WorldWideScience

Sample records for science courses biology

  1. Science Academies' Refresher Course in Developmental Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 8. Science Academies' Refresher Course in Developmental Biology. Information and Announcements Volume 20 Issue 8 August 2015 pp 756-756. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. The Impact of Agricultural Science Education on Performance in a Biology Course

    Science.gov (United States)

    Ernest, Byron L.

    The lack of student achievement in science is often cited in U.S. educational reports. At the study site, low student achievement in science has been an ongoing concern for administrators. The purpose of this mixed methods study was to investigate the impact of agricultural science education on student performance in a Biology course. Vygotsky's constructivist theory and Gardner's multiple intelligences theory provided the framework for the study. The quantitative research question examined the relationship between the completion of Fundamentals of Agriculture Science and Business course and student performance in Biology I. Teacher perceptions and experiences regarding the integration of science and agricultural curriculum and traditional science curriculum were examined qualitatively. A sequential explanatory design was employed using 3 years of data collected from 486 high school students and interviews with 10 teachers. Point-biserial correlation and chi square tests revealed statistically significant relationships between whether or not students completed Fundamentals of Agriculture Science and Business and Biology I course performance, as measured by the end of course assessment and the course grade. In the qualitative sequence, typological and inductive data analyses were applied to the interview data, and themes of student impact and teacher experience emerged. Social change implications may be possible through improved science education for students in this program. Agriculture science courses may be used to facilitate learning of complex science concepts, designing teacher collaboration and professional development for teaching science in a relevant context, and resultant improved student performance in science.

  3. Building confidence: an exploration of nurses undertaking a postgraduate biological science course.

    Science.gov (United States)

    Van Wissen, Kim; McBride-Henry, Karen

    2010-01-01

    This study aimed to explore the impact of studying biological science at a postgraduate level and how this impacted on nursing practice. The term biological sciences in this research encompasses elements of physiology, genetics, biochemistry and pathophysiology. A qualitative research study was designed, that involved the dissemination of a pre- and post-course semi-structured questionnaire for a biological science course, as part of a Master of Nursing programme at a New Zealand University, thus exploring the impact of undertaking a postgraduate biological sciences course. The responses were analysed into themes, based on interpretive concepts. The primary themes revealed improvement in confidence as: confidence in communication, confidence in linking nursing theoretical knowledge to practice and confidence in clinical nursing knowledge. This study highlights the need to privilege clinically-derived nursing knowledge, and that confidence in this nursing knowledge and clinical practice can be instilled through employing the model of theory-guided practice.

  4. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    Science.gov (United States)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  5. High school and college biology: A multi-level model of the effects of high school biology courses on student academic performance in introductory college biology courses

    Science.gov (United States)

    Loehr, John Francis

    The issue of student preparation for college study in science has been an ongoing concern for both college-bound students and educators of various levels. This study uses a national sample of college students enrolled in introductory biology courses to address the relationship between high school biology preparation and subsequent introductory college biology performance. Multi-Level Modeling was used to investigate the relationship between students' high school science and mathematics experiences and college biology performance. This analysis controls for student demographic and educational background factors along with factors associated with the college or university attended. The results indicated that high school course-taking and science instructional experiences have the largest impact on student achievement in the first introductory college biology course. In particular, enrollment in courses, such as high school Calculus and Advanced Placement (AP) Biology, along with biology course content that focuses on developing a deep understanding of the topics is found to be positively associated with student achievement in introductory college biology. On the other hand, experiencing high numbers of laboratory activities, demonstrations, and independent projects along with higher levels of laboratory freedom are associated with negative achievement. These findings are relevant to high school biology teachers, college students, their parents, and educators looking beyond the goal of high school graduation.

  6. Science Café Course: An Innovative Means of Improving Communication Skills of Undergraduate Biology Majors

    Directory of Open Access Journals (Sweden)

    Anna Goldina

    2013-12-01

    Full Text Available To help bridge the increasing gap between scientists and the public, we developed an innovative two-semester course, called Science Café. In this course undergraduate biology majors learn to develop communication skills to be better able to explain science concepts and current developments in science to non-scientists. Students develop and host outreach events on various topics relevant to the community, thereby increasing interactions between budding scientists and the public. Such a Science Cafe course emphasizes development of science communication skills early, at the undergraduate level and empowers students to use their science knowledge in every day interactions with the public to increase science literacy, get involved in the local community and engage the public in a dialogue on various pressing science issues. We believe that undergraduate science majors can be great ambassadors for science and are often overlooked since many aspire to go on to medical/veterinary/pharmacy schools. However, science communication skills are especially important for these types of students because when they become healthcare professionals, they will interact with the public as part of their everyday jobs and can thus be great representatives for the field.

  7. Development of a Bi-Disciplinary Course in Forensic Science

    Directory of Open Access Journals (Sweden)

    Stacey L. Raimondi

    2013-08-01

    Full Text Available Forensic science programs and courses have traditionally been housed within chemistry departments at the college/university level, largely because the pioneers of the field were chemists who applied technology that was more chemical than biological in nature. However, with the development of such areas of study as DNA analysis, anatomical studies, and forensic entomology, it is becoming more and more important for forensic science students to have a strong biological background as well as a chemical background. Furthermore, while biology students are typically required to have extensive chemistry training as part of their major, the converse is not true for chemistry students. Therefore, it is possible that a student interested in forensic science could complete a major in chemistry and never have taken a biology class, leaving them woefully under-prepared for any type of masters program or career in forensic science immediately following graduation. Indeed, an examination of available positions in forensic science shows a large number of positions for DNA analysts for which the typical chemistry student would not be prepared without extensive biology training (http://www.aafs.org. Furthermore, positions for medical examiners or pathologists require extensive training in biology in addition to the continued medical training and residency programs. Therefore, it seems imperative that introductory forensic science courses adapt to these needs and be taught with a more bi-disciplinary approach in order to educate students on the whole field rather than one aspect. To that end, a new bi-disciplinary Forensic Science course was developed at Elmhurst College. This course was team-taught by a biology and a chemistry professor so that students would obtain a thorough understanding of the field and techniques used by both biologists and chemists. A description of this new version of a forensic science course follows, focusing on the addition of biology

  8. Predictors of student success in entry-level science courses

    Science.gov (United States)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses

  9. Road Safety Education in a Science Course: Evaluation of "Science and the Road."

    Science.gov (United States)

    Gardner, Paul L.

    1989-01-01

    A traffic safety instructional package--"Science and the Road"--was assessed. It was designed by the Road Traffic Authority of Victoria (Australia) for use in tenth-grade science courses. Evaluation findings resulted in revision of the unit and implementation of more inservice courses for teachers lacking relevant biology and physics…

  10. SNAB: A New Advanced Level Biology Course

    Science.gov (United States)

    Reiss, Michael J.

    2005-01-01

    Of all the sciences, biology has probably made the most rapid progress in recent years and the need for this to be reflected in a new Advanced Level biology course has long been recognised in the UK. After wide-ranging consultation and successful piloting in over 50 schools and colleges in England and Wales, the new Salters-Nuffield Advanced…

  11. Profile of science process skills of Preservice Biology Teacher in General Biology Course

    Science.gov (United States)

    Susanti, R.; Anwar, Y.; Ermayanti

    2018-04-01

    This study aims to obtain portrayal images of science process skills among preservice biology teacher. This research took place in Sriwijaya University and involved 41 participants. To collect the data, this study used multiple choice test comprising 40 items to measure the mastery of science process skills. The data were then analyzed in descriptive manner. The results showed that communication aspect outperfomed the other skills with that 81%; while the lowest one was identifying variables and predicting (59%). In addition, basic science process skills was 72%; whereas for integrated skills was a bit lower, 67%. In general, the capability of doing science process skills varies among preservice biology teachers.

  12. Science Academies' Refresher Course in Developmental Biology 16 ...

    Indian Academy of Sciences (India)

    IAS Admin

    The objectives of this Refresher Course are to update the participants about the advances in the field of Developmental Biology; various small animal models used and give hands-on training on some modern biotechnological practices. A variety of teaching methods like lectures, discussion and laboratory work shall ...

  13. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    Science.gov (United States)

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  14. Making evolutionary biology a basic science for medicine

    Science.gov (United States)

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  15. A Bioethics Course for Biology and Science Education Students.

    Science.gov (United States)

    Bryant, John; la Velle, Linda Baggott

    2003-01-01

    Points out the importance of awareness among biologists and biology teachers of the ethical and social implications of their work. Describes the bioethics module established at the University of Exeter mainly targeting students majoring in biology and science education. (Contains 18 references.) (Author/YDS)

  16. The Biology and Chemistry of Brewing: An Interdisciplinary Course

    Science.gov (United States)

    Hooker, Paul D.; Deutschman, William A.; Avery, Brian J.

    2014-01-01

    For the past nine years, we have been offering an interdisciplinary course for science majors: The Biology and Chemistry of Brewing. This course is primarily laboratory- and inquiry-based; from a total of 24 h of student/instructor contact time, approximately 6 h are devoted to lecture, and the other 18 h are divided between laboratory exercises,…

  17. Redesigning a General Education Science Course to Promote Critical Thinking.

    Science.gov (United States)

    Rowe, Matthew P; Gillespie, B Marcus; Harris, Kevin R; Koether, Steven D; Shannon, Li-Jen Y; Rose, Lori A

    2015-01-01

    Recent studies question the effectiveness of a traditional university curriculum in helping students improve their critical thinking and scientific literacy. We developed an introductory, general education (gen ed) science course to overcome both deficiencies. The course, titled Foundations of Science, differs from most gen ed science offerings in that it is interdisciplinary; emphasizes the nature of science along with, rather than primarily, the findings of science; incorporates case studies, such as the vaccine-autism controversy; teaches the basics of argumentation and logical fallacies; contrasts science with pseudoscience; and addresses psychological factors that might otherwise lead students to reject scientific ideas they find uncomfortable. Using a pretest versus posttest design, we show that students who completed the experimental course significantly improved their critical-thinking skills and were more willing to engage scientific theories the general public finds controversial (e.g., evolution), while students who completed a traditional gen ed science course did not. Our results demonstrate that a gen ed science course emphasizing the process and application of science rather than just scientific facts can lead to improved critical thinking and scientific literacy. © 2015 M. P. Rowe, B. M. Gillespie, et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Communicating the Benefits of a Full Sequence of High School Science Courses

    Science.gov (United States)

    Nicholas, Catherine Marie

    2014-01-01

    High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit…

  19. Impact of Interdisciplinary Undergraduate Research in mathematics and biology on the development of a new course integrating five STEM disciplines.

    Science.gov (United States)

    Caudill, Lester; Hill, April; Hoke, Kathy; Lipan, Ovidiu

    2010-01-01

    Funded by innovative programs at the National Science Foundation and the Howard Hughes Medical Institute, University of Richmond faculty in biology, chemistry, mathematics, physics, and computer science teamed up to offer first- and second-year students the opportunity to contribute to vibrant, interdisciplinary research projects. The result was not only good science but also good science that motivated and informed course development. Here, we describe four recent undergraduate research projects involving students and faculty in biology, physics, mathematics, and computer science and how each contributed in significant ways to the conception and implementation of our new Integrated Quantitative Science course, a course for first-year students that integrates the material in the first course of the major in each of biology, chemistry, mathematics, computer science, and physics.

  20. Professor Created On-line Biology Laboratory Course

    Science.gov (United States)

    Bowman, Arthur W.

    2010-01-01

    This paper will share the creation, implementation, and modification of an online college level general biology laboratory course offered for non-science majors as a part of a General Education Curriculum. The ability of professors to develop quality online laboratories will address a growing need in Higher Education as more institutions combine course sections and look for suitable alternative course delivery formats due to declining departmental budgets requiring reductions in staffing, equipment, and supplies. Also, there is an equal or greater need for more professors to develop the ability to create online laboratory experiences because many of the currently available online laboratory course packages from publishers do not always adequately parallel on-campus laboratory courses, or are not as aligned with the companion lecture sections. From a variety of scientific simulation and animation web sites, professors can easily identify material that closely fit the specific needs of their courses, instructional environment, and students that they serve. All too often, on-campus laboratory courses in the sciences provide what are termed confirmation experiences that do NOT allow students to experience science as would be carried out by scientists. Creatively developed online laboratory experiences can often provide the type of authentic investigative experiences that are not possible on-campus due to the time constraints of a typical two-hour, once-per-week-meeting laboratory course. In addition, online laboratory courses can address issues related to the need for students to more easily complete missing laboratory assignments, and to have opportunities to extend introductory exercises into more advanced undertakings where a greater sense of scientific discovery can be experienced. Professors are strongly encourages to begin creating online laboratory exercises for their courses, and to consider issues regarding assessment, copyrights, and Intellectual Property

  1. Using clickers in nonmajors- and majors-level biology courses: student opinion, learning, and long-term retention of course material.

    Science.gov (United States)

    Crossgrove, Kirsten; Curran, Kristen L

    2008-01-01

    Student response systems (clickers) are viewed positively by students and instructors in numerous studies. Evidence that clickers enhance student learning is more variable. After becoming comfortable with the technology during fall 2005-spring 2006, we compared student opinion and student achievement in two different courses taught with clickers in fall 2006. One course was an introductory biology class for nonmajors, and the other course was a 200 level genetics class for biology majors. Students in both courses had positive opinions of the clickers, although we observed some interesting differences between the two groups of students. Student performance was significantly higher on exam questions covering material taught with clickers, although the differences were more dramatic for the nonmajors biology course than the genetics course. We also compared retention of information 4 mo after the course ended, and we saw increased retention of material taught with clickers for the nonmajors course, but not for the genetics course. We discuss the implications of our results in light of differences in how the two courses were taught and differences between science majors and nonmajors.

  2. Where Is Earth Science? Mining for Opportunities in Chemistry, Physics, and Biology

    Science.gov (United States)

    Thomas, Julie; Ivey, Toni; Puckette, Jim

    2013-01-01

    The Earth sciences are newly marginalized in K-12 classrooms. With few high schools offering Earth science courses, students' exposure to the Earth sciences relies on the teacher's ability to incorporate Earth science material into a biology, chemistry, or physics course. ''G.E.T. (Geoscience Experiences for Teachers) in the Field'' is an…

  3. Gregor Mendel's classic paper and the nature of science in genetics courses.

    Science.gov (United States)

    Westerlund, Julie F; Fairbanks, Daniel J

    2010-12-01

    The discoveries of Gregor Mendel, as described by Mendel in his 1866 paper Versuche uber Pflanzen-Hybriden (Experiments on plant hybrids), can be used in undergraduate genetics and biology courses to engage students about specific nature of science characteristics and their relationship to four of his major contributions to genetics. The use of primary source literature as an instructional tool to enhance genetics students' understanding of the nature of science helps students more clearly understand how scientists work and how the science of genetics has evolved as a discipline. We offer a historical background of how the nature of science developed as a concept and show how Mendel's investigations of heredity can enrich biology and genetics courses by exemplifying the nature of science. © 2010 The Authors.

  4. Predictors of Student Success in Entry-Level Science Courses

    Science.gov (United States)

    Singh, Mamta K.

    2009-01-01

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and…

  5. Teaching biology through statistics: application of statistical methods in genetics and zoology courses.

    Science.gov (United States)

    Colon-Berlingeri, Migdalisel; Burrowes, Patricia A

    2011-01-01

    Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the undergraduate biology curriculum. The curricular revision included changes in the suggested course sequence, addition of statistics and precalculus as prerequisites to core science courses, and incorporating interdisciplinary (math-biology) learning activities in genetics and zoology courses. In this article, we describe the activities developed for these two courses and the assessment tools used to measure the learning that took place with respect to biology and statistics. We distinguished the effectiveness of these learning opportunities in helping students improve their understanding of the math and statistical concepts addressed and, more importantly, their ability to apply them to solve a biological problem. We also identified areas that need emphasis in both biology and mathematics courses. In light of our observations, we recommend best practices that biology and mathematics academic departments can implement to train undergraduates for the demands of modern biology.

  6. Student Buy-In to Active Learning in a College Science Course.

    Science.gov (United States)

    Cavanagh, Andrew J; Aragón, Oriana R; Chen, Xinnian; Couch, Brian; Durham, Mary; Bobrownicki, Aiyana; Hanauer, David I; Graham, Mark J

    2016-01-01

    The benefits of introducing active learning in college science courses are well established, yet more needs to be understood about student buy-in to active learning and how that process of buy-in might relate to student outcomes. We test the exposure-persuasion-identification-commitment (EPIC) process model of buy-in, here applied to student (n = 245) engagement in an undergraduate science course featuring active learning. Student buy-in to active learning was positively associated with engagement in self-regulated learning and students' course performance. The positive associations among buy-in, self-regulated learning, and course performance suggest buy-in as a potentially important factor leading to student engagement and other student outcomes. These findings are particularly salient in course contexts featuring active learning, which encourage active student participation in the learning process. © 2016 A. J. Cavanagh et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. The General Philosophy Behind the New Integrated and Co-ordinated Science Courses in N.S.W. and the Science Foundation for Physics Textbook Series.

    Science.gov (United States)

    Messel, H.; Barker, E. N.

    Described are the science syllabuses and texts for the science courses written to fulfill the aims of the new system of education in the state of New South Wales, Australia. The science course was developed in two stages: (1) A four year integrated science syllabus for grades 7-10, and (2) separate courses in physics, chemistry, and biology with…

  8. A Community College Instructor's Reflective Journey Toward Developing Pedagogical Content Knowledge for Nature of Science in a Non-majors Undergraduate Biology Course

    Science.gov (United States)

    Krajewski, Sarah J.; Schwartz, Renee

    2014-08-01

    Research supports an explicit-reflective approach to teaching about nature of science (NOS), but little is reported on teachers' journeys as they attempt to integrate NOS into everyday lessons. This participatory action research paper reports the challenges and successes encountered by an in-service teacher, Sarah, implementing NOS for the first time throughout four units of a community college biology course (genetics, molecular biology, evolution, and ecology). Through the action research cycles of planning, implementing, and reflecting, Sarah identified areas of challenge and success. This paper reports emergent themes that assisted her in successfully embedding NOS within the science content. Data include weekly lesson plans and pre/post reflective journaling before and after each lesson of this lecture/lab combination class that met twice a week. This course was taught back to back semesters, and this study is based on the results of a year-long process. Developing pedagogical content knowledge (PCK) for NOS involves coming to understand the overlaps and connections between NOS, other science subject matter, pedagogical strategies, and student learning. Sarah found that through action research she was able to grow and assimilate her understanding of NOS within the biology content she was teaching. A shift in orientation toward teaching products of science to teaching science processes was a necessary shift for NOS pedagogical success. This process enabled Sarah's development of PCK for NOS. As a practical example of putting research-based instructional recommendations into practice, this study may be very useful for other teachers who are learning to teach NOS.

  9. iBiology: communicating the process of science.

    Science.gov (United States)

    Goodwin, Sarah S

    2014-08-01

    The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (www.ibiology.org), a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection. © 2014 Goodwin. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Teaching Formal Reasoning in a College Biology Course for Preservice Teachers.

    Science.gov (United States)

    Lawson, Anton E.; Snitgen, Donald A.

    1982-01-01

    Assessed the effect of a one-semester college biology course on the development of students (N=72) ability to reason formally and interactions among intelligence, cognitive style, and cognitive level. Includes implications for science instruction. (SK)

  11. Learning Science by Engaging Religion: A Novel Two-Course Approach for Biology Majors

    Science.gov (United States)

    Eisen, Arri; Huang, Junjian

    2014-01-01

    Many issues in science create individual and societal tensions with important implications outside the classroom. We describe one model that directly addresses such tensions by integrating science and religion in two parallel, integrated courses for science majors. Evaluation of the goals of the project--(1) providing students with strategies to…

  12. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  13. A Portable Bioinformatics Course for Upper-Division Undergraduate Curriculum in Sciences

    Science.gov (United States)

    Floraino, Wely B.

    2008-01-01

    This article discusses the challenges that bioinformatics education is facing and describes a bioinformatics course that is successfully taught at the California State Polytechnic University, Pomona, to the fourth year undergraduate students in biological sciences, chemistry, and computer science. Information on lecture and computer practice…

  14. Teaching Critical Thinking through a course on Science and Religion

    Science.gov (United States)

    Shipman, H. L.; Jordan, J. J.

    2004-12-01

    The relationship between science and religion is, according to the public debate, rather stormy. It doesn't have to be this way. Since 1998, an astronomer (Shipman) and a philosopher (Jordan) have team-taught a course with a more constructive approach. This course has a recognized role in the University's General Education program and in the philosophy major. As overall course goals, we hope that our students will be able to: - exhibit critical thinking skills in being able to tell the difference between good arguments and bad arguments in this area - recognize that the relationship between science and religion is not necessarily an antagonistic one. We accomplish these goals by focusing the course on four major issues, namely: - Does Big Bang Cosmology leave room for a Creator? - Can a rational person believe in miracle reports? - In the light of modern science, what does it mean to be human? - Can a theist, someone who believes in God, rationally accept the scientific theory of biological evolution? We have evidence in the course to evaluate student progress towards our goals. Student responses to a pre- and post-testing methodology, where they responded to the same assignment at the beginning and at the end of the course, were classified as seeing the relationship between science and religion as confrontational, distinct, convergent, or transitional between distinct and convergent. Preliminary analysis of the student responses shows a significant shift away from a confrontational position and towards a more convergent position. The development of this course was supported by the John Templeton Foundation's Science and Religion course program. H.L.S.'s scholarly work integrating science research and science education research is supported by the National Science Foundation's Distinguished Teaching Scholars Program. DUE-0306557),

  15. Research and Teaching: From Gatekeeper to Gateway: Improving Student Success in an Introductory Biology Course

    Science.gov (United States)

    Scott, Amy N.; McNair, Delores E.; Lucas, Jonathan C.; Land, Kirkwood M.

    2017-01-01

    Introductory science, math, and engineering courses often have problems related to student engagement, achievement, and course completion. To begin examining these issues in greater depth, this pilot study compared student engagement, achievement, and course completion in a small and large section of an introductory biology class. Results based on…

  16. Calculus, Biology and Medicine: A Case Study in Quantitative Literacy for Science Students

    Directory of Open Access Journals (Sweden)

    Kim Rheinlander

    2011-01-01

    Full Text Available This paper describes a course designed to enhance the numeracy of biology and pre-medical students. The course introduces students with the background of one semester of calculus to systems of nonlinear ordinary differential equations as they appear in the mathematical biology literature. Evaluation of the course showed increased enjoyment and confidence in doing mathematics, and an increased appreciation of the utility of mathematics to science. Students who complete this course are better able to read the research literature in mathematical biology and carry out research problems of their own.

  17. Factors associated with the success of first-time African American freshmen taking introductory science lecture courses at a private HBCU

    Science.gov (United States)

    Smith, Kendra Leigh

    This study had four purposes: (1) to investigate the relationship between performance in introductory biology or introductory chemistry lecture courses and their accompanying laboratory courses, (2) to investigate the relationship between performance in introductory biology or introductory chemistry lecture courses and a student's gender, (3) to investigate the relationship between performance in introductory biology or introductory chemistry lecture courses and a student's major, and (4) to investigate the relationship between performance in introductory biology or introductory chemistry lecture courses and a student's ACT scores. The sample consisted of 195 first--time freshmen who enrolled in and completed an introductory biology or an introductory chemistry lecture and laboratory courses during the fall semesters of 2007-2012. Of the 195 students, 61 were enrolled in introductory chemistry and 134 were enrolled in introductory biology courses. Logistic regression, via the Statistical Package for the Social Sciences (SPSS), was utilized to analyze several variables as they related to success in the lecture courses. Data were extracted from the university's student information system (BANNER), and analyses were conducted on biology and chemistry separately. The dependent variable for this study was a dichotomous variable for success and nonsuccess in introductory biology or introductory chemistry lecture course. The independent variables analyzed were student's gender, major, final grade in an accompanying biology or chemistry laboratory course, and ACT test scores (composite, mathematics, and science). Results indicate that concurrent enrollment in a biology laboratory course increased the likelihood of success by 15.64 times in the lecture course. Gender was found to not be a significant predictor of success for either introductory biology or introductory chemistry lecture courses. STEM majors were 9.6 times more likely to be successful than non-STEM majors in

  18. Examining portfolio-based assessment in an upper-level biology course

    Science.gov (United States)

    Ziegler, Brittany Ann

    Historically, students have been viewed as empty vessels and passive participants in the learning process but students actually are active forming their own conceptions. One way student learning is impacted is through assessment. Alternative assessment, which contrasts traditional assessment methods, takes into account how students learn by promoting engagement and construction of knowledge This dissertation explores portfolio-based assessment, a method of alternative assessment, which requires students to compose a purposeful collection of work demonstrating their knowledge in an upper-level biology course. The research objectives include characterizing and contributing to the understanding of portfolio-based assessment in higher education, examining reflection and inquiry portfolio components, determining student knowledge of biological concepts, and investigating student integrative thinking through the transformation of reflections into concept webs One main finding includes the majority of reflections categorized as naive or novice in quality. There was no difference in quality of reflections among biological topic. There was a relatively equal amount of high and low cognitive level questions. Students' knowledge of biological concepts significantly increased from the beginning to end of the course. Student written reflections were transformed into concept webs to allow for examination of student integrative thinking. Concepts, relationships, and interconnections in concept webs showed variation but declined by the end of the semester This study is one of the first examining portfolio-based assessment in an upper-level biology course We do not contend that this method of assessment is the only way to promote student learning but portfolio-based assessment may be a tool that can transform science education but currently the role of portfolio-based assessment in science education remains unclear. Additional research needs to be conducted before we will fully

  19. Living in a material world: Development and evaluation of a new materials science course for non-science majors

    Science.gov (United States)

    Brust, Gregory John

    This study was designed to discover if there is a difference in the scientific attitudes and process skills between a group of students who were instructed with Living in a Material World and groups of students in non-science majors sections of introductory biology, chemistry, and geology courses at the University of Southern Mississippi (USM). Each of the four courses utilized different instructional techniques. Students' scientific attitudes were measured with the Scientific Attitudes Inventory (SAI II) and their knowledge of science process skills were measured with the Test of Integrated Process Skills (TIPS II). The Group Assessment of Logical Thinking (GALT) was also administered to determine if the cognitive levels of students are comparable. A series of four questionnaires called Qualitative Course Assessments (QCA) were also administered to students in the experimental course to evaluate subtle changes in their understanding of the nature and processes of science and attitudes towards science. Student responses to the QCA questionnaires were triangulated with results of the qualitative instruments, and students' work on the final project. Results of the GALT found a significant difference in the cognitive levels of students in the experimental course (PSC 190) and in one of the control group, the introductory biology (BSC 107). Results of the SAI II and the TIPS II found no significant difference between the experimental group and the control groups. Qualitative analyses of students' responses to selected questions from the TIPS II, selected items on the SAI II, QCA questionnaires, and Materials that Fly project reports demonstrate an improvement in the understanding of the nature and processes of science and a change to positive attitude toward science of students in the experimental group. Students indicated that hands-on, inquiry-based labs and performance assessment were the most effective methods for their learning. These results indicate that science

  20. Information fluency for undergraduate biology majors: applications of inquiry-based learning in a developmental biology course.

    Science.gov (United States)

    Gehring, Kathleen M; Eastman, Deborah A

    2008-01-01

    Many initiatives for the improvement of undergraduate science education call for inquiry-based learning that emphasizes investigative projects and reading of the primary literature. These approaches give students an understanding of science as a process and help them integrate content presented in courses. At the same time, general initiatives to promote information fluency are being promoted on many college and university campuses. Information fluency refers to discipline-specific processing of information, and it involves integration of gathered information with specific ideas to form logical conclusions. We have implemented the use of inquiry-based learning to enhance and study discipline-specific information fluency skills in an upper-level undergraduate Developmental Biology course. In this study, an information literacy tutorial and a set of linked assignments using primary literature analysis were integrated with two inquiry-based laboratory research projects. Quantitative analysis of student responses suggests that the abilities of students to identify and apply valid sources of information were enhanced. Qualitative assessment revealed a set of patterns by which students gather and apply information. Self-assessment responses indicated that students recognized the impact of the assignments on their abilities to gather and apply information and that they were more confident about these abilities for future biology courses and beyond.

  1. Impact of Theoretical Chemistry on Chemical and Biological Sciences

    Indian Academy of Sciences (India)

    IAS Admin

    theory as applied to biological systems. ... methods to follow the course of chemical reactions devised by. K Fukui and R .... optimize the structure of organic molecules using classical-em- pirical potential ..... science or engineering dis- ciplines.

  2. Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project.

    Science.gov (United States)

    Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration. © 2015 The International Union of Biochemistry and Molecular Biology.

  3. Communicating the Benefits of a Full Sequence of High School Science Courses

    Science.gov (United States)

    Nicholas, Catherine Marie

    High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit in the STEM degree production rate needed to fill the demand of the current job market and remain competitive as a nation. The purpose of the study was to make a difference in the number of students who have access to information about the benefits of completing a full sequence of science courses. This dissertation study employed qualitative research methodology to gain a broad perspective of staff through a questionnaire and document review and then a deeper understanding through semi-structured interview protocol. The data revealed that a universal sequence of science courses in the high school district did not exist. It also showed that not all students had access to all science courses; students were sorted and tracked according to prerequisites that did not necessarily match the skill set needed for the courses. In addition, the study showed a desire for more support and direction from the district office. It was also apparent that there was a disconnect that existed between who staff members believed should enroll in a full sequence of science courses and who actually enrolled. Finally, communication about science was shown to occur mainly through counseling and peers. A common science sequence, detracking of science courses, increased communication about the postsecondary and academic benefits of a science education, increased district direction and realistic mathematics alignment were all discussed as solutions to the problem.

  4. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum

    Science.gov (United States)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.

    2017-12-01

    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  5. The impact of an introductory college-level biology class on biology self-efficacy and attitude towards science

    Science.gov (United States)

    Thomas, Megan Elizabeth

    Self-efficacy theory was first introduced in a seminal article by Albert Bandura in 1977 entitled "Self-efficacy: Toward a unifying theory of behavioral change". Since its original introduction, self-efficacy has been a major focus of academic performance, anxiety, career development, and teacher retention research. Self-efficacy can be defined as the belief an individual possesses about their ability to perform a given task. Bandura proposed that self-efficacy should be measured at the highest level of specificity due to the fact that different people are efficacious in different areas. Interested in students' efficacy toward biology, Ebert-May, Baldwin, & Allred (1997) created and validated a survey to measure students' biology self-efficacy. Their survey was modeled after the guidelines for science literacy, and loaded to three sub-factors; methods of biology, generalization to other science courses, and application of the concepts. As self-efficacy theory has been related to effort expenditure and persistence (Bandura, 1977; 1997), one might think it would have some effect on students' attitudes toward the topic at hand. The current research investigated what changes in biology self-efficacy occurred after an introductory biology course with an inquiry based laboratory learning environment. In addition, changes in students' attitudes towards science were explored and how self-efficacy might affect them.

  6. Stem Cells and Society: An Undergraduate Course Exploring the Intersections among Science, Religion, and Law

    Science.gov (United States)

    Pierret, Chris; Friedrichsen, Patricia

    2009-01-01

    The intersection of science and our society has led to legal and ethical issues in which we all play a part. To support development of scientific literacy, college science courses need to engage students in difficult dialogues around ethical issues. We describe a new course, Stem Cells and Society, in which students explore the basic biology of…

  7. Excel 2016 for biological and life sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical biological and life science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in biological and life sciences courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Biological and Life Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand biological and life science problems. Practice problems are provided...

  8. Infusion of Quantitative and Statistical Concepts into Biology Courses Does Not Improve Quantitative Literacy

    Science.gov (United States)

    Beck, Christopher W.

    2018-01-01

    Multiple national reports have pushed for the integration of quantitative concepts into the context of disciplinary science courses. The aim of this study was to evaluate the quantitative and statistical literacy of biology students and explore learning gains when those skills were taught implicitly in the context of biology. I examined gains in…

  9. Evidence for anecdotes: Examining use of stories in introductory biology courses with a mixed-methods approach

    Science.gov (United States)

    Kreps, Jennifer Susan

    2005-11-01

    Instructional stories can be an effective way to teach science concepts. However, research has not examined the extent to which stories are being used, and how they are received. More research on the use of story in biology classes may lead to more conscious use of story by instructors, which may lead to a better understanding of biological concepts by students. The purpose of this study was to examine how instructors and students use stories in university introductory biology courses, and the degree to which these stories are perceived to be effective. To examine this phenomenon, a nationwide instructor survey, a university-wide student survey, and multiple case studies were used. Two case studies included observation of lectures, interviews with (36) students, and interviews with instructors (4) over two semesters of an organismal biology course. Instructor survey participants (N = 78) were gathered by posting email invitations, and student survey participants (N = 260) were volunteers from introductory biology courses at a middle-sized university. Several types of stories were observed, including personal experience stories, historical anecdotes, and "you" stories. Students reported increased affective learning when stories were told, and remembered mostly humorous stories. In the instructor survey, no significant differences emerged between genders, type of biology taught, or communicator style and instructional story frequency. However, reports of personal experience story frequency did increase significantly (p ethnicity, although non-science majors reported that their instructors used stories significantly more frequently (p perceived learning loss for non-science majors, but not for science majors. The researcher suggests that stories can be an effective tool to teach biology, particularly if the instructor is aware of her audience and uses stories primarily to help students understand how concepts are related to "real life."

  10. Science Seeker: A New Model for Teaching Information Literacy to Entry-Level Biology Undergraduates

    Science.gov (United States)

    Petzold, Jacquelyn; Winterman, Brian; Montooth, Kristi

    2010-01-01

    In order to integrate library instruction seamlessly into an introductory biology course, two librarians collaborated with a biology faculty member to create a three-part series of instruction sessions known as the Science Seeker. The Science Seeker taught students about the structure of scientific information by tracing the path that discoveries…

  11. The effect of cooperative learning on the attitudes toward science and the achievement of students in a non-science majors' general biology laboratory course at an urban community college

    Science.gov (United States)

    Chung-Schickler, Genevieve C.

    The purpose of this study was to evaluate the effect of cooperative learning strategies on students' attitudes toward science and achievement in BSC 1005L, a non-science majors' general biology laboratory course at an urban community college. Data were gathered on the participants' attitudes toward science and cognitive biology level pre and post treatment in BSC 1005L. Elements of the Learning Together model developed by Johnson and Johnson and the Student Team-Achievement Divisions model created by Slavin were incorporated into the experimental sections of BSC 1005L. Four sections of BSC 1005L participated in this study. Participants were enrolled in the 1998 spring (January) term. Students met weekly in a two hour laboratory session. The treatment was administered to the experimental group over a ten week period. A quasi-experimental pretest-posttest control group design was used. Students in the cooperative learning group (nsb1 = 27) were administered the Test of Science-Related Attitudes (TOSRA) and the cognitive biology test at the same time as the control group (nsb2 = 19) (at the beginning and end of the term). Statistical analyses confirmed that both groups were equivalent regarding ethnicity, gender, college grade point average and number of absences. Independent sample t-tests performed on pretest mean scores indicated no significant differences in the TOSRA scale two or biology knowledge between the cooperative learning group and the control group. The scores of TOSRA scales: one, three, four, five, six, and seven were significantly lower in the cooperative learning group. Independent sample t-tests of the mean score differences did not show any significant differences in posttest attitudes toward science or biology knowledge between the two groups. Paired t-tests did not indicate any significant differences on the TOSRA or biology knowledge within the cooperative learning group. Paired t-tests did show significant differences within the control group

  12. Using a Module-Based Laboratory to Incorporate Inquiry into a Large Cell Biology Course

    Science.gov (United States)

    Howard, David R.; Miskowski, Jennifer A.

    2005-01-01

    Because cell biology has rapidly increased in breadth and depth, instructors are challenged not only to provide undergraduate science students with a strong, up-to-date foundation of knowledge, but also to engage them in the scientific process. To these ends, revision of the Cell Biology Lab course at the University of Wisconsin-La Crosse was…

  13. Active Learning Not Associated with Student Learning in a Random Sample of College Biology Courses

    Science.gov (United States)

    Andrews, T. M.; Leonard, M. J.; Colgrove, C. A.; Kalinowski, S. T.

    2011-01-01

    Previous research has suggested that adding active learning to traditional college science lectures substantially improves student learning. However, this research predominantly studied courses taught by science education researchers, who are likely to have exceptional teaching expertise. The present study investigated introductory biology courses randomly selected from a list of prominent colleges and universities to include instructors representing a broader population. We examined the relationship between active learning and student learning in the subject area of natural selection. We found no association between student learning gains and the use of active-learning instruction. Although active learning has the potential to substantially improve student learning, this research suggests that active learning, as used by typical college biology instructors, is not associated with greater learning gains. We contend that most instructors lack the rich and nuanced understanding of teaching and learning that science education researchers have developed. Therefore, active learning as designed and implemented by typical college biology instructors may superficially resemble active learning used by education researchers, but lacks the constructivist elements necessary for improving learning. PMID:22135373

  14. Introductory physics in biological context: An approach to improve introductory physics for life science students

    Science.gov (United States)

    Crouch, Catherine H.; Heller, Kenneth

    2014-05-01

    We describe restructuring the introductory physics for life science students (IPLS) course to better support these students in using physics to understand their chosen fields. Our courses teach physics using biologically rich contexts. Specifically, we use examples in which fundamental physics contributes significantly to understanding a biological system to make explicit the value of physics to the life sciences. This requires selecting the course content to reflect the topics most relevant to biology while maintaining the fundamental disciplinary structure of physics. In addition to stressing the importance of the fundamental principles of physics, an important goal is developing students' quantitative and problem solving skills. Our guiding pedagogical framework is the cognitive apprenticeship model, in which learning occurs most effectively when students can articulate why what they are learning matters to them. In this article, we describe our courses, summarize initial assessment data, and identify needs for future research.

  15. Beyond the Biology: A Systematic Investigation of Noncontent Instructor Talk in an Introductory Biology Course.

    Science.gov (United States)

    Seidel, Shannon B; Reggi, Amanda L; Schinske, Jeffrey N; Burrus, Laura W; Tanner, Kimberly D

    2015-01-01

    Instructors create classroom environments that have the potential to impact learning by affecting student motivation, resistance, and self-efficacy. However, despite the critical importance of the learning environment in increasing conceptual understanding, little research has investigated what instructors say and do to create learning environments in college biology classrooms. We systematically investigated the language used by instructors that does not directly relate to course content and defined the construct of Instructor Talk. Transcripts were generated from a semester-long, cotaught introductory biology course (n = 270 students). Transcripts were analyzed using a grounded theory approach to identify emergent categories of Instructor Talk. The five emergent categories from analysis of more than 600 quotes were, in order of prevalence, 1) Building the Instructor/Student Relationship, 2) Establishing Classroom Culture, 3) Explaining Pedagogical Choices, 4) Sharing Personal Experiences, and 5) Unmasking Science. Instances of Instructor Talk were present in every class session analyzed and ranged from six to 68 quotes per session. The Instructor Talk framework is a novel research variable that could yield insights into instructor effectiveness, origins of student resistance, and methods for overcoming stereotype threat. Additionally, it holds promise in professional development settings to assist instructors in reflecting on the learning environments they create. © 2015 S. B. Seidel et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Evolution in health and medicine Sackler colloquium: Making evolutionary biology a basic science for medicine.

    Science.gov (United States)

    Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David

    2010-01-26

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.

  17. Optimizing Introductory Physics for the Life Sciences: Placing Physics in Biological Context

    Science.gov (United States)

    Crouch, Catherine

    2014-03-01

    Physics is a critical foundation for today's life sciences and medicine. However, the physics content and ways of thinking identified by life scientists as most important for their fields are often not taught, or underemphasized, in traditional introductory physics courses. Furthermore, such courses rarely give students practice using physics to understand living systems in a substantial way. Consequently, students are unlikely to recognize the value of physics to their chosen fields, or to develop facility in applying physics to biological systems. At Swarthmore, as at several other institutions engaged in reforming this course, we have reorganized the introductory course for life science students around touchstone biological examples, in which fundamental physics contributes significantly to understanding biological phenomena or research techniques, in order to make explicit the value of physics to the life sciences. We have also focused on the physics topics and approaches most relevant to biology while seeking to develop rigorous qualitative reasoning and quantitative problem solving skills, using established pedagogical best practices. Each unit is motivated by and culminates with students analyzing one or more touchstone examples. For example, in the second semester we emphasize electric potential and potential difference more than electric field, and start from students' typically superficial understanding of the cell membrane potential and of electrical interactions in biochemistry to help them develop a more sophisticated understanding of electric forces, field, and potential, including in the salt water environment of life. Other second semester touchstones include optics of vision and microscopes, circuit models for neural signaling, and magnetotactic bacteria. When possible, we have adapted existing research-based curricular materials to support these examples. This talk will describe the design and development process for this course, give examples of

  18. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston

    Science.gov (United States)

    Chen, R. F.; Pelletier, P.; Dorsen, J.; Douglas, E. M.; Pringle, M. S.; Karp, J.

    2009-12-01

    Inquiry-based, hands-on, graduate content courses have been developed specifically for Boston Public School middle school teachers of Earth Science. Earth Science I: Weather and Water and Earth Science II: The Solid Earth--Earth History and Planetary Systems have been taught a total of seven times to over 120 teachers. Several key attributes to these successful courses have been identified, including co-instruction by a university professor and a high school and a middle school teacher that are familiar with the Boston curriculum, use of hands-on activities that are closed related to those used in the Boston curriculum, pre- and post-course local field trips, and identification of key learning objectives for each day. This model of professional development was developed over several years in all disciplines (Earth Science, Physics, Biology, Chemistry) by the Boston Science Partnership (BSP), an NSF-funded Math Science Partnership program. One of the core strategies of the BSP is these Contextualized Content Courses (CCC), graduate level, lab-based courses taught at either UMass Boston or Northeastern University during summer intensive or semester formats. Two of the eleven courses developed under the grant are Earth Science I & II. This presentation shares the model of the CCC, the impact on teacher participants, the value of these courses for the professor, and lessons learned for successful professional development. Findings about the courses’ impact and effectiveness come from our external evaluation by the Program Evaluation Research Group (PERG). The combination of content and modeling good instructional practices have many positive outcomes for teachers, including increased self-efficacy in science understanding and teaching, positive impacts on student achievement, and teacher shifts from more traditional, more lecture-based instructional models to more inquiry approaches. STEM faculty members become involved in science education and learn and practice new

  19. A survey of computer science capstone course literature

    Science.gov (United States)

    Dugan, Robert F., Jr.

    2011-09-01

    In this article, we surveyed literature related to undergraduate computer science capstone courses. The survey was organized around course and project issues. Course issues included: course models, learning theories, course goals, course topics, student evaluation, and course evaluation. Project issues included: software process models, software process phases, project type, documentation, tools, groups, and instructor administration. We reflected on these issues and thecomputer science capstone course we have taught for seven years. The survey summarized, organized, and synthesized the literature to provide a referenced resource for computer science instructors and researchers interested in computer science capstone courses.

  20. The CLEM model: Path analysis of the mediating effects of attitudes and motivational beliefs on the relationship between perceived learning environment and course performance in an undergraduate nonmajor biology course

    Science.gov (United States)

    Partin, Matthew L.

    The problem addressed in this study stems from three crises currently faced by post-secondary science educators in the United States: relatively low scientific literacy among students entering college, the need for more students to pursue science related careers, and poor attitudes among students toward studying science. In this dissertation the following questions are addressed: Is there a relationship between students' perceptions of their learning environment and course performance, and what roles do motivation and attitudes play in mediating that relationship? This study also examines the effects of gender and ethnicity on motivation, attitudes, and course performance. The purpose of this study is to test a path model describing the mediating effects of motivation and attitudes on constructivist learning environments and course performance. The following study considers contemporary understanding of teaching and learning as well as motivation and attitudes to suggest a direction for future reform efforts and to guide post-secondary science education instructors and leaders in the design of constructivist learning environments for undergraduate nonmajor biology courses. This study concludes that, although the classroom learning environment has a small direct effect on course performance, there is a moderate total effect on self-efficacy and intrinsic goal orientation. The classroom learning environment also had a moderate indirect effect on attitudes toward biology. Furthermore, attitudes have a moderate direct effect on course performance and self-efficacy has a strong direct effect on both course performance and attitudes toward biology. Self-efficacy seems to be particularly important; however, each of these constructs is important in its own right and instructors in higher education should strive to enhance each of them among their students. If students are to learn using constructivist methods they need the proper motivation and positive attitudes to

  1. Do compulsory secondary science courses change students’ attitude towards studying science?

    DEFF Research Database (Denmark)

    Kristensen, Lærke Elisabeth; Petersen, Morten Rask

    2015-01-01

    recruitment to STEM education has been a compulsory course in the Gymnasium called Natural Science Subject (NSS). This is an interdisciplinary, introductory course with the intention that students shall “ … realize the importance of knowing and understanding natural science thinking” (Authors translation...... science and science careers. In this approach we ended up with the following research question: “Does a compulsory introductory sciences course have an impact on students’ attitude towards studying sciences in secondary school?” In this approach we chose to use parameters as motivation (Deci & Ryan, 2002...... Subject course. The distribution included all levels (K10-K12) and all study lines. Student answers were analyzed using Mann-Whitney U-test using SPSS statistics 22 as analytical tool. Comparisons for this study were made across study lines (natural science vs. human science & social science...

  2. Integrating quantitative thinking into an introductory biology course improves students' mathematical reasoning in biological contexts.

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students' understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students' inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students' biology learning.

  3. Integrating Quantitative Thinking into an Introductory Biology Course Improves Students’ Mathematical Reasoning in Biological Contexts

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students’ apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students’ understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students’ inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students’ biology learning. PMID:24591504

  4. Changes in Biology Self-Efficacy during a First-Year University Course.

    Science.gov (United States)

    Ainscough, Louise; Foulis, Eden; Colthorpe, Kay; Zimbardi, Kirsten; Robertson-Dean, Melanie; Chunduri, Prasad; Lluka, Lesley

    2016-01-01

    Academic self-efficacy encompasses judgments regarding one's ability to perform academic tasks and is correlated with achievement and persistence. This study describes changes in biology self-efficacy during a first-year course. Students (n = 614) were given the Biology Self-Efficacy Scale at the beginning and end of the semester. The instrument consisted of 21 questions ranking confidence in performing biology-related tasks on a scale from 1 (not at all confident) to 5 (totally confident). The results demonstrated that students increased in self-efficacy during the semester. High school biology and chemistry contributed to self-efficacy at the beginning of the semester; however, this relationship was lost by the end of the semester, when experience within the course became a significant contributing factor. A proportion of high- and low- achieving (24 and 40%, respectively) students had inaccurate self-efficacy judgments of their ability to perform well in the course. In addition, female students were significantly less confident than males overall, and high-achieving female students were more likely than males to underestimate their academic ability. These results suggest that the Biology Self-Efficacy Scale may be a valuable resource for tracking changes in self-efficacy in first-year students and for identifying students with poorly calibrated self-efficacy perceptions. © 2016 L. Ainscough et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Traditional Versus Online Biology Courses: Connecting Course Design and Student Learning in an Online Setting

    OpenAIRE

    Biel, Rachel; Brame, Cynthia J.

    2016-01-01

    Online courses are a large and growing part of the undergraduate education landscape, but many biology instructors are skeptical about the effectiveness of online instruction. We reviewed studies comparing the effectiveness of online and face-to-face (F2F) undergraduate biology courses. Five studies compared student performance in multiple course sections at community colleges, while eight were smaller scale and compared student performance in particular biology courses at a variety of types ...

  6. Laboratory animal science course in Switzerland: participants' points of view and implications for organizers.

    Science.gov (United States)

    Crettaz von Roten, Fabienne

    2018-02-01

    Switzerland has implemented a mandatory training in laboratory animal science since 1999; however a comprehensive assessment of its effects has never been undertaken so far. The results from the analysis of participants in the Swiss Federation of European Laboratory Animal Science Associations (FELASA) Category B compulsory courses in laboratory animal science run in 2010, 2012, 2014 and 2016 showed that the participants fully appreciated all elements of the course. The use of live animals during the course was supported and explained by six arguments characterized with cognitive, emotional and forward-looking factors. A large majority considered that the 3R (replacement, reduction and refinement) principles were adequately applied during the course. Responses to an open question offered some ideas for improvements. This overall positive picture, however, revealed divergent answers from different subpopulations in our sample (for example, scientists with more hindsight, scientists trained in biology, or participants from Asian countries).

  7. An elective course in aromatherapy science.

    Science.gov (United States)

    Esposito, Emily R; Bystrek, Mary V; Klein, JoAnn S

    2014-05-15

    To evaluate the impact of an innovative team-taught elective course on second-year (P2) students' knowledge and skills relating to the relationship between aromatherapy and pharmacy. An Aromatherapy Science elective course was offered to P2 students in an accelerated doctor of pharmacy (PharmD) degree program and was designed to provide an elective course experience while focusing on active-learning skills such as group work, student-led presentations, and in-class activities. Lectures were designed to reinforce core curricular threads from the basic sciences within the pharmaceutical sciences department while highlighting key aromatherapy principles. Course evaluations, grades, and student self-assessments were used to evaluate student fulfillment and knowledge gained. Students agreed this hands-on course integrated pharmaceutical science experiences, enriched their pharmacy education, and provided knowledge to enhance their confidence in describing essential oil uses, drug interactions, and key aromatherapy clinical implications. Students agreed this course prepared them to identify essential oil therapeutic uses and potential essential oil-drug interactions, and interpret literature. The introduction of aromatherapy principles to pharmacy students will prepare a new generation of healthcare professionals on the role of alternative medicines.

  8. Traditional Versus Online Biology Courses: Connecting Course Design and Student Learning in an Online Setting.

    Science.gov (United States)

    Biel, Rachel; Brame, Cynthia J

    2016-12-01

    Online courses are a large and growing part of the undergraduate education landscape, but many biology instructors are skeptical about the effectiveness of online instruction. We reviewed studies comparing the effectiveness of online and face-to-face (F2F) undergraduate biology courses. Five studies compared student performance in multiple course sections at community colleges, while eight were smaller scale and compared student performance in particular biology courses at a variety of types of institutions. Of the larger-scale studies, two found that students in F2F sections outperformed students in online sections, and three found no significant difference; it should be noted, however, that these studies reported little information about course design. Of the eight smaller scale studies, six found no significant difference in student performance between the F2F and online sections, while two found that the online sections outperformed the F2F sections. In alignment with general findings about online teaching and learning, these results suggest that well-designed online biology courses can be effective at promoting student learning. Three recommendations for effective online instruction in biology are given: the inclusion of an online orientation to acclimate students to the online classroom; student-instructor and student-student interactions facilitated through synchronous and asynchronous communication; and elements that prompt student reflection and self-assessment. We conclude that well-designed online biology courses can be as effective as their traditional counterparts, but that more research is needed to elucidate specific course elements and structures that can maximize online students' learning of key biology skills and concepts.

  9. Traditional Versus Online Biology Courses: Connecting Course Design and Student Learning in an Online Setting

    Directory of Open Access Journals (Sweden)

    Rachel Biel

    2016-12-01

    Full Text Available Online courses are a large and growing part of the undergraduate education landscape, but many biology instructors are skeptical about the effectiveness of online instruction. We reviewed studies comparing the effectiveness of online and face-to-face (F2F undergraduate biology courses. Five studies compared student performance in multiple course sections at community colleges, while eight were smaller scale and compared student performance in particular biology courses at a variety of types of institutions. Of the larger-scale studies, two found that students in F2F sections outperformed students in online sections, and three found no significant difference; it should be noted, however, that these studies reported little information about course design. Of the eight smaller scale studies, six found no significant difference in student performance between the F2F and online sections, while two found that the online sections outperformed the F2F sections. In alignment with general findings about online teaching and learning, these results suggest that well-designed online biology courses can be effective at promoting student learning. Three recommendations for effective online instruction in biology are given: the inclusion of an online orientation to acclimate students to the online classroom; student-instructor and student-student interactions facilitated through synchronous and asynchronous communication; and elements that prompt student reflection and self-assessment. We conclude that well-designed online biology courses can be as effective as their traditional counterparts, but that more research is needed to elucidate specific course elements and structures that can maximize online students’ learning of key biology skills and concepts.

  10. Science of Food and Cooking: A Non-Science Majors Course

    Science.gov (United States)

    Miles, Deon T.; Bachman, Jennifer K.

    2009-01-01

    Recent emphasis on the science of food and cooking has been observed in our popular literature and media. As a result of this, a new non-science majors course, The Science of Food and Cooking, is being taught at our institution. We cover basic scientific concepts, which would normally be discussed in a typical introductory chemistry course, in the…

  11. A formative evaluation of a high school blended learning biology course

    Science.gov (United States)

    Nellman, Stephen William

    As growing student populations continue to tax the resources of public high schools, administrators are constantly looking for ways to address the needs of all students. One option for increasing the number of students in a classroom without sacrificing quality of instruction is to use "blended learning". Blended learning is defined by Marsh et al. (2003, p.2) as a situation where "face-to-face and distance education delivery methods and resources are merged". In such a course, students receive the benefits of classroom-based instruction, while also benefiting from several aspects of distance learning. This is especially true for science courses that rely heavily on both hands-on labs and various multimedia. The purpose of this study was a formative evaluation of a high school blended learning biology course, focusing on a genetics unit. The research question addressed by the study was "Will participants increase their domain knowledge and problem-solving skills after instruction in a high school level blended distance learning biology course? Also investigated was if higher levels of self-regulation skills were correlated to higher levels of content-understanding and problem-solving. The study was composed of a pilot study and a main study. Participants were students in an urban Southern California public high school biology course. Classroom instruction was from a single instructor, and online content was managed using the "Moodle" course management system. Participants were assessed for their gains in genetics content-understanding, genetics problem-solving skills (Punnett squares), and self-regulation. Additionally, participant reactions to the blended instruction model were surveyed. Results indicated that significant increases (pself-regulation skills were not shown to be significantly correlated to increased content-understanding, or problem-solving skills. Participants reacted positively to the blended model, suggesting that it be used more often in their

  12. Student Perceptions of the Cell Biology Laboratory Learning Environment in Four Undergraduate Science Courses in Spain

    Science.gov (United States)

    De Juan, Joaquin; Pérez-Cañaveras, Rosa M.; Segovia, Yolanda; Girela, Jose Luis; Martínez-Ruiz, Noemi; Romero-Rameta, Alejandro; Gómez-Torres, Maria José; Vizcaya-Moreno, M. Flores

    2016-01-01

    Cell biology is an academic discipline that organises and coordinates the learning of the structure, function and molecular composition of cells in some undergraduate biomedical programs. Besides course content and teaching methodologies, the laboratory environment is considered a key element in the teaching of and learning of cell biology. The…

  13. Preservice Teachers' Reconciliation of an Epistemological Issue in an Integrated Mathematics/Science Methods Course

    Science.gov (United States)

    Cormas, Peter C.

    2017-01-01

    Preservice teachers in six sections (n = 87) of a sequenced, methodological and process-integrated elementary mathematics/science methods course were able to reconcile an issue centered on a similar area of epistemology. Preservice teachers participated in a science inquiry lesson on biological classification and a mathematics problem-solving…

  14. Biological sciences teaching undergraduates’ environmental knowledge: a critical analysis

    Directory of Open Access Journals (Sweden)

    Silvana do Nascimento Silva

    2013-12-01

    Full Text Available Nowadays, environmental issues have been addressed in a way that goes beyond the natural impacts, embracing socio-economic, political and cultural aspects. This paper makes a description of the types of environmental conceptions, giving special emphasis to the interactions that permeate it, and develops an empirical work by analyzing the conceptions about the environmental knowledge of students majoring in a teacher preparation course on biological sciences of a university in the State of Bahia, Brazil. In a qualitative research, data were collected by application of a questionnaire with open questions with answers in text and drawings. The results revealed a predominance of naturalistic conceptions, while socio-environmental conceptions of systemic or socio-metabolic characteristics were not found. These findings lead to the need for the integration of these critical approaches about the environmental issue in Sciences and Biology teachers’ training, emphasizing the interactions between work, nature and society. Finally, some suggestions also emerge for future research, among which to analyze the biological sciences university teachers’ environmental conceptions and an action-research with these investigated undergraduates concerning environmental critical approaches.

  15. The Colorado Learning Attitudes about Science Survey (CLASS) for Use in Biology

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K.; Birol, Gülnur; Smith, Michelle K.

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology. PMID:21885823

  16. The Colorado Learning Attitudes about Science Survey (CLASS) for use in Biology.

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K; Birol, Gülnur; Smith, Michelle K

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology.

  17. Linking Science Fiction and Physics Courses

    Science.gov (United States)

    McBride, Krista K.

    2016-05-01

    Generally, cohorts or learning communities enrich higher learning in students. Learning communities consist of conventionally separate groups of students that meet together with common academic purposes and goals. Types of learning communities include paired courses with concurrent student enrollment, living-learning communities, and faculty learning communities. This article discusses a learning community of 21 students that I created with a colleague in the English department. The community encompasses two general education courses: an algebra-based physics course entitled "Intro to Physics" and a literature course entitled "Science Fiction, Science Fact." Students must enroll in both of these courses during the same semester. Additionally, I highlight advantages to linking these courses through surveying the assignments and course materials that we used in our learning community. Figure 1 shows the topics that are covered in both physics and literature courses.

  18. The impact of a Classroom Performance System on learning gains in a biology course for science majors

    Science.gov (United States)

    Marin, Nilo Eric

    This study was conducted to determine if the use of the technology known as Classroom Performance System (CPS), specifically referred to as "Clickers", improves the learning gains of students enrolled in a biology course for science majors. CPS is one of a group of developing technologies adapted for providing feedback in the classroom using a learner-centered approach. It supports and facilitates discussion among students and between them and teachers, and provides for participation by passive students. Advocates, influenced by constructivist theories, claim increased academic achievement. In science teaching, the results have been mixed, but there is some evidence of improvements in conceptual understanding. The study employed a pretest-posttest, non-equivalent groups experimental design. The sample consisted of 226 participants in six sections of a college biology course at a large community college in South Florida with two instructors trained in the use of clickers. Each instructor randomly selected their sections into CPS (treatment) and non-CPS (control) groups. All participants filled out a survey that included demographic data at the beginning of the semester. The treatment group used clicker questions throughout, with discussions as necessary, whereas the control groups answered the same questions as quizzes, similarly engaging in discussion where necessary. The learning gains were assessed on a pre/post-test basis. The average learning gains, defined as the actual gain divided by the possible gain, were slightly better in the treatment group than in the control group, but the difference was statistically non-significant. An Analysis of Covariance (ANCOVA) statistic with pretest scores as the covariate was conducted to test for significant differences between the treatment and control groups on the posttest. A second ANCOVA was used to determine the significance of differences between the treatment and control groups on the posttest scores, after

  19. How In-Service Science Teachers Integrate History and Nature of Science in Elementary Science Courses

    Science.gov (United States)

    Hacieminoglu, Esme

    2014-01-01

    The purpose of this study is to investigate how the in-service science teachers' (IST) perceptions and practices about curriculum and integration of the history of science (HOS) and the nature of science (NOS) affect their science courses. For this aim, how ISTs integrated the NOS and HOS in their elementary science courses for understanding of…

  20. Designing and implementing a new advanced level biology course.

    OpenAIRE

    Hall, Angela; Reiss, Michael; Rowell, Cathy; Scott, C.; Scott, Anne

    2003-01-01

    Salters-Nuffield Advanced Biology is a new advanced level biology course currently being piloted from September 2002 in England with around 1200 students. This paper discusses the reasons for developing a new advanced biology course at this time, the philosophy of the project and how the materials are being written and the specification devised. The aim of the project is to provide an up-to-date course that interests students, is considered appropriate by teachers and other professionals in b...

  1. CLIMANDES climate science e-learning course

    Science.gov (United States)

    Hunziker, Stefan; Giesche, Alena; Jacques-Coper, Martín; Brönnimann, Stefan

    2016-04-01

    Over the past three years, members of the Oeschger Centre for Climate Change Research (OCCR) and the Climatology group at the Institute of Geography at the University of Bern, have developed a new climate science e-learning course as part of the CLIMANDES project. This project is a collaboration between Peruvian and Swiss government, research, and education institutions. The aim of this e-learning material is to strengthen education in climate sciences at the higher education and professional level. The course was recently published in 2015 by Geographica Bernensia, and is hosted online by the Peruvian Servicio Nacional de Meteorología e Hidrología (SENAMHI): http://surmx.com/chamilo/climandes/e-learning/. The course is furthermore available for offline use through USB sticks, and a number of these are currently being distributed to regional training centers around the world by the WMO (World Meteorological Organization). There are eight individual modules of the course that each offer approximately 2 hours of individual learning material, featuring several additional learning activities, such as the online game "The Great Climate Poker" (http://www.climatepoker.unibe.ch/). Overall, over 50 hours of learning material are provided by this course. The modules can be integrated into university lectures, used as single units in workshops, or be combined to serve as a full course. This e-learning course presents a broad spectrum of topics in climate science, including an introduction to climatology, atmospheric and ocean circulation, climate forcings, climate observations and data, working with data products, and climate models. This e-learning course offers a novel approach to teaching climate science to students around the world, particularly through three important features. Firstly, the course is unique in its diverse range of learning strategies, which include individual reading material, video lectures, interactive graphics, responsive quizzes, as well as group

  2. Flipped Classrooms for Advanced Science Courses

    Science.gov (United States)

    Tomory, Annette; Watson, Sunnie Lee

    2015-12-01

    This article explains how issues regarding dual credit and Advanced Placement high school science courses could be mitigated via a flipped classroom instructional model. The need for advanced high school courses will be examined initially, followed by an analysis of advanced science courses and the reform they are experiencing. Finally, it will conclude with an explanation of flipped classes as well as how they may be a solution to the reform challenges teachers are experiencing as they seek to incorporate more inquiry-based activities.

  3. Charting a Course to Earth System Science Literacy

    Science.gov (United States)

    Karsten, J. L.; Koch, L.; Ridky, R.; Wei, M.; Ladue, N.

    2008-12-01

    Public literacy of fundamental ideas in Earth System Science (ESS) is immensely important, both because of its relevance to the daily lives of individual citizens and the role played by informed policy decisions related to water, energy, climate change, and hazards in securing our Nation's well-being and prosperity. The National Science Education Standards (NRC, 1996) argued that topics which comprise ESS also have tremendous value in providing context and meaning for the teaching of Biology, Chemistry, and Physics concepts and their applications, thereby serving the goals of the America COMPETES Act. Yet, as documented in the 2006 Program for International Student Assessment (PISA) results, the U.S. continues to lag significantly behind other developed nations in science literacy. A major obstacle to improving public ESS literacy, specifically, and strengthening science literacy, in general, is the fact that fewer than 30% of students in U.S. high schools take any courses related to ESS. Often, these courses are taught by teachers with limited preparation in this content area. A new grass-roots movement within the geoscience research and education communities, fueled by interagency collaboration, is seeking to overcome these obstacles and steer a new course for ESS education in the Nation. The Earth System Science Literacy Initiative (ESSLI) builds on recent efforts within portions of the geosciences community to reach consensus on what defines scientific literacy within their fields. Individual literacy frameworks now exist for the ocean, atmospheric science, Earth science, and climate topic areas, and others are under development. The essential principles and fundamental concepts articulated in these frameworks provide consistent core messages that can be delivered and reinforced not only through formal education channels, but also through informal education activities and the media, thereby avoiding the inherent obstacles of the formal education setting

  4. Scientific reasoning skills development in the introductory biology courses for undergraduates

    Science.gov (United States)

    Schen, Melissa S.

    Scientific reasoning is a skill of critical importance to those students who seek to become professional scientists. Yet, there is little research on the development of such reasoning in science majors. In addition, scientific reasoning is often investigated as two separate entities: hypothetico-deductive reasoning and argumentation, even though these skills may be linked. With regard to argumentation, most investigations look at its use in discussing socioscientific issues, not in analyzing scientific data. As scientists often use the same argumentation skills to develop and support conclusions, this avenue needs to be investigated. This study seeks to address these issues and establish a baseline of both hypothetico-deductive reasoning and argumentation of scientific data of biology majors through their engagement in introductory biology coursework. This descriptive study investigated the development of undergraduates' scientific reasoning skills by assessing them multiple times throughout a two-quarter introductory biology course sequence for majors. Participants were assessed at the beginning of the first quarter, end of the first quarter, and end of the second quarter. A split-half version of the revised Lawson Classroom Test of Scientific Reasoning (LCTSR) and a paper and pencil argumentation instrument developed for this study were utilized to assess student hypothetico-deductive reasoning and argumentation skills, respectively. To identify factors that may influence scientific reasoning development, demographic information regarding age, gender, science coursework completed, and future plans was collected. Evidence for course emphasis on scientific reasoning was found in lecture notes, assignments, and laboratory exercises. This study did not find any trends of improvement in the students' hypothetico-deductive reasoning or argumentation skills either during the first quarter or over both quarters. Specific difficulties in the control of variables and

  5. Designing and Implementing a New Advanced Level Biology Course

    Science.gov (United States)

    Hall, Angela; Reiss, Michael J.; Rowell, Cathy; Scott, Anne

    2003-01-01

    Salters-Nuffield Advanced Biology is a new advanced level biology course, piloted from September 2002 in England with around 1200 students. This paper discusses the reasons for developing a new advanced biology course at this time, the philosophy of the project and how the materials are being written and the specification devised. The aim of the…

  6. The academic qualification of sexual education in biological science at IFRO Campus Colorado Do Oeste/RO

    Directory of Open Access Journals (Sweden)

    Juliana Negrello Rossarolla

    2018-03-01

    Full Text Available This article gives evidence of results in an initial training offered to the students from the seventh semestre in Biological Sciences course at the Federal Institute in Education, Science and Technology of Rondônia - IFRO - CampusColoradodo Oeste. This activity was developed during the IX Environmental Week, an event that took place at Campus in June, 2016. During the activity, the academics in Biological Sciences course carried out mini-courses in which was approached the subject of human sexuality for four classes from the first year students in Agricultural Technical Course integrated to High School. After completing the activities of Sexual Education that dealt with some topics such as: early sexual initiation, STIs (sexually transmitted infections, homophobia, sexual harassment, media exposure, gender difference, contraceptive methods, among others and after all the data were collected. For that, the students answered a questionnaire about the subject on sexuality, the contributions of this practice is in order to discuss situations related to the subject. After the analysis, was checked a great relevance of the theme proposed for the initial qualification of academics in order to them approach the subject in a significant way to teenagers who attend the schools in which these academics will be able to develop their activities. It was checked out that students from the Agricultural Course integrated to High School who was developing the course have a very restricted index of information about the subject that was handled it. This can be a reality that reaches many young people who attend the Basic Education in many Brazilian schools. On the other hand, the information obtained gave the academics and teachers from the Biological Sciences Course moments of reflection about the inclusion of contents that contemplate this subject in the school curriculum of Basic Education and of the higher course that they attend, as well as the need of a

  7. Deliberation as Communication Instruction: A Study of a Climate Change Deliberation in an Introductory Biology Course

    Science.gov (United States)

    Drury, Sara A. Mehltretter

    2015-01-01

    The author argues that deliberation is an innovative method for teaching communication skills, particularly group communication, in the undergraduate science, technology, engineering, and math (STEM) curriculum. A case study using a deliberation activity on global climate change in an introductory biology course demonstrates how deliberative…

  8. The Math–Biology Values Instrument: Development of a Tool to Measure Life Science Majors’ Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students’ personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math–Biology Values Instrument (MBVI), an 11-item college-level self-­report instrument grounded in expectancy-value theory, to measure life science students’ interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student’s value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math–biology values and understand how math–biology values are related to students’ achievement and decisions to pursue more advanced quantitative-based courses. PMID:28747355

  9. Teaching Synthetic Biology, Bioinformatics and Engineering to Undergraduates: The Interdisciplinary Build-a-Genome Course

    Science.gov (United States)

    Dymond, Jessica S.; Scheifele, Lisa Z.; Richardson, Sarah; Lee, Pablo; Chandrasegaran, Srinivasan; Bader, Joel S.; Boeke, Jef D.

    2009-01-01

    A major challenge in undergraduate life science curricula is the continual evaluation and development of courses that reflect the constantly shifting face of contemporary biological research. Synthetic biology offers an excellent framework within which students may participate in cutting-edge interdisciplinary research and is therefore an attractive addition to the undergraduate biology curriculum. This new discipline offers the promise of a deeper understanding of gene function, gene order, and chromosome structure through the de novo synthesis of genetic information, much as synthetic approaches informed organic chemistry. While considerable progress has been achieved in the synthesis of entire viral and prokaryotic genomes, fabrication of eukaryotic genomes requires synthesis on a scale that is orders of magnitude higher. These high-throughput but labor-intensive projects serve as an ideal way to introduce undergraduates to hands-on synthetic biology research. We are pursuing synthesis of Saccharomyces cerevisiae chromosomes in an undergraduate laboratory setting, the Build-a-Genome course, thereby exposing students to the engineering of biology on a genomewide scale while focusing on a limited region of the genome. A synthetic chromosome III sequence was designed, ordered from commercial suppliers in the form of oligonucleotides, and subsequently assembled by students into ∼750-bp fragments. Once trained in assembly of such DNA “building blocks” by PCR, the students accomplish high-yield gene synthesis, becoming not only technically proficient but also constructively critical and capable of adapting their protocols as independent researchers. Regular “lab meeting” sessions help prepare them for future roles in laboratory science. PMID:19015540

  10. Selected factors associated with achievement of biology preparatory students and their follow-up to higher level biology courses

    Science.gov (United States)

    Biermann, Carol A.; Sarinsky, Gary B.

    This study was undertaken to determine whether a biology preparatory course given at an urban community college was helping students to develop the proper skills and background necessary for them to successfully complete follow-up courses in biology. A group of students who enrolled in a biology preparatory course, and subsequently, a follow-up anatomy and physiology or general biology course (experimental group) was compared to a group of students who should have registered for the preparatory course, but who enrolled directly into the anatomy and physiology or general biology course (control group). It was shown that there was no significant difference in their anatomy and physiology or general biology grades. Furthermore, only 16% of the initial group of preparatory students enrolled in and passed a follow-up biology course. Examination of the preparatory group using discriminant analysis ascertained that mathematics score was the principle discriminator between pass/fail groups. A stepwise multiple regression analysis of the variables explaining the preparatory grade showed that mathematics score, reading score, and type of high school degree explained 33% of the variance. Of the students who did pass the preparatory course and enrolled in a follow-up biology class, their preparatory grade was a good predictor of their achievement (measured by follow-up course grade), as determined by multiple regression.

  11. Learning physical biology via modeling and simulation: A new course and textbook for science and engineering undergraduates

    Science.gov (United States)

    Nelson, Philip

    To a large extent, undergraduate physical-science curricula remain firmly rooted in pencil-and-paper calculation, despite the fact that most research is done with computers. To a large extent, undergraduate life-science curricula remain firmly rooted in descriptive approaches, despite the fact that much current research involves quantitative modeling. Not only does our pedagogy not reflect current reality; it also creates a spurious barrier between the fields, reinforcing the narrow silos that prevent students from connecting them. I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional undergraduate courses: •Basic modeling skills; •Probabilistic modeling skills; •Data analysis methods; •Computer programming using a general-purpose platform like MATLAB or Python; •Pulling datasets from the Web for analysis; •Data visualization; •Dynamical systems, particularly feedback control. Partially supported by the NSF under Grants EF-0928048 and DMR-0832802.

  12. Characterization of Pathogenic Human MSH2 Missense Mutations Using Yeast as a Model System: A Laboratory Course in Molecular Biology

    Science.gov (United States)

    Gammie, Alison E.; Erdeniz, Naz

    2004-01-01

    This work describes the project for an advanced undergraduate laboratory course in cell and molecular biology. One objective of the course is to teach students a variety of cellular and molecular techniques while conducting original research. A second objective is to provide instruction in science writing and data presentation by requiring…

  13. A Qualitative Study Examining the Exclusive Use of Primary Literature in a Special Topics Biology Course: Improving Conceptions about the Nature of Science and Boosting Confidence in Approaching Original Scientific Research

    Science.gov (United States)

    Carter, B. Elijah; Wiles, Jason R.

    2017-01-01

    This qualitative study explores the experiences of six students enrolled in a special topics biology class that exclusively used primary literature as course material. Nature of science (NOS) conceptions have been linked to students' attitudes toward scientific subjects, but there has been little research specifically exploring the effects of…

  14. Building Bridges between Science Courses Using Honors Organic Chemistry Projects

    Science.gov (United States)

    Hickey, Timothy; Pontrello, Jason

    2016-01-01

    Introductory undergraduate science courses are traditionally offered as distinct units without formalized student interaction between classes. To bridge science courses, the authors used three Honors Organic Chemistry projects paired with other science courses. The honors students delivered presentations to mainstream organic course students and…

  15. The Design and Transformation of Biofundamentals: A Nonsurvey Introductory Evolutionary and Molecular Biology Course.

    Science.gov (United States)

    Klymkowsky, Michael W; Rentsch, Jeremy D; Begovic, Emina; Cooper, Melanie M

    2016-01-01

    Many introductory biology courses amount to superficial surveys of disconnected topics. Often, foundational observations and the concepts derived from them and students' ability to use these ideas appropriately are overlooked, leading to unrealistic expectations and unrecognized learning obstacles. The result can be a focus on memorization at the expense of the development of a meaningful framework within which to consider biological phenomena. About a decade ago, we began a reconsideration of what an introductory course should present to students and the skills they need to master. The original Web-based course's design presaged many of the recommendations of the Vision and Change report; in particular, a focus on social evolutionary mechanisms, stochastic (evolutionary and molecular) processes, and core ideas (cellular continuity, evolutionary homology, molecular interactions, coupled chemical reactions, and molecular machines). Inspired by insights from the Chemistry, Life, the Universe & Everything general chemistry project, we transformed the original Web version into a (freely available) book with a more unified narrative flow and a set of formative assessments delivered through the beSocratic system. We outline how student responses to course materials are guiding future course modifications, in particular a more concerted effort at helping students to construct logical, empirically based arguments, explanations, and models. © 2016 M. W. Klymkowsky et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Development and Assessment of Modules to Integrate Quantitative Skills in Introductory Biology Courses.

    Science.gov (United States)

    Hoffman, Kathleen; Leupen, Sarah; Dowell, Kathy; Kephart, Kerrie; Leips, Jeff

    2016-01-01

    Redesigning undergraduate biology courses to integrate quantitative reasoning and skill development is critical to prepare students for careers in modern medicine and scientific research. In this paper, we report on the development, implementation, and assessment of stand-alone modules that integrate quantitative reasoning into introductory biology courses. Modules are designed to improve skills in quantitative numeracy, interpreting data sets using visual tools, and making inferences about biological phenomena using mathematical/statistical models. We also examine demographic/background data that predict student improvement in these skills through exposure to these modules. We carried out pre/postassessment tests across four semesters and used student interviews in one semester to examine how students at different levels approached quantitative problems. We found that students improved in all skills in most semesters, although there was variation in the degree of improvement among skills from semester to semester. One demographic variable, transfer status, stood out as a major predictor of the degree to which students improved (transfer students achieved much lower gains every semester, despite the fact that pretest scores in each focus area were similar between transfer and nontransfer students). We propose that increased exposure to quantitative skill development in biology courses is effective at building competency in quantitative reasoning. © 2016 K. Hoffman, S. Leupen, et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Advanced placement math and science courses: Influential factors and predictors for success in college STEM majors

    Science.gov (United States)

    Hoepner, Cynthia Colon

    President Obama has recently raised awareness on the need for our nation to grow a larger pool of students with knowledge in science mathematics, engineering, and technology (STEM). Currently, while the number of women pursuing college degrees continues to rise, there remains an under-representation of women in STEM majors across the country. Although research studies offer several contributing factors that point to a higher attrition rate of women in STEM than their male counterparts, no study has investigated the role that high school advanced placement (AP) math and science courses play in preparing students for the challenges of college STEM courses. The purpose of this study was to discover which AP math and science courses and/or influential factors could encourage more students, particularly females, to consider pursuing STEM fields in college. Further, this study examined which, if any, AP math or science courses positively contribute to a student's overall preparation for college STEM courses. This retrospective study combined quantitative and qualitative research methods. The survey sample consisted of 881 UCLA female and male students pursuing STEM majors. Qualitative data was gathered from four single-gender student focus groups, two female groups (15 females) and two male groups (16 males). This study examined which AP math and science courses students took in high school, who or what influenced them to take those courses, and which particular courses influenced student's choice of STEM major and/or best prepared her/him for the challenges of STEM courses. Findings reveal that while AP math and science course-taking patterns are similar of female and male STEM students, a significant gender-gap remains in five of the eleven AP courses. Students report four main influences on their choice of AP courses; self, desire for math/science major, higher grade point average or class rank, and college admissions. Further, three AP math and science courses were

  18. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    Science.gov (United States)

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Student-generated illustrations and written narratives of biological science concepts: The effect on community college life science students' achievement in and attitudes toward science

    Science.gov (United States)

    Harvey, Robert Christopher

    The purpose of this study was to determine the effects of two conceptually based instructional strategies on science achievement and attitudes of community college biological science students. The sample consisted of 277 students enrolled in General Biology 1, Microbiology, and Human Anatomy and Physiology 1. Control students were comprised of intact classes from the 2005 Spring semester; treatment students from the 2005 Fall semester were randomly assigned to one of two groups within each course: written narrative (WN) and illustration (IL). WN students prepared in-class written narratives related to cell theory and metabolism, which were taught in all three courses. IL students prepared in-class illustrations of the same concepts. Control students received traditional lecture/lab during the entire class period and neither wrote in-class descriptions nor prepared in-class illustrations of the targeted concepts. All groups were equivalent on age, gender, ethnicity, GPA, and number of college credits earned and were blinded to the study. All interventions occurred in class and no group received more attention or time to complete assignments. A multivariate analysis of covariance (MANCOVA) via multiple regression was the primary statistical strategy used to test the study's hypotheses. The model was valid and statistically significant. Independent follow-up univariate analyses relative to each dependent measure found that no research factor had a significant effect on attitude, but that course-teacher, group membership, and student academic characteristics had a significant effect (p < .05) on achievement: (1) Biology students scored significantly lower in achievement than A&P students; (2) Microbiology students scored significantly higher in achievement than Biology students; (3) Written Narrative students scored significantly higher in achievement than Control students; and (4) GPA had a significant effect on achievement. In addition, given p < .08: (1

  20. Debates of science vs. religion in undergraduate general education cosmology courses

    Science.gov (United States)

    Lopez-Aleman, Ramon

    2015-04-01

    Recent advances in theoretical physics such as the discovery of the Higgs boson or the BICEP2 data supporting inflation can be part of the general science curriculum of non-science majors in a cosmology course designed as part of the General Education component. Yet to be a truly interdisciplinary experience one must deal with the religious background and faith of most of our students. Religious faith seems to be important in their lives, but the philosophical outlook of sciences like cosmology or evolutionary biology is one in which God is an unnecessary component in explaining the nature and origin of the universe. We will review recent advances in cosmology and suggestions on how to establish a respectful and intelligent science vs. religion debate in a transdisciplinary general education setting.

  1. Does the nature of science influence college students' learning of biological evolution?

    Science.gov (United States)

    Butler, Wilbert, Jr.

    This quasi-experimental, mixed-methods study assessed the influence of the nature of science (NOS) instruction on college students' learning of biological evolution. In this research, conducted in two introductory biology courses, in each course the same instruction was employed, with one important exception: in the experimental section students were involved in an explicit, reflective treatment of the nature of science (Explicit, reflective NOS), in the traditional treatment section, NOS was implicitly addressed (traditional treatment). In both sections, NOS aspects of science addressed included is tentative, empirically based, subjective, inferential, and based on relationship between scientific theories and laws. Students understanding of evolution, acceptance of evolution, and understanding of the nature of science were assessed before, during and after instruction. Data collection entailed qualitative and quantitative methods including Concept Inventory for Natural Selection (CINS), Measure of Acceptance of the Theory of Evolution (MATE) survey, Views of nature of Science (VNOS-B survey), as well as interviews, classroom observations, and journal writing to address understand students' views of science and understanding and acceptance of evolution. The quantitative data were analyzed via inferential statistics and the qualitative data were analyzed using grounded theory. The data analysis allowed for the construction and support for four assertions: Assertion 1: Students engaged in explicit and reflective NOS specific instruction significantly improved their understanding of the nature of science concepts. Alternatively, students engaged in instruction using an implicit approach to the nature of science did not improve their understanding of the nature of science to the same degree. The VNOS-B results indicated that students in the explicit, reflective NOS class showed the better understanding of the NOS after the course than students in the implicit NOS class

  2. Beyond the Biology: A Systematic Investigation of Noncontent Instructor Talk in an Introductory Biology Course

    Science.gov (United States)

    Seidel, Shannon B.; Reggi, Amanda L.; Schinske, Jeffrey N.; Burrus, Laura W.; Tanner, Kimberly D.

    2015-01-01

    Instructors create classroom environments that have the potential to impact learning by affecting student motivation, resistance, and self-efficacy. However, despite the critical importance of the learning environment in increasing conceptual understanding, little research has investigated what instructors say and do to create learning environments in college biology classrooms. We systematically investigated the language used by instructors that does not directly relate to course content and defined the construct of Instructor Talk. Transcripts were generated from a semester-long, cotaught introductory biology course (n = 270 students). Transcripts were analyzed using a grounded theory approach to identify emergent categories of Instructor Talk. The five emergent categories from analysis of more than 600 quotes were, in order of prevalence, 1) Building the Instructor/Student Relationship, 2) Establishing Classroom Culture, 3) Explaining Pedagogical Choices, 4) Sharing Personal Experiences, and 5) Unmasking Science. Instances of Instructor Talk were present in every class session analyzed and ranged from six to 68 quotes per session. The Instructor Talk framework is a novel research variable that could yield insights into instructor effectiveness, origins of student resistance, and methods for overcoming stereotype threat. Additionally, it holds promise in professional development settings to assist instructors in reflecting on the learning environments they create. PMID:26582237

  3. Course Syllabus--Culture, Science and Technology.

    Science.gov (United States)

    Coleman, Sam

    1988-01-01

    Presents a course syllabus and requirements for an anthropology course on the cross-cultural analysis of the relationships between technology, science, and social organization. Provides daily topics, suggested text readings, and reference articles. (MVL)

  4. Communicating Ocean Sciences College Courses: Science Faculty and Educators Working and Learning Together

    Science.gov (United States)

    Halversen, C.; Simms, E.; McDonnell, J. D.; Strang, C.

    2011-12-01

    As the relationship between science and society evolves, the need for scientists to engage and effectively communicate with the public about scientific issues has become increasingly urgent. Leaders in the scientific community argue that research training programs need to also give future scientists the knowledge and skills to communicate. To address this, the Communicating Ocean Sciences (COS) series was developed to teach postsecondary science students how to communicate their scientific knowledge more effectively, and to build the capacity of science faculty to apply education research to their teaching and communicate more effectively with the public. Courses are co-facilitated by a faculty scientist and either a K-12 or informal science educator. Scientists contribute their science content knowledge and their teaching experience, and educators bring their knowledge of learning theory regarding how students and the public make meaning from, and understand, science. The series comprises two university courses for science undergraduate and graduate students that are taught by ocean and climate scientists at approximately 25 universities. One course, COS K-12, is team-taught by a scientist and a formal educator, and provides college students with experience communicating science in K-12 classrooms. In the other course, COSIA (Communicating Ocean Sciences to Informal Audiences), a scientist and informal educator team-teach, and the practicum takes place in a science center or aquarium. The courses incorporate current learning theory and provide an opportunity for future scientists to apply that theory through a practicum. COS addresses the following goals: 1) introduce postsecondary students-future scientists-to the importance of education, outreach, and broader impacts; 2) improve the ability of scientists to communicate science concepts and research to their students; 3) create a culture recognizing the importance of communicating science; 4) provide students and

  5. The potential of standards-based agriculture biology as an alternative to traditional biology in California

    Science.gov (United States)

    Sellu, George Sahr

    schools. Thoron & Meyer (2011) suggested that research into the contribution of integrated science courses toward higher test scores yielded mixed results. This finding may have been due in part to the fact that integrated science courses only incorporate select topics into agriculture education courses. In California, however, agriculture educators have developed standards-based courses such as Agriculture Biology (AgBio) that cover the same content standards as core traditional courses such as traditional biology. Students in both AgBio and traditional biology take the same standardized biology test. This is the first time there has been an opportunity for a fair comparison and a uniform metric for an agriscience course such as AgBio to be directly compared to traditional biology. This study will examine whether there are differences between AgBio and traditional biology with regard to standardized test scores in biology. Furthermore, the study examines differences in perception between teachers and students regarding teaching and learning activities associated with higher achievement in science. The findings of the study could provide a basis for presenting AgBio as a potential alternative to traditional biology. The findings of this study suggest that there are no differences between AgBio and traditional biology students with regard to standardized biology test scores. Additionally, the findings indicate that co-curricular activities in AgBio could contribute higher student achievement in biology. However, further research is required to identify specific activities in AgBio that contribute to higher achievement in science.

  6. Educational Status of Dental Basic Science Course and its Correlation with Students' Educational Background in Kermanshah University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Mozafar Khazaei

    2014-04-01

    Full Text Available Introduction: Basic science course plays a pivotal role in the academic achievement of the students. The scientific background and educational performance of the students are also influential in this period. The aim of the present study was to investigate the educational status of dental basic science course in the first three admissions (2009-2011 and its association with students’ educational background in Kermanshah University of Medical Sciences (KUMS. Methods: In this descriptive cross-sectional study, all dental students admitted to school of dentistry in 2009-2011 years were included. The students’ academic background (scores, grade point average, score of comprehensive basic sciences examination (CBSE were recorded. Data were analyzed by SPSS 16 using one-way analysis of variance (ANOVA and independent t-test. Results: Kermanshah dental students admitted to university in 2009-2011 were mostly female (59.2%, belonged to regions 2 and 3 (81.6% of university entrance exam, had sciences diploma (89.8% and their grade point average of diploma was nearly 18. There was a significant difference between the three groups of students admitted to university in Biology, Chemistry, Mathematics, Arabic, English language and Theology lessones of entrane exam (P<0.05. The students’ failure rate was 1.5% in university coureses. They all (100% passed CBSE and were ranked second nationally in the year. There was no significant difference between male and female students in terms of age, diploma grade point average, grade point average of basic sciences and score of CBSE. Conclusion: Basic science courses of dentistry in Kermanshah enjoyed a rather constant status and students had a good academic level in these courses.

  7. Impact of Interdisciplinary Undergraduate Research in Mathematics and Biology on the Development of a New Course Integrating Five STEM Disciplines

    OpenAIRE

    Caudill, Lester; Hill, April; Hoke, Kathy; Lipan, Ovidiu

    2010-01-01

    Funded by innovative programs at the National Science Foundation and the Howard Hughes Medical Institute, University of Richmond faculty in biology, chemistry, mathematics, physics, and computer science teamed up to offer first- and second-year students the opportunity to contribute to vibrant, interdisciplinary research projects. The result was not only good science but also good science that motivated and informed course development. Here, we describe four recent undergraduate research proj...

  8. Developing "Green" Business Plans: Using Entrepreneurship to Teach Science to Business Administration Majors and Business to Biology Majors

    Science.gov (United States)

    Letovsky, Robert; Banschbach, Valerie S.

    2011-01-01

    Biology majors team with business administration majors to develop proposals for "green" enterprise for a business plan competition. The course begins with a series of student presentations so that science students learn about the fundamentals of business, and business students learn about environmental biology. Then mixed biology-business student…

  9. A Writing-Intensive Course Improves Biology Undergraduates' Perception and Confidence of Their Abilities to Read Scientific Literature and Communicate Science

    Science.gov (United States)

    Brownell, Sara E.; Price, Jordan V.; Steinman, Lawrence

    2013-01-01

    Most scientists agree that comprehension of primary scientific papers and communication of scientific concepts are two of the most important skills that we can teach, but few undergraduate biology courses make these explicit course goals. We designed an undergraduate neuroimmunology course that uses a writing-intensive format. Using a mixture of…

  10. A Survey of Computer Science Capstone Course Literature

    Science.gov (United States)

    Dugan, Robert F., Jr.

    2011-01-01

    In this article, we surveyed literature related to undergraduate computer science capstone courses. The survey was organized around course and project issues. Course issues included: course models, learning theories, course goals, course topics, student evaluation, and course evaluation. Project issues included: software process models, software…

  11. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    Science.gov (United States)

    Riedinger, Kelly; Marbach-Ad, Gili; McGinnis, J. Randy; Hestness, Emily; Pease, Rebecca

    2011-01-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching…

  12. Redesigning Introductory Science Courses to Teach Sustainability: Introducing the L(SC)2 Paradigm

    Science.gov (United States)

    Myers, J. D.; Campbell-Stone, E.; Massey, G.

    2008-12-01

    Modern societies consume vast quantities of Earth resources at unsustainable levels; at the same time, resource extraction, processing, production, use and disposal have resulted in environmental damage severe enough to threaten the life-support systems of our planet. These threats are produced by multiple, integrative and cumulative environmental stresses, i.e. syndromes, which result from human physical, ecological and social interactions with the environment in specific geographic places. In recent decades, recognition of this growing threat has lead to the concept of sustainability. The science needed to provide the knowledge and know-how for a successful sustainability transition differs markedly from the science that built our modern world. Sustainability science must balanced basic and applied research, promote integrative research focused on specific problems and devise a means of merging fundamental, general scientific principles with understanding of specific places. At the same time, it must use a variety of knowledge areas, i.e. biological systems, Earth systems, technological systems and social systems, to devise solutions to the many complex and difficult problems humankind faces. Clearly, sustainability science is far removed from the discipline-based science taught in most U.S. colleges. Many introductory science courses focus on content, lack context and do not integrate scientific disciplines. To prepare the citizens who will confront future sustainability issues as well as the scientists needed to devise future sustainability strategies, educators and scientists must redesign the typical college science course. A new course paradigm, Literacies and Scientific Content in Social Context (L(SC)2), is ideally suited to teach sustainability science. It offers an alternative approach to liberal science education by redefining and expanding the concept of the interdisciplinary course and merging it with the integrated science course. In addition to

  13. Adding a Bit More History to Science Courses

    Science.gov (United States)

    DeBuvitz, William

    2011-01-01

    The usual science course is not meant to be a history course and the usual science book is not meant to be a history book. However, most science books do include some historical information. Unfortunately, the history part is usually so brief that it is far from interesting and often so oversimplified that it is totally wrong. Introductory physics…

  14. Self-expression assignment as a teaching approach to enhance the interest of Kuwaiti women in biological sciences.

    Science.gov (United States)

    El-Sabban, Farouk

    2008-06-01

    Stimulating the interest of students in biological sciences necessitates the use of new teaching methods and motivating approaches. The idea of the self-expression assignment (SEA) has evolved from the prevalent environment at the College for Women of Kuwait University (Safat, State of Kuwait), a newly established college where the number of students is low and where students have varied backgrounds and interests and are being instructed biological sciences in English for the first time. This SEA requires each student to choose a topic among a long list of topics and interact with it in any way to produce a finished product without the interference of the course instructor. Students are told that the SEA will be graded based on their commitment, creative thinking, innovation in developing the idea, and finishing up of the chosen assignment. The SEA has been implemented in three introductory courses, namely, Biology, Introduction to Human Nutrition and Food Science, and The Human Body. Many interesting projects resulted from the SEA, and, based on an administered survey, students assessed this assignment very favorably. Students expressed their pleasure of experiencing freedom in choosing their own topics, interacting with such topics, learning more about them, and finishing up their projects. Students appreciated this type of exposure to biological sciences and expressed that such an experience enhanced their interest in such sciences.

  15. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  16. Giant Ants and Walking Plants: Using Science Fiction to Teach a Writing-Intensive, Lab-Based Biology Class for Nonmajors

    Science.gov (United States)

    Firooznia, Fardad

    2006-01-01

    This writing-intensive, lab-based, nonmajor biology course explores scientific inquiry and biological concepts through specific topics illustrated or inaccurately depicted in works of science fiction. The laboratory emphasizes the scientific method and introduces several techniques used in biological research related to the works we study.…

  17. An analysis of learning in an online biology course for teachers and teacher candidates: A mixed methods approach

    Science.gov (United States)

    Lebec, Michael Thomas

    Due to discipline specific shortages, web-based learning has been proposed as a convenient way to upgrade the content knowledge of instructors interested in learning to teach science. Despite quantitative evidence that web-based instruction is equivalent to traditional methods, questions remain regarding its use. The efficiency and practicality of this approach with teachers in particular has not been extensively studied. This investigation examines learning in an online biology course designed to help teachers prepare for science certification exams. Research questions concern flow teachers learn biology in the online environment and how this setting influences the learning process. Quantitative and qualitative methodologies are employed in an attempt to provide a more complete perspective than typical studies of online learning. Concept maps, tests, and online discussion transcripts are compared as measures of assimilated knowledge, while interviews reflect participants' views on the course. Findings indicate that participants experienced gains in declarative knowledge, but little improvement with respect to conditional knowledge. Qualitative examination of concept maps demonstrates gaps in participants' understandings of key course ideas. Engagement in the use of online resources varied according to participants' attitudes towards online learning. Subjects also reported a lack of motivation to fully engage in the course due to busy teaching schedules and the absence of accountability.

  18. Personal microbiome analysis improves student engagement and interest in Immunology, Molecular Biology, and Genomics undergraduate courses

    Science.gov (United States)

    Bridgewater, Laura C.; Jensen, Jamie L.; Breakwell, Donald P.; Nielsen, Brent L.; Johnson, Steven M.

    2018-01-01

    A critical area of emphasis for science educators is the identification of effective means of teaching and engaging undergraduate students. Personal microbiome analysis is a means of identifying the microbial communities found on or in our body. We hypothesized the use of personal microbiome analysis in the classroom could improve science education by making courses more applied and engaging for undergraduate students. We determined to test this prediction in three Brigham Young University undergraduate courses: Immunology, Advanced Molecular Biology Laboratory, and Genomics. These three courses have a two-week microbiome unit and students during the 2016 semester students could submit their own personal microbiome kit or use the demo data, whereas during the 2017 semester students were given access to microbiome data from an anonymous individual. The students were surveyed before, during, and after the human microbiome unit to determine whether analyzing their own personal microbiome data, compared to analyzing demo microbiome data, impacted student engagement and interest. We found that personal microbiome analysis significantly enhanced the engagement and interest of students while completing microbiome assignments, the self-reported time students spent researching the microbiome during the two week microbiome unit, and the attitudes of students regarding the course overall. Thus, we found that integrating personal microbiome analysis in the classroom was a powerful means of improving student engagement and interest in undergraduate science courses. PMID:29641525

  19. Promoting Self-Directed Learning in Developing or Poorly Defined Subject Areas: A Problem-Based Course in Molecular Biology, Genetics, and Cancer.

    Science.gov (United States)

    Edmondson, Katherine M.

    A new problem-based course in molecular biology, genetics, and cancer for first-year veterinary students was developed at the College of Veterinary Medicine at Cornell University (New York). The course was developed out of a desire to foster student-centered and lifelong learning and to integrate basic and clinical science knowledge despite a lack…

  20. American Institute of Biological Sciences

    Science.gov (United States)

    ... Staff Issues AIBS Position Statements Funding for the Biological Sciences Supporting Scientific Collections Advocating for Research Policy ... Public Policy Leadership Award Graduate students in the biological sciences who have demonstrated initiative and leadership in ...

  1. An analysis of high-performing science students' preparation for collegiate science courses

    Science.gov (United States)

    Walter, Karen

    This mixed-method study surveyed first year high-performing science students who participated in high-level courses such as International Baccalaureate (IB), Advanced Placement (AP), and honors science courses in high school to determine their perception of preparation for academic success at the collegiate level. The study used 52 students from an honors college campus and surveyed the students and their professors. The students reported that they felt better prepared for academic success at the collegiate level by taking these courses in high school (pstudent GPA with honors science courses (n=55 and Pearson's r=-0.336), while AP courses (n=47 and Pearson's r=0.0016) and IB courses (n=17 and Pearson's r=-0.2716) demonstrated no correlation between perception of preparation and GPA. Students reported various themes that helped or hindered their perception of academic success once at the collegiate level. Those themes that reportedly helped students were preparedness, different types of learning, and teacher qualities. Students reported in a post-hoc experience that more lab time, rigorous coursework, better teachers, and better study techniques helped prepare them for academic success at the collegiate level. Students further reported on qualities of teachers and teaching that helped foster their academic abilities at the collegiate level, including teacher knowledge, caring, teaching style, and expectations. Some reasons for taking high-level science courses in high school include boosting GPA, college credit, challenge, and getting into better colleges.

  2. Problem-based learning in a health sciences librarianship course.

    Science.gov (United States)

    Dimitroff, A; Ancona, A M; Beman, S B; Dodge, A M; Hutchinson, K L; LaBonte, M J; Mays, T L; Simon, D T

    1998-01-01

    Problem-based learning (PBL) has been adopted by many medical schools in North America. Because problem solving, information seeking, and lifelong learning skills are central to the PBL curriculum, health sciences librarians have been actively involved in the PBL process at these medical schools. The introduction of PBL in a library and information science curriculum may be appropriate to consider at this time. PBL techniques have been incorporated into a health sciences librarianship course at the School of Library and Information Science (LIS) at the University of Wisconsin-Milwaukee to explore the use of this method in an advanced Library and Information Science course. After completion of the course, the use of PBL has been evaluated by the students and the instructor. The modified PBL course design is presented and the perceptions of the students and the instructor are discussed. PMID:9681169

  3. The Implementation of Research-based Learning on Biology Seminar Course in Biology Education Study Program of FKIP UMRAH

    Science.gov (United States)

    Amelia, T.

    2018-04-01

    Biology Seminar is a course in Biology Education Study Program of Faculty of Teacher Training and Education University of Maritim Raja Ali Haji (FKIP UMRAH) that requires students to have the ability to apply scientific attitudes, perform scientific writing and undertake scientific publications on a small scale. One of the learning strategies that can drive the achievement of learning outcomes in this course is Research-Based Learning. Research-Based Learning principles are considered in accordance with learning outcomes in Biology Seminar courses and generally in accordance with the purpose of higher education. On this basis, this article which is derived from a qualitative research aims at describing Research-based Learning on Biology Seminar course. Based on a case study research, it was known that Research-Based Learning on Biology Seminar courses is applied through: designing learning activities around contemporary research issues; teaching research methods, techniques and skills explicitly within program; drawing on personal research in designing and teaching courses; building small-scale research activities into undergraduate assignment; and infusing teaching with the values of researchers.

  4. Redesigning a General Education Science Course to Promote Critical Thinking

    Science.gov (United States)

    Rowe, Matthew P.; Gillespie, B. Marcus; Harris, Kevin R.; Koether, Steven D.; Shannon, Li-Jen Y.; Rose, Lori A.

    2015-01-01

    Recent studies question the effectiveness of a traditional university curriculum in helping students improve their critical thinking and scientific literacy. We developed an introductory, general education (gen ed) science course to overcome both deficiencies. The course, titled Foundations of Science, differs from most gen ed science offerings in that it is interdisciplinary; emphasizes the nature of science along with, rather than primarily, the findings of science; incorporates case studies, such as the vaccine-autism controversy; teaches the basics of argumentation and logical fallacies; contrasts science with pseudoscience; and addresses psychological factors that might otherwise lead students to reject scientific ideas they find uncomfortable. Using a pretest versus posttest design, we show that students who completed the experimental course significantly improved their critical-thinking skills and were more willing to engage scientific theories the general public finds controversial (e.g., evolution), while students who completed a traditional gen ed science course did not. Our results demonstrate that a gen ed science course emphasizing the process and application of science rather than just scientific facts can lead to improved critical thinking and scientific literacy. PMID:26231561

  5. Biological inquiry: a new course and assessment plan in response to the call to transform undergraduate biology.

    Science.gov (United States)

    Goldey, Ellen S; Abercrombie, Clarence L; Ivy, Tracie M; Kusher, Dave I; Moeller, John F; Rayner, Doug A; Smith, Charles F; Spivey, Natalie W

    2012-01-01

    We transformed our first-year curriculum in biology with a new course, Biological Inquiry, in which >50% of all incoming, first-year students enroll. The course replaced a traditional, content-driven course that relied on outdated approaches to teaching and learning. We diversified pedagogical practices by adopting guided inquiry in class and in labs, which are devoted to building authentic research skills through open-ended experiments. Students develop core biological knowledge, from the ecosystem to molecular level, and core skills through regular practice in hypothesis testing, reading primary literature, analyzing data, interpreting results, writing in disciplinary style, and working in teams. Assignments and exams require higher-order cognitive processes, and students build new knowledge and skills through investigation of real-world problems (e.g., malaria), which engages students' interest. Evidence from direct and indirect assessment has guided continuous course revision and has revealed that compared with the course it replaced, Biological Inquiry produces significant learning gains in all targeted areas. It also retains 94% of students (both BA and BS track) compared with 79% in the majors-only course it replaced. The project has had broad impact across the entire college and reflects the input of numerous constituencies and close collaboration among biology professors and students.

  6. Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course

    Science.gov (United States)

    Avard, Margaret

    2009-01-01

    In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…

  7. Science Academies' Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    2017-12-18

    Dec 18, 2017 ... laws and principles and yield reasonably accurate results. The Refresher Course is jointly spon- sored by the Indian Academy of Sciences, ... Selected participants will be provided local hospitality during the Course in addition to course material. Outstation participants will be given three-tier A/c train fare.

  8. Creating Successful Campus Partnerships for Teaching Communication in Biology Courses and Labs.

    Science.gov (United States)

    Hall, Susanne E; Birch, Christina

    2018-01-01

    Creating and teaching successful writing and communication assignments for biology undergraduate students can be challenging for faculty trying to balance the teaching of technical content. The growing body of published research and scholarship on effective teaching of writing and communication in biology can help inform such work, but there are also local resources available to support writing within biology courses that may be unfamiliar to science faculty and instructors. In this article, we discuss common on-campus resources biology faculty can make use of when incorporating writing and communication into their teaching. We present the missions, histories, and potential collaboration outcomes of three major on-campus writing resources: writing across the curriculum and writing in the disciplines initiatives (WAC/WID), writing programs, and writing centers. We explain some of the common misconceptions about these resources in order to help biology faculty understand their uses and limits, and we offer guiding questions faculty might ask the directors of these resources to start productive conversations. Collaboration with these resources will likely save faculty time and effort on curriculum development and, more importantly, will help biology students develop and improve their critical reading, writing, and communication skills.

  9. Anticipation of Personal Genomics Data Enhances Interest and Learning Environment in Genomics and Molecular Biology Undergraduate Courses.

    Science.gov (United States)

    Weber, K Scott; Jensen, Jamie L; Johnson, Steven M

    2015-01-01

    An important discussion at colleges is centered on determining more effective models for teaching undergraduates. As personalized genomics has become more common, we hypothesized it could be a valuable tool to make science education more hands on, personal, and engaging for college undergraduates. We hypothesized that providing students with personal genome testing kits would enhance the learning experience of students in two undergraduate courses at Brigham Young University: Advanced Molecular Biology and Genomics. These courses have an emphasis on personal genomics the last two weeks of the semester. Students taking these courses were given the option to receive personal genomics kits in 2014, whereas in 2015 they were not. Students sent their personal genomics samples in on their own and received the data after the course ended. We surveyed students in these courses before and after the two-week emphasis on personal genomics to collect data on whether anticipation of obtaining their own personal genomic data impacted undergraduate student learning. We also tested to see if specific personal genomic assignments improved the learning experience by analyzing the data from the undergraduate students who completed both the pre- and post-course surveys. Anticipation of personal genomic data significantly enhanced student interest and the learning environment based on the time students spent researching personal genomic material and their self-reported attitudes compared to those who did not anticipate getting their own data. Personal genomics homework assignments significantly enhanced the undergraduate student interest and learning based on the same criteria and a personal genomics quiz. We found that for the undergraduate students in both molecular biology and genomics courses, incorporation of personal genomic testing can be an effective educational tool in undergraduate science education.

  10. NOTES. A Course Relating Agronomy and Science to Society.

    Science.gov (United States)

    McIntosh, Marla S.

    1993-01-01

    Describes a course designed to teach the relationship between science, agronomy, and society. Includes course and class description, course content, and evaluation of the course. (11 references) (MCO)

  11. Evaluation of the Redesign of an Undergraduate Cell Biology Course

    Science.gov (United States)

    McEwen, Laura April; Harris, dik; Schmid, Richard F.; Vogel, Jackie; Western, Tamara; Harrison, Paul

    2009-01-01

    This article offers a case study of the evaluation of a redesigned and redeveloped laboratory-based cell biology course. The course was a compulsory element of the biology program, but the laboratory had become outdated and was inadequately equipped. With the support of a faculty-based teaching improvement project, the teaching team redesigned the…

  12. Practice makes pretty good: assessment of primary literature reading abilities across multiple large-enrollment biology laboratory courses.

    Science.gov (United States)

    Sato, Brian K; Kadandale, Pavan; He, Wenliang; Murata, Paige M N; Latif, Yama; Warschauer, Mark

    2014-01-01

    Primary literature is essential for scientific communication and is commonly utilized in undergraduate biology education. Despite this, there is often little time spent training our students how to critically analyze a paper. To address this, we introduced a primary literature module in multiple upper-division laboratory courses. In this module, instructors conduct classroom discussions that dissect a paper as researchers do. While previous work has identified classroom interventions that improve primary literature comprehension within a single course, our goal was to determine whether including a scientific paper module in our classes could produce long-term benefits. On the basis of performance in an assessment exam, we found that our module resulted in longitudinal gains, including increased comprehension and critical-thinking abilities in subsequent lab courses. These learning gains were specific to courses utilizing our module, as no longitudinal gains were seen in students who had taken other upper-division labs that lacked extensive primary literature discussion. In addition, we assessed whether performance on our assessment correlated with a variety of factors, including grade point average, course performance, research background, and self-reported confidence in understanding of the article. Furthermore, all of the study conclusions are independent of biology disciplines, as we observe similar trends within each course. © 2014 B. K. Sato et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. A new course and textbook on Physical Models of Living Systems, for science and engineering undergraduates

    Science.gov (United States)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional courses: Basic modeling skills Probabilistic modeling skills Data analysis methods Computer programming using a general-purpose platform like MATLAB or Python Dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: Virus dynamics Bacterial genetics and evolution of drug resistance Statistical inference Superresolution microscopy Synthetic biology Naturally evolved cellular circuits. Work supported by NSF Grants EF-0928048 and DMR-0832802.

  14. Assessing Gains in Science Teaching Self-Efficacy after Completing an Inquiry-Based Earth Science Course

    Science.gov (United States)

    Gray, Kyle

    2017-01-01

    Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…

  15. The use of ethical frameworks by students following a new science course for 16 18 year-olds

    Science.gov (United States)

    Reiss, Michael

    2008-09-01

    There has been a move in recent years towards the greater inclusion of social and ethical issues within science courses. This paper examines a new context-based course for 16 18 year-olds (Salters-Nuffield Advanced Biology) who are studying biology in England and Wales. The course is taught through contexts and has an emphasis on social issues and the development of ethical reasoning. Examination of a sample of reports written by students in 2005 as part of the course’s summative assessment shows that utilitarian ethical reasoning is used widely and that the other ethical frameworks to which students are introduced in the course—rights and duties, autonomy and virtue ethics—are used substantially less often. In addition, students mostly argue anthropocentrically though many of them argue ecocentrically and/or biocentrically too.

  16. Marine molecular biology: an emerging field of biological sciences.

    Science.gov (United States)

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G

    2008-01-01

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  17. Evaluation of Life Sciences and Social Sciences Course Books in Term of Societal Sexuality

    Science.gov (United States)

    Aykac, Necdet

    2012-01-01

    This study aims to evaluate primary school Life Sciences (1st, 2nd, and 3rd grades) and Social Sciences (4th, 5th, and 6th grades) course books in terms of gender discrimination. This study is a descriptive study aiming to evaluate the primary school Life Sciences (1st, 2nd, 3rd grades) and Social Sciences (4th, 5th, and 6th grades) course books…

  18. Engaging Students in Authentic Microbiology Research in an Introductory Biology Laboratory Course is Correlated with Gains in Student Understanding of the Nature of Authentic Research and Critical Thinking

    Directory of Open Access Journals (Sweden)

    Brittany J. Gasper

    2013-02-01

    Full Text Available Recent recommendations for biology education highlight the role of authentic research experiences early in undergraduate education as a means of increasing the number and quality of biology majors. These experiences will inform students on the nature of science, increase their confidence in doing science, as well as foster critical thinking skills, an area that has been lacking despite it being one of the desired outcomes at undergraduate institutions and with future employers. With these things in mind, we have developed an introductory biology laboratory course where students design and execute an authentic microbiology research project. Students in this course are assimilated into the community of researchers by engaging in scholarly activities such as participating in inquiry, reading scientific literature, and communicating findings in written and oral formats. After three iterations of a semester-long laboratory course, we found that students who took the course showed a significant increase in their understanding of the nature of authentic research and their level of critical thinking skills.

  19. Causal-Comparative Study Analyzing Student Success in Hybrid Anatomy and Physiology Courses

    Science.gov (United States)

    Levy, Jacqueline Anita

    2013-01-01

    In the biological sciences, higher student success levels are achieved in traditionally formatted, face-to-face coursework than in hybrid courses. The methodologies used to combine hybrid and in-person elements to the course need to be applied to the biological sciences to emulate the success seen in the traditional courses since the number of…

  20. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  1. Education Catching up with Science: Preparing Students for Three-Dimensional Literacy in Cell Biology

    Science.gov (United States)

    Kramer, IJsbrand M.; Dahmani, Hassen-Reda; Delouche, Pamina; Bidabe, Marissa; Schneeberger, Patricia

    2012-01-01

    The large number of experimentally determined molecular structures has led to the development of a new semiotic system in the life sciences, with increasing use of accurate molecular representations. To determine how this change impacts students' learning, we incorporated image tests into our introductory cell biology course. Groups of students…

  2. A Course in Science and Pseudoscience

    Science.gov (United States)

    Taylor, Richard

    2009-04-01

    A new course at Hockaday, Science and Pseudoscience, examines what we know, how we know it, and why we get fooled so often and so easily. This is a course in which we measure things we thought we understood and use statistical analysis to test our understanding. We investigate extraordinary claims through the methods of science, asking what makes a good scientific theory, and what makes scientific evidence. We examine urban myths, legends, bad science, medical quackery, and plain old hoaxes. We analyze claims of UFOs, cold fusion, astrology, structure-altered water, apricot pit cures, phlogiston and N-rays, phrenology and orgonomy, ghosts, telekinesis, crop circles and the Bermuda Triangle -- some may be true, some are plainly false, and some we're not really sure of. We develop equipment and scientific techniques to investigate extra-sensory perception, precognition, and EM disturbances.

  3. Physics Myth Busting: A Lab-Centered Course for Non-Science Students

    Science.gov (United States)

    Madsen, Martin John

    2011-01-01

    There is ongoing interest in how and what we teach in physics courses for non-science students, so-called "physics for poets" courses. Art Hobson has effectively argued that teaching science literacy should be a key ingredient in these courses. Hobson uses Jon Millers definition of science literacy, which has two components: first, "a basic…

  4. Undergraduate Biology Lab Courses: Comparing the Impact of Traditionally Based "Cookbook" and Authentic Research-Based Courses on Student Lab Experiences

    Science.gov (United States)

    Brownell, Sara E.; Kloser, Matthew J.; Fukami, Tadishi; Shavelson, Rich

    2012-01-01

    Over the past decade, several reports have recommended a shift in undergraduate biology laboratory courses from traditionally structured, often described as "cookbook," to authentic research-based experiences. This study compares a cookbook-type laboratory course to a research-based undergraduate biology laboratory course at a Research 1…

  5. Options for Online Undergraduate Courses in Biology at American Colleges and Universities

    Science.gov (United States)

    Varty, Alison K.

    2016-01-01

    I aimed to document the online undergraduate course supply in biology to evaluate how well biology educators are serving the diverse and growing population of online students. I documented online biology course offerings in the 2015-2016 academic year at 96 American colleges and universities. I quantified differences in variety, extent, and…

  6. Science Academies' Refresher Course on Theoretical Structural ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 8. Science Academies' Refresher Course on Theoretical Structural Geology, Crystallography, Mineralogy, Thermodynamics, Experimental Petrology and Theoretical Geophysics. Information and Announcements Volume 22 Issue 8 August 2017 ...

  7. A Guide to Undergraduate Science Course and Laboratory Improvements.

    Science.gov (United States)

    Straumanis, Joan, Ed.; Watson, Robert F., Ed.

    Reported are activities carried out at colleges and universities during 1976-1980 with support from the National Science Foundation's Local Course Improvement (LOCI) and Instructional Scientific Equipment Program (ISEP). It is intended as a reference for persons interested in current course and laboratory developments in the sciences at the…

  8. The Impact of E-Education on At Risk High School Students' Science Achievement and Experiences during Summer School Credit Recovery Courses

    Science.gov (United States)

    Phillips, Pamela Prevette

    Nationally, at risk students make up to 30% of U.S. students in public schools. Many at risk students have poor attendance, are disengaged from the learning environment and have low academic achievement. Educational failure occurs when students do not complete the required courses and as a result do not receive a high school diploma or a certificate of attendance. Many at risk students will not graduate; nearly one-third of all United States high school students have left the public school system before graduating, which has been referred to as a national crisis. Many at risk students fail science courses that are required for graduation, such as biology. Clearly, many students are not responding positively to the conditions in many public school classrooms, suggesting the need for different methods of educating at risk students, such as e-education. Three research questions guided the study: 1) Who are the students in an e-education, online summer school credit recovery course? 2) Do students' beliefs about their learning environment or other personal factors influence their academic achievement?, and 3) How do students describe their experiences of an e-education science course? This mixed methods study investigates thirty-two at risk students who were enrolled in one of three e-education science education courses (biology, earth science, and physical science) during a summer session in a rural county in a southeastern US state. These students failed their most recent science course taken in a traditional classroom setting. Artino's (2010) social-cognitive model of academic motivation and emotion was used as a theoretical framework to highlight the salient motivational factors toward learning science (e.g., task characteristics, task value beliefs, positive emotions). Student data included pre and post tests for all e-education lessons, a final exam, survey data (Students Motivation towards Science Learning (SMTSL), time (on task and idle), field notes, and

  9. Synthesizing Novel Anthraquinone Natural Product-Like Compounds to Investigate Protein-Ligand Interactions in Both an in Vitro and in Vivo Assay: An Integrated Research-Based Third-Year Chemical Biology Laboratory Course

    Science.gov (United States)

    McKenzie, Nancy; McNulty, James; McLeod, David; McFadden, Meghan; Balachandran, Naresh

    2012-01-01

    A new undergraduate program in chemical biology was launched in 2008 to provide a unique learning experience for those students interested in this interdisciplinary science. An innovative undergraduate chemical biology laboratory course at the third-year level was developed as a key component of the curriculum. The laboratory course introduces…

  10. The motivations and experiences of students enrolled in online science courses at the community college

    Science.gov (United States)

    Ghosh, Urbi

    An important question in online learning involves how to effectively motivate and retain students in science online courses. There is a dearth of research and knowledge about the experiences of students enrolled in online science courses in community colleges which has impeded the proper development and implementation of online courses and retention of students in the online environment. This study sought to provide an understanding of the relationships among each of the following variables: self-efficacy, task value, negative-achievement emotions, self-regulation learning strategies (metacognition), learning strategy (elaboration), and course satisfaction to student's performance (course final grade). Bandura's social-cognitive theory was used as a framework to describe the relationships among students' motivational beliefs (perceived task value, self-efficacy, and self-regulation) and emotions (frustration and boredom) with the dependent variables (elaboration and overall course satisfaction). A mixed-method design was used with a survey instrumentation and student interviews. A variety of science online courses in biology, genetics, astronomy, nutrition, and chemistry were surveyed in two community colleges. Community colleges students (N = 107) completed a questionnaire during enrollment in a variety of online science online courses. Upon course completion, 12 respondents were randomly selected for follow-up in-depth interviews. Multiple regression results from the study indicate perceived task value and self-regulatory learning strategies (metacognition) were as important predictors for students' use of elaboration, while self-efficacy and the number of prior online courses was not significant predictors for students' elaboration when all four predictors were included. Frustration was a significant negative predictor of overall course satisfaction, and boredom unexpectedly emerged as a positive predictor when frustration was also in the model. In addition, the

  11. Science Academies Refresher Course on Crustal Strength ...

    Indian Academy of Sciences (India)

    2017-05-26

    May 26, 2017 ... Sponsored by Indian Academy of Sciences, Bengaluru. Indian National Science ... Only 25 outstations and 10 Local ... a brief statement (between 250 and 500 words) as to why they think the Course will help to improve their.

  12. Impact of SCALE-UP on science teaching self-efficacy of students in general education science courses

    Science.gov (United States)

    Cassani, Mary Kay Kuhr

    The objective of this study was to evaluate the effect of two pedagogical models used in general education science on non-majors' science teaching self-efficacy. Science teaching self-efficacy can be influenced by inquiry and cooperative learning, through cognitive mechanisms described by Bandura (1997). The Student Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP) model of inquiry and cooperative learning incorporates cooperative learning and inquiry-guided learning in large enrollment combined lecture-laboratory classes (Oliver-Hoyo & Beichner, 2004). SCALE-UP was adopted by a small but rapidly growing public university in the southeastern United States in three undergraduate, general education science courses for non-science majors in the Fall 2006 and Spring 2007 semesters. Students in these courses were compared with students in three other general education science courses for non-science majors taught with the standard teaching model at the host university. The standard model combines lecture and laboratory in the same course, with smaller enrollments and utilizes cooperative learning. Science teaching self-efficacy was measured using the Science Teaching Efficacy Belief Instrument - B (STEBI-B; Bleicher, 2004). A science teaching self-efficacy score was computed from the Personal Science Teaching Efficacy (PTSE) factor of the instrument. Using non-parametric statistics, no significant difference was found between teaching models, between genders, within models, among instructors, or among courses. The number of previous science courses was significantly correlated with PTSE score. Student responses to open-ended questions indicated that students felt the larger enrollment in the SCALE-UP room reduced individual teacher attention but that the large round SCALE-UP tables promoted group interaction. Students responded positively to cooperative and hands-on activities, and would encourage inclusion of more such activities in all of the

  13. Bridging the Gap: Embedding Communication Courses in the Science Undergraduate Curriculum

    Science.gov (United States)

    Jandciu, Eric; Stewart, Jaclyn J.; Stoodley, Robin; Birol, Gülnur; Han, Andrea; Fox, Joanne A.

    2015-01-01

    The authors describe a model for embedding science communication into the science curriculum without displacing science content. They describe the rationale, development, design, and implementation of two courses taught by science faculty addressing these criteria. They also outline the evaluation plan for these courses, which emphasize broad…

  14. Redox Biology Course Evaluation Form | Center for Cancer Research

    Science.gov (United States)

    To improve the Redox Biology (RB) course in future years, we would appreciate your feedback by completing this course evaluation. Please score the course elements as poor, fair, average, good or excellent. Please type any comments that you have in response to the questions at the bottom of the form. Remember to include your name as you wish it to appear on the certificate.

  15. Science Academies' Refresher Course on Quantum Mechanics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 7. Science Academies' Refresher Course on Quantum Mechanics. Information and Announcements Volume 21 Issue 7 July 2016 pp 669-670. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Integrative activities content (aic: an auxiliary tool for the teaching of Biochemistry in the course of biological sciences at UFRN

    Directory of Open Access Journals (Sweden)

    F. D. Silva

    2015-08-01

    Full Text Available There are constant changes in the development of science, technology, politics, culture and society; the need for change is also evident in the training of teachers. The ease of access to information makes us realize that traditional teaching needs to be updated.The increasing demotivation of students,followed by high reprobation rates, has become a real challenge to the teaching practice.The objective of this work was to awaken in students enrolled in the discipline of MOLECULAR DIVERSITY (MD, a required curricular component in the Course of Biological Sciences at UFRN, an interest in studying the chemistry and functions of biomolecules, better relating the two to each other, and the content already studied in the course, in order to improve the teaching-learning process. This work was developed in a tutoring project registered at PROGRAD/UFRN. This discipline, MD, addresses chemical and structural features of the main organic molecules.The methodology focused on applying problem integrators called INTEGRATIVE ACTIVITIES OF CONTENT. This refers specifically to the application of problems that integrate the topics taught in the discipline, and also those administered in the disciplines processed in parallel, or even in previous semesters. In this way students realize that molecules relate and interact in all bodies; this gives rise to life through metabolism. The discipline is expected to promote meaningful and inter-related learning. We obtained the following results: greater participation and involvement of students in answering the questions posed; greater interest in the discipline;positive changes regarding the number of students who dropped the class, and in reprobation;and greater integration between teachers, students, and teaching assistants. The methodology used in this work was extremely important to achieve the proposed objectives, helping to facilitate the process of teaching-learning, as also to important relate content.

  17. Education science and biological anthropology.

    Science.gov (United States)

    Krebs, Uwe

    2014-01-01

    This contribution states deficits and makes proposals in order to overcome them. First there is the question as to why the Biological Anthropology--despite all its diversifications--hardly ever deals with educational aspects of its subject. Second it is the question as to why Educational Science neglects or even ignores data of Biological Anthropology which are recognizably important for its subject. It is postulated that the stated deficits are caused by several adverse influences such as, the individual identity of each of the involved single sciences; aspects of the recent history of the German Anthropology; a lack of conceptual understanding of each other; methodological differences and, last but not least, the structure of the universities. The necessity to remedy this situation was deduced from two groups of facts. First, more recent data of the Biological Anthropology (e.g. brain functions and learning, sex specificity and education) are of substantial relevance for the Educational Science. Second, the epistemological requirements of complex subjects like education need interdisciplinary approaches. Finally, a few suggestions of concrete topics are given which are related to both, Educational Science and Biological Anthropology.

  18. Redox Biology Course Evaluation Form | Center for Cancer Research

    Science.gov (United States)

    To improve the Redox Biology (RB) course in future years, we would appreciate your feedback by completing this course evaluation. Please score the course elements as poor, fair, average, good or excellent. Please type any comments that you have in response to the questions at the bottom of the form. Remember to include your name as you wish it to appear on the certificate. Thank you for your feedback.

  19. A Physics Course for Non-Physical Science Teachers

    Science.gov (United States)

    Cottle, Paul D.

    1997-11-01

    A two semester introductory physics sequence exclusively for undergraduates and graduate students in science education who were not seeking certification in physics was taught at Florida State for the first time in 1996-97. The course emphasized building understanding in both qualitative and quantitative aspects of physics through group learning approaches to laboratories and written problem assignments, assessments which required detailed written explanations, and frequent interactions between the instructor and individual students. This talk will briefly outline the structure of the course and some of the more interesting observations made by the group of science education graduate students and faculty who evaluated aspects of the course.

  20. Introductory life science mathematics and quantitative neuroscience courses.

    Science.gov (United States)

    Duffus, Dwight; Olifer, Andrei

    2010-01-01

    We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an upper-division course in computational neuroscience. We provide a description of each course, detailed syllabi, examples of content, and a brief discussion of the main issues encountered in developing and offering the courses.

  1. Science Academies' Refresher Course in Chemistry

    Indian Academy of Sciences (India)

    2017-10-25

    Oct 25, 2017 ... Modern College of Arts, Science and Commerce. Ganeshkhind, Pune ... API scores for career advancement. Applications are invited from teachers experience in teaching undergraduate and postgraduate courses in chemistry ...

  2. A Programme-Wide Training Framework to Facilitate Scientific Communication Skills Development amongst Biological Sciences Masters Students

    Science.gov (United States)

    Divan, Aysha; Mason, Sam

    2016-01-01

    In this article we describe the effectiveness of a programme-wide communication skills training framework incorporated within a one-year biological sciences taught Masters course designed to enhance the competency of students in communicating scientific research principally to a scientific audience. In one class we analysed the numerical marks…

  3. Interdisciplinary Introductory Course in Bioinformatics

    Science.gov (United States)

    Kortsarts, Yana; Morris, Robert W.; Utell, Janine M.

    2010-01-01

    Bioinformatics is a relatively new interdisciplinary field that integrates computer science, mathematics, biology, and information technology to manage, analyze, and understand biological, biochemical and biophysical information. We present our experience in teaching an interdisciplinary course, Introduction to Bioinformatics, which was developed…

  4. Science self-efficacy of African Americans enrolled in freshman level physical science courses in two historically black institutions

    Science.gov (United States)

    Prihoda, Belinda Ann

    2011-12-01

    Science education must be a priority for citizens to function and be productive in a global, technological society. African Americans receive fewer science degrees in proportion to the Caucasian population. The primary purposes of this study were to determine the difference between the pretest and posttest science self-efficacy scores of African-American nonscience majors, the difference between the pretest and posttest science self-efficacy scores of African-American science majors, the relationship between science self-efficacy and course grade, the relationship between gender and science self-efficacy score, and the relationship between science self-efficacy score and course withdrawal. This study utilized a Likert survey instrument. All participants were enrolled in freshman level courses in the physical sciences at a historically black institution: a college or university. Participants completed the pretest survey within two weeks after the 12th class day of the semester. Initially, 458 participants completed the pretest survey. The posttest was administered within two weeks before the final exam. Only 245 participants completed the posttest survey. Results indicate that there is a difference in science self-efficacy of science majors and nonscience majors. There was no significant difference between the pretest and posttest science self-efficacy scores of African-American science majors and nonscience majors. There was no significant relationship between science self-efficacy and course grade, gender and science self-efficacy score, and course withdrawal and science self-efficacy score.

  5. Using student motivation to design groups in a non-majors biology course for team-based collaborative learning: Impacts on knowledge, views, attitudes, and perceptions

    Science.gov (United States)

    Walters, Kristi L.

    The importance of student motivation and its connection to other learning variables (i.e., attitudes, knowledge, persistence, attendance) is well established. Collaborative work at the undergraduate level has been recognized as a valuable tool in large courses. However, motivation and collaborative group work have rarely been combined. This project utilized student motivation to learn biology to place non-major biology undergraduates in collaborative learning groups at East Carolina University, a mid-sized southeastern American university, to determine the effects of this construct on student learning. A pre-test measuring motivation to learn biology, attitudes toward biology, perceptions of biology and biologists, views of science, and content knowledge was administered. A similar post-test followed as part of the final exam. Two sections of the same introductory biology course (n = 312) were used and students were divided into homogeneous and heterogeneous groups (based on their motivation score). The heterogeneous groups (n = 32) consisted of a mixture of different motivation levels, while the homogeneous groups (n = 32) were organized into teams with similar motivation scores using tiers of high-, middle-, and low-level participants. Data analysis determined mixed perceptions of biology and biologists. These include the perceptions biology was less intriguing, less relevant, less practical, less ethical, and less understandable. Biologists were perceived as being neat and slightly intelligent, but not very altruistic, humane, ethical, logical, honest, or moral. Content knowledge scores more than doubled from pre- to post-test. Half of the items measuring views of science were not statistically significantly different from pre- to post-test. Many of the factors for attitudes toward biology became more agreeable from pre- to post-test. Correlations between motivation scores, participation levels, attendance rates, and final course grades were examined at both the

  6. Marine molecular biology: An emerging field of biological sciences

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Jain, R.; Natalio, F.; Hamer, B.; Thakur, A.N.; Muller, W.E.G.

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies...

  7. An evaluation of community college student perceptions of the science laboratory and attitudes towards science in an introductory biology course

    Science.gov (United States)

    Robinson, Nakia Rae

    independent predictor of attitudes toward science, albeit negatively. The results from this study indicated that there is a need to increase the opportunity for inquiry in the science laboratory. The data also suggest that although all academic streams may have similar views of the laboratory experiences, more needs to be implemented to improve the scientific attitudes of nonscience majors enrolled in a course for science majors.

  8. International Journal of Biological and Chemical Sciences ...

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences: Advanced Search. Journal Home > International Journal of Biological and Chemical Sciences: Advanced Search. Log in or Register to get access to full text downloads.

  9. Ecology Content in Introductory Biology Courses: A Comparative Analysis

    Science.gov (United States)

    Pool, Richard F.; Turner, Gregory D.; Böttger, S. Anne

    2013-01-01

    In recent years the need for ecological literacy and problem solving has increased, but there is no evidence that this need is reflected by increased ecology coverage at institutions of higher education (IHE) across the United States. Because introductory biology courses may serve to direct student interest toward particular biological categories…

  10. Varied Student Perception of E-Text Use among Student Populations in Biology Courses

    Science.gov (United States)

    McDaniel, Kerrie; Daday, Jerry

    2018-01-01

    The faculty in a biology department at a four-year public comprehensive university adopted e-texts for all 100 and 200 level biology courses with the primary motivation of reducing textbook costs to students. This study examines the students' perceptions of the e-texts adopted for these 100 and 200 level biology courses. An online questionnaire…

  11. Just the facts? Introductory undergraduate biology courses focus on low-level cognitive skills.

    Science.gov (United States)

    Momsen, Jennifer L; Long, Tammy M; Wyse, Sara A; Ebert-May, Diane

    2010-01-01

    Introductory biology courses are widely criticized for overemphasizing details and rote memorization of facts. Data to support such claims, however, are surprisingly scarce. We sought to determine whether this claim was evidence-based. To do so we quantified the cognitive level of learning targeted by faculty in introductory-level biology courses. We used Bloom's Taxonomy of Educational Objectives to assign cognitive learning levels to course goals as articulated on syllabi and individual items on high-stakes assessments (i.e., exams and quizzes). Our investigation revealed the following: 1) assessment items overwhelmingly targeted lower cognitive levels, 2) the cognitive level of articulated course goals was not predictive of the cognitive level of assessment items, and 3) there was no influence of course size or institution type on the cognitive levels of assessments. These results support the claim that introductory biology courses emphasize facts more than higher-order thinking.

  12. Chemistry and Biology

    Science.gov (United States)

    Wigston, David L.

    1970-01-01

    Discusses the relationship between chemisty and biology in the science curriculum. Points out the differences in perception of the disciplines, which the physical scientists favoring reductionism. Suggests that biology departments offer a special course for chemistry students, just as the chemistry departments have done for biology students.…

  13. Refresher Course on Frontier in Atomospheric Sciences

    Indian Academy of Sciences (India)

    Admin

    This course will include lectures by eminent scientists and visits to the state-of-art computer and instrumentation facilities. It will provide an excellent opportunity to get an insight into the latest developments and modern outlook of atmospheric science for students who plan to make their careers in atmospheric sciences or for ...

  14. Science Academies Refresher Course on Traditional and Modern

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. Science Academies Refresher Course on Traditional and Modern Approaches in Plant Taxonomy'. Information and Announcements Volume 17 Issue 9 September 2012 pp 921-921 ...

  15. The knowledge most worth having: Otis W. Caldwell (1869 1947) and the rise of the general science course

    Science.gov (United States)

    Heffron, John M.

    1995-07-01

    In 1860 Herbert Spencer asked the famous rhetorical question ‘What Knowledge is of Most Worth?’ The unequivocal answer was science. Giving greater attention to science and scientific knowledge would not only produce additional scientists; more important, argued Spencer, it would make better parents, better church-goers, better citizens and workers, better artists and better consumers of art. It would lead to a ‘command of fundamental processes’, ‘worthy home membership’, ‘worthy use of leisure’, ‘ethical character’ — the goals of a general education spelled out by Spencerians within the National Educational Association in 1918. Here is our puzzle, then: how are we to interpret a definition of science, one widely accepted both in Spencer's time and in our own, that comes so close descriptively to a commonsensical view of what constitutes non-science? The answer to this question lies in part in the historical relationship between science and general education, a relationship established in the opening decades of this century, when the authority of science and scientific objectivity was in the minds of most educators unimpeachable. The high school general science course, developed in its early stages by the botanist and educator, Otis W. Caldwell, was a potent symbol of this new relationship. Organized around broad, topical issues and claiming to teach the mundane truths of life, general science was more than a loose collection of facts from the various earth, biological, and physical sciences. Its many advocates viewed the new unified science course as pedagogically independent of the specialties yet central to education in general. In 1949, two years after Caldwell's death, 72 percent of the total science enrollments in the United States were in general science and biology, its closest cognate. This paper examines the rise of the general science course and its implications for the reform of secondary school science education. It concludes that

  16. Early Childhood Pre-Service Teachers' Self-Images of Science Teaching in Constructivism Science Education Courses

    Science.gov (United States)

    Go, Youngmi; Kang, Jinju

    2015-01-01

    The purpose of this study is two-fold. First, it investigates the self-images of science teaching held by early childhood pre-service teachers who took constructivism early childhood science education courses. Second, it analyzes what aspects of those courses influenced these images. The participants were eight pre-service teachers who took these…

  17. Tested Tools You Can Use: Evaluating Earth System Science Courses

    Science.gov (United States)

    Lee, S. P.; Prakash, A.; Reider, D.; Baker, D.

    2006-12-01

    Earth System Science Education for the 21st Century (ESSE 21) has created a public access on-line evaluation resource available at http://esse21.usra.edu/evaltoolkit in collaboration with the ESSE 21 institutions, PIs, and evaluators. The purpose of the ESSE toolkit is to offer examples of how evaluation and assessment are/have been used in Earth System Science courses and programs. Our goal is to help instructors recognize different types of assessment and evaluation tools and uses that have proved useful in these courses and provide models for designing assessments in new courses. We have included actual examples of evaluations used by ESSE institution faculty in their own courses. This is not a comprehensive toolkit on educational evaluation and assessment, but it does provide several examples of evaluations that have been used successfully in Earth System Science courses and links to many good web resources on course evaluation. We have provided examples of assessments that are designed to collect information from students before, during and after courses. Some, presented in different formats, are designed to assess what students learn, others are designed to provide course instructors with information they can use to revise their courses. These assessments range from content tests to portfolios, from feedback forms to interviews, and from concept maps to attitude surveys.

  18. An exploration of the gateway math and science course relationships in the Los Angeles Community College District

    Science.gov (United States)

    Buchanan, Donald G.

    This study evaluated selected demographic, pre-enrollment, and economic status variables in comparison to college-level performance factors of GPA and course completion ratios for gateway math and science courses. The Transfer and Retention of Urban Community College Students (TRUCCS) project team collected survey and enrollment data for this study in the Los Angeles Community College District (LACCD). The TRUCCS team surveyed over 5,000 students within the nine campus district beginning in the fall of 2000 and spring of 2001 with follow-up data for next several years. This study focused on the math and science courses; established background demographics; evaluated pre-enrollment high school self-reported grades; reviewed high school and college level math courses taken; investigated specific gateway courses of biology, chemistry and physics; and compared them to the overall GPAs and course completion ratios for 4,698 students. This involved the SPSS development of numerous statistical products including the data from frequency distributions, means, cross-tabulations, group statistics t-tests, independent samples t-tests, and one-way ANOVA. Findings revealed demographic and economic relationships of significance for students' performance factors of GPA and course completion ratios. Furthermore, findings revealed significant differences between the gender, age, ethnicity and economic employment relationships. Conclusions and implications for institutions of higher education were documented. Recommendations for dissemination, intervention programs, and future research were also discussed.

  19. Science Academies' Refresher Course on Hydrology of Floods

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 10. Science Academies' Refresher Course on Hydrology of Floods. Information and Announcements Volume 22 Issue 10 October 2017 pp 978-978. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Introductory Life Science Mathematics and Quantitative Neuroscience Courses

    Science.gov (United States)

    Duffus, Dwight; Olifer, Andrei

    2010-01-01

    We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an…

  1. Biology as an Integrating Natural Science Domain

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 3. Biology as an Integrating Natural Science Domain: A Proposal for BSc (Hons) in Integrated Biology. Kambadur Muralidhar. Classroom Volume 13 Issue 3 March 2008 pp 272-276 ...

  2. Incorporating Primary Literature in Undergraduate Crop Science Courses

    Science.gov (United States)

    Scott, Lori K.; Simmons, Steve R.

    2006-01-01

    Primary literature is an underutilized learning resource for undergraduate courses in crop science. Reading assignments from scientific journals were utilized in an undergraduate University of Minnesota crop physiology course at Southwest Minnesota State University from 2002 to 2004. The subjects of the articles corresponded to the lecture topics.…

  3. Science Academies' Refresher Course on Modern and Ancient ...

    Indian Academy of Sciences (India)

    Sengupta, AvH Fellow, F.A.Sc., F.N.A (pulaksg@gmail.com). It may be noted that UGC regulations include Refresher Courses in API scores for career advancement. Applications are invited from teachers with experience in teaching undergraduate and postgraduate courses in Earth Science. Motivated research scholars ...

  4. Science Academies Refresher Course on Traditional and Modern ...

    Indian Academy of Sciences (India)

    Admin

    The National Academy of Sciences, India, Allahabad. In collaboration with. Botanical Garden & Herbarium, University of Agricultural Sciences, Bangalore from 15 to 29 November. 2012. A Refresher Course on Traditional and Modern Approaches in Plant Taxonomy for postgraduate college/university teachers and research ...

  5. Research and Teaching: Reenvisioning the Introductory Science Course as a Cognitive Apprenticeship

    Science.gov (United States)

    Thompson, Meredith M.; Pastorino, Lucia; Lee, Star; Lipton, Paul

    2016-01-01

    Introductory science courses play a critical role in the recruitment and retention of undergraduate science majors. In particular, first-year courses are opportunities to engage students in scientific practices and motivate them to consider scientific careers. We developed an introductory course using a semester-long series of established…

  6. Assessment of an On-Line Earth System Science Course for Teachers

    Science.gov (United States)

    Shuster, R. D.; Grandgenett, N.

    2009-12-01

    The University of Nebraska at Omaha (UNO) has been offering on-line Earth System Science coursework to in-service teachers in Nebraska since 2002 through the Earth Systems Science Education Alliance (ESSEA). The goal of this course is to increase teacher content knowledge in Earth Science, introduce them to Earth System Science, and have them experience cooperative learning. We have offered three different ESSEA courses, with nearly 200 students having taken ESSEA courses at UNO for graduate credit. This effort represents a close collaboration between faculty and students from the Colleges of Arts & Sciences and Education, with periodic assistance of the local schools. In a follow-up study related to ESSEA coursework, UNO examined the perceptions of teachers who have taken the course and the potential benefits of the ESSEA courses for their own educational settings. The study was descriptive in design and included an online survey and a focus group. The results of these assessments indicated that the teachers felt very positive about what they learned in these courses, and in particular, how they could incorporate cooperative learning, inquiry based activities, and Earth System Science interconnections in their own classrooms. Problems identified by the teachers included a perceived lack of time to be able to integrate the learned material into their science curriculua and a lack of computer and/or technological resources in their educational settings. In addition, this Fall, we will conduct two teacher case studies, where we will interview two teachers, visit their classrooms, acquire work samples and talk with students. All of the results of our survey and focus group will be presented.

  7. Prospective Science Teachers' Attitudes and Views of Using Journal Writing in the "Methods of Teaching Science" Course

    Science.gov (United States)

    Ambusaidi, Abdullah

    2014-01-01

    The aim of this study was to investigate the attitudes of prospective science teachers at Sultan Qaboos University towards and their views about using journal writing in the Methods of Teaching Science course. Twenty-six prospective science teachers were asked to write about each topic in the course in their journal to show their understanding of…

  8. Development and Evaluation of the Tigriopus Course-Based Undergraduate Research Experience: Impacts on Students' Content Knowledge, Attitudes, and Motivation in a Majors Introductory Biology Course.

    Science.gov (United States)

    Olimpo, Jeffrey T; Fisher, Ginger R; DeChenne-Peters, Sue Ellen

    2016-01-01

    Within the past decade, course-based undergraduate research experiences (CUREs) have emerged as a viable mechanism to enhance novices' development of scientific reasoning and process skills in the science, technology, engineering, and mathematics disciplines. Recent evidence within the bioeducation literature suggests that student engagement in such experiences not only increases their appreciation for and interest in scientific research but also enhances their ability to "think like a scientist." Despite these critical outcomes, few studies have objectively explored CURE versus non-CURE students' development of content knowledge, attitudes, and motivation in the discipline, particularly among nonvolunteer samples. To address these concerns, we adopted a mixed-methods approach to evaluate the aforementioned outcomes following implementation of a novel CURE in an introductory cell/molecular biology course. Results indicate that CURE participants exhibited more expert-like outcomes on these constructs relative to their non-CURE counterparts, including in those areas related to self-efficacy, self-determination, and problem-solving strategies. Furthermore, analysis of end-of-term survey data suggests that select features of the CURE, such as increased student autonomy and collaboration, mediate student learning and enjoyment. Collectively, this research provides novel insights into the benefits achieved as a result of CURE participation and can be used to guide future development and evaluation of authentic research opportunities. © 2016 J. T. Olimpo et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. BioMEMS and Lab-on-a-Chip Course Education at West Virginia University

    Directory of Open Access Journals (Sweden)

    Yuxin Liu

    2011-01-01

    Full Text Available With the rapid growth of Biological/Biomedical MicroElectroMechanical Systems (BioMEMS and microfluidic-based lab-on-a-chip (LOC technology to biological and biomedical research and applications, demands for educated and trained researchers and technicians in these fields are rapidly expanding. Universities are expected to develop educational plans to address these specialized needs in BioMEMS, microfluidic and LOC science and technology. A course entitled BioMEMS and Lab-on-a-Chip was taught recently at the senior undergraduate and graduate levels in the Department of Computer Science and Electrical Engineering at West Virginia University (WVU. The course focused on the basic principles and applications of BioMEMS and LOC technology to the areas of biomedicine, biology, and biotechnology. The course was well received and the enrolled students had diverse backgrounds in electrical engineering, material science, biology, mechanical engineering, and chemistry. Student feedback and a review of the course evaluations indicated that the course was effective in achieving its objectives. Student presentations at the end of the course were a highlight and a valuable experience for all involved. The course proved successful and will continue to be offered regularly. This paper provides an overview of the course as well as some development and future improvements.

  10. Improving student performance in an introductory biology majors course: A social action project in the scholarship of teaching

    Science.gov (United States)

    Chambers, Sara Lang Ketchum

    This social action study followed an introductory biology course for a three-year period to determine whether changes in teaching personnel, instructional techniques and reorientation to student-centered learning would impact student performance. The course was redirected from a traditional lecture-laboratory format to one emphasizing active learning inquiry methods. Student retention, achievement, and failure were observed for three years in addition to one year prior, and one year following, the study. The study examined the two semester introductory biology course required of all biology majors and those intending a career in science, medicine or dentistry. During the first semester of the study, the dropout rate decreased from 46% to 21%. Prior to the study, 39% of the students completing the course received a grade of D or F while only 4% received a grade of B or above. During the first semester of the study 14% of the students received a grade of D or F while 46% received a B, B+ or A grade. Similar results were seen in other semesters of the study. A statistical comparison of student retention and performance was carried out using grade data for classes taught by the original faculty, the action study faculty and the post-study faculty. The differences between the original faculty and the action study faculty were statistically significant. Effect size calculations indicated large differences between the action study faculty and the two other faculty groups in terms of student retention, achievement and failure. The results are attributed to both the personnel change and, more significantly, the change in teaching methods and emphasis on student-active learning. Comparison between the pre- and post-study teams showed less dramatic effect sizes than when the action study data were compared with the data from either other team. Nevertheless, the post-study results showed that although the retention rate dropped during the year after the study, the improvement

  11. A Course in Earth System Science: Developed for Teachers by Teachers

    Science.gov (United States)

    Wong, K.; Read, K.; Charlevoix, D.; Tomkin, J.; Hug, B.; Williams, M.; Pianfetti, E.

    2008-12-01

    ESES 202 is a new general education course in physical science at the University of Illinois's School of Earth, Society and Environment, designed for pre-service K-8 teachers. The goal of the course is to help future classroom teachers become confident with teaching earth science content. The designers of this course include a faculty expert in earth system science, a pre-service teacher and a former middle school science teacher. The goal of the in the curriculum design was to utilize the unique perspectives and experiences of our team. Our poster will highlight the unique nature of the curriculum development outlining the challenges and successes of designing the course. The general format of the class will be a combination of discussions, hands on experiences, and opportunities for students to design their own lessons. Class meetings will be once per week in a three-hour block, allowing students to immediately transfer new content knowledge into classroom activities. The end goal is that they can use these same activities with their students once they are practicing teachers. The content of the course shall be taught using an earth systems approach by showing the relationships among the four spheres: biosphere, hydrosphere, atmospheric, and anthrosphere. There are five units in the course: Introduction to Earth Systems, Carbon Cycle, Water Quality, El Niño and Climate Change. In addition to the science portion of the course, students will spend time reflecting on the classroom activities from the perspective of future educators. Activities will be presented at a late elementary school level; however, time will be devoted to discussing methods to adapt the lesson to different grade levels and differentiation needs within a classroom. Additionally, students in this course will be instructed on how to utilize a multitude of resources from stream tables to science education databases to prepare them for the dynamic nature of the classroom. By the end of the class

  12. Biomolecular Sciences: uniting Biology and Chemistry

    NARCIS (Netherlands)

    Vrieling, Engel

    2017-01-01

    Biomolecular Sciences: uniting Biology and Chemistry www.rug.nl/research/gbb The scientific discoveries in biomolecular sciences have benefitted enormously from technological innovations. At the Groningen Biomolecular Science and Biotechnology Institute (GBB) we now sequence a genome in days,

  13. Changes in Biology Self-Efficacy during a First-Year University Course

    Science.gov (United States)

    Ainscough, Louise; Foulis, Eden; Colthorpe, Kay; Zimbardi, Kirsten; Robertson-Dean, Melanie; Chunduri, Prasad; Lluka, Lesley

    2016-01-01

    Academic self-efficacy encompasses judgments regarding one’s ability to perform academic tasks and is correlated with achievement and persistence. This study describes changes in biology self-efficacy during a first-year course. Students (n = 614) were given the Biology Self-Efficacy Scale at the beginning and end of the semester. The instrument consisted of 21 questions ranking confidence in performing biology-related tasks on a scale from 1 (not at all confident) to 5 (totally confident). The results demonstrated that students increased in self-efficacy during the semester. High school biology and chemistry contributed to self-efficacy at the beginning of the semester; however, this relationship was lost by the end of the semester, when experience within the course became a significant contributing factor. A proportion of high- and low- achieving (24 and 40%, respectively) students had inaccurate self-efficacy judgments of their ability to perform well in the course. In addition, female students were significantly less confident than males overall, and high-achieving female students were more likely than males to underestimate their academic ability. These results suggest that the Biology Self-Efficacy Scale may be a valuable resource for tracking changes in self-efficacy in first-year students and for identifying students with poorly calibrated self-efficacy perceptions. PMID:27193290

  14. Laboratory Experiences in an Introduction to Natural Science Course.

    Science.gov (United States)

    Barnard, Sister Marquita

    1984-01-01

    Describes a two-semester course designed to meet the needs of future elementary teachers, home economists, and occupational therapists. Laboratory work includes homemade calorimeters, inclined planes, and computing. Content areas of the course include measurement, physics, chemistry, astronomy, biology, geology, and meteorology. (JN)

  15. Science Curriculum Components Favored by Taiwanese Biology Teachers

    Science.gov (United States)

    Lin, Chen-Yung; Hu, Reping; Changlai, Miao-Li

    2005-09-01

    The new 1-9 curriculum framework in Taiwan provides a remarkable change from previous frameworks in terms of the coverage of content and the powers of teachers. This study employs a modified repertory grid technique to investigate biology teachers' preferences with regard to six curriculum components. One hundred and eighty-five in-service and pre-service biology teachers were asked to determine which science curriculum components they liked and disliked most of all to include in their biology classes. The data show that the rank order of these science curriculum components, from top to bottom, was as follows: application of science, manipulation skills, scientific concepts, social/ethical issues, problem-solving skills, and the history of science. They also showed that pre-service biology teachers, as compared with in-service biology teachers, favored problem-solving skills significantly more than manipulative skills, while in-service biology teachers, as compared with pre-service biology teachers, favored manipulative skills significantly more than problem-solving skills. Some recommendations for ensuring the successful implementation of the Taiwanese 1-9 curriculum framework are also proposed.

  16. A Module-Based Environmental Science Course for Teaching Ecology to Non-Majors

    Science.gov (United States)

    Smith, Geoffrey R.

    2010-01-01

    Using module-based courses has been suggested to improve undergraduate science courses. A course based around a series of modules focused on major environmental issues might be an effective way to teach non-science majors about ecology and ecology's role in helping to solve environmental problems. I have used such a module-based environmental…

  17. External Science Courses: The Practicals Problem.

    Science.gov (United States)

    Kember, David

    1982-01-01

    Describes three methods for offering practical work for external science courses: residential sessions on campus, local centers, and use of home laboratory kits. The advantages and disadvantages of each are discussed and examples of each in operation are given. A 21-item bibliography is provided. (EAO)

  18. Science Academies' 83rd Refresher Course on Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    A Science Academies' Refresher Course in “Experimental Physics” will be held in the Department of Physics,. College of Arts, Science and Humanities, Mody University of Science and Technology, Lakshmangarh, District. Sikar (Rajasthan), from 29 December 2016 to 13 January 2017 for the benefit of faculty involved in ...

  19. Advanced high school biology in an era of rapid change: a summary of the biology panel report from the NRC Committee on Programs for Advanced Study of Mathematics and Science in American High Schools.

    Science.gov (United States)

    Wood, William B

    2002-01-01

    A recently released National Research Council (NRC) report, Learning and Understanding: Improving Advanced Study of Mathematics and Science in U.S. High Schools, evaluated and recommended changes in the Advanced Placement (AP), International Baccalaureate (IB), and other advanced secondary school science programs. As part of this study, discipline-specific panels were formed to evaluate advanced programs in biology, chemistry, physics, and mathematics. Among the conclusions of the Content Panel for Biology were that AP courses in particular suffer from inadequate quality control as well as excessive pressure to fulfill their advanced placement function, which encourages teachers to attempt coverage of all areas of biology and emphasize memorization of facts rather than in-depth understanding. In this essay, the Panel's principal findings are discussed, with an emphasis on its recommendation that colleges and universities should be strongly discouraged from using performance on either the AP examination or the IB examination as the sole basis for automatic placement out of required introductory courses for biology majors and distribution requirements for nonmajors.

  20. Implementation of an Online Climate Science Course at San Antonio College

    Science.gov (United States)

    Reyes, R.; Strybos, J.

    2016-12-01

    San Antonio College (SAC) plans to incorporate an online climate science class into the curriculum with a focus on local weather conditions and data. SAC is part of a network of five community colleges based around San Antonio, Texas, has over 20,000 students enrolled, and its student population reflects the diversity in ethnicity, age and gender of the San Antonio community. The college understands the importance of educating San Antonio residents on climate science and its complexities. San Antonio residents are familiar with weather changes and extreme conditions. The region has experienced an extreme drought, including water rationing in the city. Then, this year's El Niño intensified expected annual rainfalls and flash floods. The proposed climate science course will uniquely prepare students to understand weather data and the evidence of climate change impacting San Antonio at a local level. This paper will discuss the importance and challenges of introducing the new climate science course into the curriculum, and the desired class format that will increase the course's success. Two of the most significant challenges are informing students about the value of this class and identifying the best teaching format. Additionally, measuring and monitoring enrollment will be essential to determine the course performance and success. At the same time, Alamo Colleges is modifying the process of teaching online classes and is officially working to establish an online college. Around 23% of students enrolled in SAC offered courses are currently enrolled in online courses only, representing an opportunity to incorporate the climate science class as an online course. Since the proposed course will be using electronic textbooks and online applications to access hyperlocal weather data, the class is uniquely suited for online students.

  1. Just the Facts? Introductory Undergraduate Biology Courses Focus on Low-Level Cognitive Skills

    Science.gov (United States)

    Momsen, Jennifer L.; Long, Tammy M.; Wyse, Sara A.; Ebert-May, Diane

    2010-01-01

    Introductory biology courses are widely criticized for overemphasizing details and rote memorization of facts. Data to support such claims, however, are surprisingly scarce. We sought to determine whether this claim was evidence-based. To do so we quantified the cognitive level of learning targeted by faculty in introductory-level biology courses.…

  2. Introduction of a Science Policy Course at the University of Oklahoma

    Science.gov (United States)

    Mishra, S.; Parsons, D.

    2012-12-01

    In modern society, science and policy are two processes that have a symbiotic relationship to each other; wherein policy dictates the direction of science while science shapes the future of policy. Although the policy side is often ignored in scientific environments, the rate of scientific advancement is heavily influenced by policy. Science policy is very different from the conduct of science itself and future scientists need to be aware of the issues and factors that dictate the present and future direction of science. Based on the intricate relationship between science and policy, it is essential to introduce an overview of the policy process to future scientists and decision makers. In the context of climate change, policy implications are extensive and critical owing to their large socio-economic impacts. Hence, knowledge of the policy process is even more relevant to earth scientists. In this regard, the proposal to start an introductory course in science policy is currently being discussed in the department of Meteorology at the University of Oklahoma. If such a course is approved, an interactive graduate level class will be introduced for students pursuing a career in science. Such a course will be cross- disciplinary and will be offered to a wide audience across the university. Since the American Meteorological Society's (AMS) Summer Policy Colloquium has been a very successful program in educating scientists about the policy process, a format similar to the colloquium may be adopted. The primary topics will include the understanding of policy fundamentals, effective communication, ethics and integrity in the conduct of scientific research, executive leadership in science and the responsibilities of a scientific leader, impact of science on globalization and international diplomacy, etc. The AMS policy program office will be consulted to help design the course curriculum. An overview of the steps involved in introducing the class will be presented at the

  3. International Journal of Biological and Chemical Sciences: Contact

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences: Contact. Journal Home > About the Journal > International Journal of Biological and Chemical Sciences: Contact. Log in or Register to get access to full text downloads.

  4. Student Interpretations of Phylogenetic Trees in an Introductory Biology Course

    Science.gov (United States)

    Dees, Jonathan; Momsen, Jennifer L.; Niemi, Jarad; Montplaisir, Lisa

    2014-01-01

    Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa…

  5. Learning can be all Fun and Games: Constructing and Utilizing a Biology Taboo Wiktionary to Enhance Student Learning in an Introductory Biology Course

    Directory of Open Access Journals (Sweden)

    Jeffrey T. Olimpo

    2010-10-01

    Full Text Available Most introductory courses in the biological sciences are inherently content-dense and rich with jargon—jargon that is often confusing and nonsensical to novice students. These characteristics present an additional paradox to instructors, who strive to achieve a balance between simply promoting passive, rote memorization of facts and engaging students in developing true, concrete understanding of the terminology. To address these concerns, we developed and implemented a Biology Taboo Wiktionary that provided students with an interactive opportunity to review and describe concepts they had encountered during their first semester of introductory biology. However, much like the traditional Taboo game, the rules were such that students could not use obvious terms to detail the main term. It was our belief that if the student could synthesize a thoughtful, scientific explanation of the term under these conditions, he or she demonstrated a true understanding of the conceptual context and meaning of the term.

  6. Information visualization courses for students with a computer science background.

    Science.gov (United States)

    Kerren, Andreas

    2013-01-01

    Linnaeus University offers two master's courses in information visualization for computer science students with programming experience. This article briefly describes the syllabi, exercises, and practices developed for these courses.

  7. Benefits and Limitations of Online Instruction in Natural Science Undergraduate Liberal Arts Courses

    Science.gov (United States)

    Liddicoat, Joseph; Roberts, Godfrey; Liddicoat, Kendra; Porzecanski, Ana Luz; Mendez, Martin; McMullen, David

    2013-04-01

    Online courses in the Natural Sciences are taught three ways at New York University to undergraduate students majoring in the liberal arts and professional programs - synchronous courses in which students communicate online with the instructor and classmates in real time, asynchronous courses when faculty present course material for students to access and learn at their leisure, and hybrid or blended courses when part is taught asynchronously and part is taught face-to-face in a classroom with all students present. We have done online courses each way - Global Ecology (synchronous); Stars, Planets, and Life (synchronous and asynchronous); Darwin to DNA: An Overview of Evolution (asynchronous); Biodiversity Conservation (asynchronous); and Biology of Hunger and Population (blended). We will present the advantages and challenges we experienced teaching courses online in this fashion. Besides the advantages listed in the description for this session, another can be programmed learning that allows a set of sequential steps or a more complex branching of steps that allows students to repeat lessons multiple times to master the material. And from an academic standpoint, course content and assessment can be standardized, making it possible for each student to learn the same material. Challenges include resistance to online learning by a host of stakeholders who might be educators, students, parents, and the community. Equally challenging might be the readiness of instructors and students to teach and learn online. Student integrity issues such as plagiarism and cheating are a concern in a course taught online (Thormann and Zimmerman, 2012), so we will discuss our strategies to mitigate them.

  8. Assessing Attitudes Towards Science During an Adaptive Online Astrobiology Course: Comparing Online and On-Campus Undergraduates

    Science.gov (United States)

    Perera, Viranga; Mead, Chris; Buxner, Sanlyn; Horodyskyj, Lev; Semken, Steven; Lopatto, David; Anbar, Ariel

    2016-10-01

    General-education Science, Technology, Engineering, and Mathematics (STEM) courses are accepted as essential to a college education. An often cited reason is to train a scientifically literate populace who can think critically and make informed decisions about complex issues such as climate change, health care, and atomic energy. Goals of these STEM courses, therefore, go beyond content knowledge to include generating positive attitudes towards science, developing competence in evaluating scientific information in everyday life and understanding the nature of science. To gauge if such non-content learning outcomes are being met in our course, an online astrobiology course called Habitable Worlds, we administered the Classroom Undergraduate Research Experience (CURE) survey to students. The survey was administered before and after completion of the course for three semesters starting with the Fall 2014 semester and ending with the Fall 2015 semester (N = 774). A factor analysis indicated three factors on attitudes: toward science education, toward the interconnectedness of science with non-science fields, and toward the nature of science. Here we present some differences between students enrolled in online degree programs (o-course) and those enrolled in traditional undergraduate programs (i-course). While mean course grades were similar, changes in attitudes toward science differ significantly between o-course and i-course students. The o-course students began the course with more positive attitudes across all three factors than the i-course students. Their attitudes toward science education improved during the course, while the i-course students showed no change. Attitudes toward the other two factors declined in both populations during the course, but declines were smaller among o-course students. These differences may indicate lesser intrinsic motivation among the i-course students. The CURE survey has not been used before in an online course; therefore, we will

  9. International Journal of Biological and Chemical Sciences: About ...

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences: About this journal. Journal Home > International Journal of Biological and Chemical Sciences: About this journal. Log in or Register to get access to full text downloads.

  10. Referesher Course on Recent Advances in Chemical Science and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 9. Referesher Course on Recent Advances in Chemical Science and Its Technological Applications. Information and Announcements Volume 15 Issue 9 September 2010 pp 860-861 ...

  11. Social Science Boot Camp: Development and Assessment of a Foundational Course on Academic Literacy in the Social Sciences

    Science.gov (United States)

    Eaton, Judy; Long, Jennifer; Morris, David

    2018-01-01

    We developed a course, as part of our institution's core program, which provides students with a foundation in academic literacy in the social sciences: how to find, read, critically assess, and communicate about social science research. It is not a research methods course; rather, it is intended to introduce students to the social sciences and be…

  12. Survey of Biology Capstone Courses in American and Canadian Higher Education: Requirement, Content, and Skills

    Science.gov (United States)

    Haave, Neil C.

    2015-01-01

    Capstone experiences have high educational impact with various approaches available for biology. However, no information exists regarding the pervasiveness of capstone courses in Canadian and American biology programs. This study surveyed the prevalence and character of biology capstone courses in the USA and Canada. The survey included a majority…

  13. Archives: International Journal of Biological and Chemical Sciences

    African Journals Online (AJOL)

    Items 1 - 50 of 61 ... Archives: International Journal of Biological and Chemical Sciences. Journal Home > Archives: International Journal of Biological and Chemical Sciences. Log in or Register to get access to full text downloads.

  14. Evidence of The Importance of Philosophy of Science Course On Undergraduate Level

    Science.gov (United States)

    Suyono

    2018-01-01

    This study aimed to describe academic impact of Philosophy of Science course in change of students’ conceptions on the Nature of science (NOS) before and after attending the course. This study followed one group pretest-posttest design. Treatment in this study was Philosophy of Science course for one semester. Misconception diagnostic tests of the NOS had been developed by Suyono et al. (2015) equipped with Certainty of Response Index (CRI). It consists of 15 concept questions about the NOS. The number of students who were tested on Chemistry Education Program (CEP) and Chemistry Program (CP) respectively 42 and 45 students. This study shows that after the learning of Philosophy of Science course happened: (1) the decrease of the number of misconception students on the NOS from 47.47 to 19.20% in CEP and from 47.47 to 18.18% in CP and (2) the decrease in the number of concepts that understood as misconception by the large number of students from 11 to 2 concepts on the CEP and from 10 to 2 concepts on CP. Therefore, the existence of Philosophy of Science course has a positive academic impact on students from both programs on undergraduate level.

  15. Use of a virtual human performance laboratory to improve integration of mathematics and biology in sports science curricula in Sweden and the United States.

    Science.gov (United States)

    Garza, D; Besier, T; Johnston, T; Rolston, B; Schorsch, A; Matheson, G; Annerstedt, C; Lindh, J; Rydmark, M

    2007-01-01

    New fields such as bioengineering are exploring the role of the physical sciences in traditional biological approaches to problems, with exciting results in device innovation, medicine, and research biology. The integration of mathematics, biomechanics, and material sciences into the undergraduate biology curriculum will better prepare students for these opportunities and enhance cooperation among faculty and students at the university level. We propose the study of sports science as the basis for introduction of this interdisciplinary program. This novel integrated approach will require a virtual human performance laboratory dual-hosted in Sweden and the United States. We have designed a course model that involves cooperative learning between students at Göteborg University and Stanford University, utilizes new technologies, encourages development of original research and will rely on frequent self-assessment and reflective learning. We will compare outcomes between this course and a more traditional didactic format as well as assess the effectiveness of multiple web-hosted virtual environments. We anticipate the grant will result in a network of original faculty and student research in exercise science and pedagogy as well as provide the opportunity for implementation of the model in more advance training levels and K-12 programs.

  16. The Structure and Assessment of a Unique and Popular Interdisciplinary Science Course for Nonmajors

    Science.gov (United States)

    Train, Tonya Laakko; Gammon, David E.

    2012-01-01

    Science Without Borders is a unique interdisciplinary science course that uses group and active-learning strategies and is in high demand among nonscience majors at a masters-level university. Registrar data showed that nonscience majors were far more likely to choose this course compared with other, discipline-based science courses. In an…

  17. Guidelines for Developing Successful Short Advanced Courses in Systems Medicine and Systems Biology

    KAUST Repository

    Gomez-Cabrero, David

    2017-08-23

    Summary Systems medicine and systems biology have inherent educational challenges. These have largely been addressed either by providing new masters programs or by redesigning undergraduate programs. In contrast, short courses can respond to a different need: they can provide condensed updates for professionals across academia, the clinic, and industry. These courses have received less attention. Here, we share our experiences in developing and providing such courses to current and future leaders in systems biology and systems medicine. We present guidelines for how to reproduce our courses, and we offer suggestions for how to select students who will nurture an interdisciplinary learning environment and thrive there.

  18. Guidelines for Developing Successful Short Advanced Courses in Systems Medicine and Systems Biology

    KAUST Repository

    Gomez-Cabrero, David; Marabita, Francesco; Tarazona, Sonia; Cano, Isaac; Roca, Josep; Conesa, Ana; Sabatier, Philippe; Tegner, Jesper

    2017-01-01

    Summary Systems medicine and systems biology have inherent educational challenges. These have largely been addressed either by providing new masters programs or by redesigning undergraduate programs. In contrast, short courses can respond to a different need: they can provide condensed updates for professionals across academia, the clinic, and industry. These courses have received less attention. Here, we share our experiences in developing and providing such courses to current and future leaders in systems biology and systems medicine. We present guidelines for how to reproduce our courses, and we offer suggestions for how to select students who will nurture an interdisciplinary learning environment and thrive there.

  19. Successful Massive Open Online Climate Course on Climate Science and Psychology

    Science.gov (United States)

    Nuccitelli, D. A.; Cook, J.

    2015-12-01

    In 2015, the University of Queensland and edX launched a Massive Open Online Course (MOOC), 'Making Sense of Climate Science Denial.' The MOOC debunked approximately 50 common climate myths using elements of both physical science and psychology. Students learned how to recognise the social and psychological drivers of climate science denial, how to better understand climate change, how to identify the techniques and fallacies that climate myths employ to distort climate science, and how to effectively debunk climate misinformation. Contributors to the website Skeptical Science delivered the lectures, which were reinforced via interviews with climate science and psychology experts. Over 15,000 students from 167 countries enrolled in the course, and student feedback was overwhelmingly positive. This MOOC provides a model for effective climate science education.

  20. Learning the 'grammar of science': The influence of a physical science content course on teachers' understanding of the nature of science

    Science.gov (United States)

    Hanuscin, Deborah L.

    This research examined the development of practicing K--8 teachers' views of the nature of science (NOS) within a physical science content course. Reforms in science education have called for the teaching of science as inquiry. In order to achieve the vision of the reforms, teachers must understand science, both a body of knowledge and as a process, but also the very nature of science itself-or the values and assumptions inherent in the construction of scientific knowledge. NOS has been deemed a critical component of scientific literacy, with implications for making informed decisions about scientific claims. Research has indicated that despite the emphasis of reforms, teachers generally do not possess accurate views of NOS. Recent work in science education has led to the recommendation that efforts undertaken within teacher education programs to improve teachers' understanding of NOS can be enhanced through relevant coursework in other academic areas, including the sciences. The purpose of this dissertation was to provide an empirical basis for this recommendation, by examining the development of teachers' views of NOS within a physical science content course. To this end, the researcher employed qualitative methodology including participant observation, interview, document analysis, and questionnaire to assess teacher participants' views of the nature of science and the impact of their experience in the content course on these views. As a result of this research, implications for both the course design and science teacher education have been described. In addition, various aspects of the community of practice that characterizes the classroom that inhibit the development of understandings about the nature of science are identified. It is argued that instruction in NOS should be approached from the perspective that builds bridges between the communities of practice of learners and of scientists.

  1. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    Science.gov (United States)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  2. Students' conceptions of evidence during a university introductory forensic science course

    Science.gov (United States)

    Yeshion, Theodore Elliot

    Students' Conceptions of Science, Scientific Evidence, and Forensic Evidence during a University Introductory Forensic Science Course This study was designed to examine and understand what conceptions undergraduate students taking an introductory forensic science course had about scientific evidence. Because the relationships between the nature of science, the nature of evidence, and the nature of forensic evidence are not well understood in the science education literature, this study sought to understand how these concepts interact and affect students' understanding of scientific evidence. Four participants were purposefully selected for this study from among 89 students enrolled in two sections of an introductory forensic science course taught during the fall 2005 semester. Of the 89 students, 84 were criminal justice majors with minimal science background and five were chemistry majors with academic backgrounds in the natural and physical sciences. All 89 students completed a biographical data sheet and a pre-instruction Likert scale survey consisting of twenty questions relating to the nature of scientific evidence. An evaluation of these two documents resulted in a purposeful selection of four varied student participants, each of whom was interviewed three times throughout the semester about the nature of science, the nature of evidence, and the nature of forensic evidence. The same survey was administered to the participants again at the end of the semester-long course. This study examined students' assumptions, prior knowledge, their understanding of scientific inference, scientific theory, and methodology. Examination of the data found few differences with regard to how the criminal justice majors and the chemistry majors responded to interview questions about forensic evidence. There were qualitative differences, however, when the same participants answered interview questions relating to traditional scientific evidence. Furthermore, suggestions are

  3. Development and Implementation of an Integrated Science Course for Elementary Eduation Majors

    Science.gov (United States)

    Gunter, Mickey E.; Gammon, Steven D.; Kearney, Robert J.; Waller, Brenda E.; Oliver, David J.

    1997-02-01

    Currently the scientific community is trying to increase the general populationapos;s knowledge of science. These efforts stem from the fact that the citizenry needs a better understanding of scientific knowledge to make informed decisions on many issues of current concern. The problem of scientific illiteracy begins in grade school and can be traced to inadequate exposure to science and scientific thinking during the preparation of K - 8 teachers. Typically preservice elementary teachers are required to take only one or two disconnected science courses to obtain their teaching certificates. Also, introductory science courses are often large and impersonal, with the result that while students pass the courses, they may learn very little and retain even less.

  4. Science Academies' Refresher Course on Advanced Quantum ...

    Indian Academy of Sciences (India)

    IAS Admin

    2016-10-10

    Sponsored by Indian Academy of Sciences, Bengaluru. Indian National ... brief statement (between 250 and 500 words) as to why they think the Course will help to improve their classroom ... Last date for receipt of applications: October 10, 2016.

  5. Rethinking the Elementary Science Methods Course: A Case for Content, Pedagogy, and Informal Science Education.

    Science.gov (United States)

    Kelly, Janet

    2000-01-01

    Indicates the importance of preparing prospective teachers who will be elementary science teachers with different methods. Presents the theoretical and practical rationale for developing a constructivist-based elementary science methods course. Discusses the impact student knowledge and understanding of science and student attitudes has on…

  6. A Composite Self-Report: Reasons for Taking Science Courses as Given by Cocoa High School Science Students.

    Science.gov (United States)

    Louwerse, Frances H.

    A self-report instrument (questionnaire/reaction scale) was developed and administered to students in grades 9-12 to: (1) determine the number of science courses taken by each grade level; (2) estimate the number of science courses requested for future years and indicate where recruitment efforts would be needed; (3) examine other-directed reasons…

  7. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    Science.gov (United States)

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  8. Student Buy-In to Active Learning in a College Science Course

    Science.gov (United States)

    Cavanagh, Andrew J.; Aragón, Oriana R.; Chen, Xinnian; Couch, Brian; Durham, Mary; Bobrownicki, Aiyana; Hanauer, David I.; Graham, Mark J.

    2016-01-01

    The benefits of introducing active learning in college science courses are well established, yet more needs to be understood about student buy-in to active learning and how that process of buy-in might relate to student outcomes. We test the exposure–persuasion–identification–commitment (EPIC) process model of buy-in, here applied to student (n = 245) engagement in an undergraduate science course featuring active learning. Student buy-in to active learning was positively associated with engagement in self-regulated learning and students’ course performance. The positive associations among buy-in, self-regulated learning, and course performance suggest buy-in as a potentially important factor leading to student engagement and other student outcomes. These findings are particularly salient in course contexts featuring active learning, which encourage active student participation in the learning process. PMID:27909026

  9. A case-based, small-group cooperative learning course in preclinical veterinary science aimed at bridging basic science and clinical literacy.

    Science.gov (United States)

    Schoeman, J P; van Schoor, M; van der Merwe, L L; Meintjes, R A

    2009-03-01

    In 1999 a dedicated problem-based learning course was introduced into the lecture-based preclinical veterinary curriculum of the University of Pretoria. The Introduction to Clinical Studies Course combines traditional lectures, practical sessions, student self-learning and guided tutorials. The self-directed component of the course utilises case-based, small-group cooperative learning as an educational vehicle to link basic science with clinical medicine. The aim of this article is to describe the objectives and structure of the course and to report the results of the assessment of the students' perceptions on some aspects of the course. Students reacted very positively to the ability of the course to equip them with problem-solving skills. Students indicated positive perceptions about the workload of the course. There were, however, significantly lower scores for the clarity of the course objectives. Although the study guide for the course is very comprehensive, the practice regarding the objectives is still uncertain. It is imperative to set clear objectives in non-traditional, student-centred courses. The objectives have to be explained at the outset and reiterated throughout the course. Tutors should also communicate the rationale behind problem-based learning as a pedagogical method to the students. Further research is needed to verify the effectiveness of this course in bridging the gap between basic science and clinical literacy in veterinary science. Ongoing feedback and assessment of the management and content are important to refine this model for integrating basic science with clinical literacy.

  10. Network biology: Describing biological systems by complex networks. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    Science.gov (United States)

    Jalili, Mahdi

    2018-03-01

    I enjoyed reading Gosak et al. review on analysing biological systems from network science perspective [1]. Network science, first started within Physics community, is now a mature multidisciplinary field of science with many applications ranging from Ecology to biology, medicine, social sciences, engineering and computer science. Gosak et al. discussed how biological systems can be modelled and described by complex network theory which is an important application of network science. Although there has been considerable progress in network biology over the past two decades, this is just the beginning and network science has a great deal to offer to biology and medical sciences.

  11. Integrating Climate Change Science and Sustainability in Environmental Science, Sociology, Philosophy and Business Courses.

    Science.gov (United States)

    Boudrias, M. A.; Cantzler, J.; Croom, S.; Huston, C.; Woods, M.

    2015-12-01

    Courses on sustainability can be taught from multiple perspectives with some focused on specific areas (environmental, socio-cultural, economic, ethics) and others taking a more integrated approach across areas of sustainability and academic disciplines. In conjunction with the Climate Change Education Program efforts to enhance climate change literacy with innovative approaches, resources and communication strategies developed by Climate Education Partners were used in two distinct ways to integrate climate change science and impacts into undergraduate and graduate level courses. At the graduate level, the first lecture in the MBA program in Sustainable Supply Chain Management is entirely dedicated to climate change science, local and global impacts and discussions about key messages to communicate to the business community. Basic science concepts are integrated with discussions about mitigation and adaptation focused on business leaders. The concepts learned are then applied to the semester-long business plan project for the students. At the undergraduate level, a new model of comprehensive integration across disciplines was implemented in Spring 2015 across three courses on Sustainability each with a specific lens: Natural Science, Sociology and Philosophy. All three courses used climate change as the 'big picture' framing concept and had similar learning objectives creating a framework where lens-specific topics, focusing on depth in a discipline, were balanced with integrated exercises across disciplines providing breadth and possibilities for integration. The comprehensive integration project was the creation of the climate action plan for the university with each team focused on key areas of action (water, energy, transportation, etc.) and each team built with at least one member from each class ensuring a natural science, sociological and philosophical perspective. The final project was presented orally to all three classes and an integrated paper included

  12. A Short Course in Problems in Applied Science and Engineering.

    Science.gov (United States)

    Nicholson, H. W.

    1987-01-01

    Provides a description of a concentrated four-week term course that provided students with opportunities of association with applied science and engineering professionals. Reviews the program's organizational structure, project requirements, and summarizes students reactions to the course. (ML)

  13. [Applications of synthetic biology in materials science].

    Science.gov (United States)

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  14. 77 FR 19740 - Biological Sciences Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-04-02

    ... NATIONAL SCIENCE FOUNDATION Biological Sciences Advisory Committee; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L., 92- 463, as amended), the National Science Foundation announces the following meeting: Name: Biological Sciences Advisory Committee ( 1110). Date and...

  15. Quantitative Modeling of Membrane Transport and Anisogamy by Small Groups Within a Large-Enrollment Organismal Biology Course

    Directory of Open Access Journals (Sweden)

    Eric S. Haag

    2016-12-01

    Full Text Available Quantitative modeling is not a standard part of undergraduate biology education, yet is routine in the physical sciences. Because of the obvious biophysical aspects, classes in anatomy and physiology offer an opportunity to introduce modeling approaches to the introductory curriculum. Here, we describe two in-class exercises for small groups working within a large-enrollment introductory course in organismal biology. Both build and derive biological insights from quantitative models, implemented using spreadsheets. One exercise models the evolution of anisogamy (i.e., small sperm and large eggs from an initial state of isogamy. Groups of four students work on Excel spreadsheets (from one to four laptops per group. The other exercise uses an online simulator to generate data related to membrane transport of a solute, and a cloud-based spreadsheet to analyze them. We provide tips for implementing these exercises gleaned from two years of experience.

  16. Darwinism in Context: An interdisciplinary, highly contextualized course on nature of science

    Directory of Open Access Journals (Sweden)

    Kostas Kampourakis

    2015-10-01

    Full Text Available In this article, we describe a course, titled Darwinism in Context, which focuses on the social, cultural and scientific influences on the development of Darwin's theory. This was an interdisciplinary, highly contextualized nature of science course that aimed to help students learn about a core nature of science aspect: that there are historical, cultural and social influences on the practice and directions of science. For this purpose, the course was based on a well-documented historical case study: the development of Darwin's theory. The course consisted of five classes that focused on: (a Victorian society, (b the views and beliefs of scholars that had an impact on Darwin's thinking (historical influences, (c aspects of Darwin's personal and social life that influenced the publication of his theory (social influences, (d the reception of Darwin's theory and the relationship between religion and science (cultural influences and (e the relationship between science and literature. In all cases, teaching included presentations of the historical events but was mostly based on the analysis and discussion of excerpts from the respective original writings. During the classes only a few examples were presented; students were motivated to study further the original writings and identify some key concepts and ideas after the classes. It is concluded that this kind of highly contextualized nature of science instruction can provide students with a more authentic view of science.

  17. Science Academies' Refresher Course on Theoretical Structural ...

    Indian Academy of Sciences (India)

    A course on Theoretical Structural Geology, Crystallography, Mineralogy, Thermodynamics, Exper- imental Petrology and Theoretical Geophysics will be conducted in the Jallahalli Campus under the aegis of Indian Academy of Sciences during 20th November to 4th December, 2017. University lec- turers, Research ...

  18. Science, Technology, and Society: Some Philosophical Reflections on a Grade 11 Course.

    Science.gov (United States)

    Gardner, Paul L.

    1993-01-01

    Speculates on factors that may influence the lack of status of a "Science and Technology" course for grade 11 in British Columbia. Suggests that Aristotelian conceptions of the superiority of pure science over practical knowledge affect the status of school subjects. Questions the course's portrayal of the nature of technology and…

  19. Comparisons Between Science Knowledge, Interest, and Information Literacy of Learners in Introductory Astronomy Courses

    Science.gov (United States)

    Buxner, Sanlyn; Impey, Chris David; Formanek, Martin; Wenger, Matthew

    2018-01-01

    Introductory astronomy courses are exciting opportunities to engage non-major students in scientific issues, new discoveries, and scientific thinking. Many undergraduate students take these courses to complete their general education requirements. Many free-choice learners also take these courses, but for their own interest. We report on a study comparing the basic science knowledge, interest in science, and information literacy of undergraduate students and free choice learners enrolled in introductory astronomy courses run by the University of Arizona. Undergraduate students take both in-person and online courses for college credit. Free choice learners enroll in massive open online courses (MOOCs), through commercial platforms, that can earn them a certificate (although most do not take advantage of that opportunity). In general, we find that undergraduate students outperform the general public on basic science knowledge and that learners in our astronomy MOOCs outperform the undergraduate students in the study. Learners in the MOOC have higher interest in science in general. Overall, learners in both groups report getting information about science from online sources. Additionally, learners’ judgement of the reliability of different sources of information is weakly related to their basic science knowledge and more strongly related to how they describe what it means to study something scientifically. We discuss the implications of our findings for both undergraduate students and free-choice learners as well as instructors of these types of courses.

  20. Reforming an Undergraduate Environmental Science Course for Nonscience Majors

    Science.gov (United States)

    Kazempour, Mahsa; Amirshokoohi, Aidin

    2013-01-01

    This article discusses the key components of a reform-based introductory undergraduate environmental science course for nonscience majors and elementary teacher candidates as well as the impact of such components on the participants. The main goals for the course were to actively engage the students in their learning and, in doing so, to enhance…

  1. Science Academies' Refresher Course on Modern Genetics ...

    Indian Academy of Sciences (India)

    IAS Admin

    The objective of this Refresher Course is to give the participants a hands-on training on genetics and molecular biology techniques; and the theory behind them. A variety of teaching methods such as lectures, interaction with renowned resource persons, discussion and laboratory work shall facilitate the learning process.

  2. A Comprehensive Course Introducing Environmental Science : Case Study of “Introduction to Environmental Science” as a Common Course in the Graduate School of Environmental Science

    OpenAIRE

    山中, 康裕; 三井, 翔太

    2017-01-01

    The course “Introduction to Environmental Science” was designed and held during the academic year 2015-2016 for new masterʼs course students at the Graduate School of Environmental Science, Hokkaido University. The course was designed in accord with societal needs such as consensus building for environmental conservation and associated scientific evidence, bringing together a large number of students from various disciplines. The course was composed of six modules in which multipl...

  3. Energy Connections and Misconnections across Chemistry and Biology.

    Science.gov (United States)

    Kohn, Kathryn P; Underwood, Sonia M; Cooper, Melanie M

    2018-01-01

    Despite the number of university students who take courses in multiple science disciplines, little is known about how they connect concepts between disciplines. Energy is a concept that underlies all scientific phenomena and, as such, provides an appropriate context in which to investigate student connections and misconnections across disciplines. In this study, university students concurrently enrolled in introductory chemistry and biology were interviewed to explore their perceptions of the integration of energy both within and across the disciplines, and how they attempted to accommodate and reconcile different disciplinary approaches to energy, to inform future, interdisciplinary course reform. Findings suggest that, while students believed energy to be important to the scientific world and to the disciplines of biology and chemistry, the extent to which it was seen as central to success in their courses varied. Differences were also apparent in students' descriptions of the molecular-level mechanisms by which energy transfer occurs. These findings reveal a disconnect between how energy is understood and used in introductory science course work and uncovers opportunities to make stronger connections across the disciplines. We recommend that instructors engage in interdisciplinary conversations and consider the perspectives and goals of other disciplines when teaching introductory science courses. © 2018 K. P. Kohn et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    2016 Nobel Prize in Chemistry: Conferring Molecular Machines as Engines of Creativity ... Science Academies' 92nd Refresher Course in Experimental Physics ... Science Academies' Refresher Course on Advances in Molecular Biology.

  5. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    Science.gov (United States)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    Earth Science II: The Solid Earth -- Earth History and Planetary Science -- is the second of two Earth Science courses, and one of eleven graduate level science Contextualized Content Courses (CCC), that have been developed by the Boston Science Partnership as part of an NSF-funded Math Science Partnership program. A core goal of these courses is to provide high level science content to middle and high school teachers while modeling good instructional practices directly tied to the Boston Public Schools and Massachusetts science curriculum frameworks. All of these courses emphasize hands-on, lab-based, inquiry-driven, student-centered lessons. The Earth Science II team aimed to strictly adhere to ABC (Activity Before Concept) and 5E/7E models of instruction, and limited lecture or teacher-centered instruction to the later “Explanation” stages of all lessons. We also introduced McNeill and Krajick’s Claim-Evidence-Reasoning (CER) model of scientific explanation for middle school classroom discourse, both as a powerful scaffold leading to higher levels of accountable talk in the classroom, and to model science as a social construct. Daily evaluations, dutifully filled out by the course participants and diligently read by the course instructors, were quite useful in adapting instruction to the needs of the class on a real-time basis. We find the structure of the CCC teaching teams - university-based faculty providing expert content knowledge, K-12-based faculty providing age appropriate pedagogies and specific links to the K-12 curriculum - quite a fruitful, two-way collaboration. From the students’ perspective, one of the most useful takeaways from the university-based faculty was “listening to experts model out loud how they reason,” whereas some of the more practical takeaways (i.e., lesson components directly portable to the classroom?) came from the K-12-based faculty. The main takeaways from the course as a whole were the promise to bring more hands

  6. A case-based, small-group cooperative learning course in preclinical veterinary science aimed at bridging basic science and clinical literacy

    Directory of Open Access Journals (Sweden)

    J.P. Schoeman

    2009-05-01

    Full Text Available In 1999 a dedicated problem-based learning course was introduced into the lecture-based preclinical veterinary curriculum of the University of Pretoria. The Introduction to Clinical Studies Course combines traditional lectures, practical sessions, student self-learning and guided tutorials. The self-directed component of the course utilises case-based, small group cooperative learning as an educational vehicle to link basic science with clinical medicine. The aim of this article is to describe the objectives and structure of the course and to report the results of the assessment of the students' perceptions on some aspects of the course. Students reacted very positively to the ability of the course to equip them with problem-solving skills. Students indicated positive perceptions about the workload of the course. There were, however, significantly lower scores for the clarity of the course objectives. Although the study guide for the course is very comprehensive, the practice regarding the objectives is still uncertain. It is imperative to set clear objectives in non-traditional, student-centred courses. The objectives have to be explained at the outset and reiterated throughout the course. Tutors should also communicate the rationale behind problem based learning as a pedagogical method to the students. Further research is needed to verify the effectiveness of this course in bridging the gap between basic science and clinical literacy in veterinary science. Ongoing feedback and assessment of the management and content are important to refine this model for integrating basic science with clinical literacy.

  7. Teaching for Conceptual Change in Elementary and Secondary Science Methods Courses.

    Science.gov (United States)

    Marion, Robin; Hewson, Peter W.; Tabachnick, B. Robert; Blomker, Kathryn B.

    1999-01-01

    Describes and analyzes two science methods courses at the elementary and secondary levels for how they addressed four ideas: (1) how students learn science; (2) how teachers teach science to students; (3) how prospective science teachers learn about the first two ideas; and (4) how methods instructors teach prospective science teachers about the…

  8. An Intervention to Improve Academic Literacies in a First Year University Biology Course

    Directory of Open Access Journals (Sweden)

    Roisin Kelly-Laubscher

    2015-02-01

    Full Text Available In South Africa there are many students, especially those from previously underrepresented groups at university, who successfully gain access to university but do not succeed in completing their degree either within the prescribed time or at all.  One of the barriers to student success at university is the difficulty these students have in accessing the literacy practices of the disciplines.  Therefore, within a first year biology course at a South African University, an intervention that focused on the academic literacy practices in biology was introduced. The intervention was designed around the assignment of writing a lab report. This paper describes this intervention and how it impacted on one student’s journey from learning science at school to learning science at university.  A literacy history interview and ‘talk around text’ interviews were used to assess the student’s experience of the intervention. Comparison of the student’s first and final drafts of the report revealed changes in the style and format of his writing. These changes in his report writing as well as in his attitude and motivation for writing the report were facilitated by a better understanding of the expectations of writing in university biology. This understanding was mediated largely through the modelling and deconstruction of the expected genre. This highlights not only the importance of providing first year students with examples of the genres they are  expected to be writing but also the facilitation of their engagement with these new genres. Without these kinds of intervention many students are unlikely to gain access to disciplinary ways of learning and writing, which ultimately may lead to their exclusion from university.

  9. Online citizen science games: Opportunities for the biological sciences.

    Science.gov (United States)

    Curtis, Vickie

    2014-12-01

    Recent developments in digital technologies and the rise of the Internet have created new opportunities for citizen science. One of these has been the development of online citizen science games where complex research problems have been re-imagined as online multiplayer computer games. Some of the most successful examples of these can be found within the biological sciences, for example, Foldit, Phylo and EteRNA. These games offer scientists the opportunity to crowdsource research problems, and to engage with those outside the research community. Games also enable those without a background in science to make a valid contribution to research, and may also offer opportunities for informal science learning.

  10. Using Zebrafish to Implement a Course-Based Undergraduate Research Experience to Study Teratogenesis in Two Biology Laboratory Courses

    Science.gov (United States)

    Chism, Grady W.; Vaughan, Martin A.; Muralidharan, Pooja; Marrs, Jim A.

    2016-01-01

    Abstract A course-based undergraduate research experience (CURE) spanning three semesters was introduced into freshman and sophomore biology classes, with the hypothesis that participation in a CURE affects skills in research, communication, and collaboration, which may help students persist in science. Student research projects were centered on the hypothesis that nicotine and caffeine exposure during early development affects gastrulation and heart development in zebrafish. First, freshmen generated original data showing distinct effects of embryonic nicotine and caffeine exposure on zebrafish heart development and function. Next, Cell Biology laboratory students continued the CURE studies and identified novel teratogenic effects of nicotine and caffeine during gastrulation. Finally, new freshmen continued the CURE research, examining additional toxicant effects on development. Students designed new protocols, made measurements, presented results, and generated high-quality preliminary data that were studied in successive semesters. By implementing this project, the CURE extended faculty research and provided a scalable model to address national goals to involve more undergraduates in authentic scientific research. In addition, student survey results support the hypothesis that CUREs provide significant gains in student ability to (1) design experiments, (2) analyze data, and (3) make scientific presentations, translating into high student satisfaction and enhanced learning. PMID:26829498

  11. Preservice Science Teacher Beliefs about Teaching and the Science Methods Courses: Exploring Perceptions of Microteaching Outcomes

    Science.gov (United States)

    McLaury, Ralph L.

    2011-01-01

    This study investigates beliefs about teaching held by preservice science teachers and their influences on self-perceived microteaching outcomes within interactive secondary science teaching methods courses. Hermeneutic methodology was used in cooperation with seven preservice science teachers (N = 7) to infer participant beliefs about teaching…

  12. Changes in Biology Self-Efficacy during a First-Year University Course

    Science.gov (United States)

    Ainscough, Louise; Foulis, Eden; Colthorpe, Kay; Zimbardi, Kirsten; Robertson-Dean, Melanie; Chunduri, Prasad; Lluka, Lesley

    2016-01-01

    Academic self-efficacy encompasses judgments regarding one's ability to perform academic tasks and is correlated with achievement and persistence. This study describes changes in biology self-efficacy during a first-year course. Students (n = 614) were given the Biology Self-Efficacy Scale at the beginning and end of the semester. The instrument…

  13. Science and the Nonscience Major: Addressing the Fear Factor in the Chemical Arena Using Forensic Science

    Science.gov (United States)

    Labianca, Dominick A.

    2007-01-01

    This article describes an approach to minimizing the "fear factor" in a chemistry course for the nonscience major, and also addresses relevant applications to other science courses, including biology, geology, and physics. The approach emphasizes forensic science and affords students the opportunity to hone their analytical skills in an…

  14. 5. Conference cycle. The radiations and the Biological Sciences

    International Nuclear Information System (INIS)

    Balcazar G, M.; Chavez B, A.

    1991-06-01

    Nuclear technologies and their development have influenced many aspects of modern life. Besides used for electricity production nuclear technologies are applied in many other fields, especially in biological sciences. In genetics and molecular biology they enable research resulting in increased food production and better food preservation. Usage in material sciences lead to new varieties of plastics or improved characteristics. Nuclear applications are used in pe troleum industries and in forecasting geothermic power. Radiobiology and radiotherapy enable diagnosis and therapy of several diseases, e.g. cancer. Nuclear technologies also contribute to preserve the environment. They offer methods to analyse as well as decrease the environmental impacts. The 5. conference cyle entitled 'The Radiations and the Biological Sciences' aims to inform students of biological sciences about new nuclear technologies applied in their field of interest

  15. Science Credit for Agriculture: Perceived Support, Preferred Implementation Methods and Teacher Science Course Work.

    Science.gov (United States)

    Johnson, Donald M.

    1996-01-01

    Arkansas agriculture teachers (213 of 259 surveyed) expressed support for granting science credit for agriculture (88.8%); 65.6% supported science credit for a limited number of agriculture courses. Blanket endorsement for all certified agriculture teachers was favored by 71.5%; 56.6% preferred endorsement only for certified teachers completing an…

  16. Cell migration analysis: A low-cost laboratory experiment for cell and developmental biology courses using keratocytes from fish scales.

    Science.gov (United States)

    Prieto, Daniel; Aparicio, Gonzalo; Sotelo-Silveira, Jose R

    2017-11-01

    Cell and developmental processes are complex, and profoundly dependent on spatial relationships that change over time. Innovative educational or teaching strategies are always needed to foster deep comprehension of these processes and their dynamic features. However, laboratory exercises in cell and developmental biology at the undergraduate level do not often take into account the time dimension. In this article, we provide a laboratory exercise focused in cell migration, aiming to stimulate thinking in time and space dimensions through a simplification of more complex processes occurring in cell or developmental biology. The use of open-source tools for the analysis, as well as the whole package of raw results (available at http://github.com/danielprieto/keratocyte) make it suitable for its implementation in courses with very diverse budgets. Aiming to facilitate the student's transition from science-students to science-practitioners we propose an exercise of scientific thinking, and an evaluation method. This in turn is communicated here to facilitate the finding of common caveats and weaknesses in the process of producing simple scientific communications describing the results achieved. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):475-482, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  17. Science Ideals and Science Careers in a University Biology Department

    Science.gov (United States)

    Long, David E.

    2014-01-01

    In an ethnographic study set within a biology department of a public university in the United States, incongruity between the ideals and practice of science education are investigated. Against the background of religious conservative students' complaints about evolution in the curriculum, biology faculty describe their political intents for…

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Science Academies' Refresher Course on Paradigms and Applications of Pattern Recognition in Image Processing and Computer Vision · More Details Fulltext PDF. pp 1101-1101 Information and Announcements. Science Academies' Refresher Course on Cell and Molecular Biology Techniques · More Details Fulltext PDF.

  19. Exploration of offering photoelectric experimental general elective courses for college students of science and technology

    Science.gov (United States)

    Tao, Shen; Sun, Binchao

    2017-08-01

    The necessity of offering photoelectric experiment general elective courses, such as the experiments of modern optical and innovational photoelectric design for non optic-electric's science and engineering students were discussed based on the analysis of the status quo and problems in experimental general elective course in science and engineering colleges of our country. And the characters of photoelectric disciplines, the goal of science and engineering quality-oriented education and the reform of science education at home and abroad were also considered. The instructional objectives, contents and characteristics of the courses were investigated. The specific methods, the CDIO (conceive, design, implement and operate) mode in the general courses has been proposed; the experiences and practical effects of offering these courses were concluded.

  20. Student Perceived and Determined Knowledge of Biology Concepts in an Upper-Level Biology Course

    Science.gov (United States)

    Ziegler, Brittany; Montplaisir, Lisa

    2014-01-01

    Students who lack metacognitive skills can struggle with the learning process. To be effective learners, students should recognize what they know and what they do not know. This study examines the relationship between students' perception of their knowledge and determined knowledge in an upper-level biology course utilizing a pre/posttest…

  1. Gender, Math Confidence, and Grit: Relationships with Quantitative Skills and Performance in an Undergraduate Biology Course.

    Science.gov (United States)

    Flanagan, K M; Einarson, J

    2017-01-01

    In a world filled with big data, mathematical models, and statistics, the development of strong quantitative skills is becoming increasingly critical for modern biologists. Teachers in this field must understand how students acquire quantitative skills and explore barriers experienced by students when developing these skills. In this study, we examine the interrelationships among gender, grit, and math confidence for student performance on a pre-post quantitative skills assessment and overall performance in an undergraduate biology course. Here, we show that females significantly underperformed relative to males on a quantitative skills assessment at the start of term. However, females showed significantly higher gains over the semester, such that the gender gap in performance was nearly eliminated by the end of the semester. Math confidence plays an important role in the performance on both the pre and post quantitative skills assessments and overall performance in the course. The effect of grit on student performance, however, is mediated by a student's math confidence; as math confidence increases, the positive effect of grit decreases. Consequently, the positive impact of a student's grittiness is observed most strongly for those students with low math confidence. We also found grit to be positively associated with the midterm score and the final grade in the course. Given the relationships established in this study among gender, grit, and math confidence, we provide "instructor actions" from the literature that can be applied in the classroom to promote the development of quantitative skills in light of our findings. © 2017 K. M. Flanagan and J. Einarson. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http

  2. Opportunities in Biological Sciences; [VGM Career Horizons Series].

    Science.gov (United States)

    Winter, Charles A.

    This book provides job descriptions and discusses career opportunities in various fields of the biological sciences. These fields include: (1) biotechnology, genetics, biomedical engineering, microbiology, mycology, systematic biology, marine and aquatic biology, botany, plant physiology, plant pathology, ecology, and wildlife biology; (2) the…

  3. Profiles of Motivated Self-Regulation in College Computer Science Courses: Differences in Major versus Required Non-Major Courses

    Science.gov (United States)

    Shell, Duane F.; Soh, Leen-Kiat

    2013-12-01

    The goal of the present study was to utilize a profiling approach to understand differences in motivation and strategic self-regulation among post-secondary STEM students in major versus required non-major computer science courses. Participants were 233 students from required introductory computer science courses (194 men; 35 women; 4 unknown) at a large Midwestern state university. Cluster analysis identified five profiles: (1) a strategic profile of a highly motivated by-any-means good strategy user; (2) a knowledge-building profile of an intrinsically motivated autonomous, mastery-oriented student; (3) a surface learning profile of a utility motivated minimally engaged student; (4) an apathetic profile of an amotivational disengaged student; and (5) a learned helpless profile of a motivated but unable to effectively self-regulate student. Among CS majors and students in courses in their major field, the strategic and knowledge-building profiles were the most prevalent. Among non-CS majors and students in required non-major courses, the learned helpless, surface learning, and apathetic profiles were the most prevalent. Students in the strategic and knowledge-building profiles had significantly higher retention of computational thinking knowledge than students in other profiles. Students in the apathetic and surface learning profiles saw little instrumentality of the course for their future academic and career objectives. Findings show that students in STEM fields taking required computer science courses exhibit the same constellation of motivated strategic self-regulation profiles found in other post-secondary and K-12 settings.

  4. Pengembangan Media Video Interaktif Berbasis Penelitian sebagai Penunjang Matakuliah Teknik Analisis Biologi Molekuler di Universitas Negeri Malang

    OpenAIRE

    Nurmawati, Ira

    2014-01-01

    Nowadays, in the newest era of biology science,biology has progressed and developed. One of the developments marked by the need for Biological Sciences in the field of bioengineering.Thus, it is importance for under graduates have a competence in technical analysis of molecular biology. One course that teaches techniques related to Molecular Biologyis Technical Analysis of Molecular Biology.Based on the results of the needs analysis survey conducted teaching in Technical Analysis Course Molec...

  5. The Importance of Attendance in an Introductory Textile Science Course

    Science.gov (United States)

    Marcketti, Sara B.; Wang, Xinxin; Greder, Kate

    2013-01-01

    At Iowa State University, the introductory textile science course is a required 4-credit class for all undergraduate students enrolled in the Apparel, Merchandising, and Design Program. Frustrated by a perceived gap between students who easily comprehended course material and those who complained and struggled, the instructor implemented an…

  6. Peer Learning and Support of Technology in an Undergraduate Biology Course to Enhance Deep Learning

    Science.gov (United States)

    Tsaushu, Masha; Tal, Tali; Sagy, Ornit; Kali, Yael; Gepstein, Shimon; Zilberstein, Dan

    2012-01-01

    This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher…

  7. IBPRO - A Novel Short-Duration Teaching Course in Advanced Physics and Biology Underlying Cancer Radiotherapy.

    Science.gov (United States)

    Joiner, Michael C; Tracey, Monica W; Kacin, Sara E; Burmeister, Jay W

    2017-06-01

    This article provides a summary and status report of the ongoing advanced education program IBPRO - Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists.

  8. Science Academies' Refresher Course on Multiomic Applications in ...

    Indian Academy of Sciences (India)

    and epigenetics, transcriptomics, proteomics, and metabolomics and data analysis. Applications are invited from teachers with experience in teaching undergraduate and postgraduate courses in Life Sciences, Agriculture and Technology. Applications from highly motivated Research. Scholars will also be considered.

  9. Science ethics education part II: changes in attitude toward scientific fraud among medical researchers after a short course in science ethics.

    Science.gov (United States)

    Vuckovic-Dekic, L; Gavrilovic, D; Kezic, I; Bogdanovic, G; Brkic, S

    2012-01-01

    To determine the impact of the short science ethics courses on the knowledge of basic principles of responsible conduct of research (RCR), and on the attitude toward scientific fraud among young biomedical researchers. A total of 361 attendees of the course on science ethics answered a specially designed anonymous multiple- choice questionnaire before and after a one-day course in science ethics. The educational course consisted of 10 lectures: 1) Good scientific practice - basic principles; 2) Publication ethics; 3) Scientific fraud - fabrication, falsification, plagiarism; 4) Conflict of interests; 5) Underpublishing; 6) Mentorship; 7) Authorship; 8) Coauthorship; 9) False authorship; 10) Good scientific practice - ethical codex of science. In comparison to their answers before the course, a significantly higher (pscience ethics as sufficient after the course was completed. That the wrongdoers deserve severe punishment for all types of scientific fraud, including false authorship, thought significantly (pscience ethics had a great impact on the attendees, enlarging their knowledge of responsible conduct of research and changing their previous, somewhat opportunistic, behavior regarding the reluctance to react publicly and punish the wrongdoers.

  10. Practicing the practice: Learning to guide elementary science discussions in a practice-oriented science methods course

    Science.gov (United States)

    Shah, Ashima Mathur

    University methods courses are often criticized for telling pre-service teachers, or interns, about the theories behind teaching instead of preparing them to actually enact teaching. Shifting teacher education to be more "practice-oriented," or to focus more explicitly on the work of teaching, is a current trend for re-designing the way we prepare teachers. This dissertation addresses the current need for research that unpacks the shift to more practice-oriented approaches by studying the content and pedagogical approaches in a practice-oriented, masters-level elementary science methods course (n=42 interns). The course focused on preparing interns to guide science classroom discussions. Qualitative data, such as video records of course activities and interns' written reflections, were collected across eight course sessions. Codes were applied at the sentence and paragraph level and then grouped into themes. Five content themes were identified: foregrounding student ideas and questions, steering discussion toward intended learning goals, supporting students to do the cognitive work, enacting teacher role of facilitator, and creating a classroom culture for science discussions. Three pedagogical approach themes were identified. First, the teacher educators created images of science discussions by modeling and showing videos of this practice. They also provided focused teaching experiences by helping interns practice the interactive aspects of teaching both in the methods classroom and with smaller groups of elementary students in schools. Finally, they structured the planning and debriefing phases of teaching so interns could learn from their teaching experiences and prepare well for future experiences. The findings were analyzed through the lens of Grossman and colleagues' framework for teaching practice (2009) to reveal how the pedagogical approaches decomposed, represented, and approximated practice throughout course activities. Also, the teacher educators

  11. Understanding Science and Technology Interactions Through Ocean Science Exploration: A Summer Course for Science Teachers

    Science.gov (United States)

    Baldauf, J.; Denton, J.

    2003-12-01

    In order to replenish the national supply of science and mathematics educators, the National Science Foundation has supported the formation of the Center for Applications of Information Technology in the Teaching and Learning of Science (ITS) at Texas A&M University. The center staff and affiliated faculty work to change in fundamental ways the culture and relationships among scientists, educational researchers, and teachers. ITS is a partnership among the colleges of education, science, geosciences, agriculture and life science at Texas A&M University. Participants (teachers and graduate students) investigate how science is done and how science is taught and learned; how that learning is assessed, and how scholarly networks among all engaged in this work can be encouraged. While the center can offer graduate degrees most students apply as non-degree seekers. ITS participants are schooled on classroom technology applications, experience working on project teams, and access very current research work being conducted by scientists. ITS offers a certificate program consisting of two summer sessions over two years that results in 12 hours of graduate credit that can be applied to a degree. Interdisciplinary project teams spend three intense weeks connecting current research to classroom practices. During the past summer with the beginning of the two-year sequence, a course was implemented that introduced secondary teachers to Ocean Drilling Program (ODP) contributions to major earth science themes, using core and logging data, engineering (technology) tools and processes. Information Technology classroom applications were enhanced through hands-on laboratory exercises, web resources and online databases. The course was structured around the following objectives. 1. Distinguish the purpose and goals of the Ocean Drilling Program from the Integrated Ocean Drilling Program and describe the comparable science themes (ocean circulation, marine sedimentation, climate history

  12. Short communication: Characteristics of student success in an undergraduate physiology and anatomy course.

    Science.gov (United States)

    Gwazdauskas, F C; McGilliard, M L; Corl, B A

    2014-10-01

    Several factors affect the success of students in college classes. The objective of this research was to determine what factors affect success of undergraduate students in an anatomy and physiology class. Data were collected from 602 students enrolled in the Agriculture and Life Sciences (ALS) 2304 Animal Physiology and Anatomy course from 2005 through 2012. The data set included 476 females (79.1%) and 126 males (20.9%). Time to complete exams was recorded for each student. For statistical analyses, students' majors were animal and poultry sciences (APSC), agricultural sciences, biochemistry, biological sciences, dairy science, and "other," which combined all other majors. All analyses were completed using the GLIMMIX procedure of SAS (SAS Institute Inc., Cary, NC). Gender, major, matriculation year, major by year interaction, gender by year interaction, and time to complete the exam affected final course grade. The significant gender effect was manifested in the final grade percentage of 75.9 ± 0.4 for female students compared with 72.3 ± 0.6 for male students. Junior males had final course grades comparable with those of females, but sophomore and senior males had lower final course grades than other combinations. Biology majors had a final grade of 82.4 ± 0.6 and this grade was greater than all other majors. Students classified as "other" had a final score of 74.4 ± 0.8, which was greater than agricultural science majors (69.5 ± 0.9). The APSC grade (72.6 ± 0.5) was higher than the agricultural science majors. Junior students had significantly greater final grades (76.1 ± 0.5) than sophomores (73.3 ± 0.6) and seniors (72.9 ± 0.9). All biology students had greater final grades than all other majors, but biochemistry juniors had greater final course grades than APSC, agricultural science, and dairy science juniors. "Other" seniors had greater final course grades than agricultural science seniors. The regression for time to complete the exam was

  13. Effects of a Science Content Course on Elementary Preservice Teachers' Self-Efficacy of Teaching Science

    Science.gov (United States)

    Bergman, Daniel J.; Morphew, Jason

    2015-01-01

    The preparation of elementary teachers to successfully teach science in their classrooms is a central issue in science education. The teacher preparation program at a large Midwestern university was modified to include a new science content course aimed at this need. A pre-/postassessment research model involved participants (N = 154) completing a…

  14. Exploring Biology: A "Vision and Change" Disciplinary First-Year Seminar Improves Academic Performance in Introductory Biology

    Science.gov (United States)

    Wienhold, Caroline J.; Branchaw, Janet

    2018-01-01

    The transition to college is challenging for most students, especially those who aspire to major in the science, technology, engineering, or mathematics disciplines, in which introductory courses can be large and instruction less than optimal. This paper describes a novel, disciplinary first-year seminar (FYS) course, Exploring Biology, designed…

  15. Connecting Past with Present: A Mixed-Methods Science Ethics Course and its Evaluation.

    Science.gov (United States)

    Semendeferi, Ioanna; Tsiamyrtzis, Panagiotis; Dcosta, Malcolm; Pavlidis, Ioannis

    2016-02-01

    We present a graduate science ethics course that connects cases from the historical record to present realities and practices in the areas of social responsibility, authorship, and human/animal experimentation. This content is delivered with mixed methods, including films, debates, blogging, and practicum; even the instructional team is mixed, including a historian of science and a research scientist. What really unites all of the course's components is the experiential aspect: from acting in historical debates to participating in the current scientific enterprise. The course aims to change the students' culture into one deeply devoted to the science ethics cause. To measure the sought after cultural change, we developed and validated a relevant questionnaire. Results of this questionnaire from students who took the course, demonstrate that the course had the intended effect on them. Furthermore, results of this questionnaire from controls indicate the need for cultural change in that cohort. All these quantitative results are reinforced by qualitative outcomes.

  16. Influencing attitudes toward science through field experiences in biology

    Science.gov (United States)

    Carpenter, Deborah Mcintyre

    The purpose of this study was to determine how student attitudes toward science are influenced by field experiences in undergraduate biology courses. The study was conducted using two institutions of higher education including a 2-year lower-level and a 2-year upper-level institution. Data were collected through interviews with student participants, focus group discussions, students' journal entries, and field notes recorded by the researcher during the field activities. Photographs and video recordings were also used as documentation sources. Data were collected over a period of 34 weeks. Themes that emerged from the qualitative data included students' beliefs that field experiences (a) positively influence student motivation to learn, (b) increase student ability to learn the concepts being taught, and (c) provide opportunities for building relationships and for personal growth. The findings of the study reinforce the importance of offering field-study programs at the undergraduate level to allow undergraduate students the opportunity to experience science activities in a field setting. The research study was framed by the behavioral and developmental theories of attitude and experience including the Theory of Planned Behavior (Ajzen, 1991) and the Theory of Experiential Learning (Kolb, 1984).

  17. Science Academies' Refresher Course in Quantum Mechanics Post ...

    Indian Academy of Sciences (India)

    Physics Dept

    2016-02-20

    Feb 20, 2016 ... Quantum Mechanics is essential for understanding Physics, Chemistry and even modern Biology. A brief outline of the course is as follows: Schrödinger equation, Hydrogen atom, mathematics of linear vector space, principles and postulates of quantum mechanics, angular momentum, perturbation theory.

  18. An Investigation of Science and Technology Teachers’ Views on the 5th Grade Science Course

    OpenAIRE

    İkramettin Daşdemir

    2014-01-01

    This study was conducted to explore the science and technology teachers’ views on the implementation of 5th grade science course. Open-ended questions were used as a data collection tool. The study sample consisted of 28 science and technology teachers working in Erzurum in 2012-2013 education year. The data gathered were analysed via content analysis method. According to the results obtained from the open-ended questions, a great majority of science and technology teache...

  19. Academic Beliefs and Behaviors in On-Campus and Online General Education Biology Classes

    Science.gov (United States)

    Noll, Christopher B.

    2015-01-01

    This study examined the effect of course delivery mode on academic help-seeking beliefs and behaviors, academic self-efficacy, and the levels of individual interest in biology of students in an entry-level General Education biology course. This intersection of online education, science courses, and academic success factors merits attention because…

  20. Practicing the triad teaching-research- extension in supervised internship of licentiateship in biological sciences

    Directory of Open Access Journals (Sweden)

    Lilliane Miranda Freitas

    2012-06-01

    Full Text Available In this paper we report an educational experience based on the triad teaching-research-extension occurred in the supervised internship in licentiateship in Biological Sciences. In this experiment, the students made a transposition of the scientific knowledge produced in their course conclusion work to the knowledge of basic education curriculum. We analyze in this article the impressions of undergraduates after completion of pedagogical actions. We discuss, based on the reports, how the knowledge that is constructed and reconstructed in academic research can contribute directly to the improvement of the science education quality through science literacy and also in teacher training of undergraduates, through the reflection on their own practice. Therefore, we consider that, with the practice of the inseparability of teaching-research-extension, there will be more return for academic research and also for the school community, generating significant changes in educational practices in schools

  1. Exploring the development of science self-efficacy in preservice elementary school teachers participating in a science education methods course

    Science.gov (United States)

    Gunning, Amanda M.

    The demands of society's increasing dependence on science and technology call for our students to have a solid foundation in science education, starting in the earliest grades. However, elementary school teachers often lack the necessary experiences to deliver that education. This qualitative study seeks to explore the development of six preservice elementary teachers in a semester-long science methods course. The course consisted of many components; one in particular was a microteaching experience, which emerged as especially significant. The participants' experiences throughout the semester were studied primarily through the lens of self-efficacy, but were also examined considering learning theories and mental models. It was found that two participants in particular were self-directed learners and were able to construct for themselves a self-selected cognitive apprenticeship. Other findings include the significance of a microteaching experience on development of self-efficacy in science teaching and the role mental models may or may not play in development of self-efficacy in the science methods course. This study has implications both for preservice elementary education in science and in general.

  2. Prioritizing Active Learning: An Exploration of Gateway Courses in Political Science

    Science.gov (United States)

    Archer, Candace C.; Miller, Melissa K.

    2011-01-01

    Prior research in political science and other disciplines demonstrates the pedagogical and practical benefits of active learning. Less is known, however, about the extent to which active learning is used in political science classrooms. This study assesses the prioritization of active learning in "gateway" political science courses, paying…

  3. Students' Attitudes towards Interdisciplinary Education: A Course on Interdisciplinary Aspects of Science and Engineering Education

    Science.gov (United States)

    Gero, Aharon

    2017-01-01

    A course entitled "Science and Engineering Education: Interdisciplinary Aspects" was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is…

  4. Syllabus for Weizmann Course: Earth System Science 101

    Science.gov (United States)

    Wiscombe, Warren J.

    2011-01-01

    This course aims for an understanding of Earth System Science and the interconnection of its various "spheres" (atmosphere, hydrosphere, etc.) by adopting the view that "the microcosm mirrors the macrocosm". We shall study a small set of microcosims, each residing primarily in one sphere, but substantially involving at least one other sphere, in order to illustrate the kinds of coupling that can occur and gain a greater appreciation of the complexity of even the smallest Earth System Science phenomenon.

  5. Biological science in conservation

    Science.gov (United States)

    David M. Johns

    2000-01-01

    Large-scale wildlands reserve systems offer one of the best hopes for slowing, if not reversing, the loss of biodiversity and wilderness. Establishing such reserves requires both sound biology and effective advocacy. Attempts by The Wildlands Project and its cooperators to meld science and advocacy in the service of conservation is working, but is not without some...

  6. The impact of science methods courses on preservice elementary teachers' science teaching self-efficacy beliefs: Case studies from Turkey and the United States

    Science.gov (United States)

    Bursal, Murat

    Four case studies in two American and two Turkish science methods classrooms were conducted to investigate the changes in preservice elementary teachers' personal science teaching efficacy (PSTE) beliefs during their course periods. The findings indicated that while Turkish preservice elementary teachers (TR sample) started the science methods course semester with higher PSTE than their American peers (US sample), due to a significant increase in the US sample's and an insignificant decline in the TR sample's PSTE scores, both groups completed the science methods course with similar PSTE levels. Consistent with Bandura's social cognitive theory, describing four major sources of self-efficacy, the inclusion of mastery experiences (inquiry activities and elementary school micro-teaching experiences) and vicarious experiences (observation of course instructor and supervisor elementary teacher) into the science methods course, providing positive social persuasion (positive appraisal from the instructor and classmates), and improving physiological states (reduced science anxiety and positive attitudes toward becoming elementary school teachers), were found to contribute to the significant enhancement of the US sample's PSTE beliefs. For the TR sample, although some of the above sources were present, the lack of student teaching experiences and inservice teacher observations, as well as the TR samples' negative attitudes toward becoming elementary school teachers and a lack of positive classroom support were found to make Turkish preservice teachers rely mostly on their mastery in science concepts, and therefore resulted in not benefiting from their science methods course, in terms of enhancing their PSTE beliefs. Calls for reforms in the Turkish education system that will include more mastery experiences in the science methods courses and provide more flexibility for students to choose their high school majors and college programs, and switch between them are made. In

  7. A comparative analysis of South African Life Sciences and Biology ...

    African Journals Online (AJOL)

    This study reports on the analysis of South African Life Sciences and Biology textbooks for the inclusion of the nature of science using a conceptual framework developed by Chiappetta, Fillman and Sethna (1991). In particular, we investigated the differences between the representation of the nature of science in Biology ...

  8. Building Political Participation: The Role of Family Policy and Political Science Courses

    Science.gov (United States)

    Parrott, Emily

    2017-01-01

    This mixed-methods study examined the long-term associations between two kinds of politics courses--required political science courses and required family policy courses--and the political participation, knowledge, skill, efficacy, and politically engaged identity of child and family studies alumni. Two special cases were examined: those who…

  9. The Effects of Case-Based Instruction on Undergraduate Biology Students' Understanding of the Nature of Science

    Science.gov (United States)

    Burniston, Amy Lucinda

    Undergraduate science education is currently seeing a dramatic pedagogical push towards teaching the philosophies underpinning science as well as an increase in strategies that employ active learning. Many active learning strategies stem from constructivist ideals and have been shown to affect a student's understanding of how science operates and its impact on society- commonly referred to as the nature of science (NOS). One particular constructivist teaching strategy, case-based instruction (CBI), has been recommended by researchers and science education reformists as an effective instructional strategy for teaching NOS. Furthermore, when coupled with explicit-reflective instruction, CBI has been found to significantly increasing understanding of NOS in elementary and secondary students. However, few studies aimed their research on CBI and NOS towards higher education. Thus, this study uses a quasi-experimental, nonequivalent group design to study the effects of CBI on undergraduate science students understandings of NOS. Undergraduate biology student's understanding of NOS were assessed using the Views of Science Education (VOSE) instrument pre and post CBI intervention in Cellular and Molecular Biology and Human Anatomy and Physiology II. Data analysis indicated statistically significant differences between students NOS scores in experimental versus control sections for both courses, with experimental groups obtaining higher posttest scores. The results of this study indicate that undergraduate male and female students have similarly poor understandings of NOS and the use of historical case based instruction can be used as a means to increase undergraduate understanding of NOS.

  10. Scaling Up: Adapting a Phage-Hunting Course to Increase Participation of First-Year Students in Research.

    Science.gov (United States)

    Staub, Nancy L; Poxleitner, Marianne; Braley, Amanda; Smith-Flores, Helen; Pribbenow, Christine M; Jaworski, Leslie; Lopatto, David; Anders, Kirk R

    2016-01-01

    Authentic research experiences are valuable components of effective undergraduate education. Research experiences during the first years of college are especially critical to increase persistence in science, technology, engineering, and mathematics fields. The Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) model provides a high-impact research experience to first-year students but is usually available to a limited number of students, and its implementation is costly in faculty time and laboratory space. To offer a research experience to all students taking introductory biology at Gonzaga University (n = 350/yr), we modified the traditional two-semester SEA-PHAGES course by streamlining the first-semester Phage Discovery lab and integrating the second SEA-PHAGES semester into other courses in the biology curriculum. Because most students in the introductory course are not biology majors, the Phage Discovery semester may be their only encounter with research. To discover whether students benefit from the first semester alone, we assessed the effects of the one-semester Phage Discovery course on students' understanding of course content. Specifically, students showed improvement in knowledge of bacteriophages, lab math skills, and understanding experimental design and interpretation. They also reported learning gains and benefits comparable with other course-based research experiences. Responses to open-ended questions suggest that students experienced this course as a true undergraduate research experience. © 2016 N. L. Staub et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. An analysis of interactions and outcomes associated with an online professional development course for science teachers

    Science.gov (United States)

    Randle, David Edward

    This mixed-methods study examined the interactions and learning outcomes of science teachers in an online graduate-level course on evolutionary biology intended to improve their content knowledge and science lesson planning. Discussion posts made by the teachers in this seven-week course were analyzed for cognitive presence using the Community of Inquiry framework. Compared to other studies examining cognitive presence, high levels of Integration level cognitive activity were observed (47% of total posts). This was most likely due to the design of the discussion prompts and expectations used to frame student participation. The questions were open-ended, and students were expected to use reference materials to construct their responses. During the course, 395 student posts contained statements that could be coded for scientific accuracy. Of these, 85% were coded as scientifically accurate. This reinforces reports from previous literature that the online environment is conducive to reflective and careful contributions by participants. As the course progressed, the number of faculty posts per discussion declined, while the number of student posts remained relatively constant. Student-to-student posts increased in frequency as faculty participation dropped. The number of student posts increased towards the end of each two-week discussion period, however the frequencies of posts with scientifically accurate statements and Integration level cognitive activity remained relatively constant over this same period. The increase in total posts was due to the increase in other types of communication in the discussions. Case study analysis was used to examine patterns of online behavior in three participants who achieved different course grades. A low-performing student had a pattern of intermittent activity, made low numbers of posts in each discussion, and had low percentages of posts that contained scientific statements or indicators of Integration level cognitive activity

  12. College Student Perceptions of Psychology as a Science as a Function of Psychology Course Enrollment

    Science.gov (United States)

    Pettijohn, Terry F., II; Pettijohn, Terry F.; Brenneman, Miranda M.; Glass, Jamie N.; Brito, Gabriela R.; Terranova, Andrew M.; Kim, JongHan; Meyersburg, C. A.; Piroch, Joan

    2015-01-01

    College students (N = 297) completed a perceptions of psychology as a science survey before and after completion of psychology courses. Psychology as a science scores increased significantly from the beginning to the end of the research methods courses, but scores in introductory psychology courses did not change and scores for students in…

  13. American College Biology and Zoology Course Requirements: A de facto Standardized Curriculum.

    Science.gov (United States)

    Heppner, Frank; And Others

    Without a formal mechanism to produce consensus, American colleges generally have come to agree on what constitutes an appropriate set of course requirements for Biology and Zoology majors. This report describes a survey of American four-year colleges and universities offering biology and/or zoology degrees. Questionnaires were sent to 741 biology…

  14. Comparing the Impact of an Astronomy Course and a Science and Society Seminar on Undergraduate Students' Attitudes toward Science

    Science.gov (United States)

    Flohic, Hélène M. L. G.

    2017-01-01

    A common challenge among university professors is how to best design undergraduate courses to successfully enhance students' attitudes. To compare which curriculum was more efficient at fostering a positive attitude towards science in general, I studied the impact of two different general education science courses on the attitudes of college…

  15. From Cookbook to Collaborative: Transforming a University Biology Laboratory Course

    Science.gov (United States)

    Herron, Sherry S.

    2009-01-01

    As described in "How People Learn," "Developing Biological Literacy," and by the Commission on Undergraduate Education in the Biological Sciences during the 1960s and early 1970s, laboratories should promote guided-inquiries or investigations, and not simply consist of cookbook or verification activities. However, the only word that could describe…

  16. Assessing Student Attitudes Towards Science in an Adaptive Online Astrobiology Course: Comparing Online and On-Campus Undergraduates

    Science.gov (United States)

    Buxner, S.; Perera, V.; Mead, C.; Horodyskyj, L.; Semken, S. C.; Lopatto, D.; Anbar, A. D.

    2016-12-01

    General-education Science, Technology, Engineering, and Mathematics (STEM) courses are considered essential to a college education, in part, to train students to think critically and to make informed decisions about complex scientific issues such as climate change and public health. Therefore, the goals of these STEM courses go beyond content knowledge to include generating positive attitudes towards science, developing competence in evaluating scientific information in everyday life, and understanding the nature of science. The Classroom Undergraduate Research Experience (CURE) survey is frequently used to measure these attitudes, but it has not previously been used in an online, general education course. In this work, we administered the CURE survey for three semesters (N = 774) before and after completion of an online astrobiology course called Habitable Worlds. We compare students taking this course as part of fully-online degree programs (o-course) with those taking it as part of traditional undergraduate programs (i-course). More females and older students were among the o-course group, while overall the course had more white students than the Arizona State University average. Mean course grades were similar between the two groups but attitudes toward science differred significantly. O-course students began the course with more positive attitudes than i-course students, and o-course students also showed more positive changes at the end of the course. These differences suggest lesser intrinsic motivation among the i-course students. Additionally, pre-course attitudes correlated with final course grade for o-course students, but not for i-course students, which implies that success among o-course students is influenced by different factors than i-course students. Thus, effective student support strategies may differ for online-only students. Future work will include student interviews to better calibrate the CURE survey to online science courses.

  17. How do the high school biology textbooks introduce the nature of science?

    Science.gov (United States)

    Lee, Young H.

    2007-05-01

    Although helping students to achieve an adequate understanding of the nature of science has been a consistent goal for science education for over half a century, current research reveals that the majority of students and teachers have naive views of the nature of science (Abd-El-khalick & Akerson, 2004; Bianchini & Colburn, 2000). This problem could be attributed not only to the complex nature of science, but also to the way the nature of science is presented to students during instruction. Thus, research must be conducted to examine how the science is taught, especially in science textbooks, which are a major instructional resource for teaching science. The aim of this study was to conduct a content analysis of the first chapter of four high school biology textbooks, which typically discusses "What is science?" and "What is biology?" This research used a content analysis technique to analyze the four high school biology textbooks, using a conceptual framework that has been used often for science textbook analysis. This conceptual framework consists of four themes of the nature of science: (a) science as a body of knowledge, (b) science as a way of thinking, (c) science as a way of investigating, and (d) the interaction of science, technology, and society. For this study, the four-theme-framework was modified to incorporate descriptors from national-level documents, such as Science for All Americans (AAAS, 1990) Benchmarks for Science Literacy (AAAS, 1993) and the National Science Education Standards (NRC, 1996), as well as science education research reports. A scoring procedure was used that resulted in good to excellent intercoder agreement with Cohen's kappa (k) ranging from .63 to .96. The findings show that the patterns of presentation of the four themes of the nature of science in the four high school biology textbooks are similar across the different locations of data, text, figures, and assessments. On the other hand, the pattern of presentation of the four

  18. Physical Chemistry for the Chemical and Biological Sciences (by Raymond Chang)

    Science.gov (United States)

    Pounds, Andrew

    2001-05-01

    This book does offer an alternative approach to physical chemistry that is particularly well suited for those who want to pursue a course of study more focused on the biological sciences. It could also be an excellent choice for schools that mainly serve preprofessional programs or for schools that have split physical chemistry tracks to independently serve the B.S. and B.A. degrees. Since the book focuses on single-variable mathematics, schools that require only one year of calculus for their chemistry degree could also think about adopting it. However, in general, the use of the text as a drop-in replacement for physical chemistry for the B.S. degree is questionable owing to its lack of focus on quantum mechanics and its implications for spectroscopy.

  19. Student-oriented learning: an inquiry-based developmental biology lecture course.

    Science.gov (United States)

    Malacinski, George M

    2003-01-01

    In this junior-level undergraduate course, developmental life cycles exhibited by various organisms are reviewed, with special attention--where relevant--to the human embryo. Morphological features and processes are described and recent insights into the molecular biology of gene expression are discussed. Ways are studied in which model systems, including marine invertebrates, amphibia, fruit flies and other laboratory species are employed to elucidate general principles which apply to fertilization, cleavage, gastrulation and organogenesis. Special attention is given to insights into those topics which will soon be researched with data from the Human Genome Project. The learning experience is divided into three parts: Part I is a in which the Socratic (inquiry) method is employed by the instructor (GMM) to organize a review of classical developmental phenomena; Part II represents an in which students study the details related to the surveys included in Part I as they have been reported in research journals; Part III focuses on a class project--the preparation of a spiral bound on a topic of relevance to human developmental biology (e.g.,Textbook of Embryonal Stem Cells). Student response to the use of the Socratic method increases as the course progresses and represents the most successful aspect of the course.

  20. Using "Making Sense of Climate Science Denial" MOOC videos in a college course

    Science.gov (United States)

    Schuenemann, K. C.; Cook, J.

    2015-12-01

    The Massive Open Online Course (MOOC) "Denial101x: Making Sense of Climate Science Denial" teaches students to make sense of the science and respond to climate change denial. The course is made up of a series of short, myth-debunking lecture videos that can be strategically used in college courses. The videos and the visuals within have proven a great resource for an introductory college level climate change course. Methods for using the videos in both online and in-classroom courses will be presented, as well as student reactions and learning from the videos. The videos introduce and explain a climate science topic, then paraphrase a common climate change myth, explain why the myth is wrong by identifying the characteristic of climate denial used, and concludes by reinforcing the correct science. By focusing on common myths, the MOOC has made an archive of videos that can be used by anyone in need of a 5-minute response to debunk a myth. By also highlighting five characteristics of climate denial: fake experts, logical fallacies, impossible expectations, cherry picking, and conspiracy theories (FLICC), the videos also teach the viewer the skills they need to critically examine myths they may encounter in the real world on a variety of topics. The videos also include a series of expert scientist interviews that can be used to drive home points, as well as put some faces to the science. These videos are freely available outside of the MOOC and can be found under the relevant "Most used climate myths" section on the skepticalscience.com webpage, as well as directly on YouTube. Discover ideas for using videos in future courses, regardless of discipline.

  1. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  2. Women are underrepresented in computational biology: An analysis of the scholarly literature in biology, computer science and computational biology.

    Directory of Open Access Journals (Sweden)

    Kevin S Bonham

    2017-10-01

    Full Text Available While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.

  3. Women are underrepresented in computational biology: An analysis of the scholarly literature in biology, computer science and computational biology.

    Science.gov (United States)

    Bonham, Kevin S; Stefan, Melanie I

    2017-10-01

    While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.

  4. Measurement Instrument for Scientific Teaching (MIST): A Tool to Measure the Frequencies of Research-Based Teaching Practices in Undergraduate Science Courses.

    Science.gov (United States)

    Durham, Mary F; Knight, Jennifer K; Couch, Brian A

    2017-01-01

    The Scientific Teaching (ST) pedagogical framework provides various approaches for science instructors to teach in a way that more closely emulates how science is practiced by actively and inclusively engaging students in their own learning and by making instructional decisions based on student performance data. Fully understanding the impact of ST requires having mechanisms to quantify its implementation. While many useful instruments exist to document teaching practices, these instruments only partially align with the range of practices specified by ST, as described in a recently published taxonomy. Here, we describe the development, validation, and implementation of the Measurement Instrument for Scientific Teaching (MIST), a survey derived from the ST taxonomy and designed to gauge the frequencies of ST practices in undergraduate science courses. MIST showed acceptable validity and reliability based on results from 7767 students in 87 courses at nine institutions. We used factor analyses to identify eight subcategories of ST practices and used these categories to develop a short version of the instrument amenable to joint administration with other research instruments. We further discuss how MIST can be used by instructors, departments, researchers, and professional development programs to quantify and track changes in ST practices. © 2017 M. F. Durham et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Biological design in science classrooms

    Science.gov (United States)

    Scott, Eugenie C.; Matzke, Nicholas J.

    2007-01-01

    Although evolutionary biology is replete with explanations for complex biological structures, scientists concerned about evolution education have been forced to confront “intelligent design” (ID), which rejects a natural origin for biological complexity. The content of ID is a subset of the claims made by the older “creation science” movement. Both creationist views contend that highly complex biological adaptations and even organisms categorically cannot result from natural causes but require a supernatural creative agent. Historically, ID arose from efforts to produce a form of creationism that would be less vulnerable to legal challenges and that would not overtly rely upon biblical literalism. Scientists do not use ID to explain nature, but because it has support from outside the scientific community, ID is nonetheless contributing substantially to a long-standing assault on the integrity of science education. PMID:17494747

  6. Climate Literacy: Progress in Climate and Global Change Undergraduate Courses in Meteorology and Earth System Science Programs at Jackson State University

    Science.gov (United States)

    Reddy, S. R.; Tuluri, F.; Fadavi, M.

    2017-12-01

    JSU Meteorology Program will be offering AMS Climate Studies undergraduate course under MET 210: Climatology in spring 2013. AMS Climate Studies is offered as a 3 credit hour laboratory course with 2 lectures and 1 lab sessions per week. Although this course places strong intellectual demands upon each student, the instructors' objective is to help each student to pass the course with an adequate understanding of the fundamentals and advanced and advanced courses. AMS Climate Studies is an introductory college-level course developed by the American Meteorological Society for implementation at undergraduate institutions nationwide. The course places students in a dynamic and highly motivational educational environment where they investigate Earth's climate system using real-world environmental data. The AMS Climate Studies course package consists of a textbook, investigations manual, course website, and course management system-compatible files. Instructors can use these resources in combinations that make for an exciting learning experience for their students. This is a content course in Earth Science. It introduces a new concept that views Earth as a synergistic physical system applied concepts of climatology, for him/her to understand basic atmospheric/climate processes, physical and dynamical climatology, regional climatology, past and future climates and statistical analysis using climate data and to be prepared to profit from studying more of interrelated phenomenon governed by complex processes involving the atmosphere, the hydrosphere, the biosphere, and the solid Earth. The course emphasizes that the events that shape the physical, chemical, and biological processes of the Earth do not occur in isolation. Rather, there is a delicate relationship between the events that occur in the ocean, atmosphere, and the solid Earth. The course provides a multidimensional approach in solving scientific issues related to Earth-related sciences,

  7. Path Not Found: Disparities in Access to Computer Science Courses in California High Schools

    Science.gov (United States)

    Martin, Alexis; McAlear, Frieda; Scott, Allison

    2015-01-01

    "Path Not Found: Disparities in Access to Computer Science Courses in California High Schools" exposes one of the foundational causes of underrepresentation in computing: disparities in access to computer science courses in California's public high schools. This report provides new, detailed data on these disparities by student body…

  8. Hazardous Asteroids: Cloaking STEM Skills Training within an Attention-Grabbing Science/Math Course

    Science.gov (United States)

    Ryan, Eileen V.; Ryan, William H.

    2015-11-01

    A graduate-level course was designed and taught during the summer months from 2009 - 2015 in order to contribute to the training and professional development of K-12 teachers residing in the Southwest. The teachers were seeking Master’s degrees via the New Mexico Institute of Mining and Technology’s (NMT’s) Masters of Science Teaching (MST) program, and the course satisfied a science or math requirement. The MST program provides opportunities for in-service teachers to enhance their content backgrounds in science, mathematics, engineering, and technology (SMET). The ultimate goal is to assist teachers in gaining knowledge that has direct application in the classroom.The engaging topic area of near-Earth object (NEO) characterization studies was used to create a fun and exciting framework for mastering basic skills and concepts in physics and astronomy. The objective was to offer a class that had the appropriate science rigor (with an emphasis on mathematics) within a non-threatening format. The course, entitled “Hazardous Asteroids”, incorporates a basic planetary physics curriculum, with challenging laboratories that include a heavy emphasis on math and technology. Since the authors run a NASA-funded NEO research and follow-up program, also folded into the course is the use of the Magdalena Ridge Observatory’s 2.4-meter telescope so participants can take and reduce their own data on a near-Earth asteroid.In exit assessments, the participants have given the course excellent ratings for design and implementation, and the overall degree of satisfaction was high. This validates that a well-constructed (and rigorous) course can be effective in receptively reaching teachers in need of basic skills refreshment. Many of the teachers taking the course were employed in school districts serving at-risk or under-prepared students, and the course helped provide them with the confidence vital to developing new strategies for successful teaching.

  9. A Science Faculty's Transformation of Nature of Science Understanding into His Teaching Graduate Level Chemistry Course

    Science.gov (United States)

    Aydin, Sevgi

    2015-01-01

    This is an interpretive case study to examine the teaching of an experienced science faculty who had a strong interest in teaching undergraduate and graduate science courses and nature of science specifically. It was interested in how he transformed knowledge from his experience as a scientist and his ideas about nature of science into forms…

  10. A Survey of Introductory Statistics Courses at University Faculties of Pharmaceutical Sciences in Japan.

    Science.gov (United States)

    Matsumura, Mina; Nakayama, Takuto; Sozu, Takashi

    2016-01-01

    A survey of introductory statistics courses at Japanese medical schools was published as a report in 2014. To obtain a complete understanding of the way in which statistics is taught at the university level in Japan, it is important to extend this survey to related fields, including pharmacy, dentistry, and nursing. The current study investigates the introductory statistics courses offered by faculties of pharmaceutical sciences (six-year programs) at Japanese universities, comparing the features of these courses with those studied in the survey of medical schools. We collected relevant data from the online syllabi of statistics courses published on the websites of 71 universities. The survey items included basic course information (for example, the course names, the targeted student grades, the number of credits, and course classification), textbooks, handouts, the doctoral subject and employment status of each lecturer, and course contents. The period surveyed was July-September 2015. We found that these 71 universities offered a total of 128 statistics courses. There were 67 course names, the most common of which was "biostatistics (iryou toukeigaku)." About half of the courses were designed for first- or second-year students. Students earned fewer than two credits. There were 62 different types of textbooks. The lecturers held doctoral degrees in 18 different subjects, the most common being a doctorate in pharmacy or science. Some course content differed, reflecting the lecturers' academic specialties. The content of introductory statistics courses taught in pharmaceutical science programs also differed slightly from the equivalent content taught in medical schools.

  11. Emphasizing Astrobiology: Highlighting Communication in an Elective Course for Science Majors

    Science.gov (United States)

    Offerdahl, Erika G.; Prather, Edward E.; Slater, Timothy F.

    2004-01-01

    The project described here involved the design, implementation, and evaluation of an upper level, undergraduate elective course for science majors. Specific course goals were to help students gain an appreciation of the interdisciplinary nature of astrobiology, understand key ideas in astrobiology, and develop the skills necessary to communicate…

  12. Analytical Chemistry at the Interface Between Materials Science and Biology

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Janese C. [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.

  13. Policy implications of select student characteristics and their influence on the Florida biology end-of-course assessment

    Science.gov (United States)

    Bertolotti, Janine Cecelia

    In an attempt to improve student achievement in science in Florida, the Florida Department of Education implemented end-of-course (EOC) assessments in biology during the 2011-2012 academic school year. Although this first administration would only account for 30% of the student's overall final course grade in biology, subsequent administrations would be accompanied by increasing stakes for students, teachers, and schools. Therefore, this study sought to address gaps in empirical evidence as well as discuss how educational policy will potentially impact on teacher evaluation and professional development, student retention and graduation rates, and school accountability indicators. This study explored four variables- reading proficiency, ethnicity, socioeconomic status, and gender- to determine their influence and relationship on biology achievement on the Biology I EOC assessment at a Title 1 school. To do so, the results of the Biology I EOC assessment administered during the Spring 2012 school year was obtained from a small, rural Title 1 high school in North Florida. Additional data regarding each student's qualification for free and reduced-price lunch, FCAT Reading developmental scale scores, FCAT Reading level, grade level, gender, and ethnicity were also collected for the causal-comparative exploratory study. Of the 178 students represented, 48% qualified for free and reduced-price lunch, 54% were female, and 55% scored at FCAT Reading level 3 or higher. Additionally, 59% were White and 37% Black. A combination of descriptive statistics and other statistical procedures such as independent samples one-tailed t-test, one-way ANOVAs, ANCOVAs, multipleregression, and a Pearson r correlation was utilized in the analysis, with a significance level set at 0.05. Results indicate that of all four variables, FCAT Reading proficiency was the sole variable, after adjusting for other variables; that had a significant impact on biology achievement. Students with higher

  14. Enabling students to learn: Design, implementation and assessment of a supplemental study strategies course for an introductory undergraduate biology course

    Science.gov (United States)

    Sriram, Jayanthi Sanjeevi

    Attrition in the STEM disciplines is a national problem and one of the important reasons for this is student experiences in introductory courses. A myriad of factors influence students' experiences in those courses; inadequate student preparation is one of the most cited reasons. Incoming freshmen often lack the learning strategies required to meaningfully learn and succeed in college courses. Unfortunately, the instructors have limited time and/or have little experience in teaching learning strategies. In this paper, the design, implementation, and evaluation of a Supplemental Course (SC) model that emphasizes learning strategies is presented. SC was offered concurrently with the introductory biology courses for four consecutive semesters (fall 2011 to spring 2013); for 10 weeks in fall 2012 and 7 weeks in the other semesters at Miami University. 10 weeks SC began earlier in the semester than the shorter SC. This study evaluated the effects of the SC on students' (1) performance in the introductory biology course, (2) perceived changes in self-regulation and social support, and (3) experiences in the introductory biology course before, during, and after participation in the SC. A mixed methods approach was used to address these goals. A pre-post survey was administered to obtain students' use of self-regulation strategies and social-support data. Quantitative methods were utilized to analyze content exam grades and changes in self-regulation strategies and social-support. To explore the experiences of the students, semi-structured interviews were conducted, followed by analysis using grounded theory. The findings reveal that participants of the longer duration SC (with an earlier start date) significantly improved in content exam performance, perceived use of self-regulation strategies, and social support compared to the non-participants. Participants of the shorter duration SC (with a later start date) did not significantly improve in content exam performance

  15. International Journal of Biological and Chemical Sciences: Editorial ...

    African Journals Online (AJOL)

    The International Journal of Biological and Chemical Sciences (IJBCS) is a journal ... IJBCS publishes original research papers, critical up-to-date and concise ... Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio ...

  16. Modeling the Activities of Scientists: Prospective Science Teachers' Poster Presentations in An STS Course

    Science.gov (United States)

    Dogan, Alev; Kaya, Osman Nafiz; Kilic, Ziya; Kilic, Esma; Aydogdu, Mustafa

    2004-01-01

    In this study, prospective science teachers' (PSTs) views about their poster presentations were investigated. These posters were developed through PSTs' online and library research and scientific mini-symposiums in chemistry related topics in the framework of science, technology and society course (STS). During the first four weeks of STS course,…

  17. "I am Not a Statistic": Identities of African American Males in Advanced Science Courses

    Science.gov (United States)

    Johnson, Diane Wynn

    The United States Bureau of Labor Statistics (2010) expects new industries to generate approximately 2.7 million jobs in science and technology by the year 2018, and there is concern as to whether there will be enough trained individuals to fill these positions. A tremendous resource remains untapped, African American students, especially African American males (National Science Foundation, 2009). Historically, African American males have been omitted from the so called science pipeline. Fewer African American males pursue a science discipline due, in part; to limiting factors they experience in school and at home (Ogbu, 2004). This is a case study of African American males who are enrolled in advanced science courses at a predominantly African American (84%) urban high school. Guided by expectancy-value theory (EVT) of achievement related results (Eccles, 2009; Eccles et al., 1983), twelve African American male students in two advanced science courses were observed in their science classrooms weekly, participated in an in-depth interview, developed a presentation to share with students enrolled in a tenth grade science course, responded to an open-ended identity questionnaire, and were surveyed about their perceptions of school. Additionally, the students' teachers were interviewed, and seven of the students' parents. The interview data analyses highlighted the important role of supportive parents (key socializers) who had high expectations for their sons and who pushed them academically. The students clearly attributed their enrollment in advanced science courses to their high regard for their science teachers, which included positive relationships, hands-on learning in class, and an inviting and encouraging learning environment. Additionally, other family members and coaches played important roles in these young men's lives. Students' PowerPoint(c) presentations to younger high school students on why they should take advanced science courses highlighted these

  18. Geography, Resources, and Environment of Latin America: An Undergraduate Science Course focused on Attracting Hispanic students to Science and on Educating Non-Hispanics about Latin America.

    Science.gov (United States)

    Pujana, I.; Stern, R. J.; Ledbetter, C. E.

    2004-12-01

    With NSF-CCLI funding, we have developed, taught, and evaluated a new lower-division science course for non-majors, entitled "Geography, Resources, and Environment of Hispanic America" (GRELA). This is an adaptation of a similar course, "Geology and Development of Modern Africa" developed by Barbara Tewksbury (Hamilton College), to attract African American students to science by highlighting cultural ties with their ancestral lands. We think that a similar approach focusing on Latin America may attract Hispanic undergraduates, at the same time that it increases awareness among non-Hispanic students about challenges facing our neighbors to the south. GRELA is an interdisciplinary exploration of how the physical and biological environment of Mexico, Central America, and South America have influenced the people who live there. The course consists of 20 lectures and requires the student to present a report partnering with correspondents in Latin American universities. GRELA begins with an overview of Latin American physical and cultural geography and geologic evolution followed by a series of modules that relate the natural resources and environment of Latin America to the history, economy, and culture of the region. This is followed by an exploration of pre-Columbian cultures. The use of metals by pre-Columbian, colonial, and modern cultures is presented next. We then discuss hydrocarbon resources, geothermal energy, and natural hazards of volcanoes and earthquakes. The last half of the course focuses on Earth System Science themes, including El Nino, glaciers, the Amazon river and rainforest, and coral reefs. The final presentation concerns population growth and water resources along the US-Mexico border. Grades are based on two midterms, one final, and a project which requires that groups of students communicate with scientists in Latin America to explore some aspect of geography, natural resources, or the environment of a Latin American region of common interest

  19. "Two Cultures" Topics for General Studies Science Courses.

    Science.gov (United States)

    Larson, James H.

    1982-01-01

    Theses proposed in C. P. Snow's book "The Two Cultures," including uncommunicative scientific and literary groups, gap between rich and poor, overpopulation, and nuclear war remain viable topics. Discusses the scientific and literary cultural gap and what can be done in general studies science courses to ameliorate the condition.…

  20. Laboratory Development and Lecture Renovation for a Science of Food and Cooking Course

    Science.gov (United States)

    Miles, Deon T.; Borchardt, Adrienne C.

    2014-01-01

    Several years ago, a new nonscience majors course, The Science of Food and Cooking, was developed at our institution. The course covered basic scientific concepts that would normally be discussed in a typical introductory chemistry course, in the context of food and food preparation. Recently, the course has been revamped in three major ways: (1)…

  1. The Art of Astronomy: A New General Education Course for Non-Science Majors

    Science.gov (United States)

    Pilachowski, Catherine A.; van Zee, Liese

    2017-01-01

    The Art of Astronomy is a new general education course developed at Indiana University. The topic appeals to a broad range of undergraduates and the course gives students the tools to understand and appreciate astronomical images in a new way. The course explores the science of imaging the universe and the technology that makes the images possible. Topics include the night sky, telescopes and cameras, light and color, and the science behind the images. Coloring the Universe: An Insider's Look at Making Spectacular Images of Space" by T. A. Rector, K. Arcand, and M. Watzke serves as the basic text for the course, supplemented by readings from the web. Through the course, students participate in exploration activities designed to help them first to understand astronomy images, and then to create them. Learning goals include an understanding of scientific inquiry, an understanding of the basics of imaging science as applied in astronomy, a knowledge of the electromagnetic spectrum and how observations at different wavelengths inform us about different environments in the universe, and an ability to interpret astronomical images to learn about the universe and to model and understand the physical world.

  2. Principles of formation of the course of computer science for engineering specialities

    Directory of Open Access Journals (Sweden)

    Валерий Евгеньевич Жужжалов

    2010-03-01

    Full Text Available The article describes the principles of computer science courses. The advantages and disadvantages of functional programming and importance of the Lisp language in teaching computer science are reflected in the article.

  3. Basic mathematics for the biological and social sciences

    CERN Document Server

    Marriott, F H C

    2013-01-01

    Basic Mathematics for the Biological and Social Sciences deals with the applications of basic mathematics in the biological and social sciences. Mathematical concepts that are discussed in this book include graphical methods, differentiation, trigonometrical or circular functions, limits and convergence, integration, vectors, and differential equations. The exponential function and related functions are also considered. This monograph is comprised of 11 chapters and begins with an overview of basic algebra, followed by an introduction to infinitesimal calculus, scalar and vector quantities, co

  4. A Template for an Intensive Ecohydrology Field Course

    Science.gov (United States)

    Emanuel, R. E.; McGlynn, B. L.; Riveros-Iregui, D. A.

    2014-12-01

    Many of the greatest challenges in the earth and environmental sciences are complex and interdisciplinary in nature. Ecohydrology exemplifies the type of holistic inquiry needed to address these challenges because it spans and integrates earth science, biological science and, often, social science. Ecohydrology courses can prepare the next generation of scientists, decision-makers and informed citizens to understand and address these challenges, and field courses in particular can play an important role in this preparation. Ecohydrology field course instructors have unique opportunities to convey interwoven theoretical and applied principles through a variety of modes that include lecture, discussion, immersion, and hands-on activity. In this presentation, we report on our experience co-teaching the Mountain Ecohydrology Field Course, a full-credit course taught 3 times in the past 5 years to more than 30 students representing 6 universities. The course, which has ranged from 1-2 weeks in length, has given students in-depth exposure to intensively instrumented ecohydrological field sites in the southern Appalachian and northern Rocky Mountains. Students learn fundamental principles in ecohydrology and related fields of watershed hydrology, soil biogeochemistry, micrometeorology and plant ecophysiology. They gain hands-on experience in a variety of cutting edge field techniques, tools and analyses while practicing presentation and communication of science. Students and instructors deal with real-world challenges of conducting fieldwork in remote settings. We offer our experience as one potential template for others interested in developing or refining ecohydrology field courses elsewhere.

  5. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class.

    Science.gov (United States)

    Schinske, Jeffrey N; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. © 2016 J. N. Schinske et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Science Academies' 82nd Refresher Course on Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Experimental Physics will be held at Department of Physics, ... the participants to gain hands on experience with set of new experiments developed as a low cost kit by the Indian Academy of Sciences, Bangalore, Indian ...

  7. Exploring impacts of the EED 420 science methods course on pre-service elementary teachers’ views regarding the nature of science

    Directory of Open Access Journals (Sweden)

    EunJin Bang

    2013-07-01

    Full Text Available This study explores the impact of a semester-long science methods course examining pre-service elementary teachers’ views on the nature of science (NOS. Also examined were NOS characteristics that pre-service teachers incorporated into their science lesson plans and peer teachings, during the course. Data used for this study were obtained from 21 pre-service teachers who participated in the pre/post card exchange game, pre/post VNOS interviews, 5E lesson plans, and peer teaching performances. The results of the study showed that some changes were made as a result of EED 420— such as starting to view science as a data-gathering experimental endeavor, rather than just a theorydriven endeavor. None of the groups explicitly designed or taught their lesson’s NOS aspects. The study posits that a mere one semester-long science method’s course is insufficient to adequately improve understanding of the NOS, and to establish a sufficiently robust desire in pre-service teachers for them to implement NOS into their lessons.

  8. Exploring Impacts of the EED 420 Science Methods Course on Pre-service Elementary Teachers’ Views Regarding the Nature of Science

    Directory of Open Access Journals (Sweden)

    EunJin BANG

    2013-07-01

    Full Text Available This study explores the impact of a semester-long science methods course examining pre-service elementary teachers’ views on the nature of science(NOS. Also examined were NOS characteristics that pre-service teachers incorporated into their science lesson plans and peer teachings, during the course. Data used for this study were obtained from 21 pre-service teachers who participated in the pre/post card exchange game, pre/post VNOS interviews, 5E lesson plans, and peer teaching performances. The results of the study showed that some changes were made as a result of EED 420—such as starting to view science as a data-gathering experimental endeavor, rather than just a theory-driven endeavor. None of the groups explicitly designed or taught their lesson’s NOS aspects. Thestudy posits that a mere one semester-long science method’s course is insufficient to adequately improve understanding of the NOS, and to establish a sufficiently robust desire in pre-service teachersfor them to implement NOS into their lessons.

  9. Making Connections to Students' Lives and Careers Throughout a General Education Science Course

    Science.gov (United States)

    LaDue, D. S.

    2014-12-01

    The University of Oklahoma's general education lecture course Severe & Unusual Weather, taught in two sections each fall and spring, covers about nine topics. The sections are taught by different instructors, each of whom has flexibility to employ a variety of instructional strategies and choose specific topics to cover while meeting the requirement that general education courses in the natural sciences help students understand the importance of the science for appreciating the world around them. Students enrolled have been approximately 6-10% returning adult students, some of whom were veterans or active duty military, and about 10% members of racial or ethnic groups. Their majors are mostly in the humanities (theater, photography) and social sciences (education, English, journalism, sociology), with some natural science majors (psychology, aviation). For the past two years, Section 001 has been designed with adult and active learning concepts in mind, using deliberate connections between course content and students' lives and careers to motivate meaningful learning. Students were grouped in teams according to similar majors and assigned group presentations connecting course content to topics that should interest them, such as economic impacts of weather, societal and personal impacts of severe weather, risks to aviation, media coverage of weather, and psychological and sociological responses to weather risks. Students learn about the peer review process for scientific papers while also exploring a connection of course content to their future career or life interests through papers that are run through a mock peer review process. Public policy is discussed in several sections of the course, such as hurricane building codes, wind-resistant construction in tornado alley, and the disproportionate impacts of weather and climate on certain socioeconomic groups. Most students deeply appreciate the opportunity to explore how course content intersects with their lives

  10. Evaluation of an ESP Course of Qur'anic Sciences and Tradition

    Science.gov (United States)

    Salehi, Hadi; Davari, Ameneh; Yunus, Melor Md

    2015-01-01

    Evaluation is defined as matching process that matches the needs to available solutions. The present study is an attempt to evaluate English for specific purposes (ESP) course book on "the ESP Course of Qur'anic Sciences and Tradition" taught at some universities in Iran. To achieve this goal, a researcher-made questionnaire and an…

  11. Music and the mind: a new interdisciplinary course on the science of musical experience.

    Science.gov (United States)

    Prichard, J Roxanne; Cornett-Murtada, Vanessa

    2011-01-01

    In this paper the instructors describe a new team-taught transdisciplinary seminar, "Music and Mind: The Science of Musical Experience." The instructors, with backgrounds in music and neuroscience, valued the interdisciplinary approach as a way to capture student interest and to reflect the inherent interconnectivity of neuroscience. The course covered foundational background information about the science of hearing and musical perception and about the phenomenology of musical creation and experience. This two-credit honors course, which attracted students from eleven majors, integrated experiential learning (active listening, journaling, conducting mini-experiments) with rigorous reflection and discussion of academic research. The course culminated in student-led discussions and presentations of final projects around hot topics in the science of music, such as the 'Mozart Effect,' music and religious experience, etc. Although this course was a two-credit seminar, it could easily be expanded to a four-credit lecture or laboratory course. Student evaluations reveal that the course was successful in meeting the learning objectives, that students were intrinsically motivated to learn more about the discipline, and that the team-taught, experiential learning approach was a success.

  12. The Impact of a Curriculum Course on Pre-Service Primary Teachers' Science Content Knowledge and Attitudes towards Teaching Science

    Science.gov (United States)

    Murphy, Cliona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students'…

  13. Network science of biological systems at different scales: A review

    Science.gov (United States)

    Gosak, Marko; Markovič, Rene; Dolenšek, Jurij; Slak Rupnik, Marjan; Marhl, Marko; Stožer, Andraž; Perc, Matjaž

    2018-03-01

    Network science is today established as a backbone for description of structure and function of various physical, chemical, biological, technological, and social systems. Here we review recent advances in the study of complex biological systems that were inspired and enabled by methods of network science. First, we present

  14. Integrating international relations and environmental science course concepts through an interactive world politics simulation

    Science.gov (United States)

    Straub, K. H.; Kesgin, B.

    2012-12-01

    During the fall 2012 semester, students in two introductory courses at Susquehanna University - EENV:101 Environmental Science and POLI:131 World Affairs - will participate together in an online international relations simulation called Statecraft (www.statecraftsim.com). In this strategy game, students are divided into teams representing independent countries, and choose their government type (democracy, constitutional monarchy, communist totalitarian, or military dictatorship) and two country attributes (industrial, green, militaristic, pacifist, or scientific), which determine a set of rules by which that country must abide. Countries interact over issues such as resource distribution, war, pollution, immigration, and global climate change, and must also keep domestic political unrest to a minimum in order to succeed in the game. This simulation has typically been run in political science courses, as the goal is to allow students to experience the balancing act necessary to maintain control of global and domestic issues in a dynamic, diverse world. This semester, environmental science students will be integrated into the simulation, both as environmental advisers to each country and as independent actors representing groups such as Greenpeace, ExxonMobil, and UNEP. The goal in integrating the two courses in the simulation is for the students in each course to gain both 1) content knowledge of certain fundamental material in the other course, and 2) a more thorough, applied understanding of the integrated nature of the two subjects. Students will gain an appreciation for the multiple tradeoffs that decision-makers must face in the real world (economy, resources, pollution, health, defense, etc.). Environmental science students will link these concepts to the traditional course material through a "systems thinking" approach to sustainability. Political science students will face the challenges of global climate change and gain an understanding of the nature of

  15. Introducing Molecular Biology to Environmental Engineers through Development of a New Course.

    Science.gov (United States)

    Oerther, Daniel B.

    2002-01-01

    Introduces a molecular biology course designed for environmental engineering majors using 16S ribosomal ribonucleic acid-targeted technology that allows students to identify and study microorganisms in bioreactor environments. (Contains 17 references.) (YDS)

  16. Perceptions of psychology as a science among university students: the influence of psychology courses and major of study.

    Science.gov (United States)

    Bartels, Jared M; Hinds, Ryan M; Glass, Laura A; Ryan, Joseph J

    2009-10-01

    The goal was to examine the relationship between the number of psychology courses students have taken and their perceptions of psychology as a science. Additionally, differences in perceptions of psychology among psychology, education, and natural science majors were examined. Results indicated that students who had taken four or more psychology courses had more favorable perceptions of psychology as a science compared to those who had taken no courses or one course and those who had taken two to three courses. No significant differences in overall perceptions of psychology emerged among students in the three majors.

  17. Student Perceived and Determined Knowledge of Biology Concepts in an Upper-Level Biology Course

    OpenAIRE

    Ziegler, Brittany; Montplaisir, Lisa

    2014-01-01

    Students who lack metacognitive skills can struggle with the learning process. To be effective learners, students should recognize what they know and what they do not know. This study examines the relationship between students’ perception of their knowledge and determined knowledge in an upper-level biology course utilizing a pre/posttest approach. Significant differences in students’ perception of their knowledge and their determined knowledge exist at the beginning (pretest) and end (postte...

  18. Enhancing interdisciplinary, mathematics, and physical science in an undergraduate life science program through physical chemistry.

    Science.gov (United States)

    Pursell, David P

    2009-01-01

    BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect.

  19. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    Science.gov (United States)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  20. Using Grand Challenges to Teach Science: A Biology-Geology Collaboration

    Science.gov (United States)

    Lyford, M.; Myers, J. D.

    2012-12-01

    Three science courses at the University of Wyoming explore the inextricable connections between science and society by centering on grand challenges. Two of these courses are introductory integrated science courses for non-majors while the third is an upper level course for majors and non-majors. Through collaboration, the authors have developed these courses to explore the grand challenges of energy, water and climate. Each course focuses on the fundamental STEM principles required for a citizen to understand each grand challenge. However, the courses also emphasize the non-STEM perspectives (e.g., economics, politics, human well-being, externalities) that underlie each grand challenge and argue that creating equitable, sustainable and just solutions to the grand challenges hinges on an understanding of STEM and non-STEM perspectives. Moreover, the authors also consider the multitude of personal perspectives individuals bring to the classroom (e.g., values, beliefs, empathy misconceptions) that influence any stakeholder's ability to engage in fruitful discussions about grand challenge solutions. Discovering Science (LIFE 1002) focuses on the grand challenges of energy and climate. Students attend three one-hour lectures, one two-hour lab and a one-hour discussion each week. Lectures emphasize the STEM and non-STEM principles underlying each grand challenge. Laboratory activities are designed to be interdisciplinary and engage students in inquiry-driven activities to reinforce concepts from lecture and to model how science is conducted. Labs also expose students to the difficulties often associated with scientific studies, the limits of science, and the inherent uncertainties associated with scientific findings. Discussion sessions provide an opportunity for students to explore the complexity of the grand challenges from STEM and non-STEM perspectives, and expose the multitude of personal perspectives an individual might harbor related to each grand challenge

  1. Green Chemistry and Sustainability: An Undergraduate Course for Science and Nonscience Majors

    Science.gov (United States)

    Gross, Erin M.

    2013-01-01

    An undergraduate lecture course in Green Chemistry and Sustainability has been developed and taught to a "multidisciplinary" group of science and nonscience majors. The course introduced students to the topics of green chemistry and sustainability and also immersed them in usage of the scientific literature. Through literature…

  2. Composing Science

    Science.gov (United States)

    Atkins, Leslie

    2015-03-01

    The course Scientific Inquiry at California State University was developed by faculty in biology, physics and English to meet ``writing proficiency'' requirements for non-science majors. Drawing from previous work in composition studies, the position that we take in this course is that we should be engaging students in writing that replicates the work that writing does in science, rather than replicating the particular structural conventions characteristic of scientific writing. That is, scientists use writing to have, remember, share, vet, challenge, and stabilize ideas, and our course requires students use writing to achieve those aims, rather than produce writing that obeys particular conventions of scientific writing. This talk will describe how we have integrated findings from composition studies with a course on scientific inquiry, and provide examples of how scientific communication has resulted from this dialogue. Funding by NSF #1140860.

  3. At the Crossroads of Art and Science: A New Course for University Non-Science Majors

    Science.gov (United States)

    Blatt, S. Leslie

    2004-03-01

    How much did Seurat know about the physics, physiology, and perceptual science of color mixing when he began his experiments in pointillism? Did Vermeer have a camera obscura built into his studio to create the perfect perspective and luminous effects of his canvases? Early in the 20th century, consequences of the idea that "no single reference point is to be preferred above any other" were worked out in physics by Einstein (special and general relativity), in art by Picasso (early cubism), and in music by Schoenberg (12-tone compositions); did this same paradigm-shifting concept arise, in three disparate fields, merely by coincidence? We are developing a new course, aimed primarily at non-science majors, that addresses questions like these through a combination of hands-on experiments on the physics of light, investigations in visual perception, empirical tests of various drawing and painting techniques, and field trips to nearby museums. We will show a few examples of the kinds of art/science intersections our students will be exploring, and present a working outline for the course.

  4. The relationship between competencies acquired through Swiss academic sports science courses and the job requirements.

    Science.gov (United States)

    Schlesinger, T; Studer, F; Nagel, S

    2016-01-01

    In view of the changes in and growing variety of sports-related occupations, it is highly relevant for educational institutions to know how well the educational contents of their sport science courses meet the professional requirements. This study analyses the relationship between the competencies acquired through academic sports science courses and the requirements of the relevant jobs in Switzerland. The data for this empirical analysis were drawn from a sample of n = 1054 graduates of different academic sport science programmes at all eight Swiss universities. The results show that academic sport science courses primarily communicate sports-specific expertise and practical sports skills. On the other hand, most graduates consider that the acquisition of interdisciplinary competencies plays a comparatively minor role in sport science education, even though these competencies are felt to be an important requirement in a variety of work-related environments and challenges.

  5. The Respon of IKIP BUDI UTOMO Students Toward the Instructional Book of Cell Biology Subject Aided by Interactive Multimedia

    OpenAIRE

    Hartati, Tri Asih Wahyu; Safitri, Dini

    2017-01-01

    The development of Science and Technology (Science and Technology) takes place very rapidly. The development of science and technology will impact on graduate competency changes desired by the industry. This change of course will be followed by updating the curriculum, learning resources and teaching materials are used, one of them teaching materials on the subjects of Cell Biology. In the course of Cell Biology, the students only take textbooks without the support of interactive multimedia. ...

  6. Increasing Scientific Literacy about Global Climate Change through a Laboratory-Based Feminist Science Course

    Science.gov (United States)

    George, Linda A.; Brenner, Johanna

    2010-01-01

    The authors have developed and implemented a novel general education science course that examines scientific knowledge, laboratory experimentation, and science-related public policy through the lens of feminist science studies. They argue that this approach to teaching general science education is useful for improving science literacy. Goals for…

  7. The impact of a curriculum course on pre-service primary teachers' science content knowledge and attitudes towards teaching science

    OpenAIRE

    Murphy, Clíona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students' conceptual and pedagogical knowledge of science and on their attitudes towards teaching science in the primary classroom. A questionnaire, containing closed ...

  8. Life sciences space biology project planning

    Science.gov (United States)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  9. The science of sex and gender in human health: online courses to create a foundation for sex and gender accountability in biomedical research and treatment.

    Science.gov (United States)

    Plank-Bazinet, Jennifer L; Sampson, Annie; Miller, Leah R; Fadiran, Emmanuel O; Kallgren, Deborah; Agarwal, Rajeev K; Barfield, Whitney; Brooks, Claudette E; Begg, Lisa; Mistretta, Amy C; Scott, Pamela E; Clayton, Janine Austin; Cornelison, Terri L

    2016-01-01

    Sex and gender differences play a significant role in the course and outcome of conditions that affect specific organ systems in the human body. Research on differences in the effects of medical intervention has helped scientists develop a number of sex- and gender-specific guidelines on the treatment and management of these conditions. An online series of courses, "The Science of Sex and Gender in Human Health," developed by the National Institutes of Health Office of Research on Women's Health and the U.S. Food and Drug Administration Office of Women's Health, examines sex and gender differences and their implications. Thus far, three online courses have been generated. The first course offers an overview of the scientific and biological basis for sex- and gender-related differences. The second course is focused on disease-specific sex and gender differences in health and behavior and their implications. Finally, the third course covers the influence of sex and gender on disease manifestation, treatment, and outcome. Data were obtained using website analytics and post-course surveys. To date, over 1000 individuals have completed at least one course. Additionally, 600 users have received continuing education credit for completing a course in the series. Finally, the majority of respondents to the online course survey have indicated that the courses considerably enhanced their professional effectiveness. "The Science of Sex and Gender in Human Health" online courses are freely available sources of information that provide healthcare providers and researchers with the resources to successfully account for sex and gender in their medical practice and research programs.

  10. A Longitudinal Analysis of the Extent and Manner of Representations of Nature of Science in U.S. High School Biology and Physics Textbooks

    Science.gov (United States)

    Abd-El-Khalick, Fouad; Myers, John Y.; Summers, Ryan; Brunner, Jeanne; Waight, Noemi; Wahbeh, Nader; Zeineddin, Ava A.; Belarmino, Jeremy

    2017-01-01

    This study assessed the (i) ways in which, and extent to which, several aspects of nature of science (NOS) are represented in high school biology and physics textbooks in the United States (U.S.); (ii) extent to which these representations have changed over the course of several decades; and (iii) relative impact of discipline, and textbook…

  11. Using AN Essea Earth Systems Science Course in a Web-Enhanced Setting for Pre-Service Middle School Teachers

    Science.gov (United States)

    Slattery, W.

    2003-12-01

    The ESSEA Middle School course was originally designed as an asynchronous on-line tool for teacher professional development. The ESSEA course uses real world events such as deforestation, volcanic eruptions and hurricanes to develop content understandings of Earth systems processes and to model pedagogical best practices appropriate for middle school students. The course is structured as multiple three-week learning cycles. During week one of each cycle, participants are formed into Sphere groups to study the impact of the event under consideration on the atmosphere, biosphere, hydrosphere, or lithosphere. During week two, Event teams are formed to include members from each of the previous week's Sphere groups. Together they develop interactions between the different spheres and the event. During week three, teachers develop classroom applications and post them on-line for other participants to comment upon. On-going assessment suggests that in-service teacher participants of the on-line course are more likely to infuse inquiry-based science instruction into their classroom settings and to teach science as a subject integrating Physical science, Life science, and Earth/Space science in their own classrooms It is imperative to develop such characteristics in pre-service teachers as well. Wright State University's undergraduate Middle School teacher preparation program requires that undergraduates seeking Middle Childhood Licensure by the State of Ohio take a course in Earth Systems science that is aligned with the national and state science education standards. Towards this end the ESSEA course has been adapted for use in a web-enhanced setting. Weeks one and two (Sphere and Event study) of the ESSEA Middle School course are used as an integral component of this Earth Systems science course. In this way content knowledge and pedagogical strategies are modeled just as they are in the fully on-line course. Questions raised on-line are the topic of research or

  12. The Effect of Enrollment in Middle School Challenge Courses on Advanced Placement Exams in Social Studies and Science

    Science.gov (United States)

    Glaude-Bolte, Katherine

    Educators seek to guide students through appropriate programs and courses that prepare them for future success, in more advanced coursework and in other challenges of life. Some middle schools offer Challenge, or honors, courses for students who have demonstrated high ability. High schools often offer Advanced Placement (AP) courses, which are taught at the college level. This study examined the correlation between enrollment in middle school Challenge courses and subsequent AP exam category scores in social studies and science in a suburban school district. The independent variables were the number of years of enrollment in middle school social studies or science Challenge courses. The dependent variables were the AP exam category scores in the eight social studies AP courses or the six science AP courses. The sample sizes were limited to the number of students who took an AP social studies or science exam and also attended the middle school of study. The null hypothesis was that there was no relationship between the two variables. This study included eight social studies AP courses and six science AP courses. A significant positive correlation was indicated in only two of the courses, U.S. Government and Comparative Government, supporting the claim that enrollment in middle school Challenge social studies was correlated with success, at least on these two AP exams. In the remaining 12 courses, there was not enough evidence to reject the null hypothesis. Therefore, enrollment in middle school Challenge science and social studies courses generally did not seem to correlate with AP exam category scores. Results of this study call into question the validity of the claim by the district that enrollment in Challenge courses helps prepare students for rigorous coursework in high school. Several factors, including student readiness, teacher training, familiarity with course content, and previous AP experience may contribute more to a student's AP exam category score

  13. The Case for "Story-Driven" Biology Education

    Science.gov (United States)

    Schattner, Peter

    2015-01-01

    Can learning molecular biology and genetics be enjoyable? Of course it can. Biologists know their field is exciting and fascinating and that learning how cells and molecules shape the living world is extraordinarily interesting. But can students who are not already inclined towards science also be convinced that learning molecular biology is…

  14. Cognitive Difficulty and Format of Exams Predicts Gender and Socioeconomic Gaps in Exam Performance of Students in Introductory Biology Courses.

    Science.gov (United States)

    Wright, Christian D; Eddy, Sarah L; Wenderoth, Mary Pat; Abshire, Elizabeth; Blankenbiller, Margaret; Brownell, Sara E

    2016-01-01

    Recent reform efforts in undergraduate biology have recommended transforming course exams to test at more cognitively challenging levels, which may mean including more cognitively challenging and more constructed-response questions on assessments. However, changing the characteristics of exams could result in bias against historically underserved groups. In this study, we examined whether and to what extent the characteristics of instructor-generated tests impact the exam performance of male and female and middle/high- and low-socioeconomic status (SES) students enrolled in introductory biology courses. We collected exam scores for 4810 students from 87 unique exams taken across 3 yr of the introductory biology series at a large research university. We determined the median Bloom's level and the percentage of constructed-response questions for each exam. Despite controlling for prior academic ability in our models, we found that males and middle/high-SES students were disproportionately favored as the Bloom's level of exams increased. Additionally, middle/high-SES students were favored as the proportion of constructed-response questions on exams increased. Given that we controlled for prior academic ability, our findings do not likely reflect differences in academic ability level. We discuss possible explanations for our findings and how they might impact how we assess our students. © 2016 C. D. Wright, S. L. Eddy, et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Stereotyped: Investigating Gender in Introductory Science Courses

    Science.gov (United States)

    Lauer, Shanda; Momsen, Jennifer; Offerdahl, Erika; Kryjevskaia, Mila; Christensen, Warren; Montplaisir, Lisa

    2013-01-01

    Research in science education has documented achievement gaps between men and women in math and physics that may reflect, in part, a response to perceived stereotype threat. Research efforts to reduce achievement gaps by mediating the impact of stereotype threat have found success with a short values-affirmation writing exercise. In biology and…

  16. Using assessments to investigate and compare the nature of learning in undergraduate science courses.

    Science.gov (United States)

    Momsen, Jennifer; Offerdahl, Erika; Kryjevskaia, Mila; Montplaisir, Lisa; Anderson, Elizabeth; Grosz, Nate

    2013-06-01

    Assessments and student expectations can drive learning: students selectively study and learn the content and skills they believe critical to passing an exam in a given subject. Evaluating the nature of assessments in undergraduate science education can, therefore, provide substantial insight into student learning. We characterized and compared the cognitive skills routinely assessed by introductory biology and calculus-based physics sequences, using the cognitive domain of Bloom's taxonomy of educational objectives. Our results indicate that both introductory sequences overwhelmingly assess lower-order cognitive skills (e.g., knowledge recall, algorithmic problem solving), but the distribution of items across cognitive skill levels differs between introductory biology and physics, which reflects and may even reinforce student perceptions typical of those courses: biology is memorization, and physics is solving problems. We also probed the relationship between level of difficulty of exam questions, as measured by student performance and cognitive skill level as measured by Bloom's taxonomy. Our analyses of both disciplines do not indicate the presence of a strong relationship. Thus, regardless of discipline, more cognitively demanding tasks do not necessarily equate to increased difficulty. We recognize the limitations associated with this approach; however, we believe this research underscores the utility of evaluating the nature of our assessments.

  17. A Comparative Analysis of South African Life Sciences and Biology Textbooks for Inclusion of the Nature of Science

    Science.gov (United States)

    Ramnarain, Umesh; Padayachee, Keshni

    2015-01-01

    This study reports on the analysis of South African Life Sciences and Biology textbooks for the inclusion of the nature of science using a conceptual framework developed by Chiappetta, Fillman and Sethna (1991). In particular, we investigated the differences between the representation of the nature of science in Biology textbooks that were written…

  18. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    Science.gov (United States)

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to…

  19. Learning-style preferences of Latino/Hispanic community college students enrolled in an introductory biology course

    Science.gov (United States)

    Sarantopoulos, Helen D.

    Purpose. The purpose of this study was to identify, according to the Productivity Environment Preference Survey (PEPS) instrument, which learning-style domains (environmental, emotional, sociological, and physiological) were favored among Latino/Hispanic community college students enrolled in introductory biology classes in a large, urban community college. An additional purpose of this study was to determine whether statistically significant differences existed between the learning-style preferences and the demographic variables of age, gender, number of prior science courses, second language learner status, and earlier exposure to scientific information. Methodology. The study design was descriptive and ex post facto. The sample consisted of a total of 332 Latino/Hispanic students enrolled in General Biology 3. Major findings. The study revealed that Latino/Hispanic students enrolled in introductory biology at a large urban community college scored higher for the learning preference element of structure. Students twenty-five years and older scored higher for the learning preference elements of light, design, persistence, responsibility, and morning time (p learning-style preferences were found between second English language learners and those who learned English as their primary language (p tactile (p learning-style model and instruments and on recent learning-style research articles on ethnically diverse groups of adult learners; and (2) Instructors should plan their instruction to incorporate the learning-style preferences of their students.

  20. Factors associated with staff development processes and the creation of innovative science courses in higher education

    Science.gov (United States)

    Hodges, Jeanelle Bland

    1999-11-01

    The purpose of the study was to determine factors associated with staff development processes and the creation of innovative science courses by higher education faculty who have participated in a model staff development project. The staff development program was designed for college faculty interested in creating interdisciplinary, constructivist-based science, mathematics, or engineering courses designed for non-majors. The program includes workshops on incorporating constructivist pedagogy, alternative assessment, and technology into interdisciplinary courses. Staff development interventions used in the program include grant opportunities, distribution of resource materials, and peer mentoring. University teams attending the workshops are comprised of faculty from the sciences, mathematics, or engineering, as well as education, and administration. A purposeful and convenient sample of three university teams were subjects for this qualitative study. Each team had attended a NASA Opportunities for Visionary Academics (NOVA) workshop, received funding for course development, and offered innovative courses. Five questions were addressed in this study: (a) What methods were used by faculty teams in planning the courses? (b) What changes occurred in existing science courses? (c) What factors affected the team collaboration process? (d) What personal characteristics of faculty members were important in successful course development? and (e) What barriers existed for faculty in the course development process? Data was collected at each site through individual faculty interviews (N = 11), student focus group interviews (N = 15), and classroom observations. Secondary data included original funding proposals. The NOVA staff development model incorporated effective K--12 interventions with higher education interventions. Analysis of data revealed that there were four factors of staff development processes that were most beneficial. First, the team collaborative processes

  1. A New Coherent Science Content Storyline Astronomy Course for Pre-Service Teachers at Penn State

    Science.gov (United States)

    Palma, Christopher; Plummer, Julia; Earth and Space Science Partnership

    2016-01-01

    The Earth and Space Science Partnership (ESSP) is a collaboration among Penn State scientists, science educators and seven school districts across Pennsylvania. One of the ESSP goals has been to provide pre-service teachers with new or improved science course offerings at Penn State in the Earth and Space Science domains. In particular, we aim to provide students with opportunities to learn astronomy content knowledge through teaching methods that engage them in investigations where they experience the practices used by astronomers. We have designed a new course that builds on our research into students' ideas about Solar System astronomy (Plummer et al. 2015) and the curriculum our team created for a professional development workshop for in-service teachers (Palma et al. 2013) with this same theme. The course was offered for the first time in the spring 2015 semester. We designed the course using a coherent science content storyline approach (see, e.g., Palma et al. 2014), which requires all of the student investigations to build towards a big idea in science; in this case, we chose the model for formation of our Solar System. The course led pre-service teachers through a series of investigations that model the type of instruction we hope they will adopt in their own classrooms. They were presented with a series of research questions that all tie in to the big idea of Solar System formation, and they were responsible for collecting and interpreting their own data to draw evidence-based conclusions about one aspect of this model. Students in the course were assessed on their astronomy content knowledge, but also on their ability to construct arguments using scientific reasoning to answer astronomy questions. In this poster, we will present descriptions of the investigations, the assessments used, and our preliminary results about how the course led this group of pre-service teachers to improved understanding of astronomy content and the practices astronomers use in

  2. Saving our science from ourselves: the plight of biological classification

    Directory of Open Access Journals (Sweden)

    Malte C. Ebach

    2011-06-01

    Full Text Available Saving our science from ourselves: the plight of biological classification. Biological classification ( nomenclature, taxonomy, and systematics is being sold short. The desire for new technologies, faster and cheaper taxonomic descriptions, identifications, and revisions is symptomatic of a lack of appreciation and understanding of classification. The problem of gadget-driven science, a lack of best practice and the inability to accept classification as a descriptive and empirical science are discussed. The worst cases scenario is a future in which classifications are purely artificial and uninformative.

  3. How to Build a Course in Mathematical-Biological Modeling: Content and Processes for Knowledge and Skill

    Science.gov (United States)

    Hoskinson, Anne-Marie

    2010-01-01

    Biological problems in the twenty-first century are complex and require mathematical insight, often resulting in mathematical models of biological systems. Building mathematical-biological models requires cooperation among biologists and mathematicians, and mastery of building models. A new course in mathematical modeling presented the opportunity…

  4. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  5. Test of Science Process Skills of Biology Students towards Developing of Learning Exercises

    Directory of Open Access Journals (Sweden)

    Judith S. Rabacal

    2016-11-01

    Full Text Available This is a descriptive study aimed to determine the academic achievement on science process skills of the BS Biology Students of Northern Negros State College of Science and Technology, Philippines with the end view of developing learning exercises which will enhance their academic achievement on basic and integrated science process skills. The data in this study were obtained using a validated questionnaire. Mean was the statistical tool used to determine the academic achievement on the above mentioned science process skills; t-test for independent means was used to determine significant difference on the academic achievement of science process skills of BS Biology students while Pearson Product Moment of Correlation Coefficient was used to determine the significant relationship between basic and integrated science process skills of the BS Biology students. A 0.05 level of significance was used to determine whether the hypothesis set in the study will be rejected or accepted. Findings revealed that the academic achievement on basic and integrated science process skills of the BS Biology students was average. Findings revealed that there are no significant differences on the academic performance of the BS Biology students when grouped according to year level and gender. Findings also revealed that there is a significant difference on the academic achievement between basic and integrated science process skills of the BS Biology students. Findings revealed that there is a significant relationship between academic achievement on the basic and integrated science process skills of the BS Biology students.

  6. Design Principles for "Thriving in Our Digital World": A High School Computer Science Course

    Science.gov (United States)

    Veletsianos, George; Beth, Bradley; Lin, Calvin; Russell, Gregory

    2016-01-01

    "Thriving in Our Digital World" is a technology-enhanced dual enrollment course introducing high school students to computer science through project- and problem-based learning. This article describes the evolution of the course and five lessons learned during the design, development, implementation, and iteration of the course from its…

  7. New course in bioengineering and bioinspired design.

    Science.gov (United States)

    Erickson, Jonathan C

    2012-01-01

    The past two years, a new interdisciplinary course has been offered at Washington and Lee University (Lexington, VA, USA), which seeks to surmount barriers that have traditionally existed between the physical and life sciences. The course explores the physiology leading to the physical mechanisms and engineering principles that endow the astonishing navigation abilities and sensory mechanisms of animal systems. The course also emphasizes how biological systems are inspiring novel engineering designs. Two (among many) examples are how the adhesion of the gecko foot inspired a new class of adhesives based on Van der Waals forces; and how the iridophore protein plates found in mimic octopus and squid act as tunable ¼ wave stacks, thus inspiring the engineering of optically tunable block copolymer gels for sensing temperature, pressure, or chemical gradients. A major component of this course is the integration of a 6-8 week long research project. To date, projects have included engineering: a soft-body robot whose motion mimics the inchworm; an electrical circuit to sense minute electric fields in aqueous environments based on the shark electrosensory system; and cyborg grasshoppers whose jump motion is controlled via an electronic-neural interface. Initial feedback has indicated that this course has served to increase student interaction and “cross-pollination” of ideas between the physical and life sciences. Student feedback also indicated a marked increase in desire and confidence to continue to pursue problems at the boundary of biology and engineering—bioengineering.

  8. Integrating interactive computational modeling in biology curricula.

    Directory of Open Access Journals (Sweden)

    Tomáš Helikar

    2015-03-01

    Full Text Available While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  9. Integrating interactive computational modeling in biology curricula.

    Science.gov (United States)

    Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A

    2015-03-01

    While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  10. Polymerization Simulator for Introductory Polymer and Material Science Courses

    Science.gov (United States)

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  11. Developing Earth System Science Courses and Programs at Minority Serving Institutions

    Science.gov (United States)

    Johnson, D. R.; Jackson, C.; Ruzek, M.

    2004-12-01

    In the current NASA/USRA ESSE21 Program, emphasis is placed on the development of Earth System Science courses and degree offerings in Minority Serving Institutions (MSIs). Of the 18 colleges/universities being supported by NASA through USRA, 10 colleges/universities are MSIs. While there is recognition of the need for Earth system science courses, minors and degree programs by NASA and other agencies, within MSIs, a central challenge is how to provide a vision of the future opportunities in ESS and STEM disciplines that attracts and motivates students to these studies. Students need career guidance, role models and mentoring to encourage entry into STEM in general, and Earth system science in particular. Then there is the question of how to bring interested faculty together in institutions to form a critical mass that would forego the breadth and depth of disciplinary interests to undertake the development of multi/cross and interdisciplinary courses, minors and degree programs in ESS. Within the ESSE21 Diversity Working Group, the question has been raised as to how will MSIs ever be mainstream participants in ESS without teaching and engaging in research in remote sensing, modeling of the Earth's climate system and other like endeavors. Two other related questions raised within the Working Group are what are the long-term objectives of MSI adoption of ESS and what course corrections are needed to make ESS viable at MSIs. Within these considerations there are unresolved questions concerning the need and availability of resources from NASA, other agencies and local institutions. Apart from these larger considerations, efforts are underway within the ESSE21 Program that provide for sharing of resources among participants, organization of and access to materials that already exist, online resources, course outlines and successful listings for online resources by topics for particular courses and subject areas. The Lesson Learned Working Group, as well as the program

  12. The Relationship in Biology between the Nature of Science and Scientific Inquiry

    Science.gov (United States)

    Kremer, Kerstin; Specht, Christiane; Urhahne, Detlef; Mayer, Jürgen

    2014-01-01

    Informed understandings of nature of science and scientific inquiry are generally accepted goals of biology education. This article points out central features of scientific inquiry with relation to biology and the nature of science in general terms and focuses on the relationship of students' inquiry skills in biology and their beliefs on the…

  13. Hands-on-Entropy, Energy Balance with Biological Relevance

    Science.gov (United States)

    Reeves, Mark

    2015-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is important contribution of the entropy in driving fundamental biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy). This has enabled students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce complex biological processes and structures in order model them mathematically to account for both deterministic and probabilistic processes. The students test these models in simulations and in laboratory experiments that are biologically relevant such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront random forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory

  14. Science, Technology, Engineering and Math Readiness: Ethno-linguistic and gender differences in high-school course selection patterns

    Science.gov (United States)

    Adamuti-Trache, Maria; Sweet, Robert

    2014-03-01

    The study examines science-related course choices of high-school students in the culturally diverse schools of the province of British Columbia, Canada. The analysis employs K-12 provincial data and includes over 44,000 students born in 1990 who graduated from high school by 2009. The research sample reflects the presence of about 27% of students for whom English is not a first language. We construct an empirical model that examines ethno-linguistic and gender differences in Grade 12 course choices while accounting for personal and situational differences among students. The study employs a course selection typology that emphasizes readiness for science, technology, engineering and math fields of study. Findings indicate that math- and science-related course selection patterns are strongly associated with ethnicity, qualified not only by gender and prior math and science achievement but also by the individual's grade level at entry to the system and enrollment in English as a Second Language program. Students who are more likely to engage in math and science courses belong to Asian ethno-linguistic groups and entered the provincial school system during the senior high-school years. We suggest that ethnic diversity and broader academic exposure may play a crucial role in changing the gender composition of science classrooms, university fields of study and science-related occupations.

  15. Teachers' Perspectives of the New Western Australian Earth and Environmental Science Course: Lessons for the Australian Curriculum

    Science.gov (United States)

    Dawson, Vaille; Moore, Leah

    2011-01-01

    In 2007, a new upper secondary course, Earth and Environmental Science (EES) was introduced in Western Australia. The development and implementation of the course was supported by Earth Science Western Australia (ESWA), a consortium of universities, the CSIRO and other organisations. The role of ESWA is to support the teaching of earth science in…

  16. Different behavioral patterns of success for men and women in an online introductory science course: Addressing the course grade gender gap

    Science.gov (United States)

    Mead, C.; Horodyskyj, L.; Buxner, S.; Semken, S. C.; Anbar, A. D.

    2016-12-01

    In this study, we explore how data provided by an online learning environment can provide fine-grained behavioral context for the performance gender gap commonly observed in introductory college science courses. Previous studies reported that women earn lower grades than men in such courses, often ascribed to reduced engagement and resilience driven by sociocultural causes, such as stereotype threat. This may be exacerbated in courses graded primarily based on high-stakes exams. Here, we use student data (n = 1121) from Habitable Worlds, an online laboratory science course, to identify behavioral differences between men and women. In Habitable Worlds, students earn points from 30 "trainings," which are scored on completion, and 30 "applications," which are scored on correctness. The lack of high-stakes cumulative exams represents a valuable contrast with typical science courses in which gender gaps have been reported. Our data indicate that a gender gap exists even for these low-stakes assessments. Results of a generalized linear model show that course success among women is much more strongly predicted by training scores than by application scores, while those factors have roughly equal predictive value among men. Predicted success among women is also modulated by the total number of attempts made on questions throughout the course, where more attempts implies lower success (holding other factors constant). This relationship is non-significant for men. Our interpretation of these model results is that obstacles such as stereotype threat represent a tax for women on effort and engagement, such that equivalent effort yields lesser success than for men. Thus, the women who do succeed differ sharply from lower performing women on indicators of effort. Future work should build on this result both as an indicator of conditions under which women are more likely to succeed and as a way to more quickly identify students who may struggle.

  17. Maintaining Quality While Expanding Our Reach: Using Online Information Literacy Tutorials in the Sciences and Health Sciences

    OpenAIRE

    Talitha Rosa Matlin; Tricia Lantzy

    2017-01-01

    Abstract Objective – This article aims to assess student achievement of higher-order information literacy learning outcomes from online tutorials as compared to in-person instruction in science and health science courses. Methods – Information literacy instruction via online tutorials or an in-person one-shot session was implemented in multiple sections of a biology (n=100) and a kinesiology course (n=54). After instruction, students in both instructional environments completed an ide...

  18. Influence of an Intensive, Field-Based Life Science Course on Preservice Teachers' Self-Efficacy for Environmental Science Teaching

    Science.gov (United States)

    Trauth-Nare, Amy

    2015-01-01

    Personal and professional experiences influence teachers' perceptions of their ability to implement environmental science curricula and to positively impact students' learning. The purpose of this study was twofold: to determine what influence, if any, an intensive field-based life science course and service learning had on preservice teachers'…

  19. Identification of multiple intelligences for high school students in theoretical and applied science courses

    Science.gov (United States)

    Wiseman, D. Kim

    Historically educators in the United States have used the Stanford-Binet intelligence test to measure a students' ability in logical/mathematical and linguistic domains. This measurement is being used by a society that has evolved from agrarian and industrial-based economies to what is presently labeled a technological society. As society has changed so have the educational needs of the students who will live in this technological society. This study assessed the multiple intelligences of high school students enrolled in theoretical and applied science (physics and applied physics) courses. Studies have verified that performance and outcomes of students enrolled in these courses are similar in standardized testing but instructional methodology and processes are dissimilar. Analysis of multiple intelligence profiles collected from this study found significant differences in logical/mathematical, bodily/kinesthetic and intrapersonal multiple intelligences of students in theoretical science courses compared to students in applied science courses. Those differences clearly illustrate why it is imperative for educators to expand the definition of intelligence for students entering the new millennium.

  20. Integrating Hands-On Undergraduate Research in an Applied Spatial Science Senior Level Capstone Course

    Science.gov (United States)

    Kulhavy, David L.; Unger, Daniel R.; Hung, I-Kuai; Douglass, David

    2015-01-01

    A senior within a spatial science Ecological Planning capstone course designed an undergraduate research project to increase his spatial science expertise and to assess the hands-on instruction methodology employed within the Bachelor of Science in Spatial Science program at Stephen F Austin State University. The height of 30 building features…

  1. Epistemological Predictors of Prospective Biology Teachers' Nature of Science Understandings

    Science.gov (United States)

    Köseoglu, Pinar; Köksal, Mustafa Serdar

    2015-01-01

    The purpose of this study was to investigate epistemological predictors of nature of science understandings of 281 prospective biology teachers surveyed using the Epistemological Beliefs Scale Regarding Science and the Nature of Science Scale. The findings on multiple linear regression showed that understandings about definition of science and…

  2. Factors Influencing Academic Performance of Students Enrolled in a Lower Division Cell Biology Core Course

    Science.gov (United States)

    Soto, Julio G.; Anand, Sulekha

    2009-01-01

    Students' performance in two semesters of our Cell Biology course was examined for this study. Teaching strategies, behaviors, and pre-course variables were analyzed with respect to students' performance. Pre-semester and post-semester surveys were administered to ascertain students' perceptions about class difficulty, amount of study and effort…

  3. The Effect of a History-based Course in Optics on Students' Views about Science.

    Science.gov (United States)

    Galili, Igal; Hazan, Amnon

    2001-01-01

    Describes an experimental course in optics for 10th grade high school students. The course incorporates those historical ideas, views, and conceptions that constituted the early understanding of light and vision. Presents a part of the course which assesses its impact on students' views about science and some related technological and cultural…

  4. International Journal of Biological and Chemical Sciences ...

    African Journals Online (AJOL)

    The International Journal of Biological and Chemical Sciences (IJBCS) is a journal ... c) Short Communication (maximum: 10 pages, 20 references). d) Case ... Abstract: All articles should be provided with an abstract not exceeding 200 words.

  5. Teaching professionalism in science courses: Anatomy to zoology

    Directory of Open Access Journals (Sweden)

    Cheryl C. Macpherson

    2012-02-01

    Full Text Available Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies’ trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences.

  6. Academe-Industry Partnership: Basis for Enhanced Learning Guide in the New Science General Education Course

    Directory of Open Access Journals (Sweden)

    Alma D. Agero

    2016-11-01

    Full Text Available This study explores the academe-industry partnership of Cebu Technological University Bachelor of Science in Hospitality Management and Bachelor of Science in Industrial Technology major in Food Preparation and Services courses, SY 2014-2015 to improve the quality of course offering. It takes on the feedback received from supervisors of 50 different hotels and restaurants of Cebu province, as well as the self-rating of 185 OJTs of the two courses as regard to OJTs' level of functional and science-based core competencies. This descriptive research utilizes Likert-type research-made survey questionnaire which was previously tested for validity and reliability. The findings revealed that industry supervisors evaluated the trainees as Competent in core competencies (Bartending, Bread and pastry products, Cookery, Customer services, Front office services, food and beverages as well as functional skills (Problem solving, Leadership, Communication, Independent work, Creativity, Negotiation, Teamwork, Time management and Initiative. However, they found the students need of strengthening their problem solving and communication skills. The researchers therefore developed an enhanced learning guide for the New Science GE course to address the gaps based on the industry feedback.

  7. An Elective Course on the Basic and Clinical Sciences Aspects of Vitamins and Minerals

    Science.gov (United States)

    2013-01-01

    Objective. To develop and implement an elective course on vitamins and minerals and their usefulness as dietary supplements. Design. A 2-credit-hour elective course designed to provide students with the most up-to-date basic and clinical science information on vitamins and minerals was developed and implemented in the doctor of pharmacy (PharmD) curriculum. In addition to classroom lectures, an active-learning component was incorporated in the course in the form of group discussion. Assessment. Student learning was demonstrated by examination scores. Performance on pre- and post-course surveys administered in 2011 demonstrated a significant increase in students’ knowledge of the basic and clinical science aspects of vitamins and minerals, with average scores increasing from 61% to 86%. At the end of the semester, students completed a standard course evaluation. Conclusion. An elective course on vitamin and mineral supplements was well received by pharmacy students and helped them to acquire knowledge and competence in patient counseling regarding safe, appropriate, effective, and economical use of these products. PMID:23463149

  8. An elective course on the basic and clinical sciences aspects of vitamins and minerals.

    Science.gov (United States)

    Islam, Mohammed A

    2013-02-12

    Objective. To develop and implement an elective course on vitamins and minerals and their usefulness as dietary supplements. Design. A 2-credit-hour elective course designed to provide students with the most up-to-date basic and clinical science information on vitamins and minerals was developed and implemented in the doctor of pharmacy (PharmD) curriculum. In addition to classroom lectures, an active-learning component was incorporated in the course in the form of group discussion. Assessment. Student learning was demonstrated by examination scores. Performance on pre- and post-course surveys administered in 2011 demonstrated a significant increase in students' knowledge of the basic and clinical science aspects of vitamins and minerals, with average scores increasing from 61% to 86%. At the end of the semester, students completed a standard course evaluation. Conclusion. An elective course on vitamin and mineral supplements was well received by pharmacy students and helped them to acquire knowledge and competence in patient counseling regarding safe, appropriate, effective, and economical use of these products.

  9. Correlation between MCAT biology content specifications and topic scope and sequence of general education college biology textbooks.

    Science.gov (United States)

    Rissing, Steven W

    2013-01-01

    Most American colleges and universities offer gateway biology courses to meet the needs of three undergraduate audiences: biology and related science majors, many of whom will become biomedical researchers; premedical students meeting medical school requirements and preparing for the Medical College Admissions Test (MCAT); and students completing general education (GE) graduation requirements. Biology textbooks for these three audiences present a topic scope and sequence that correlates with the topic scope and importance ratings of the biology content specifications for the MCAT regardless of the intended audience. Texts for "nonmajors," GE courses appear derived directly from their publisher's majors text. Topic scope and sequence of GE texts reflect those of "their" majors text and, indirectly, the MCAT. MCAT term density of GE texts equals or exceeds that of their corresponding majors text. Most American universities require a GE curriculum to promote a core level of academic understanding among their graduates. This includes civic scientific literacy, recognized as an essential competence for the development of public policies in an increasingly scientific and technological world. Deriving GE biology and related science texts from majors texts designed to meet very different learning objectives may defeat the scientific literacy goals of most schools' GE curricula.

  10. Correlation between MCAT Biology Content Specifications and Topic Scope and Sequence of General Education College Biology Textbooks

    Science.gov (United States)

    Rissing, Steven W.

    2013-01-01

    Most American colleges and universities offer gateway biology courses to meet the needs of three undergraduate audiences: biology and related science majors, many of whom will become biomedical researchers; premedical students meeting medical school requirements and preparing for the Medical College Admissions Test (MCAT); and students completing general education (GE) graduation requirements. Biology textbooks for these three audiences present a topic scope and sequence that correlates with the topic scope and importance ratings of the biology content specifications for the MCAT regardless of the intended audience. Texts for “nonmajors,” GE courses appear derived directly from their publisher's majors text. Topic scope and sequence of GE texts reflect those of “their” majors text and, indirectly, the MCAT. MCAT term density of GE texts equals or exceeds that of their corresponding majors text. Most American universities require a GE curriculum to promote a core level of academic understanding among their graduates. This includes civic scientific literacy, recognized as an essential competence for the development of public policies in an increasingly scientific and technological world. Deriving GE biology and related science texts from majors texts designed to meet very different learning objectives may defeat the scientific literacy goals of most schools’ GE curricula. PMID:24006392

  11. The Importance of Agriculture Science Course Sequencing in High Schools: A View from Collegiate Agriculture Students

    Science.gov (United States)

    Wheelus, Robin P.

    2009-01-01

    The objective of this study was to investigate the importance of Agriculture Science course sequencing in high schools, as a preparatory factor for students enrolled in collegiate agriculture classes. With the variety of courses listed in the Texas Essential Knowledge and Skills (TEKS) for Agriculture Science, it has been possible for counselors,…

  12. A National Comparison of Biochemistry and Molecular Biology Capstone Experiences

    Science.gov (United States)

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the "American Society for Biochemistry and Molecular Biology" (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end,…

  13. Collaborating to Improve Inquiry-Based Teaching in Elementary Science and Mathematics Methods Courses

    Science.gov (United States)

    Magee, Paula A.; Flessner, Ryan

    2012-01-01

    This study examines the effect of promoting inquiry-based teaching (IBT) through collaboration between a science methods course and mathematics methods course in an elementary teacher education program. During the collaboration, preservice elementary teacher (PST) candidates experienced 3 different types of inquiry as a way to foster increased…

  14. Lessons Learned from Undergraduate Students in Designing a Science-Based Course in Bioethics

    Science.gov (United States)

    Loike, John D.; Rush, Brittany S.; Schweber, Adam; Fischbach, Ruth L.

    2013-01-01

    Columbia University offers two innovative undergraduate science-based bioethics courses for student majoring in biosciences and pre-health studies. The goals of these courses are to introduce future scientists and healthcare professionals to the ethical questions they will confront in their professional lives, thus enabling them to strategically…

  15. Integration of a zebrafish research project into a molecular biology course to support critical thinking and course content goals.

    Science.gov (United States)

    Felzien, Lisa K

    2016-11-12

    Engaging undergraduates in research is essential for teaching them to think like scientists, and it has become a desired component of classroom and laboratory instruction. Research projects that span an entire semester expose students to a variety of concepts and techniques and allow students to use experiments to learn scientific principles, understand why specific techniques are applicable, critically analyze varied data, and examine how experimentation leads to acquiring knowledge. To provide an experience with these features, a semester long research project was integrated into a combined lecture and laboratory course, Molecular Biology. The project utilized the zebrafish model to examine gene expression during embryonic development and required students to develop and test hypotheses about the timing of expression of previously uncharacterized genes. The main goals for the project were to provide opportunities for students to develop critical thinking skills required for conducting research and to support the content goals of the course. To determine whether these goals were met, student performance on the steps of the project and related pre-test and post-test questions was examined. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):565-573, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  16. Student perceptions: Importance of and satisfaction with aspects of an online biology course

    Science.gov (United States)

    Hendry, Sheila R.

    Research of student satisfaction with various facets of an online biology course, as well as the perceived importance of these aspects, was conducted during the summer and fall 2004 semesters within a course, History of Biology, at a university in the southeastern United States. This research is based on the theory of transactional distance, which involves dialogue between the teacher and student, the physical environments of both the student and teacher, and the emotional environments of each. Student ratings of importance and satisfaction regarding aspects of convenience, grade earned/knowledge learned, emotional health, communication, and student support were collected toward the end of each semester, via the online course, using the researcher-designed Student Perceptions Survey. Statistics with repeated measures ANOVA, using an alpha of 0.05, determined differences between importance and satisfaction ratings for each of these aspects. Students perceived grade earned/knowledge learned to be the most important aspect of learning online, although it is not an aspect unique to online courses. All of the aspects included in the study were found to be at least somewhat important. Convenience was the aspect with which students were most satisfied, with students at least somewhat satisfied with the other aspects. Although convenience is an inherent strength of the online course format, instructors should be aware of how important it is to design requirements of the online class to help students acquire knowledge while allowing them to do so at their own pace. Well-structured content, prompt feedback, encouragement of quality student-instructor communication, and student support are all parts of a positive online course experience. The Student Perceptions Survey, created specifically for this research, can have substantial value both in the creation of new online courses and in the evaluation of pre-existing courses. It can provide important information that can be

  17. An approach to teaching general chemistry II that highlights the interdisciplinary nature of science.

    Science.gov (United States)

    Sumter, Takita Felder; Owens, Patrick M

    2011-01-01

    The need for a revised curriculum within the life sciences has been well-established. One strategy to improve student preparation in the life sciences is to redesign introductory courses like biology, chemistry, and physics so that they better reflect their disciplinary interdependence. We describe a medically relevant, context-based approach to teaching second semester general chemistry that demonstrates the interdisciplinary nature of biology and chemistry. Our innovative method provides a model in which disciplinary barriers are diminished early in the undergraduate science curriculum. The course is divided into three principle educational modules: 1) Fundamentals of General Chemistry, 2) Medical Approaches to Inflammation, and 3) Neuroscience as a connector of chemistry, biology, and psychology. We accurately anticipated that this modified approach to teaching general chemistry would enhance student interest in chemistry and bridge the perceived gaps between biology and chemistry. The course serves as a template for context-based, interdisciplinary teaching that lays the foundation needed to train 21st century scientists. Copyright © 2010 Wiley Periodicals, Inc.

  18. The rate of knowledge retention in basic sciences courses among dentistry students

    Directory of Open Access Journals (Sweden)

    S.S Mazloomi

    2009-03-01

    Full Text Available Background: Acquiring and recalling knowledge can be considered as the starting point of learning; so increasing  the acquisition  of knowledge and information  recall is one the most important goals of education.Objective: To determine the students'  information recall in the basic courses of histology, immunology, physiology, biochemistry,  head and neck anatomy,  and microbiology  in dentistry  school.Method:  In this descriptive  survey, 60 students who had passed their basis courses were studied. The tests  were  held  five semesters  following  the basic  courses,  and  were  like  those  they  had  passed previously.Results: The results revealed that information recall was the highest for the physiology course (z=0.72, while it was the lowest for anatomy (z=0.07. For the histology course, the lowest mean score was achieved by the students entered in the  year 1997, and the highest  by those  entered  in 1999. The relationship between the entry year  of the  students  and  their  information recall  is  statistically significant  (p<0.05.Discussant: The results showed that the teaching basic science courses such as physiology, anatomy, immunology, microbiology, and biochemistry should  accompany new  strategies in  teaching  and learning. One of these is the inclusion by the teachers of retrieval cues in any course so as to facilitate learning.Keywords:  knowledge retention,  basic sciences

  19. Using GIS in an Earth Sciences Field Course for Quantitative Exploration, Data Management and Digital Mapping

    Science.gov (United States)

    Marra, Wouter A.; van de Grint, Liesbeth; Alberti, Koko; Karssenberg, Derek

    2017-01-01

    Field courses are essential for subjects like Earth Sciences, Geography and Ecology. In these topics, GIS is used to manage and analyse spatial data, and offers quantitative methods that are beneficial for fieldwork. This paper presents changes made to a first-year Earth Sciences field course in the French Alps, where new GIS methods were…

  20. Interdisciplinary Science Courses for College General Education Requirements: Perspectives of Faculty at a State University.

    Science.gov (United States)

    Dass, Pradeep Maxwell

    Science educators have been advocating a broader role for science education--that of helping all students see the relevance of science to their own lives. Yet the only experience with post-secondary science that non-science majors get is through a couple of science courses which are part of the general education requirements (GERs) for a liberal…

  1. An Examination of Science High School Students' Motivation towards Learning Biology and Their Attitude towards Biology Lessons

    Science.gov (United States)

    Kisoglu, Mustafa

    2018-01-01

    The purpose of this study is to examine motivation of science high school students towards learning biology and their attitude towards biology lessons. The sample of the study consists of 564 high school students (308 females, 256 males) studying at two science high schools in Aksaray, Turkey. In the study, the relational scanning method, which is…

  2. Educational Impact of Digital Visualization Tools on Digital Character Production Computer Science Courses

    Science.gov (United States)

    van Langeveld, Mark Christensen

    2009-01-01

    Digital character production courses have traditionally been taught in art departments. The digital character production course at the University of Utah is centered, drawing uniformly from art and engineering disciplines. Its design has evolved to include a synergy of computer science, functional art and human anatomy. It gives students an…

  3. New Biological Sciences, Sociology and Education

    Science.gov (United States)

    Youdell, Deborah

    2016-01-01

    Since the Human Genome Project mapped the gene sequence, new biological sciences have been generating a raft of new knowledges about the mechanisms and functions of the molecular body. One area of work that has particular potential to speak to sociology of education, is the emerging field of epigenetics. Epigenetics moves away from the mapped…

  4. Use of Multimedia in an Introductory College Biology Course to Improve Comprehension of Complex Material

    Science.gov (United States)

    Rhodes, Ashley; Rozell, Tim; Shroyer, Gail

    2014-01-01

    Many students who have the ability to succeed in science, technology, engineering and math (STEM) disciplines are often alienated by the traditional instructional methods encountered within introductory courses; as a result, attrition from STEM fields is highest after completion of these courses. This is especially true for females. The present…

  5. ONLINE SCIENCE LEARNING:Best Practices and Technologies

    OpenAIRE

    TOJDE

    2009-01-01

    This essential publication is for all research and academic libraries, especially those institutions with online and distance education courses available in their science education programs. This book will also benefit audiences within the science education community of practice and others interested in STEM education, virtual schools, e-learning, m-learning, natural sciences, physical sciences, biological sciences, geosciences, online learning models, virtual laboratories, virtual field trip...

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Science Academies' Refresher Course on Experimental Biology: Orthodox to Modern. Information and Announcements Volume 21 Issue 9 September 2016 pp 858-858 ...

  7. Two Project-Based Strategies in an Interdisciplinary Mathematical Modeling in Biology Course

    Science.gov (United States)

    Ludwig, Patrice; Tongen, Anthony; Walton, Brian

    2018-01-01

    James Madison University faculty team-teach an interdisciplinary mathematical modeling course for mathematics and biology students. We have used two different project-based approaches to emphasize the mathematical concepts taught in class, while also exposing students to new areas of mathematics not formally covered in class. The first method…

  8. High School and College Biology: A Multi-Level Model of the Effects of High School Courses on Introductory Course Performance

    Science.gov (United States)

    Loehr, John F.; Almarode, John T.; Tai, Robert H.; Sadler, Philip M.

    2012-01-01

    In a climate where increasing numbers of students are encouraged to pursue post-secondary education, the level of preparedness students have for college-level coursework is not far from the minds of all educators, especially high school teachers. Specifically within the biological sciences, introductory biology classes often serve as the…

  9. Academic Performance and Pass Rates: Comparison of Three First-Year Life Science Courses

    Science.gov (United States)

    Downs, C. T.

    2009-01-01

    First year students' academic performance in three Life Science courses (Botany, Zoology and Bioscience) was compared. Pass rates, as well as the means and distributions of final marks were analysed. Of the three components (coursework, practical and theory examinations) contributing to the final mark of each course, students performed best in the…

  10. Teaching professionalism in science courses: anatomy to zoology.

    Science.gov (United States)

    Macpherson, Cheryl C

    2012-02-01

    Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies' trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences. Copyright © 2011. Published by Elsevier B.V.

  11. Inter-level relations in computer science, biology, and psychology

    NARCIS (Netherlands)

    Boogerd, Fred; Bruggeman, Frank; Jonker, Catholijn; Looren de Jong, Huib; Tamminga, Allard; Treur, Jan; Westerhoff, Hans; Wijngaards, Wouter

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an *empirical* turn in the philosophy of mind. Rather than concentrate on *a priori* discussions of inter-level relations between “completed” sciences, a case is made for the actual study of the way

  12. Inter-level relations in computer science, biology, and psychology

    NARCIS (Netherlands)

    Boogerd, F.; Bruggeman, F.; Jonker, C.M.; Looren de Jong, H.; Tamminga, A.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between 'completed' sciences, a case is made for the actual study of the way

  13. Inter-level relations in computer science, biology and psychology

    NARCIS (Netherlands)

    Boogerd, F.C.; Bruggeman, F.J.; Jonker, C.M.; Looren De Jong, H.; Tamminga, A.M.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between "completed" sciences, a case is made for the actual study of the way

  14. Development of a Semester-Long, Inquiry-Based Laboratory Course in Upper-Level Biochemistry and Molecular Biology

    Science.gov (United States)

    Murthy, Pushpalatha P. N.; Thompson, Martin; Hungwe, Kedmon

    2014-01-01

    A semester-long laboratory course was designed and implemented to familiarize students with modern biochemistry and molecular biology techniques. The designed format involved active student participation, evaluation of data, and critical thinking, and guided students to become independent researchers. The first part of the course focused on…

  15. Brewing Science

    Science.gov (United States)

    Pelter, Michael

    2006-01-01

    Following the brewing process from grain to glass, this course uses the biological and chemical principles of brewing to teach science to the nonscience major. Discussion of the scientific aspects of malting, mashing, fermentation, and the making of different beer styles is complemented by laboratory exercises that use scientific methods to…

  16. An Approach to Teaching General Chemistry II that Highlights the Interdisciplinary Nature of Science*,†

    Science.gov (United States)

    Sumter, Takita Felder; Owens, Patrick M.

    2012-01-01

    The need for a revised curriculum within the life sciences has been well-established. One strategy to improve student preparation in the life sciences is to redesign introductory courses like biology, chemistry, and physics so that they better reflect their disciplinary interdependence. We describe a medically relevant, context-based approach to teaching second semester general chemistry that demonstrates the interdisciplinary nature of biology and chemistry. Our innovative method provides a model in which disciplinary barriers are diminished early in the undergraduate science curriculum. The course is divided into three principle educational modules: 1) Fundamentals of General Chemistry, 2) Medical Approaches to Inflammation, and 3) Neuroscience as a connector of chemistry, biology, and psychology. We accurately anticipated that this modified approach to teaching general chemistry would enhance student interest in chemistry and bridge the perceived gaps between biology and chemistry. The course serves as a template for context-based, interdisciplinary teaching that lays the foundation needed to train 21st century scientists. PMID:21445902

  17. MiTEP's Collaborative Field Course Design Process Based on Earth Science Literacy Principles

    Science.gov (United States)

    Engelmann, C. A.; Rose, W. I.; Huntoon, J. E.; Klawiter, M. F.; Hungwe, K.

    2010-12-01

    Michigan Technological University has developed a collaborative process for designing summer field courses for teachers as part of their National Science Foundation funded Math Science Partnership program, called the Michigan Teacher Excellence Program (MiTEP). This design process was implemented and then piloted during two two-week courses: Earth Science Institute I (ESI I) and Earth Science Institute II (ESI II). Participants consisted of a small group of Michigan urban science teachers who are members of the MiTEP program. The Earth Science Literacy Principles (ESLP) served as the framework for course design in conjunction with input from participating MiTEP teachers as well as research done on common teacher and student misconceptions in Earth Science. Research on the Earth Science misconception component, aligned to the ESLP, is more fully addressed in GSA Abstracts with Programs Vol. 42, No. 5. “Recognizing Earth Science Misconceptions and Reconstructing Knowledge through Conceptual-Change-Teaching”. The ESLP were released to the public in January 2009 by the Earth Science Literacy Organizing Committee and can be found at http://www.earthscienceliteracy.org/index.html. Each day of the first nine days of both Institutes was focused on one of the nine ESLP Big Ideas; the tenth day emphasized integration of concepts across all of the ESLP Big Ideas. Throughout each day, Michigan Tech graduate student facilitators and professors from Michigan Tech and Grand Valley State University consistantly focused teaching and learning on the day's Big Idea. Many Earth Science experts from Michigan Tech and Grand Valley State University joined the MiTEP teachers in the field or on campus, giving presentations on the latest research in their area that was related to that Big Idea. Field sites were chosen for their unique geological features as well as for the “sense of place” each site provided. Preliminary research findings indicate that this collaborative design

  18. From darwin to the census of marine life: marine biology as big science.

    Science.gov (United States)

    Vermeulen, Niki

    2013-01-01

    With the development of the Human Genome Project, a heated debate emerged on biology becoming 'big science'. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international 'Census of Marine Life' (CoML) making an inventory of life in the world's oceans. Discussing various aspects of collaboration--including size, internationalisation, research practice, technological developments, application, and public communication--I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different 'collective ways of knowing'.

  19. From darwin to the census of marine life: marine biology as big science.

    Directory of Open Access Journals (Sweden)

    Niki Vermeulen

    Full Text Available With the development of the Human Genome Project, a heated debate emerged on biology becoming 'big science'. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international 'Census of Marine Life' (CoML making an inventory of life in the world's oceans. Discussing various aspects of collaboration--including size, internationalisation, research practice, technological developments, application, and public communication--I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different 'collective ways of knowing'.

  20. Integrating Computational Science Tools into a Thermodynamics Course

    Science.gov (United States)

    Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew

    2018-01-01

    Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of their disciplines, some universities have started to integrate these tools within core courses. This paper evaluates the effect of introducing three computational modules within a thermodynamics course on student disciplinary learning and self-beliefs about computation. The results suggest that using worked examples paired to computer simulations to implement these modules have a positive effect on (1) student disciplinary learning, (2) student perceived ability to do scientific computing, and (3) student perceived ability to do computer programming. These effects were identified regardless of the students' prior experiences with computer programming.

  1. Challenges of medical and biological engineering and science

    Energy Technology Data Exchange (ETDEWEB)

    Magjarevic, R [University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb (Croatia)

    2004-07-01

    All aspects of biomedical engineering and science, from research and development, education and training, implementation in health care systems, internationalisation and globalisation, and other, new issues are present in the strategy and in action plans of the International Federation for Medical and Biological Engineering (IFMBE) which, with help of a large number of highly motivated volunteers, will stay in leading position in biomedical engineering and science.

  2. Challenges of medical and biological engineering and science

    International Nuclear Information System (INIS)

    Magjarevic, R.

    2004-01-01

    All aspects of biomedical engineering and science, from research and development, education and training, implementation in health care systems, internationalisation and globalisation, and other, new issues are present in the strategy and in action plans of the International Federation for Medical and Biological Engineering (IFMBE) which, with help of a large number of highly motivated volunteers, will stay in leading position in biomedical engineering and science

  3. Reactivity I: A Foundation-Level Course for Both Majors and Nonmajors in Integrated Organic, Inorganic, and Biochemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.; Jones, T. Nicholas; McIntee, Edward J.

    2015-01-01

    A foundation level course is presented that integrates aspects of organic, inorganic and biochemistry in the context of reactivity. The course was designed to serve majors in chemistry and other sciences (biochemistry, biology, nutrition), as well as nursing and pre-health professions students. Themes of the course were designed to highlight a…

  4. An investigation of the practice of scientific inquiry in secondary science and agriculture courses

    Science.gov (United States)

    Grady, Julie R.

    The purpose of this exploratory qualitative study was to investigate the practice of scientific inquiry in two secondary biology classes and one agriculture class from different schools in different communities. The focus was on teachers' interests and intentions for the students' participation in inquiry, the voices contributing to the inquiry, and students' opportunities to confront their conceptions of the nature of science (NOS). The Partnership for Research and Education in Plants (PREP) served as the context by providing students with opportunities to design and conduct original experiments to help elucidate the function(s) of a disabled gene in Arabidopsis thaliana . Transcripts of teacher and student semi-structured interviews, field notes of classroom observations and classroom conversations, and documents (e.g., student work, teacher handouts, school websites, PREP materials) were analyzed for evidence of the practice of scientific inquiry. Teachers were interested in implementing inquiry because of potential student learning about scientific research and because PREP supports course content and is connected to a larger scientific project outside of the school. Teachers' intentions regarding the implementation of inquiry reflected the complexity of their courses and the students' previous experiences. All inquiries were student-directed. The biology students' participation more closely mirrored the practice of scientists, while the agriculture students were more involved with the procedural display of scientific inquiry. All experiences could have been enhanced from additional knowledge-centered activities regarding scientific reasoning. No activities brought explicit attention to NOS. Biology activities tended to implicitly support NOS while the agriculture class activities tended to implicitly contradict NOS. Scientists' interactions contributed to implied support of the NOS. There were missed opportunities for explicit attention to NOS in all classes

  5. Class Size and Academic Achievement in Introductory Political Science Courses

    Science.gov (United States)

    Towner, Terri L.

    2016-01-01

    Research on the influence of class size on student academic achievement is important for university instructors, administrators, and students. The article examines the influence of class size--a small section versus a large section--in introductory political science courses on student grades in two comparable semesters. It is expected that…

  6. Women and Spatial Change: Learning Resources for Social Science Courses.

    Science.gov (United States)

    Rengert, Arlene C., Ed.; Monk, Janice J., Ed.

    Six units focusing on the effects of spatial change on women are designed to supplement college introductory courses in geography and the social sciences. Unit 1, Woman and Agricultural Landscapes, focuses on how women contributed to landscape change in prehistory, women's impact on the environment, and the hypothesis that women developed…

  7. Assessment of the effects of student response systems on student learning and attitudes over a broad range of biology courses.

    Science.gov (United States)

    Preszler, Ralph W; Dawe, Angus; Shuster, Charles B; Shuster, Michèle

    2007-01-01

    With the advent of wireless technology, new tools are available that are intended to enhance students' learning and attitudes. To assess the effectiveness of wireless student response systems in the biology curriculum at New Mexico State University, a combined study of student attitudes and performance was undertaken. A survey of students in six biology courses showed that strong majorities of students had favorable overall impressions of the use of student response systems and also thought that the technology improved their interest in the course, attendance, and understanding of course content. Students in lower-division courses had more strongly positive overall impressions than did students in upper-division courses. To assess the effects of the response systems on student learning, the number of in-class questions was varied within each course throughout the semester. Students' performance was compared on exam questions derived from lectures with low, medium, or high numbers of in-class questions. Increased use of the response systems in lecture had a positive influence on students' performance on exam questions across all six biology courses. Students not only have favorable opinions about the use of student response systems, increased use of these systems increases student learning.

  8. PENGEMBANGAN KURIKULUM JURUSAN TADRIS IPA BIOLOGI IAIN SYEKH NURJATI CIREBON DALAM MENGANTISIPASI PENERAPAN KURIKULUM 2013

    Directory of Open Access Journals (Sweden)

    Kartimi -

    2014-04-01

    menekankan pendekatan scientific approach (mengamati, menanyakan, menalar, mencoba, mengkomunikasikan / membuat jejaring. Plan for the implementation of Curriculum 2013 is the right moment for science courses - biology Tadris IAIN Sheikh Nurjati Cirebon to conduct a review and evaluation of curriculum continuity majors in force , and at the same time to develop , repair and modification of the curriculum , in order to adapt to the practices of change Biology education in secondary school . The purpose of this study were: 1 determine the characteristics of curriculum - science majors Biology Tadris current , 2 determine the characteristics of the curriculum in 2013 relating to the teaching of biology in high school , 3 formulate and develop a curriculum design - science courses Tadris Biology as a result adaptations to the curriculum in 2013 . study design using the Design and Development research Tools research & Product category ( Richey & Klein , 2007 . Subjects were Tadris science courses - biology IAIN Sheikh Nurjati Cirebon . The instruments used were : 1 Protocol Analysis Program Curriculum Document , 2 Protocol Analysis Curriculum Document 2013 for high school Biology , 3 Material of validation for the theoretical framework of the course curriculum design , 4 Material of validation for the instrument design course curriculum . Data analysis techniques performed descriptively and analyzed using descriptive statistics . The results showed that the course curriculum Tadris IPA - Sheikh Biology IAIN Nurjati Cirebon has been arranged as a competence -based curriculum that integrates academic with a charge to Islamization . Completeness of course curriculum documents still need improvement . 2013 Curriculum for teaching high school Biology / MA packaged as specialization subjects of Mathematics and Natural Science that includes the core competencies of spiritual attitudes , social attitudes , knowledge and skills . Each core competency has been translated into a variety of

  9. Generic Science Skills Enhancement of Students through Implementation of IDEAL Problem Solving Model on Genetic Information Course

    Science.gov (United States)

    Zirconia, A.; Supriyanti, F. M. T.; Supriatna, A.

    2018-04-01

    This study aims to determine generic science skills enhancement of students through implementation of IDEAL problem-solving model on genetic information course. Method of this research was mixed method, with pretest-posttest nonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry course, consisted of 22 students in the experimental class and 19 students in control class. The instrument in this study was essayed involves 6 indicators generic science skills such as indirect observation, causality thinking, logical frame, self-consistent thinking, symbolic language, and developing concept. The results showed that genetic information course using IDEAL problem-solving model have been enhancing generic science skills in low category with of 20,93%. Based on result for each indicator, showed that there are indicators of generic science skills classified in the high category.

  10. Incorporating Geoethics in Introductory Earth System Science Courses

    Science.gov (United States)

    Schmitt, J.

    2014-12-01

    The integrative nature of Earth System Science courses provides extensive opportunities to introduce students to geoethical inquiry focused on globally significant societal issues. Geoscience education has traditionally lagged in its efforts to increase student awareness of the significance of geologic knowledge to understanding and responsibly confronting causes and possible solutions for emergent, newly emerging, and future problems of anthropogenic cause and consequence. Developing an understanding of the human impact on the earth system requires early (lower division) and for geoscience majors, repeated (upper division) curricular emphasis on the interactions of the lithosphere, hydrosphere, atmosphere, biosphere, and pedosphere across space and through time. Capturing the interest of university students in globally relevant earth system issues and their ethical dimensions while first learning about the earth system is an important initial step in bringing geoethical deliberation and awareness to the next generation of geoscientists. Development of a new introductory Earth System Science course replacing a traditional introductory Physical Geology course at Montana State University has involved abandonment of concept-based content organization in favor of a place-based approach incorporating examination of the complex interactions of earth system components and emergent issues and dilemmas deriving from the unique component interactions that characterize each locale. Thirteen different place-based week-long modules (using web- and classroom-based instruction) were developed to ensure cumulative broad coverage across the earth geographically and earth system components conceptually. Each place-based instructional module contains content of societal relevance requiring synthesis, critical evaluation, and reflection by students. Examples include making linkages between deforestation driven by economics and increased seismicity in Haiti, agriculture and development

  11. Future Science Teachers' Understandings of Diffusion and Osmosis Concepts

    Science.gov (United States)

    Tomazic, Iztok; Vidic, Tatjana

    2012-01-01

    The concepts of diffusion and osmosis cross the disciplinary boundaries of physics, chemistry and biology. They are important for understanding how biological systems function. Since future (pre-service) science teachers in Slovenia encounter both concepts at physics, chemistry and biology courses during their studies, we assessed the first-,…

  12. An Off-the-Shelf, Authentic, and Versatile Undergraduate Molecular Biology Practical Course

    Science.gov (United States)

    Whitworth, David E.

    2015-01-01

    We provide a prepackaged molecular biology course, which has a broad context and is scalable to large numbers of students. It is provided complete with technical setup guidance, a reliable assessment regime, and can be readily implemented without any development necessary. Framed as a forensic examination of blue/white cloning plasmids, the course…

  13. Including an Exam P/1 Prep Course in a Growing Actuarial Science Program

    Science.gov (United States)

    Wakefield, Thomas P.

    2014-01-01

    The purpose of this article is to describe the actuarial science program at our university and the development of a course to enhance students' problem solving skills while preparing them for Exam P/1 of the Society of Actuaries (SOA) and the Casualty Actuary Society (CAS). The Exam P/1 prep course, formally titled Mathematical Foundations of…

  14. Big Data Science Education: A Case Study of a Project-Focused Introductory Course

    Science.gov (United States)

    Saltz, Jeffrey; Heckman, Robert

    2015-01-01

    This paper reports on a case study of a project-focused introduction to big data science course. The pedagogy of the course leveraged boundary theory, where students were positioned to be at the boundary between a client's desire to understand their data and the academic class. The results of the case study demonstrate that using live clients…

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 10. Science Academies' Refresher Course on Experimental Approaches to Molecular Microbiology and Cell Biology. Information and Announcements Volume 22 Issue 10 October 2017 pp 971-971 ...

  16. Connecting Biology and Organic Chemistry Introductory Laboratory Courses through a Collaborative Research Project

    Science.gov (United States)

    Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…

  17. Uncovering Students' Environmental Identity: An Exploration of Activities in an Environmental Science Course

    Science.gov (United States)

    Blatt, Erica

    2014-01-01

    This study at a public high school in the Northeastern United States explores how students' environmental identities are affected by various activities in an Environmental Science course. Data was collected as part of an ethnographic study involving an Environmental Science teacher and her tenth-twelfth grade students. The results focus on…

  18. Factors Influencing Achievement in Undergraduate Social Science Research Methods Courses: A Mixed Methods Analysis

    Science.gov (United States)

    Markle, Gail

    2017-01-01

    Undergraduate social science research methods courses tend to have higher than average rates of failure and withdrawal. Lack of success in these courses impedes students' progression through their degree programs and negatively impacts institutional retention and graduation rates. Grounded in adult learning theory, this mixed methods study…

  19. The Quantitative Reasoning for College Science (QuaRCS) Assessment in non-Astro 101 Courses II

    Science.gov (United States)

    Kirkman, Thomas W.; Jensen, Ellen

    2017-06-01

    The Quantitative Reasoning for College Science (QuaRCS) Assessment[1] aims to measure the pre-algebra mathematical skills that are often part of "general education" science courses like Astro 101. In four majors STEM classes, we report comparisons between QuaRCS metrics, ACT math, GPAO, and the course grade. In three of four classes QuaRCS QR score and ACT math were statistically significantly correlated (with r˜.6), however in the fourth course —a senior-level microbiology course— there was no statistically significantly correlation (in fact, rPhysics courses showed fractional sigma gains in QR, self-estimated math fluency and math importance, but not all of those increases were statistically significant. Using a QuaRCS map relating the questions to skill areas, we found graph reading, percentages, and proportional reasoning to be the most misunderstood skills in all four courses.[1] QuaRCS, Follette, et al.,2015, DOI: http://dx.doi.org/10.5038/1936-4660.8.2.2

  20. Geophysics education on the Internet: Course production and assessment of our MOOC, "Deep Earth Science"

    Science.gov (United States)

    Okuda, Y.; Tazawa, K.; Sugie, K.; Sakuraba, H.; Hideki, M.; Tagawa, S.; Cross, S. J.

    2016-12-01

    Recently, massive open online courses (MOOC or MOOCs) have gained wide-spread attention as a new educational platform delivered via the internet. Many leading institutions all over the world have provided many fascinating MOOC courses in various fields. Students enrolled in MOOCs study their interested topic in a course not only by watching video lectures, reading texts, and answering questions, but also by utilizing interactive online tools such as discussion boards, Q&A sessions and peer assessments. MOOC is also gaining popularity as a way to do outreach activity and diffuse research results. Tokyo Institute of Technology provided its 1st MOOC, "Introduction to Deep Earth Science Part1" on edX, which is one of the largest MOOC providers. This four-week-long course was designed for 1st year college students and with two learning goals in this course; 1) to introduce students to the fascinating knowledge of solid Earth, 2) to provide an opportunity to use scientific thinking as well as to show how interesting and exciting science can be. This course contained materials such as 1) structure of inside of the Earth 2) internal temperature of the earth and how it is estimated and 3) chemical compositions and dynamics inside the earth. After the end of the provision of Part1, this course was re-made as "Introduction to Deep Earth Science"(so to speak, Part2) on the basis of opinions obtained from students who have attended our course and student teaching assistants (TA) who have run and produced this course. In this presentation, we will explain our MOOC making model, which is a team based course creation effort between the course instructor, Tokyo Tech Online Education Development Office (OEDO) staff and TA students. Moreover, we will share details and feedback of Part1 received from some of the 5000 enrolled students from 150 counties and regions, and report the implementation of Part2 in the light of challenges resulted from Part1.

  1. Designing English for Specific Purposes Course for Computer Science Students

    Science.gov (United States)

    Irshad, Isra; Anwar, Behzad

    2018-01-01

    The aim of this study was to design English for Academic Purposes (EAP) course for University students enrolled in the Computer Science Department. For this purpose, academic English language needs of the students were analyzed by using a 5 point Likert scale questionnaire. Additionally, interviews were also conducted with four faculty members of…

  2. Teaching Real Data Interpretation with Models (TRIM): Analysis of Student Dialogue in a Large-Enrollment Cell and Developmental Biology Course

    Science.gov (United States)

    Zagallo, Patricia; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    We present our design for a cell biology course to integrate content with scientific practices, specifically data interpretation and model-based reasoning. A 2-year research project within this course allowed us to understand how students interpret authentic biological data in this setting. Through analysis of written work, we measured the extent…

  3. The great ideas of biology: Exploration through experimentation in an undergraduate lab course

    OpenAIRE

    Finch, L.; Horii, C. V.; Phillips, R.; Bois, J. S.

    2016-01-01

    We developed an introductory laboratory course to provide a visceral experience that aims at getting students truly excited about scientific study of the living world. Our vehicle to do that was to focus on what Paul Nurse dubbed “the great ideas of biology” rather than an approach to biology that celebrates specific factual knowledge. To that end, we developed eight diverse experimental modules, each of which highlights a key biological concept and gives an opportunity to use theory to g...

  4. Combining content and elements of communication into an upper-level biochemistry course.

    Science.gov (United States)

    Whittington, Carli P; Pellock, Samuel J; Cunningham, Rebecca L; Cox, James R

    2014-01-01

    This report describes how a science communication module was incorporated into an advanced biochemistry course. Elements of communication were taught synergistically with biochemistry content in this course in an effort to expose students to a variety of effective oral communication strategies. Students were trained to use these established techniques and incorporated them into various presentations throughout the course. Three students describe their use of specific resources and how the skills learned relate to their future career. The importance and relevance of science communication are receiving unprecedented national attention. The academic scientific community must respond by incorporating more communication-centered instruction and opportunities in the classroom and laboratory. © 2013 by The International Union of Biochemistry and Molecular Biology.

  5. Learning Environment and Attitudes Associated with an Innovative Science Course Designed for Prospective Elementary Teachers

    Science.gov (United States)

    Martin-Dunlop, Catherine; Fraser, Barry J.

    2008-01-01

    This study assessed the effectiveness of an innovative science course for improving prospective elementary teachers' perceptions of laboratory learning environments and attitudes towards science. The sample consisted of 27 classes with 525 female students in a large urban university. Changing students' ideas about science laboratory teaching and…

  6. A Thai pre-service teacher's understanding of nature of science in biology teaching

    Science.gov (United States)

    Srisawat, Akkarawat; Aiemsum-ang, Napapan; Yuenyong, Chokchai

    2018-01-01

    This study was conducted on the effect of understanding and instruction of the nature of science of Ms. Wanida, a pre-service student under science education program in biology, Faculty of Education, Khon Kaen University. Wanida was a teaching practicum student majoring in biology at Khon Kaen University Demonstration School (Modindaeng). She was teaching biology for 38 Grade 10 students. Methodology regarded interpretive paradigm. The study aimed to examine 1) Wanida's understanding of the nature of science, 2) Wanida's instruction of the nature of science, 3 students' understanding of the nature of science from Wanida's instruction, and 4) the effects of Wanida's understanding and instruction of the nature of science on students' understanding of the nature of science from Wanida's instruction. Tools of interpretation included teaching observation, a semi-structured interview, open-ended questionnaire, and an observation record form for the instruction of the nature of science. The data obtained was interpreted, encoded, and classified, using the descriptive statistics. The findings indicated that Wanida held good understanding of the nature of science. She could apply the deficient nature of science approach mostly, followed by the implicit nature of science approach. Unfortunately, she could not show her teaching as explicit nature of science. However, her students' the understanding of the nature of science was good.

  7. The Relationship between Student's Quantitative Skills, Application of Math, Science Courses, and Science Marks at Single-Sex Independent High Schools

    Science.gov (United States)

    Cambridge, David

    2012-01-01

    For independent secondary schools who offer rigorous curriculum to attract students, integration of quantitative skills in the science courses has become an important definition of rigor. However, there is little research examining students' quantitative skills in relation to high school science performance within the single-sex independent school…

  8. Nuclear Science Curriculum and Curriculum para la Ciencia Nuclear.

    Science.gov (United States)

    American Nuclear Society, La Grange Park, IL.

    This document presents a course in the science of nuclear energy, units of which may be included in high school physics, chemistry, and biology classes. It is intended for the use of teachers whose students have already completed algebra and chemistry or physics. Included in this paper are the objectives of this course, a course outline, a…

  9. 50 Years of JBE: The Evolution of Biology as a School Subject

    Science.gov (United States)

    Jenkins, Edgar

    2016-01-01

    When the "Journal of Biological Education" was first published in 1967, biology was still very much the Cinderella of the three school sciences in many countries. Most selective secondary school biology courses readily betrayed their origins as an unconvincing coalition of botany and zoology. In the non-selective secondary modern…

  10. Reproductive science as an essential component of conservation biology.

    Science.gov (United States)

    Holt, William V; Brown, Janine L; Comizzoli, Pierre

    2014-01-01

    In this chapter we argue that reproductive science in its broadest sense has never been more important in terms of its value to conservation biology, which itself is a synthetic and multidisciplinary topic. Over recent years the place of reproductive science in wildlife conservation has developed massively across a wide and integrated range of cutting edge topics. We now have unprecedented insight into the way that environmental change affects basic reproductive functions such as ovulation, sperm production, pregnancy and embryo development through previously unsuspected influences such as epigenetic modulation of the genome. Environmental change in its broadest sense alters the quality of foodstuffs that all animals need for reproductive success, changes the synchrony between breeding seasons and reproductive events, perturbs gonadal and embryo development through the presence of pollutants in the environment and drives species to adapt their behaviour and phenotype. In this book we explore many aspects of reproductive science and present wide ranging and up to date accounts of the scientific and technological advances that are currently enabling reproductive science to support conservation biology.

  11. How a science methods course may influence the curriculum decisions of preservice teachers in the Bahamas

    Science.gov (United States)

    Wisdom, Sonya L.

    The purpose of this study was to examine how a science methods course in primary education might influence the curriculum decisions of preservice teachers in The Bahamas related to unit plan development on environmental science topics. Grounded in a social constructivist theoretical framework for teaching and learning science, this study explored the development of the confidence and competence of six preservice teachers to teach environmental science topics at the primary school level. A qualitative case study using action research methodologies was conducted. The perspectives of preservice teachers about the relevancy of methods used in a science methods course were examined as I became more reflective about my practice. Using constant comparative analysis, data from student-written documents and interviews as well as my field notes from class observations and reflective journaling were analyzed for emerging patterns and themes. Findings of the study indicated that while preservice teachers showed a slight increase in interest regarding learning and teaching environmental science, their primary focus during the course was learning effective teaching strategies in science on topics with which they already had familiarity. Simultaneously, I gained a deeper understanding of the usefulness of reflection in my practice. As a contribution to the complexity of learning to teach science at the primary school level, this study suggests some issues for consideration as preservice teachers are supported to utilize more of the national primary science curriculum in The Bahamas.

  12. Embedding Probeware Technology in the Context of Ocean Acidification in Elementary Science Methods Courses

    Science.gov (United States)

    Ensign, Todd I.; Rye, James A.; Luna, Melissa J.

    2017-12-01

    Research indicates that preservice teacher (PT) education programs can positively impact perceptions of scientific probeware use in K-8 environments. Despite the potential of probeware to improve science instruction and student engagement, its use in elementary education has been limited. Sixty-seven PT enrolled across three sections of an elementary science methods course participated in a mixed-methods study through which they utilized probeware in a thematic experience on ocean acidification. One-way repeated measures ANOVA of pre and post survey data measuring subscales of utility, ability, and intent to use probeware demonstrated a statistically significant increase with medium to large effect sizes for all subscales across all sections (p<0.01,{η}_p^2=0.384;p<0.001,{η}_p^2=0.517;p<0.001,{η}_p^2=0.214) . Analysis of reflective journals revealed over 60% felt the multiple capabilities (notably graphing) of probeware make it a useful classroom tool, and almost one-half believed that its use makes science more enjoyable and engaging. Mapping of the unitized data from the journals on the Next Generation Science Standards suggested that probeware use especially engages learners in planning and carrying out investigations and in analyzing and interpreting data. Journals also revealed that despite PT having prior experience with probeware in science courses, its use in their future elementary classroom is conditional on having a positive experience with probeware in a science methods course. Further, embedding a probeware experience in a unit on ocean acidification provides PT with strategies for addressing climate change and engaging in argument from evidence.

  13. Infusing Bioinformatics and Research-Like Experience into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Nogaj, Luiza A.

    2014-01-01

    A nine-week laboratory project designed for a sophomore level molecular biology course is described. Small groups of students (3-4 per group) choose a tumor suppressor gene (TSG) or an oncogene for this project. Each group researches the role of their TSG/oncogene from primary literature articles and uses bioinformatics engines to find the gene…

  14. Creating Critical Consumers of Health and Science News: Teaching Science to the Non-Scientist Using Newsworthy Topics in the Life Sciences.

    Science.gov (United States)

    Coderre, Raymond W; Uekermann, Kristen A; Choi, Youngeun; Anderson, William J

    2016-03-01

    Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In short, lectures emphasize exposure to basic biological concepts and tools as a means of informing understanding of prominent biological questions of public interest. The overall goal of the course is not only to expose students to the media's coverage of scientific progress, but also to hone their critical thinking skills to distinguish hope from hype.

  15. Creating Critical Consumers of Health and Science News: Teaching Science to the Non-Scientist Using Newsworthy Topics in the Life Sciences

    Directory of Open Access Journals (Sweden)

    Raymond W. Coderre

    2015-11-01

    Full Text Available Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In short, lectures emphasize exposure to basic biological concepts and tools as a means of informing understanding of prominent biological questions of public interest. The overall goal of the course is not only to expose students to the media’s coverage of scientific progress, but also to hone their critical thinking skills to distinguish hope from hype.

  16. Designing for Deeper Learning in a Blended Computer Science Course for Middle School Students

    Science.gov (United States)

    Grover, Shuchi; Pea, Roy; Cooper, Stephen

    2015-01-01

    The focus of this research was to create and test an introductory computer science course for middle school. Titled "Foundations for Advancing Computational Thinking" (FACT), the course aims to prepare and motivate middle school learners for future engagement with algorithmic problem solving. FACT was also piloted as a seven-week course…

  17. A Library Research Course for Graduate and Professional Students in Communication Sciences and Disorders

    Science.gov (United States)

    Tag, Sylvia G.

    2007-01-01

    This article describes the formation and content of a required library and information research course for graduate and professional students enrolled in the Communication Sciences and Disorders Master of Arts degree program at Western Washington University. The course was created as a result of library assessment, student feedback, and faculty…

  18. Interest in STEM is contagious for students in biology, chemistry, and physics classes.

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D; Godwin, Allison; Scott, Tyler D; Klotz, Leidy

    2017-08-01

    We report on a study of the effect of peers' interest in high school biology, chemistry, and physics classes on students' STEM (science, technology, engineering, and mathematics)-related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students' experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students' STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students' intentions toward STEM careers while enhancing or maintaining course performance.

  19. Interest in STEM is contagious for students in biology, chemistry, and physics classes

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D.; Godwin, Allison; Scott, Tyler D.; Klotz, Leidy

    2017-01-01

    We report on a study of the effect of peers’ interest in high school biology, chemistry, and physics classes on students’ STEM (science, technology, engineering, and mathematics)–related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students‘ experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students‘ STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students’ intentions toward STEM careers while enhancing or maintaining course performance. PMID:28808678

  20. The Respon of IKIP BUDI UTOMO Students Toward The Instructional Book of Cell Biology Subject Aided by Interactive Multimedia

    Directory of Open Access Journals (Sweden)

    Tri Asih Wahyu Hartati

    2017-07-01

    Full Text Available The development of Science and Technology (Science and Technology takes place very rapidly. The development of science and technology will impact on graduate competency changes desired by the industry. This change of course will be followed by updating the curriculum, learning resources and teaching materials are used, one of them teaching materials on the subjects of Cell Biology. In the course of Cell Biology, the students only take textbooks without the support of interactive multimedia. Good teaching materials is the teaching materials arranged in a systematic, according to the needs and character of students, as well as validated by the teaching materials. The purpose of this study was to determine response students Biology Education IKIP Budi Utomo against Cell Biology course textbook aided interactive multimedia. The development method used is the 4D model consisting of stages define, design, develop, and disseminate. This study is limited to the stages develop. Legibility test results showed that students responded well teaching materials and provide proper assessment of the teaching materials.

  1. An integrated course in pain management and palliative care bridging the basic sciences and pharmacy practice.

    Science.gov (United States)

    Kullgren, Justin; Radhakrishnan, Rajan; Unni, Elizabeth; Hanson, Eric

    2013-08-12

    To describe the development of an integrated pain and palliative care course and to investigate the long-term effectiveness of the course during doctor of pharmacy (PharmD) students' advanced pharmacy practice experiences (APPEs) and in their practice after graduation. Roseman University College of Pharmacy faculty developed a 3-week elective course in pain and palliative care by integrating relevant clinical and pharmaceutical sciences. Instructional strategies included lectures, team and individual activities, case studies, and student presentations. Students who participated in the course in 2010 and 2011 were surveyed anonymously to gain their perception about the class as well as the utility of the course during their APPEs and in their everyday practice. Traditional and nontraditional assessment of students confirmed that the learning outcomes objectives were achieved. Students taking the integrated course on pain management and palliative care achieved mastery of the learning outcome objectives. Surveys of students and practicing pharmacists who completed the course showed that the learning experience as well as retention was improved with the integrated mode of teaching. Integrating basic and clinical sciences in therapeutic courses is an effective learning strategy.

  2. Development of an ICT in IBSE course for science teachers: A design-based research

    Science.gov (United States)

    Tran, Trinh-Ba

    2018-01-01

    Integration of ICT tools for measuring with sensors, analyzing video, and modelling into Inquiry-Based Science Education (IBSE) is a need globally recognized. The challenge to teachers is how to turn manipulation of equipment and software into manipulation of ideas. We have developed a short ICT in IBSE course to prepare and support science teachers to teach inquiry-based activities with ICT tools. Within the framework of design-based research, we first defined the pedagogical principles from the literature, developed core materials for teacher learning, explored boundary conditions of the training in different countries, and elaborated set-ups of the course for the Dutch, Slovak, and Vietnamese contexts. Next, we taught and evaluated three iterative cycles of the Dutch course set-ups for pre-service science teachers from four teacher-education institutes nationwide. In each cycle, data on the teacher learning was collected via observations, questionnaires, interviews, and documents. These data were then analyzed for the questions about faithful implementation and effectiveness of the course. Following the same approach, we taught and evaluated two cycles of the Slovak course set-ups for in-service science teachers in the context of the national accreditation programme for teacher professional development. In addition, we investigated applicability of the final Dutch course set-up in the context of the physics-education master program in Vietnam with adaptations geared to educational and cultural difference. Through the iterations of implementation, evaluation, and revision, eventually the course objectives were achieved to certain extent; the pedagogical principles and core materials proved to be effective and applicable in different contexts. We started this research and design project with the pedagogical principles and concluded it with these principles (i.e. complete theory-practice cycle, depth first, distributed learning, and ownership of learning) as the

  3. Changes in Critical Thinking Skills Following a Course on Science and Pseudoscience: A Quasi-Experimental Study

    Science.gov (United States)

    McLean, Carmen P.; Miller, Nathan A.

    2010-01-01

    We assessed changes in paranormal beliefs and general critical thinking skills among students (n = 23) enrolled in an experimental course designed to teach distinguishing science from pseudoscience and a comparison group of students (n = 30) in an advanced research methods course. On average, both courses were successful in reducing paranormal…

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 2. Science Academies' Refresher Course on Bioinformatics in Modern Biology. Information and Announcements Volume 19 Issue 2 February 2014 pp 192-192. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Graphical methods and Cold War scientific practice: the Stommel Diagram's intriguing journey from the physical to the biological environmental sciences.

    Science.gov (United States)

    Vance, Tiffany C; Doel, Ronald E

    2010-01-01

    In the last quarter of the twentieth century, an innovative three-dimensional graphical technique was introduced into biological oceanography and ecology, where it spread rapidly. Used to improve scientists' understanding of the importance of scale within oceanic ecosystems, this influential diagram addressed biological scales from phytoplankton to fish, physical scales from diurnal tides to ocean currents, and temporal scales from hours to ice ages. Yet the Stommel Diagram (named for physical oceanographer Henry Stommel, who created it in 1963) had not been devised to aid ecological investigations. Rather, Stommel intended it to help plan large-scale research programs in physical oceanography, particularly as Cold War research funding enabled a dramatic expansion of physical oceanography in the 1960s. Marine ecologists utilized the Stommel Diagram to enhance research on biological production in ocean environments, a key concern by the 1970s amid growing alarm about overfishing and ocean pollution. Before the end of the twentieth century, the diagram had become a significant tool within the discipline of ecology. Tracing the path that Stommel's graphical techniques traveled from the physical to the biological environmental sciences reveals a great deal about practices in these distinct research communities and their relative professional and institutional standings in the Cold War era. Crucial to appreciating the course of that path is an understanding of the divergent intellectual and social contexts of the physical versus the biological environmental sciences.

  6. Experience in presenting short courses in waste management technologies for secondary science and mathematics teachers

    International Nuclear Information System (INIS)

    Toth, W.J.; Smith, T.H.; Garcia, M.M.; Ferguson, J.E.

    1991-01-01

    The Department of Energy (DOE) and its Idaho National Engineering Laboratory (INEL) are developing educational programs that will help avert projected shortages in scientific and engineering manpower. One approach to this end is to help teachers become better prepared to teach topics that enthuse more students. INEL developed and offered a Short Course in Waste Management Technologies for Secondary Science and Mathematics Teachers. Short Course has two purposes: (1) to provide secondary-level science and mathematics teachers with training and information that will be useful to them in the classroom, and (2) to provide information on a topic of widespread interest in today's society, i.e., the management of hazardous and radioactive wastes and the restoration and preservation of the environment. This paper describes the development of the Short Course and summarizes some of the lessons learned in the preparation and presentation of such courses. 2 refs., 2 tabs

  7. Exploring Environmental Identity and Behavioral Change in an Environmental Science Course

    Science.gov (United States)

    Blatt, Erica N.

    2013-01-01

    This ethnographic study at a public high school in the Northeastern United States investigates the process of change in students' environmental identity and proenvironmental behaviors during an Environmental Science course. The study explores how sociocultural factors, such as students' background, social interactions, and classroom structures,…

  8. Reconstruction of biological networks based on life science data integration.

    Science.gov (United States)

    Kormeier, Benjamin; Hippe, Klaus; Arrigo, Patrizio; Töpel, Thoralf; Janowski, Sebastian; Hofestädt, Ralf

    2010-10-27

    For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH--an integration toolkit for building life science data warehouses, CardioVINEdb--a information system for biological data in cardiovascular-disease and VANESA--a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  9. Inquiry-based laboratory investigations and student performance on standardized tests in biological science

    Science.gov (United States)

    Patke, Usha

    Achievement data from the 3rd International Mathematics and Sciences Study and Program for International Student Assessment in science have indicated that Black students from economically disadvantaged families underachieve at alarming rates in comparison to White and economically advantaged peer groups. The study site was a predominately Black, urban school district experiencing underachievement. The purpose of this correlational study was to examine the relationship between students' use of inquiry-based laboratory investigations and their performance on the Biology End of Course Test, as well as to examine the relationship while partialling out the effects of student gender. Constructivist theory formed the theoretical foundation of the study. Students' perceived levels of experience with inquiry-based laboratory investigations were measured using the Laboratory Program Variable Inventory (LPVI) survey. LPVI scores of 256 students were correlated with test scores and were examined by student gender. The Pearson correlation coefficient revealed a small direct correlation between students' experience in inquiry-based laboratory investigation classes and standardized test scores on the Biology EOCT. A partial correlational analysis indicated that the correlation remained after controlling for gender. This study may prompt a change from teacher-centered to student-centered pedagogy at the local site in order to increase academic achievement for all students. The results of this study may also influence administrators and policy makers to initiate local, state, or nationwide curricular development. A change in curriculum may promote social change as students become more competent, and more able, to succeed in life beyond secondary school.

  10. Targeting Future Customers: An Introductory Biobanking Course for Undergraduate Students of Life Sciences.

    Science.gov (United States)

    Abdelhafiz, Ahmed Samir; Fouda, Merhan Ahmed; El-Jaafary, Shaimaa Ibrahim; Farghly, Maysa Ibrahim; Salem, Mazen; Tammam, Ahmed; Gabr, Hala

    2017-08-01

    Biobanking is a relatively new concept in the Arab region. Targeting different stakeholders to introduce the concept of biobanking and develop an acceptance of it among them is important for the growth of biobanking in the region. Undergraduate students of life sciences represent an important segment of stakeholders, since they constitute potential future biobank customers. Limited funding, lack of awareness of the existence of the term "biobanking" itself among these students, and questions regarding best marketing strategies presented challenges to planning for the most effective message delivery to this target group. A specific course was designed for undergraduate students of life sciences, which was conducted at the Faculty of Medicine, Cairo University, Egypt. The course was conducted twice in 2016 and included lectures covering biobanking, quality, ethics, information technology, and translational research. Facebook and word-of-mouth were used for marketing and advertising. A total number of 125 participants attended both courses cumulatively. Facebook appeared to have been an effective marketing outlet, especially when paid advertisements were used. Evaluation of knowledge, measured using a pretest and posttest, demonstrated some improvement in knowledge of participants. Evaluation forms filled after the course showed positive attitude toward content and message delivery by a majority of participants. Facebook was also used as an evaluation method through analysis of engagement with posts created after course completion. Biobanking education can be carried out effectively with limited resources. Understanding the needs of the target group and using appropriate methods of communication are essential prerequisites to a well-tailored curriculum and effective message delivery. Using Facebook appears to be an effective and affordable method of communication and advertising. Targeting undergraduate students of life sciences interested in research is a good

  11. Biological Evolution and the History of the Earth Are Foundations of Science

    Science.gov (United States)

    2008-01-01

    AGU affirms the central importance of including scientific theories of Earth history and biological evolution in science education. Within the scientific community, the theory of biological evolution is not controversial, nor have ``alternative explanations'' been found. This is why no competing theories are required by the U.S. National Science Education Standards. Explanations of natural phenomena that appeal to the supernatural or are based on religious doctrine-and therefore cannot be tested through scientific inquiry-are not scientific, and have no place in the science classroom.

  12. Initial Results of On-Line Earth System Science Course Offerings at the University of Nebraska-Omaha Through the Earth System Science Education Alliance

    Science.gov (United States)

    Shuster, R. D.; Grandgenett, N. F.; Schnase, W. L.; Hamersky, S.; Moshman, R.

    2008-12-01

    The University of Nebraska at Omaha has been offering on-line Earth System Science coursework to teachers in Nebraska since 2002. UNO was one of the initial members in the Earth Systems Science Education Alliance (ESSEA) and has offered three different ESSEA courses, with nearly 200 students having taken ESSEA courses at UNO for graduate credit. Our experiences in delivering this coursework have involved both teachers who have received a stipend to take the course and those who have paid their own tuition and fees and received graduate credit for the course. We will report on the online behavior of teachers from both populations and also discuss pros and cons of each approach. UNO has also experimented with different approaches in the support and management of the course, including using undergraduate majors as content experts. This improves access of teachers to content-related feedback and is a positive experience for the undergraduate major. Feedback surveys from earlier ESSEA offerings indicate a strongly positive perception of the courses by the teachers enrolled in the coursework. Project impact has been documented in teacher projects, quotes, and lessons associated with the coursework activities. We will also describe online course modules being developed within the UNO online course efforts, including one focusing on the global amphibian crisis.

  13. Positioning genomics in biology education: content mapping of undergraduate biology textbooks.

    Science.gov (United States)

    Wernick, Naomi L B; Ndung'u, Eric; Haughton, Dominique; Ledley, Fred D

    2014-12-01

    Biological thought increasingly recognizes the centrality of the genome in constituting and regulating processes ranging from cellular systems to ecology and evolution. In this paper, we ask whether genomics is similarly positioned as a core concept in the instructional sequence for undergraduate biology. Using quantitative methods, we analyzed the order in which core biological concepts were introduced in textbooks for first-year general and human biology. Statistical analysis was performed using self-organizing map algorithms and conventional methods to identify clusters of terms and their relative position in the books. General biology textbooks for both majors and nonmajors introduced genome-related content after text related to cell biology and biological chemistry, but before content describing higher-order biological processes. However, human biology textbooks most often introduced genomic content near the end of the books. These results suggest that genomics is not yet positioned as a core concept in commonly used textbooks for first-year biology and raises questions about whether such textbooks, or courses based on the outline of these textbooks, provide an appropriate foundation for understanding contemporary biological science.

  14. Self-Explanation and Reading Strategy Training (SERT) Improves Low-Knowledge Students' Science Course Performance

    Science.gov (United States)

    McNamara, Danielle S.

    2017-01-01

    This study demonstrates the generalization of previous laboratory results showing the benefits of Self-Explanation Reading Training (SERT) to college students' course exam performance. The participants were 265 students enrolled in an Introductory Biology course, 59 of whom were provided with SERT. The results showed that SERT benefited students…

  15. Scientists are from Mars, educators are from Venus: Relationships in the ecosystem of science teacher preparation

    Science.gov (United States)

    Duggan-Haas, Don Andrew

    2000-10-01

    Great problems exist in science teaching from kindergarten through the college level (NRC, 1996; NSF, 1996). The problem may be attributed to the failure of teachers to integrate their own understanding of science content with appropriate pedagogy (Shulman, 1986, 1987). All teachers were trained by college faculty and therefore some of the blame for these problems rests on those faculty. This dissertation presents three models for describing secondary science teacher preparation. Two Programs, Two Cultures adapts C. P. Snow's classic work (1959) to describe the work of a science teacher candidate as that of an individual who navigates between two discrete programs: one in college science and the second in teacher education. The second model, Scientists Are from Mars, Educators Are from Venus adapts the popular work of John Gray to describe the system of science teacher education as hobbled by the dysfunctional relationships among the major players and describes the teacher as progeny from this relationship. The third model, The Ecosystem of Science Teacher Preparation reveals some of the deeper complexities of science teacher education and posits that the traditional college science approach treats students as a monoculture when great diversity in fact exists. The three models are described in the context of a large Midwestern university's teacher education program as that program is construed for future biology teachers. Four undergraduate courses typically taken by future biology teachers were observed and described: an introductory biology course; an introductory teacher education course; an upper division course in biochemistry and a senior level science teaching methods course. Seven second semester seniors who were biological Science majors were interviewed. All seven students had taken all of the courses observed. An organization of scientists and educators working together to improve science teaching from kindergarten through graduate school is also

  16. Explore the Human-Based Teaching for the Professional Course of Materials Science and Engineering

    Science.gov (United States)

    Zhao, Yiping; Chen, Li; Zhang, Yufeng

    2008-01-01

    As viewed from two sides such as teacher and student, in this article, we explore the human-based teaching reform for the college professional course of materials Science and Engineering, point out the qualities and conditions that professional teacher should possess in the process of human-based teaching reform of professional course and the…

  17. Development and Evaluation of the Tigriopus Course-Based Undergraduate Research Experience: Impacts on Students’ Content Knowledge, Attitudes, and Motivation in a Majors Introductory Biology Course

    Science.gov (United States)

    Olimpo, Jeffrey T.; Fisher, Ginger R.; DeChenne-Peters, Sue Ellen

    2016-01-01

    Within the past decade, course-based undergraduate research experiences (CUREs) have emerged as a viable mechanism to enhance novices’ development of scientific reasoning and process skills in the science, technology, engineering, and mathematics disciplines. Recent evidence within the bioeducation literature suggests that student engagement in such experiences not only increases their appreciation for and interest in scientific research but also enhances their ability to “think like a scientist.” Despite these critical outcomes, few studies have objectively explored CURE versus non-CURE students’ development of content knowledge, attitudes, and motivation in the discipline, particularly among nonvolunteer samples. To address these concerns, we adopted a mixed-methods approach to evaluate the aforementioned outcomes following implementation of a novel CURE in an introductory cell/molecular biology course. Results indicate that CURE participants exhibited more expert-like outcomes on these constructs relative to their non-CURE counterparts, including in those areas related to self-efficacy, self-determination, and problem-solving strategies. Furthermore, analysis of end-of-term survey data suggests that select features of the CURE, such as increased student autonomy and collaboration, mediate student learning and enjoyment. Collectively, this research provides novel insights into the benefits achieved as a result of CURE participation and can be used to guide future development and evaluation of authentic research opportunities. PMID:27909022

  18. Making Politics "Click": The Costs and Benefits of Using Clickers in an Introductory Political Science Course

    Science.gov (United States)

    Evans, Heather K.

    2012-01-01

    In this article, the author addresses both the costs and benefits of implementing clickers into an introductory political science course. Comparing student responses to a mid-semester survey in both a clicker and non-clicker course, the results show that students have higher satisfaction of the course and instructor, higher exam scores, and feel…

  19. Early Engagement in Course-Based Research Increases Graduation Rates and Completion of Science, Engineering, and Mathematics Degrees.

    Science.gov (United States)

    Rodenbusch, Stacia E; Hernandez, Paul R; Simmons, Sarah L; Dolan, Erin L

    2016-01-01

    National efforts to transform undergraduate biology education call for research experiences to be an integral component of learning for all students. Course-based undergraduate research experiences, or CUREs, have been championed for engaging students in research at a scale that is not possible through apprenticeships in faculty research laboratories. Yet there are few if any studies that examine the long-term effects of participating in CUREs on desired student outcomes, such as graduating from college and completing a science, technology, engineering, and mathematics (STEM) major. One CURE program, the Freshman Research Initiative (FRI), has engaged thousands of first-year undergraduates over the past decade. Using propensity score-matching to control for student-level differences, we tested the effect of participating in FRI on students' probability of graduating with a STEM degree, probability of graduating within 6 yr, and grade point average (GPA) at graduation. Students who completed all three semesters of FRI were significantly more likely than their non-FRI peers to earn a STEM degree and graduate within 6 yr. FRI had no significant effect on students' GPAs at graduation. The effects were similar for diverse students. These results provide the most robust and best-controlled evidence to date to support calls for early involvement of undergraduates in research. © 2016 S. Rodenbusch et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. The Effect of Technology on Students' Opinions about Authentic Learning Activities in Science Courses

    Science.gov (United States)

    Coskun, Hilal; Dogan, Alev; Uluay, Gulsah

    2017-01-01

    Today, most of the researchers have agreed on the importance of classroom environment where students responsible of their own learning. It is important to use modern learning methods with technology to reach this aim in courses. The main purpose of this study is to investigate the effect of using Technology in science courses to investigate 7th…

  1. Scientists Taking a Nature of Science Course: Beliefs and Learning Outcomes of Career Switchers

    Science.gov (United States)

    Peters-Burton, Erin

    2016-01-01

    The purpose of the study was to examine what scientists studying to become teachers know about the nature of science (NOS) before, during and after a course focused on NOS. The 16 scientists had an average of 9.7 years of work experience. The course was structured to teach knowledge about the aspects of NOS, demonstrate effective methods of…

  2. How A Flipped Learning Environment Affects Learning In A Course On Theoretical Computer Science

    DEFF Research Database (Denmark)

    Gnaur, Dorina; Hüttel, Hans

    2014-01-01

    This paper reports initial experiences with flipping the classroom in an undergraduate computer science course as part of an overall attempt to enhance the pedagogical support for student learning. Our findings indicate that, just as the flipped classroom implies, a shift of focus in the learning...... context influences the way students engage with the course and their learning strategies....

  3. The impact of a dedicated Science-Technology-Society (STS) course on student knowledge of STS content

    Science.gov (United States)

    Barron, Paul E.

    In the last half century, public awareness of issues such as population growth, environmental pollution and the threat of nuclear war has pressured science education to reform to increase student social responsibility. The emerging Science-Technology-Society (STS) movement addressed these concerns by developing numerous strategies and curricula. Considerable diagnostic research has been conducted on student knowledge of the nature of science, but not on the wider scope of STS content (e.g., the nature of science and technology and their interactions with society). However, researchers have not widely studied the impact of comprehensive STS curricula on students' knowledge of STS content nor the nature of STS teaching practice that influenced this knowledge gain. This study examined student success and teacher performance in a special STS course in Ontario, Canada. Research questions focused on the STS content knowledge gain by students completing this course and the impact of the STS teachers' teaching practices on this knowledge gain. Student data were collected using pre-course and post-course assessments of students' STS content knowledge. Teacher data were obtained using semi-structured interviews, classroom observations and videotapes. Statistical analysis indicated that, after completing the STS course, students significantly increased their STS content knowledge as measured by the Views on Science Technology Society instrument. Gender and academic achievement had no significant impact on this knowledge gain, implying that this course, as taught by these teachers, could appeal to a wide range of students as a general education course. The second part of the study indicated that detailed research is needed on the relationship between STS teaching practice and student STS content knowledge gain. The small sample size prevents generalizations but initial indications show that factors such constructivist teaching practices and strong teacher STS content knowledge

  4. Gravitational biology and space life sciences: Current status and ...

    Indian Academy of Sciences (India)

    Gravitational and space biology organizations and journals. American Institute of ... of Scientific Unions (now the International Council for. Science). COSPAR ... Greek Aerospace Medical Association & Space Research. (GASMA). Provides ...

  5. I'll Tell You What You Think: An Exercise in Pseudoscience Debunking in an Introductory Astronomy Course

    Science.gov (United States)

    Caton, Dan

    2013-01-01

    At Appalachian State University students have to take just two semesters of a physical or biological science to satisfy the general education requirements. Most non-science major students have little time in their crowded schedules to take additional science courses, whether they want to or not, and in fact face a surcharge when taking more…

  6. DNA, Drugs, and Detectives: An Interdisciplinary Special Topics Course for Undergraduate Students in Forensic Science

    Science.gov (United States)

    Coticone, Sulekha Rao; Van Houten, Lora Bailey

    2015-01-01

    A special topics course combining two relevant and contemporary themes (forensic DNA analysis and illicit drug detection) was developed to stimulate student enthusiasm and enhance understanding of forensic science. Building on the interest of popular television shows such as "CSI" and "Breaking Bad," this course connects…

  7. Butterflies & Wild Bees: Biology Teachers' PCK Development through Citizen Science

    Science.gov (United States)

    Scheuch, Martin; Panhuber, Tanja; Winter, Silvia; Kelemen-Finan, Julia; Bardy-Durchhalter, Manfred; Kapelari, Suzanne

    2018-01-01

    Citizen science is a rapidly growing emerging field in science and it is gaining importance in education. Therefore, this study was conducted to document the pedagogical content knowledge (PCK) of biology teachers who participated in a citizen science project involving observation of wild bees and identification of butterflies. In this paper,…

  8. Using the Principles of SoTL to Redesign an Advanced Evolutionary Biology Course

    Directory of Open Access Journals (Sweden)

    Michael deBraga

    2015-03-01

    Full Text Available A primary goal of university instruction is the students’ demonstration of improved, highly developed critical thinking (CT skills. However, how do faculty encourage CT and its potential concomitant increase in student workload without negatively impacting student perceptions of the course? In this investigation, an advanced biology course is evaluated after structural changes (implemented in 2010 met with a poor student evaluation of the course and the instructor. This analysis first examines the steps used to transform a course to encourage CT and then explains how it can be assessed. To accomplish these goals, the instructor collaborated with an educational developer to redesign the course using a philosophy informed by SoTL. This approach, as we see it, represents a set of principles that demand transparency in the development and application of strategies whose aim is to encourage student learning. However, the SoTL approach would be insufficient to simply promote a set of strategies without some mechanism for evaluating its efficacy. Therefore, we designed a “Graded Response” (GR multiple-choice test to measure CT development and hence to properly evaluate whether the strategies embedded in our SoTL-informed course redesign have adequately met our goals.

  9. Reconstruction of biological networks based on life science data integration

    Directory of Open Access Journals (Sweden)

    Kormeier Benjamin

    2010-06-01

    Full Text Available For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH - an integration toolkit for building life science data warehouses, CardioVINEdb - a information system for biological data in cardiovascular-disease and VANESA- a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  10. Student Perceived and Determined Knowledge of Biology Concepts in an Upper-Level Biology Course

    Science.gov (United States)

    Montplaisir, Lisa

    2014-01-01

    Students who lack metacognitive skills can struggle with the learning process. To be effective learners, students should recognize what they know and what they do not know. This study examines the relationship between students’ perception of their knowledge and determined knowledge in an upper-level biology course utilizing a pre/posttest approach. Significant differences in students’ perception of their knowledge and their determined knowledge exist at the beginning (pretest) and end (posttest) of the course. Alignment between student perception and determined knowledge was significantly more accurate on the posttest compared with the pretest. Students whose determined knowledge was in the upper quartile had significantly better alignment between their perception and determined knowledge on the pre- and posttest than students in the lower quartile. No difference exists between how students perceived their knowledge between upper- and lower-quartile students. There was a significant difference in alignment of perception and determined knowledge between males and females on the posttest, with females being more accurate in their perception of knowledge. This study provides evidence of discrepancies that exist between what students perceive they know and what they actually know. PMID:26086662

  11. Ultrafast electron microscopy in materials science, biology, and chemistry

    International Nuclear Information System (INIS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-01-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  12. Comparative analysis of the biochemistry undergraduate courses in Brazil

    Directory of Open Access Journals (Sweden)

    P. A. Granjeiro

    2014-08-01

    Full Text Available INTRODUCTION: The economic and social development of Brazil during the recent decades has contributed to the installation of several new undergraduate and graduate study programs, as is the case of the undergraduate biochemistry programs at UFV, UFSJ and UEM. The new biochemical professionals are being prepared to work mainly in Industries, research Institutes, government agencies and Universities in all fields that involve Biochemistry and Molecular Biology. The aim of this study was to conduct a comparative analysis of the courses in Biochemistry in Brazil. MATERIAL AND METHODS: Comparative analysis of the course units of the UFV, UFSJ and UEM programs, centered on the curricula contents and organization and on the profiles of the students in terms of parameters such as the number of admissions and the graduation completion rates. RESULTS AND DISCUSSION: The UFV and UEM programs present a very similar distribution of workload over the biological, exact sciences, humanities, biochemical specialties and technological applications. The UFSJ program presents higher workloads in the areas of biological sciences and technological applications. No significant differences in the distribution of the workloads of mandatory and optional disciplines, complementary activities and supervised activities were detected. Over the past five years there was a decrease in the number of students that abandoned the programs, despite the increased retention time in the three courses. Most graduated students at both UFV and UFSJ continue their academic career toward the Master or Doctor degrees. CONCLUSION: Little difference between the study programs analyzed. This is somewhat surprising if one considers the fact that individual conception of each program was based on different local conditions and needs, which indeed justify small differences. The similarity of the programs, on the other hand, reflects the universality of the biochemical sciences and their broad

  13. Teaching Introductory Life Science Courses in Colleges of Agriculture: Faculty Experiences

    Science.gov (United States)

    Balschweid, Mark; Knobloch, Neil A.; Hains, Bryan J.

    2014-01-01

    Insignificant numbers of college students declaring STEM majors creates concern for the future of the U.S. economy within the global marketplace. This study highlights the educational development and teaching strategies employed by STEM faculty in teaching first-year students in contextualized life science courses, such as animal, plant, and food…

  14. Mapping of courses on vector biology and vector-borne diseases systems: time for a worldwide effort

    Science.gov (United States)

    Casas, Jérôme; Lazzari, Claudio; Insausti, Teresita; Launois, Pascal; Fouque, Florence

    2016-01-01

    Major emergency efforts are being mounted for each vector-borne disease epidemiological crisis anew, while knowledge about the biology of arthropods vectors is dwindling slowly but continuously, as is the number of field entomologists. The discrepancy between the rates of production of knowledge and its use and need for solving crises is widening, in particular due to the highly differing time spans of the two concurrent processes. A worldwide web based search using multiple key words and search engines of onsite and online courses in English, Spanish, Portuguese, French, Italian and German concerned with the biology of vectors identified over 140 courses. They are geographically and thematically scattered, the vast majority of them are on-site, with very few courses using the latest massive open online course (MOOC) powerfulness. Over two third of them is given in English and Western Africa is particularity poorly represented. The taxonomic groups covered are highly unbalanced towards mosquitoes. A worldwide unique portal to guide students of all grades and levels of expertise, in particular those in remote locations, is badly needed. This is the objective a new activity supported by the Special Programme for Research and Training in Tropical Diseases (TDR). PMID:27759770

  15. Bioinformatics in High School Biology Curricula: A Study of State Science Standards

    Science.gov (United States)

    Wefer, Stephen H.; Sheppard, Keith

    2008-01-01

    The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics…

  16. Development and implementation of a science training course for breast cancer activists: Project LEAD (leadership, education and advocacy development).

    Science.gov (United States)

    Dickersin, K; Braun, L; Mead, M; Millikan, R; Wu, A M; Pietenpol, J; Troyan, S; Anderson, B; Visco, F

    2001-12-01

    To develop and implement Project LEAD (leadership, education, and advocacy development), a science course for breast cancer activists. Students were breast cancer activists and other consumers, mainly affiliated with advocacy organizations in the United States of America. Project LEAD is offered by the National Breast Cancer Coalition; the course takes place over 5 days and is offered 4 times a year, in various cities in the United States of America. The Project LEAD curriculum has developed over 5 years to include lectures, problem-based study groups, case studies, interactive critical appraisal sessions, a seminar by an 'expert' scientist, role play, and homework components. A core faculty has been valuable for evaluating and revising the course and has proved necessary to provide consistent high quality teaching. Course evaluations indicated that students gained critical appraisal skills, enhanced their knowledge and developed confidence in selected areas of basic science and epidemiology. Project LEAD comprises a unique curriculum for training breast cancer activists in science and critical appraisal. Course evaluations indicate that students gain confidence and skills from the course.

  17. Audio-Tutorial Versus Conventional Lecture-Laboratory Instruction in a University Animal Biology Course.

    Science.gov (United States)

    Rowsey, Robert E.

    The purpose of this study was to analyze two methods of instruction used in an animal biology course. One group of students, the experimental group, was taught using an audio-tutorial program, and another group, the control group, was taught using the conventional lecture-laboratory method. Pretest and posttest data were collected from achievement…

  18. Acceptance of technology-enhanced learning for a theoretical radiological science course: a randomized controlled trial.

    Science.gov (United States)

    Nkenke, Emeka; Vairaktaris, Elefterios; Bauersachs, Anne; Eitner, Stephan; Budach, Alexander; Knipfer, Christoph; Stelzle, Florian

    2012-03-30

    Technology-enhanced learning (TEL) gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience. 42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation) questionnaire for the evaluation of courses given at universities. Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course. The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course. The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group. It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired. However, technology-enhanced learning cannot completely replace

  19. Acceptance of technology-enhanced learning for a theoretical radiological science course: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Nkenke Emeka

    2012-03-01

    Full Text Available Abstract Background Technology-enhanced learning (TEL gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience. Methods 42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation questionnaire for the evaluation of courses given at universities. Results Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course. The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course. The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group. Conclusions It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired

  20. Acceptance of technology-enhanced learning for a theoretical radiological science course: a randomized controlled trial

    Science.gov (United States)

    2012-01-01

    Background Technology-enhanced learning (TEL) gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience. Methods 42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation) questionnaire for the evaluation of courses given at universities. Results Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course. The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course. The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group. Conclusions It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired. However, technology