifer L.; Fairen, Alberto G.; Franz, Heather B.; Glavin, Daniel P.; Kashyap, Srishti; McAdam, Amy C.; Ming, Douglas W.; Steele, Andrew; Szopa, Cyril; Wray, James J.; Martín-Torres, F. Javier; Zorzano, Maria-Paz; Conrad, Pamela G.; Mahaffy, Paul R.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Grotzinger, John; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; - Torres, F. Javier Martín; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d’Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Vasavada, Ashwin R.; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2015-01-01

    The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110–300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70–260 and 330–1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen. PMID:25831544

  1. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    Energy Technology Data Exchange (ETDEWEB)

    Sobrado, J. M., E-mail: sobradovj@inta.es; Martín-Soler, J. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Martín-Gago, J. A. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Instituto de Ciencias de Materiales de Madrid (ICMM–CSIC), Cantoblanco, 28049 Madrid (Spain)

    2015-10-15

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration.

  2. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars.

    Science.gov (United States)

    Stern, Jennifer C; Sutter, Brad; Freissinet, Caroline; Navarro-González, Rafael; McKay, Christopher P; Archer, P Douglas; Buch, Arnaud; Brunner, Anna E; Coll, Patrice; Eigenbrode, Jennifer L; Fairen, Alberto G; Franz, Heather B; Glavin, Daniel P; Kashyap, Srishti; McAdam, Amy C; Ming, Douglas W; Steele, Andrew; Szopa, Cyril; Wray, James J; Martín-Torres, F Javier; Zorzano, Maria-Paz; Conrad, Pamela G; Mahaffy, Paul R

    2015-04-07

    The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110-300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70-260 and 330-1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen.

  3. When curiosity breeds intimacy: Taking advantage of intimacy opportunities and transforming boring conversations

    Science.gov (United States)

    Kashdan, Todd B.; McKnight, Patrick E.; Fincham, Frank D.; Rose, Paul

    2012-01-01

    Curious people seek knowledge and new experiences. In three studies, we examined whether, when, and how curiosity contributes to positive social outcomes between unacquainted strangers. Study 1 showed that curious people expect to generate closeness during intimate conversations but not during small-talk; less curious people anticipated poor outcomes in both situations. We hypothesized that curious people underestimate their ability to bond with unacquainted strangers during mundane conversations. Studies 2 and 3 showed that curious people felt close to partners during intimate and small-talk conversations; less curious people only felt close when the situation offered relationship-building exercises. Surprise at the pleasure felt during this novel, uncertain situation partially mediated the benefits linked to curiosity. We found evidence of slight asymmetry between self and partner reactions. Results could not be attributed to physical attraction or positive affect. Collectively, results suggest that positive social interactions benefits from an open and curious mindset. PMID:22092143

  4. The design and engineering of curiosity how the Mars Rover performs its job

    CERN Document Server

    Lakdawalla, Emily

    2018-01-01

    This book describes the most complex machine ever sent to another planet: Curiosity. It is a one-ton robot with two brains, seventeen cameras, six wheels, nuclear power, and a laser beam on its head. No one human understands how all of its systems and instruments work. This essential reference to the Curiosity mission explains the engineering behind every system on the rover, from its rocket-powered jetpack to its radioisotope thermoelectric generator to its fiendishly complex sample handling system. Its lavishly illustrated text explains how all the instruments work -- its cameras, spectrometers, sample-cooking oven, and weather station -- and describes the instruments' abilities and limitations. It tells you how the systems have functioned on Mars, and how scientists and engineers have worked around problems developed on a faraway planet: holey wheels and broken focus lasers. And it explains the grueling mission operations schedule that keeps the rover working day in and day out.   .

  5. Less Interested after Lessons? Report on a Small-Scale Research Study into 12- to 13-Year-Old Students' Attitudes to Earth Science

    Science.gov (United States)

    Hetherington, Lindsay

    2010-01-01

    Results of a small-scale research study conducted with year 8 (ages 12-13) students suggest that although these students have generally positive attitudes towards earth science, girls tend to be less interested in it than boys. Interest in earth science was found to separate into two dominant factors, labelled "scientific" and…

  6. Evaluating Interest in Acids-Bases: Development of an Acid-Base Interest Scale (ABIS) and Assessment of Pre-Service Science Teachers' Interest

    Science.gov (United States)

    Çiçek, Ö.; Ilhan, N.

    2017-01-01

    Students are more likely to be successful in topics they are interested in than others. This study aims to develop an Acid-Base Interest Scale (ABIS) and subsequently evaluate the interest of pre-service science teachers in acids-bases according to gender, years at the university, type of high school the pre-service science teachers attended, and…

  7. Comparative Analysis of Sociability and Intellectual Curiosity in Adults with Different Types of Character “Core”

    Directory of Open Access Journals (Sweden)

    A A Berdnikova

    2012-12-01

    Full Text Available This article describes the features of sociability and curiosity in people with different types of character “core”. It reveals the necessity to investigate the above mentioned features for studying the integral structure of the character.

  8. Natural Hazard Resilience - A Large-scale Transdisciplinary "National Science Challenge" for New Zealand

    Science.gov (United States)

    Cronin, S. J.

    2017-12-01

    The National Science Challenges are initiatives to address the most important public science issues that face New Zealand with long-term funding and the combined strength of a coordinated science-sector behind them. Eleven major topics are tackled, across our human, natural and built environments. In the "Resilience Challenge" we address New Zealand's natural hazards. Alongside severe metrological threats, New Zealand also faces one of the highest levels of earthquake and volcanic hazard in the world. Resilience is a hotly discussed concept, here, we take the view: Resilience encapsulates the features of a system to anticipate threats, acknowledge there will be impacts (no matter how prepared we are), quickly pick up the pieces, as well as learn and adapt from the experience to better absorb and rebound from future shocks. Our research must encompass innovation in building and lifelines engineering, planning and regulation, emergency management practice, alongside understanding how our natural hazard systems work, how we monitor them and how our communities/governance/industries can be influenced and encouraged (e.g., via economic incentives) to develop and implement resilience practice. This is a complex interwoven mix of areas and is best addressed through case-study areas where researchers and the users of the research can jointly identify problems and co-develop science solutions. I will highlight some of the strengths and weaknesses of this coordinated approach to an all-hazard, all-country problem, using the example of the Resilience Challenge approach after its first two and a half years of operation. Key issues include balancing investment into high-profile (and often high consequence), but rare hazards against the frequent "monthly" hazards that collectively occupy regional and local governance. Also, it is clear that despite increasingly sophisticated hazard and hazard mitigation knowledge being generated in engineering and social areas, a range of policy

  9. What Will the Neighbors Think? Building Large-Scale Science Projects Around the World

    International Nuclear Information System (INIS)

    Jones, Craig; Mrotzek, Christian; Toge, Nobu; Sarno, Doug

    2007-01-01

    Public participation is an essential ingredient for turning the International Linear Collider into a reality. Wherever the proposed particle accelerator is sited in the world, its neighbors -- in any country -- will have something to say about hosting a 35-kilometer-long collider in their backyards. When it comes to building large-scale physics projects, almost every laboratory has a story to tell. Three case studies from Japan, Germany and the US will be presented to examine how community relations are handled in different parts of the world. How do particle physics laboratories interact with their local communities? How do neighbors react to building large-scale projects in each region? How can the lessons learned from past experiences help in building the next big project? These and other questions will be discussed to engage the audience in an active dialogue about how a large-scale project like the ILC can be a good neighbor.

  10. Integrating science into governance and management of coastal areas at urban scale

    CSIR Research Space (South Africa)

    Celliers, Louis

    2012-10-01

    Full Text Available and development planning (CSDP) is no longer an option but a necessity. Current legislation devolves many fine scale planning and management functions within coastal urban centres to local authorities, including land-use and urban and economic development... into governance and management of coastal areas at urban scale L CELLIERS, S TALJAARD AND R VAN BALLEGOOYEN CSIR, PO Box 395, Pretoria, South Africa, 0001 Email: lcelliers@csir.co.za ? www.csir.co.za BACKGROUND With burgeoning demand for coastal space...

  11. An interview with James Wilbur, Ph.D. General Manager, Life Sciences, Meso Scale Discovery.

    Science.gov (United States)

    Wilbur, James

    2004-06-01

    James L. Wilbur, Ph.D. received a Bachelor's degree from the University of California, San Diego and a Ph.D. in Chemistry from Stanford University. After completing an NIH Postdoctoral Fellowship with Professor George M. Whitesides in the Department of Chemistry at Harvard University, he joined IGEN International, Inc., where he held a variety of positions in Research and Development. During that time, he was part of the team that developed the core technology and products for Meso Scale Discovery. He assumed his current position in 2001 when Meso Scale Discovery launched the products discussed here.

  12. Nuanced aesthetic emotions: emotion differentiation is related to knowledge of the arts and curiosity.

    Science.gov (United States)

    Fayn, Kirill; Silvia, Paul J; Erbas, Yasemin; Tiliopoulos, Niko; Kuppens, Peter

    2018-05-01

    The ability to distinguish between emotions is considered indicative of well-being, but does emotion differentiation (ED) in an aesthetic context also reflect deeper and more knowledgeable aesthetic experiences? Here we examine whether positive and negative ED in response to artistic stimuli reflects higher fluency in an aesthetic domain. Particularly, we test whether knowledge of the arts and curiosity are associated with more fine-grained positive and negative aesthetic experiences. A sample of 214 people rated their positive and negative feelings in response to various artworks including positive and negative themes. Positive ED was associated with the embracing sub-trait of curiosity that reflects engagement and enjoyment of novelty and complexity, but was unrelated to artistic knowledge and perceived comprehension. Negative ED was associated with higher curiosity and particularly more knowledge of the arts. This relationship was mediated by appraised comprehension suggesting that deeper engagement with art, by those with more art knowledge, is associated with more fine-grained emotional experiences. This finding extends ED beyond well-being research and suggests that more nuanced emotional experiences are more likely for those with expertise in the arts and motivation for exploration.

  13. The "Lifeblood" of Science and Its Politics: Interrogating Epistemic Curiosity as an Educational Aim

    Science.gov (United States)

    Papastephanou, Marianna

    2016-01-01

    Social- and virtue-epistemologies connect intellectual and moral concerns in ways significant for education and its theory. For most educationists, epistemic and ethical virtues are no longer dissociated. However, many political framings or operations of epistemic virtues and vices remain neglected in educational discourses. This article…

  14. On unravelling mechanism of interplay between cloud and large scale circulation: a grey area in climate science

    Science.gov (United States)

    De, S.; Agarwal, N. K.; Hazra, Anupam; Chaudhari, Hemantkumar S.; Sahai, A. K.

    2018-04-01

    The interaction between cloud and large scale circulation is much less explored area in climate science. Unfolding the mechanism of coupling between these two parameters is imperative for improved simulation of Indian summer monsoon (ISM) and to reduce imprecision in climate sensitivity of global climate model. This work has made an effort to explore this mechanism with CFSv2 climate model experiments whose cloud has been modified by changing the critical relative humidity (CRH) profile of model during ISM. Study reveals that the variable CRH in CFSv2 has improved the nonlinear interactions between high and low frequency oscillations in wind field (revealed as internal dynamics of monsoon) and modulates realistically the spatial distribution of interactions over Indian landmass during the contrasting monsoon season compared to the existing CRH profile of CFSv2. The lower tropospheric wind error energy in the variable CRH simulation of CFSv2 appears to be minimum due to the reduced nonlinear convergence of error to the planetary scale range from long and synoptic scales (another facet of internal dynamics) compared to as observed from other CRH experiments in normal and deficient monsoons. Hence, the interplay between cloud and large scale circulation through CRH may be manifested as a change in internal dynamics of ISM revealed from scale interactive quasi-linear and nonlinear kinetic energy exchanges in frequency as well as in wavenumber domain during the monsoon period that eventually modify the internal variance of CFSv2 model. Conversely, the reduced wind bias and proper modulation of spatial distribution of scale interaction between the synoptic and low frequency oscillations improve the eastward and northward extent of water vapour flux over Indian landmass that in turn give feedback to the realistic simulation of cloud condensates attributing improved ISM rainfall in CFSv2.

  15. Large scale inverse problems computational methods and applications in the earth sciences

    CERN Document Server

    Scheichl, Robert; Freitag, Melina A; Kindermann, Stefan

    2013-01-01

    This book is thesecond volume of three volume series recording the ""Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment"" taking place in Linz, Austria, October 3-7, 2011. The volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications.

  16. Maps4Science - National Roadmap for Large-Scale Research Facilities 2011 (NWO Application form)

    NARCIS (Netherlands)

    Van Oosterom, P.J.M.; Van der Wal, T.; De By, R.A.

    2011-01-01

    The Netherlands is historically known as one of worlds' best-measured countries. It is continuing this tradition today with unequalled new datasets, such as the nationwide large-scale topographic map, our unique digital height map (nationwide coverage; ten very accurate 3D points for every Dutch m2)

  17. [The development of a nursing sciences discipline].

    Science.gov (United States)

    Warnet, Sylvie

    2013-03-01

    Intellectual curiosity has guided the career of Michel Poisson, for the benefit of the gaze and clinical special approach of nurses and quality of care. He is also a historian. He questions the profession with regard to its identity and its desire to construct a discipline in nursing sciences.

  18. Infuriating Tensions: Science and the Medical Student.

    Science.gov (United States)

    Bishop, J. Michael

    1984-01-01

    Contemporary medical students, it is suggested, view science in particular and the intellect in general as difficult allies at best. What emerges are physicians without inquiring minds, physicians who bring to the bedside not curiosity and a desire to understand but a set of reflexes. (MLW)

  19. Small Worlds Week: Raising Curiosity and Contributing to STEM

    Science.gov (United States)

    Ng, C.; Mayo, L.; Stephenson, B. E.; Keck, A.; Cline, T. D.; Lewis, E. M.

    2015-12-01

    Dwarf planets, comets, asteroids, and icy moons took center stage in the years 2014-2015 as multiple spacecraft (New Horizons, Dawn, Rosetta, Cassini) and ground-based observing campaigns observed these small and yet amazing celestial bodies. Just prior to the historic New Horizons encounter with the Pluto system, NASA celebrated Small Worlds Week (July 6-10) as a fully online program to highlight small worlds mission discoveries. Small Worlds Week leveraged the infrastructure of Sun-Earth Days that included a robust web design, exemplary education materials, hands-on fun activities, multimedia resources, science and career highlights, and a culminating event. Each day from July 6-9, a new class of solar system small worlds was featured on the website: Monday-comets, Tuesday-asteroids, Wednesday-icy moons, and Thursday-dwarf planets. Then on Friday, July 10, nine scientists from Goddard Space Flight Center, Jet Propulsion Laboratory, Naval Research Laboratory, and Lunar and Planetary Institute gathered online for four hours to answer questions from the public via Facebook and Twitter. Throughout the afternoon the scientists worked closely with a social media expert and several summer interns to reply to inquirers and to archive their chats. By all accounts, Small Worlds Week was a huge success. The group plans to improve and replicate the program during the school year with a more classroom focus, and then to build and extend the program to be held every year. For more information, visit http:// sunearthday.nasa.gov or catch us on Twitter, #nasasww.

  20. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Conducting Polymers - From a Laboratory Curiosity to the Market Place. S Ramakrishnan ... Author Affiliations. S Ramakrishnan1. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  1. A Holistic Approach to Science Education: Disciplinary, Affective, and Equitable

    Science.gov (United States)

    Mehta, Rohit; Mehta, Swati; Seals, Christopher

    2017-01-01

    In this chapter, we argue that science education is more than the high stakes, rigorous practices and methodology that students often find dull and uninspiring. We present that aesthetic and humanistic motivations, such as wonder, curiosity, and social justice, are also inherent reasons for doing science. In the MSUrbanSTEM program, we designed an…

  2. Corrosion chemistry closing comments: opportunities in corrosion science facilitated by operando experimental characterization combined with multi-scale computational modelling.

    Science.gov (United States)

    Scully, John R

    2015-01-01

    Recent advances in characterization tools, computational capabilities, and theories have created opportunities for advancement in understanding of solid-fluid interfaces at the nanoscale in corroding metallic systems. The Faraday Discussion on Corrosion Chemistry in 2015 highlighted some of the current needs, gaps and opportunities in corrosion science. Themes were organized into several hierarchical categories that provide an organizational framework for corrosion. Opportunities to develop fundamental physical and chemical data which will enable further progress in thermodynamic and kinetic modelling of corrosion were discussed. These will enable new and better understanding of unit processes that govern corrosion at the nanoscale. Additional topics discussed included scales, films and oxides, fluid-surface and molecular-surface interactions, selected topics in corrosion science and engineering as well as corrosion control. Corrosion science and engineering topics included complex alloy dissolution, local corrosion, and modelling of specific corrosion processes that are made up of collections of temporally and spatially varying unit processes such as oxidation, ion transport, and competitive adsorption. Corrosion control and mitigation topics covered some new insights on coatings and inhibitors. Further advances in operando or in situ experimental characterization strategies at the nanoscale combined with computational modelling will enhance progress in the field, especially if coupling across length and time scales can be achieved incorporating the various phenomena encountered in corrosion. Readers are encouraged to not only to use this ad hoc organizational scheme to guide their immersion into the current opportunities in corrosion chemistry, but also to find value in the information presented in their own ways.

  3. Puffers and Chuggers: Statistical Curiosities in Volcano World

    Science.gov (United States)

    Lees, J. M.

    2002-12-01

    Several on-going, low level volcanic explosions exhibit background phenomena commonly known as puffing, or in some cases chugging. Recently these events have been scrutinized because of the initiation of infrasonic monitoring, whereas earlier the events may have gone undetected. The activity associated with a puffer at a volcanic vent is generally small in magnitude and is often not observed audibly. The low frequency signals are readily observed on sensitive acoustic instrumentation and they provide a new dimension for our understanding of volcanic processes at volcanoes like Stromboli and Etna that have constant puffing signals. At other volcanoes, like Karymsky volcano in Kamchatka and Sangay Volcano in Ecuador, chugging signals associated with Strombolian style eruptions also provides new insights into the physics of the conduit systems. Here we present a statistical method of event detection, and event cluster association. When multiple vents work in unison it may be difficult to separate out chugging and puffing signals between spatially separated vents. The cluster analysis automatically differentiates between the vents based on waveform characteristics in the acoustic and seismic wavefields. Data examples from May, 2001, at Stromboli and Etna, show extensive periods of puffing (1-5 second frequency) superimposed on a background of vigorous, small-scale explosive activity. At Karymsky and Sangay non-linear, dynamic models explain the fluid flow through vents which gives rise to chugging. Furthermore, the frequency of chugging events appears to be associated with the intensity of lava flows and eruption rate.

  4. In situ analysis of Mars soil sample with the sam gcms instrumentation onboard Curiosity : interpretation and comparison of measurements done at Rocknest and Yelloknife bay sites

    Science.gov (United States)

    Szopa, Cyril; Coll, Patrice; Cabane, Michel; Coscia, David; Buch, Arnaud; Francois, Pascaline; Millan, Maeva; Teinturier, Sammy; Navarro-Gonzales, Rafael; Glavin, Daniel; Freissinet, Caro; Steele, Andrew; Eigenbrode, Jen; Mahaffy, Paul

    2014-05-01

    The characterisation of the chemical and mineralogical composition of regolith samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was chosen to achieve all the measurements done up today, as it was designed for the separation of a wide range of volatile organic molecules. Three solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, and two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013), Science, [4] Ming D. et al. (2013), Science, 32, 64

  5. dV/dt - Accelerating the Rate of Progress towards Extreme Scale Collaborative Science

    Energy Technology Data Exchange (ETDEWEB)

    Livny, Miron [Univ. of Wisconsin, Madison, WI (United States)

    2018-01-22

    This report introduces publications that report the results of a project that aimed to design a computational framework that enables computational experimentation at scale while supporting the model of “submit locally, compute globally”. The project focuses on estimating application resource needs, finding the appropriate computing resources, acquiring those resources,deploying the applications and data on the resources, managing applications and resources during run.

  6. Transforming Global Health by Improving the Science of Scale-Up

    OpenAIRE

    Kruk, Margaret E.; Yamey, Gavin; Angell, Sonia Y.; Beith, Alix; Cotlear, Daniel; Guanais, Frederico; Jacobs, Lisa; Saxenian, Helen; Victora, Cesar; Goosby, Eric

    2016-01-01

    In its report Global Health 2035, the Commission on Investing in Health proposed that health investments can reduce mortality in nearly all low- and middle-income countries to very low levels, thereby averting 10 million deaths per year from 2035 onward. Many of these gains could be achieved through scale-up of existing technologies and health services. A key instrument to close this gap is policy and implementation research (PIR) that aims to produce generalizable evidence on what works to i...

  7. Transforming Global Health by Improving the Science of Scale-Up.

    Directory of Open Access Journals (Sweden)

    Margaret E Kruk

    2016-03-01

    Full Text Available In its report Global Health 2035, the Commission on Investing in Health proposed that health investments can reduce mortality in nearly all low- and middle-income countries to very low levels, thereby averting 10 million deaths per year from 2035 onward. Many of these gains could be achieved through scale-up of existing technologies and health services. A key instrument to close this gap is policy and implementation research (PIR that aims to produce generalizable evidence on what works to implement successful interventions at scale. Rigorously designed PIR promotes global learning and local accountability. Much greater national and global investments in PIR capacity will be required to enable the scaling of effective approaches and to prevent the recycling of failed ideas. Sample questions for the PIR research agenda include how to close the gap in the delivery of essential services to the poor, which population interventions for non-communicable diseases are most applicable in different contexts, and how to engage non-state actors in equitable provision of health services in the context of universal health coverage.

  8. On carrots and curiosity: eating fruit and vegetables is associated with greater flourishing in daily life.

    Science.gov (United States)

    Conner, Tamlin S; Brookie, Kate L; Richardson, Aimee C; Polak, Maria A

    2015-05-01

    Our aim was to determine whether eating fruit and vegetables (FV) is associated with other markers of well-being beyond happiness and life satisfaction. Towards this aim, we tested whether FV consumption is associated with greater eudaemonic well-being - a state of flourishing characterized by feelings of engagement, meaning, and purpose in life. We also tested associations with two eudaemonic behaviours - curiosity and creativity. Daily diary study across 13 days (micro-longitudinal, correlational design). A sample of 405 young adults (67% women; mean age 19.9 [SD 1.6] years) completed an Internet daily diary for 13 consecutive days. Each day, participants reported on their consumption of fruit, vegetables, sweets, and chips, as well as their eudaemonic well-being, curiosity, creativity, positive affect (PA), and negative affect. Between-person associations were analysed on aggregated data. Within-person associations were analysed using multilevel models controlling for weekday and weekend patterns. Fruit and vegetables consumption predicted greater eudaemonic well-being, curiosity, and creativity at the between- and within-person levels. Young adults who ate more FV reported higher average eudaemonic well-being, more intense feelings of curiosity, and greater creativity compared with young adults who ate less FV. On days when young adults ate more FV, they reported greater eudaemonic well-being, curiosity, and creativity compared with days when they ate less FV. FV consumption also predicted higher PA, which mostly did not account for the associations between FV and the other well-being variables. Few unhealthy foods (sweets, chips) were related to well-being except that consumption of sweets was associated with greater curiosity and PA at the within-person level. Lagged data analyses showed no carry-over effects of FV consumption onto next-day well-being (or vice versa). Although these patterns are strictly correlational, this study provides the first evidence

  9. Science As A Second Language: Acquiring Fluency through Science Enterprises

    Science.gov (United States)

    Shope, R.; EcoVoices Expedition Team

    2013-05-01

    Science Enterprises are problems that students genuinely want to solve, questions that students genuinely want to answer, that naturally entail reading, writing, investigation, and discussion. Engaging students in personally-relevant science enterprises provides both a diagnostic opportunity and a context for providing students the comprehensible input they need. We can differentiate instruction by creating science enterprise zones that are set up for the incremental increase in challenge for the students. Comprehensible input makes reachable, those just-out-of-reach concepts in the mix of the familiar and the new. EcoVoices takes students on field research expeditions within an urban natural area, the San Gabriel River Discovery Center. This project engages students in science enterprises focused on understanding ecosystems, ecosystem services, and the dynamics of climate change. A sister program, EcoVoces, has been launched in Mexico, in collaboration with the Universidad Loyola del Pacífico. 1) The ED3U Science Inquiry Model, a learning cycle model that accounts for conceptual change: Explore { Diagnose, Design, Discuss } Use. 2) The ¿NQUIRY Wheel, a compass of scientific inquiry strategies; 3) Inquiry Science Expeditions, a way of laying out a science learning environment, emulating a field and lab research collaboratory; 4) The Science Educative Experience Scale, a diagnostic measure of the quality of the science learning experience; and 5) Mimedia de la Ciencia, participatory enactment of science concepts using techniques of mime and improvisational theater. BACKGROUND: Science has become a vehicle for teaching reading, writing, and other communication skills, across the curriculum. This new emphasis creates renewed motivation for Scientists and Science Educators to work collaboratively to explore the common ground between acquiring science understanding and language acquisition theory. Language Acquisition is an informal process that occurs in the midst of

  10. How Partners are Producing Science and Addressing Issues of Scale for Springs Management in the Desert Southwest

    Science.gov (United States)

    Johnson, G.; Springer, A. E.; Misztal, L.; Grabau, M.

    2017-12-01

    Climate changes in the arid Southwest are expected to further stress critical water sources, such as springs, in the near future. Springs are abundant features in the Southwest, providing habitat for listed species and water for wildlife, agricultural, cities, recreation, and the base flow for many rivers. But springs occupy a small fraction of the land area and, as a result, they have not been significantly studied or mapped. Managers recognize that effective stewardship of these critical resources requires a landscape-scale understanding of distribution, ecological integrity, and risks; access to comprehensive inventory, assessment and restoration protocols; and local implementation. They need easy access to information at varying scales to respond to stressors like climate change. The Desert Landscape Conservation Cooperative, Sky Island Alliance, and Springs Stewardship Institute worked with scientists, resource managers, and conservationists to develop and increase access to data by involving them in the entire research process through field surveys, workshops, trainings, and development of products needed to solve critical management challenges. We built on and connected existing efforts underway in the Southwest, including developing: 1) Springs Inventory Protocol, 2) an online geospatial database, 3) methodologies for climate-savvy monitoring and 4) a springs restoration handbook. We also worked with partners to evaluate the condition and risk of springs' resources at the local scale to create products used in site-specific management planning. Our results indicate that coproduction resulted in more understanding of common issues, more focus on solving management challenges, and increased use of the science and protocols produced. Information developed through this project assists managers in understanding how their springs contribute at local and landscape scales. New information developed through this project is being used in support of planning and

  11. A stakeholder-driven agenda for advancing the science and practice of scale-up and spread in health.

    Science.gov (United States)

    Norton, Wynne E; McCannon, C Joseph; Schall, Marie W; Mittman, Brian S

    2012-12-06

    Although significant advances have been made in implementation science, comparatively less attention has been paid to broader scale-up and spread of effective health programs at the regional, national, or international level. To address this gap in research, practice and policy attention, representatives from key stakeholder groups launched an initiative to identify gaps and stimulate additional interest and activity in scale-up and spread of effective health programs. We describe the background and motivation for this initiative and the content, process, and outcomes of two main phases comprising the core of the initiative: a state-of-the-art conference to develop recommendations for advancing scale-up and spread and a follow-up activity to operationalize and prioritize the recommendations. The conference was held in Washington, D.C. during July 2010 and attended by 100 representatives from research, practice, policy, public health, healthcare, and international health communities; the follow-up activity was conducted remotely the following year. Conference attendees identified and prioritized five recommendations (and corresponding sub-recommendations) for advancing scale-up and spread in health: increase awareness, facilitate information exchange, develop new methods, apply new approaches for evaluation, and expand capacity. In the follow-up activity, 'develop new methods' was rated as most important recommendation; expanding capacity was rated as least important, although differences were relatively minor. Based on the results of these efforts, we discuss priority activities that are needed to advance research, practice and policy to accelerate the scale-up and spread of effective health programs.

  12. Ultrafast, laser-based, x-ray science: the dawn of atomic-scale cinematography

    International Nuclear Information System (INIS)

    Barty, C.P.J.

    2000-01-01

    The characteristics of ultrafast chirped pulse amplification systems are reviewed. Application of ultrafast chirped pulse amplification to the generation of femtosecond, incoherent, 8-keV line radiation is outlined and the use of femtosecond laser-based, x-rays for novel time-resolved diffraction studies of crystalline dynamics with sub-picosecond temporal resolution and sub-picometer spatial resolution is reviewed in detail. Possible extensions of laser-based, x-ray technology and evaluation of alternative x-ray approaches for time-resolved studies of the atomic scale dynamics are given. (author)

  13. Ultrafast, laser-based, x-ray science: the dawn of atomic-scale cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C.P.J. [University of California, Department of Applied Mechanics and Engineering Science, Urey Hall, Mali Code 0339, San Diego, La Jolla, CA (United States)

    2000-03-01

    The characteristics of ultrafast chirped pulse amplification systems are reviewed. Application of ultrafast chirped pulse amplification to the generation of femtosecond, incoherent, 8-keV line radiation is outlined and the use of femtosecond laser-based, x-rays for novel time-resolved diffraction studies of crystalline dynamics with sub-picosecond temporal resolution and sub-picometer spatial resolution is reviewed in detail. Possible extensions of laser-based, x-ray technology and evaluation of alternative x-ray approaches for time-resolved studies of the atomic scale dynamics are given. (author)

  14. Scaling-Up the Impact of Aflatoxin Research in Africa. The Role of Social Sciences

    Directory of Open Access Journals (Sweden)

    Francois Stepman

    2018-03-01

    Full Text Available At the interface between agriculture and nutrition, the aflatoxin contamination of food and feed touches on agriculture, health, and trade. For more than three decades now, the problem of aflatoxin has been researched in Africa. The interest of development cooperation for aflatoxin and the support to aflatoxin mitigation projects has its ups and downs. The academic world and the development world still seem to operate in different spheres and a collaboration is still challenging due to the complexity of the contamination sources at pre-harvest and post-harvest levels. There is a growing call by research funders and development actors for the impact of solutions at a scale. The solutions to mitigate aflatoxin contamination require new ways of working together. A more prominent role is to be played by social scientists. The role of social scientists in scaling-up the impact of aflatoxin research in Africa and the proposed mitigation solutions is to ensure that awareness, advantage, affordability, and access are systematically assessed. Aflatoxin-reduced staple foods and feed would be an agricultural result with a considerable health and food safety impact.

  15. Reconciling the science and policy divide: The reality of scaling up antiretroviral therapy in South Africa

    Directory of Open Access Journals (Sweden)

    Alan Whiteside

    2015-07-01

    Full Text Available With the world’s largest national treatment programme and over 340 000 incident casesannually, the response to HIV in South Africa is hotly contested and there is sometimes adissonance between activism, science and policy. Too often, policy, whilst well intentioned, isinformed only by epidemiological data. The state of the healthcare system and socioculturalfactors drive and shape the epidemic and its response. By analysis of the financial,infrastructural, human resources for health, and governance landscape in South Africa,we assess the feasibility and associated costs of implementing a universal test and treatprogramme. We situate a universal test and treat strategy within the governance, fiscal,human resources for health, and infrastructural landscape in South Africa. We argue that theresponse to the epidemic must be forward thinking, progressive and make the most of thebenefits from treatment as prevention. However, the logistics of implementing a universaltest and treat strategy mean that this option is problematic in the short term. We recommenda health systems strengthening HIV treatment and prevention approach that includes scalingup treatment (for treatment and prevention along with a range of other prevention strategies.

  16. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fast, JD [Pacific Northwest National Laboratory; Berg, LK [Pacific Northwest National Laboratory

    2015-12-01

    Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the Southern Great Plains and over many regions of the world, particularly during the summertime growing season when intense turbulence induced by surface radiation couples the land surface to clouds. Current convective cloud parameterizations contain uncertainties resulting in part from insufficient coincident data that couples cloud macrophysical and microphysical properties to inhomogeneities in boundary layer and aerosol properties. The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) campaign is designed to provide a detailed set of measurements that are needed to obtain a more complete understanding of the life cycle of shallow clouds by coupling cloud macrophysical and microphysical properties to land surface properties, ecosystems, and aerosols. HI-SCALE consists of 2, 4-week intensive observational periods, one in the spring and the other in the late summer, to take advantage of different stages and distribution of “greenness” for various types of vegetation in the vicinity of the Atmospheric Radiation and Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site as well as aerosol properties that vary during the growing season. Most of the proposed instrumentation will be deployed on the ARM Aerial Facility (AAF) Gulfstream 1 (G-1) aircraft, including those that measure atmospheric turbulence, cloud water content and drop size distributions, aerosol precursor gases, aerosol chemical composition and size distributions, and cloud condensation nuclei concentrations. Routine ARM aerosol measurements made at the surface will be supplemented with aerosol microphysical properties measurements. The G-1 aircraft will complete transects over the SGP Central Facility at multiple altitudes within the boundary layer, within clouds, and above clouds.

  17. Web-scale discovery in an academic health sciences library: development and implementation of the EBSCO Discovery Service.

    Science.gov (United States)

    Thompson, Jolinda L; Obrig, Kathe S; Abate, Laura E

    2013-01-01

    Funds made available at the close of the 2010-11 fiscal year allowed purchase of the EBSCO Discovery Service (EDS) for a year-long trial. The appeal of this web-scale discovery product that offers a Google-like interface to library resources was counter-balanced by concerns about quality of search results in an academic health science setting and the challenge of configuring an interface that serves the needs of a diverse group of library users. After initial configuration, usability testing with library users revealed the need for further work before general release. Of greatest concern were continuing issues with the relevance of items retrieved, appropriateness of system-supplied facet terms, and user difficulties with navigating the interface. EBSCO has worked with the library to better understand and identify problems and solutions. External roll-out to users occurred in June 2012.

  18. Mathematical methods in material science and large scale optimization workshops: Final report, June 1, 1995-November 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A. [Minnesota Univ., Minneapolis, MN (United States). Inst. for Mathematics and Its Applications

    1996-12-01

    The summer program in Large Scale Optimization concentrated largely on process engineering, aerospace engineering, inverse problems and optimal design, and molecular structure and protein folding. The program brought together application people, optimizers, and mathematicians with interest in learning about these topics. Three proceedings volumes are being prepared. The year in Materials Sciences deals with disordered media and percolation, phase transformations, composite materials, microstructure; topological and geometric methods as well as statistical mechanics approach to polymers (included were Monte Carlo simulation for polymers); miscellaneous other topics such as nonlinear optical material, particulate flow, and thin film. All these activities saw strong interaction among material scientists, mathematicians, physicists, and engineers. About 8 proceedings volumes are being prepared.

  19. Scientific Grand Challenges: Challenges in Climate Change Science and the Role of Computing at the Extreme Scale

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Mohammad A.; Johnson, Gary M.; Washington, Warren M.

    2009-07-02

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) in partnership with the Office of Advanced Scientific Computing Research (ASCR) held a workshop on the challenges in climate change science and the role of computing at the extreme scale, November 6-7, 2008, in Bethesda, Maryland. At the workshop, participants identified the scientific challenges facing the field of climate science and outlined the research directions of highest priority that should be pursued to meet these challenges. Representatives from the national and international climate change research community as well as representatives from the high-performance computing community attended the workshop. This group represented a broad mix of expertise. Of the 99 participants, 6 were from international institutions. Before the workshop, each of the four panels prepared a white paper, which provided the starting place for the workshop discussions. These four panels of workshop attendees devoted to their efforts the following themes: Model Development and Integrated Assessment; Algorithms and Computational Environment; Decadal Predictability and Prediction; Data, Visualization, and Computing Productivity. The recommendations of the panels are summarized in the body of this report.

  20. Citizen science reveals unexpected continental-scale evolutionary change in a model organism.

    Directory of Open Access Journals (Sweden)

    Jonathan Silvertown

    2011-04-01

    Full Text Available Organisms provide some of the most sensitive indicators of climate change and evolutionary responses are becoming apparent in species with short generation times. Large datasets on genetic polymorphism that can provide an historical benchmark against which to test for recent evolutionary responses are very rare, but an exception is found in the brown-lipped banded snail (Cepaea nemoralis. This species is sensitive to its thermal environment and exhibits several polymorphisms of shell colour and banding pattern affecting shell albedo in the majority of populations within its native range in Europe. We tested for evolutionary changes in shell albedo that might have been driven by the warming of the climate in Europe over the last half century by compiling an historical dataset for 6,515 native populations of C. nemoralis and comparing this with new data on nearly 3,000 populations. The new data were sampled mainly in 2009 through the Evolution MegaLab, a citizen science project that engaged thousands of volunteers in 15 countries throughout Europe in the biggest such exercise ever undertaken. A known geographic cline in the frequency of the colour phenotype with the highest albedo (yellow was shown to have persisted and a difference in colour frequency between woodland and more open habitats was confirmed, but there was no general increase in the frequency of yellow shells. This may have been because snails adapted to a warming climate through behavioural thermoregulation. By contrast, we detected an unexpected decrease in the frequency of Unbanded shells and an increase in the Mid-banded morph. Neither of these evolutionary changes appears to be a direct response to climate change, indicating that the influence of other selective agents, possibly related to changing predation pressure and habitat change with effects on micro-climate.

  1. Laboratory Scale X-ray Fluorescence Tomography: Instrument Characterization and Application in Earth and Environmental Science.

    Science.gov (United States)

    Laforce, Brecht; Vermeulen, Bram; Garrevoet, Jan; Vekemans, Bart; Van Hoorebeke, Luc; Janssen, Colin; Vincze, Laszlo

    2016-03-15

    A new laboratory scale X-ray fluorescence (XRF) imaging instrument, based on an X-ray microfocus tube equipped with a monocapillary optic, has been developed to perform XRF computed tomography experiments with both higher spatial resolution (20 μm) and a better energy resolution (130 eV @Mn-K(α)) than has been achieved up-to-now. This instrument opens a new range of possible applications for XRF-CT. Next to the analytical characterization of the setup by using well-defined model/reference samples, demonstrating its capabilities for tomographic imaging, the XRF-CT microprobe has been used to image the interior of an ecotoxicological model organism, Americamysis bahia. This had been exposed to elevated metal (Cu and Ni) concentrations. The technique allowed the visualization of the accumulation sites of copper, clearly indicating the affected organs, i.e. either the gastric system or the hepatopancreas. As another illustrative application, the scanner has been employed to investigate goethite spherules from the Cretaceous-Paleogene boundary, revealing the internal elemental distribution of these valuable distal ejecta layer particles.

  2. Beyond the plot: technology extrapolation domains for scaling out agronomic science

    Science.gov (United States)

    Rattalino Edreira, Juan I.; Cassman, Kenneth G.; Hochman, Zvi; van Ittersum, Martin K.; van Bussel, Lenny; Claessens, Lieven; Grassini, Patricio

    2018-05-01

    Ensuring an adequate food supply in systems that protect environmental quality and conserve natural resources requires productive and resource-efficient cropping systems on existing farmland. Meeting this challenge will be difficult without a robust spatial framework that facilitates rapid evaluation and scaling-out of currently available and emerging technologies. Here we develop a global spatial framework to delineate ‘technology extrapolation domains’ based on key climate and soil factors that govern crop yields and yield stability in rainfed crop production. The proposed framework adequately represents the spatial pattern of crop yields and stability when evaluated over the data-rich US Corn Belt. It also facilitates evaluation of cropping system performance across continents, which can improve efficiency of agricultural research that seeks to intensify production on existing farmland. Populating this biophysical spatial framework with appropriate socio-economic attributes provides the potential to amplify the return on investments in agricultural research and development by improving the effectiveness of research prioritization and impact assessment.

  3. How the “Queen Science” Lost Her Crown: A Brief Social History of Science Fairs and the Marginalization of Social Science

    Directory of Open Access Journals (Sweden)

    Jonathan Marx

    2004-10-01

    Full Text Available Science fairs at one time started out with an interest of increasing participation in the sciences. But as time has passed, the definition of science has been narrowed to the point where any possible social science project has been eliminated in favor of the bench sciences only. Even here, natural curiosity of students has been deemphasized. It is not surprising that science majors in the USA are becoming fewer and fewer given the narrowing of the disciplines. Young people are discouraged from majoring in science by the science establishment.

  4. science

    International Development Research Centre (IDRC) Digital Library (Canada)

    David Spurgeon

    Give us the tools: science and technology for development. Ottawa, ...... altered technical rela- tionships among the factors used in the process of production, and the en- .... to ourselves only the rights of audit and periodic substantive review." If a ...... and destroying scarce water reserves, recreational areas and a generally.

  5. A simple magic cup to inject excitement and curiosity in physics

    Science.gov (United States)

    Amir, Nazir

    2018-05-01

    This article highlights a simple demonstration kit that can be easily fabricated in Design & Technology (D&T) workshops to inject excitement and curiosity into students’ learning of physics concepts such as density and optics. Using an ice cream cup from a fast food restaurant and a transparent circular acrylic piece, students can be guided to make a ‘magic’ cup, while at the same time get inquisitive about the physics behind the magic. The project highlights a way of linking physics to D&T in a feasible manner which can motivate and engage students.

  6. Utilizing a scale model solar system project to visualize important planetary science concepts and develop technology and spatial reasoning skills

    Science.gov (United States)

    Kortenkamp, Stephen J.; Brock, Laci

    2016-10-01

    Scale model solar systems have been used for centuries to help educate young students and the public about the vastness of space and the relative sizes of objects. We have adapted the classic scale model solar system activity into a student-driven project for an undergraduate general education astronomy course at the University of Arizona. Students are challenged to construct and use their three dimensional models to demonstrate an understanding of numerous concepts in planetary science, including: 1) planetary obliquities, eccentricities, inclinations; 2) phases and eclipses; 3) planetary transits; 4) asteroid sizes, numbers, and distributions; 5) giant planet satellite and ring systems; 6) the Pluto system and Kuiper belt; 7) the extent of space travel by humans and robotic spacecraft; 8) the diversity of extrasolar planetary systems. Secondary objectives of the project allow students to develop better spatial reasoning skills and gain familiarity with technology such as Excel formulas, smart-phone photography, and audio/video editing.During our presentation we will distribute a formal description of the project and discuss our expectations of the students as well as present selected highlights from preliminary submissions.

  7. Translating the Science of Measuring Ecosystems at a National Scale: NEON's Online Learning Portal

    Science.gov (United States)

    Wasser, L. A.

    2015-12-01

    "Big Data" are becoming increasingly common in many fields. The National Ecological Observatory Network (NEON) will collect data over the 30 years, using consistent, standardized methods across the United States. These freely available new data provide an opportunity for increased understanding of continental- and global scale processes such as changes in vegetation structure and condition, biodiversity and landuse. However, while "big data" are becoming more accessible and available, working with big data is challenging. New and potentially unfamiliar data types and associated processing methods, required to work with a growing diversity of available data take time and resources to learn. Analysis of these big datasets may further present a challenge given large file sizes, and uncertainty regarding best methods to properly statistically summarize and analyze results. Finally, resources that support learning these concepts and approaches, are distributed widely across multiple online spaces and may take time to find. This presentation will overview the development of NEON's collaborative University-focused online education portal. It will also cover content testing, community feedback and results from workshops using online content. Portal content is hosted in github to facilitate community input, accessibility version control. Content includes 1) videos and supporting graphics that explain key concepts related to NEON and related big spatio-temporal and 2) data tutorials that include subsets of spatio-temporal data that can be used to learn key big data skills in a self-paced approach, or that can be used as a teaching tool in the classroom or in a workshop. All resources utilize free and open data processing, visualization and analysis tools, techniques and scripts. All NEON materials are being developed in collaboration with the scientific community and are being tested via in-person workshops. Visit the portal online: www.neondataskills.org.

  8. Curiosity & Connections

    Science.gov (United States)

    Lim, Kien H.

    2014-01-01

    Retaining mathematical knowledge is difficult for many students, especially for those who learn facts and procedures without understanding the meanings underlying the symbols and operations. Repeated practice may be necessary for developing skills but is unlikely to make conceptual ideas stick. An idea is more likely to stick if students are…

  9. Building a multi-scaled geospatial temporal ecology database from disparate data sources: Fostering open science through data reuse

    Science.gov (United States)

    Soranno, Patricia A.; Bissell, E.G.; Cheruvelil, Kendra S.; Christel, Samuel T.; Collins, Sarah M.; Fergus, C. Emi; Filstrup, Christopher T.; Lapierre, Jean-Francois; Lotting, Noah R.; Oliver, Samantha K.; Scott, Caren E.; Smith, Nicole J.; Stopyak, Scott; Yuan, Shuai; Bremigan, Mary Tate; Downing, John A.; Gries, Corinna; Henry, Emily N.; Skaff, Nick K.; Stanley, Emily H.; Stow, Craig A.; Tan, Pang-Ning; Wagner, Tyler; Webster, Katherine E.

    2015-01-01

    Although there are considerable site-based data for individual or groups of ecosystems, these datasets are widely scattered, have different data formats and conventions, and often have limited accessibility. At the broader scale, national datasets exist for a large number of geospatial features of land, water, and air that are needed to fully understand variation among these ecosystems. However, such datasets originate from different sources and have different spatial and temporal resolutions. By taking an open-science perspective and by combining site-based ecosystem datasets and national geospatial datasets, science gains the ability to ask important research questions related to grand environmental challenges that operate at broad scales. Documentation of such complicated database integration efforts, through peer-reviewed papers, is recommended to foster reproducibility and future use of the integrated database. Here, we describe the major steps, challenges, and considerations in building an integrated database of lake ecosystems, called LAGOS (LAke multi-scaled GeOSpatial and temporal database), that was developed at the sub-continental study extent of 17 US states (1,800,000 km2). LAGOS includes two modules: LAGOSGEO, with geospatial data on every lake with surface area larger than 4 ha in the study extent (~50,000 lakes), including climate, atmospheric deposition, land use/cover, hydrology, geology, and topography measured across a range of spatial and temporal extents; and LAGOSLIMNO, with lake water quality data compiled from ~100 individual datasets for a subset of lakes in the study extent (~10,000 lakes). Procedures for the integration of datasets included: creating a flexible database design; authoring and integrating metadata; documenting data provenance; quantifying spatial measures of geographic data; quality-controlling integrated and derived data; and extensively documenting the database. Our procedures make a large, complex, and integrated

  10. Building a multi-scaled geospatial temporal ecology database from disparate data sources: fostering open science and data reuse.

    Science.gov (United States)

    Soranno, Patricia A; Bissell, Edward G; Cheruvelil, Kendra S; Christel, Samuel T; Collins, Sarah M; Fergus, C Emi; Filstrup, Christopher T; Lapierre, Jean-Francois; Lottig, Noah R; Oliver, Samantha K; Scott, Caren E; Smith, Nicole J; Stopyak, Scott; Yuan, Shuai; Bremigan, Mary Tate; Downing, John A; Gries, Corinna; Henry, Emily N; Skaff, Nick K; Stanley, Emily H; Stow, Craig A; Tan, Pang-Ning; Wagner, Tyler; Webster, Katherine E

    2015-01-01

    Although there are considerable site-based data for individual or groups of ecosystems, these datasets are widely scattered, have different data formats and conventions, and often have limited accessibility. At the broader scale, national datasets exist for a large number of geospatial features of land, water, and air that are needed to fully understand variation among these ecosystems. However, such datasets originate from different sources and have different spatial and temporal resolutions. By taking an open-science perspective and by combining site-based ecosystem datasets and national geospatial datasets, science gains the ability to ask important research questions related to grand environmental challenges that operate at broad scales. Documentation of such complicated database integration efforts, through peer-reviewed papers, is recommended to foster reproducibility and future use of the integrated database. Here, we describe the major steps, challenges, and considerations in building an integrated database of lake ecosystems, called LAGOS (LAke multi-scaled GeOSpatial and temporal database), that was developed at the sub-continental study extent of 17 US states (1,800,000 km(2)). LAGOS includes two modules: LAGOSGEO, with geospatial data on every lake with surface area larger than 4 ha in the study extent (~50,000 lakes), including climate, atmospheric deposition, land use/cover, hydrology, geology, and topography measured across a range of spatial and temporal extents; and LAGOSLIMNO, with lake water quality data compiled from ~100 individual datasets for a subset of lakes in the study extent (~10,000 lakes). Procedures for the integration of datasets included: creating a flexible database design; authoring and integrating metadata; documenting data provenance; quantifying spatial measures of geographic data; quality-controlling integrated and derived data; and extensively documenting the database. Our procedures make a large, complex, and integrated

  11. Potential Precursor Compounds for Chlorohydrocarbons Detected in Gale Crater, Mars, by the SAM Instrument Suite on the Curiosity Rover

    Science.gov (United States)

    Miller, Kristen E.; Eigenbrode, Jennifer L.; Freissinet, Caroline; Glavin, Daniel P.; Kotrc, Benjamin; Francois, Pascaline; Summons, Roger E.

    2016-01-01

    The detection of chlorinated organic compounds in near-surface sedimentary rocks by the Sample Analysis at Mars (SAM) instrument suite aboard the Mars Science Laboratory Curiosity rover represents an important step toward characterizing habitable environments on Mars. However, this discovery also raises questions about the identity and source of their precursor compounds and the processes by which they become chlorinated. Here we present the results of analog experiments, conducted under conditions similar to SAM gas chromatography-mass spectrometry analyses, in which we pyrolyzed potential precursor compounds in the presence of various Cl salts and Fe oxides that have been identified in Martian sediments. While chloromethanes could not be unambiguously identified, 1,2-dichloropropane (1,2-DCP), which is one of the chlorinated compounds identified in SAM data, is formed from the chlorination of aliphatic precursors. Additionally, propanol produced more 1,2-DCP than nonfunctionalized aliphatics such as propane or hexanes. Chlorinated benzenes ranging from chlorobenzene to hexachlorobenzene were identified in experiments with benzene carboxylic acids but not with benzene or toluene. Lastly, the distribution of chlorinated benzenes depended on both the substrate species and the nature and concentration of the Cl salt. Ca and Mg perchlorate, both of which release O2 in addition to Cl2 and HCl upon pyrolysis, formed less chlorobenzene relative to the sum of all chlorinated benzenes than in experiments with ferric chloride. FeCl3, a Lewis acid, catalyzes chlorination but does not aid combustion. Accordingly, both the precursor chemistry and sample mineralogy exert important controls on the distribution of chlorinated organics.

  12. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations.

    Science.gov (United States)

    Ehlmann, B L; Edgett, K S; Sutter, B; Achilles, C N; Litvak, M L; Lapotre, M G A; Sullivan, R; Fraeman, A A; Arvidson, R E; Blake, D F; Bridges, N T; Conrad, P G; Cousin, A; Downs, R T; Gabriel, T S J; Gellert, R; Hamilton, V E; Hardgrove, C; Johnson, J R; Kuhn, S; Mahaffy, P R; Maurice, S; McHenry, M; Meslin, P-Y; Ming, D W; Minitti, M E; Morookian, J M; Morris, R V; O'Connell-Cooper, C D; Pinet, P C; Rowland, S K; Schröder, S; Siebach, K L; Stein, N T; Thompson, L M; Vaniman, D T; Vasavada, A R; Wellington, D F; Wiens, R C; Yen, A S

    2017-12-01

    The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H 2 O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H 2 O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H 2 O.

  13. The Search for Ammonia in Martian Soils with Curiosity's SAM Instrument

    Science.gov (United States)

    Wray, James J.; Archer, P. D.; Brinckerhoff, W. B.; Eigenbrode, J. L.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; McKay, C. P.; Navarro-Gonzalez, R.; hide

    2013-01-01

    Nitrogen is the second or third most abundant constituent of the Martian atmosphere [1,2]. It is a bioessential element, a component of all amino acids and nucleic acids that make up proteins, DNA and RNA, so assessing its availability is a key part of Curiosity's mission to characterize Martian habitability. In oxidizing desert environments it is found in nitrate salts that co-occur with perchlorates [e.g., 3], inferred to be widespread in Mars soils [4-6]. A Mars nitrogen cycle has been proposed [7], yet prior missions have not constrained the state of surface N. Here we explore Curiosity's ability to detect N compounds using data from the rover's first solid sample. Companion abstracts describe evidence for nitrates [8] and for nitriles (C(triple bond)N) [9]; we focus here on nonnitrile, reduced-N compounds as inferred from bonded N-H. The simplest such compound is ammonia (NH3), found in many carbonaceous chondrite meteorites in NH4(+) salts and organic compounds [e.g., 10].

  14. Red rover: inside the story of robotic space exploration, from genesis to the mars rover curiosity

    CERN Document Server

    Wiens, Roger

    2013-01-01

    In its eerie likeness to Earth, Mars has long captured our imaginations—both as a destination for humankind and as a possible home to extraterrestrial life. It is our twenty-first century New World; its explorers robots, shipped 350 million miles from Earth to uncover the distant planet’s secrets.Its most recent scout is Curiosity—a one-ton, Jeep-sized nuclear-powered space laboratory—which is now roving the Martian surface to determine whether the red planet has ever been physically capable of supporting life. In Red Rover, geochemist Roger Wiens, the principal investigator for the ChemCam laser instrument on the rover and veteran of numerous robotic NASA missions, tells the unlikely story of his involvement in sending sophisticated hardware into space, culminating in the Curiosity rover's amazing journey to Mars.In so doing, Wiens paints the portrait of one of the most exciting scientific stories of our time: the new era of robotic space exploration. Starting with NASA’s introduction of the Discovery...

  15. Crossing Science-Policy-Societal Boundaries to Reduce Scientific and Institutional Uncertainty in Small-Scale Fisheries

    Science.gov (United States)

    Sutton, Abigail M.; Rudd, Murray A.

    2016-10-01

    The governance of small-scale fisheries (SSF) is challenging due to the uncertainty, complexity, and interconnectedness of social, political, ecological, and economical processes. Conventional SSF management has focused on a centralized and top-down approach. A major criticism of conventional management is the over-reliance on `expert science' to guide decision-making and poor consideration of fishers' contextually rich knowledge. That is thought to exacerbate the already low governance potential of SSF. Integrating scientific knowledge with fishers' knowledge is increasingly popular and is often assumed to help reduce levels of biophysical and institutional uncertainties. Many projects aimed at encouraging knowledge integration have, however, been unsuccessful. Our objective in this research was to assess factors that influence knowledge integration and the uptake of integrated knowledge into policy-making. We report results from 54 semi-structured interviews with SSF researchers and practitioners from around the globe. Our analysis is framed in terms of scientific credibility, societal legitimacy, and policy saliency, and we discuss cases that have been partially or fully successful in reducing uncertainty via push-and-pull-oriented boundary crossing initiatives. Our findings suggest that two important factors affect the science-policy-societal boundary: a lack of consensus among stakeholders about what constitutes credible knowledge and institutional uncertainty resulting from shifting policies and leadership change. A lack of training for scientific leaders and an apparent `shelf-life' for community organizations highlight the importance of ongoing institutional support for knowledge integration projects. Institutional support may be enhanced through such investments, such as capacity building and specialized platforms for knowledge integration.

  16. Crossing Science-Policy-Societal Boundaries to Reduce Scientific and Institutional Uncertainty in Small-Scale Fisheries.

    Science.gov (United States)

    Sutton, Abigail M; Rudd, Murray A

    2016-10-01

    The governance of small-scale fisheries (SSF) is challenging due to the uncertainty, complexity, and interconnectedness of social, political, ecological, and economical processes. Conventional SSF management has focused on a centralized and top-down approach. A major criticism of conventional management is the over-reliance on 'expert science' to guide decision-making and poor consideration of fishers' contextually rich knowledge. That is thought to exacerbate the already low governance potential of SSF. Integrating scientific knowledge with fishers' knowledge is increasingly popular and is often assumed to help reduce levels of biophysical and institutional uncertainties. Many projects aimed at encouraging knowledge integration have, however, been unsuccessful. Our objective in this research was to assess factors that influence knowledge integration and the uptake of integrated knowledge into policy-making. We report results from 54 semi-structured interviews with SSF researchers and practitioners from around the globe. Our analysis is framed in terms of scientific credibility, societal legitimacy, and policy saliency, and we discuss cases that have been partially or fully successful in reducing uncertainty via push-and-pull-oriented boundary crossing initiatives. Our findings suggest that two important factors affect the science-policy-societal boundary: a lack of consensus among stakeholders about what constitutes credible knowledge and institutional uncertainty resulting from shifting policies and leadership change. A lack of training for scientific leaders and an apparent 'shelf-life' for community organizations highlight the importance of ongoing institutional support for knowledge integration projects. Institutional support may be enhanced through such investments, such as capacity building and specialized platforms for knowledge integration.

  17. Item response theory analysis of the Utrecht Work Engagement Scale for Students (UWES-S) using a sample of Japanese university and college students majoring medical science, nursing, and natural science.

    Science.gov (United States)

    Tsubakita, Takashi; Shimazaki, Kazuyo; Ito, Hiroshi; Kawazoe, Nobuo

    2017-10-30

    The Utrecht Work Engagement Scale for Students has been used internationally to assess students' academic engagement, but it has not been analyzed via item response theory. The purpose of this study was to conduct an item response theory analysis of the Japanese version of the Utrecht Work Engagement Scale for Students translated by authors. Using a two-parameter model and Samejima's graded response model, difficulty and discrimination parameters were estimated after confirming the factor structure of the scale. The 14 items on the scale were analyzed with a sample of 3214 university and college students majoring medical science, nursing, or natural science in Japan. The preliminary parameter estimation was conducted with the two parameter model, and indicated that three items should be removed because there were outlier parameters. Final parameter estimation was conducted using the survived 11 items, and indicated that all difficulty and discrimination parameters were acceptable. The test information curve suggested that the scale better assesses higher engagement than average engagement. The estimated parameters provide a basis for future comparative studies. The results also suggested that a 7-point Likert scale is too broad; thus, the scaling should be modified to fewer graded scaling structure.

  18. Integrated Assessment of Artisanal and Small-Scale Gold Mining in Ghana - Part 3: Social Sciences and Economics.

    Science.gov (United States)

    Wilson, Mark L; Renne, Elisha; Roncoli, Carla; Agyei-Baffour, Peter; Tenkorang, Emmanuel Yamoah

    2015-07-15

    This article is one of three synthesis reports resulting from an integrated assessment (IA) of artisanal and small-scale gold mining (ASGM) in Ghana. Given the complexities that involve multiple drivers and diverse disciplines influencing ASGM, an IA framework was used to analyze economic, social, health, and environmental data and to co-develop evidence-based responses in collaboration with pertinent stakeholders. We look at both micro- and macro-economic processes surrounding ASGM, including causes, challenges, and consequences. At the micro-level, social and economic evidence suggests that the principal reasons whereby most people engage in ASGM involve "push" factors aimed at meeting livelihood goals. ASGM provides an important source of income for both proximate and distant communities, representing a means of survival for impoverished farmers as well as an engine for small business growth. However, miners and their families often end up in a "poverty trap" of low productivity and indebtedness, which reduce even further their economic options. At a macro level, Ghana's ASGM activities contribute significantly to the national economy even though they are sometimes operating illegally and at a disadvantage compared to large-scale industrial mining companies. Nevertheless, complex issues of land tenure, social stability, mining regulation and taxation, and environmental degradation undermine the viability and sustainability of ASGM as a livelihood strategy. Although more research is needed to understand these complex relationships, we point to key findings and insights from social science and economics research that can guide policies and actions aimed to address the unique challenges of ASGM in Ghana and elsewhere.

  19. Integrated Assessment of Artisanal and Small-Scale Gold Mining in Ghana — Part 3: Social Sciences and Economics

    Directory of Open Access Journals (Sweden)

    Mark L. Wilson

    2015-07-01

    Full Text Available This article is one of three synthesis reports resulting from an integrated assessment (IA of artisanal and small-scale gold mining (ASGM in Ghana. Given the complexities that involve multiple drivers and diverse disciplines influencing ASGM, an IA framework was used to analyze economic, social, health, and environmental data and to co-develop evidence-based responses in collaboration with pertinent stakeholders. We look at both micro- and macro-economic processes surrounding ASGM, including causes, challenges, and consequences. At the micro-level, social and economic evidence suggests that the principal reasons whereby most people engage in ASGM involve “push” factors aimed at meeting livelihood goals. ASGM provides an important source of income for both proximate and distant communities, representing a means of survival for impoverished farmers as well as an engine for small business growth. However, miners and their families often end up in a “poverty trap” of low productivity and indebtedness, which reduce even further their economic options. At a macro level, Ghana’s ASGM activities contribute significantly to the national economy even though they are sometimes operating illegally and at a disadvantage compared to large-scale industrial mining companies. Nevertheless, complex issues of land tenure, social stability, mining regulation and taxation, and environmental degradation undermine the viability and sustainability of ASGM as a livelihood strategy. Although more research is needed to understand these complex relationships, we point to key findings and insights from social science and economics research that can guide policies and actions aimed to address the unique challenges of ASGM in Ghana and elsewhere.

  20. Integrated Assessment of Artisanal and Small-Scale Gold Mining in Ghana — Part 3: Social Sciences and Economics

    Science.gov (United States)

    Wilson, Mark L.; Renne, Elisha; Roncoli, Carla; Agyei-Baffour, Peter; Yamoah Tenkorang, Emmanuel

    2015-01-01

    This article is one of three synthesis reports resulting from an integrated assessment (IA) of artisanal and small-scale gold mining (ASGM) in Ghana. Given the complexities that involve multiple drivers and diverse disciplines influencing ASGM, an IA framework was used to analyze economic, social, health, and environmental data and to co-develop evidence-based responses in collaboration with pertinent stakeholders. We look at both micro- and macro-economic processes surrounding ASGM, including causes, challenges, and consequences. At the micro-level, social and economic evidence suggests that the principal reasons whereby most people engage in ASGM involve “push” factors aimed at meeting livelihood goals. ASGM provides an important source of income for both proximate and distant communities, representing a means of survival for impoverished farmers as well as an engine for small business growth. However, miners and their families often end up in a “poverty trap” of low productivity and indebtedness, which reduce even further their economic options. At a macro level, Ghana’s ASGM activities contribute significantly to the national economy even though they are sometimes operating illegally and at a disadvantage compared to large-scale industrial mining companies. Nevertheless, complex issues of land tenure, social stability, mining regulation and taxation, and environmental degradation undermine the viability and sustainability of ASGM as a livelihood strategy. Although more research is needed to understand these complex relationships, we point to key findings and insights from social science and economics research that can guide policies and actions aimed to address the unique challenges of ASGM in Ghana and elsewhere. PMID:26184277

  1. A Simple but Powerful Heuristic Method for Accelerating k-Means Clustering of Large-Scale Data in Life Science.

    Science.gov (United States)

    Ichikawa, Kazuki; Morishita, Shinichi

    2014-01-01

    K-means clustering has been widely used to gain insight into biological systems from large-scale life science data. To quantify the similarities among biological data sets, Pearson correlation distance and standardized Euclidean distance are used most frequently; however, optimization methods have been largely unexplored. These two distance measurements are equivalent in the sense that they yield the same k-means clustering result for identical sets of k initial centroids. Thus, an efficient algorithm used for one is applicable to the other. Several optimization methods are available for the Euclidean distance and can be used for processing the standardized Euclidean distance; however, they are not customized for this context. We instead approached the problem by studying the properties of the Pearson correlation distance, and we invented a simple but powerful heuristic method for markedly pruning unnecessary computation while retaining the final solution. Tests using real biological data sets with 50-60K vectors of dimensions 10-2001 (~400 MB in size) demonstrated marked reduction in computation time for k = 10-500 in comparison with other state-of-the-art pruning methods such as Elkan's and Hamerly's algorithms. The BoostKCP software is available at http://mlab.cb.k.u-tokyo.ac.jp/~ichikawa/boostKCP/.

  2. E-cigarette curiosity among U.S. middle and high school students: Findings from the 2014 national youth tobacco survey.

    Science.gov (United States)

    Margolis, Katherine A; Nguyen, Anh B; Slavit, Wendy I; King, Brian A

    2016-08-01

    Curiosity is a potential risk factor for electronic cigarette (e-cigarette) use, which has increased considerably among US youth in recent years. We examined the relationship between curiosity about e-cigarettes and perceived harm, comparative addictiveness, and e-cigarette advertisement exposure. Data came from the 2014 National Youth Tobacco Survey, a nationally representative survey of U.S. middle and high school students. In 2014, 2.5% of middle school and 9.2% of high school students currently used cigarettes, while 3.9% of middle school and 13.4% of high school students reported current e-cigarette use. Among never e-cigarette users (n=17,286), descriptive statistics assessed curiosity about e-cigarettes by combustible tobacco use, sex, race/ethnicity, and school level. Associations between curiosity and perceived harm (absolute and comparative to cigarettes), comparative addictiveness, and e-cigarette advertising exposure were explored using multivariate models in 2015. Among youth who never used e-cigarettes, 25.8% reported curiosity about e-cigarettes. Higher levels of perceived absolute harm and comparative harm were associated with lower levels of curiosity, while no association was observed between comparative addictiveness and curiosity. Among never combustible tobacco users, the odds of high curiosity were greater among non-Hispanic blacks (odds ratio (OR): 1.39; 95% confidence interval (CI):1.02-1.88), Hispanics (OR=1.79; 95% CI:1.48-2.16), and non-Hispanic 'Other' (OR=1.47; 95% CI:1.15-1.89) race/ethnicities than non-Hispanic whites. One-quarter of middle and high school students who have never used e-cigarettes are curious about the products, with greater curiosity among those with lower perceptions of harm from these products. These findings may help inform future strategies aimed at reducing curiosity about e-cigarettes among youth. Published by Elsevier Inc.

  3. Overview of Initial Results From Studies of the Bagnold Dune Field on Mars by the Curiosity Rover

    Science.gov (United States)

    Bridges, Nathan; Ehlmann, Bethany; Ewing, Ryan; Newman, Claire; Sullivan, Robert; Conrad, Pamela; Cousin, Agnes; Edgett, Kenneth; Fisk, Martin; Fraeman, Abigail; Johnson, Jeffrey; Lamb, Michael; Lapotre, Mathieu; Le Mouélic, Stéphane; Martinez, German; Meslin, Pierre-Yves; Thompson, Lucy; van Beek, Jason; Vasavada, Ashwin; Wiens, Roger

    2016-04-01

    The Curiosity Rover is currently studying the Bagnold Dunes in Gale Crater. Here we provide a general overview of results and note that other EGU presentations will focus on specific aspects. The in situ activities have not yet occurred as of this writing, but other analyses have been performed approaching and within the dunefield. ChemCam passive spectra of Bagnold Dune sands are consistent with the presence of olivine. Two APXS spots on the High Dune stoss slope margin, and two others in an engineering test sand patch, show less inferred dust, greater Si, and higher Fe/Mn than other "soils" in Gale Crater. ChemCam analyses of more than 300 soils along the Curiosity traverse show that both fine and coarse soils have increasing iron and alkali content as the Bagnold Dunes are approached, a trend that may reflect admixtures of local rocks (alkalis + iron) to the fines, but also a contribution of Bagnold-like sand (iron) that increases toward the dunefield. MAHLI images of sands on the lower east stoss slope of High Dune show medium and coarse sand in ripple forms, and very fine and fine sand in ripple troughs. Most grains are dark gray, but some are also brick-red/brown, white, green translucent, yellow, brown" colorless translucent, or vitreous spheres HiRISE orbital images show that the Bagnold Dunes migrate on the order of decimeters or more per Earth year. Prior to entering the dune field, wind disruption of dump piles and grain movement was observed over multi-sol time spans, demonstrating that winds are of sufficient strength to mobilize unconsolidated material, either through direct aerodynamic force or via the action of smaller impacting grains. Within the dune field, we are, as of this writing, engaged in change detection experiments with Mastcam and ChemCam's RMI camera. Data we have so far, spanning 8 sols from the same location, shows no changes. Mastcam and RMI images of the stoss sides of Namib, Noctivaga, and High Dune show that the "ripples" seen

  4. Lessons Don't Have To Be Rocket Science!

    Science.gov (United States)

    Morris, Andrew

    2002-01-01

    Describes an experimental program to teach adults who are curious about, but poorly educated in, science. Learning began with questions arising from that curiosity and discussion was encouraged by the teacher. Students felt empowered by the process and freely asked questions. (JOW)

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 11. Conducting Polymers From a Laboratory Curiosity to the Market Place. S Ramakrishnan. General Article Volume 2 Issue 11 November 1997 pp 48-58. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. The Role of Content and Context in PISA Interest Scales: A study of the embedded interest items in the PISA 2006 science assessment

    Science.gov (United States)

    Drechsel, Barbara; Carstensen, Claus; Prenzel, Manfred

    2011-01-01

    This paper focuses interest in science as one of the attitudinal aspects of scientific literacy. Large-scale data from the Programme for International Student Assessment (PISA) 2006 are analysed in order to describe student interest more precisely. So far the analyses have provided a general indicator of interest, aggregated over all contexts and contents in the science test. With its innovative approach PISA embeds interest items within the cognitive test unit and its contents and contexts. The main difference from conventional interest measures is that in most questionnaires, a relatively small number of interest items cover broad fields of contents and contexts. The science units represent a number of systematically differentiated scientific contexts and contents. The units' stimulus texts allow for concrete descriptions of relevant content aspects, applications, and contexts. In the analyses, multidimensional item response models are applied in order to disentangle student interest. The results indicate that multidimensional models fit the data. A two-dimensional model separating interest into two different knowledge of science dimensions described in the PISA science framework is further analysed with respect to gender, performance differences, and country. The findings give a comprehensive description of students' interest in science. The paper deals with methodological problems and describes requirements of the test construction for further assessments. The results are discussed with regard to their significance for science education.

  7. What are the barriers to scaling up health interventions in low and middle income countries? A qualitative study of academic leaders in implementation science

    Directory of Open Access Journals (Sweden)

    Yamey Gavin

    2012-05-01

    Full Text Available Abstract Background Most low and middle income countries (LMICs are currently not on track to reach the health-related Millennium Development Goals (MDGs. One way to accelerate progress would be through the large-scale implementation of evidence-based health tools and interventions. This study aimed to: (a explore the barriers that have impeded such scale-up in LMICs, and (b lay out an “implementation research agenda”—a series of key research questions that need to be addressed in order to help overcome such barriers. Methods Interviews were conducted with fourteen key informants, all of whom are academic leaders in the field of implementation science, who were purposively selected for their expertise in scaling up in LMICs. Interviews were transcribed by hand and manually coded to look for emerging themes related to the two study aims. Barriers to scaling up, and unanswered research questions, were organized into six categories, representing different components of the scaling up process: attributes of the intervention; attributes of the implementers; scale-up approach; attributes of the adopting community; socio-political, fiscal, and cultural context; and research context. Results Factors impeding the success of scale-up that emerged from the key informant interviews, and which are areas for future investigation, include: complexity of the intervention and lack of technical consensus; limited human resource, leadership, management, and health systems capacity; poor application of proven diffusion techniques; lack of engagement of local implementers and of the adopting community; and inadequate integration of research into scale-up efforts. Conclusions Key steps in expanding the evidence base on implementation in LMICs include studying how to: simplify interventions; train “scale-up leaders” and health workers dedicated to scale-up; reach and engage communities; match the best delivery strategy to the specific health problem and

  8. The Methods Applied by Pre-School Teachers to Raise the Curiosity of Children and Their Views

    Science.gov (United States)

    Buyuktaskapu Soydan, Sema; Erbay, Filiz

    2013-01-01

    The purpose of this study is to determine the strategies used by pre-school teachers in order to raise curiosity in children. Based on this aim, sample is composed of 52 pre-school teachers working in kindergartens affiliated to Ministry of National Education. Study data were collected via qualitative research methods. Research data were gathered…

  9. STEM Focused High School and University Partnership: Alternative Solution for Senioritis Issue and Creating Students' STEM Curiosity

    Science.gov (United States)

    Icel, Mustafa; Davis, Matthew

    2018-01-01

    The purpose of this study is to evaluate how the high school-college partnership reflects on "senioritis" and students' STEM curiosity. The term "senioritis" described in this paper refers to high school senior students who have completed most of their graduation requirement courses in their third year of studies. During the…

  10. Positive Affect Relevant to Epistemic Curiosity to Reflect Continuance Intention to Join a Hands-On Making Contest

    Science.gov (United States)

    Hong, Jon-Chao; Hwang, Ming-Yueh; Szeto, Elson; Tai, Kai-Hsin; Tsai, Chi-Ruei

    2016-01-01

    Hands-on making (e.g., "Maker") has become prevalent in current educational settings. To understand the role that students' epistemic curiosity plays in hands-on making contests, this study explored its correlation to students' positive affect and continuance intention to participate in a hands-on making contest called…

  11. Adult Life Stage and Crisis as Predictors of Curiosity and Authenticity: Testing Inferences from Erikson's Lifespan Theory

    Science.gov (United States)

    Robinson, Oliver C.; Demetre, James D.; Litman, Jordan A.

    2017-01-01

    During periods of developmental crisis, individuals experience uncomfortable internal incongruence and are motivated to reduce this through forms of exploration of self, other and world. Based on this, we inferred that being in a crisis would relate positively to curiosity and negatively to a felt sense of authenticity. A quasi-experimental design…

  12. An Innovative Methodology for Capturing Young Children's Curiosity, Imagination and Voices Using a Free App: Our Story

    Science.gov (United States)

    Canning, Natalie; Payler, Jane; Horsley, Karen; Gomez, Chris

    2017-01-01

    This study explores children's narratives of their curiosity and imagination through innovative use of an information technology app--Our Story. Novel use of the app allowed children to express and record their opinions they considered significant to them. The research captured children's approaches to everyday situations through their play.…

  13. The Impact of Curiosity and External Regulation on Intrinsic Motivation: An Empirical Study in Hong Kong Education

    Science.gov (United States)

    Hon-keung, Yau; Man-shan, Kan; Lai-fong, Cheng Alison

    2012-01-01

    The purposes of this paper are to identify: (1) the factors affecting the intrinsic motivation of university students in Hong Kong; and (2) gender differences in the perception of intrinsic motivation in Hong Kong higher education environment. The factors of curiosity and external regulation with intrinsic motivation are taken into investigation…

  14. How Do College/University Teacher Misbehaviors Influence Student Cognitive Learning, Academic Self-Efficacy, Motivation, and Curiosity?

    Science.gov (United States)

    Banfield, Sara R.

    2009-01-01

    The purpose of this research was to examine the relationship between teacher misbehaviors and a variety of outcome variables, including cognitive learning, motivation, curiosity, and academic self-efficacy. Research has yet to directly address how teacher misbehaviors affect cognitive learning. It is important to assess actual learning as opposed…

  15. Mathematical Critical Thinking and Curiosity Attitude in Problem Based Learning and Cognitive Conflict Strategy: A Study in Number Theory Course

    Science.gov (United States)

    Zetriuslita; Wahyudin; Jarnawi

    2017-01-01

    This research aims to describe and analyze result of applying Problem-Based Learning and Cognitive Conflict Strategy (PBLCCS) in increasing students' Mathematical Critical Thinking (MCT) ability and Mathematical Curiosity Attitude (MCA). Adopting a quasi-experimental method with pretest-posttest control group design and using mixed method with…

  16. Updates from the MSL-RAD Experiment on the Mars Curiosity Rover

    Science.gov (United States)

    Zeitlin, Cary

    2015-01-01

    The MSL-RAD instrument continues to operate flawlessly on Mars. As of this writing, some 1040 sols (Martian days) of data have been successfully acquired. Several improvements have been made to the instrument's configuration, particularly aimed at enabling the analysis of neutral-particle data. The dose rate since MSL's landing in August 2012 has remained remarkably stable, reflecting the unusual and very weak solar maximum of Cycle 24. Only a few small SEP events have been observed by RAD, which is shielded by the Martian atmosphere. Gale Crater, where Curiosity landed, is 4.4 km below the mean surface of Mars, and the column depth of atmosphere above is approximately 20 g/sq cm, which provides significant attenuation of GCR heavy ions and SEPs. Recent analysis results will be presented, including updated estimates of the neutron contributions to dose and dose equivalent in cruise and on the surface of Mars.

  17. Friendship, curiosity and the city: Dementia friends and memory walks in Liverpool.

    Science.gov (United States)

    Phillips, Richard; Evans, Bethan

    2018-02-01

    The city is not just a context for friendships or a problem to be solved through them; it can be a catalyst for these relationships, sparking and strengthening connections between individuals and groups. Shared experiences of and curiosity in cities - expressed through practices that include revisiting familiar places and exploring others for the first time - can draw people together in beneficial ways. These principles underpin a health and wellbeing agenda, pioneered in Liverpool, which encourages people to 'take notice' and 'connect' - two of five 'ways to wellbeing' promoted through the Liverpool Decade of Health and Wellbeing. This paper focusses upon one particular set of schemes and relationships which brings all this into focus: befriending schemes designed to support people with dementia, which engage with objects and places as catalysts for connection. These observations shed a broader light upon the meanings and uses of friendship, with particular reference to cities.

  18. The Mars Science Laboratory (MSL) Bagnold Dunes Campaign, Phase I: Overview and introduction to the special issue

    Science.gov (United States)

    Bridges, Nathan T.; Ehlmann, Bethany L.

    2018-01-01

    The Bagnold dunes in Gale Crater, Mars, are the first active aeolian dune field explored in situ on another planet. The Curiosity rover visited the Bagnold dune field to understand modern winds, aeolian processes, rates, and structures; to determine dune material composition, provenance, and the extent and type of compositional sorting; and to collect knowledge that informs the interpretation of past aeolian processes that are preserved in the Martian sedimentary rock record. The Curiosity rover conducted a coordinated campaign of activities lasting 4 months, interspersed with other rover activities, and employing all of the rover's science instruments and several engineering capabilities. Described in 13 manuscripts and summarized here, the major findings of the Bagnold Dunes Campaign, Phase I, include the following: the characterization of and explanation for a distinctive, meter-scale size of sinuous aeolian bedform formed in the high kinetic viscosity regime of Mars' thin atmosphere; articulation and evaluation of a grain splash model that successfully explains the occurrence of saltation even at wind speeds below the fluid threshold; determination of the dune sands' basaltic mineralogy and crystal chemistry in comparison with other soils and sedimentary rocks; and characterization of chemically distinctive volatile reservoirs in sand-sized versus dust-sized fractions of Mars soil, including two volatile-bearing types of amorphous phases.

  19. Using CyberShake Workflows to Manage Big Seismic Hazard Data on Large-Scale Open-Science HPC Resources

    Science.gov (United States)

    Callaghan, S.; Maechling, P. J.; Juve, G.; Vahi, K.; Deelman, E.; Jordan, T. H.

    2015-12-01

    The CyberShake computational platform, developed by the Southern California Earthquake Center (SCEC), is an integrated collection of scientific software and middleware that performs 3D physics-based probabilistic seismic hazard analysis (PSHA) for Southern California. CyberShake integrates large-scale and high-throughput research codes to produce probabilistic seismic hazard curves for individual locations of interest and hazard maps for an entire region. A recent CyberShake calculation produced about 500,000 two-component seismograms for each of 336 locations, resulting in over 300 million synthetic seismograms in a Los Angeles-area probabilistic seismic hazard model. CyberShake calculations require a series of scientific software programs. Early computational stages produce data used as inputs by later stages, so we describe CyberShake calculations using a workflow definition language. Scientific workflow tools automate and manage the input and output data and enable remote job execution on large-scale HPC systems. To satisfy the requests of broad impact users of CyberShake data, such as seismologists, utility companies, and building code engineers, we successfully completed CyberShake Study 15.4 in April and May 2015, calculating a 1 Hz urban seismic hazard map for Los Angeles. We distributed the calculation between the NSF Track 1 system NCSA Blue Waters, the DOE Leadership-class system OLCF Titan, and USC's Center for High Performance Computing. This study ran for over 5 weeks, burning about 1.1 million node-hours and producing over half a petabyte of data. The CyberShake Study 15.4 results doubled the maximum simulated seismic frequency from 0.5 Hz to 1.0 Hz as compared to previous studies, representing a factor of 16 increase in computational complexity. We will describe how our workflow tools supported splitting the calculation across multiple systems. We will explain how we modified CyberShake software components, including GPU implementations and

  20. 'Scaling-up is a craft not a science': Catalysing scale-up of health innovations in Ethiopia, India and Nigeria.

    Science.gov (United States)

    Spicer, Neil; Bhattacharya, Dipankar; Dimka, Ritgak; Fanta, Feleke; Mangham-Jefferies, Lindsay; Schellenberg, Joanna; Tamire-Woldemariam, Addis; Walt, Gill; Wickremasinghe, Deepthi

    2014-11-01

    Donors and other development partners commonly introduce innovative practices and technologies to improve health in low and middle income countries. Yet many innovations that are effective in improving health and survival are slow to be translated into policy and implemented at scale. Understanding the factors influencing scale-up is important. We conducted a qualitative study involving 150 semi-structured interviews with government, development partners, civil society organisations and externally funded implementers, professional associations and academic institutions in 2012/13 to explore scale-up of innovative interventions targeting mothers and newborns in Ethiopia, the Indian state of Uttar Pradesh and the six states of northeast Nigeria, which are settings with high burdens of maternal and neonatal mortality. Interviews were analysed using a common analytic framework developed for cross-country comparison and themes were coded using Nvivo. We found that programme implementers across the three settings require multiple steps to catalyse scale-up. Advocating for government to adopt and finance health innovations requires: designing scalable innovations; embedding scale-up in programme design and allocating time and resources; building implementer capacity to catalyse scale-up; adopting effective approaches to advocacy; presenting strong evidence to support government decision making; involving government in programme design; invoking policy champions and networks; strengthening harmonisation among external programmes; aligning innovations with health systems and priorities. Other steps include: supporting government to develop policies and programmes and strengthening health systems and staff; promoting community uptake by involving media, community leaders, mobilisation teams and role models. We conclude that scale-up has no magic bullet solution - implementers must embrace multiple activities, and require substantial support from donors and governments in

  1. Career Adapt-Abilities Scale-Belgium Form: psychometric characteristics and construct validity

    NARCIS (Netherlands)

    Dries, N.; van Esbroeck, R.; van Vianen, A.E.M.; de Cooman, R.; Pepermans, R.

    2012-01-01

    The Dutch version of the Career Adapt-Abilities Scale-Belgium Form (CAAS-Belgium) consists of four scales, each with six items, which measure concern, control, curiosity, and confidence as psychosocial resources for managing occupational transitions, developmental tasks, and work traumas. A pilot

  2. Multilayer network modeling creates opportunities for novel network statistics. Comment on "Network science of biological systems at different scales: A review" by Gosak et al.

    Science.gov (United States)

    Muldoon, Sarah Feldt

    2018-03-01

    As described in the review by Gosak et al., the field of network science has had enormous success in providing new insights into the structure and function of biological systems [1]. In the complex networks framework, system elements are network nodes, and connections between nodes represent some form of interaction between system elements [2]. The flexibility to define network nodes and edges to represent different aspects of biological systems has been employed to model numerous diverse systems at multiple scales.

  3. A Self-Study of a Thai Teacher Educator Developing a Better Understanding of PCK for Teaching about Teaching Science

    Science.gov (United States)

    Faikhamta, Chatree; Clarke, Anthony

    2013-01-01

    In this study, I, the first author as a Thai teacher educator employed self-study as a research methodology to investigate my own understandings, questions, and curiosities about pedagogical content knowledge (PCK) for teaching science student teachers and the ways I engaged student teachers in a field-based science methods course designed to help…

  4. Raising Future Scientists: Identifying and Developing a Child’s Science Talent, A Guide for Parents and Teachers

    Science.gov (United States)

    Heilbronner, Nancy N.

    2013-01-01

    Parents and teachers may suspect early science talent in children, which frequently manifests itself through insatiable curiosity and an intense interest in one or more areas of science. However, sometimes they struggle with identification and then knowing what to do to nurture these talents. The author of this practical article provides a…

  5. The Search for Organic Compounds of Martian Origin in Gale Crater by the Sample Analysis at Mars (SAM) Instrument on Curiosity

    Science.gov (United States)

    Glavin, Daniel; Freissinet, Caroline; Mahaffy, Paul; Miller, Kristen; Eigenbrode, Jennifer; Summons, Roger; Archer, Douglas, Jr.; Brunner, Anna; Martin, Mildred; Buch, Arrnaud; hide

    2014-01-01

    One of the key objectives of the Mars Science Laboratory rover and the Sample Analysis at Mars (SAM) instrument suite is to determine the inventory of organic and inorganic volatiles in the atmosphere and surface regolith and rocks to help assess the habitability potential of Gale Crater. The SAM instrument on the Curiosity rover can detect volatile organic compounds thermally evolved from solid samples using a combination of evolved gas analysis (EGA) and gas chromatography mass spectrometry (GCMS) (Mahaffy et al. 2012). The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest, revealed several chloromethanes and a C4-chlorinated hydrocarbon derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tertbutyldimethylsilyl)- trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background (Glavin et al. 2013). After the analyses at Rocknest, Curiosity traveled to Yellowknife Bay and drilled two separate holes in a fluvio-lacustrine sediment (the Sheepbed unit) designated John Klein and Cumberland. Analyses of the drilled materials by both SAM and the CheMin X-Ray Diffraction instrument revealed a mudstone consisting of 20 wt% smectite clays (Ming et al. 2013; Vaniman et al. 2013), which on Earth are known to aid the concentration and preservation of organic matter. Oxychlorine compounds were also detected in the Sheepbed mudstone during pyrolysis; however, in contrast to Rocknest, much higher levels of chloromethanes were released from the Sheepbed materials, suggesting an additional, possibly martian source of organic carbon (Ming et al. 2013). In addition, elevated abundances of chlorobenzene and a more diverse suite of chlorinated alkanes including dichloropropane and dichlorobutane detected in Cumberland compared to Rocknest suggest that martian or meteoritic organic carbon sources may be preserved in the mudstone (Freissinet et al. 2013

  6. LifeWatch - a Large-scale eScience Infrastructure to Assist in Understanding and Managing our Planet's Biodiversity

    Science.gov (United States)

    Hernández Ernst, Vera; Poigné, Axel; Los, Walter

    2010-05-01

    Understanding and managing the complexity of the biodiversity system in relation to global changes concerning land use and climate change with their social and economic implications is crucial to mitigate species loss and biodiversity changes in general. The sustainable development and exploitation of existing biodiversity resources require flexible and powerful infrastructures offering, on the one hand, the access to large-scale databases of observations and measures, to advanced analytical and modelling software, and to high performance computing environments and, on the other hand, the interlinkage of European scientific communities among each others and with national policies. The European Strategy Forum on Research Infrastructures (ESFRI) selected the "LifeWatch e-science and technology infrastructure for biodiversity research" as a promising development to construct facilities to contribute to meet those challenges. LifeWatch collaborates with other selected initiatives (e.g. ICOS, ANAEE, NOHA, and LTER-Europa) to achieve the integration of the infrastructures at landscape and regional scales. This should result in a cooperating cluster of such infrastructures supporting an integrated approach for data capture and transmission, data management and harmonisation. Besides, facilities for exploration, forecasting, and presentation using heterogeneous and distributed data and tools should allow the interdisciplinary scientific research at any spatial and temporal scale. LifeWatch is an example of a new generation of interoperable research infrastructures based on standards and a service-oriented architecture that allow for linkage with external resources and associated infrastructures. External data sources will be established data aggregators as the Global Biodiversity Information Facility (GBIF) for species occurrences and other EU Networks of Excellence like the Long-Term Ecological Research Network (LTER), GMES, and GEOSS for terrestrial monitoring, the

  7. On an experimental curiosity that if undetected may lead to erroneous far-reaching conclusions

    International Nuclear Information System (INIS)

    Noninski, V.C.; Ciottone, J.L.; White, P.J.

    1997-01-01

    This letter gives a brief discussion of the possibilities of inducing nuclear effects by carrying out only chemical reactions. Undoubtedly, this interest is a result of the still unresolved problem of 'cold fusion,' and some colleagues tend to see a clear connection, and even an extension of the studies, between cold fusion and the alleged chemical transmutation of elements. While we have already published thorough reports (negative so far) of our studies with regard to the claimed increase of gamma-ray emission and beta decay after burning of a mixture of chemicals, this letter informs the Fusion Technology readership of an experimental curiosity that is encountered during similar studies that initially led us to an erroneous conclusion. As in previous studies, we compared certain radiochemical properties of a mixture of chemicals before and after a chemical reaction (burning). Under discussion here is a peak that we observed in the range of 412 keV in the gamma spectrum in one of the burned samples after neutron activating it for 3 min at 1 kW. This peak was ostensibly not present in the same sample unburned. 4 refs., 2 figs

  8. Curiosity and exploratory behaviour towards possible and impossible events in children and adults.

    Science.gov (United States)

    Subbotsky, Eugene

    2010-08-01

    In four experiments with 4-, 6-, and 9-year-old children and adults, the hypothesis was tested that, all other conditions being equal, a novel and unusual event elicits stronger curiosity and exploratory behaviour if its suggested explanation involves an element of the supernatural than if it does not (the impossible over possible effect - the I/P effect). Participants were shown an unusual phenomenon (a spontaneous disintegration of a physical object in an apparently empty box) framed in the context of either a magical (the impossible event) or scientific (the possible event) explanation. In the verbal trial, participants showed a clear understanding of the difference between the effect of genuine magic and the effect of a trick. In the behavioural trial, both children and adults showed the I/P effect. They were more likely to run the risk of losing their valuable objects in order to explore the impossible event than the possible event. Follow-up experiments showed that the I/P effect couldn't be explained as an artifact of the different degrees of cost of exploratory behaviour in the possible and impossible conditions or as a result of misinterpreting magic as tricks. The I/P effect emerged when the cost of exploratory behaviour was moderate and disappeared when the cost was perceived as too high or too low.

  9. Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover

    Science.gov (United States)

    Mahaffy, Paul R.; Webster, Christopher R.; Atreya, Sushil K.; Franz, Heather; Wong, Michael; Conrad, Pamela G.; Harpold, Dan; Jones, John J.; Leshin, Laurie A.; Manning, Heidi; Owen, Tobias; Pepin, Robert O.; Squyres, Steven; Trainer, Melissa; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Grotzinger, John; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Jones, Andrea; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Vasavada, Ashwin R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2013-07-01

    Volume mixing and isotope ratios secured with repeated atmospheric measurements taken with the Sample Analysis at Mars instrument suite on the Curiosity rover are: carbon dioxide (CO2), 0.960(±0.007); argon-40 (40Ar), 0.0193(±0.0001); nitrogen (N2), 0.0189(±0.0003); oxygen, 1.45(±0.09) × 10-3; carbon monoxide, < 1.0 × 10-3; and 40Ar/36Ar, 1.9(±0.3) × 103. The 40Ar/N2 ratio is 1.7 times greater and the 40Ar/36Ar ratio 1.6 times lower than values reported by the Viking Lander mass spectrometer in 1976, whereas other values are generally consistent with Viking and remote sensing observations. The 40Ar/36Ar ratio is consistent with martian meteoritic values, which provides additional strong support for a martian origin of these rocks. The isotopic signature δ13C from CO2 of ~45 per mil is independently measured with two instruments. This heavy isotope enrichment in carbon supports the hypothesis of substantial atmospheric loss.

  10. Sophisticated lessons from simple organisms: appreciating the value of curiosity-driven research

    Directory of Open Access Journals (Sweden)

    Robert J. Duronio

    2017-12-01

    Full Text Available For hundreds of years, biologists have studied accessible organisms such as garden peas, sea urchins collected at low tide, newt eggs, and flies circling rotten fruit. These organisms help us to understand the world around us, attracting and inspiring each new generation of biologists with the promise of mystery and discovery. Time and time again, what we learn from such simple organisms has emphasized our common biological origins by proving to be applicable to more complex organisms, including humans. Yet, biologists are increasingly being tasked with developing applications from the known, rather than being allowed to follow a path to discovery of the as yet unknown. Here, we provide examples of important lessons learned from research using selected non-vertebrate organisms. We argue that, for the purpose of understanding human disease, simple organisms cannot and should not be replaced solely by human cell-based culture systems. Rather, these organisms serve as powerful discovery tools for new knowledge that could subsequently be tested for conservation in human cell-based culture systems. In this way, curiosity-driven biological research in simple organisms has and will continue to pay huge dividends in both the short and long run for improving the human condition.

  11. Simulation of the GCR spectrum in the Mars curiosity rover's RAD detector using MCNP6

    Science.gov (United States)

    Ratliff, Hunter N.; Smith, Michael B. R.; Heilbronn, Lawrence

    2017-08-01

    The paper presents results from MCNP6 simulations of galactic cosmic ray (GCR) propagation down through the Martian atmosphere to the surface and comparison with RAD measurements made there. This effort is part of a collaborative modeling workshop for space radiation hosted by Southwest Research Institute (SwRI). All modeling teams were tasked with simulating the galactic cosmic ray (GCR) spectrum through the Martian atmosphere and the Radiation Assessment Detector (RAD) on-board the Curiosity rover. The detector had two separate particle acceptance angles, 4π and 30 ° off zenith. All ions with Z = 1 through Z = 28 were tracked in both scenarios while some additional secondary particles were only tracked in the 4π cases. The MCNP6 4π absorbed dose rate was 307.3 ± 1.3 μGy/day while RAD measured 233 μGy/day. Using the ICRP-60 dose equivalent conversion factors built into MCNP6, the simulated 4π dose equivalent rate was found to be 473.1 ± 2.4 μSv/day while RAD reported 710 μSv/day.

  12. Simulation of the GCR spectrum in the Mars curiosity rover's RAD detector using MCNP6.

    Science.gov (United States)

    Ratliff, Hunter N; Smith, Michael B R; Heilbronn, Lawrence

    2017-08-01

    The paper presents results from MCNP6 simulations of galactic cosmic ray (GCR) propagation down through the Martian atmosphere to the surface and comparison with RAD measurements made there. This effort is part of a collaborative modeling workshop for space radiation hosted by Southwest Research Institute (SwRI). All modeling teams were tasked with simulating the galactic cosmic ray (GCR) spectrum through the Martian atmosphere and the Radiation Assessment Detector (RAD) on-board the Curiosity rover. The detector had two separate particle acceptance angles, 4π and 30 ° off zenith. All ions with Z = 1 through Z = 28 were tracked in both scenarios while some additional secondary particles were only tracked in the 4π cases. The MCNP6 4π absorbed dose rate was 307.3 ± 1.3 µGy/day while RAD measured 233 µGy/day. Using the ICRP-60 dose equivalent conversion factors built into MCNP6, the simulated 4π dose equivalent rate was found to be 473.1 ± 2.4 µSv/day while RAD reported 710 µSv/day. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  13. ASSOCIATION AMONG MATHEMATICAL CRITICAL THINKING SKILL, COMMUNICATION, AND CURIOSITY ATTITUDE AS THE IMPACT OF PROBLEM-BASED LEARNING AND COGNITIVE CONFLICT STRATEGY (PBLCCS) IN NUMBER THEORY COURSE

    OpenAIRE

    Zetriuslita Zetriuslita; Wahyudin Wahyudin; Jarnawi Afgani Dahlan

    2018-01-01

    This research aims to find out the association amongMathematical Critical Thinking (MCT) ability, Mathematical Communication, and Mathematical Curiosity Attitude (MCA) as the impact of applying Problem-Based Learning Cognitive Conflict Strategy(PBLCCS) in Number Theory course. The research method is correlative study. The instruments include a test for mathematical critical thinking skill and communication, and questionnaire to obtain the scores of mathematical curiosity attitude. The finding...

  14. Ever-Use and Curiosity About Cigarettes, Cigars, Smokeless Tobacco, and Electronic Cigarettes Among US Middle and High School Students, 2012?2014

    OpenAIRE

    Persoskie, Alexander; Donaldson, Elisabeth A.; King, Brian A.

    2016-01-01

    Introduction Among young people, curiosity about tobacco products is a primary reason for tobacco experimentation and is a risk factor for future use. We examined whether curiosity about and ever-use of tobacco products among US middle and high school students changed from 2012 to 2014. Methods Data came from the 2012 and 2014 National Youth Tobacco Surveys, nationally representative surveys of US students in grades 6 through 12. For cigarettes, cigars, smokeless tobacco, and e-cigarettes (20...

  15. Higher Education Teachers' Descriptions of Their Own Learning: A Large-Scale Study of Finnish Universities of Applied Sciences

    Science.gov (United States)

    Töytäri, Aija; Piirainen, Arja; Tynjälä, Päivi; Vanhanen-Nuutinen, Liisa; Mäki, Kimmo; Ilves, Vesa

    2016-01-01

    In this large-scale study, higher education teachers' descriptions of their own learning were examined with qualitative analysis involving application of principles of phenomenographic research. This study is unique: it is unusual to use large-scale data in qualitative studies. The data were collected through an e-mail survey sent to 5960 teachers…

  16. E-cigarette openness, curiosity, harm perceptions and advertising exposure among U.S. middle and high school students.

    Science.gov (United States)

    Margolis, Katherine A; Donaldson, Elisabeth A; Portnoy, David B; Robinson, Joelle; Neff, Linda J; Jamal, Ahmed

    2018-07-01

    Understanding factors associated with youth e-cigarette openness and curiosity are important for assessing probability of future use. We examined how e-cigarette harm perceptions and advertising exposure are associated with openness and curiosity among tobacco naive youth. Findings from the 2015 National Youth Tobacco Survey (NYTS) were analyzed. The 2015 NYTS is a nationally representative survey of 17,711 U.S. middle and high school students. We calculated weighted prevalence estimates of never users of tobacco products (cigarettes, cigars/cigarillos/little cigars, waterpipe/hookah, smokeless tobacco, bidis, pipes, dissolvables, e-cigarettes) who were open to or curious about e-cigarette use, by demographics. Weighted regression models examined how e-cigarette harm perceptions and advertising exposure were associated with openness using e-cigarettes and curiosity about trying e-cigarettes. Among respondents who never used tobacco products, 23.8% were open to using e-cigarettes and 25.4% were curious. Respondents that perceived e-cigarettes cause a lot of harm had lower odds of both openness (OR = 0.10, 95% CI = 0.07, 0.15) and curiosity about e-cigarettes (OR = 0.10, 95% CI = 0.07, 0.13) compared to those with lower harm perception. Respondents who reported high exposure to e-cigarette advertising in stores had greater odds of being open to e-cigarette use (OR = 1.22, 95% CI = 1.03, 1.44) and highly curious (OR = 1.25, 95% CI = 1.01, 1.53) compared to those not highly exposed. These findings demonstrate that youth exposed to e-cigarette advertising are open and curious to e-cigarette use. These findings could help public health practitioners better understand the interplay of advertising exposure and harm perceptions with curiosity and openness to e-cigarette use in a rapidly changing marketplace. Published by Elsevier Inc.

  17. Science of science.

    Science.gov (United States)

    Fortunato, Santo; Bergstrom, Carl T; Börner, Katy; Evans, James A; Helbing, Dirk; Milojević, Staša; Petersen, Alexander M; Radicchi, Filippo; Sinatra, Roberta; Uzzi, Brian; Vespignani, Alessandro; Waltman, Ludo; Wang, Dashun; Barabási, Albert-László

    2018-03-02

    Identifying fundamental drivers of science and developing predictive models to capture its evolution are instrumental for the design of policies that can improve the scientific enterprise-for example, through enhanced career paths for scientists, better performance evaluation for organizations hosting research, discovery of novel effective funding vehicles, and even identification of promising regions along the scientific frontier. The science of science uses large-scale data on the production of science to search for universal and domain-specific patterns. Here, we review recent developments in this transdisciplinary field. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Extraction of compositional and hydration information of sulfates from laser-induced plasma spectra recorded under Mars atmospheric conditions - Implications for ChemCam investigations on Curiosity rover

    Energy Technology Data Exchange (ETDEWEB)

    Sobron, Pablo, E-mail: pablo.sobron@asc-csa.gc.ca [Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130 (United States); Wang, Alian [Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130 (United States); Sobron, Francisco [Unidad Asociada UVa-CSIC a traves del Centro de Astrobiologia, Parque Tecnologico de Boecillo, Parcela 203, Boecillo (Valladolid), 47151 (Spain)

    2012-02-15

    Given the volume of spectral data required for providing accurate compositional information and thereby insight in mineralogy and petrology from laser-induced breakdown spectroscopy (LIBS) measurements, fast data processing tools are a must. This is particularly true during the tactical operations of rover-based planetary exploration missions such as the Mars Science Laboratory rover, Curiosity, which will carry a remote LIBS spectrometer in its science payload. We have developed: an automated fast pre-processing sequence of algorithms for converting a series of LIBS spectra (typically 125) recorded from a single target into a reliable SNR-enhanced spectrum; a dedicated routine to quantify its spectral features; and a set of calibration curves using standard hydrous and multi-cation sulfates. These calibration curves allow deriving the elemental compositions and the degrees of hydration of various hydrous sulfates, one of the two major types of secondary minerals found on Mars. Our quantitative tools are built upon calibration-curve modeling, through the correlation of the elemental concentrations and the peak areas of the atomic emission lines observed in the LIBS spectra of standard samples. At present, we can derive the elemental concentrations of K, Na, Ca, Mg, Fe, Al, S, O, and H in sulfates, as well as the hydration degrees of Ca- and Mg-sulfates, from LIBS spectra obtained in both Earth atmosphere and Mars atmospheric conditions in a Planetary Environment and Analysis Chamber (PEACh). In addition, structural information can be potentially obtained for various Fe-sulfates. - Highlights: Black-Right-Pointing-Pointer Routines for LIBS spectral data fast automated processing. Black-Right-Pointing-Pointer Identification of elements and determination of the elemental composition. Black-Right-Pointing-Pointer Calibration curves for sulfate samples in Earth and Mars atmospheric conditions. Black-Right-Pointing-Pointer Fe curves probably related to the crystalline

  19. Value of Fundamental Science

    Science.gov (United States)

    Burov, Alexey

    Fundamental science is a hard, long-term human adventure that has required high devotion and social support, especially significant in our epoch of Mega-science. The measure of this devotion and this support expresses the real value of the fundamental science in public opinion. Why does fundamental science have value? What determines its strength and what endangers it? The dominant answer is that the value of science arises out of curiosity and is supported by the technological progress. Is this really a good, astute answer? When trying to attract public support, we talk about the ``mystery of the universe''. Why do these words sound so attractive? What is implied by and what is incompatible with them? More than two centuries ago, Immanuel Kant asserted an inseparable entanglement between ethics and metaphysics. Thus, we may ask: which metaphysics supports the value of scientific cognition, and which does not? Should we continue to neglect the dependence of value of pure science on metaphysics? If not, how can this issue be addressed in the public outreach? Is the public alienated by one or another message coming from the face of science? What does it mean to be politically correct in this sort of discussion?

  20. Activation analysis in the environment: Science and technology

    International Nuclear Information System (INIS)

    Lenihan, J.

    1989-01-01

    Science is disciplined curiosity. Activation analysis was created more than 50 yr ago by Hevesy's curiosity and Levi's experimental skill. Technology is the exploitation of machines and materials for the fulfillment of human needs or wants. The early history of neutron activation analysis (NAA) was greatly influenced by military requirements. Since then the technique has found applications in many disciplines, including materials science, medicine, archaeology, geochemistry, agriculture, and forensic science. More recently, neutron activation analysts, responding to increasing public interest and concern, have made distinctive contributions to the study of environmental problems. Activation analysis, though it uses some procedures derived from physics, is essentially a chemical technique. The chemical study of the environment may be reviewed under many headings; three are discussed here: 1. occupational medicine 2. health of the general public 3. environmental pollution

  1. Career Adapt-Abilities Scale--Netherlands Form: Psychometric Properties and Relationships to Ability, Personality, and Regulatory Focus

    Science.gov (United States)

    van Vianen, Annelies E. M.; Klehe, Ute-Christine; Koen, Jessie; Dries, Nicky

    2012-01-01

    The Career Adapt-Abilities Scale (CAAS)--Netherlands Form consists of four scales, each with six items, which measure concern, control, curiosity, and confidence as psychosocial resources for managing occupational transitions, developmental tasks, and work traumas. Internal consistency estimates for the subscale and total scores ranged from…

  2. Non-Detection of Methane in the Mars Atmosphere by the Curiosity Rover

    Science.gov (United States)

    Webster, Chris R.; Mahaffy, Paul R.; Atreya, Sushil K.; Flesch, Gregory J.; Farley, Kenneth A.

    2014-01-01

    By analogy with Earth, methane in the atmosphere of Mars is a potential signature of ongoing or past biological activity on the planet. During the last decade, Earth-based telescopic and Mars orbit remote sensing instruments have reported significant abundances of methane in the Martian atmosphere ranging from several to tens of parts-per-billion by volume (ppbv). Observations from Earth showed plumes of methane with variations on timescales much faster than expected and inconsistent with localized patches seen from orbit, prompting speculation of sources from sub-surface methanogen bacteria, geological water-rock reactions or infall from comets, micro-meteorites or interplanetary dust. From measurements on NASAs Curiosity Rover that landed near Gale Crater on 5th August 2012, we here report no definitive detection of methane in the near-surface Martian atmosphere. Our in situ measurements were made using the Tunable Laser Spectrometer (TLS) in the Sample Analysis at Mars (SAM) instrument suite6 that made three separate searches on Martian sols 79, 81 and 106 after landing. The measured mean value of 0.39 plus or minus 1.4 ppbv corresponds to an upper limit for methane abundance of 2.7 ppbv at the 95 confidence level. This result is in disagreement with both the remote sensing spacecraft observations taken at lower sensitivity and the telescopic observations that relied on subtraction of a very large contribution from terrestrial methane in the intervening observation path. Since the expected lifetime of methane in the Martian atmosphere is hundreds of years, our results question earlier observations and set a low upper limit on the present day abundance, reducing the probability of significant current methanogenic microbial activity on Mars.

  3. Global-scale Observations of the Limb and Disk (GOLD) Mission: Science from Geostationary Orbit on-board a Commercial Communications Satellite

    Science.gov (United States)

    Eastes, R.; Deaver, T.; Krywonos, A.; Lankton, M. R.; McClintock, W. E.; Pang, R.

    2011-12-01

    Geostationary orbits are ideal for many science investigations of the Earth system on global scales. These orbits allow continuous observations of the same geographic region, enabling spatial and temporal changes to be distinguished and eliminating the ambiguity inherent to observations from low Earth orbit (LEO). Just as observations from geostationary orbit have revolutionized our understanding of changes in the troposphere, they will dramatically improve our understanding of the space environment at higher altitudes. However, geostationary orbits are infrequently used for science missions because of high costs. Geostationary satellites are large, typically weighing tons. Consequently, devoting an entire satellite to a science mission requires a large financial commitment, both for the spacecraft itself and for sufficient science instrumentation to justify a dedicated spacecraft. Furthermore, the small number of geostationary satellites produced for scientific missions increases the costs of each satellite. For these reasons, it is attractive to consider flying scientific instruments on satellites operated by commercial companies, some of whom have fleets of ~40 satellites. However, scientists' lack of understanding of the capabilities of commercial spacecraft as well as commercial companies' concerns about risks to their primary mission have impeded the cooperation necessary for the shared use of a spacecraft. Working with a commercial partner, the GOLD mission has successfully overcome these issues. Our experience indicates that there are numerous benefits to flying on commercial communications satellites (e.g., it is possible to downlink large amounts of data) and the costs are low if the experimental requirements adequately match the capabilities and available resources of the host spacecraft. Consequently, affordable access to geostationary orbit aboard a communications satellite now appears possible for science payloads.

  4. The Mars Science Laboratory Organic Check Material

    Science.gov (United States)

    Conrad, Pamela G.; Eigenbrode, J. E.; Mogensen, C. T.; VonderHeydt, M. O.; Glavin, D. P.; Mahaffy, P. M.; Johnson, J. A.

    2011-01-01

    The Organic Check Material (OCM) has been developed for use on the Mars Science Laboratory mission to serve as a sample standard for verification of organic cleanliness and characterization of potential sample alteration as a function of the sample acquisition and portioning process on the Curiosity rover. OCM samples will be acquired using the same procedures for drilling, portioning and delivery as are used to study martian samples with The Sample Analysis at Mars (SAM) instrument suite during MSL surface operations. Because the SAM suite is highly sensitive to organic molecules, the mission can better verify the cleanliness of Curiosity's sample acquisition hardware if a known material can be processed through SAM and compared with the results obtained from martian samples.

  5. SCIENCE TEACHERS’ INDIVIDUAL AND SOCIAL LEARNING RELATED TO IBSE IN A LARGE-SCALE, LONG- TERM, COLLABORATIVE TPD PROJECT

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Sillasen, Martin Krabbe

    2014-01-01

    It is acknowledged internationally that teachers’ Professional Development (TPD) is crucial for reforming science teaching. The Danish QUEST project is designed using widely agreed criteria for effective TPD: content focus, active learning, coherence, duration, collaborative activities and collec......It is acknowledged internationally that teachers’ Professional Development (TPD) is crucial for reforming science teaching. The Danish QUEST project is designed using widely agreed criteria for effective TPD: content focus, active learning, coherence, duration, collaborative activities...... and collective participation, and is organised on principles of situated learning in Professional Learning Communities (PLCs). QUEST-activities follow a rhythm of full day seminars followed by a period of collaborative inquiries locally. A major theme in the first year has been Inquiry Based Science Education......-on experiences and fewer including students’ minds-on. Teachers’ reflections indicate that many are positive towards QUEST seminars based on trying out activities directly applicable in the classroom. Case studies indicate a potentially more sustainable development, where the teachers collaboratively re...

  6. Opening the Big Black Box: European study reveals visitors' impressions of science laboratories

    CERN Multimedia

    2004-01-01

    "On 29 - 30 March the findings of 'Inside the Big Black Box'- a Europe-wide science and society project - will be revealed during a two-day seminar hosted by CERN*. The principle aim of Inside the Big Black Box (IN3B) is to determine whether a working scientific laboratory can capture the curiosity of the general public through visits" (1 page)

  7. Integrate Science and Arts Process Skills in the Early Childhood Curriculum

    Science.gov (United States)

    Morrison, Kathy

    2012-01-01

    Linking science and art explorations makes sense in early childhood education for a number of reasons. Young children have a natural curiosity about their world and how it works. Young children are also natural artists. Most are delighted to participate in open-ended art activities, dramatic play, singing, and dancing. For young children, the…

  8. Integrating Science-Based Co-management, Partnerships, Participatory Processes and Stewardship Incentives to Improve the Performance of Small-Scale Fisheries

    Directory of Open Access Journals (Sweden)

    Kendra A. Karr

    2017-10-01

    Full Text Available Small scale fisheries are critically important for the provision of food security, livelihoods, and economic development for billions of people. Yet, most of these fisheries appear to not be achieving either fisheries or conservation goals, with respect to creating healthier oceans that support more fish, feed more people and improve livelihoods. Research and practical experience have elucidated many insights into how to improve the performance of small-scale fisheries. Here, we present lessons learned from five case studies of small-scale fisheries in Cuba, Mexico, the Philippines, and Belize. The major lessons that arise from these cases are: (1 participatory processes empower fishers, increase compliance, and support integration of local and scientific knowledge; (2 partnership across sectors improves communication and community buy-in; (3 scientific analysis can lead fishery reform and be directly applicable to co-management structures. These case studies suggest that a fully integrated approach that implements a participatory process to generate a scientific basis for fishery management (e.g., data collection, analysis, design and to design management measures among stakeholders will increase the probability that small-scale fisheries will implement science-based management and improve their performance.

  9. The PESPERF Scale: An Instrument for Measuring Service Quality in the School of Physical Education and Sports Sciences (PESS)

    Science.gov (United States)

    Yildiz, Suleyman M.; Kara, Ali

    2009-01-01

    Purpose: HEdPERF (Higher Education PERFormance) is one of the most recently developed scales in the literature to measure service quality in higher education. However, HEdPERF is designed to measure service quality at a macro level (university level) and may be considered as a more generic measurement instrument. In higher education, new scales…

  10. Psychometric Properties of the Procrastination Assessment Scale-Student (PASS) in a Student Sample of Sabzevar University of Medical Sciences.

    Science.gov (United States)

    Mortazavi, Forough; Mortazavi, Saideh S; Khosrorad, Razieh

    2015-09-01

    Procrastination is a common behavior which affects different aspects of life. The procrastination assessment scale-student (PASS) evaluates academic procrastination apropos its frequency and reasons. The aims of the present study were to translate, culturally adapt, and validate the Farsi version of the PASS in a sample of Iranian medical students. In this cross-sectional study, the PASS was translated into Farsi through the forward-backward method, and its content validity was thereafter assessed by a panel of 10 experts. The Farsi version of the PASS was subsequently distributed among 423 medical students. The internal reliability of the PASS was assessed using Cronbach's alpha. An exploratory factor analysis (EFA) was conducted on 18 items and then 28 items of the scale to find new models. The construct validity of the scale was assessed using both EFA and confirmatory factor analysis. The predictive validity of the scale was evaluated by calculating the correlation between the academic procrastination scores and the students' average scores in the previous semester. The corresponding reliability of the first and second parts of the scale was 0.781 and 0.861. An EFA on 18 items of the scale found 4 factors which jointly explained 53.2% of variances: The model was marginally acceptable (root mean square error of approximation [RMSEA] =0.098, standardized root mean square residual [SRMR] =0.076, χ(2) /df =4.8, comparative fit index [CFI] =0.83). An EFA on 28 items of the scale found 4 factors which altogether explained 42.62% of variances: The model was acceptable (RMSEA =0.07, SRMR =0.07, χ(2)/df =2.8, incremental fit index =0.90, CFI =0.90). There was a negative correlation between the procrastination scores and the students' average scores (r = -0.131, P =0.02). The Farsi version of the PASS is a valid and reliable tool to measure academic procrastination in Iranian undergraduate medical students.

  11. On the use of Cloud Computing and Machine Learning for Large-Scale SAR Science Data Processing and Quality Assessment Analysi

    Science.gov (United States)

    Hua, H.

    2016-12-01

    Geodetic imaging is revolutionizing geophysics, but the scope of discovery has been limited by labor-intensive technological implementation of the analyses. The Advanced Rapid Imaging and Analysis (ARIA) project has proven capability to automate SAR data processing and analysis. Existing and upcoming SAR missions such as Sentinel-1A/B and NISAR are also expected to generate massive amounts of SAR data. This has brought to the forefront the need for analytical tools for SAR quality assessment (QA) on the large volumes of SAR data-a critical step before higher-level time series and velocity products can be reliably generated. Initially leveraging an advanced hybrid-cloud computing science data system for performing large-scale processing, machine learning approaches were augmented for automated analysis of various quality metrics. Machine learning-based user-training of features, cross-validation, prediction models were integrated into our cloud-based science data processing flow to enable large-scale and high-throughput QA analytics for enabling improvements to the production quality of geodetic data products.

  12. Curiosity's Sample Analysis at Mars (SAM) Investigation: Overview of Results from the First 120 Sols on Mars

    Science.gov (United States)

    Mahaffy, P. R.; Cabane, M.; Webster, C. R.; Archer, P. D.; Atreya, S. K.; Benna, M.; Brinckerhoff, W. B.; Brunner, A. E.; Buch, A.; Coll, P.; hide

    2013-01-01

    During the first 120 sols of Curiosity s landed mission on Mars (8/6/2012 to 12/7/2012) SAM sampled the atmosphere 9 times and an eolian bedform named Rocknest 4 times. The atmospheric experiments utilized SAM s quadrupole mass spectrometer (QMS) and tunable laser spectrometer (TLS) while the solid sample experiments also utilized the gas chromatograph (GC). Although a number of core experiments were pre-programmed and stored in EEProm, a high level SAM scripting language enabled the team to optimize experiments based on prior runs.

  13. APXS of First Rocks Encountered by Curiosity in Gale Crater: Geochemical Diversity and Volatile Element (K and ZN) Enrichment

    Science.gov (United States)

    Schmidt, M. E.; King, P. L.; Gellert, R.; Elliott, B.; Thompson, L.; Berger, J.; Bridges, J.; Campbell, J. L; Grotzinger, J.; Hurowitz, J.; hide

    2013-01-01

    The Alpha Particle X-ray spectrometer (APXS) on the Curiosity rover in Gale Crater [1] is the 4th such instrument to have landed on Mars [2]. Along the rover's traverse down-section toward Glenelg (through sol 102), the APXS has examined four rocks and one soil [3]. Gale rocks are geochemically diverse and expand the range of Martian rock compositions to include high volatile and alkali contents (up to 3.0 wt% K2O) with high Fe and Mn (up to 29.2% FeO*).

  14. Surveying the factor structure and reliability of the Persian version of the Jefferson Scale of Physician Lifelong Learning (JeffSPLL) in staff of medical sciences.

    Science.gov (United States)

    Karimi, Fatemeh Zahra; Alesheikh, Aytay; Pakravan, Soheila; Abdollahi, Mahbubeh; Damough, Mozhdeh; Anbaran, Zahra Khosravi; Farahani, Leila Amiri

    2017-10-01

    In medical sciences, commitment to lifelong learning has been expressed as an important element. Today, due to the rapid development of medical information and technology, lifelong learning is critical for safe medical care and development in medical research. JeffSPLL is one of the scales for measuring lifelong learning among the staff of medical sciences that has never been used in Iran. The aim of the present study was to determine the factor structure and reliability of the Persian version of JeffSPLL among Persian-speaking staff of universities of medical sciences in Iran. This study was a cross-sectional study, methodologically, that was conducted in 2012-2013. In this study, 210 staff members of Birjand University of Medical Sciences were selected. Data collection tool was the Persian version of JeffSPLL. To investigate the factor structure of this tool, confirmatory factor analysis was used and to evaluate the model fit, goodness-of-fit indices, root mean square error of approximation (RMSEA), the ratio of chi-square to the degree of freedom associated with it, comparative fit index (CFI), and root mean square residual (RMR) were used. To investigate the reliability of tool, Cronbach's alpha was employed. Data analysis was conducted using LISREL8.8 and SPSS 20 software. Confirmatory factor analysis showed that RMSEA was close to 0.1, and CFI and GFI were close to one. Therefore, four-factor model was appropriate. Cronbach's alpha was 0.92 for the whole tool and it was between 0.82 and 0.89 for subscales. The present study verified the four-factor structure of the 19-item Persian version of JeffSPLL that included professional learning beliefs and motivation, scholarly activities, attention to learning opportunities, and technical skills in information seeking among the staff. In addition, this tool has acceptable reliability. Therefore, it was appropriate to assess lifelong learning in the Persian-speaking staff population.

  15. Sulfur Geochemical Analysis and Interpretation with ChemCam on the Curiosity Rover

    Science.gov (United States)

    Clegg, S. M.; Anderson, R. B.; Frydenvang, J.; Forni, O.; Newsom, H. E.; Blaney, D. L.; Maurice, S.; Wiens, R. C.

    2017-12-01

    The Curiosity rover has encountered many forms of sulfur including calcium sulfate veins [1], hydrated Mg sulfates, and Fe sulfates along the traverse through Gale crater. A new SO3 calibration model for the remote Laser-Induced Breakdown Spectroscopy (LIBS) technique used by the ChemCam instrument enables improved quantitative analysis of SO3, which has not been previously reported by ChemCam on a routine or quantitative basis. In this paper, the details of this new LIBS calibration model will be described and applied to many disparate Mars targets. Among them, Mavor contains a calcium sulfate vein surrounded by bedrock. In contrast, Jake M. is a float rock, Wernecke is a bedrock, Cumberland and Windjana are drill targets. In 2015 the ChemCam instrument team completed a re-calibration of major elements based on a significantly expanded set of >500 geochemical standards using the ChemCam testbed at Los Alamos National Laboratory [2]. In addition to these standards, the SO3 compositional range was recently extended with a series of doped samples containing various mixtures of Ca- and Mg-sulfate with basalt BHVO2. Spectra from these standards were processed per [4]. Calibration and Mars spectra were converted to peak-area-summed LIBS spectra that enables the SO3 calibration. These peak-area spectra were used to generate three overlapping partial least squares (PLS1) calibration sub-models as described by Anderson et al. [3, 5]. ChemCam analysis of Mavor involved a 3x3 raster in which locations 5 and 6 primarily probed Ca-sulfate material. The new ChemCam SO3 compositions for Mavor 5 and Mavor 6 are 48.6±1.2 and 50.3±1.2 wt% SO3, respectively. The LIBS spectra also recorded the presence of other elements that are likely responsible for the departure from pure Ca-sulfate chemistry. On the low-abundance side, the remaining 7 Mavor locations, Jake M., Cumberland, Windjana, and Wernecke all contain much lower SO3, between 1.4±0.5 wt% and 2.3±0.3 wt% SO3. [1] Nachon et

  16. Improving Learning in a Traditional, Large-Scale Science Module with a Simple and Efficient Learning Design

    DEFF Research Database (Denmark)

    Godsk, Mikkel

    2014-01-01

    the impact on teaching and learning in terms of how the teacher and the students used the materials and the impact on the students’ performance and satisfaction. The article concludes that replacing face-to-face lectures with webcasts and online activities has the potential to improve learning in terms...... of a better student performance, higher student satisfaction, and a higher degree of flexibility for the students. In addition, the article discusses implications of using learning design for educational development, how learning design may help breaking with the perception that facilitating blended learning...... is a daunting process, and, ultimately, its potential for addressing some of the grand challenges in science education and the political agenda of today....

  17. Data-Science Analysis of the Macro-scale Features Governing the Corrosion to Crack Transition in AA7050-T7451

    Science.gov (United States)

    Co, Noelle Easter C.; Brown, Donald E.; Burns, James T.

    2018-05-01

    This study applies data science approaches (random forest and logistic regression) to determine the extent to which macro-scale corrosion damage features govern the crack formation behavior in AA7050-T7451. Each corrosion morphology has a set of corresponding predictor variables (pit depth, volume, area, diameter, pit density, total fissure length, surface roughness metrics, etc.) describing the shape of the corrosion damage. The values of the predictor variables are obtained from white light interferometry, x-ray tomography, and scanning electron microscope imaging of the corrosion damage. A permutation test is employed to assess the significance of the logistic and random forest model predictions. Results indicate minimal relationship between the macro-scale corrosion feature predictor variables and fatigue crack initiation. These findings suggest that the macro-scale corrosion features and their interactions do not solely govern the crack formation behavior. While these results do not imply that the macro-features have no impact, they do suggest that additional parameters must be considered to rigorously inform the crack formation location.

  18. Geoscience Meets Social Science: A Flexible Data Driven Approach for Developing High Resolution Population Datasets at Global Scale

    Science.gov (United States)

    Rose, A.; McKee, J.; Weber, E.; Bhaduri, B. L.

    2017-12-01

    Leveraging decades of expertise in population modeling, and in response to growing demand for higher resolution population data, Oak Ridge National Laboratory is now generating LandScan HD at global scale. LandScan HD is conceived as a 90m resolution population distribution where modeling is tailored to the unique geography and data conditions of individual countries or regions by combining social, cultural, physiographic, and other information with novel geocomputation methods. Similarities among these areas are exploited in order to leverage existing training data and machine learning algorithms to rapidly scale development. Drawing on ORNL's unique set of capabilities, LandScan HD adapts highly mature population modeling methods developed for LandScan Global and LandScan USA, settlement mapping research and production in high-performance computing (HPC) environments, land use and neighborhood mapping through image segmentation, and facility-specific population density models. Adopting a flexible methodology to accommodate different geographic areas, LandScan HD accounts for the availability, completeness, and level of detail of relevant ancillary data. Beyond core population and mapped settlement inputs, these factors determine the model complexity for an area, requiring that for any given area, a data-driven model could support either a simple top-down approach, a more detailed bottom-up approach, or a hybrid approach.

  19. Promoting Learning Achievement, Problem Solving, and Learning Curiosity of High School Students: Empirical Thai Study of Self-directed Learning in Physics Course

    Directory of Open Access Journals (Sweden)

    Wittaya Worapun

    2017-11-01

    Full Text Available Three phases of this research were employed to study learning achievement, problem solving, and learning curiosity among 43 students in the 11th grade through self-directed learning in a Physics course. Research instruments included: a learning achievement test, a test of curiosity, observations using anecdotal evidence of curiosity, and a test of problem solving ability. The findings show that six components of self-directed learning were evident, i.e. principles and basic concepts, syntax, social system, principle of reaction, and support system. It was found that five main procedures of self-directed learning were applicable in a management model: diagnosis, strategies, growth in habit, taking action, and summarizing and assessing. Students gained in their learning achievement ; furthermore, their posttest scores in problem solving were greater than their pretest scores at .05 level of statistical significance.

  20. Abundance and Isotopic Composition of Gases in the Martian Atmosphere: First Results from the Mars Curiosity Rover

    Science.gov (United States)

    Mahaffy, Paul; Webster, Chris R.; Atreya, Sushil K.; Franz, Heather; Wong, Michael; Conrad, Pamela G.; Harpold, Dan; Jones, John J.; Leshin, Laurie, A.; Manning, Heidi; hide

    2013-01-01

    Repeated measurements of the composition of the Mars atmosphere from Curiosity Rover yield a (40)Ar/N2 ratio 1.7 times greater and the (40)Ar/(36)Ar ratio 1.6 times smaller than the Viking Lander values in 1976. The unexpected change in (40)Ar/N2 ratio probably results from different instrument characteristics although we cannot yet rule out some unknown atmospheric process. The new (40)Ar/(36)Ar ratio is more aligned with Martian meteoritic values. Besides Ar and N2 the Sample Analysis at Mars instrument suite on the Curiosity Rover has measured the other principal components of the atmosphere and the isotopes. The resulting volume mixing ratios are: CO2 0.960(+/- 0.007); (40)Ar 0.0193(+/- 0.0001); N2 0.0189(+/- 0.0003); O2 1.45(+/- 0.09) x 10(exp -3); and CO 5.45(+/- 3.62) x 10(exp 4); and the isotopes (40)Ar/(36)Ar 1.9(+/- 0.3) x 10(exp 3), and delta (13)C and delta (18)O from CO2 that are both several tens of per mil more positive than the terrestrial averages. Heavy isotope enrichments support the hypothesis of large atmospheric loss. Moreover, the data are consistent with values measured in Martian meteorites, providing additional strong support for a Martian origin for these rocks.

  1. Relationship of trait curiosity to the dynamics of coping and quality of life in myocardial infarction patients

    Directory of Open Access Journals (Sweden)

    Włodarczyk Dorota

    2017-09-01

    Full Text Available This study is a continuation of the work of Professor Kazimierz Wrześniewski. It concerns the role of curiositytrait in the dynamics of changes in coping and quality of life after a heart attack. The study was attended by 222 people after a heart attack (73% men, of whom 140 participated in the three stages of the study: at the beginning and at the end of cardiac rehabilitation and a year after leaving the resort. The participants aged 24-64 years (M = 54.19; SD = 6.51. Curiosity-trait was measured by Spielberger and Wrześniewski’s STPI questionnaire. To assess coping strategies a modified version of the COPE by Carver et al., was used. The specific and general quality of life were measured by the Polish adaptations of MacNew and NHP questionnaires. The level of curiosity-trait significantly differentiated changes in the dynamics of positive reinterpretation, problem solving and resignation, but did not affect the change in quality of life within the year after a heart attack.

  2. Career Adapt-Abilities Scale--Italian Form: Psychometric Properties and Relationships to Breadth of Interests, Quality of Life, and Perceived Barriers

    Science.gov (United States)

    Soresi, Salvatore; Nota, Laura; Ferrari, Lea

    2012-01-01

    The Career Adapt-Abilities Scale (CAAS)-Italian Form consists of four 6-item scales, which measure concern, control, curiosity, and confidence as psychosocial resources for managing occupational transitions, developmental tasks, and work traumas. The 24-item CAAS-Italian Form is identical to the International Form 2.0. The factor structure was…

  3. Synergistic Use of Citizen Science and Remote Sensing for Continental-Scale Measurements of Forest Tree Phenology

    Directory of Open Access Journals (Sweden)

    Andrew J. Elmore

    2016-06-01

    Full Text Available There is great potential value in linking geographically dispersed multitemporal observations collected by lay volunteers (or “citizen scientists” with remotely-sensed observations of plant phenology, which are recognized as useful indicators of climate change. However, challenges include a large mismatch in spatial scale and diverse sources of uncertainty in the two measurement types. These challenges must be overcome if the data from each source are to be compared and jointly used to understand spatial and temporal variation in phenology, or if remote observations are to be used to predict ground-based observations. We investigated the correlation between land surface phenology derived from Moderate Resolution Imaging Spectrometer (MODIS data and citizen scientists’ phenology observations from the USA National Phenology Network (NPN. The volunteer observations spanned 2004 to 2013 and represented 25 plant species and nine phenophases. We developed quality control procedures that removed observations outside of an a priori determined acceptable period and observations that were made more than 10 days after a preceding observation. We found that these two quality control steps improved the correlation between ground- and remote-observations, but the largest improvement was achieved when the analysis was restricted to forested MODIS pixels. These results demonstrate a high degree of correlation between the phenology of individual trees (particularly dominant forest trees such as quaking aspen, white oak, and American beech and the phenology of the surrounding forested landscape. These results provide helpful guidelines for the joint use of citizen scientists’ observations and remote sensing phenology in work aimed at understanding continental scale variation and temporal trends.

  4. In-situ exploration of Venus on a global scale : direct measurements of origins and evolution, meterology, dynamics, and chemistry by a long-duration aerial science station

    Science.gov (United States)

    Baines, Kevin H.; Atreya, Sushi; Carlson, Robert W.; Chutjian, Ara; Crisp, David; Hall, Jeffrey L.; Jones, Dayton L.; Kerzhanovich, Victor V.; Limaye, Sanjay S.

    2005-01-01

    Drifting in the strong winds of Venus under benign Earth-like temperature and pressure conditions, an instrumented balloon-borne science station presents a viable means to explore, in-situ, the Venusian atmosphere on a global scale. Flying over the ground at speeds exceeding 240 km/hour while floating in the Venusian skies near 55 km altitude for several weeks, such an aerostat can conduct a 'world tour' of our neighboring planet, as it circumnavigates the globe multiple times during its flight from equatorial to polar latitudes. Onboard science sensors can repeatedly and directly sample gas compositions, atmospheric pressures and temperatures and cloud particle properties, giving unprecedented insight into the chemical processes occurring within the sulfuric clouds. Additionally, interferometric tracking via Earth-based radio observatories can yield positions and windspeeds to better than 10 cm/sec over one-hour periods, providing important information for understanding the planet's meridional circulation and enigmatic zonal super-rotation, as well as local dynamics associated with meteorological processes. As well, hundreds of GCMS spectra collected during the flight can provide measurements of noble gas compositions and their isotopes with unprecedented accuracy, thereby enabling fundamental new insights into Venus's origin and evolution.

  5. Kodi Husimi and 'science and society'

    International Nuclear Information System (INIS)

    Konuma, Michiji; Otsuka, Masuhiko

    2009-01-01

    Kodi Husimi contributed not only to research and education on physics, but also to various problems on 'Science and Society'. Especially he was involved in administration on science as a member and president of the Science Council of Japan for many years. Based upon his experience on research in nuclear physics using neutron source he opposed nuclear weapons, and pursued peace. The establishment of the three basic principles on nuclear research and development for civil uses in Japan owes to Husimi. He also made effort for international scientific collaboration, especially for support on science in developing countries. He popularized beauty and charm of science through many publications from his young age to his later years. He kept his curiosity through all his life. (author)

  6. Integrated Assessment of Artisanal and Small-Scale Gold Mining in Ghana-Part 2: Natural Sciences Review.

    Science.gov (United States)

    Rajaee, Mozhgon; Obiri, Samuel; Green, Allyson; Long, Rachel; Cobbina, Samuel J; Nartey, Vincent; Buck, David; Antwi, Edward; Basu, Niladri

    2015-07-31

    This paper is one of three synthesis documents produced via an integrated assessment (IA) that aims to increase understanding of artisanal and small-scale gold mining (ASGM) in Ghana. Given the complexities surrounding ASGM, an integrated assessment (IA) framework was utilized to analyze socio-economic, health, and environmental data, and co-develop evidence-based responses with stakeholders. This paper focuses on the causes, status, trends, and consequences of ecological issues related to ASGM activity in Ghana. It reviews dozens of studies and thousands of samples to document evidence of heavy metals contamination in ecological media across Ghana. Soil and water mercury concentrations were generally lower than guideline values, but sediment mercury concentrations surpassed guideline values in 64% of samples. Arsenic, cadmium, and lead exceeded guideline values in 67%, 17%, and 24% of water samples, respectively. Other water quality parameters near ASGM sites show impairment, with some samples exceeding guidelines for acidity, turbidity, and nitrates. Additional ASGM-related stressors on environmental quality and ecosystem services include deforestation, land degradation, biodiversity loss, legacy contamination, and potential linkages to climate change. Though more research is needed to further elucidate the long-term impacts of ASGM on the environment, the plausible consequences of ecological damages should guide policies and actions to address the unique challenges posed by ASGM.

  7. Integrated Assessment of Artisanal and Small-Scale Gold Mining in Ghana—Part 2: Natural Sciences Review

    Science.gov (United States)

    Rajaee, Mozhgon; Obiri, Samuel; Green, Allyson; Long, Rachel; Cobbina, Samuel J.; Nartey, Vincent; Buck, David; Antwi, Edward; Basu, Niladri

    2015-01-01

    This paper is one of three synthesis documents produced via an integrated assessment (IA) that aims to increase understanding of artisanal and small-scale gold mining (ASGM) in Ghana. Given the complexities surrounding ASGM, an integrated assessment (IA) framework was utilized to analyze socio-economic, health, and environmental data, and co-develop evidence-based responses with stakeholders. This paper focuses on the causes, status, trends, and consequences of ecological issues related to ASGM activity in Ghana. It reviews dozens of studies and thousands of samples to document evidence of heavy metals contamination in ecological media across Ghana. Soil and water mercury concentrations were generally lower than guideline values, but sediment mercury concentrations surpassed guideline values in 64% of samples. Arsenic, cadmium, and lead exceeded guideline values in 67%, 17%, and 24% of water samples, respectively. Other water quality parameters near ASGM sites show impairment, with some samples exceeding guidelines for acidity, turbidity, and nitrates. Additional ASGM-related stressors on environmental quality and ecosystem services include deforestation, land degradation, biodiversity loss, legacy contamination, and potential linkages to climate change. Though more research is needed to further elucidate the long-term impacts of ASGM on the environment, the plausible consequences of ecological damages should guide policies and actions to address the unique challenges posed by ASGM. PMID:26264012

  8. Scientific Grand Challenges: Discovery In Basic Energy Sciences: The Role of Computing at the Extreme Scale - August 13-15, 2009, Washington, D.C.

    Energy Technology Data Exchange (ETDEWEB)

    Galli, Giulia [Univ. of California, Davis, CA (United States). Workshop Chair; Dunning, Thom [Univ. of Illinois, Urbana, IL (United States). Workshop Chair

    2009-08-13

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) and Office of Advanced Scientific Computing Research (ASCR) workshop in August 2009 on extreme-scale computing provided a forum for more than 130 researchers to explore the needs and opportunities that will arise due to expected dramatic advances in computing power over the next decade. This scientific community firmly believes that the development of advanced theoretical tools within chemistry, physics, and materials science—combined with the development of efficient computational techniques and algorithms—has the potential to revolutionize the discovery process for materials and molecules with desirable properties. Doing so is necessary to meet the energy and environmental challenges of the 21st century as described in various DOE BES Basic Research Needs reports. Furthermore, computational modeling and simulation are a crucial complement to experimental studies, particularly when quantum mechanical processes controlling energy production, transformations, and storage are not directly observable and/or controllable. Many processes related to the Earth’s climate and subsurface need better modeling capabilities at the molecular level, which will be enabled by extreme-scale computing.

  9. Network biology: Describing biological systems by complex networks. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    Science.gov (United States)

    Jalili, Mahdi

    2018-03-01

    I enjoyed reading Gosak et al. review on analysing biological systems from network science perspective [1]. Network science, first started within Physics community, is now a mature multidisciplinary field of science with many applications ranging from Ecology to biology, medicine, social sciences, engineering and computer science. Gosak et al. discussed how biological systems can be modelled and described by complex network theory which is an important application of network science. Although there has been considerable progress in network biology over the past two decades, this is just the beginning and network science has a great deal to offer to biology and medical sciences.

  10. The science eye and scalpel in 21st century

    International Nuclear Information System (INIS)

    Sato, I.

    2004-01-01

    Although the science in the 20th century accomplished remarkable development by discipline, such as science, engineering, agriculture, and medicine, the starting point is man's intellectual appetite, and is the result of many people investigating the strange world by avaricious raw. Although the walk in the world and the help of research which utilize an accelerator and are not visible had been carried out until now, the play heart worked and the future was viewed by natural curiosity with whether it is interesting to see what from now on and to investigate what recently. It decided to arrange this and to tell as science of eye on lookers see more than players. (author)

  11. Information Power Grid: Distributed High-Performance Computing and Large-Scale Data Management for Science and Engineering

    Science.gov (United States)

    Johnston, William E.; Gannon, Dennis; Nitzberg, Bill

    2000-01-01

    We use the term "Grid" to refer to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. This infrastructure includes: (1) Tools for constructing collaborative, application oriented Problem Solving Environments / Frameworks (the primary user interfaces for Grids); (2) Programming environments, tools, and services providing various approaches for building applications that use aggregated computing and storage resources, and federated data sources; (3) Comprehensive and consistent set of location independent tools and services for accessing and managing dynamic collections of widely distributed resources: heterogeneous computing systems, storage systems, real-time data sources and instruments, human collaborators, and communications systems; (4) Operational infrastructure including management tools for distributed systems and distributed resources, user services, accounting and auditing, strong and location independent user authentication and authorization, and overall system security services The vision for NASA's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks. Such Grids will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. Examples of these problems include: (1) Coupled, multidisciplinary simulations too large for single systems (e.g., multi-component NPSS turbomachine simulation); (2) Use of widely distributed, federated data archives (e.g., simultaneous access to metrological, topological, aircraft performance, and flight path scheduling databases supporting a National Air Space Simulation systems}; (3

  12. The analysis of student’s critical thinking ability on discovery learning by using hand on activity based on the curiosity

    Science.gov (United States)

    Sulistiani, E.; Waluya, S. B.; Masrukan

    2018-03-01

    This study aims to determine (1) the effectiveness of Discovery Learning model by using Hand on Activity toward critical thinking abilities, and (2) to describe students’ critical thinking abilities in Discovery Learning by Hand on Activity based on curiosity. This study is mixed method research with concurrent embedded design. Sample of this study are students of VII A and VII B of SMP Daarul Qur’an Ungaran. While the subject in this study is based on the curiosity of the students groups are classified Epistemic Curiosity (EC) and Perceptual Curiosity (PC). The results showed that the learning of Discovery Learning by using Hand on Activity is effective toward mathematics critical thinking abilities. Students of the EC type are able to complete six indicators of mathematics critical thinking abilities, although there are still two indicators that the result is less than the maximum. While students of PC type have not fully been able to complete the indicator of mathematics critical thinking abilities. They are only strong on indicators formulating questions, while on the other five indicators they are still weak. The critical thinking abilities of EC’s students is better than the critical thinking abilities of the PC’s students.

  13. Origin of Chlorobenzene Detected by the Curiosity Rover in Yellowknife Bay: Evidence for Martian Organics in the Sheepbed Mudstone

    Science.gov (United States)

    Glavin, D.; Freissnet, C.; Eigenbrode, J.; Miller, K.; Martin, M.; Summons, R. E.; Steele, A.; Archer, D.; Brunner, A.; Buch, A.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally evolved from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. Here we discuss the SAM EGA and GCMS measurements of volatiles released from the Sheepbed mudstone. We focus primarily on the elevated CBZ detections at CB and laboratory analog experiments conducted to help determine if CBZ is derived from primarily terrestrial, martian, or a combination of sources. Here we discuss the SAM EGA and GCMS measurements of volatiles released from the Sheepbed mudstone. We focus primarily on the elevated CBZ detections at CB and laboratory analog experiments conducted to help determine if CBZ is derived from primarily terrestrial, martian, or a combination of sources.

  14. The Modern Near-Surface Martian Climate: A Review of In-Situ Meteorological Data from Viking to Curiosity

    Science.gov (United States)

    Martinez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; hide

    2017-01-01

    We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to todays Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars present day conditions and its implications for future Mars missions.

  15. The effect of nitrazepam on depression and curiosity in behavioral tests in mice: The role of potassium channels.

    Science.gov (United States)

    Nikoui, Vahid; Ostadhadi, Sattar; Azhand, Pardis; Zolfaghari, Samira; Amiri, Shayan; Foroohandeh, Mehrdad; Motevalian, Manijeh; Sharifi, Ali Mohammad; Bakhtiarian, Azam

    2016-11-15

    Evidence show that gamma-aminobutyric acid (GABA) receptors are involved in depression, so the aim of this study was to investigate the effect of nitrazepam as agonist of GABA A receptors on depression and curiosity in male mice and the role of potassium channel in antidepressant-like response. For this purpose, we studied the antidepressant-like properties of fluoxetine, nitrazepam, glibenclamide, and cromakalim by both forced swimming test (FST) and tail suspension test (TST). Animals were injected by various doses of nitrazepam (0.05, 0.1, and 0.5mg/kg). Nitrazepam at dose of 0.5mg/kg significantly decreased the immobility time compared to control group in both FST and TST. Fluoxetine also showed such a response. Co-administration of nitrazepam (0.05mg/kg) with glibenclamide in TST (1mg/kg) and in FST (0.3, 1mg/kg) also showed antidepressant-like response. Beside, cromakalim (0.1mg/kg) could reverse the antidepressant-like effect of nitrazepam (0.5mg/kg) in both FST and TST, while cromakalim and glibenclamide alone could not change the immobility time compared to control group (P>0.05). The hole-board test revealed that nitrazepam at doses of 0.5 and 0.1mg/kg could increase the activity of the animal's head-dipping and boost the curiosity and exploration behavior of mice. The results of this study revealed that nitrazepam may possess antidepressant-like properties and this effect is dependent to potassium channels in both FST and TST. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Origin of Chlorobenzene Detected by the Curiosity Rover in Yellowknife Bay: Evidence for Martian Organics in the Sheepbed Mudstone?

    Science.gov (United States)

    Glavin, Daniel P.; Freissinet, Caroline; Eigenbrode, J.; Miller, K.; Martin, M.; Summons, R.; Steele, A.; Franz, H.; Archer, D.; Brinkerhoff, W.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally evolved from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest (RN), revealed chlorinated hydrocarbons derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background. Chlorobenzene (CBZ) was also identified by SAM GCMS at RN at trace levels (approx.0.007 nmol) and was attributed to the reaction of chlorine with the Tenax polymers used in the hydrocarbon traps. After the RN analyses, Curiosity traveled to Yellowknife Bay and drilled two separate holes designated John Klein (JK) and Cumberland (CB). Analyses of JK and CB by both SAM and the CheMin x-ray diffraction instrument revealed a mudstone consisting of approx.20 wt% smectite clays, which on Earth are known to aid the concentration and preservation of organic matter. In addition, higher abundances and a more diverse suite of chlorinated hydrocarbons in CB compared to RN suggests that martian or meteoritic organic sources may be preserved in the mudstone. Here we discuss the SAM EGA and GCMS measurements of volatiles released from the Sheepbed mudstone. We focus primarily on the elevated CBZ detections at CB and laboratory analog experiments conducted to help determine if CBZ is derived from primarily terrestrial, martian, or a combination of sources.

  17. Martian Chlorobenzene Identified by Curiosity in Yellowknife Bay: Evidence for the Preservation of Organics in a Mudstone on Mars

    Science.gov (United States)

    Glavin, Daniel P.; Freissinet, Caroline; Mahaffy, P.; Miller, K.; Eigenbrode, J.; Summons, R.; Martin, M.; Franz, H.; Steele, A.; Archer, D.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally evolved from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. The first sample analyzed by SAM at the Rocknest (RN) aeolian deposit revealed chlorohydrocarbons derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background. No conclusive evidence for martian chlorohydrocarbons in the RN sand was found. After RN, Curiosity traveled to Yellowknife Bay and drilled two holes separated by 2.75 m designated John Klein (JK) and Cumberland (CB). Analyses of JK and CB by both SAM and the CheMin x-ray diffraction instrument revealed a mudstone (called Sheepbed) consisting of approx.20 wt% smectite clays, which on Earth are known to aid the concentration and preservation of organic matter. Last year at LPSC we reported elevated abundances of chlorobenzene (CBZ) and a more diverse suite of chlorinated hydrocarbons including dichloroalkanes in CB compared to RN, suggesting that martian or meteoritic organic compounds may be preserved in the mudstone. Here we present SAM data from additional analyses of the CB sample and of Confidence Hills (CH), another drill sample collected at the base of Mt. Sharp. This new SAM data along with supporting laboratory analog experiments indicate that most of the chlorobenzene detected in CB is derived from martian organic matter preserved in the mudstone.

  18. Ever-Use and Curiosity About Cigarettes, Cigars, Smokeless Tobacco, and Electronic Cigarettes Among US Middle and High School Students, 2012-2014.

    Science.gov (United States)

    Persoskie, Alexander; Donaldson, Elisabeth A; King, Brian A

    2016-09-22

    Among young people, curiosity about tobacco products is a primary reason for tobacco experimentation and is a risk factor for future use. We examined whether curiosity about and ever-use of tobacco products among US middle and high school students changed from 2012 to 2014. Data came from the 2012 and 2014 National Youth Tobacco Surveys, nationally representative surveys of US students in grades 6 through 12. For cigarettes, cigars, smokeless tobacco, and e-cigarettes (2014 only), students were classified as ever-users or never-users of each product. Among never-users, curiosity about using each product was assessed by asking participants if they had "definitely," "probably," "probably not," or "definitely not" been curious about using the product. From 2012 to 2014, there were declines in ever-use of cigarettes (26% to 22%; P = .005) and cigars (21% to 18%; P = .003) overall and among students who were Hispanic (cigarettes, P = .001; cigars, P = .001) or black (cigarettes, P = .004; cigars, P = .01). The proportion of never-users reporting they were "definitely not" curious increased for cigarettes (51% to 54%; P = .01) and cigars (60% to 63%; P = .03). Ever-use and curiosity about smokeless tobacco did not change significantly from 2012 to 2014. In 2014, the proportion of young people who were "definitely" or "probably" curious never-users of each product was as follows: cigarettes, 11.4%; e-cigarettes, 10.8%; cigars, 10.3%; and smokeless tobacco, 4.4%. The proportion of US students who are never users and are not curious about cigarettes and cigars increased. However, many young people remain curious about tobacco products, including e-cigarettes. Understanding factors driving curiosity can inform tobacco use prevention for youth.

  19. Ever-Use and Curiosity About Cigarettes, Cigars, Smokeless Tobacco, and Electronic Cigarettes Among US Middle and High School Students, 2012–2014

    Science.gov (United States)

    Donaldson, Elisabeth A.; King, Brian A.

    2016-01-01

    Introduction Among young people, curiosity about tobacco products is a primary reason for tobacco experimentation and is a risk factor for future use. We examined whether curiosity about and ever-use of tobacco products among US middle and high school students changed from 2012 to 2014. Methods Data came from the 2012 and 2014 National Youth Tobacco Surveys, nationally representative surveys of US students in grades 6 through 12. For cigarettes, cigars, smokeless tobacco, and e-cigarettes (2014 only), students were classified as ever-users or never-users of each product. Among never-users, curiosity about using each product was assessed by asking participants if they had “definitely,” “probably,” “probably not,” or “definitely not” been curious about using the product. Results From 2012 to 2014, there were declines in ever-use of cigarettes (26% to 22%; P = .005) and cigars (21% to 18%; P = .003) overall and among students who were Hispanic (cigarettes, P = .001; cigars, P = .001) or black (cigarettes, P = .004; cigars, P = .01). The proportion of never-users reporting they were “definitely not” curious increased for cigarettes (51% to 54%; P = .01) and cigars (60% to 63%; P = .03). Ever-use and curiosity about smokeless tobacco did not change significantly from 2012 to 2014. In 2014, the proportion of young people who were “definitely” or “probably” curious never-users of each product was as follows: cigarettes, 11.4%; e-cigarettes, 10.8%; cigars, 10.3%; and smokeless tobacco, 4.4%. Conclusion The proportion of US students who are never users and are not curious about cigarettes and cigars increased. However, many young people remain curious about tobacco products, including e-cigarettes. Understanding factors driving curiosity can inform tobacco use prevention for youth. PMID:27657506

  20. Linking Climate Change Science and Adaptation Policy at the Community Scale through Anticipatory Governance: A Review of Concepts with Application to Arizona Communities (Invited)

    Science.gov (United States)

    White, D. D.; Quay, R.; Ferguson, D. B.; Buizer, J. L.; Guido, Z.; Chhetri, N.

    2013-12-01

    Scientific consensus and certainty varies regarding the link between climate change, specific natural hazards and extreme events, and local and regional impacts. Despite these uncertainties, it is necessary to apply the best available scientific knowledge to anticipate a range of possible futures, develop mitigation and adaptation strategies, and monitor changes to build resilience. While there is widespread recognition of the need to improve the linkages between climate science information and public policy for adaptation at the community scale, there are significant challenges to this goal. Many community outreach and engagement efforts, for instance, operate using a one-size-fits-all approach. Recent research has shown this to be problematic for local governments. Public policy occurs in a cycle that includes problem understanding, planning and policy approval, and implementation, with ongoing policy refinement through multiple such cycles. One promising approach to incorporating scientific knowledge with uncertainty into public policy is an anticipatory governance approach. Anticipatory governance employs a continual cycle of anticipation (understanding), planning, monitoring, and adaptation (policy choice and implementation). The types of information needed in each of these phases will be different given the nature of each activity and the unique needs of each community. It is highly unlikely that all local governments will be in the same phase of climate adaptation with the same unique needs at the same time and thus a uniform approach to providing scientific information will only be effective for a discrete group of communities at any given point in time. A key concept for the effective integration of scientific information into public discourse is that such information must be salient, credible, and legitimate. Assuming a scientific institution has established credibility with engaged communities, maximizing the effectiveness of climate science requires

  1. Bergson and the unification of the sciences

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1985-02-01

    Louis De Broglie and M. Capek have described some interesting similarities between the philosophical ideas of Henri Bergson and the profound conceptual changes introduced into physics by quantum theory and the theory of relativity. These similarities are neither identities nor direct causal links, and hence physicists are likely to regard them as mere curiosities having no import for the development of science. However, another view is possible: if Bergson's thinking presaged, at least in spirit, these two revolutionary advances in physics then his intuitions may accord sufficiently with nature to provide useful guidance in the approach to other deep problems in science. Pursuing this idea I shall indicate here how Bergson's intuitions suggest a possible approach to perhaps the fundamental problem of contemporary science, namely the problem of constructing an overarching theoretical framework for unifying the various branches of science from psychology through biology to physics. 19 refs

  2. Seasonal and interannual variability of solar radiation at Spirit, Opportunity and Curiosity landing sites

    International Nuclear Information System (INIS)

    Vicente-Retortillo, A.; Lemmon, M.T.; Martinez, G.; Valero, F.; Vazquez, L.; Martin, M.L.

    2016-01-01

    In this article we characterize the radiative environment at the landing sites of NASA's Mars Exploration Rover (MER) and Mars Science Laboratory (MSL) missions. We use opacity values obtained at the surface from direct imaging of the Sun and our radiative transfer model COMIMART to analyze the seasonal and interannual variability of the daily irradiation at the MER and MSL landing sites. In addition, we analyze the behavior of the direct and diffuse components of the solar radiation at these landing sites. (Author)

  3. Emphasizing the process of science using demonstrations in conceptual chemistry

    Science.gov (United States)

    Lutz, Courtney A.

    The purpose of this project was to teach students a method for employing the process of science in a conceptual chemistry classroom when observing a demonstration of a discrepant event. Students observed six demonstrations throughout a trimester study of chemistry and responded to each demonstration by asking as many questions as they could think of, choosing one testable question to answer by making as many hypotheses as possible, and choosing one hypothesis to make predictions about observed results of this hypothesis when tested. Students were evaluated on their curiosity, confidence, knowledge of the process of science, and knowledge of the nature of science before and after the six demonstrations. Many students showed improvement in using or mastery of the process of science within the context of conceptual chemistry after six intensive experiences with it. Results of the study also showed students gained confidence in their scientific abilities after completing one trimester of conceptual chemistry. Curiosity and knowledge of the nature of science did not show statistically significant improvement according to the assessment tool. This may have been due to the scope of the demonstration and response activities, which focused on the process of science methodology instead of knowledge of the nature of science or the constraints of the assessment tool.

  4. Biological mechanisms beyond network analysis via mathematical modeling. Comment on "Network science of biological systems at different scales: A review" by Marko Gosak et al.

    Science.gov (United States)

    Pedersen, Morten Gram

    2018-03-01

    Methods from network theory are increasingly used in research spanning from engineering and computer science to psychology and the social sciences. In this issue, Gosak et al. [1] provide a thorough review of network science applications to biological systems ranging from the subcellular world via neuroscience to ecosystems, with special attention to the insulin-secreting beta-cells in pancreatic islets.

  5. Feeding People's Curiosity: Leveraging the Cloud for Automatic Dissemination of Mars Images

    Science.gov (United States)

    Knight, David; Powell, Mark

    2013-01-01

    Smartphones and tablets have made wireless computing ubiquitous, and users expect instant, on-demand access to information. The Mars Science Laboratory (MSL) operations software suite, MSL InterfaCE (MSLICE), employs a different back-end image processing architecture compared to that of the Mars Exploration Rovers (MER) in order to better satisfy modern consumer-driven usage patterns and to offer greater server-side flexibility. Cloud services are a centerpiece of the server-side architecture that allows new image data to be delivered automatically to both scientists using MSLICE and the general public through the MSL website (http://mars.jpl.nasa.gov/msl/).

  6. Seasonal and interannual variability of solar radiation at Spirit, Opportunity and Curiosity landing sites

    Energy Technology Data Exchange (ETDEWEB)

    Vicente-Retortillo, A.; Lemmon, M.T.; Martinez, G.; Valero, F.; Vazquez, L.; Martin, M.L.

    2016-07-01

    In this article we characterize the radiative environment at the landing sites of NASA's Mars Exploration Rover (MER) and Mars Science Laboratory (MSL) missions. We use opacity values obtained at the surface from direct imaging of the Sun and our radiative transfer model COMIMART to analyze the seasonal and interannual variability of the daily irradiation at the MER and MSL landing sites. In addition, we analyze the behavior of the direct and diffuse components of the solar radiation at these landing sites. (Author)

  7. Research data management support for large-scale, long-term, interdisciplinary collaborative research centers with a focus on environmental sciences

    Science.gov (United States)

    Curdt, C.; Hoffmeister, D.; Bareth, G.; Lang, U.

    2017-12-01

    Science conducted in collaborative, cross-institutional research projects, requires active sharing of research ideas, data, documents and further information in a well-managed, controlled and structured manner. Thus, it is important to establish corresponding infrastructures and services for the scientists. Regular project meetings and joint field campaigns support the exchange of research ideas. Technical infrastructures facilitate storage, documentation, exchange and re-use of data as results of scientific output. Additionally, also publications, conference contributions, reports, pictures etc. should be managed. Both, knowledge and data sharing is essential to create synergies. Within the coordinated programme `Collaborative Research Center' (CRC), the German Research Foundation offers funding to establish research data management (RDM) infrastructures and services. CRCs are large-scale, interdisciplinary, multi-institutional, long-term (up to 12 years), university-based research institutions (up to 25 sub-projects). These CRCs address complex and scientifically challenging research questions. This poster presents the RDM services and infrastructures that have been established for two CRCs, both focusing on environmental sciences. Since 2007, a RDM support infrastructure and associated services have been set up for the CRC/Transregio 32 (CRC/TR32) `Patterns in Soil-Vegetation-Atmosphere-Systems: Monitoring, Modelling and Data Assimilation' (www.tr32.de). The experiences gained have been used to arrange RDM services for the CRC1211 `Earth - Evolution at the Dry Limit' (www.crc1211.de), funded since 2016. In both projects scientists from various disciplines collect heterogeneous data at field campaigns or by modelling approaches. To manage the scientific output, the TR32DB data repository (www.tr32db.de) has been designed and implemented for the CRC/TR32. This system was transferred and adapted to the CRC1211 needs (www.crc1211db.uni-koeln.de) in 2016. Both

  8. Diversity of Rock Compositions at Gale Crater Observed by ChemCam and APXS on Curiosity, and Comparison to Meteorite and Orbital Observations

    Science.gov (United States)

    Wiens, R. C.; Maurice, S.; Grotzinger, J. P.; Gellert, R.; Mangold, N.; Sautter, V.; Ollila, A.; Dyar, M. D.; Le Mouelic, S.; Ehlmann, B. L.; Clegg, S. M.; Lanza, N.; Cousin, A.; Forni, O.; Gasnault, O.; Lasue, J.; Blaney, D. L.; Newsom, H. E.; Herkenhoff, K. E.; Anderson, R. B.; D'Uston, L.; Bridges, N. T.; Fabre, C.; Meslin, P.; Johnson, J.; Vaniman, D.; Bridges, J.; Dromart, G.; Schmidt, M. E.; Team, M.

    2013-12-01

    Gale crater was selected as the Curiosity landing site because of the apparent sedimentary spectral signatures seen from orbit. Sedimentary materials on Mars have to this point showed very little expression of major element mobility, so compositions of precursor igneous minerals play a strong role in the compositions of sediments. In addition, pebbles and float rocks on Bradbury Rise (sols 0-50, > 324) appear to be mostly igneous in origin, and are assumed to have been carried down from the crater rim. Overall in the first year on Mars ChemCam obtained >75,000 LIBS spectra on > 2,000 observation points, supported by > 1,000 RMI images, and APXS obtained a significant number of observations. These show surprisingly variable compositions. The mean ChemCam compositions for Bradbury Rise dust-free rocks and pebbles (62 locations) give SiO2 = 56%, FeOT = 16% and show high alkalis consistent with Jake Matijevic (sol ~47) APXS Na2O ~6.6 wt%. ChemCam observations on the conglomerate Link (sol 27) gave Rb > 150 ppm and Sr > 1500 ppm. These compositions imply the presence of abundant alkali feldspars in the material infilling the lower parts of Gale crater. They are generally consistent with the more feldspar-rich SNC meteorites but show a radical departure from larger scale orbital observations, e.g., GRS, raising the question of how widespread these compositions are outside of Gale crater. Sedimentary materials at Yellowknife Bay encompassing the Sheepbed (sols 125-300) and Shaler (sols 121, 311-324) units, potentially including Point Lake (sols 301-310) and Rocknest (sols 57-97), appear to have incorporated varying amounts of igneous source materials. Seven rocks investigated at Rocknest show significant additions of Fe, with mean FeOT = 25% (154 locations), suggesting that FeO was a cementing agent. ChemCam observations at Shaler show varying amounts of alkali feldspar (i.e., related to Bradbury Rise), Fe-rich material (Rocknest-like), and potassium-rich material

  9. Towards a Scalable and Adaptive Application Support Platform for Large-Scale Distributed E-Sciences in High-Performance Network Environments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chase Qishi [New Jersey Inst. of Technology, Newark, NJ (United States); Univ. of Memphis, TN (United States); Zhu, Michelle Mengxia [Southern Illinois Univ., Carbondale, IL (United States)

    2016-06-06

    The advent of large-scale collaborative scientific applications has demonstrated the potential for broad scientific communities to pool globally distributed resources to produce unprecedented data acquisition, movement, and analysis. System resources including supercomputers, data repositories, computing facilities, network infrastructures, storage systems, and display devices have been increasingly deployed at national laboratories and academic institutes. These resources are typically shared by large communities of users over Internet or dedicated networks and hence exhibit an inherent dynamic nature in their availability, accessibility, capacity, and stability. Scientific applications using either experimental facilities or computation-based simulations with various physical, chemical, climatic, and biological models feature diverse scientific workflows as simple as linear pipelines or as complex as a directed acyclic graphs, which must be executed and supported over wide-area networks with massively distributed resources. Application users oftentimes need to manually configure their computing tasks over networks in an ad hoc manner, hence significantly limiting the productivity of scientists and constraining the utilization of resources. The success of these large-scale distributed applications requires a highly adaptive and massively scalable workflow platform that provides automated and optimized computing and networking services. This project is to design and develop a generic Scientific Workflow Automation and Management Platform (SWAMP), which contains a web-based user interface specially tailored for a target application, a set of user libraries, and several easy-to-use computing and networking toolkits for application scientists to conveniently assemble, execute, monitor, and control complex computing workflows in heterogeneous high-performance network environments. SWAMP will enable the automation and management of the entire process of scientific

  10. Joint Applications Pilot of the National Climate Predictions and Projections Platform and the North Central Climate Science Center: Delivering climate projections on regional scales to support adaptation planning

    Science.gov (United States)

    Ray, A. J.; Ojima, D. S.; Morisette, J. T.

    2012-12-01

    The DOI North Central Climate Science Center (NC CSC) and the NOAA/NCAR National Climate Predictions and Projections (NCPP) Platform and have initiated a joint pilot study to collaboratively explore the "best available climate information" to support key land management questions and how to provide this information. NCPP's mission is to support state of the art approaches to develop and deliver comprehensive regional climate information and facilitate its use in decision making and adaptation planning. This presentation will describe the evolving joint pilot as a tangible, real-world demonstration of linkages between climate science, ecosystem science and resource management. Our joint pilot is developing a deliberate, ongoing interaction to prototype how NCPP will work with CSCs to develop and deliver needed climate information products, including translational information to support climate data understanding and use. This pilot also will build capacity in the North Central CSC by working with NCPP to use climate information used as input to ecological modeling. We will discuss lessons to date on developing and delivering needed climate information products based on this strategic partnership. Four projects have been funded to collaborate to incorporate climate information as part of an ecological modeling project, which in turn will address key DOI stakeholder priorities in the region: Riparian Corridors: Projecting climate change effects on cottonwood and willow seed dispersal phenology, flood timing, and seedling recruitment in western riparian forests. Sage Grouse & Habitats: Integrating climate and biological data into land management decision models to assess species and habitat vulnerability Grasslands & Forests: Projecting future effects of land management, natural disturbance, and CO2 on woody encroachment in the Northern Great Plains The value of climate information: Supporting management decisions in the Plains and Prairie Potholes LCC. NCCSC's role in

  11. The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity

    Science.gov (United States)

    Martínez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; Harri, A.-M.; Kemppinen, O.; Lemmon, M. T.; Smith, M. D.; de la Torre-Juárez, M.; Vasavada, A. R.

    2017-10-01

    We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today's Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars' present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.

  12. Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars

    Science.gov (United States)

    Mangold, Nicolas; Forni, Olivier; Dromart, G.; Stack, K.M.; Wiens, Roger C.; Gasnault, Olivier; Sumner, Dawn Y.; Nachon, Marion; Meslin, Pierre-Yves; Anderson, Ryan B.; Barraclough, Bruce; Bell, J.F.; Berger, G.; Blaney, D.L.; Bridges, J.C.; Calef, F.; Clark, Brian R.; Clegg, Samuel M.; Cousin, Agnes; Edgar, L.; Edgett, Kenneth S.; Ehlmann, B.L.; Fabre, Cecile; Fisk, M.; Grotzinger, John P.; Gupta, S.C.; Herkenhoff, Kenneth E.; Hurowitz, J.A.; Johnson, J. R.; Kah, Linda C.; Lanza, Nina L.; Lasue, Jeremie; Le Mouélic, S.; Lewin, Eric; Malin, Michael; McLennan, Scott M.; Maurice, S.; Melikechi, Noureddine; Mezzacappa, Alissa; Milliken, Ralph E.; Newsome, H.L.; Ollila, A.; Rowland, Scott K.; Sautter, Violaine; Schmidt, M.E.; Schroder, S.; D'Uston, C.; Vaniman, Dave; Williams, R.A.

    2015-01-01

    The Yellowknife Bay formation represents a ~5 m thick stratigraphic section of lithified fluvial and lacustrine sediments analyzed by the Curiosity rover in Gale crater, Mars. Previous works have mainly focused on the mudstones that were drilled by the rover at two locations. The present study focuses on the sedimentary rocks stratigraphically above the mudstones by studying their chemical variations in parallel with rock textures. Results show that differences in composition correlate with textures and both manifest subtle but significant variations through the stratigraphic column. Though the chemistry of the sediments does not vary much in the lower part of the stratigraphy, the variations in alkali elements indicate variations in the source material and/or physical sorting, as shown by the identification of alkali feldspars. The sandstones contain similar relative proportions of hydrogen to the mudstones below, suggesting the presence of hydrous minerals that may have contributed to their cementation. Slight variations in magnesium correlate with changes in textures suggesting that diagenesis through cementation and dissolution modified the initial rock composition and texture simultaneously. The upper part of the stratigraphy (~1 m thick) displays rocks with different compositions suggesting a strong change in the depositional system. The presence of float rocks with similar compositions found along the rover traverse suggests that some of these outcrops extend further away in the nearby hummocky plains.

  13. Marine Science

    African Journals Online (AJOL)

    ination of high quality research generated in the Western Indian Ocean (WIO) region, ... fisheries, recovery and restoration processes, legal and institutional frameworks, and interactions/relationships ... Science features state-of-the-art review articles and short communications. ... Non-metric multidimensional scaling (nMDS).

  14. Scaling down

    Directory of Open Access Journals (Sweden)

    Ronald L Breiger

    2015-11-01

    Full Text Available While “scaling up” is a lively topic in network science and Big Data analysis today, my purpose in this essay is to articulate an alternative problem, that of “scaling down,” which I believe will also require increased attention in coming years. “Scaling down” is the problem of how macro-level features of Big Data affect, shape, and evoke lower-level features and processes. I identify four aspects of this problem: the extent to which findings from studies of Facebook and other Big-Data platforms apply to human behavior at the scale of church suppers and department politics where we spend much of our lives; the extent to which the mathematics of scaling might be consistent with behavioral principles, moving beyond a “universal” theory of networks to the study of variation within and between networks; and how a large social field, including its history and culture, shapes the typical representations, interactions, and strategies at local levels in a text or social network.

  15. Science teachers’ individual and social learning related to IBSE in the frames of a large-scale, long-term, collaborative TPD project

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Sillasen, Martin

    of collaborative inquiries locally. A major theme in the first year has been Inquiry Based Science Education (IBSE) recommended as a focus to improve science education internationally. The research presented focuses on the participating teachers’ intertwined levels of individual and social learning. Data from...... repeated surveys and case studies reveal a positive attitude towards trying IBSE in the own classroom, however with the main part of the reflections focused on students’ hands-on experiences and fewer including students manipulating science ideas, like posing hypotheses. Teachers’ reflections indicate......It is acknowledged internationally that teachers’ Professional Development (TPD) is crucial for reforming science teaching. The Danish QUEST project (“Qualifying in-service Education of Science Teachers”) is designed using widely agreed criteria for effective TPD: content focus, active learning...

  16. Science Programs

    Science.gov (United States)

    Laboratory Delivering science and technology to protect our nation and promote world stability Science & ; Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied

  17. The role of science in achieving sustainability

    International Nuclear Information System (INIS)

    Dragan, Gleb

    2004-01-01

    Over the last few decades research in the natural sciences has unveiled a number of specific complex relations between human activity an environmental change on a global scale. Scientific assesment confirm that global life support systems, such as climate, biodiversity and water resources are significantly affected by human activities. System change became the key in the research plan that emerged - systems being defined as the socio-economic and technical chains of production, distribution, consumption and disposal activities. Predicting the impact of a changing world on human health is a hard task and requires an interdisciplinary approach drawn from the fields of evaluation, biogeography, ecology and social sciences, and relying on various methodologies such as mathematical modelling as well as historical analysis. However, the great majority of public health researchers are empiricists by training and tradition, studying the past and the present via direct observation. By definition empirical methods cannot be used to study the future. To extent that the advent of global environmental changes obliges scientists to estimate future impacts, should current or foreseeable trends continue, then empiricism must be supplemented by integrated assessment modelling. The prediction of environmental change and its health impacts encounters uncertainties at various level. Some of the uncertainties are of scientific kind or are referring to the conceptualisation and construction of mathematical models where the specification of linked processes may be uncertain. Research on transformation towards sustainability puts emphasis on the interaction of innovation (production), consumption and institution and incentive structure. The specific challenges and research needs are: - Understand the dynamics of structural change in sociotechno-ecological system and anticipate transformation paths (knowledge of system dynamics); - Assess and evaluate the impacts of specific paths of

  18. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform.

    Science.gov (United States)

    Denning, Chris; Borgdorff, Viola; Crutchley, James; Firth, Karl S A; George, Vinoj; Kalra, Spandan; Kondrashov, Alexander; Hoang, Minh Duc; Mosqueira, Diogo; Patel, Asha; Prodanov, Ljupcho; Rajamohan, Divya; Skarnes, William C; Smith, James G W; Young, Lorraine E

    2016-07-01

    Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. Nevertheless, predictive cardiotoxicity using hPSC-CMs contrasts from failure to almost total success. Since this likely relates to cell immaturity, efforts are underway to use biochemical and biophysical cues to improve many of the ~30 structural and functional properties of hPSC-CMs towards those seen in adult CMs. Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Fear based Education or Curiosity based Education as an Example of Earthquake and Natural Disaster Education: Results of Statistical Study in Primary Schools in Istanbul-Turkey

    Science.gov (United States)

    Ozcep, T.; Ozcep, F.

    2012-04-01

    Natural disaster reduction focuses on the urgent need for prevention activities to reduce loss of life, damage to property, infrastructure and environment, and the social and economic disruption caused by natural hazards. One of the most important factors in reduction of the potential damage of earthquakes is trained manpower. To understanding the causes of earthquakes and other natural phenomena (landslides, avalanches, floods, volcanoes, etc.) is one of the pre-conditions to show a conscious behavior. The aim of the study is to analysis and to investigate, how earthquakes and other natural phenomena are perceived by the students and the possible consequences of this perception, and their effects of reducing earthquake damage. One of the crucial questions is that is our education system fear or curiosity based education system? Effects of the damages due to earthquakes have led to look like a fear subject. In fact, due to the results of the effects, the earthquakes are perceived scary phenomena. In the first stage of the project, the learning (or perception) levels of earthquakes and other natural disasters for the students of primary school are investigated with a survey. Aim of this survey study of earthquakes and other natural phenomena is that have the students fear based or curiosity based approaching to the earthquakes and other natural events. In the second stage of the project, the path obtained by the survey are evaluated with the statistical point of approach. A questionnaire associated with earthquakes and natural disasters are applied to primary school students (that total number of them is approximately 700 pupils) to measure the curiosity and/or fear levels. The questionnaire consists of 17 questions related to natural disasters. The questions are: "What is the Earthquake ?", "What is power behind earthquake?", "What is the mental response during the earthquake ?", "Did we take lesson from earthquake's results ?", "Are you afraid of earthquake

  20. ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars

    Science.gov (United States)

    Johnson, Jeffrey R.; Bell, J. F.; Bender, S.; Blaney, D.; Cloutis, E.; DeFlores, L.; Ehlmann, B.; Gasnault, O.; Gondet, B.; Kinch, K.; Lemmon, M.; Le Mouélic, S.; Maurice, S.; Rice, M.; Wiens, R. C.

    2015-03-01

    The spectrometers on the Mars Science Laboratory (MSL) ChemCam instrument were used in passive mode to record visible/near-infrared (400-840 nm) radiance from the martian surface. Using the onboard ChemCam calibration targets' housing as a reflectance standard, we developed methods to collect, calibrate, and reduce radiance observations to relative reflectance. Such measurements accurately reproduce the known reflectance spectra of other calibration targets on the rover, and represent the highest spatial resolution (0.65 mrad) and spectral sampling (rocks and soils match those from orbital observations and multispectral data from the MSL Mastcam camera. Preliminary analyses of the band depths, spectral slopes, and reflectance ratios of the more than 2000 spectra taken during the first year of MSL operations demonstrate at least six spectral classes of materials distinguished by variations in ferrous and ferric components. Initial comparisons of ChemCam spectra to laboratory spectra of minerals and Mars analog materials demonstrate similarities with palagonitic soils and indications of orthopyroxene in some dark rocks. Magnesium-rich "raised ridges" tend to exhibit distinct near-infrared slopes. The ferric absorption downturn typically found for martian materials at rocks and drill tailings, consistent with their more ferrous nature. Calcium-sulfate veins exhibit the highest relative reflectances observed, but are still relatively red owing to the effects of residual dust. Such dust is overall less prominent on rocks sampled within the "blast zone" immediately surrounding the landing site. These samples were likely affected by the landing thrusters, which partially removed the ubiquitous dust coatings. Increased dust coatings on the calibration targets during the first year of the mission were documented by the ChemCam passive measurements as well. Ongoing efforts to model and correct for this dust component should improve calibration of the relative reflectance

  1. Explainers' development of science-learner identities through participation in a community of practice

    Science.gov (United States)

    Richardson, Anne E.

    The urgent environmental issues of today require science-literate adults to engage in business and political decisions to create solutions. Despite the need, few adults have the knowledge and skills of science literacy. This doctoral dissertation is an analytical case study examining the science-learner identity development of Exploratorium Field Trip Explainers. Located in San Francisco, CA, the Exploratorium is a museum of science, art, and human perception dedicated to nurturing curiosity and exploration. Data collected included semi-structured interviews with sixteen former Field Trip Explainers, participant observation of the current Field Trip Explainer Program, and review of relevant documentation. Data analysis employed constant comparative analysis, guided by the communities of practice theoretical framework (Wenger, 1998) and the National Research Council's (2009) Six Strands of Science Learning. Findings of this research indicate that Exploratorium Field Trip Explainers participate in a community of practice made up of a diverse group of people that values curiosity and openness to multiple ways of learning. Many participants entered the Field Trip Explainer Program with an understanding of science learning as a rigid process reserved for a select group of people; through participation in the Field Trip Explainer community of practice, participants developed an understanding of science learning as accessible and a part of everyday life. The findings of this case study have implications for research, theory, and practice in informal adult science learning, access of non-dominant groups to science learning, and adult workplace learning in communities of practice.

  2. Science Policy at the Wrong Scale and Without Adequate Political Institutions: Parallels between the U.S. 19th Century and the 21st Century Global Contexts

    Science.gov (United States)

    McCurdy, K. M.

    2012-12-01

    The Constitution of the United States is a document for economic development written by people wary of government failure at the extremes, whether too heavy handed a central government or too loose a confederation. The strong central government favored by Hamilton, Industrialists and later by forward thinking men of the 19th century created a discontinuity wherein government institutions designed to facilitate agriculture were incapable of regulating corporations operating on a national scale, which made mineral and other natural resource exploitation needed to support industrialization enormously profitable. At the same time, Agriculturalists and other conservative citizens sought to control the economy by protecting their rural interests and power. The political institutional power remained with states as agriculturalists and industrialists struggled for economic superiority in the 19th century. As Agriculture moved west, Science warned of the dangers of extending Homesteading regulations into arid regions to no avail. The west was settled in townships without concern for watersheds, carrying capacity, or climatic variability. Gold seekers ignored the consequences of massive hydraulic mining techniques. The tension resident in the Constitution between strong local control of government (states' rights) and a strong central government (nationalism) provided no institutional context to resolve mining problems or other 19th century policy problems linked to rapid population expansion and industrialization. Environmental protection in the late 20th century has been the last wave of nationalized policy solutions following the institution-building blueprint provided by electoral successes in the Progressive, New Deal, and Great Society eras. Suddenly in the 21st century, scientific warnings of dangers again go unheeded, this time as evidence of global warming mounts. Again, tension in policy making exists in all political arenas (executive, legislative and judicial at

  3. Extraction of compositional and hydration information of sulfates from laser-induced plasma spectra recorded under Mars atmospheric conditions — Implications for ChemCam investigations on Curiosity rover

    International Nuclear Information System (INIS)

    Sobron, Pablo; Wang, Alian; Sobron, Francisco

    2012-01-01

    Given the volume of spectral data required for providing accurate compositional information and thereby insight in mineralogy and petrology from laser-induced breakdown spectroscopy (LIBS) measurements, fast data processing tools are a must. This is particularly true during the tactical operations of rover-based planetary exploration missions such as the Mars Science Laboratory rover, Curiosity, which will carry a remote LIBS spectrometer in its science payload. We have developed: an automated fast pre-processing sequence of algorithms for converting a series of LIBS spectra (typically 125) recorded from a single target into a reliable SNR-enhanced spectrum; a dedicated routine to quantify its spectral features; and a set of calibration curves using standard hydrous and multi-cation sulfates. These calibration curves allow deriving the elemental compositions and the degrees of hydration of various hydrous sulfates, one of the two major types of secondary minerals found on Mars. Our quantitative tools are built upon calibration-curve modeling, through the correlation of the elemental concentrations and the peak areas of the atomic emission lines observed in the LIBS spectra of standard samples. At present, we can derive the elemental concentrations of K, Na, Ca, Mg, Fe, Al, S, O, and H in sulfates, as well as the hydration degrees of Ca- and Mg-sulfates, from LIBS spectra obtained in both Earth atmosphere and Mars atmospheric conditions in a Planetary Environment and Analysis Chamber (PEACh). In addition, structural information can be potentially obtained for various Fe-sulfates. - Highlights: ► Routines for LIBS spectral data fast automated processing. ► Identification of elements and determination of the elemental composition. ► Calibration curves for sulfate samples in Earth and Mars atmospheric conditions. ► Fe curves probably related to the crystalline structure of Fe-sulfates. ► Extraction of degree of hydration in hydrous Mg-, Ca-, and Fe-sulfates.

  4. The Mysteries and Curiosities of Mars: A Tour of Unusual and Unexplained Terrains

    Science.gov (United States)

    Kerber, L.

    2017-12-01

    The large amount of data available from orbiting satellites around Mars has provided a wealth of information about the Martian surface and geological history. The published literature tends to focus on regions of Mars for which there are ready explanations; however, many regions of Mars remain mysterious. In this contribution, we present some of the strangest and least explained terrains on Mars: The Taffy Terrain: This complex terrain, consisting of swirling layers with variably sized bands, is present mostly at the bottom of Hellas Basin, but versions of it can also be found on the floor of Melas Chasma and in the Medusae Fossae Formation near Apollinaris Sulci. While little has been written about the taffy terrain, hypotheses include "glacial features" and salt domes. The taffy terrain bears some resemblance to submarine salt domes in the Gulf of Mexico, glacial deposits with mixed ash and ice in Iceland, or chalk formations in Egypt's White Desert. The Fishscale Terrain: At the northern edge of Lucus Planum, the friable Medusae Fossae Formation transitions into a chaos-like terrain with hundreds of mesas forming a pattern like the scales of a fish. While chaos terrains are mysterious in general, this morphologically fresh, near-equatorial chaos is especially unusual. Polygonal Ridges in Gordii Dorsum: Also a part of the Medusae Fossae Formation, the ridges in Gordii Dorsum represent a negative image of the fishscale terrain—a intricate lattice of slender black ridges. These are thought to form via the embayment of the fishscale terrain with lava and the subsequent erosion of the original mesas. Horseshoe Features: These geomorphological features look like inverted barchan dunes, but they are actually pits eroded into the surface of the Medusae Fossae Formation. Channels surrounding Elysium Mons: These channel systems are among the most complex on Mars, but they appear on a young Amazonian lava surface. The channels cut through topography, anastomose, and

  5. The 2004 Transit of Venus as a Space Science Education Opportunity

    Science.gov (United States)

    Odenwald, S.; Mayo, L.; Vondrak, R.; Thieman, J.; Hawkins, I.; Schultz, G.

    2003-12-01

    We will present some of the programs and activities that NASA and its missions are preparing in order to support public and K12 education in space science and astronomy using the 2004 transit of Venus as a focal event. The upcoming transit of Venus on June 8 offers a unique opportunity to educate students and the general public about the scale of the solar system and the universe, as well as basic issues in comparative planetology. NASA's Sun-Earth Connection Education Forum is offering a number of programs to take advantage of this rare event. Among these are a live web cast from Spain of the entire transit, a series of radio and TV programs directed at students and the general public, a web cast describing extra-solar planet searches using the transit geometry, and archived observations produced by public observatories and student-operated solar viewers. The NASA/OSS Education Forums will also partner with science museums, planetaria and teachers across the country to bring the transit of Venus 'down to Earth'. In addition to offering enrichment activities in mathematics and space science, we also describe collaborations that have yielded unique historical resources including online archives of newspaper articles from the 1874 and 1882 transits. In addition, in collaboration with the Library of Congress Music Division, we have supported a modern re-orchestration of John Philip Sousa's Transit of Venus March which has not been performed since 1883. We anticipate that the transit of Venus will be a significant event of considerable public interest and curiosity, if the newspaper headlines from the transit seen in 1882 are any indication.

  6. Shake, Rattle and Roles: Lessons from Experimental Earthquake Engineering for Incorporating Remote Users in Large-Scale E-Science Experiments

    National Research Council Canada - National Science Library

    Birnholtz, Jeremy P; Horn, Daniel B

    2007-01-01

    While there has been substantial interest in using e-science and cyberinfrastructure technologies to enable synchronous remote participation in experimental research, the details of such participation are in question...

  7. Mitigating Mosquito Disease Vectors with Citizen Science: a Review of the GLOBE Observer Mosquito Habitat Mapper Pilot and Implications for Wide-scale Implementation

    Science.gov (United States)

    Riebeek Kohl, H.; Low, R.; Boger, R. A.; Schwerin, T. G.; Janney, D. W.

    2017-12-01

    The spread of disease vectors, including mosquitoes, is an increasingly significant global environmental issue driven by a warming climate. In 2017, the GLOBE Observer Program launched a new citizen science initiative to map mosquito habitats using the free GLOBE Observer App for smart phones and tablets. The app guides people to identify mosquito larvae and breeding sites, and then once documented, to eliminate or treat the site to prevent further breeding. It also gives citizen scientists the option to identify the mosquito larvae species to determine whether it is one of three genera that potentially could transmit Zika, dengue fever, yellow fever, chikungunya, and other diseases. This data is uploaded to an international database that is freely available to the public and science community. GLOBE Observer piloted the initiative with educators in the United States, Brazil, and Peru, and it is now open for global participation. This presentation will discuss lessons learned in the pilot phase as well as plans to implement the initiative worldwide in partnership with science museums and science centers. GLOBE Observer is the non-student citizen science arm of the Global Learning and Observations to Benefit the Environment (GLOBE) Program, a long-standing, international science and education program that provides students and citizen scientists with the opportunity to participate in data collection and the scientific process, and contribute meaningfully to our understanding of the Earth system and global environment. GLOBE Observer data collection also includes cloud cover and cloud type and land cover/land use (in late 2017).

  8. Science and Science Fiction

    Science.gov (United States)

    Oravetz, David

    2005-01-01

    This article is for teachers looking for new ways to motivate students, increase science comprehension, and understanding without using the old standard expository science textbook. This author suggests reading a science fiction novel in the science classroom as a way to engage students in learning. Using science fiction literature and language…

  9. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  10. The Mars Science Laboratory Organic Check Material

    Science.gov (United States)

    Conrad, Pamela G.; Eigenbrode, Jennifer L.; Von der Heydt, Max O.; Mogensen, Claus T.; Canham, John; Harpold, Dan N.; Johnson, Joel; Errigo, Therese; Glavin, Daniel P.; Mahaffy, Paul R.

    2012-09-01

    Mars Science Laboratory's Curiosity rover carries a set of five external verification standards in hermetically sealed containers that can be sampled as would be a Martian rock, by drilling and then portioning into the solid sample inlet of the Sample Analysis at Mars (SAM) suite. Each organic check material (OCM) canister contains a porous ceramic solid, which has been doped with a fluorinated hydrocarbon marker that can be detected by SAM. The purpose of the OCM is to serve as a verification tool for the organic cleanliness of those parts of the sample chain that cannot be cleaned other than by dilution, i.e., repeated sampling of Martian rock. SAM possesses internal calibrants for verification of both its performance and its internal cleanliness, and the OCM is not used for that purpose. Each OCM unit is designed for one use only, and the choice to do so will be made by the project science group (PSG).

  11. Science and the media alternative routes in scientific communication

    CERN Document Server

    Bucchi, Massimiano

    1998-01-01

    In the days of global warming and BSE, science is increasingly a public issue. This book provides a theoretical framework which allows us to understand why and how scientists address the general public. The author develops the argument that turning to the public is not simply a response to inaccurate reporting by journalists or to public curiosity, nor a wish to gain recognition and additional funding. Rather, it is a tactic to which the scientific community are pushed by certain "internal" crisis situations. Bucchi examines three cases of scientists turning to the public: the cold fusion case, the COBE/Big Bang issue and Louis Pasteur's public demonstration of the anthrax vaccine, a historical case of "public science." Finally, Bucchi presents his unique model of communications between science and the public, carried out through the media. This is a thoughtful and wide-ranging treatment of complex contemporary issues, touching upon the history and sociology of science, communication and media studies. Bucchi...

  12. Comparative study of middle school students' attitudes towards science: Rasch analysis of entire TIMSS 2011 attitudinal data for England, Singapore and the U.S.A. as well as psychometric properties of attitudes scale

    Science.gov (United States)

    Pey Tee, Oon; Subramaniam, R.

    2018-02-01

    We report here on a comparative study of middle school students' attitudes towards science involving three countries: England, Singapore and the U.S.A. Complete attitudinal data sets from TIMSS (Trends in International Mathematics and Science Study) 2011 were used, thus giving a very large sample size (N = 20,246), compared to other studies in the journal literature. The Rasch model was used to analyse the data, and the findings have shed some useful light on not only how the Western and Asian students responded on a comparative basis in the various scales related to attitudes but also on the validity, reliability, and unidimensionality of the attitudes instrument used in TIMSS 2011. There may be a need for TIMSS test developers to consider doing away with negatively phrased items in the attitudes instrument and phrasing these positively as the Rasch framework shows that response bias is associated with these statements.

  13. Using Art to Enhance the Learning of Math and Science: Developing an Educational Art-Science Kit about Fractal Patterns in Nature

    Science.gov (United States)

    Rao, Deepa

    This study documents the development of an educational art-science kit about natural fractals, whose aim is to unite artistic and scientific inquiry in the informal learning of science and math. Throughout this research, I argue that having an arts-integrated approach can enhance the learner of science and math concepts. A guiding metaphor in this thesis is the Enlightenment-era cabinet of curiosities that represents a time when art and science were unified in the process of inquiry about the natural world. Over time, increased specialization in the practice of arts and science led to a growing divergence between the disciplines in the educational system. Recently, initiatives like STEAM are underway at the national level to integrate "Arts and Design" into the Science, Technology, Engineering, and Math (STEM) formal education agenda. Learning artifacts like science kits present an opportunity to unite artistic and scientific inquiry in informal settings. Although science kits have been introduced to promote informal learning, presently, many science kits have a gap in their design, whereby the activities consist of recipe-like instructions that do not encourage further inquiry-based learning. In the spirit of the cabinet of curiosities, this study seeks to unify visual arts and science in the process of inquiry. Drawing from educational theories of Dewey, Piaget, and Papert, I developed a novel, prototype "art-science kit" that promotes experiential, hands-on, and active learning, and encourages inquiry, exploration, creativity, and reflection through a series of art-based activities to help users learn science and math concepts. In this study, I provide an overview of the design and development process of the arts-based educational activities. Furthermore, I present the results of a pilot usability study (n=10) conducted to receive user feedback on the designed materials for use in improving future iterations of the art-science fractal kit. The fractal kit

  14. Sustaining and Extending the Open Science Grid: Science Innovation on a PetaScale Nationwide Facility (DE-FC02-06ER41436) SciDAC-2 Closeout Report

    Energy Technology Data Exchange (ETDEWEB)

    Livny, Miron [Univ. of Wisconsin, Madison, WI (United States); Shank, James [Boston Univ., MA (United States); Ernst, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States); Blackburn, Kent [California Inst. of Technology (CalTech), Pasadena, CA (United States); Goasguen, Sebastien [Clemson Univ., SC (United States); Tuts, Michael [Columbia Univ., New York, NY (United States); Gibbons, Lawrence [Cornell Univ., Ithaca, NY (United States); Pordes, Ruth [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sliz, Piotr [Harvard Medical School, Boston, MA (United States); Deelman, Ewa [Univ. of Southern California, Los Angeles, CA (United States). Information Sciences Inst.; Barnett, William [Indiana Univ., Bloomington, IN (United States); Olson, Doug [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McGee, John [Univ. of North Carolina, Chapel Hill, NC (United States). Renaissance Computing Inst.; Cowles, Robert [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wuerthwein, Frank [Univ. of California, San Diego, CA (United States); Gardner, Robert [Univ. of Chicago, IL (United States); Avery, Paul [Univ. of Florida, Gainesville, FL (United States); Wang, Shaowen [Univ. of Illinois, Champaign, IL (United States); Univ. of Iowa, Iowa City, IA (United States); Lincoln, David Swanson [Univ. of Nebraska, Lincoln, NE (United States)

    2015-02-11

    Under this SciDAC-2 grant the project’s goal w a s t o stimulate new discoveries by providing scientists with effective and dependable access to an unprecedented national distributed computational facility: the Open Science Grid (OSG). We proposed to achieve this through the work of the Open Science Grid Consortium: a unique hands-on multi-disciplinary collaboration of scientists, software developers and providers of computing resources. Together the stakeholders in this consortium sustain and use a shared distributed computing environment that transforms simulation and experimental science in the US. The OSG consortium is an open collaboration that actively engages new research communities. We operate an open facility that brings together a broad spectrum of compute, storage, and networking resources and interfaces to other cyberinfrastructures, including the US XSEDE (previously TeraGrid), the European Grids for ESciencE (EGEE), as well as campus and regional grids. We leverage middleware provided by computer science groups, facility IT support organizations, and computing programs of application communities for the benefit of consortium members and the US national CI.

  15. Utilizing Multifaceted Rasch Measurement through Facets to Evaluate Science Education Data Sets Composed of Judges, Respondents, and Rating Scale Items: An Exemplar Utilizing the Elementary Science Teaching Analysis Matrix Instrument

    Science.gov (United States)

    Boone, William J.; Townsend, J. Scott; Staver, John R.

    2016-01-01

    When collecting data, science education researchers frequently have multiple respondents evaluate multiple artifacts using multiple criteria. Herein, the authors introduce Multifaceted Rasch Measurement (MFRM) analysis and explain why MFRM must be used when "judges'" data are collected. The authors use data from elementary science…

  16. Curiosities of arithmetic gases

    International Nuclear Information System (INIS)

    Bakas, I.; Bowick, M.J.

    1991-01-01

    Statistical mechanical systems with an exponential density of states are considered. The arithmetic analog of parafermions of arbitrary order is constructed and a formula for boson-parafermion equivalence is obtained using properties of the Riemann zeta function. Interactions (nontrivial mixing) among arithmetic gases using the concept of twisted convolutions are also introduced. Examples of exactly solvable models are discussed in detail

  17. Curiosities at c=24

    International Nuclear Information System (INIS)

    Schellekens, A.N.; Yankielowicz, S.

    1989-01-01

    Two examples of c=24 holomorphic conformal field theories are given that do not correspond to Niemeier lattices or Z 2 twists of Niemeier lattices. One of these examples clarifies a recently discovered modular invariant of F 4 at level 6, which can be interpreted as the 'complement' of SU(3) level 2 within a new c=24 theory. (orig.)

  18. Curiosities at c=1

    International Nuclear Information System (INIS)

    Ginsparg, P.

    1988-01-01

    We consider conformal field theories on a torus with central charge c=1, and in particular models based upon modding out string propagation on the SU(2) group manifold by its finite subgroups. We find that the partition functions for these models coincide with the continuum limit partition functions of a recently introduced class of RSOS models, defined in terms of the extended Dynkin diagrams of simply-laced Lie algebras, thus giving an alternative interpretation for the primary fields in these latter theories. Three of the models have no massless moduli and thus do not lie on the same line of critical points with the rest. The particular correspondence between simply-laced Lie algebras and finite subgroups of SU(2) that emerges coincides with that which has already appeared in other mathematical contexts. (orig.)

  19. Pharmacokinetics: curiosity or cure

    International Nuclear Information System (INIS)

    Notari, R.E.

    1979-01-01

    What is the fate of a drug from the time of its introduction into the body to the end of its duration. Pharmacokinetic studies are often designed to provide an answer to this question. But this question may be asked of any drug and research that is limited to answering it will remain empirical. Pharmacokinetic studies can provide answers to many other drug-related questions. In doing so pharmacokinetic research has the potential of improving drug therapy as well as the design and evaluation of drugs. While significant contributions can be cited, the future of pharmacokinetics depends upon its increased impact on clinical practice and drug design. How can a molecule be tailored for site specificity. Can chemical modification selectively alter absorption, distribution, metabolism, binding or excretion. In what new ways can pharmacokinetic information increase the predictability of drug therapy. Such questions, to which pharmacokinetics should provide answers, are numerous and easily identified. But the definitive studies are difficult both to create and conduct. Whether or not pharmacokinetics can achieve its full potential will depend upon the extent to which it can provide answers to these currently unanswered questions

  20. Curiosity, ambition and foolhardiness

    Indian Academy of Sciences (India)

    Lawrence

    rotated (was it the J cross B force?) and the house plunged into total darkness. When my ... Bangalore's intellectual and cultural heritage has contributed in no mean ... participate in family matters and when to say no. This is if one wants to live ...

  1. eEcoLiDAR, eScience infrastructure for ecological applications of LiDAR point clouds: reconstructing the 3D ecosystem structure for animals at regional to continental scales

    Directory of Open Access Journals (Sweden)

    W. Daniel Kissling

    2017-07-01

    Full Text Available The lack of high-resolution measurements of 3D ecosystem structure across broad spatial extents impedes major advancements in animal ecology and biodiversity science. We aim to fill this gap by using Light Detection and Ranging (LiDAR technology to characterize the vertical and horizontal complexity of vegetation and landscapes at high resolution across regional to continental scales. The newly LiDAR-derived 3D ecosystem structures will be applied in species distribution models for breeding birds in forests and marshlands, for insect pollinators in agricultural landscapes, and songbirds at stopover sites during migration. This will allow novel insights into the hierarchical structure of animal-habitat associations, into why animal populations decline, and how they respond to habitat fragmentation and ongoing land use change. The processing of these massive amounts of LiDAR point cloud data will be achieved by developing a generic interactive eScience environment with multi-scale object-based image analysis (OBIA and interpretation of LiDAR point clouds, including data storage, scalable computing, tools for machine learning and visualisation (feature selection, annotation/segmentation, object classification, and evaluation, and a PostGIS spatial database. The classified objects will include trees, forests, vegetation strata, edges, bushes, hedges, reedbeds etc. with their related metrics, attributes and summary statistics (e.g. vegetation openness, height, density, vertical biomass distribution etc.. The newly developed eScience tools and data will be available to other disciplines and applications in ecology and the Earth sciences, thereby achieving high impact. The project will foster new multi-disciplinary collaborations between ecologists and eScientists and contribute to training a new generation of geo-ecologists.

  2. Interacting Science through Web Quests

    Science.gov (United States)

    Unal, Ahmet; Karakus, Melek Altiparmak

    2016-01-01

    The purpose of this paper is to examine the effects of WebQuests on elementary students' science achievement, attitude towards science and attitude towards web supported education in teaching 7th grade subjects (Ecosystems, Solar System). With regard to this research, "Science Achievement Test," "Attitude towards Science Scale"…

  3. Science and data science.

    Science.gov (United States)

    Blei, David M; Smyth, Padhraic

    2017-08-07

    Data science has attracted a lot of attention, promising to turn vast amounts of data into useful predictions and insights. In this article, we ask why scientists should care about data science. To answer, we discuss data science from three perspectives: statistical, computational, and human. Although each of the three is a critical component of data science, we argue that the effective combination of all three components is the essence of what data science is about.

  4. Waking-up to Science!

    Science.gov (United States)

    2007-03-01

    The Science on Stage festival as an alarm clock for science teaching How is Europe to tackle its shortage of scientists? The EIROforum Science on Stage festival aims to give European teachers some of the answers they need to take up this urgent challenge. This unique event, showcasing the very best of today's science education, will feature science demonstrations, a science teaching fair with some 66 stands, and a Round Table discussion with the participation of the European Commissioner for Science and Research, Janez Potočnik. ESO PR Photo 14/07 ESO PR Photo 14/07 Science on Stage will have the city of Grenoble (France) buzzing from 2 to 6 April 2007. A rugby team and a hockey team will take on the power of the vacuum, a cook will demonstrate how science can inspire new culinary ideas, visitors will discover the real colour of the sun, an inflatable model of Borromini's gallery will help to explain the science of optical illusions, and Merlin himself will reveal all about how to make a cake float. These are just some of the exciting things that will be happening at the EIROforum Science on Stage festival. By showing how fascinating and entertaining science can be, the event aims to attract young people to science and ultimately help to reduce the shortage of scientists in Europe. With support from the European Commission, this international festival will bring together some 500 science educators from 27 European countries. The highlight of the festival will be a Round Table discussion on 'Science Education in the Age of the Knowledge Society - Strengthening Science Education in Europe', which will take place on 5 April 2007 with the participation of the European Commissioner for Science and Research, Janez Potočnik. The panellists - all high-ranking decision-makers - will include the Danish Minister for Education, Bertel Haarder, the MEP Vittorio Prodi, and the Chair of the UK's Engineering and Physical Sciences Research Council, Julia Higgins. "Curiosity is in

  5. New science on the Open Science Grid

    Energy Technology Data Exchange (ETDEWEB)

    Pordes, R; Altunay, M; Sehgal, C [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Avery, P [University of Florida, Gainesville, FL 32611 (United States); Bejan, A; Gardner, R; Wilde, M [University of Chicago, Chicago, IL 60607 (United States); Blackburn, K [California Institute of Technology, Pasadena, CA 91125 (United States); Blatecky, A; McGee, J [Renaissance Computing Institute, Chapel Hill, NC 27517 (United States); Kramer, B; Olson, D; Roy, A [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Livny, M [University of Wisconsin, Madison, Madison, WI 53706 (United States); Potekhin, M; Quick, R; Wenaus, T [Indiana University, Bloomington, IN 47405 (United States); Wuerthwein, F [University of California, San Diego, La Jolla, CA 92093 (United States)], E-mail: ruth@fnal.gov

    2008-07-15

    The Open Science Grid (OSG) includes work to enable new science, new scientists, and new modalities in support of computationally based research. There are frequently significant sociological and organizational changes required in transformation from the existing to the new. OSG leverages its deliverables to the large-scale physics experiment member communities to benefit new communities at all scales through activities in education, engagement, and the distributed facility. This paper gives both a brief general description and specific examples of new science enabled on the OSG. More information is available at the OSG web site: www.opensciencegrid.org.

  6. New science on the Open Science Grid

    International Nuclear Information System (INIS)

    Pordes, R; Altunay, M; Sehgal, C; Avery, P; Bejan, A; Gardner, R; Wilde, M; Blackburn, K; Blatecky, A; McGee, J; Kramer, B; Olson, D; Roy, A; Livny, M; Potekhin, M; Quick, R; Wenaus, T; Wuerthwein, F

    2008-01-01

    The Open Science Grid (OSG) includes work to enable new science, new scientists, and new modalities in support of computationally based research. There are frequently significant sociological and organizational changes required in transformation from the existing to the new. OSG leverages its deliverables to the large-scale physics experiment member communities to benefit new communities at all scales through activities in education, engagement, and the distributed facility. This paper gives both a brief general description and specific examples of new science enabled on the OSG. More information is available at the OSG web site: www.opensciencegrid.org

  7. Can multilayer brain networks be a real step forward?. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    Science.gov (United States)

    Buldú, Javier M.; Papo, David

    2018-03-01

    Over the last two decades Network Science has become one of the most active fields in science, whose growth has been supported by four fundamental pillars: statistical physics, nonlinear dynamics, graph theory and Big Data [1]. Initially concerned with analyzing the structure of networks, Network Science rapidly turned its attention, focused on the implications of network topology, on the dynamics of and processes unfolding on networked systems, greatly improving our understanding of diffusion, synchronization, epidemics and information transmission in complex systems [2]. The network approach typically considered complex systems as evolving in a vacuum; however real networks are generally not isolated systems, but are in continuous and evolving contact with other networks, with which they interact in multiple qualitative different and typically time-varying ways. These systems can then be represented as a collection of subsystems with connectivity layers, which are simply collapsed when considering the traditional monolayer representation. Surprisingly, such an "unpacking" of layers has proven to bear profound consequences on the structural and dynamical properties of networks, leading for instance to counter-intuitive synchronization phenomena, where maximization synchronization is achieved through strategies opposite of those maximizing synchronization in isolated networks [3].

  8. Integrating technology, curriculum, and online resources: A multilevel model study of impacts on science teachers and students

    Science.gov (United States)

    Ye, Lei

    This scale-up study investigated the impact of a teacher technology tool (Curriculum Customization Service, CCS), curriculum, and online resources on earth science teachers' attitudes, beliefs, and practices and on students' achievement and engagement with science learning. Participants included 73 teachers and over 2,000 ninth-grade students within five public school districts in the western U.S. To assess the impact on teachers, changes between pre- and postsurveys were examined. Results suggest that the CCS tool appeared to significantly increase both teachers' awareness of other earth science teachers' practices and teachers' frequency of using interactive resources in their lesson planning and classroom teaching. A standard multiple regression model was developed. In addition to "District," "Training condition" (whether or not teachers received CCS training) appeared to predict teachers' attitudes, beliefs, and practices. Teachers who received CCS training tended to have lower postsurvey scores than their peers who had no CCS training. Overall, usage of the CCS tool tended to be low, and there were differences among school districts. To assess the impact on students, changes were examined between pre- and postsurveys of (1) knowledge assessment and (2) students' engagement with science learning. Students showed pre- to postsurvey improvements in knowledge assessment, with small to medium effect sizes. A nesting effect (students clustered within teachers) in the Earth's Dynamic Geosphere (EDG) knowledge assessment was identified and addressed by fitting a two-level hierarchical linear model (HLM). In addition, significant school district differences existed for student post-knowledge assessment scores. On the student engagement questionnaire, students tended to be neutral or to slightly disagree that science learning was important in terms of using science in daily life, stimulating their thinking, discovering science concepts, and satisfying their own

  9. Measuring attitudes towards interprofessional learning. Testing two German versions of the tool "Readiness for Interprofessional Learning Scale" on interprofessional students of health and nursing sciences and of human medicine

    Directory of Open Access Journals (Sweden)

    Luderer, Christiane

    2017-08-01

    Full Text Available Objective: In order to verify the methodological quality of two versions of a tool for measuring attitudes towards interprofessional learning, we adapted – in terms of translation and scale form – the Heidelberg Version of - RIPLS , a methodologically controversial tool that had been translated into German, and compared both the original and new versions.Method: Three items were reworded and the scale form altered (from five to four levels, leading to the Halle Version that was validated by means of a cognitive pretest (=6. Both questionnaires were completed by students taking the interprofessional degree program in Health and Nursing Sciences (HNS and by students of Human Medicine. The test quality of both tools was examined by analyzing the main components and reliability using the scales allocation of the items as according to Parsell and Bligh .Results: The questionnaires were randomly assembled and distributed to 331 students. The response was =320 (HNS =109; Medicine =211. The Halle Version “RIPLS-HAL” of the questionnaire was completed by =166 and the Heidelberg Version “RIPLS-HDB” by =154. In the main component analysis the data could not depict the scale patterns of the original Australian tool. The reliability values of both the Heidelberg and Halle versions were only satisfactory for the “Teamwork and Collaboration” and “Professional Identity” scales.Conclusions: The German version of the Readiness for Interprofessional Learning Scale has only limited suitability for recording the attitude towards interprofessional learning. The present versions can be regarded as an approach towards developing a more suitable tool.

  10. Teaching the history of science in physics classrooms—the story of the neutrino

    Science.gov (United States)

    Demirci, Neset

    2016-07-01

    Because there is little connection between physics concepts and real life, most students find physics very difficult. In this frontline I have provided a timely link of the historical development using the basic story of neutrino physics and integrated this into introductory modern physics courses in high schools or in higher education. In this way an instructor may be able to build on students’ curiosity in order to enhance the curriculum with some remarkable new physics. Using the history of science in the classroom shapes and improves students’ views and knowledge of the nature of science and increase students’ interest in physics.

  11. Encouraging more women into computer science: Initiating a single-sex intervention program in Sweden

    Science.gov (United States)

    Brandell, Gerd; Carlsson, Svante; Ekblom, Håkan; Nord, Ann-Charlotte

    1997-11-01

    The process of starting a new program in computer science and engineering, heavily based on applied mathematics and only open to women, is described in this paper. The program was introduced into an educational system without any tradition in single-sex education. Important observations made during the process included the considerable interest in mathematics and curiosity about computer science found among female students at the secondary school level, and the acceptance of the single-sex program by the staff, administration, and management of the university as well as among male and female students. The process described highlights the importance of preparing the environment for a totally new type of educational program.

  12. Science in Science Fiction.

    Science.gov (United States)

    Allday, Jonathan

    2003-01-01

    Offers some suggestions as to how science fiction, especially television science fiction programs such as "Star Trek" and "Star Wars", can be drawn into physics lessons to illuminate some interesting issues. (Author/KHR)

  13. NASA Goddard Earth Sciences Graduate Student Program. [FIRE CIRRUS-II examination of coupling between an upper tropospheric cloud system and synoptic-scale dynamics

    Science.gov (United States)

    Ackerman, Thomas P.

    1994-01-01

    The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.

  14. Eliciting physics students mental models via science fiction stories

    International Nuclear Information System (INIS)

    Acar, H.

    2005-01-01

    This paper presents the results of an experiment which investigated the effects of the using science fiction stories in physics lessons. A questionnaire form containing 2 open-ended questions related to Jules Vernes story From the Earth to the Moon was used with 353, 9th and 10th grade students to determine their pre-conceptions about gravity and weightlessness. Mental models explaining students scientific and alternative views were constructed, according to students replies. After these studies, 6 students were interviewed. In this interview, researches were done about whether science fiction stories had an effect on bringing students pre-conceptions related to physics subjects out, on students inquiring their own concepts and on increasing students interest and motivation towards physics subjects. Studies in this research show that science fiction stories have an effect on arousing students interest and curiosity, have a role encouraging students to inquire their own concepts and are effective in making students alternative views come out

  15. Soil Science in Space: Thinking Way Outside the Box

    Science.gov (United States)

    Ming, D. W.

    2016-01-01

    Mars is a perfect laboratory to reconsider the future of pedology across the universe. By investigating the soils and geology through our Curiosity and further endeavors, we find ourselves able to learn about the past, present, and possibly the future. Imagine what we could learn about the early Earth if we could have explored it without vegetation and clouds in the way. The tools and techniques that are used to probe the Martian soil can teach us about exploring the soils on Earth. Although many may feel that soil science has learned all that it can about the soils on Earth, we know differently. Deciding what the most important things to know about Martian soils can help us focus on the fundamentals of soil science on Earth. Our soil science knowledge and experience on Earth can help us learn more about the angry red planet. Why is it so angry with so many fascinating secrets it can tell?

  16. Science based integrated approach to advanced nuclear fuel development - integrated multi-scale multi-physics hierarchical modeling and simulation framework Part III: cladding

    International Nuclear Information System (INIS)

    Tome, Carlos N.; Caro, J.A.; Lebensohn, R.A.; Unal, Cetin; Arsenlis, A.; Marian, J.; Pasamehmetoglu, K.

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.

  17. Mars Science Laboratory Heatshield Flight Data Analysis

    Science.gov (United States)

    Mahzari, Milad; White, Todd

    2017-01-01

    NASA Mars Science Laboratory (MSL), which landed the Curiosity rover on the surface of Mars on August 5th, 2012, was the largest and heaviest Mars entry vehicle representing a significant advancement in planetary entry, descent and landing capability. Hypersonic flight performance data was collected using MSLs on-board sensors called Mars Entry, Descent and Landing Instrumentation (MEDLI). This talk will give an overview of MSL entry and a description of MEDLI sensors. Observations from flight data will be examined followed by a discussion of analysis efforts to reconstruct surface heating from heatshields in-depth temperature measurements. Finally, a brief overview of MEDLI2 instrumentation, which will fly on NASAs Mars2020 mission, will be presented with a discussion on how lessons learned from MEDLI data affected the design of MEDLI2 instrumentation.

  18. Understanding space science under the northern lights

    Science.gov (United States)

    Koskinen, H.

    What is space science? The answers to this question can be very variable indeed. In fact, space research is a field where science, technology, and applications are so closely tied together that it is often difficult to recognize the central role of science. However, as paradoxical as it may sound, it appears that the less-educated public often appreciates the value of space science better than highly educated policy makers and bureaucrats who tend to evaluate the importance of space activities in terms of economic and societal benefits only. In a country like Finland located below the zone, where auroras are visible during the long dark winter nights, the space is perhaps closer to the public than in countries where the visible objects are the Moon, planets and stars somewhere far away. This positive fact has been very useful, for example, in popularization of such an abstract concept as space weather. In Finland it is possible to see space weather and this rises the curiosity about the processes behind this magnificent phenomenon. Of course, also in Finland the beautiful SOHO images of the Sun and the Hubble Space Telescope pictures of the remote universe attract the attention of the large public. We also have an excellent vehicle in increasing the public understanding in the society of Finnish amateur astronomers Ursa. It is an organization for anyone interested in practically everything from visual phenomena in the air to the remote galaxies and the Big Bang. Ursa publishes a high-quality monthly magazine in Finnish and runs local amateur clubs. Last year its 80th birthday exhibition was one of the best-visited public events in Helsinki. It clearly gave a strong evidence of wide public interest in space in general and in space science in particular. Only curious people can grasp the beauty and importance of the underlying science. Thus, we should focus our public space science education and outreach primarily on waking up the curiosity of the public instead of

  19. My Space- a collaboration between Arts & Science to create a suite of informal interactive public engagement initiatives.

    Science.gov (United States)

    Shaw, Niamh, , Dr.; McSweeney, Clair; Smith, Niall, , Dr.; O'Neill, Stephanie; Foley, Cathy; Crawley, Joanna; Phelan, Ronan; Colley, Dan; Henderson, Clare; Conroy, Lorraine

    2015-04-01

    A suite of informal interactive public engagement initiatives, entitled 'MySpace' was created, to promote the importance of Earth science and Space exploration, to ignite curiosity and discover new and engaging platforms for science in the Arts & in STEM Education, and to increase awareness of careers in Ireland's Space and Earth Science industries. Site visits to research centres in Ireland & abroad, interviews with scientists, engineers, and former astronauts were conducted over a 6 month period. A suite of performance pieces emerged from this development phase, based on Dr. Shaw's personal documented journey and the dissemination of her research. These included: 1. 'To Space'- A live multimedia theatre performance aimed at the general public & young adult. Initially presented as a 'Work In Progress' event at The Festival of Curiosity, the full theatre show 'To Space' premiered at Science Gallery, Dublin as part of Tiger Dublin Fringe Arts Festival. Response to the piece was very strong, indicated by audience response, box office sales and theatre reviews in national press and online. A national and international tour is in place for 2015. To Space was performed a total of 10 times and was seen by 680 audiences. 2. An adapted piece for 13-17 year old students -'ToSpace for Secondary Schools'- to increase awareness of Ireland's involvement in Space Exploration & to encourage school leavers to dream big. This show toured nationally as part of World Space week and Science week events in conjunction with ESERO Ireland, CIT Blackrock Castle Observatory, Cork, Armagh Planetarium & Dunsink Observatory. It was performed 12 times and was seen by 570 students. 3. 'My Place in Space', created for families from the very old (60 +) to the very young (3yrs +), this highly interactive workshop highlighted the appeal of science through the wonders of our planet and its place in Space. Presented at Festival of Curiosity, the Mallow Science Fair and at Science week 2014, this

  20. In-Service Turkish Elementary and Science Teachers' Attitudes toward Science and Science Teaching: A Sample from Usak Province

    Science.gov (United States)

    Turkmen, Lutfullah

    2013-01-01

    The purpose of this study is to reveal Turkish elementary teachers' and science teachers' attitudes toward science and science teaching. The sample of the study, 138 in-service elementary level science teachers from a province of Turkey, was selected by a clustered sampling method. The Science Teaching Attitude Scale-II was employed to measure the…

  1. Teaching science in museums

    Science.gov (United States)

    Tran, Lynn Uyen

    Museums are free-choice, non-threatening, non-evaluative learning and teaching environments. They enable learners to revisit contents, authentic objects, and experiences at their own leisure as they continually build an understanding and appreciation of the concepts. Schools in America have used museums as resources to supplement their curriculum since the 19 th century. Field trip research is predominantly from the teachers' and students' perspectives, and draws attention to the importance for classroom teachers and students to prepare prior to field trips, have tasks, goals, and objectives during their time at the museum, and follow up afterwards. Meanwhile, museum educators' contributions to field trip experiences have been scantily addressed. These educators develop and implement programs intended to help students' explore science concepts and make sense of their experiences, and despite their limited time with students, studies show they can be memorable. First, field trips are a break in the usual routine, and thus have curiosity and attention attracting power. Second, classroom science teaching literature suggests teachers' teaching knowledge and goals can affect their behaviors, and in turn influence student learning. Third, classroom teachers are novices at planning and implementing field trip planners, and museum educators can share this responsibility. But little is reported on how the educators teach, what guides their instruction, how classroom teachers use these lessons, and what is gained from these lessons. This study investigates two of these inquiries. The following research questions guided this investigation. (1) How do educators teaching one-hour, one-time lessons in museums adapt their instruction to the students that they teach? (2) How do time limitations affect instruction? (3) How does perceived variability in entering student knowledge affect instruction? Four educators from two museums took part in this participant observation study to

  2. The Aerial Regional-Scale Environmental Surveyor (ARES): New Mars Science to Reduce Human Risk and Prepare for the Human Exploration

    Science.gov (United States)

    Levine, Joel S.; Croom, Mark A.; Wright, Henry S.; Killough, B. D.; Edwards, W. C.

    2012-01-01

    Obtaining critical measurements for eventual human Mars missions while expanding upon recent Mars scientific discoveries and deriving new scientific knowledge from a unique near surface vantage point is the focus of the Aerial Regional-scale Environmental Surveyor (ARES) exploration mission. The key element of ARES is an instrumented,rocket-powered, well-tested robotic airplane platform, that will fly between one to two kilometers above the surface while traversing hundreds of kilometers to collect and transmit previously unobtainable high spatial measurements relevant to the NASA Mars Exploration Program and the exploration of Mars by humans.

  3. Multilayer network modeling of integrated biological systems. Comment on "Network science of biological systems at different scales: A review" by Gosak et al.

    Science.gov (United States)

    De Domenico, Manlio

    2018-03-01

    Biological systems, from a cell to the human brain, are inherently complex. A powerful representation of such systems, described by an intricate web of relationships across multiple scales, is provided by complex networks. Recently, several studies are highlighting how simple networks - obtained by aggregating or neglecting temporal or categorical description of biological data - are not able to account for the richness of information characterizing biological systems. More complex models, namely multilayer networks, are needed to account for interdependencies, often varying across time, of biological interacting units within a cell, a tissue or parts of an organism.

  4. The Detection of Evolved Oxygen from the Rocknest Eolian Bedform Material by the Sample Analysis at Mars(SAM) instrument at the Mars Curiosity Landing Site

    Science.gov (United States)

    Sutter, B.; Archer, D.; Ming, D.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A.; Mahaffy, P.; Stern, J.; Navarro-Gonzalex, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected an O2 gas release from the Rocknest eolain bedform (Fig. 1). The detection of perchlorate (ClO4-) by the Mars Phoenix Lander s Wet Chemistry Laboratory (WCL) [1] suggests that perchlorate is a possible candidate for evolved O2 release detected by SAM. The perchlorate would also serve as a source of chlorine in the chlorinated hydrocarbons detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS) [2,3]. Chlorates (ClO3-) [4,5] and/or superoxides [6] may also be sources of evolved O2 from the Rocknest materials. The work objectives are to 1) evaluate the O2 release temperatures from Rocknest materials, 2) compare these O2 release temperatures with a series of perchlorates and chlorates, and 3) evaluate superoxide O2- sources and possible perchlorate interactions with other Rocknest phases during QMS analysis.

  5. Mars Atmospheric Escape Recorded by H, C and O Isotope Ratios in Carbon Dioxide and Water Measured by the Sam Tunable Laser Spectrometer on the Curiosity Rover

    Science.gov (United States)

    Webster, C. R.; Mahaffy, P. R.; Leshin, L. A.; Atreya, S. K.; Flesch, G. J.; Stern, J.; Christensen, L. E.; Vasavada, A. R.; Owen, T.; Niles, P. B.; hide

    2013-01-01

    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biological activity [2]. For Mars, measurements to date have indicated enrichment in all the heavier isotopes consistent with atmospheric escape processes, but with uncertainty too high to tie the results with the more precise isotopic ratios achieved from SNC meteoritic analyses. We will present results to date of H, C and O isotope ratios in CO2 and H2O made to high precision (few per mil) using the Tunable Laser Spectrometer (TLS) that is part of the Sample Analysis at Mars (SAM) instrument suite on MSL s Curiosity Rover.

  6. Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity's ChemCam: early results for Gale crater from Bradbury Landing Site to Rocknest

    Science.gov (United States)

    Ollila, Ann M.; Newsom, Horton E.; Clark, Benton; Wiens, Roger C.; Cousin, Agnes; Blank, Jen G.; Mangold, Nicolas; Sautter, Violaine; Maurice, Sylvestre; Clegg, Samuel M.; Gasnault, Olivier; Forni, Olivier; Tokar, Robert; Lewin, Eric; Dyar, M. Darby; Lasue, Jeremie; Anderson, Ryan; McLennan, Scott M.; Bridges, John; Vaniman, Dave; Lanza, Nina; Fabre, Cecile; Melikechi, Noureddine; Perett, Glynis M.; Campbell, John L.; King, Penelope L.; Barraclough, Bruce; Delapp, Dorothea; Johnstone, Stephen; Meslin, Pierre-Yves; Rosen-Gooding, Anya; Williams, Josh

    2014-01-01

    The ChemCam instrument package on the Mars rover, Curiosity, provides new capabilities to probe the abundances of certain trace elements in the rocks and soils on Mars using the laser-induced breakdown spectroscopy technique. We focus on detecting and quantifying Li, Ba, Rb, and Sr in targets analyzed during the first 100 sols, from Bradbury Landing Site to Rocknest. Univariate peak area models and multivariate partial least squares models are presented. Li, detected for the first time directly on Mars, is generally low (100 ppm and >1000 ppm, respectively. These analysis locations tend to have high Si and alkali abundances, consistent with a feldspar composition. Together, these trace element observations provide possible evidence of magma differentiation and aqueous alteration.

  7. Secondary science teachers' attitudes toward and beliefs about science reading and science textbooks

    Science.gov (United States)

    Yore, Larry D.

    Science textbooks are dominant influences behind most secondary science instruction but little is known about teachers' approach to science reading. The purpose of this naturalistic study was to develop and validate a Science and Reading Questionnaire to assess secondary science teachers' attitudes toward science reading and their beliefs or informed opinions about science reading. A survey of 428 British Columbia secondary science teachers was conducted and 215 science teachers responded. Results on a 12-item Likert attitude scale indicated that teachers place high value on reading as an important strategy to promote learning in science and that they generally accept responsibility for teaching content reading skills to science students. Results on a 13-item Likert belief scale indicated that science teachers generally reject the text-driven model of reading, but they usually do not have well-formulated alternative models to guide their teaching practices. Teachers have intuitive beliefs about science reading that partially agree with many research findings, but their beliefs are fragmented and particularly sketchy in regard to the cognitive and metacognitive skills required by readers to learn from science texts. The findings for attitude, belief, and total scales were substantiated by further questions in the Science and Reading Questionnaire regarding classroom practice and by individual interviews and classroom observations of a 15-teacher subsample of the questionnaire respondents.

  8. Information Science: Science or Social Science?

    OpenAIRE

    Sreeramana Aithal; Paul P.K.,; Bhuimali A.

    2017-01-01

    Collection, selection, processing, management, and dissemination of information are the main and ultimate role of Information Science and similar studies such as Information Studies, Information Management, Library Science, and Communication Science and so on. However, Information Science deals with some different characteristics than these subjects. Information Science is most interdisciplinary Science combines with so many knowledge clusters and domains. Information Science is a broad disci...

  9. Exploring biological and social networks to better understand and treat diabetes mellitus. Comment on "Network science of biological systems at different scales: A review" by Gosak et al.

    Science.gov (United States)

    Belgardt, Bengt-Frederik; Jarasch, Alexander; Lammert, Eckhard

    2018-03-01

    Improvements and breakthroughs in computational sciences in the last 20 years have paralleled the rapid gain of influence of social networks on our daily life. As timely reviewed by Perc and colleagues [1], understanding and treating complex human diseases, such as type 2 diabetes (T2D), from which already more than 5% of the global population suffer, will necessitate analyzing and understanding the multi-layered and interconnected networks that usually keep physiological functions intact, but are disturbed in disease states. These networks range from intra- and intercellular networks influencing cell behavior (e.g., secretion of insulin in response to food intake and anabolic response to insulin) to social networks influencing human behavior (e.g., food intake and physical activity). This commentary first expands on the background of pancreatic beta cell networks in human health and T2D, briefly introduces exosomes as novel signals exchanged between distant cellular networks, and finally discusses potential pitfalls and chances in network analyses with regards to experimental data acquisition and processing.

  10. A pilot Virtual Observatory (pVO) for integrated catchment science - Demonstration of national scale modelling of hydrology and biogeochemistry (Invited)

    Science.gov (United States)

    Freer, J. E.; Bloomfield, J. P.; Johnes, P. J.; MacLeod, C.; Reaney, S.

    2010-12-01

    There are many challenges in developing effective and integrated catchment management solutions for hydrology and water quality issues. Such solutions should ideally build on current scientific evidence to inform policy makers and regulators and additionally allow stakeholders to take ownership of local and/or national issues, in effect bringing together ‘communities of practice’. A strategy being piloted in the UK as the Pilot Virtual Observatory (pVO), funded by NERC, is to demonstrate the use of cyber-infrastructure and cloud computing resources to investigate better methods of linking data and models and to demonstrate scenario analysis for research, policy and operational needs. The research will provide new ways the scientific and stakeholder communities come together to exploit current environmental information, knowledge and experience in an open framework. This poster presents the project scope and methodologies for the pVO work dealing with national modelling of hydrology and macro-nutrient biogeochemistry. We evaluate the strategies needed to robustly benchmark our current predictive capability of these resources through ensemble modelling. We explore the use of catchment similarity concepts to understand if national monitoring programs can inform us about the behaviour of catchments. We discuss the challenges to applying these strategies in an open access and integrated framework and finally we consider the future for such virtual observatory platforms for improving the way we iteratively improve our understanding of catchment science.

  11. The academic and nonacademic characteristics of science and nonscience majors in Yemeni high schools

    Science.gov (United States)

    Anaam, Mahyoub Ali

    The purposes of this study were: (a) to identify the variables associated with selection of majors; (b) to determine the differences between science and nonscience majors in general, and high and low achievers in particular, with respect to attitudes toward science, integrated science process skills, and logical thinking abilities; and (c) to determine if a significant relationship exists between students' majors and their personality types and learning styles. Data were gathered from 188 twelfth grade male and female high school students in Yemen, who enrolled in science (45 males and 47 females) and art and literature (47 males and 49 females) tracks. Data were collected by the following instruments: Past math and science achievement (data source taken from school records), Kolb's Learning Styles Inventory (1985), Integrated Science Process Skills Test, Myers-Briggs Type Indicator, Attitude Toward Science in School Assessment, Group Assessment of Logical Thinking, Yemeni High School Students Questionnaire. The Logistic Regression Model and the Linear Discriminant Analysis identified several variables that are associated with selection of majors. Moreover, some of the characteristics of science and nonscience majors that were revealed by these models include the following: Science majors seem to have higher degrees of curiosity in science, high interest in science at high school level, high tendency to believe that their majors will help them to find a potential job in the future, and have had higher achievement in science subjects, and have rated their math teachers higher than did nonscience majors. In contrast, nonscience majors seem to have higher degrees of curiosity in nonscience subjects, higher interest in science at elementary school, higher anxiety during science lessons than did science majors. In addition, General Linear Models allow that science majors generally demonstrate more positive attitudes towards science than do nonscience majors and they

  12. SPORT SCIENCE STUDENTS‟ BELIEFS ABOUT LANGUAGE LEARNING

    Directory of Open Access Journals (Sweden)

    Suvi Akhiriyah

    2017-04-01

    Full Text Available There are many reasons for students of Sport Science to use English. Yet, knowing the importance of learning English is sometimes not enough to encourage them to learn English well. Based on the experience in teaching them, erroneous belief seems to be held by many of them. It arouses curiosity about the beliefs which might be revealed to help the students to be successful in language learning. By investigating sport science students‘ beliefs about language learning, it is expected that types of the beliefs which they hold can be revealed. Understanding students‘ beliefs about language learning is essential because these beliefs can have possible consequences for second language learning and instruction. This study is expected to provide empirical evidence. The subjects of this study were 1st semester students majoring in Sport Science of Sport Science Faculty. There were 4 classes with 38 students in each class. There were approximately 152 students as the population of the study. The sample was taken by using random sampling. All members of the population received the questionnaire. The questionnaire which was later handed back to the researcher is considered as the sample. The instrument in this study is the newest version of Beliefs About Language Learning Inventory (BALLI, version 2.0, developed by Horwitz to asses the beliefs about learning a foreign language.

  13. E-SCIENCE: AN INTRODUCTION

    OpenAIRE

    , Sarhan M. Musa

    2017-01-01

    E-science refers to the type of scientific research that uses large-scale computing infrastructure to process very large amount of data. It is an interdisciplinary branch of science that explores and implements information technology platforms, which include computer networks, computer information technology, telecommunication, and computational methods. This paper provides a brief introduction to e-science.

  14. News Education: Physics Education Networks meeting has global scale Competition: Competition seeks the next Brian Cox Experiment: New measurement of neutrino time-of-flight consistent with the speed of light Event: A day for all those who teach physics Conference: Students attend first Anglo-Japanese international science conference Celebration: Will 2015 be the 'Year of Light'? Teachers: Challenging our intuition in spectacular fashion: the fascinating world of quantum physics awaits Research: Science sharpens up sport Learning: Kittinger and Baumgartner: on a mission to the edge of space International: London International Youth Science Forum calls for leading young scientists Competition: Physics paralympian challenge needs inquisitive, analytical, artistic and eloquent pupils Forthcoming events

    Science.gov (United States)

    2012-05-01

    Education: Physics Education Networks meeting has global scale Competition: Competition seeks the next Brian Cox Experiment: New measurement of neutrino time-of-flight consistent with the speed of light Event: A day for all those who teach physics Conference: Students attend first Anglo-Japanese international science conference Celebration: Will 2015 be the 'Year of Light'? Teachers: Challenging our intuition in spectacular fashion: the fascinating world of quantum physics awaits Research: Science sharpens up sport Learning: Kittinger and Baumgartner: on a mission to the edge of space International: London International Youth Science Forum calls for leading young scientists Competition: Physics paralympian challenge needs inquisitive, analytical, artistic and eloquent pupils Forthcoming events

  15. Reaching out to the hard to reach: using a science centre model to deliver public engagement with research.

    Science.gov (United States)

    Gagen, M.; Allton, C.; Bryan, W. A.; O'Leary, M.

    2017-12-01

    Science communication is at an all-time high but public faith in expertise is low. However, within this climate of suspicion, research scientists remain a publicly trusted expert group. While there is both academic and public appetite for Public Engagement with Research (PER), there are barriers to reaching a wide range of publics. Attempts to connect the public with research often end up targeting the `already engaged'; the hard-to-reach remain just that. Engaging scientific curiosity in a wider demographic is crucial to promote scientific curiosity, itself known to profoundly counter the politically motivated reasoning that threatens informed debate around contemporary environmental issues. This requires the creation of opportunities for the public to engage with research in places in which they feel they belong. We report here on an 8 month pilot of a science centre model for PER. Oriel Science (www.orielscience.co.uk) is a research-led science exhibition in Swansea city centre delivering Swansea University's PER and run by academics and student ambassadors. Oriel Science (Oriel is Gallery in Welsh) received 16,000 visitors in 8 months, 40% of whom had no previous interaction with the university or its research and >40% of whom came from socio-economically deprived areas. We report on the public engagement leadership we enabled, working with 18 research groups over 8 months and our achievements in giving a broad range of publics the most direct access to participate in contemporary science.

  16. Integration of ICT Methods for Teaching Science and Astronomy to Students and Teachers

    Science.gov (United States)

    Ghosh, Sumit; Chary, Naveen; Raghavender, G.; Aslam, Syed

    All children start out as scientist, full of curiosity and questions about the world, but schools eventually destroy their curiosity. In an effective teaching and learning process, the most challenging task is to motivate the students. As the science subjects are more abstract and complex, the job of teachers become even more daunting. We have devised an innovative idea of integrating ICT methods for teaching space science to students and teachers. In a third world country like India, practical demonstrations are given less importance and much emphasis is on theoretical aspects. Even the teachers are not trained or aware of the basic concepts. With the intention of providing the students and as well as the teachers more practical, real-time situations, we have incorporated innovative techniques like video presentation, animations, experimental models, do-yourself-kits etc. In addition to these we provide hands on experience on some scientific instruments like telescope, Laser. ICT has the potential to teach complex science topics to students and teachers in a safe environment and cost effective manner. The students are provided with a sense of adventure, wherein now they can manipulate parameters, contexts and environment and can try different scenarios and in the process they not only learn science but also the content and also the reasoning behind the content. The response we have obtained is very encouraging and students as well as teachers have acknowledged that they have learnt new things, which up to now they were ignorant of.

  17. Trend in land degradation has been the most contended issue in the Sahel. Trends documented have not been consistent across authors and science disciplines, hence little agreement has been gained on the magnitude and direction of land degradation in the Sahel. Differentiated science outputs are related to methods and data used at various scales.

    Science.gov (United States)

    Mbow, C.; Brandt, M.; Fensholt, R.; Ouedraogo, I.; Tagesson, T.

    2015-12-01

    Thematic gaps in land degradation trends in the SahelTrend in land degradation has been the most contended issue for arid and semi-arid regions. In the Sahel, depending to scale of analysis and methods and data used, the trend documented have not been consistent across authors and science disciplines. The assessment of land degradation and the quantification of its effects on land productivity have been assessed for many decades, but little agreement has been gained on the magnitude and direction in the Sahel. This lack of consistency amid science outputs can be related to many methodological underpinnings and data used for various scales of analysis. Assessing biophysical trends on the ground requires long-term ground-based data collection to evaluate and better understand the mechanisms behind land dynamics. The Sahel is seen as greening by many authors? Is that greening geographically consistent? These questions enquire the importance of scale analysis and related drivers. The questions addressed are not only factors explaining loss of tree cover but also regeneration of degraded land. The picture used is the heuristic cycle model to assess loss and damages vs gain and improvements of various land use practices. The presentation will address the following aspects - How much we know from satellite data after 40 years of remote sensing analysis over the Sahel? That section discuss agreement and divergences of evidences and differentiated interpretation of land degradation in the Sahel. - The biophysical factors that are relevant for tracking land degradation in the Sahel. Aspects such detangling human to climate factors and biophysical factors behind land dynamics will be presented - Introduce some specific cases of driver of land architecture transition under the combined influence of climate and human factor. - Based on the above we will conclude with some key recommendations on how to improve land degradation assessment in the Arid region of the Sahel.

  18. Science Smiles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Science Smiles. Articles in Resonance – Journal of Science Education. Volume 1 Issue 4 April 1996 pp 4-4 Science Smiles. Chief Editor's column / Science Smiles · R K Laxman · More Details Fulltext PDF. Volume 1 Issue 5 May 1996 pp 3-3 Science Smiles.

  19. Marketing of science in the twenty-first century

    International Nuclear Information System (INIS)

    Trivelpiece, A.

    1987-01-01

    The author gives a brief review of marketing of science from the 1930's to the present. He discusses the fact that at the present the scientific community is doing a lousy job of marketing and the fact that it is very important that this be reversed because science and technology have become absolutely essential to our future economic health and development. The four steps which he proposes will help with this problem are: (1) government, universities and industry working together to try and insure that there's an adequate basis of curiosity-driven research; (2) scientist making an effort to insure that they have enough political power to be taken seriously; (3) an adjustment to scientist thinking to reflect the fiscal realities of what the next generation of scientific facilities will cost; and (4) a need for public support

  20. Managing Complexity in the MSL/Curiosity Entry, Descent, and Landing Flight Software and Avionics Verification and Validation Campaign

    Science.gov (United States)

    Stehura, Aaron; Rozek, Matthew

    2013-01-01

    The complexity of the Mars Science Laboratory (MSL) mission presented the Entry, Descent, and Landing systems engineering team with many challenges in its Verification and Validation (V&V) campaign. This paper describes some of the logistical hurdles related to managing a complex set of requirements, test venues, test objectives, and analysis products in the implementation of a specific portion of the overall V&V program to test the interaction of flight software with the MSL avionics suite. Application-specific solutions to these problems are presented herein, which can be generalized to other space missions and to similar formidable systems engineering problems.