WorldWideScience

Sample records for science courses biochemistry

  1. Advanced Biochemistry Course teach students how to make and criticize science

    Directory of Open Access Journals (Sweden)

    A.B Sé

    2006-07-01

    Full Text Available In this work we are reporting a course of University of Brasilia called “Topics in Biochemistry”. It is offered to second semester medicine and nutrition students (around 12 who have just finished the Basic Biochemistry Course (BioBio, plus one or two third semester students, who are taking the course for the second time, as “coordinators”. This course is composed of two parallel activities: weekly meetings for scientific discussions and the peer-tutor activity.In  each  meeting,  one  student  presents  an  article.  The  topics  are  mostly  on  metabolic  biochemistry,  but  can  range from  animal  adaptability  to  Alzheimer  Disease.  The  requisite  is  that  the  article  was  published  in  a  recognized international journal (as Nature, American Journal of Physiology, New England Journal of Medicine and is adequate for group discussion. The emphasis of the discussion is greater on the methodology of science, instead of on specific details  about  particular  subjects.  What  did  the  authors  want  to  prove?  How  did  they  do  it?  Were  the  conclusions valid?  What  were  the  experimental  errors  and  omissions?  How  could  it  be  a  better  article?  Also,  it’s  a  good opportunity  to discuss statistics, methodology, and to exercise  the sense of criticism. Overall, the objective  of these discussions is to teach students how to make science and criticize science. The second attribution of the course is the peer-tutor activity. Each student is responsible for tutoring a BioBio group on a seminar/poster presentation (Hermes-Lima et al., Biochem.  Mol.Biol.Educ. 30: 30-34,2002  and is responsible for evaluating their group, always supervised by the coordinating professor. Moreover, they must elaborate a “true or false” exam (Sé et al. Are tutor-students capable of writing good biochemistry exams? SBBq 2004, abstract K-18

  2. A Phytase Enzyme-Based Biochemistry Practical Particularly Suited to Students Undertaking Courses in Biotechnology and Environmental Science

    Science.gov (United States)

    Boyce, Angela; Casey, Anne; Walsh, Gary

    2004-01-01

    Courses in introductory biochemistry invariably encompass basic principles of enzymology, with reinforcement of lecture-based material in appropriate laboratory practicals. Students undertaking practical classes are more enthusiastic, and generally display improved performance, when the specific experiments undertaken show direct relevance to…

  3. A Course in Critical Thinking for PhD Students in Biomolecular Sciences and Biotechnology: Classical Experiments in Biochemistry

    Directory of Open Access Journals (Sweden)

    Carlos B. Hirschberg

    2016-03-01

    Full Text Available This essay presents and discusses an eight-session seminar course designed to develop critical thinking skills in doctoral biochemistry students by exposing them to classical experiments in biochemistry. During each 2.5 session, different key topics of the discovery and development of biochemical concepts are discussed. Before each session, students are required to read the one or two classical papers. The size of the seminar course and the seating of the students are critical to make this a highly interactive environment for all students to participate in the critique and re-designing of key experiments, including control experiments, which helped formulate these classical concepts. Final student evaluation of the course’s goals has two equal components: Course participation and a final take home exam due two weeks after the course is completed. Together with the take home exam students are also required to write an evaluation of the course, preferably no longer than half a page. Students’ comments of the course have been uniformly positive. The author notes the sooner students are exposed to this manner of thinking, the better they will be equipped to choose an appropriate mentor and contribute creatively to attempt to solve the scientific problem of their PhD thesis.

  4. Combining Content and Elements of Communication into an Upper-Level Biochemistry Course

    Science.gov (United States)

    Whittington, Carli P.; Pellock, Samuel J.; Cunningham, Rebecca L.; Cox, James R.

    2014-01-01

    This report describes how a science communication module was incorporated into an advanced biochemistry course. Elements of communication were taught synergistically with biochemistry content in this course in an effort to expose students to a variety of effective oral communication strategies. Students were trained to use these established…

  5. Integrative activities content (aic: an auxiliary tool for the teaching of Biochemistry in the course of biological sciences at UFRN

    Directory of Open Access Journals (Sweden)

    F. D. Silva

    2015-08-01

    Full Text Available There are constant changes in the development of science, technology, politics, culture and society; the need for change is also evident in the training of teachers. The ease of access to information makes us realize that traditional teaching needs to be updated.The increasing demotivation of students,followed by high reprobation rates, has become a real challenge to the teaching practice.The objective of this work was to awaken in students enrolled in the discipline of MOLECULAR DIVERSITY (MD, a required curricular component in the Course of Biological Sciences at UFRN, an interest in studying the chemistry and functions of biomolecules, better relating the two to each other, and the content already studied in the course, in order to improve the teaching-learning process. This work was developed in a tutoring project registered at PROGRAD/UFRN. This discipline, MD, addresses chemical and structural features of the main organic molecules.The methodology focused on applying problem integrators called INTEGRATIVE ACTIVITIES OF CONTENT. This refers specifically to the application of problems that integrate the topics taught in the discipline, and also those administered in the disciplines processed in parallel, or even in previous semesters. In this way students realize that molecules relate and interact in all bodies; this gives rise to life through metabolism. The discipline is expected to promote meaningful and inter-related learning. We obtained the following results: greater participation and involvement of students in answering the questions posed; greater interest in the discipline;positive changes regarding the number of students who dropped the class, and in reprobation;and greater integration between teachers, students, and teaching assistants. The methodology used in this work was extremely important to achieve the proposed objectives, helping to facilitate the process of teaching-learning, as also to important relate content.

  6. Comparative analysis of the biochemistry undergraduate courses in Brazil

    Directory of Open Access Journals (Sweden)

    P. A. Granjeiro

    2014-08-01

    Full Text Available INTRODUCTION: The economic and social development of Brazil during the recent decades has contributed to the installation of several new undergraduate and graduate study programs, as is the case of the undergraduate biochemistry programs at UFV, UFSJ and UEM. The new biochemical professionals are being prepared to work mainly in Industries, research Institutes, government agencies and Universities in all fields that involve Biochemistry and Molecular Biology. The aim of this study was to conduct a comparative analysis of the courses in Biochemistry in Brazil. MATERIAL AND METHODS: Comparative analysis of the course units of the UFV, UFSJ and UEM programs, centered on the curricula contents and organization and on the profiles of the students in terms of parameters such as the number of admissions and the graduation completion rates. RESULTS AND DISCUSSION: The UFV and UEM programs present a very similar distribution of workload over the biological, exact sciences, humanities, biochemical specialties and technological applications. The UFSJ program presents higher workloads in the areas of biological sciences and technological applications. No significant differences in the distribution of the workloads of mandatory and optional disciplines, complementary activities and supervised activities were detected. Over the past five years there was a decrease in the number of students that abandoned the programs, despite the increased retention time in the three courses. Most graduated students at both UFV and UFSJ continue their academic career toward the Master or Doctor degrees. CONCLUSION: Little difference between the study programs analyzed. This is somewhat surprising if one considers the fact that individual conception of each program was based on different local conditions and needs, which indeed justify small differences. The similarity of the programs, on the other hand, reflects the universality of the biochemical sciences and their broad

  7. Reactivity I: A Foundation-Level Course for Both Majors and Nonmajors in Integrated Organic, Inorganic, and Biochemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.; Jones, T. Nicholas; McIntee, Edward J.

    2015-01-01

    A foundation level course is presented that integrates aspects of organic, inorganic and biochemistry in the context of reactivity. The course was designed to serve majors in chemistry and other sciences (biochemistry, biology, nutrition), as well as nursing and pre-health professions students. Themes of the course were designed to highlight a…

  8. Biochemistry for dietetic students: course content and format.

    Science.gov (United States)

    Sirota, L H

    1984-12-01

    This article presents the results of a survey of the 251 undergraduate dietetic programs for course content and level of the biochemistry course most frequently used to satisfy competencies in biochemistry under Plan IV of the ADA in 1979-80. It showed that a common core of information was stressed by all biochemistry instructors, but there was great variability in content and level of material covered and the textbook chosen, depending on whether the biochemistry course was offered to dietetic majors only, in classes with other nonchemistry majors, or in classes with chemistry majors. Variability was also seen in the time allotted for biochemistry--39 to 280 hours (total lecture and required laboratory hours); laboratory requirements--only 71%; and departmental affiliation of the instructor--17 different departments, primarily of chemistry (80%), biology (8%), and home economics (4%). Topics given greatest emphasis were descriptive ones, such as definitions, simple structures, and reactions of intermediary metabolism in general terms. Topics given least emphasis were those involving mechanistic and quantitative biochemistry, such as respiratory quotient (RQ), enzyme kinetics, calculations of energy from fat and carbohydrates, and specific structures of vitamins, ketones, and metabolic intermediates. The lack of communication between biochemistry and nutrition instructors and the great differences in the preparation of dietetic majors in biochemistry are sources of concern.

  9. A biochemistry discipline designed for the nutrition course

    Directory of Open Access Journals (Sweden)

    A.A.G. Bianco

    2004-05-01

    Full Text Available Biochemistry is widely considered an essential background in a Nutrition Course framework. At theFaculdade de Saude Publica, USP, it is a direct requirement to eight disciplines of the syllabus and anindirect requirement to another nine disciplines. Nevertheless, a previous interview study involvingNutrition students and Nutritionists revealed a contradictory image of Biochemistry. Although stu-dents and Nutritionists admitted the important role played by Biochemistry, most of the respondentsdeclared that they could not foresee any application of Biochemical contents in their professional life.Aiming to change this situation, a deep intervention in the Biochemistry discipline was carried on.The discipline was planned in such a way that all the contents to be taught was directly derived fromsubjects or situations matching the interests of nutrition students. Instead of a classical lecture basedcourse, collaborative learning was the methodological choice, taking advantage of practical activitiesinvolving educational software and laboratory work as well. The course was carried on in 180 hoursand a variety of strategies were employed, especially small group discussion and problem solving. Thestudents were given a booklet containing all the exercises and problems, which acted as course guide.At the end of the course, an evaluation survey was carried out. It is noticeable that, according tostudents answers: 100% agreed that Biochemistry was intimately linked to Nutrition; 83% appreciatedthe didactical methodologies employed; 89% would like to continue studying Biochemistry in a furtherdiscipline; 96% declared that the discipline has raised their interest in Biochemistry. In respect tothe assessment of the students, these results are in accordance with the opinion of teachers and TAsengaged in restructuring Biochemistry courses.

  10. Differentiating Biochemistry Course Laboratories Based on Student Experience

    Science.gov (United States)

    Jakubowski, Henry V.

    2011-01-01

    Content and emphases in undergraduate biochemistry courses can be readily tailored to accommodate the standards of the department in which they are housed, as well as the backgrounds of the students in the courses. A more challenging issue is how to construct laboratory experiences for a class with both chemistry majors, who usually have little or…

  11. Combining content and elements of communication into an upper-level biochemistry course.

    Science.gov (United States)

    Whittington, Carli P; Pellock, Samuel J; Cunningham, Rebecca L; Cox, James R

    2014-01-01

    This report describes how a science communication module was incorporated into an advanced biochemistry course. Elements of communication were taught synergistically with biochemistry content in this course in an effort to expose students to a variety of effective oral communication strategies. Students were trained to use these established techniques and incorporated them into various presentations throughout the course. Three students describe their use of specific resources and how the skills learned relate to their future career. The importance and relevance of science communication are receiving unprecedented national attention. The academic scientific community must respond by incorporating more communication-centered instruction and opportunities in the classroom and laboratory. © 2013 by The International Union of Biochemistry and Molecular Biology.

  12. Using "The Poisoner's Handbook" in Conjunction with Teaching a First-Term General/Organic/Biochemistry Course

    Science.gov (United States)

    Zuidema, Daniel R.; Herndon, Lindsey B.

    2016-01-01

    Deborah Blum's New York Times bestselling nonfiction book "The Poisoner's Handbook" was used as supplementary reading in our first-term General/Organic/Biochemistry course. This course serves as both the first course for our Allied Health chemistry sequence and a core science course. Our goal was that, through reading this book, students…

  13. A Laboratory Course in Clinical Biochemistry Emphasizing Interest and Relevance

    Science.gov (United States)

    Schwartz, Peter L.

    1975-01-01

    Ten laboratory experiments are described which are used in a successful clinical biochemistry laboratory course (e.g. blood alcohol, glucose tolerance, plasma triglycerides, coronary risk index, gastric analysis, vitamin C and E). Most of the experiments are performed on the students themselves using simple equipment with emphasis on useful…

  14. The development and implementation of an online applied biochemistry bridge course for a dental hygiene curriculum.

    Science.gov (United States)

    Gadbury-Amyot, Cynthia C; Overman, Pamela R; Crain, Geralyn

    2009-01-01

    This article describes a curricular change project designed to improve instruction in biochemistry. After years of unsatisfactory outcomes from a dental hygiene biochemistry course, a decision was made to change the traditional lecture-based course to an online format. Using online technology and principles of educational pedagogy, a course was developed that fosters application of biomaterials principles to dental hygiene practice and provides a bridge between prerequisite chemistry coursework and biochemistry in a health professions program. Members of the dental hygiene graduating Classes of 2007 and 2008 participated in the revised course. The outcome measures used to assess the effectiveness of the revised course were student end-of-semester course evaluations, graduating senior survey results, student course performance, and National Board examination performance. While the results are based on only two classes, the positive outcomes suggest that the revision was a worthwhile endeavor. The use of technology in teaching holds the potential for solving many of the curriculum and instruction issues currently under discussion: overcrowding of the curriculum, lack of active learning methods, and basic sciences taught in isolation from the rest of the curriculum. It is hoped that the results of this change will be helpful to other faculty members seeking curricular change and innovation.

  15. A biochemistry laboratory course designed to enhance students autonomy

    Directory of Open Access Journals (Sweden)

    T. Silva

    2015-08-01

    Full Text Available INTRODUCTION: Laboratory sessions are responsible for promoting instrumentation skills desirable in biochemistry and biochemistry related careers. They are traditionally based on experimental protocols that lead to the expected results, and students usually have not autonomy to plan and execute their experiments. GOALS: This work aimed to enhance a traditional biochemistry lab course, applying pre-lab quizzes on protein biochemistry and lab techniques in order to have students better prepared to plan, execute and interpret experiments. This approach also aims to bring the laboratory sessions into an inquiry-based environment capable to improve students’ independent capabilities in 2 autonomy domains: learning and communication. MATERIAL AND METHODS: Online quizzes are delivered one week before each laboratory session, containing questions regarding the experimental techniques and theoretical basis related to them. Laboratory activities are presented in an inquiry-based approach where the first class of each activity is dedicated to plan experiments in order to answer the research questions presented by instructors. Activities are also organized in order to enhance students’ autonomy. The first activity is the simplest and more instructor-controlled and the last one is the most complex and less driven, transferring gradually to students the responsibility for their decisions in laboratory, supporting students’ autonomy. RESULTS: Online quizzes allowed instructors to identify students’ difficulties and to timely intervene. Scientific reports presented by students at the end of each activity showed that they performed better on less driven activities in which autonomy support were more complex than in the instructor controlled activities. CONCLUSIONS: Scientific reports analysis reveals students capabilities related to different scopes of autonomy, such as: discuss different strategies; find multiple solutions to solve problems; make their

  16. Reactivity II: A Second Foundation-Level Course in Integrated Organic, Inorganic, and Biochemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; McIntee, Edward J.; Jones, T. Nicholas; Johnson, Brian J.

    2016-01-01

    A foundation-level course is described that integrates material related to reactivity in organic, inorganic, and biochemistry. Designed for second-year students, the course serves majors in chemistry, biochemistry, and biology, as well as prehealth-professions students. Building on an earlier course that developed concepts of nucleophiles and…

  17. Biochemistry

    Science.gov (United States)

    Part of the framework for effective control or management of cyst nematodes depends upon the detailed understanding of their biology. This chapter summarizes fundamental knowledge and recent discoveries about the biochemistry of cyst nematodes, particularly areas related to lipids, carbohydrates and...

  18. Known structure, unknown function: An inquiry?based undergraduate biochemistry laboratory course

    OpenAIRE

    Gray, Cynthia; Price, Carol W.; Lee, Christopher T.; Dewald, Alison H.; Cline, Matthew A.; McAnany, Charles E.; Columbus, Linda; Mura, Cameron

    2015-01-01

    Abstract Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry? and research?based could simultaneously impart scientific knowledge and foster a student's research expertise and confidence. We have developed a year?long undergraduate biochemistry laboratory curriculum wherein students determine...

  19. The Views of Undergraduates about Problem-Based Learning Applications in a Biochemistry Course

    Science.gov (United States)

    Tarhan, Leman; Ayyildiz, Yildizay

    2015-01-01

    The effect of problem-based learning (PBL) applications in an undergraduate biochemistry course on students' interest in this course was investigated through four modules during one semester. Students' views about active learning and improvement in social skills were also collected and evaluated. We conducted the study with 36 senior students from…

  20. Known Structure, Unknown Function: An Inquiry-Based Undergraduate Biochemistry Laboratory Course

    Science.gov (United States)

    Gray, Cynthia; Price, Carol W.; Lee, Christopher T.; Dewald, Alison H.; Cline, Matthew A.; McAnany, Charles E.; Columbus, Linda; Mura, Cameron

    2015-01-01

    Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry- and research-based could simultaneously impart scientific knowledge and foster a student's…

  1. Uncovering protein–protein interactions through a team-based undergraduate biochemistry course

    Science.gov (United States)

    Cookmeyer, David L.; Winesett, Emily S.; Kokona, Bashkim; Huff, Adam R.; Aliev, Sabina; Bloch, Noah B.; Bulos, Joshua A.; Evans, Irene L.; Fagre, Christian R.; Godbe, Kerilyn N.; Khromava, Maryna; Konstantinovsky, Daniel M.; Lafrance, Alexander E.; Lamacki, Alexandra J.; Parry, Robert C.; Quinn, Jeanne M.; Thurston, Alana M.; Tsai, Kathleen J. S.; Mollo, Aurelio; Cryle, Max J.; Fairman, Robert

    2017-01-01

    How can we provide fertile ground for students to simultaneously explore a breadth of foundational knowledge, develop cross-disciplinary problem-solving skills, gain resiliency, and learn to work as a member of a team? One way is to integrate original research in the context of an undergraduate biochemistry course. In this Community Page, we discuss the development and execution of an interdisciplinary and cross-departmental undergraduate biochemistry laboratory course. We present a template for how a similar course can be replicated at other institutions and provide pedagogical and research results from a sample module in which we challenged our students to study the binding interface between 2 important biosynthetic proteins. Finally, we address the community and invite others to join us in making a larger impact on undergraduate education and the field of biochemistry by coordinating efforts to integrate research and teaching across campuses. PMID:29091712

  2. Uncovering protein-protein interactions through a team-based undergraduate biochemistry course.

    Science.gov (United States)

    Cookmeyer, David L; Winesett, Emily S; Kokona, Bashkim; Huff, Adam R; Aliev, Sabina; Bloch, Noah B; Bulos, Joshua A; Evans, Irene L; Fagre, Christian R; Godbe, Kerilyn N; Khromava, Maryna; Konstantinovsky, Daniel M; Lafrance, Alexander E; Lamacki, Alexandra J; Parry, Robert C; Quinn, Jeanne M; Thurston, Alana M; Tsai, Kathleen J S; Mollo, Aurelio; Cryle, Max J; Fairman, Robert; Charkoudian, Louise K

    2017-11-01

    How can we provide fertile ground for students to simultaneously explore a breadth of foundational knowledge, develop cross-disciplinary problem-solving skills, gain resiliency, and learn to work as a member of a team? One way is to integrate original research in the context of an undergraduate biochemistry course. In this Community Page, we discuss the development and execution of an interdisciplinary and cross-departmental undergraduate biochemistry laboratory course. We present a template for how a similar course can be replicated at other institutions and provide pedagogical and research results from a sample module in which we challenged our students to study the binding interface between 2 important biosynthetic proteins. Finally, we address the community and invite others to join us in making a larger impact on undergraduate education and the field of biochemistry by coordinating efforts to integrate research and teaching across campuses.

  3. Uncovering protein-protein interactions through a team-based undergraduate biochemistry course.

    Directory of Open Access Journals (Sweden)

    David L Cookmeyer

    2017-11-01

    Full Text Available How can we provide fertile ground for students to simultaneously explore a breadth of foundational knowledge, develop cross-disciplinary problem-solving skills, gain resiliency, and learn to work as a member of a team? One way is to integrate original research in the context of an undergraduate biochemistry course. In this Community Page, we discuss the development and execution of an interdisciplinary and cross-departmental undergraduate biochemistry laboratory course. We present a template for how a similar course can be replicated at other institutions and provide pedagogical and research results from a sample module in which we challenged our students to study the binding interface between 2 important biosynthetic proteins. Finally, we address the community and invite others to join us in making a larger impact on undergraduate education and the field of biochemistry by coordinating efforts to integrate research and teaching across campuses.

  4. Biochemistry of Neuromuscular Diseases: A Course for Undergraduate Students

    Science.gov (United States)

    Ohlendieck, Kay

    2002-01-01

    This article outlines an undergraduate course focusing on supramolecular membrane protein complexes involved in the molecular pathogenesis of neuromuscular disorders. The emphasis of this course is to introduce students to the key elements involved in the ion regulation and membrane stabilization during muscle contraction and the role of these…

  5. Known structure, unknown function: An inquiry‐based undergraduate biochemistry laboratory course

    Science.gov (United States)

    Gray, Cynthia; Price, Carol W.; Lee, Christopher T.; Dewald, Alison H.; Cline, Matthew A.; McAnany, Charles E.

    2015-01-01

    Abstract Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry‐ and research‐based could simultaneously impart scientific knowledge and foster a student's research expertise and confidence. We have developed a year‐long undergraduate biochemistry laboratory curriculum wherein students determine, via experiment and computation, the function of a protein of known three‐dimensional structure. The first half of the course is inquiry‐based and modular in design; students learn general biochemical techniques while gaining preparation for research experiments in the second semester. Having learned standard biochemical methods in the first semester, students independently pursue their own (original) research projects in the second semester. This new curriculum has yielded an improvement in student performance and confidence as assessed by various metrics. To disseminate teaching resources to students and instructors alike, a freely accessible Biochemistry Laboratory Education resource is available at http://biochemlab.org. © 2015 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 43(4):245–262, 2015. PMID:26148241

  6. Known structure, unknown function: An inquiry-based undergraduate biochemistry laboratory course.

    Science.gov (United States)

    Gray, Cynthia; Price, Carol W; Lee, Christopher T; Dewald, Alison H; Cline, Matthew A; McAnany, Charles E; Columbus, Linda; Mura, Cameron

    2015-01-01

    Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry- and research-based could simultaneously impart scientific knowledge and foster a student's research expertise and confidence. We have developed a year-long undergraduate biochemistry laboratory curriculum wherein students determine, via experiment and computation, the function of a protein of known three-dimensional structure. The first half of the course is inquiry-based and modular in design; students learn general biochemical techniques while gaining preparation for research experiments in the second semester. Having learned standard biochemical methods in the first semester, students independently pursue their own (original) research projects in the second semester. This new curriculum has yielded an improvement in student performance and confidence as assessed by various metrics. To disseminate teaching resources to students and instructors alike, a freely accessible Biochemistry Laboratory Education resource is available at http://biochemlab.org. © 2015 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  7. Green Fluorescent Protein-Focused Bioinformatics Laboratory Experiment Suitable for Undergraduates in Biochemistry Courses

    Science.gov (United States)

    Rowe, Laura

    2017-01-01

    An introductory bioinformatics laboratory experiment focused on protein analysis has been developed that is suitable for undergraduate students in introductory biochemistry courses. The laboratory experiment is designed to be potentially used as a "stand-alone" activity in which students are introduced to basic bioinformatics tools and…

  8. Reactivity III: An Advanced Course in Integrated Organic, Inorganic, and Biochemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Jakubowski, Henry V.

    2017-01-01

    Reactivity III is a new course that presents chemical reactions from the domains of organic, inorganic, and biochemistry that are not readily categorized by electrophile-nucleophile interactions. Many of these reactions involve the transfer of a single electron, in either an intermolecular fashion in the case of oxidation/reduction reactions or an…

  9. Improving Student Understanding of Lipids Concepts in a Biochemistry Course Using Test-Enhanced Learning

    Science.gov (United States)

    Horn, Savannah; Hernick, Marcy

    2015-01-01

    Test-enhanced learning has successfully been used as a means to enhance learning and promote knowledge retention in students. We have examined whether this approach could be used in a biochemistry course to enhance student learning about lipids-related concepts. Students were provided access to two optional learning modules with questions related…

  10. Students' Preferred Teaching Techniques for Biochemistry in Biomedicine and Medicine Courses

    Science.gov (United States)

    Novelli, Ethel L.B.; Fernandes, Ana Angelica H.

    2007-01-01

    The aim of this study was to investigate the students' preferred teaching techniques, such as traditional blackboard, power-point, or slide-projection, for biochemistry discipline in biomedicine and medicine courses from Sao Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil. Preferences for specific topic and teaching techniques were…

  11. Correlation of preadmission organic chemistry courses and academic performance in biochemistry at a midwest chiropractic doctoral program.

    Science.gov (United States)

    McRae, Marc P

    2010-01-01

    Organic chemistry has been shown to correlate with academic success in the preclinical years of medicine, dentistry, and graduate physiology. The purpose of this study is to examine the relationship between undergraduate organic chemistry grades and first-semester biochemistry grades at a Midwest chiropractic doctoral program. Students enrolled in a first-semester biochemistry course who had completed the prerequisite courses in organic chemistry offered at this same institution were entered into the study. The total grade for each of the three courses was calculated using the midterm and final exam raw scores with a weighting of 50% each. Analysis consisted of obtaining correlation coefficients between the total grades of organic 1 with biochemistry and organic 2 with biochemistry. Using the biochemistry total grade, the students were divided into quartiles and course grades for both organic chemistry 1 and 2 were calculated. For the 109 students in the study, the correlation coefficient between the biochemistry and organic chemistry 1 and biochemistry and organic chemistry 2 courses was r = 0.744 and r = 0.725, respectively. The difference in organic chemistry grades between those in the first and fourth quartiles was 63.2% and 86.9% for organic chemistry 1 (p organic chemistry 2 (p organic chemistry can be used as an indicator of future academic success in a chiropractic biochemistry course. Knowledge of such a relationship could prove useful to identify students who may potentially run into academic difficulty with first-year biochemistry.

  12. Learning-oriented assessment increases performance and written skills in a second year metabolic biochemistry course.

    Science.gov (United States)

    Vanderlelie, Jessica J; Alexander, Heather G

    2016-07-08

    Assessment plays a critical role in learning and teaching and its power to enhance engagement and student outcomes is still underestimated in tertiary education. The current project considers the impact of a staged redesign of an assessment strategy that emphasized relevance of learning, formative assessment, student engagement, and feedback on student performance, failure rates and overall engagement in the course. Significant improvements in final grades (p Biochemistry and Molecular Biology, 44(4):412-420, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  13. Symposium 20 - PABMB: Teaching biochemistry in a connected world: Hands-on inquiry-based biochemistry courses for improving scientific literacy of school teachers and students

    Directory of Open Access Journals (Sweden)

    Andrea T. da Poian

    2015-08-01

    Full Text Available Wednesday – August 26th, 2015 - 3:30 to 5:30 pm – Room: Iguaçu II – 5th floorSymposium 20 - PABMB: Teaching biochemistry in a connected world Chair: Miguel Castanho, Universidade de Lisboa, PortugalAbstract:In the last decades, Brazil has reached a prominent position in the world rank of scientific production. Despite this progress, the establishment of a scientific culture in Brazilian society is still challenging. Our group has been offering hands-on inquiry-based courses to primary and secondary students, which aim to introduce them to the scientific method and improve their interest in science. More recently, we started new initiatives focused on the improvement of the scientific literacy of school science teachers. Here we describe two intensive short-term courses designed in different formats. One consists in a discipline offered to a Master Program to school science teachers, in which the main objective was to work with core disciplinary concepts through an active teachers engagement in “doing science”. The discipline, named “Energy transformation in the living organisms”, intends to deal with the main Biochemistry subjects that take part of the high-school science curriculum, namely, fermentation, photosynthesis and cellular respiration processes. The other initiative was developed in Urucureá, a small community with about 600 residents, located on the banks of the River Arapiuns, in Amazonia region. We trained the local school teachers to act as tutors in the course offered to 40 students of the community, ages 10 to 17. The theme we chose to address was the properties and effects of snakes´ poisons, since poisoning events are a problem with which the local community frequently deal with. Another important point was that we adapted a number of experiments to make them feasible with very limited laboratory resources. Our results show that the activities that we have developed offer real opportunity of scientific training

  14. Adjusting a biochemistry course for physical education majors: A case study.

    Science.gov (United States)

    da Costa, Caetano; Torres, Bayardo B

    2004-03-01

    The purpose of this study was to investigate and analyze the events responsible for curricular characteristics that lead to positive outcomes in university teaching using a biochemistry course taught to physical education students as a model. The research was carried out as a case study, supported by questionnaires, classroom observation, document analysis, and interviews. The overall analyses of obtained data were validated by means of triangulation protocols, which proved the following reasons for the course achievements: 1) teaching staff deeply committed to the course; 2) contents adaptation to students' careers; 3) gradual adjustment of the teaching strategies and evaluation tools; 4) valorization of formative evaluation; and 5) providing a suitable affective milieu. Copyright © 2004 International Union of Biochemistry and Molecular Biology, Inc.

  15. The Teaching of Biochemistry: An Innovative Course Sequence Based on the Logic of Chemistry

    Science.gov (United States)

    Jakubowski, Henry V.; Owen, Whyte G.

    1998-06-01

    An innovative course sequence for the teaching of biochemistry is offered, which more truly reflects the common philosophy found in biochemistry texts: that the foundation of biological phenomena can best be understood through the logic of chemistry. Topic order is chosen to develop an emerging understanding that is based on chemical principles. Preeminent biological questions serve as a framework for the course. Lipid and lipid-aggregate structures are introduced first, since it is more logical to discuss the intermolecular association of simple amphiphiles to form micelle and bilayer formations than to discuss the complexities of protein structure/folding. Protein, nucleic acid, and carbohydrate structures are studied next. Binding, a noncovalent process and the simplest expression of macromolecular function, follows. The physical (noncovalent) transport of solute molecules across a biological membrane is studied next, followed by the chemical transformation of substrates by enzymes. These are logical extensions of the expression of molecular function, first involving a simpler (physical transport) and second, a more complex (covalent transformation) process. The final sequence involves energy and signal transduction. This unique course sequence emerges naturally when chemical logic is used as an organizing paradigm for structuring a biochemistry course. Traditional order, which seems to reflect historic trends in research, or even an order derived from the central dogma of biology can not provide this logical framework.

  16. Small Changes: Using Assessment to Direct Instructional Practices in Large-Enrollment Biochemistry Courses.

    Science.gov (United States)

    Xu, Xiaoying; Lewis, Jennifer E; Loertscher, Jennifer; Minderhout, Vicky; Tienson, Heather L

    2017-01-01

    Multiple-choice assessments provide a straightforward way for instructors of large classes to collect data related to student understanding of key concepts at the beginning and end of a course. By tracking student performance over time, instructors receive formative feedback about their teaching and can assess the impact of instructional changes. The evidence of instructional effectiveness can in turn inform future instruction, and vice versa. In this study, we analyzed student responses on an optimized pretest and posttest administered during four different quarters in a large-enrollment biochemistry course. Student performance and the effect of instructional interventions related to three fundamental concepts-hydrogen bonding, bond energy, and pK a -were analyzed. After instructional interventions, a larger proportion of students demonstrated knowledge of these concepts compared with data collected before instructional interventions. Student responses trended from inconsistent to consistent and from incorrect to correct. The instructional effect was particularly remarkable for the later three quarters related to hydrogen bonding and bond energy. This study supports the use of multiple-choice instruments to assess the effectiveness of instructional interventions, especially in large classes, by providing instructors with quick and reliable feedback on student knowledge of each specific fundamental concept. © 2017 X. Xu et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. A Survey on Faculty Perspectives on the Transition to a Biochemistry Course-Based Undergraduate Research Experience Laboratory

    Science.gov (United States)

    Craig, Paul A.

    2017-01-01

    It will always remain a goal of an undergraduate biochemistry laboratory course to engage students hands-on in a wide range of biochemistry laboratory experiences. In 2006, our research group initiated a project for "in silico" prediction of enzyme function based only on the 3D coordinates of the more than 3800 proteins "of unknown…

  18. Diverse Assessment and Active Student Engagement Sustain Deep Learning: A Comparative Study of Outcomes in Two Parallel Introductory Biochemistry Courses

    Science.gov (United States)

    Bevan, Samantha J.; Chan, Cecilia W. L.; Tanner, Julian A.

    2014-01-01

    Although there is increasing evidence for a relationship between courses that emphasize student engagement and achievement of student deep learning, there is a paucity of quantitative comparative studies in a biochemistry and molecular biology context. Here, we present a pedagogical study in two contrasting parallel biochemistry introductory…

  19. AN ALTERNATIVE STRATEGY TO ANALYZE THE CONTENTS OF BIOCHEMISTRY INTRODUCTORY COURSES

    Directory of Open Access Journals (Sweden)

    A.K. Miskalo

    2008-05-01

    Full Text Available A common problem  educators  from  different areas face  is  to  fit the increasing  amount  of information  with the maintenance  and/or,  not seldom,  a decrease in the class load of their courses. This actual situation  necessarily forces the educator  to severely select the topics to be worked out. In the cur rent scenario of most teaching institutions, this decision  is  taken by the teacher.  In order to do this, a  list of the topics considered to be essential  for an appropriate biochemistry course is necessary. Taking for granted that questions from biochemistry courses tests reflect  the topics  considered most relevant by teachers,  questions from different courses offered by Biochemistry Department of USP were analyzed. The objective of this analysis  was  to  answer two main questions, namely (1  Which is the exte nt and  depth  of the common topics  in  biochemistry  introductory courses? and (2  Are there (and ,  if  there are,  which are they?  specific topics  for  different careers?  The  method we adopted was to verify  the demanded topics  in  written tests and  to  classify  their  cognitive level according to Bloom’s Taxonomy.  The most recurring topics found are Protein Structure and Metabolism Regulation. The results indicate a strong predominance of  low-level categories  (Knowledge e Comprehension,  with little  occurrence  of high-level categories (from Application on.  It is expected, from further development of this study,  to outline  the topics considered  relevant  to  set the basis for  the discussion  on the establishment of a minimum curriculum for biochemistry courses. Key words: Bloom’s Taxonomy, minimum curriculum, written tests analysis.

  20. Correlation of Preadmission Organic Chemistry Courses and Academic Performance in Biochemistry at a Midwest Chiropractic Doctoral Program*

    Science.gov (United States)

    McRae, Marc P.

    2010-01-01

    Purpose: Organic chemistry has been shown to correlate with academic success in the preclinical years of medicine, dentistry, and graduate physiology. The purpose of this study is to examine the relationship between undergraduate organic chemistry grades and first-semester biochemistry grades at a Midwest chiropractic doctoral program. Methods: Students enrolled in a first-semester biochemistry course who had completed the prerequisite courses in organic chemistry offered at this same institution were entered into the study. The total grade for each of the three courses was calculated using the midterm and final exam raw scores with a weighting of 50% each. Analysis consisted of obtaining correlation coefficients between the total grades of organic 1 with biochemistry and organic 2 with biochemistry. Using the biochemistry total grade, the students were divided into quartiles and course grades for both organic chemistry 1 and 2 were calculated. Results: For the 109 students in the study, the correlation coefficient between the biochemistry and organic chemistry 1 and biochemistry and organic chemistry 2 courses was r = 0.744 and r = 0.725, respectively. The difference in organic chemistry grades between those in the first and fourth quartiles was 63.2% and 86.9% for organic chemistry 1 (p organic chemistry 2 (p organic chemistry can be used as an indicator of future academic success in a chiropractic biochemistry course. Knowledge of such a relationship could prove useful to identify students who may potentially run into academic difficulty with first-year biochemistry PMID:20480012

  1. Polish Academy of Sciences Institute of Biochemistry and Biophysics research report 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Scientific interests of Institute of Biochemistry and Biophysics Polish Academy of Sciences are focused on DNA replication and repair, gene expression, gene sequencing and molecular biophysics. The work reviews research projects of the Institute in 1994-1995.

  2. Polish Academy of Sciences Institute of Biochemistry and Biophysics research report 1994-1995

    International Nuclear Information System (INIS)

    1996-01-01

    Scientific interests of Institute of Biochemistry and Biophysics Polish Academy of Sciences are focused on DNA replication and repair, gene expression, gene sequencing and molecular biophysics. The work reviews research projects of the Institute in 1994-1995

  3. Polish Academy of Sciences Institute of Biochemistry and Biophysics research report 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Scientific interests of Institute of Biochemistry and Biophysics Polish Academy of Sciences are focused on DNA replication and repair, gene expression, gene sequencing and molecular biophysics. The work reviews research projects of the Institute in 1994-1995.

  4. Concept and benefits of the Inverted Classroom method for a competency-based biochemistry course in the pre-clinical stage of a human medicine course of studies.

    Science.gov (United States)

    Kühl, Susanne J; Toberer, Matthias; Keis, Oliver; Tolks, Daniel; Fischer, Martin R; Kühl, Michael

    2017-01-01

    Background: Medical students often have a problem recognising the relevance of basic science subjects for their later professional work in the pre-clinical stage of their studies. This can lead to a lower motivation to learn biochemical content and dissatisfaction in the courses amongst the students. Alternative teaching methods such as the Inverted Classroom (IC) method can address this deficiency. The goal of this study was: to analyse the motivation and satisfaction of the students in a biochemistry seminar through the use of the e-learning-based IC method, to investigate the acceptance against the IC teaching method in biochemistry, and to compare the learning success achieved using the IC approach with that of a traditional course. We also investigated how a biochemistry course in the pre-clinical stage of a human medicine course of studies can be successfully organised according to the IC method. Furthermore, we examined the benefits of the IC method over conventional teaching formats. Method: The IC method was implemented in accordance with the guidelines of the GMA committee "New Media" [30] in a biochemistry seminar for two student IC intervention groups with 42 students. A part of the factual knowledge from the on-site phase in the form of teaching videos together with self-learning control tasks were provided online before the seminar for both IC intervention groups. Exporting content to the self-learning phase creates new free time in the on-site phase, during which the content can be critically considered and processed and additional competency-based learning objectives can be taught. Identical biochemistry teaching content was taught in parallel control groups (14 student groups with n=299 students), but no material was handed out beforehand for a self-learning phase. These students only received the materials after the on-site phase. Motivation and satisfaction as well as the acceptance for the teaching methods were recorded by questionnaires, the

  5. Teaching structure: student use of software tools for understanding macromolecular structure in an undergraduate biochemistry course.

    Science.gov (United States)

    Jaswal, Sheila S; O'Hara, Patricia B; Williamson, Patrick L; Springer, Amy L

    2013-01-01

    Because understanding the structure of biological macromolecules is critical to understanding their function, students of biochemistry should become familiar not only with viewing, but also with generating and manipulating structural representations. We report a strategy from a one-semester undergraduate biochemistry course to integrate use of structural representation tools into both laboratory and homework activities. First, early in the course we introduce the use of readily available open-source software for visualizing protein structure, coincident with modules on amino acid and peptide bond properties. Second, we use these same software tools in lectures and incorporate images and other structure representations in homework tasks. Third, we require a capstone project in which teams of students examine a protein-nucleic acid complex and then use the software tools to illustrate for their classmates the salient features of the structure, relating how the structure helps explain biological function. To ensure engagement with a range of software and database features, we generated a detailed template file that can be used to explore any structure, and that guides students through specific applications of many of the software tools. In presentations, students demonstrate that they are successfully interpreting structural information, and using representations to illustrate particular points relevant to function. Thus, over the semester students integrate information about structural features of biological macromolecules into the larger discussion of the chemical basis of function. Together these assignments provide an accessible introduction to structural representation tools, allowing students to add these methods to their biochemical toolboxes early in their scientific development. © 2013 by The International Union of Biochemistry and Molecular Biology.

  6. Effects of Guided Inquiry versus Lecture Instruction on Final Grade Distribution in a One-Semester Organic and Biochemistry Course

    Science.gov (United States)

    Conway, Colleen J.

    2014-01-01

    A comprehensive guided-inquiry approach was used in a combined organic and biochemistry course for prenursing and predietetics students rather than lecture. To assess its effectiveness, exam grades and final course grades of students in three instructional techniques were compared. The three groups were the following: (i) lecture only, (ii)…

  7. Team-Based Learning, Faculty Research, and Grant Writing Bring Significant Learning Experiences to an Undergraduate Biochemistry Laboratory Course

    Science.gov (United States)

    Evans, Hedeel Guy; Heyl, Deborah L.; Liggit, Peggy

    2016-01-01

    This biochemistry laboratory course was designed to provide significant learning experiences to expose students to different ways of succeeding as scientists in academia and foster development and improvement of their potential and competency as the next generation of investigators. To meet these goals, the laboratory course employs three…

  8. Development of a Semester-Long, Inquiry-Based Laboratory Course in Upper-Level Biochemistry and Molecular Biology

    Science.gov (United States)

    Murthy, Pushpalatha P. N.; Thompson, Martin; Hungwe, Kedmon

    2014-01-01

    A semester-long laboratory course was designed and implemented to familiarize students with modern biochemistry and molecular biology techniques. The designed format involved active student participation, evaluation of data, and critical thinking, and guided students to become independent researchers. The first part of the course focused on…

  9. Analysis of the Experience of a Virtual Learning Environment Integration Into a Biochemistry Course Offered to Undergraduate Students

    Directory of Open Access Journals (Sweden)

    M.B. Espíndola

    2009-05-01

    Full Text Available As Information and Communication Technology (ICT becomes available in educational contexts, it is important that educators experiment different ways to deal with ICT tools in the teaching -learning process at the University basic sciences level. The challenge is to integrate ICT throughout the learning subjects in order to improve the quality of the learning process to students. This paper presents the results of an experience using a Virtual Learning Management System (VLMS, named Constructore, applied in the Biochemistry discipline at the Federal University of Rio de Janeiro (UFRJ for undergraduate medical students. Using Constructore, we developed a learning environment intended for integrating online activities and traditional course content. The course was focused on the integration of energy-yielding metabolism, exploring  metabolic adaptations in different physiological or pathological states such as starvation, diabetes and exercise. The course environment was structured with three modules, each of them presenting problem-based exercises to be answered after retrieving rele vant information in original scientific articles. Based on the analysis of  a semi-open questionnaire, the results provided evidence that the virtual environment stimulated students to critically read relevant scientific articles and to acquire skills to build and to integrate their knowledge through content association.

  10. Concept and benefits of the Inverted Classroom method for a competency-based biochemistry course in the pre-clinical stage of a human medicine course of studies

    Directory of Open Access Journals (Sweden)

    Kühl, Susanne J.

    2017-08-01

    Full Text Available Background: Medical students often have a problem recognising the relevance of basic science subjects for their later professional work in the pre-clinical stage of their studies. This can lead to a lower motivation to learn biochemical content and dissatisfaction in the courses amongst the students. Alternative teaching methods such as the Inverted Classroom (IC method can address this deficiency. The goal of this study was: We also investigated how a biochemistry course in the pre-clinical stage of a human medicine course of studies can be successfully organised according to the IC method. Furthermore, we examined the benefits of the IC method over conventional teaching formats. Method: The IC method was implemented in accordance with the guidelines of the GMA committee “New Media” in a biochemistry seminar for two student IC intervention groups with 42 students. A part of the factual knowledge from the on-site phase in the form of teaching videos together with self-learning control tasks were provided online before the seminar for both IC intervention groups. Exporting content to the self-learning phase creates new free time in the on-site phase, during which the content can be critically considered and processed and additional competency-based learning objectives can be taught. Identical biochemistry teaching content was taught in parallel control groups (14 student groups with n=299 students, but no material was handed out beforehand for a self-learning phase. These students only received the materials after the on-site phase. Motivation and satisfaction as well as the acceptance for the teaching methods were recorded by questionnaires, the acquisition of knowledge by MC exams.Results: On a Likert scale from 1 (strongly disagree to 6 (strongly agree, the students in the IC intervention groups could be seen to be much more motivated (5.53 than students in the control group (4.01. Students in the IC intervention groups also recognised the

  11. Small Changes: Using Assessment to Direct Instructional Practices in Large-Enrollment Biochemistry Courses

    Science.gov (United States)

    Xu, Xiaoying; Lewis, Jennifer E.; Loertscher, Jennifer; Minderhout, Vicky; Tienson, Heather L.

    2017-01-01

    Multiple-choice assessments provide a straightforward way for instructors of large classes to collect data related to student understanding of key concepts at the beginning and end of a course. By tracking student performance over time, instructors receive formative feedback about their teaching and can assess the impact of instructional changes. The evidence of instructional effectiveness can in turn inform future instruction, and vice versa. In this study, we analyzed student responses on an optimized pretest and posttest administered during four different quarters in a large-enrollment biochemistry course. Student performance and the effect of instructional interventions related to three fundamental concepts—hydrogen bonding, bond energy, and pKa—were analyzed. After instructional interventions, a larger proportion of students demonstrated knowledge of these concepts compared with data collected before instructional interventions. Student responses trended from inconsistent to consistent and from incorrect to correct. The instructional effect was particularly remarkable for the later three quarters related to hydrogen bonding and bond energy. This study supports the use of multiple-choice instruments to assess the effectiveness of instructional interventions, especially in large classes, by providing instructors with quick and reliable feedback on student knowledge of each specific fundamental concept. PMID:28188280

  12. Evaluation of World Wide Web-based Lessons for a First Year Dental Biochemistry Course

    Directory of Open Access Journals (Sweden)

    Dr. Alan E. Levine

    2002-11-01

    Full Text Available First year dental students at The University of Texas Dental Branch at Houston (Dental Branch are required to take a basic biochemistry course. To facilitate learning and allow student self-assessment of their progress, WWW-based lessons covering intermediary metabolism were developed as a supplement to traditional lectures. Lesson design combined text, graphics, and animations and included learner control, links to other learning resources, and practice exercises and exams with immediate feedback. Results from an on-line questionnaire completed by students in two different classes showed that they completed 50% of the lessons and spent an average of 4 hrs. on-line. A majority of the students either agreed or strongly agreed that practice exercises were helpful, that the ability to control the pace of the lessons was important, that the lesson structure and presentation was easy to follow, that the illustrations, animations, and hyperlinks were helpful, and that the lessons were effective as a review. The very positive response to the WWW-based lessons indicates the usefulness of this approach as a study aid for dental students.

  13. Biochemistry Instructors' Views toward Developing and Assessing Visual Literacy in Their Courses

    Science.gov (United States)

    Linenberger, Kimberly J.; Holme, Thomas A.

    2015-01-01

    Biochemistry instructors are inundated with various representations from which to choose to depict biochemical phenomena. Because of the immense amount of visual know-how needed to be an expert biochemist in the 21st century, there have been calls for instructors to develop biochemistry students' visual literacy. However, visual literacy has…

  14. Polish Academy of Sciences. Institute of Biochemistry and Biophysics. Research Report 1998-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The report presented research activities of the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, in 1998-1999. Research interests focus on: replication, mutagenesis and repair of DNA, regulation of gene expression, biosynthesis and post-translational modifications of proteins, gene sequencing and functional gene analysis, structure and function of enzymes, conformation of proteins and peptides, modeling of structures and prediction of function of proteins.

  15. Polish Academy of Sciences. Institute of Biochemistry and Biophysics. Research Report 1998-1999

    International Nuclear Information System (INIS)

    2000-01-01

    The report presented research activities of the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, in 1998-1999. Research interests focus on: replication, mutagenesis and repair of DNA, regulation of gene expression, biosynthesis and post-translational modifications of proteins, gene sequencing and functional gene analysis, structure and function of enzymes, conformation of proteins and peptides, modeling of structures and prediction of function of proteins

  16. Course Syllabus--Culture, Science and Technology.

    Science.gov (United States)

    Coleman, Sam

    1988-01-01

    Presents a course syllabus and requirements for an anthropology course on the cross-cultural analysis of the relationships between technology, science, and social organization. Provides daily topics, suggested text readings, and reference articles. (MVL)

  17. Teaching Protein Purification and Characterization Techniques: A Student-Initiated, Project-Oriented Biochemistry Laboratory Course

    Science.gov (United States)

    MacDonald, Gina

    2008-01-01

    This report describes a biochemistry laboratory that is completely project-oriented. Upper-level biology and chemistry majors work in teams to purify a protein of their choice. After the student groups have completed literature searches, ordered reagents, and made buffers they continue to learn basic protein purification and biochemical techniques…

  18. Creating a Cell Map as an Active-Learning Tool in a Biochemistry Course

    Science.gov (United States)

    Del Bianco, Cristina

    2010-01-01

    Teaching metabolism to a biochemistry class with diverse academic backgrounds is a challenging task. Often students lack the global perspective that is needed to understand how different metabolic pathways are reciprocally regulated. The classroom activity presented in this article is designed to facilitate the learning of metabolism by having the…

  19. The Metabolic Effects of Low-Carbohydrate Diets and Incorporation into a Biochemistry Course

    Science.gov (United States)

    Pogozelski, Wendy; Arpaia, Nicholas; Priore, Salvatore

    2005-01-01

    One of the challenges in teaching biochemistry is facilitating students' interest in and mastery of metabolism. The many pathways and modes of regulation can be overwhelming for students to learn and difficult for professors to teach in an engaging manner. We have found it useful to take advantage of prevailing interest in popular yet…

  20. A course director's perspectives on problem-based learning curricula in biochemistry.

    Science.gov (United States)

    Smith, Harold C

    2002-12-01

    Knowledge of the applications of biochemistry, molecular biology, and genetics in the practice of medicine has been and continues to be a vital part of medical students' and continuing education. The technical background and the rapid expansion of information and new applications have made it an arduous task to learn and teach this material within the already crowded medical school curriculum. Problem-based learning (PBL) formats are rapidly being adopted at all levels of education as not only a major paradigm shift in education but also a solution for the instruction of biochemistry in medical school. Designing an effective biochemistry curriculum with PBL-based or lecture-based formats requires an appreciation for their strengths and weakness. The author's experiences in the Double Helix Curriculum at the University of Rochester School of Medicine and Dentistry (which employs PBL cases and complementing lectures) has shown that students are excited about learning in the PBL environment and explore in depth ways of integrating biochemistry, cell biology, genetics, and molecular biology into the practice of medicine. At the same time, complementary lectures greatly enhance uniformity in the quality and, importantly, the accuracy of the students' learning.

  1. Science Academies Refresher Course on Crustal Strength ...

    Indian Academy of Sciences (India)

    2017-05-26

    May 26, 2017 ... Sponsored by Indian Academy of Sciences, Bengaluru. Indian National Science ... Only 25 outstations and 10 Local ... a brief statement (between 250 and 500 words) as to why they think the Course will help to improve their.

  2. Science Academies' Refresher Course on Theoretical Structural ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 8. Science Academies' Refresher Course on Theoretical Structural Geology, Crystallography, Mineralogy, Thermodynamics, Experimental Petrology and Theoretical Geophysics. Information and Announcements Volume 22 Issue 8 August 2017 ...

  3. NOTES. A Course Relating Agronomy and Science to Society.

    Science.gov (United States)

    McIntosh, Marla S.

    1993-01-01

    Describes a course designed to teach the relationship between science, agronomy, and society. Includes course and class description, course content, and evaluation of the course. (11 references) (MCO)

  4. Science Academies' Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    2017-12-18

    Dec 18, 2017 ... laws and principles and yield reasonably accurate results. The Refresher Course is jointly spon- sored by the Indian Academy of Sciences, ... Selected participants will be provided local hospitality during the Course in addition to course material. Outstation participants will be given three-tier A/c train fare.

  5. A National Comparison of Biochemistry and Molecular Biology Capstone Experiences

    Science.gov (United States)

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the "American Society for Biochemistry and Molecular Biology" (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end,…

  6. Linking Science Fiction and Physics Courses

    Science.gov (United States)

    McBride, Krista K.

    2016-05-01

    Generally, cohorts or learning communities enrich higher learning in students. Learning communities consist of conventionally separate groups of students that meet together with common academic purposes and goals. Types of learning communities include paired courses with concurrent student enrollment, living-learning communities, and faculty learning communities. This article discusses a learning community of 21 students that I created with a colleague in the English department. The community encompasses two general education courses: an algebra-based physics course entitled "Intro to Physics" and a literature course entitled "Science Fiction, Science Fact." Students must enroll in both of these courses during the same semester. Additionally, I highlight advantages to linking these courses through surveying the assignments and course materials that we used in our learning community. Figure 1 shows the topics that are covered in both physics and literature courses.

  7. Biochemistry - Open TG-GATEs | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available tests. Data file File name: open_tggates_biochemistry.zip File URL: ftp://ftp.biosciencedbc.jp/archive/open-...tggates/LATEST/open_tggates_biochemistry.zip File size: 666 KB Simple search URL ...http://togodb.biosciencedbc.jp/togodb/view/open_tggates_biochemistry#en Data acquisition method - Data analy

  8. Science Academies' Refresher Course on Advanced Quantum ...

    Indian Academy of Sciences (India)

    IAS Admin

    2016-10-10

    Sponsored by Indian Academy of Sciences, Bengaluru. Indian National ... brief statement (between 250 and 500 words) as to why they think the Course will help to improve their classroom ... Last date for receipt of applications: October 10, 2016.

  9. Science Academies' Refresher Course in Chemistry

    Indian Academy of Sciences (India)

    2017-10-25

    Oct 25, 2017 ... Modern College of Arts, Science and Commerce. Ganeshkhind, Pune ... API scores for career advancement. Applications are invited from teachers experience in teaching undergraduate and postgraduate courses in chemistry ...

  10. Critical thinking and reflection exercises in a biochemistry course to improve prospective health professions students' attitudes toward physician-pharmacist collaboration.

    Science.gov (United States)

    Van Winkle, Lon J; Cornell, Susan; Fjortoft, Nancy; Bjork, Bryan C; Chandar, Nalini; Green, Jacalyn M; La Salle, Sophie; Viselli, Susan M; Burdick, Paulette; Lynch, Sean M

    2013-10-14

    To determine the impact of performing critical-thinking and reflection assignments within interdisciplinary learning teams in a biochemistry course on pharmacy students' and prospective health professions students' collaboration scores. Pharmacy students and prospective medical, dental, and other health professions students enrolled in a sequence of 2 required biochemistry courses. They were randomly assigned to interdisciplinary learning teams in which they were required to complete case assignments, thinking and reflection exercises, and a team service-learning project. Students were asked to complete the Scale of Attitudes Toward Physician-Pharmacist Collaboration prior to the first course, following the first course, and following the second course. The physician-pharmacist collaboration scores of prospective health professions students increased significantly (p<0.001). Having prospective health professions students work in teams with pharmacy students to think and reflect in and outside the classroom improves their attitudes toward physician-pharmacist collaboration.

  11. Critical Thinking and Reflection Exercises in a Biochemistry Course to Improve Prospective Health Professions Students’ Attitudes Toward Physician-Pharmacist Collaboration

    Science.gov (United States)

    Cornell, Susan; Fjortoft, Nancy; Bjork, Bryan C.; Chandar, Nalini; Green, Jacalyn M.; La Salle, Sophie; Viselli, Susan M.; Burdick, Paulette; Lynch, Sean M.

    2013-01-01

    Objective. To determine the impact of performing critical-thinking and reflection assignments within interdisciplinary learning teams in a biochemistry course on pharmacy students’ and prospective health professions students’ collaboration scores. Design. Pharmacy students and prospective medical, dental, and other health professions students enrolled in a sequence of 2 required biochemistry courses. They were randomly assigned to interdisciplinary learning teams in which they were required to complete case assignments, thinking and reflection exercises, and a team service-learning project. Assessment. Students were asked to complete the Scale of Attitudes Toward Physician-Pharmacist Collaboration prior to the first course, following the first course, and following the second course. The physician-pharmacist collaboration scores of prospective health professions students increased significantly (p<0.001). Conclusions. Having prospective health professions students work in teams with pharmacy students to think and reflect in and outside the classroom improves their attitudes toward physician-pharmacist collaboration. PMID:24159210

  12. Flipped Classrooms for Advanced Science Courses

    Science.gov (United States)

    Tomory, Annette; Watson, Sunnie Lee

    2015-12-01

    This article explains how issues regarding dual credit and Advanced Placement high school science courses could be mitigated via a flipped classroom instructional model. The need for advanced high school courses will be examined initially, followed by an analysis of advanced science courses and the reform they are experiencing. Finally, it will conclude with an explanation of flipped classes as well as how they may be a solution to the reform challenges teachers are experiencing as they seek to incorporate more inquiry-based activities.

  13. Refresher Course on Frontier in Atomospheric Sciences

    Indian Academy of Sciences (India)

    Admin

    This course will include lectures by eminent scientists and visits to the state-of-art computer and instrumentation facilities. It will provide an excellent opportunity to get an insight into the latest developments and modern outlook of atmospheric science for students who plan to make their careers in atmospheric sciences or for ...

  14. Science Academies' Refresher Course on Quantum Mechanics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 7. Science Academies' Refresher Course on Quantum Mechanics. Information and Announcements Volume 21 Issue 7 July 2016 pp 669-670. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. Science Academies' Refresher Course in Developmental Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 8. Science Academies' Refresher Course in Developmental Biology. Information and Announcements Volume 20 Issue 8 August 2015 pp 756-756. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Quality in Online Courses: Technical Production Regarding Clinical Biochemistry Online Course Performed by Students in Advanced Learning in Scientific Education Discipline

    Directory of Open Access Journals (Sweden)

    W.B. Maia

    2011-04-01

    Full Text Available It is important to consider quality and efficacy concerning online courses. This study was accomplished with Master’s students in order to promote technical production regardingClinical Biochemistry online course. In web, www.bioq.educacao.biz, it was accessible strategic and organizational management training in distance learning course. Enrolled students(7, monitors (3 and the manager (1 have made use of thevirtual environment asa channel of communication as well as to construct the extension course (80 hours. Some strategies were discussed and planned for the purpose of a significant apprenticeship. In all, there were 173 standard contents available, which were 4 audiovisual presentations, 13 debating forums, 1 chat, 10 classes,77 scientific articles, 30 tests, 3 glossaries, 1 mini-library, 18 links, 3 texts and 13 folders. Although the managerwas not responsible for the construction ofthe contents, system reports have shown that the manager’s attendance and permanence online were three times superior to other users. It once more revealed that new Information and Communication Technologies(ICTs requires from the manager to plan an efficient pedagogical orientation.

  17. CLIMANDES climate science e-learning course

    Science.gov (United States)

    Hunziker, Stefan; Giesche, Alena; Jacques-Coper, Martín; Brönnimann, Stefan

    2016-04-01

    Over the past three years, members of the Oeschger Centre for Climate Change Research (OCCR) and the Climatology group at the Institute of Geography at the University of Bern, have developed a new climate science e-learning course as part of the CLIMANDES project. This project is a collaboration between Peruvian and Swiss government, research, and education institutions. The aim of this e-learning material is to strengthen education in climate sciences at the higher education and professional level. The course was recently published in 2015 by Geographica Bernensia, and is hosted online by the Peruvian Servicio Nacional de Meteorología e Hidrología (SENAMHI): http://surmx.com/chamilo/climandes/e-learning/. The course is furthermore available for offline use through USB sticks, and a number of these are currently being distributed to regional training centers around the world by the WMO (World Meteorological Organization). There are eight individual modules of the course that each offer approximately 2 hours of individual learning material, featuring several additional learning activities, such as the online game "The Great Climate Poker" (http://www.climatepoker.unibe.ch/). Overall, over 50 hours of learning material are provided by this course. The modules can be integrated into university lectures, used as single units in workshops, or be combined to serve as a full course. This e-learning course presents a broad spectrum of topics in climate science, including an introduction to climatology, atmospheric and ocean circulation, climate forcings, climate observations and data, working with data products, and climate models. This e-learning course offers a novel approach to teaching climate science to students around the world, particularly through three important features. Firstly, the course is unique in its diverse range of learning strategies, which include individual reading material, video lectures, interactive graphics, responsive quizzes, as well as group

  18. Research and Teaching: Exploring the Use of an Online Quiz Game to Provide Formative Feedback in a Large-Enrollment, Introductory Biochemistry Course

    Science.gov (United States)

    Milner, Rachel; Parrish, Jonathan; Wright, Adrienne; Gnarpe, Judy; Keenan, Louanne

    2015-01-01

    In a large-enrollment, introductory biochemistry course for nonmajors, the authors provide students with formative feedback through practice questions in PDF format. Recently, they investigated possible benefits of providing the practice questions via an online game (Brainspan). Participants were randomly assigned to either the online game group…

  19. Building confidence: an exploration of nurses undertaking a postgraduate biological science course.

    Science.gov (United States)

    Van Wissen, Kim; McBride-Henry, Karen

    2010-01-01

    This study aimed to explore the impact of studying biological science at a postgraduate level and how this impacted on nursing practice. The term biological sciences in this research encompasses elements of physiology, genetics, biochemistry and pathophysiology. A qualitative research study was designed, that involved the dissemination of a pre- and post-course semi-structured questionnaire for a biological science course, as part of a Master of Nursing programme at a New Zealand University, thus exploring the impact of undertaking a postgraduate biological sciences course. The responses were analysed into themes, based on interpretive concepts. The primary themes revealed improvement in confidence as: confidence in communication, confidence in linking nursing theoretical knowledge to practice and confidence in clinical nursing knowledge. This study highlights the need to privilege clinically-derived nursing knowledge, and that confidence in this nursing knowledge and clinical practice can be instilled through employing the model of theory-guided practice.

  20. An elective course in aromatherapy science.

    Science.gov (United States)

    Esposito, Emily R; Bystrek, Mary V; Klein, JoAnn S

    2014-05-15

    To evaluate the impact of an innovative team-taught elective course on second-year (P2) students' knowledge and skills relating to the relationship between aromatherapy and pharmacy. An Aromatherapy Science elective course was offered to P2 students in an accelerated doctor of pharmacy (PharmD) degree program and was designed to provide an elective course experience while focusing on active-learning skills such as group work, student-led presentations, and in-class activities. Lectures were designed to reinforce core curricular threads from the basic sciences within the pharmaceutical sciences department while highlighting key aromatherapy principles. Course evaluations, grades, and student self-assessments were used to evaluate student fulfillment and knowledge gained. Students agreed this hands-on course integrated pharmaceutical science experiences, enriched their pharmacy education, and provided knowledge to enhance their confidence in describing essential oil uses, drug interactions, and key aromatherapy clinical implications. Students agreed this course prepared them to identify essential oil therapeutic uses and potential essential oil-drug interactions, and interpret literature. The introduction of aromatherapy principles to pharmacy students will prepare a new generation of healthcare professionals on the role of alternative medicines.

  1. Refresher Course on Earth Sciences

    Indian Academy of Sciences (India)

    Information and Announcements ... Introduction: Geoscience education in India is in the throes of a serious crisis and any paradigm ... considerations: geology needs to be taught as an earth system science, linked with cognate ... viable and employment-generating management of natural resources: the global trend of.

  2. Teaching Arrangements of Carbohydrate Metabolism in Biochemistry Curriculum in Peking University Health Science Center

    Science.gov (United States)

    Chen, Hao; Ni, Ju-Hua

    2013-01-01

    Biochemistry occupies a unique place in the medical school curricula, but the teaching of biochemistry presents certain challenges. One of these challenges is facilitating students' interest in and mastery of metabolism. The many pathways and modes of regulation can be overwhelming for students to learn and difficult for professors to teach in an…

  3. AN ALTERNATIVE STRATEGY TO ANALYZE THE CONTENTS OF BIOCHEMISTRY INTRODUCTORY COURSES

    OpenAIRE

    A.K. Miskalo; B.B. Torres

    2008-01-01

    A common problem  educators  from  different areas face  is  to  fit the increasing  amount  of information  with the maintenance  and/or,  not seldom,  a decrease in the class load of their courses. This actual situation  necessarily forces the educator  to severely select the topics to be worked out. In the cur rent scenario of most teaching institutions, this decision  is  taken by the teacher.  In order to do this, a  list of the topics considered to be essential  for an appropriate bioch...

  4. Biochemistry engineering

    International Nuclear Information System (INIS)

    Jang, Ho Nam

    1993-01-01

    This deals with biochemistry engineering with nine chapters. It explains bionics on development and prospect, basics of life science on classification and structure, enzyme and metabolism, fundamentals of chemical engineering on viscosity, shear rate, PFR, CSTR, mixing, dispersion, measurement and response, Enzyme kinetics, competitive inhibition, pH profile, temperature profile, stoichiometry and fermentation kinetics, bio-reactor on Enzyme-reactor and microorganism-reactor, measurement and processing on data acquisition and data processing, separation and purification, waste water treatment and economics of bionics process.

  5. How In-Service Science Teachers Integrate History and Nature of Science in Elementary Science Courses

    Science.gov (United States)

    Hacieminoglu, Esme

    2014-01-01

    The purpose of this study is to investigate how the in-service science teachers' (IST) perceptions and practices about curriculum and integration of the history of science (HOS) and the nature of science (NOS) affect their science courses. For this aim, how ISTs integrated the NOS and HOS in their elementary science courses for understanding of…

  6. Evaluation von multimedialen e-Lernkursen zur Vorbereitung auf ein biochemisches Praktikum [Evaluation of multimedia e-Learning preparatory courses for a practial course in Biochemistry

    Directory of Open Access Journals (Sweden)

    Rost, Birgit

    2009-02-01

    Full Text Available [english] The present study examined whether the application of multimedia learning courses is also suitable for preparing students for practical laboratory courses, both in terms of theory and practice. For this purpose, multimedia e-learning courses were provided and evaluated within the k-MED project. These courses were particularly tailored to the practical training in biochemistry, a mandatory course for third-semester students of medicine and dentistry in Marburg. Two weeks prior to the beginning of the practical course, one-half of the participants received the theoretical e-courses “lipid basics” and “lipid metabolism”, the other half was provided with the e-course “lipid methods”, which contained relevant laboratory techniques and digital guidance to the experiments. All participants were surveyed on user-friendliness and acceptance, and “hard” facts were collected with respect to success in learning for and attendance to the practical course. Assessment grades, test results, user-tracking data for the learning platform, and questionnaires were evaluated. Use of the e-courses led to a significant improvement in the level of achievement in terms of the assessment grades. Certain influencing factors, such as diligence or prior biochemical knowledge, were excluded by covariance analysis. The e-course led to improved levels of achievement in the practical training: groups to whom the methods course was provided made fewer experimental errors and needed less assistance from supervisors. Conclusion: e-learning courses cannot replace practical experience in laboratory courses; they can, however, as this extensive study shows, improve the level of achievement in classes by allowing more efficient preparation. Not only does this save time, but it also saves on expensive materials, relieves the burden on staff, and leads to a general improvement in teaching quality. [german] In der vorliegende Studie wurde untersucht, ob der

  7. A Survey of Computer Science Capstone Course Literature

    Science.gov (United States)

    Dugan, Robert F., Jr.

    2011-01-01

    In this article, we surveyed literature related to undergraduate computer science capstone courses. The survey was organized around course and project issues. Course issues included: course models, learning theories, course goals, course topics, student evaluation, and course evaluation. Project issues included: software process models, software…

  8. A survey of computer science capstone course literature

    Science.gov (United States)

    Dugan, Robert F., Jr.

    2011-09-01

    In this article, we surveyed literature related to undergraduate computer science capstone courses. The survey was organized around course and project issues. Course issues included: course models, learning theories, course goals, course topics, student evaluation, and course evaluation. Project issues included: software process models, software process phases, project type, documentation, tools, groups, and instructor administration. We reflected on these issues and thecomputer science capstone course we have taught for seven years. The survey summarized, organized, and synthesized the literature to provide a referenced resource for computer science instructors and researchers interested in computer science capstone courses.

  9. Science Academies' Refresher Course on Theoretical Structural ...

    Indian Academy of Sciences (India)

    A course on Theoretical Structural Geology, Crystallography, Mineralogy, Thermodynamics, Exper- imental Petrology and Theoretical Geophysics will be conducted in the Jallahalli Campus under the aegis of Indian Academy of Sciences during 20th November to 4th December, 2017. University lec- turers, Research ...

  10. External Science Courses: The Practicals Problem.

    Science.gov (United States)

    Kember, David

    1982-01-01

    Describes three methods for offering practical work for external science courses: residential sessions on campus, local centers, and use of home laboratory kits. The advantages and disadvantages of each are discussed and examples of each in operation are given. A 21-item bibliography is provided. (EAO)

  11. Medical students' note-taking in a medical biochemistry course: an initial exploration.

    Science.gov (United States)

    Morrison, Elizabeth H; McLaughlin, Calvin; Rucker, Lloyd

    2002-04-01

    Beginning medical students spend numerous hours every week attending basic science lectures and taking notes. Medical faculty often wonder whether they should give students pre-printed instructors' notes before lectures. Proponents of this strategy argue that provided notes enhance learning by facilitating the accurate transmission of information, while opponents counter that provided notes inhibit students' cognitive processing or even discourage students from attending lectures. Little if any research has directly addressed medical students' note-taking or the value of providing instructors' notes. The educational literature does suggest that taking lecture notes enhances university students' learning. University students perform best on post-lecture testing if they review a combination of provided notes and their own personal notes, particularly if the provided notes follow a 'skeletal' format that encourages active note-taking.

  12. Building Bridges between Science Courses Using Honors Organic Chemistry Projects

    Science.gov (United States)

    Hickey, Timothy; Pontrello, Jason

    2016-01-01

    Introductory undergraduate science courses are traditionally offered as distinct units without formalized student interaction between classes. To bridge science courses, the authors used three Honors Organic Chemistry projects paired with other science courses. The honors students delivered presentations to mainstream organic course students and…

  13. A Course in Science and Pseudoscience

    Science.gov (United States)

    Taylor, Richard

    2009-04-01

    A new course at Hockaday, Science and Pseudoscience, examines what we know, how we know it, and why we get fooled so often and so easily. This is a course in which we measure things we thought we understood and use statistical analysis to test our understanding. We investigate extraordinary claims through the methods of science, asking what makes a good scientific theory, and what makes scientific evidence. We examine urban myths, legends, bad science, medical quackery, and plain old hoaxes. We analyze claims of UFOs, cold fusion, astrology, structure-altered water, apricot pit cures, phlogiston and N-rays, phrenology and orgonomy, ghosts, telekinesis, crop circles and the Bermuda Triangle -- some may be true, some are plainly false, and some we're not really sure of. We develop equipment and scientific techniques to investigate extra-sensory perception, precognition, and EM disturbances.

  14. The New Biochemistry: Blending the Traditional with the Other.

    Science.gov (United States)

    Boyer, Rodney

    2000-01-01

    Points out the difficulties in designing and presenting a modern chemistry course with an overabundance of topics to cover in a limited amount of class time. Presents a model syllabi for biochemistry majors and the shorter survey course for non-majors, usually consisting of health professionals and biological science majors. (Contains 24…

  15. Audio podcasts in practical courses in biochemistry ? cost-efficient e-learning in a well-proven format from radio broadcasting

    OpenAIRE

    M?nch-Harrach, Dieter; Kothe, Christian; Hampe, Wolfgang

    2013-01-01

    Introduction: Audio podcasts are an e-learning format that may help to motivate students to deal with the contents of medical education more intensely. We adopted a well-proven format from radio broadcasting, the radio documentary, to direct the listeners? attention to information about practical courses in biochemistry over a period of 20 minutes at most. Information, original sounds, and a specific atmosphere allow listeners to perceive the contents intensely. Method: In order to organise t...

  16. CUREs in biochemistry?where we are and where we should go

    OpenAIRE

    Bell, Jessica K.; Eckdahl, Todd T.; Hecht, David A.; Killion, Patrick J.; Latzer, Joachim; Mans, Tamara L.; Provost, Joseph J.; Rakus, John F.; Siebrasse, Erica A.; Ellis Bell, J.

    2016-01-01

    Abstract Integration of research experience into classroom is an important and vital experience for all undergraduates. These course?based undergraduate research experiences (CUREs) have grown from independent instructor lead projects to large consortium driven experiences. The impact and importance of CUREs on students at all levels in biochemistry was the focus of a National Science Foundation funded think tank. The state of biochemistry CUREs and suggestions for moving biochemistry forward...

  17. Protein Science by DNA Sequencing: How Advances in Molecular Biology Are Accelerating Biochemistry.

    Science.gov (United States)

    Higgins, Sean A; Savage, David F

    2018-01-09

    A fundamental goal of protein biochemistry is to determine the sequence-function relationship, but the vastness of sequence space makes comprehensive evaluation of this landscape difficult. However, advances in DNA synthesis and sequencing now allow researchers to assess the functional impact of every single mutation in many proteins, but challenges remain in library construction and the development of general assays applicable to a diverse range of protein functions. This Perspective briefly outlines the technical innovations in DNA manipulation that allow massively parallel protein biochemistry and then summarizes the methods currently available for library construction and the functional assays of protein variants. Areas in need of future innovation are highlighted with a particular focus on assay development and the use of computational analysis with machine learning to effectively traverse the sequence-function landscape. Finally, applications in the fundamentals of protein biochemistry, disease prediction, and protein engineering are presented.

  18. From gene to structure: Lactobacillus bulgaricus D-lactate dehydrogenase from yogurt as an integrated curriculum model for undergraduate molecular biology and biochemistry laboratory courses.

    Science.gov (United States)

    Lawton, Jeffrey A; Prescott, Noelle A; Lawton, Ping X

    2018-05-01

    We have developed an integrated, project-oriented curriculum for undergraduate molecular biology and biochemistry laboratory courses spanning two semesters that is organized around the ldhA gene from the yogurt-fermenting bacterium Lactobacillus bulgaricus, which encodes the enzyme d-lactate dehydrogenase. The molecular biology module, which consists of nine experiments carried out over eleven sessions, begins with the isolation of genomic DNA from L. bulgaricus in yogurt and guides students through the process of cloning the ldhA gene into a prokaryotic expression vector, followed by mRNA isolation and characterization of recombinant gene expression levels using RT-PCR. The biochemistry module, which consists of nine experiments carried out over eight sessions, begins with overexpression of the cloned ldhA gene and guides students through the process of affinity purification, biochemical characterization of the purified LdhA protein, and analysis of enzyme kinetics using various substrates and an inhibitor, concluding with a guided inquiry investigation of structure-function relationships in the three-dimensional structure of LdhA using molecular visualization software. Students conclude by writing a paper describing their work on the project, formatted as a manuscript to be submitted for publication in a scientific journal. Overall, this curriculum, with its emphasis on experiential learning, provides hands-on training with a variety of common laboratory techniques in molecular biology and biochemistry and builds experience with the process of scientific reasoning, along with reinforcement of essential transferrable skills such as critical thinking, information literacy, and written communication, all within the framework of an extended project having the look and feel of a research experience. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):270-278, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  19. The experimental teaching reform in biochemistry and molecular biology for undergraduate students in Peking University Health Science Center.

    Science.gov (United States)

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and participated in some original research work. There is a critical educational need to prepare these students for the increasing accessibility of research experience. The redesigned experimental curriculum of biochemistry and molecular biology was developed to fulfill such a requirement, which keeps two original biochemistry experiments (Gel filtration and Enzyme kinetics) and adds a new two-experiment component called "Analysis of anti-tumor drug induced apoptosis." The additional component, also known as the "project-oriented experiment" or the "comprehensive experiment," consists of Western blotting and a DNA laddering assay to assess the effects of etoposide (VP16) on the apoptosis signaling pathways. This reformed laboratory teaching system aims to enhance the participating students overall understanding of important biological research techniques and the instrumentation involved, and to foster a better understanding of the research process all within a classroom setting. Student feedback indicated that the updated curriculum helped them improve their operational and self-learning capability, and helped to increase their understanding of theoretical knowledge and actual research processes, which laid the groundwork for their future research work. © 2015 The International Union of Biochemistry and Molecular Biology.

  20. Environmental regulation of plant gene expression: an RT-qPCR laboratory project for an upper-level undergraduate biochemistry or molecular biology course.

    Science.gov (United States)

    Eickelberg, Garrett J; Fisher, Alison J

    2013-01-01

    We present a novel laboratory project employing "real-time" RT-qPCR to measure the effect of environment on the expression of the FLOWERING LOCUS C gene, a key regulator of floral timing in Arabidopsis thaliana plants. The project requires four 3-hr laboratory sessions and is aimed at upper-level undergraduate students in biochemistry or molecular biology courses. The project provides students with hands-on experience with RT-qPCR, the current "gold standard" for gene expression analysis, including detailed data analysis using the common 2-ΔΔCT method. Moreover, it provides a convenient starting point for many inquiry-driven projects addressing diverse questions concerning ecological biochemistry, naturally occurring genetic variation, developmental biology, and the regulation of gene expression in nature. Copyright © 2013 Wiley Periodicals, Inc.

  1. The rate of knowledge retention in basic sciences courses among dentistry students

    Directory of Open Access Journals (Sweden)

    S.S Mazloomi

    2009-03-01

    Full Text Available Background: Acquiring and recalling knowledge can be considered as the starting point of learning; so increasing  the acquisition  of knowledge and information  recall is one the most important goals of education.Objective: To determine the students'  information recall in the basic courses of histology, immunology, physiology, biochemistry,  head and neck anatomy,  and microbiology  in dentistry  school.Method:  In this descriptive  survey, 60 students who had passed their basis courses were studied. The tests  were  held  five semesters  following  the basic  courses,  and  were  like  those  they  had  passed previously.Results: The results revealed that information recall was the highest for the physiology course (z=0.72, while it was the lowest for anatomy (z=0.07. For the histology course, the lowest mean score was achieved by the students entered in the  year 1997, and the highest  by those  entered  in 1999. The relationship between the entry year  of the  students  and  their  information recall  is  statistically significant  (p<0.05.Discussant: The results showed that the teaching basic science courses such as physiology, anatomy, immunology, microbiology, and biochemistry should  accompany new  strategies in  teaching  and learning. One of these is the inclusion by the teachers of retrieval cues in any course so as to facilitate learning.Keywords:  knowledge retention,  basic sciences

  2. The Relevance of Student Seminars on Clinically Related Subjects in a Biochemistry Course for Medical and Nutrition Students

    Science.gov (United States)

    Hermes-Lima, Marcelo; Muniz, Karinne C.; Coutinho, Iracema S.

    2002-01-01

    The aim of this study was to determine the value of a system of seminars on clinically related biochemistry topics for undergraduate students in medicine and nutrition at the University of Brasilia, Brazil. During the second semester of 1998 (1998-2), the teaching staff decided to establish new and stricter rules for the seminar method and to…

  3. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  4. Generic Science Skills Enhancement of Students through Implementation of IDEAL Problem Solving Model on Genetic Information Course

    Science.gov (United States)

    Zirconia, A.; Supriyanti, F. M. T.; Supriatna, A.

    2018-04-01

    This study aims to determine generic science skills enhancement of students through implementation of IDEAL problem-solving model on genetic information course. Method of this research was mixed method, with pretest-posttest nonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry course, consisted of 22 students in the experimental class and 19 students in control class. The instrument in this study was essayed involves 6 indicators generic science skills such as indirect observation, causality thinking, logical frame, self-consistent thinking, symbolic language, and developing concept. The results showed that genetic information course using IDEAL problem-solving model have been enhancing generic science skills in low category with of 20,93%. Based on result for each indicator, showed that there are indicators of generic science skills classified in the high category.

  5. Adding a Bit More History to Science Courses

    Science.gov (United States)

    DeBuvitz, William

    2011-01-01

    The usual science course is not meant to be a history course and the usual science book is not meant to be a history book. However, most science books do include some historical information. Unfortunately, the history part is usually so brief that it is far from interesting and often so oversimplified that it is totally wrong. Introductory physics…

  6. “ Metabolic Ride” - One Concept Evaluation Tool For Metabolic Biochemistry Teaching For Graduate Students In Biological Sciences And Related Areas.

    Directory of Open Access Journals (Sweden)

    H. H. Gaeta et al.

    2017-07-01

    Full Text Available Biochemistry subject in general has a high degree of difficulty and complexity. Therefore, application of playful and creative games as teaching methodology has spread in various disciplines of life sciences. "METABOLIC RIDE" board game is a conceptual and perceptual evaluation tool for metabolic biochemistry teaching, aiming to review concepts transmitted in classroom, promoting a competitive challenge to students without denying tools that are at their disposal, stimulating their skills. OBJECTIVES. Correlate metabolic routes importance and their interconnections to establish that metabolic pathways are interconnected, such as a railway map. MATERIAL AND METHODS. This game was developed based on a board game Ticket to Ride. Players purchase enzyme cards, which must be used to claim metabolic routes. The goal is to complete the route previously drawn to earn points and the player who builds the longest continuous route will also earn bonus points. In each turn, players can: buy more card, claim a route or pick up additional destination tickets. The game should be played in groups of 5 to 6 students in 6 to 8 groups. Previously there will be theoretical classes. The activity was designed to last 4 hours. Use of didatic books and internet by players are encouraged. RESULTS. This game proved to be an excellent tool for student’s complementary evaluation, which stimulated teamwork and competitiveness within classroom, which allowed to analyze student’s perception regarding metabolic subjects. On the other hand, for teacher and students participating in compulsory traineeship program this game demonstrated to students new ways to approach complex subjects in biochemistry using creativity. CONCLUSION: Overall, students had a good impression of “Metabolic Ride” game since it helped to secure and administer metabolism subject in a competitive and team work way.

  7. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course.

    Science.gov (United States)

    Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum. © 2014 The International Union of Biochemistry and Molecular Biology.

  8. Information visualization courses for students with a computer science background.

    Science.gov (United States)

    Kerren, Andreas

    2013-01-01

    Linnaeus University offers two master's courses in information visualization for computer science students with programming experience. This article briefly describes the syllabi, exercises, and practices developed for these courses.

  9. A Short Course in Problems in Applied Science and Engineering.

    Science.gov (United States)

    Nicholson, H. W.

    1987-01-01

    Provides a description of a concentrated four-week term course that provided students with opportunities of association with applied science and engineering professionals. Reviews the program's organizational structure, project requirements, and summarizes students reactions to the course. (ML)

  10. An "in Silico" DNA Cloning Experiment for the Biochemistry Laboratory

    Science.gov (United States)

    Elkins, Kelly M.

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced…

  11. Introductory life science mathematics and quantitative neuroscience courses.

    Science.gov (United States)

    Duffus, Dwight; Olifer, Andrei

    2010-01-01

    We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an upper-division course in computational neuroscience. We provide a description of each course, detailed syllabi, examples of content, and a brief discussion of the main issues encountered in developing and offering the courses.

  12. Science Academies Refresher Course on Traditional and Modern

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. Science Academies Refresher Course on Traditional and Modern Approaches in Plant Taxonomy'. Information and Announcements Volume 17 Issue 9 September 2012 pp 921-921 ...

  13. Referesher Course on Recent Advances in Chemical Science and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 9. Referesher Course on Recent Advances in Chemical Science and Its Technological Applications. Information and Announcements Volume 15 Issue 9 September 2010 pp 860-861 ...

  14. Biochemistry in an Undergraduate Writing-Intensive First-Year Program: Seminar Courses in Drugs and Bioethics

    Science.gov (United States)

    Mills, Kenneth V.

    2015-01-01

    The College of the Holy Cross offers a universal first-year program called Montserrat, in which first-year students participate in a living-learning experience anchored by a yearlong seminar course. The seminar courses are part of a thematic cluster of four to eight courses; students in the cluster live together in a common dormitory and…

  15. CUREs in biochemistry-where we are and where we should go.

    Science.gov (United States)

    Bell, Jessica K; Eckdahl, Todd T; Hecht, David A; Killion, Patrick J; Latzer, Joachim; Mans, Tamara L; Provost, Joseph J; Rakus, John F; Siebrasse, Erica A; Ellis Bell, J

    2017-01-02

    Integration of research experience into classroom is an important and vital experience for all undergraduates. These course-based undergraduate research experiences (CUREs) have grown from independent instructor lead projects to large consortium driven experiences. The impact and importance of CUREs on students at all levels in biochemistry was the focus of a National Science Foundation funded think tank. The state of biochemistry CUREs and suggestions for moving biochemistry forward as well as a practical guide (supplementary material) are reported here. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):7-12, 2017. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  16. A Guide to Undergraduate Science Course and Laboratory Improvements.

    Science.gov (United States)

    Straumanis, Joan, Ed.; Watson, Robert F., Ed.

    Reported are activities carried out at colleges and universities during 1976-1980 with support from the National Science Foundation's Local Course Improvement (LOCI) and Instructional Scientific Equipment Program (ISEP). It is intended as a reference for persons interested in current course and laboratory developments in the sciences at the…

  17. Science Academies' Refresher Course in Quantum Mechanics

    Indian Academy of Sciences (India)

    IAS Admin

    2013-02-28

    Feb 28, 2013 ... A Refresher Course in Quantum Mechanics for college/university teachers ... The Course will cover the basic and advanced topics of Quantum ... Module 1:- Principles of Quantum Mechanics (with associated mathematics), ...

  18. Science Academies' Refresher Course in Statistical Mechanics

    Indian Academy of Sciences (India)

    2018-02-27

    Feb 27, 2018 ... Post Graduate and Research Department of Physics. Bishop Moore ... The Course will cover the basic and advanced topics of Statistical. Mechanics ... Courses of good standing for promotion, vide notification. F3-1/2009 ...

  19. Science Academies' Refresher Course in Statistical Mechanics

    Indian Academy of Sciences (India)

    IAS Admin

    ), Dibyendu Das (IIT,. Mumbai), Kedar Damle (TIFR, Mumbai). Course Director: Deepak Dhar; Course Coordinator: Anuradha Misra. Teachers/research scholars who wish to participate should send a short letter explaining their reasons for ...

  20. Science Academies' Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    2016-02-20

    Students who wish to participate in this Refresher Course should submit their completed application form (in the prescribed format) by email or by post address (insaku2016@gmail.com),. (gulnoor.dar@gmail.com) or Course ...

  1. Science Academies Refresher Course in Topology

    Indian Academy of Sciences (India)

    knowledge thereby add value to their teaching. The course will be directed by Prof. Parameswaran Sankaran, FNASc, FASc. It may be noted that ... ipants will be provided with travel assistance (limited to three-tier A/c train fare), accommodation and local hospitality during the Course in addition to course material. Interested ...

  2. Science Academies' Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    2017-12-18

    Dec 18, 2017 ... A Refresher Course in Experimental Physics will be held at the Department of Physics, Panjab. University, Chandigarh held from 18 December 2017 to 2 January 2018 for the benefit of faculty involved in teaching undergraduate and postgraduate courses. The Course aims to familiarize the teachers with a ...

  3. Teaching Biochemistry to Medical Technology Students.

    Science.gov (United States)

    Gomez-Silva, Benito; And Others

    1997-01-01

    Describes the biochemistry component of study to become a medical technologist in a Chilean university. Provides details of program structure, course content descriptions, and teaching strategies. (DDR)

  4. Predictors of student success in entry-level science courses

    Science.gov (United States)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses

  5. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    Science.gov (United States)

    Riedinger, Kelly; Marbach-Ad, Gili; McGinnis, J. Randy; Hestness, Emily; Pease, Rebecca

    2011-01-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching…

  6. A Learner-Centered Molecular Modeling Exercise for Allied Health Majors in a Biochemistry Class

    Science.gov (United States)

    Fletcher, Terace M.; Ershler, Jeff

    2014-01-01

    Learner-centered molecular modeling exercises in college science courses can be especially challenging for nonchemistry majors as students typically have a higher degree of anxiety and may not appreciate the relevance of the work. This article describes a learner-centered project given to allied health majors in a Biochemistry course. The project…

  7. Science Academies' 83rd Refresher Course on Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    A Science Academies' Refresher Course in “Experimental Physics” will be held in the Department of Physics,. College of Arts, Science and Humanities, Mody University of Science and Technology, Lakshmangarh, District. Sikar (Rajasthan), from 29 December 2016 to 13 January 2017 for the benefit of faculty involved in ...

  8. Problem-based learning in a health sciences librarianship course.

    Science.gov (United States)

    Dimitroff, A; Ancona, A M; Beman, S B; Dodge, A M; Hutchinson, K L; LaBonte, M J; Mays, T L; Simon, D T

    1998-01-01

    Problem-based learning (PBL) has been adopted by many medical schools in North America. Because problem solving, information seeking, and lifelong learning skills are central to the PBL curriculum, health sciences librarians have been actively involved in the PBL process at these medical schools. The introduction of PBL in a library and information science curriculum may be appropriate to consider at this time. PBL techniques have been incorporated into a health sciences librarianship course at the School of Library and Information Science (LIS) at the University of Wisconsin-Milwaukee to explore the use of this method in an advanced Library and Information Science course. After completion of the course, the use of PBL has been evaluated by the students and the instructor. The modified PBL course design is presented and the perceptions of the students and the instructor are discussed. PMID:9681169

  9. Science Academies Refresher Course in Topology

    Indian Academy of Sciences (India)

    Selected partic- ipants will be provided with travel assistance (limited to three-tier A/c train fare), accommodation and local hospitality during the Course in addition to course material. Interested persons must submit their application ONLINE by clicking on the following link http://web-japps.ias.ac.in:8080/Refreshcourse/TTPP.

  10. Science Academies' Refresher Course in Statistical Physics

    Indian Academy of Sciences (India)

    The Course is aimed at college teachers of statistical physics at BSc/MSc level. ... teachers, with at least a masters degree in Physics/Mathematics/Engineering are ... Topics: There will be six courses dealing with, Basic principles and general ...

  11. Science Academies' Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    The Course is particularly aimed at teachers (from University and Colleges in and around Mizoram, Aizawl) teaching at UG/PG level. College/University teachers having at least a Master's degree in Physics are eligible to apply. The UGC has also approved of 2-week Refresher Courses of good standing for promotion of ...

  12. Science Academies' Refresher Course in Mathematics

    Indian Academy of Sciences (India)

    IAS Admin

    2015-06-14

    Jun 14, 2015 ... A two-week Refresher Course in Mathematics will be organized during 1–14 June 2015 at School of Mathematics,. SMVD University, Katra, Jammu & Kashmir in association with School of Innovation and Community Develop- ment, SMVDU. The aim of the Course is to display the beauty of “complex ...

  13. Science Academies' Refresher Course on Bioprospection of ...

    Indian Academy of Sciences (India)

    2017-11-22

    Nov 22, 2017 ... A refresher course on 'Bioprospection of Bioresources: Land to Lab Approach' will be held at PG and Research Department of Botany, St. Joseph's College, Tiruchirappalli, Tamil Nadu for two weeks from 04–18 January,2018. The aim of the Refresher Course is to encourage the College teachers and ...

  14. Raising environmental awareness through applied biochemistry laboratory experiments.

    Science.gov (United States)

    Salman Ashraf, S

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment is described that guides students to learn about the applicability of peroxidase enzymes to degrade organic dyes (as model pollutants) in simulated waste water. In addition to showing how enzymes can potentially be used for waste water remediation, various factors than can affect enzyme-based reactions such as pH, temperature, concentration of substrates/enzymes, and denaturants can also be tested. This "applied biotechnology" experiment was successfully implemented in an undergraduate biochemistry laboratory course to enhance students' learning of environmental issues as well important biochemistry concepts. Student survey confirmed that this laboratory experiment was successful in achieving the objectives of raising environmental awareness in students and illustrating the usefulness of chemistry in solving real-life problems. This experiment can be easily adopted in an introductory biochemistry laboratory course and taught as an inquiry-guided exercise. © 2013 by The International Union of Biochemistry and Molecular Biology.

  15. The Sweetness of Aspartame: A Biochemistry Lab for Health Science Chemistry Courses.

    Science.gov (United States)

    Stein, Paul J.

    1997-01-01

    Explains the procedures used in an experiment that reinforces the universality of the concepts of saturation using the binding of the ligand aspartame to the protein receptor that determines taste. Illustrates the hyperbolic nature of protein binding. (DDR)

  16. Redesigning a General Education Science Course to Promote Critical Thinking

    Science.gov (United States)

    Rowe, Matthew P.; Gillespie, B. Marcus; Harris, Kevin R.; Koether, Steven D.; Shannon, Li-Jen Y.; Rose, Lori A.

    2015-01-01

    Recent studies question the effectiveness of a traditional university curriculum in helping students improve their critical thinking and scientific literacy. We developed an introductory, general education (gen ed) science course to overcome both deficiencies. The course, titled Foundations of Science, differs from most gen ed science offerings in that it is interdisciplinary; emphasizes the nature of science along with, rather than primarily, the findings of science; incorporates case studies, such as the vaccine-autism controversy; teaches the basics of argumentation and logical fallacies; contrasts science with pseudoscience; and addresses psychological factors that might otherwise lead students to reject scientific ideas they find uncomfortable. Using a pretest versus posttest design, we show that students who completed the experimental course significantly improved their critical-thinking skills and were more willing to engage scientific theories the general public finds controversial (e.g., evolution), while students who completed a traditional gen ed science course did not. Our results demonstrate that a gen ed science course emphasizing the process and application of science rather than just scientific facts can lead to improved critical thinking and scientific literacy. PMID:26231561

  17. Science Academies' Refresher Course on Quantum Mechanics

    Indian Academy of Sciences (India)

    IAS Admin

    research scholars will be held at the Post-Graduate ... The Course is primarily aimed at teachers involved in teaching quantum mechanics at ... Module 2: Scattering, time-independent perturbations, WKB, variational method;. Module 3: Symmetries ...

  18. Science of Food and Cooking: A Non-Science Majors Course

    Science.gov (United States)

    Miles, Deon T.; Bachman, Jennifer K.

    2009-01-01

    Recent emphasis on the science of food and cooking has been observed in our popular literature and media. As a result of this, a new non-science majors course, The Science of Food and Cooking, is being taught at our institution. We cover basic scientific concepts, which would normally be discussed in a typical introductory chemistry course, in the…

  19. Science Academies' Refresher Course on Multiomic Applications in ...

    Indian Academy of Sciences (India)

    and epigenetics, transcriptomics, proteomics, and metabolomics and data analysis. Applications are invited from teachers with experience in teaching undergraduate and postgraduate courses in Life Sciences, Agriculture and Technology. Applications from highly motivated Research. Scholars will also be considered.

  20. Audio podcasts in practical courses in biochemistry - cost-efficient e-learning in a well-proven format from radio broadcasting.

    Science.gov (United States)

    Münch-Harrach, Dieter; Kothe, Christian; Hampe, Wolfgang

    2013-01-01

    Audio podcasts are an e-learning format that may help to motivate students to deal with the contents of medical education more intensely. We adopted a well-proven format from radio broadcasting, the radio documentary, to direct the listeners' attention to information about practical courses in biochemistry over a period of 20 minutes at most. Information, original sounds, and a specific atmosphere allow listeners to perceive the contents intensely. In order to organise the production of the podcast as cost-efficient and least time-consuming as possible, a student, a teacher, a clinician, and a technical assistant compile the core themes of their respective text blocks in an editorial conference first. After that, the speakers can elaborate on and record their blocks independently. Coordination is widely handled by the student. At two points of time, the podcasts were evaluated by the medical students by means of a questionnaire. With little cost and time expenses, eight podcasts were produced. They have been used by the students extensively and have also been evaluated very positively by non-student listeners. For long-term usage, a regular reference to the podcast offer is required in the courses. Involving students, successful podcasts can be produced to support classroom teaching with little expenses and contribute to the external presentation of the medical faculty.

  1. Audio podcasts in practical courses in biochemistry – cost-efficient e-learning in a well-proven format from radio broadcasting

    Science.gov (United States)

    Münch-Harrach, Dieter; Kothe, Christian; Hampe, Wolfgang

    2013-01-01

    Introduction: Audio podcasts are an e-learning format that may help to motivate students to deal with the contents of medical education more intensely. We adopted a well-proven format from radio broadcasting, the radio documentary, to direct the listeners’ attention to information about practical courses in biochemistry over a period of 20 minutes at most. Information, original sounds, and a specific atmosphere allow listeners to perceive the contents intensely. Method: In order to organise the production of the podcast as cost-efficient and least time-consuming as possible, a student, a teacher, a clinician, and a technical assistant compile the core themes of their respective text blocks in an editorial conference first. After that, the speakers can elaborate on and record their blocks independently. Coordination is widely handled by the student. At two points of time, the podcasts were evaluated by the medical students by means of a questionnaire. Results: With little cost and time expenses, eight podcasts were produced. They have been used by the students extensively and have also been evaluated very positively by non-student listeners. For long-term usage, a regular reference to the podcast offer is required in the courses. Conclusion: Involving students, successful podcasts can be produced to support classroom teaching with little expenses and contribute to the external presentation of the medical faculty. PMID:24282447

  2. Teaching Critical Thinking through a course on Science and Religion

    Science.gov (United States)

    Shipman, H. L.; Jordan, J. J.

    2004-12-01

    The relationship between science and religion is, according to the public debate, rather stormy. It doesn't have to be this way. Since 1998, an astronomer (Shipman) and a philosopher (Jordan) have team-taught a course with a more constructive approach. This course has a recognized role in the University's General Education program and in the philosophy major. As overall course goals, we hope that our students will be able to: - exhibit critical thinking skills in being able to tell the difference between good arguments and bad arguments in this area - recognize that the relationship between science and religion is not necessarily an antagonistic one. We accomplish these goals by focusing the course on four major issues, namely: - Does Big Bang Cosmology leave room for a Creator? - Can a rational person believe in miracle reports? - In the light of modern science, what does it mean to be human? - Can a theist, someone who believes in God, rationally accept the scientific theory of biological evolution? We have evidence in the course to evaluate student progress towards our goals. Student responses to a pre- and post-testing methodology, where they responded to the same assignment at the beginning and at the end of the course, were classified as seeing the relationship between science and religion as confrontational, distinct, convergent, or transitional between distinct and convergent. Preliminary analysis of the student responses shows a significant shift away from a confrontational position and towards a more convergent position. The development of this course was supported by the John Templeton Foundation's Science and Religion course program. H.L.S.'s scholarly work integrating science research and science education research is supported by the National Science Foundation's Distinguished Teaching Scholars Program. DUE-0306557),

  3. The Importance of Attendance in an Introductory Textile Science Course

    Science.gov (United States)

    Marcketti, Sara B.; Wang, Xinxin; Greder, Kate

    2013-01-01

    At Iowa State University, the introductory textile science course is a required 4-credit class for all undergraduate students enrolled in the Apparel, Merchandising, and Design Program. Frustrated by a perceived gap between students who easily comprehended course material and those who complained and struggled, the instructor implemented an…

  4. Reforming an Undergraduate Environmental Science Course for Nonscience Majors

    Science.gov (United States)

    Kazempour, Mahsa; Amirshokoohi, Aidin

    2013-01-01

    This article discusses the key components of a reform-based introductory undergraduate environmental science course for nonscience majors and elementary teacher candidates as well as the impact of such components on the participants. The main goals for the course were to actively engage the students in their learning and, in doing so, to enhance…

  5. Incorporating Primary Literature in Undergraduate Crop Science Courses

    Science.gov (United States)

    Scott, Lori K.; Simmons, Steve R.

    2006-01-01

    Primary literature is an underutilized learning resource for undergraduate courses in crop science. Reading assignments from scientific journals were utilized in an undergraduate University of Minnesota crop physiology course at Southwest Minnesota State University from 2002 to 2004. The subjects of the articles corresponded to the lecture topics.…

  6. Introductory Life Science Mathematics and Quantitative Neuroscience Courses

    Science.gov (United States)

    Duffus, Dwight; Olifer, Andrei

    2010-01-01

    We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an…

  7. Science Academies' Refresher Course on Modern and Ancient ...

    Indian Academy of Sciences (India)

    Sengupta, AvH Fellow, F.A.Sc., F.N.A (pulaksg@gmail.com). It may be noted that UGC regulations include Refresher Courses in API scores for career advancement. Applications are invited from teachers with experience in teaching undergraduate and postgraduate courses in Earth Science. Motivated research scholars ...

  8. Tested Tools You Can Use: Evaluating Earth System Science Courses

    Science.gov (United States)

    Lee, S. P.; Prakash, A.; Reider, D.; Baker, D.

    2006-12-01

    Earth System Science Education for the 21st Century (ESSE 21) has created a public access on-line evaluation resource available at http://esse21.usra.edu/evaltoolkit in collaboration with the ESSE 21 institutions, PIs, and evaluators. The purpose of the ESSE toolkit is to offer examples of how evaluation and assessment are/have been used in Earth System Science courses and programs. Our goal is to help instructors recognize different types of assessment and evaluation tools and uses that have proved useful in these courses and provide models for designing assessments in new courses. We have included actual examples of evaluations used by ESSE institution faculty in their own courses. This is not a comprehensive toolkit on educational evaluation and assessment, but it does provide several examples of evaluations that have been used successfully in Earth System Science courses and links to many good web resources on course evaluation. We have provided examples of assessments that are designed to collect information from students before, during and after courses. Some, presented in different formats, are designed to assess what students learn, others are designed to provide course instructors with information they can use to revise their courses. These assessments range from content tests to portfolios, from feedback forms to interviews, and from concept maps to attitude surveys.

  9. Do compulsory secondary science courses change students’ attitude towards studying science?

    DEFF Research Database (Denmark)

    Kristensen, Lærke Elisabeth; Petersen, Morten Rask

    2015-01-01

    recruitment to STEM education has been a compulsory course in the Gymnasium called Natural Science Subject (NSS). This is an interdisciplinary, introductory course with the intention that students shall “ … realize the importance of knowing and understanding natural science thinking” (Authors translation...... science and science careers. In this approach we ended up with the following research question: “Does a compulsory introductory sciences course have an impact on students’ attitude towards studying sciences in secondary school?” In this approach we chose to use parameters as motivation (Deci & Ryan, 2002...... Subject course. The distribution included all levels (K10-K12) and all study lines. Student answers were analyzed using Mann-Whitney U-test using SPSS statistics 22 as analytical tool. Comparisons for this study were made across study lines (natural science vs. human science & social science...

  10. Cell Phones Transform a Science Methods Course

    Science.gov (United States)

    Madden, Lauren

    2012-01-01

    A science methods instructor intentionally encouraged cell phone use for class work to discover how cell phones can be used as research tools to enhance the content and engage the students. The anecdotal evidence suggested that students who used their smartphones as research tools experienced the science content and pedagogical information…

  11. Teaching Biochemistry Online at Oregon State University

    Science.gov (United States)

    Ahern, Kevin

    2017-01-01

    A strategy for growing online biochemistry courses is presented based on successes in ecampus at Oregon State University. Four free drawing cards were key to the effort--YouTube videos, iTunes U online free course content, an Open Educational Resource textbook--Biochemistry Free and Easy, and a fun set of educational songs known as the Metabolic…

  12. Nutritional Biochemistry

    Science.gov (United States)

    Smith, Scott M.

    2010-01-01

    This slide presentation reviews some of the effects that space flight has on humans nutritional biochemistry. Particular attention is devoted to the study of protein breakdown, inflammation, hypercatabolism, omega 3 fatty acids, vitamin D, calcium, urine, folate and nutrient stability of certain vitamins, the fluid shift and renal stone risk, acidosis, iron/hematology, and the effects on bone of dietary protein, potassium. inflammation, and omega-3 fatty acids

  13. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  14. A Physics Course for Non-Physical Science Teachers

    Science.gov (United States)

    Cottle, Paul D.

    1997-11-01

    A two semester introductory physics sequence exclusively for undergraduates and graduate students in science education who were not seeking certification in physics was taught at Florida State for the first time in 1996-97. The course emphasized building understanding in both qualitative and quantitative aspects of physics through group learning approaches to laboratories and written problem assignments, assessments which required detailed written explanations, and frequent interactions between the instructor and individual students. This talk will briefly outline the structure of the course and some of the more interesting observations made by the group of science education graduate students and faculty who evaluated aspects of the course.

  15. Development of a Bi-Disciplinary Course in Forensic Science

    Directory of Open Access Journals (Sweden)

    Stacey L. Raimondi

    2013-08-01

    Full Text Available Forensic science programs and courses have traditionally been housed within chemistry departments at the college/university level, largely because the pioneers of the field were chemists who applied technology that was more chemical than biological in nature. However, with the development of such areas of study as DNA analysis, anatomical studies, and forensic entomology, it is becoming more and more important for forensic science students to have a strong biological background as well as a chemical background. Furthermore, while biology students are typically required to have extensive chemistry training as part of their major, the converse is not true for chemistry students. Therefore, it is possible that a student interested in forensic science could complete a major in chemistry and never have taken a biology class, leaving them woefully under-prepared for any type of masters program or career in forensic science immediately following graduation. Indeed, an examination of available positions in forensic science shows a large number of positions for DNA analysts for which the typical chemistry student would not be prepared without extensive biology training (http://www.aafs.org. Furthermore, positions for medical examiners or pathologists require extensive training in biology in addition to the continued medical training and residency programs. Therefore, it seems imperative that introductory forensic science courses adapt to these needs and be taught with a more bi-disciplinary approach in order to educate students on the whole field rather than one aspect. To that end, a new bi-disciplinary Forensic Science course was developed at Elmhurst College. This course was team-taught by a biology and a chemistry professor so that students would obtain a thorough understanding of the field and techniques used by both biologists and chemists. A description of this new version of a forensic science course follows, focusing on the addition of biology

  16. Science Academies' Refresher Course on Bioresources ...

    Indian Academy of Sciences (India)

    2017-11-14

    Nov 14, 2017 ... biotechnological tools for conservation, genetic resource and bio-diversity, DNA finger printing tech- nology and applications, functional genomics and targeted genome editing, genetic engineering. The course will comprise of lectures, tutorials and experiments. Applications are invited from teachers with ...

  17. Science Academies' Refresher Course on Modern Genetics ...

    Indian Academy of Sciences (India)

    IAS Admin

    The objective of this Refresher Course is to give the participants a hands-on training on genetics and molecular biology techniques; and the theory behind them. A variety of teaching methods such as lectures, interaction with renowned resource persons, discussion and laboratory work shall facilitate the learning process.

  18. Science Academies' Sixtieth Refresher Course in Experimental ...

    Indian Academy of Sciences (India)

    IAS Admin

    by the organizing institution for outstation participants. Participants are requested to send in their application with a detailed CV, and the reason for attending the Course through the Head of the Institution to: Dr K RamachandraRao, Lecturer in PHYSICS & Research Director, Department of Physics (UG &. PG), Goverment ...

  19. Linking Science Fiction and Physics Courses

    Science.gov (United States)

    McBride, Krista K.

    2016-01-01

    Generally, cohorts or learning communities enrich higher learning in students. Learning communities consist of conventionally separate groups of students that meet together with common academic purposes and goals. Types of learning communities include paired courses with concurrent student enrollment, living-learning communities, and faculty…

  20. An English Course in Science and Humanities.

    Science.gov (United States)

    Reno, Robert P.

    1979-01-01

    One way in which changing attitudes toward scientific knowledge and technology can be made the focus of attention in a college literature course is suggested by this analysis of Christopher Marlowe's "Doctor Faustus," Mary Shelley's "Frankenstein," and Friedrich Durrenmatt's "The Physicists." (JMD)

  1. Science Academies' Refresher Course in Quantum Mechanics

    Indian Academy of Sciences (India)

    IAS Admin

    2013-09-15

    Sep 15, 2013 ... The Course is aimed for college teachers engaged in teaching at the UG/PG level as well as those who use ... in their research work. ... In order to participate, please send a short letter explaining your motivation to participate.

  2. Library-Labs-for-Science Literacy Courses.

    Science.gov (United States)

    Pestel, Beverly C.; Engeldinger, Eugene A.

    1992-01-01

    Describes two library-lab exercises the authors have incorporated into their college chemistry course. The first exercise introduces students to scientific information and familiarizes them with the tools for accessing it. The second provides a framework for evaluating the reliability of that information and addresses the criteria that should be…

  3. Science Academies' Refresher Course in Statistical Physics

    Indian Academy of Sciences (India)

    The Course is aimed at college teachers of statistical physics at BSc/MSc level. It will cover basic principles and techniques, in a pedagogical manner, through lectures and tutorials, with illustrative problems. Some advanced topics, and common difficulties faced by students will also be discussed. College/University ...

  4. Predictors of Student Success in Entry-Level Science Courses

    Science.gov (United States)

    Singh, Mamta K.

    2009-01-01

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and…

  5. Science Academies' Refresher Course on Hydrology of Floods

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 10. Science Academies' Refresher Course on Hydrology of Floods. Information and Announcements Volume 22 Issue 10 October 2017 pp 978-978. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Science Academies Refresher Course on Traditional and Modern ...

    Indian Academy of Sciences (India)

    Admin

    The National Academy of Sciences, India, Allahabad. In collaboration with. Botanical Garden & Herbarium, University of Agricultural Sciences, Bangalore from 15 to 29 November. 2012. A Refresher Course on Traditional and Modern Approaches in Plant Taxonomy for postgraduate college/university teachers and research ...

  7. Science Academies' Refresher Course on Modern Biotechnology ...

    Indian Academy of Sciences (India)

    IAS Admin

    , PCR and RT-PCR. A variety of teaching methods like lectures by eminent ... knowledge to boost their confidence in handling modern instruments used in the discipline of life sciences and modern biotechnology. Skills gained during this ...

  8. Evaluation of Life Sciences and Social Sciences Course Books in Term of Societal Sexuality

    Science.gov (United States)

    Aykac, Necdet

    2012-01-01

    This study aims to evaluate primary school Life Sciences (1st, 2nd, and 3rd grades) and Social Sciences (4th, 5th, and 6th grades) course books in terms of gender discrimination. This study is a descriptive study aiming to evaluate the primary school Life Sciences (1st, 2nd, 3rd grades) and Social Sciences (4th, 5th, and 6th grades) course books…

  9. Redesigning a General Education Science Course to Promote Critical Thinking.

    Science.gov (United States)

    Rowe, Matthew P; Gillespie, B Marcus; Harris, Kevin R; Koether, Steven D; Shannon, Li-Jen Y; Rose, Lori A

    2015-01-01

    Recent studies question the effectiveness of a traditional university curriculum in helping students improve their critical thinking and scientific literacy. We developed an introductory, general education (gen ed) science course to overcome both deficiencies. The course, titled Foundations of Science, differs from most gen ed science offerings in that it is interdisciplinary; emphasizes the nature of science along with, rather than primarily, the findings of science; incorporates case studies, such as the vaccine-autism controversy; teaches the basics of argumentation and logical fallacies; contrasts science with pseudoscience; and addresses psychological factors that might otherwise lead students to reject scientific ideas they find uncomfortable. Using a pretest versus posttest design, we show that students who completed the experimental course significantly improved their critical-thinking skills and were more willing to engage scientific theories the general public finds controversial (e.g., evolution), while students who completed a traditional gen ed science course did not. Our results demonstrate that a gen ed science course emphasizing the process and application of science rather than just scientific facts can lead to improved critical thinking and scientific literacy. © 2015 M. P. Rowe, B. M. Gillespie, et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Stereotyped: Investigating Gender in Introductory Science Courses

    Science.gov (United States)

    Lauer, Shanda; Momsen, Jennifer; Offerdahl, Erika; Kryjevskaia, Mila; Christensen, Warren; Montplaisir, Lisa

    2013-01-01

    Research in science education has documented achievement gaps between men and women in math and physics that may reflect, in part, a response to perceived stereotype threat. Research efforts to reduce achievement gaps by mediating the impact of stereotype threat have found success with a short values-affirmation writing exercise. In biology and…

  11. Road Safety Education in a Science Course: Evaluation of "Science and the Road."

    Science.gov (United States)

    Gardner, Paul L.

    1989-01-01

    A traffic safety instructional package--"Science and the Road"--was assessed. It was designed by the Road Traffic Authority of Victoria (Australia) for use in tenth-grade science courses. Evaluation findings resulted in revision of the unit and implementation of more inservice courses for teachers lacking relevant biology and physics…

  12. [Research activity in clinical biochemistry

    DEFF Research Database (Denmark)

    Jorgensen, H.L.; Larsen, B.; Ingwersen, P.

    2008-01-01

    Clinical Biochemistry, 57 fulfilled the inclusion criteria. Each of these 57 was matched according to medical title with two randomly chosen specialists from other specialities, totaling 114. Using Medline and the Web of Science, the number of publications and the number of citations were then ascertained......BACKGROUND: Quantitative bibliometric measurements of research activity are frequently used, e.g. for evaluating applicants for academic positions. The purpose of this investigation is to assess research activity within the medical speciality of Clinical Biochemistry by comparing it with a matched....... RESULTS: 25% of the 11,691 specialists held a PhD degree or doctoral degree, DMSci, (Clinical Biochemistry: 61%). The 171 specialists included in the study had 9,823 papers in Medline and 10,140 papers in the Web of Science. The number of Medline papers per specialist was 71 for Clinical Biochemistry...

  13. [Research activity in clinical biochemistry

    DEFF Research Database (Denmark)

    Jorgensen, H.L.; Larsen, B.; Ingwersen, P.

    2008-01-01

    BACKGROUND: Quantitative bibliometric measurements of research activity are frequently used, e.g. for evaluating applicants for academic positions. The purpose of this investigation is to assess research activity within the medical speciality of Clinical Biochemistry by comparing it with a matched...... Clinical Biochemistry, 57 fulfilled the inclusion criteria. Each of these 57 was matched according to medical title with two randomly chosen specialists from other specialities, totaling 114. Using Medline and the Web of Science, the number of publications and the number of citations were then ascertained....... RESULTS: 25% of the 11,691 specialists held a PhD degree or doctoral degree, DMSci, (Clinical Biochemistry: 61%). The 171 specialists included in the study had 9,823 papers in Medline and 10,140 papers in the Web of Science. The number of Medline papers per specialist was 71 for Clinical Biochemistry...

  14. Symposium 19: The contributions of the Department of Biochemistry/USP towards Biochemistry teaching

    Directory of Open Access Journals (Sweden)

    Bayardo Baptista Torres

    2014-08-01

    Full Text Available K-Education(Portuguese Chair: V. Trindade Bayardo Torres; Clovis Wannmacher; Denise MacedoThe contributions of the Department of Biochemistry/USP towards Biochemistry teaching.O ensino de Bioquímica nos últimos 20 anosBayardo B. TorresDepartamento de Bioquímica, Instituto de Química, USP. São Paulo, Brazil.Among the contributions of the Department of Biochemistry/USP one must recall:1. Winter school for graduate studentsThis course, now at the ninth edition, is intended for students in the final stage of their Masters or PhD in Biochemistry or related areas from any institution of higher education.Modern and important techniques are offered as possible support to help the student’s projects.2. Summer courses for undergraduate studentsThe Department offers every year, since 1999, complementary courses for undergraduate students to extend their knowledge in biochemical subjects not ordinarily treated in introductory courses. Some examples:Plant Molecular Biology, Biochemistry and Diseases, Biochemistry of Mind, Biochemistry of Ageing, Cancer Biochemistry, Nutrition and Sports, Biochemistry of Beauty, Biochemistry of the Envenomation Response, etc.3. Summer courses for high school teachers. Some examples:Biochemistry of Nutrition, DNA – Techniques and Applications, Biochemistry in the kitchen.4. Software developmentMany software for biochemistry teaching/learning were developed and are freely available at the Biblioteca Digital de Ciências [http://www.bdc.ib.unicamp.br/bdc/index.php]. Some examples:Oxygen consumption by mitochondria, Muscle contraction, Electron transport chain and oxidative phosphorylation, Free radicals, Enzyme kinetics, cAMP signalization, Interactive study of protein structure, Leptin, Insulin and Obesity.5. A Biochemistry textbook. 

  15. Syllabus for Weizmann Course: Earth System Science 101

    Science.gov (United States)

    Wiscombe, Warren J.

    2011-01-01

    This course aims for an understanding of Earth System Science and the interconnection of its various "spheres" (atmosphere, hydrosphere, etc.) by adopting the view that "the microcosm mirrors the macrocosm". We shall study a small set of microcosims, each residing primarily in one sphere, but substantially involving at least one other sphere, in order to illustrate the kinds of coupling that can occur and gain a greater appreciation of the complexity of even the smallest Earth System Science phenomenon.

  16. Causes of Low and High Citation Potentials in Science: Citation Analysis of Biochemistry and Plant Physiology Journals.

    Science.gov (United States)

    Marton, Janos

    1983-01-01

    Citation data of 16 biochemistry and plant physiology journals show that reasons for lower citation potentials of plant physiology articles are: (1) readership is narrower for plant physiology journals; (2) plant physiologists can cite fewer thematically relevant new articles; and (3) plant physiology research fields are more isolated. References…

  17. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    Science.gov (United States)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  18. Preservice Science Teacher Beliefs about Teaching and the Science Methods Courses: Exploring Perceptions of Microteaching Outcomes

    Science.gov (United States)

    McLaury, Ralph L.

    2011-01-01

    This study investigates beliefs about teaching held by preservice science teachers and their influences on self-perceived microteaching outcomes within interactive secondary science teaching methods courses. Hermeneutic methodology was used in cooperation with seven preservice science teachers (N = 7) to infer participant beliefs about teaching…

  19. Rethinking the Elementary Science Methods Course: A Case for Content, Pedagogy, and Informal Science Education.

    Science.gov (United States)

    Kelly, Janet

    2000-01-01

    Indicates the importance of preparing prospective teachers who will be elementary science teachers with different methods. Presents the theoretical and practical rationale for developing a constructivist-based elementary science methods course. Discusses the impact student knowledge and understanding of science and student attitudes has on…

  20. Class Size and Academic Achievement in Introductory Political Science Courses

    Science.gov (United States)

    Towner, Terri L.

    2016-01-01

    Research on the influence of class size on student academic achievement is important for university instructors, administrators, and students. The article examines the influence of class size--a small section versus a large section--in introductory political science courses on student grades in two comparable semesters. It is expected that…

  1. "Two Cultures" Topics for General Studies Science Courses.

    Science.gov (United States)

    Larson, James H.

    1982-01-01

    Theses proposed in C. P. Snow's book "The Two Cultures," including uncommunicative scientific and literary groups, gap between rich and poor, overpopulation, and nuclear war remain viable topics. Discusses the scientific and literary cultural gap and what can be done in general studies science courses to ameliorate the condition.…

  2. Science Academies' 82nd Refresher Course on Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Experimental Physics will be held at Department of Physics, ... the participants to gain hands on experience with set of new experiments developed as a low cost kit by the Indian Academy of Sciences, Bangalore, Indian ...

  3. Polymerization Simulator for Introductory Polymer and Material Science Courses

    Science.gov (United States)

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  4. Designing English for Specific Purposes Course for Computer Science Students

    Science.gov (United States)

    Irshad, Isra; Anwar, Behzad

    2018-01-01

    The aim of this study was to design English for Academic Purposes (EAP) course for University students enrolled in the Computer Science Department. For this purpose, academic English language needs of the students were analyzed by using a 5 point Likert scale questionnaire. Additionally, interviews were also conducted with four faculty members of…

  5. Women and Spatial Change: Learning Resources for Social Science Courses.

    Science.gov (United States)

    Rengert, Arlene C., Ed.; Monk, Janice J., Ed.

    Six units focusing on the effects of spatial change on women are designed to supplement college introductory courses in geography and the social sciences. Unit 1, Woman and Agricultural Landscapes, focuses on how women contributed to landscape change in prehistory, women's impact on the environment, and the hypothesis that women developed…

  6. Promoting Active Learning of Graduate Student by Deep Reading in Biochemistry and Microbiology Pharmacy Curriculum

    Science.gov (United States)

    Peng, Ren

    2017-01-01

    To promote graduate students' active learning, deep reading of high quality papers was done by graduate students enrolled in biochemistry and microbiology pharmacy curriculum offered by college of life science, Jiangxi Normal University from 2013 to 2015. The number of graduate students, who participated in the course in 2013, 2014, and 2015 were…

  7. Understanding Science and Technology Interactions Through Ocean Science Exploration: A Summer Course for Science Teachers

    Science.gov (United States)

    Baldauf, J.; Denton, J.

    2003-12-01

    In order to replenish the national supply of science and mathematics educators, the National Science Foundation has supported the formation of the Center for Applications of Information Technology in the Teaching and Learning of Science (ITS) at Texas A&M University. The center staff and affiliated faculty work to change in fundamental ways the culture and relationships among scientists, educational researchers, and teachers. ITS is a partnership among the colleges of education, science, geosciences, agriculture and life science at Texas A&M University. Participants (teachers and graduate students) investigate how science is done and how science is taught and learned; how that learning is assessed, and how scholarly networks among all engaged in this work can be encouraged. While the center can offer graduate degrees most students apply as non-degree seekers. ITS participants are schooled on classroom technology applications, experience working on project teams, and access very current research work being conducted by scientists. ITS offers a certificate program consisting of two summer sessions over two years that results in 12 hours of graduate credit that can be applied to a degree. Interdisciplinary project teams spend three intense weeks connecting current research to classroom practices. During the past summer with the beginning of the two-year sequence, a course was implemented that introduced secondary teachers to Ocean Drilling Program (ODP) contributions to major earth science themes, using core and logging data, engineering (technology) tools and processes. Information Technology classroom applications were enhanced through hands-on laboratory exercises, web resources and online databases. The course was structured around the following objectives. 1. Distinguish the purpose and goals of the Ocean Drilling Program from the Integrated Ocean Drilling Program and describe the comparable science themes (ocean circulation, marine sedimentation, climate history

  8. Communicating Ocean Sciences College Courses: Science Faculty and Educators Working and Learning Together

    Science.gov (United States)

    Halversen, C.; Simms, E.; McDonnell, J. D.; Strang, C.

    2011-12-01

    As the relationship between science and society evolves, the need for scientists to engage and effectively communicate with the public about scientific issues has become increasingly urgent. Leaders in the scientific community argue that research training programs need to also give future scientists the knowledge and skills to communicate. To address this, the Communicating Ocean Sciences (COS) series was developed to teach postsecondary science students how to communicate their scientific knowledge more effectively, and to build the capacity of science faculty to apply education research to their teaching and communicate more effectively with the public. Courses are co-facilitated by a faculty scientist and either a K-12 or informal science educator. Scientists contribute their science content knowledge and their teaching experience, and educators bring their knowledge of learning theory regarding how students and the public make meaning from, and understand, science. The series comprises two university courses for science undergraduate and graduate students that are taught by ocean and climate scientists at approximately 25 universities. One course, COS K-12, is team-taught by a scientist and a formal educator, and provides college students with experience communicating science in K-12 classrooms. In the other course, COSIA (Communicating Ocean Sciences to Informal Audiences), a scientist and informal educator team-teach, and the practicum takes place in a science center or aquarium. The courses incorporate current learning theory and provide an opportunity for future scientists to apply that theory through a practicum. COS addresses the following goals: 1) introduce postsecondary students-future scientists-to the importance of education, outreach, and broader impacts; 2) improve the ability of scientists to communicate science concepts and research to their students; 3) create a culture recognizing the importance of communicating science; 4) provide students and

  9. An Investigation of Science and Technology Teachers’ Views on the 5th Grade Science Course

    OpenAIRE

    İkramettin Daşdemir

    2014-01-01

    This study was conducted to explore the science and technology teachers’ views on the implementation of 5th grade science course. Open-ended questions were used as a data collection tool. The study sample consisted of 28 science and technology teachers working in Erzurum in 2012-2013 education year. The data gathered were analysed via content analysis method. According to the results obtained from the open-ended questions, a great majority of science and technology teache...

  10. Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course

    Science.gov (United States)

    Avard, Margaret

    2009-01-01

    In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…

  11. The use of multiple tools for teaching medical biochemistry.

    Science.gov (United States)

    Sé, Alexandre B; Passos, Renato M; Ono, André H; Hermes-Lima, Marcelo

    2008-03-01

    In this work, we describe the use of several strategies employing the philosophies of active learning and problem-based learning (PBL) that may be used to improve the teaching of metabolic biochemistry to medical and nutritional undergraduate students. The main activities are as follows: 1) a seminar/poster system in a mini-congress format (using topics of applied biochemistry); 2) a true/false applied biochemistry exam (written by peer tutors); 3) a 9-h exam on metabolism (based in real publications); 4) the Advanced Biochemistry course (directed to peer tutors, where students learn how to read and criticize real medical papers); 5) experiments about nutrition and metabolism, using students as volunteers, and about free radicals (real science for students); 6) the BioBio blog (taking advantage of the "web age," this enhances out of class exchanges of information between the professor, students, and peer tutors); 7) student lectures on public health issues and metabolic disorders directed to the community and lay people; and 8) the BioBio quiz show. The main objective of these activities is to provide students with a more practical and interesting approach to biochemistry, such as the application of theoretical knowledge to real situations (diseases, experiments, media information, and scientific discoveries). In addition, we emphasize the importance of peer tutor activities for optimized learning of both students and peer tutors, the importance of a closer interaction between students and teaching staff, and the necessity to initiate students precociously in two broad fields of medical activity: "real" basic science and contact with the public (also helping students--future doctors and nutritionists--to be able to communicate with lay people). Most activities were evaluated by the students through written questionnaires and informal conversations, along various semesters, indicating good acceptance and approval of these methods. Good student scores in the

  12. Developing a constructivist learning environment in online postsecondary science courses

    Science.gov (United States)

    Hackworth, Sylvester N.

    This Delphi study addressed the concerns of postsecondary educators regarding the quality of education received by postsecondary science students who receive their instruction online. This study was framed with the constructivist learning theory and Piaget's and Dewey's cognitive development theories. The overarching question addressed a gap in research literature surrounding the pedagogical practices that could be successfully applied to future postsecondary online science education. The panel consisted of 30 experts in the area of online postsecondary education. Qualitative data from the initial seed questions were used to create a Likert-type survey to seek consensus of the themes derived from participant responses. Participants reached agreement on six items: apply constructivism to science curricula, identify strengths and challenges of online collegiate students, explicate students' consequences due to lack of participation in discussion forums, ensure that online course content is relevant to students' lives, reinforce academic integrity, and identify qualities face-to-face collegiate science instructors need when transitioning to online science instructors. The majority of participants agreed that gender is not an important factor in determining the success of an online collegiate science student. There was no consensus on the efficacy of virtual labs in an online science classroom. This study contributes to positive social change by providing information to new and struggling postsecondary science teachers to help them successfully align their instruction with students' needs and, as a result, increase students' success.

  13. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    Science.gov (United States)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  14. An analysis of high-performing science students' preparation for collegiate science courses

    Science.gov (United States)

    Walter, Karen

    This mixed-method study surveyed first year high-performing science students who participated in high-level courses such as International Baccalaureate (IB), Advanced Placement (AP), and honors science courses in high school to determine their perception of preparation for academic success at the collegiate level. The study used 52 students from an honors college campus and surveyed the students and their professors. The students reported that they felt better prepared for academic success at the collegiate level by taking these courses in high school (pstudent GPA with honors science courses (n=55 and Pearson's r=-0.336), while AP courses (n=47 and Pearson's r=0.0016) and IB courses (n=17 and Pearson's r=-0.2716) demonstrated no correlation between perception of preparation and GPA. Students reported various themes that helped or hindered their perception of academic success once at the collegiate level. Those themes that reportedly helped students were preparedness, different types of learning, and teacher qualities. Students reported in a post-hoc experience that more lab time, rigorous coursework, better teachers, and better study techniques helped prepare them for academic success at the collegiate level. Students further reported on qualities of teachers and teaching that helped foster their academic abilities at the collegiate level, including teacher knowledge, caring, teaching style, and expectations. Some reasons for taking high-level science courses in high school include boosting GPA, college credit, challenge, and getting into better colleges.

  15. Science Credit for Agriculture: Perceived Support, Preferred Implementation Methods and Teacher Science Course Work.

    Science.gov (United States)

    Johnson, Donald M.

    1996-01-01

    Arkansas agriculture teachers (213 of 259 surveyed) expressed support for granting science credit for agriculture (88.8%); 65.6% supported science credit for a limited number of agriculture courses. Blanket endorsement for all certified agriculture teachers was favored by 71.5%; 56.6% preferred endorsement only for certified teachers completing an…

  16. Concept mapping enhances learning of biochemistry.

    Science.gov (United States)

    Surapaneni, Krishna M; Tekian, Ara

    2013-03-05

    Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13-8.28 vs. 12.33-13.93, pbiochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry.

  17. Concept mapping enhances learning of biochemistry.

    Science.gov (United States)

    Surapaneni, KrishnaM; Tekian, Ara

    2013-01-01

    Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13-8.28 vs. 12.33-13.93, pbiochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry.

  18. Television Medical Dramas as Case Studies in Biochemistry

    Science.gov (United States)

    Millard, Julie T.

    2009-01-01

    Several case studies from popular television medical dramas are described for use in an undergraduate biochemistry course. These cases, which illustrate fundamental principles of biochemistry, are used as the basis for problems that can be discussed further in small groups. Medical cases provide an interesting context for biochemistry with video…

  19. [Research activity in clinical biochemistry].

    Science.gov (United States)

    Jørgensen, Henrik L; Larsen, Birger; Ingwersen, Peter; Rehfeld, Jens F

    2008-09-01

    Quantitative bibliometric measurements of research activity are frequently used, e.g. for evaluating applicants for academic positions. The purpose of this investigation is to assess research activity within the medical speciality of Clinical Biochemistry by comparing it with a matched control group from other medical specialities in Denmark. A list of all physicians registered in Denmark (23,127 persons) was drawn from the database "Laeger.dk". Of these, 5,202 were generalists (not included) while 11,691 were from other specialities. Of the 126 specialists from Clinical Biochemistry, 57 fulfilled the inclusion criteria. Each of these 57 was matched according to medical title with two randomly chosen specialists from other specialities, totaling 114. Using Medline and the Web of Science, the number of publications and the number of citations were then ascertained. 25% of the 11,691 specialists held a PhD degree or doctoral degree, DMSci, (Clinical Biochemistry: 61%). The 171 specialists included in the study had 9,823 papers in Medline and 10,140 papers in the Web of Science. The number of Medline papers per specialist was 71 for Clinical Biochemistry compared to 51 for the control group. The number of citations per specialist was 1,844 for Clinical Biochemistry compared to 816 for the control group. The top ten H-indices (of which 8 were in Clinical Biochemistry) ranged from 30 to 69. Both the number of papers and the number of citations were higher for Clinical Biochemistry than for the control group. The difference was most pronounced among professors.

  20. Teaching professionalism in science courses: Anatomy to zoology

    Directory of Open Access Journals (Sweden)

    Cheryl C. Macpherson

    2012-02-01

    Full Text Available Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies’ trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences.

  1. Teaching professionalism in science courses: anatomy to zoology.

    Science.gov (United States)

    Macpherson, Cheryl C

    2012-02-01

    Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies' trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences. Copyright © 2011. Published by Elsevier B.V.

  2. Site-Directed Mutagenesis Study of an Antibiotic-Sensing Noncoding RNA Integrated into a One-Semester Project-Based Biochemistry Lab Course

    Science.gov (United States)

    Gerczei, Timea

    2017-01-01

    A laboratory sequence is described that is suitable for upper-level biochemistry or molecular biology laboratories that combines project-based and traditional laboratory experiments. In the project-based sequence, the individual laboratory experiments are thematically linked and aim to show how a bacterial antibiotic sensing noncoding RNA (the…

  3. Using the Computer Game "FoldIt" to Entice Students to Explore External Representations of Protein Structure in a Biochemistry Course for Nonmajors

    Science.gov (United States)

    Farley, Peter C.

    2013-01-01

    This article describes a novel approach to teaching novice Biochemistry students visual literacy skills and understanding of some aspects of protein structure using the internet resource FoldIt and a worksheet based on selected Introductory Puzzles from this computer game. In responding to a questionnaire, students indicated that they (94%)…

  4. Assessing Gains in Science Teaching Self-Efficacy after Completing an Inquiry-Based Earth Science Course

    Science.gov (United States)

    Gray, Kyle

    2017-01-01

    Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…

  5. Physics Myth Busting: A Lab-Centered Course for Non-Science Students

    Science.gov (United States)

    Madsen, Martin John

    2011-01-01

    There is ongoing interest in how and what we teach in physics courses for non-science students, so-called "physics for poets" courses. Art Hobson has effectively argued that teaching science literacy should be a key ingredient in these courses. Hobson uses Jon Millers definition of science literacy, which has two components: first, "a basic…

  6. The Structure and Assessment of a Unique and Popular Interdisciplinary Science Course for Nonmajors

    Science.gov (United States)

    Train, Tonya Laakko; Gammon, David E.

    2012-01-01

    Science Without Borders is a unique interdisciplinary science course that uses group and active-learning strategies and is in high demand among nonscience majors at a masters-level university. Registrar data showed that nonscience majors were far more likely to choose this course compared with other, discipline-based science courses. In an…

  7. Charting a Course to Earth System Science Literacy

    Science.gov (United States)

    Karsten, J. L.; Koch, L.; Ridky, R.; Wei, M.; Ladue, N.

    2008-12-01

    Public literacy of fundamental ideas in Earth System Science (ESS) is immensely important, both because of its relevance to the daily lives of individual citizens and the role played by informed policy decisions related to water, energy, climate change, and hazards in securing our Nation's well-being and prosperity. The National Science Education Standards (NRC, 1996) argued that topics which comprise ESS also have tremendous value in providing context and meaning for the teaching of Biology, Chemistry, and Physics concepts and their applications, thereby serving the goals of the America COMPETES Act. Yet, as documented in the 2006 Program for International Student Assessment (PISA) results, the U.S. continues to lag significantly behind other developed nations in science literacy. A major obstacle to improving public ESS literacy, specifically, and strengthening science literacy, in general, is the fact that fewer than 30% of students in U.S. high schools take any courses related to ESS. Often, these courses are taught by teachers with limited preparation in this content area. A new grass-roots movement within the geoscience research and education communities, fueled by interagency collaboration, is seeking to overcome these obstacles and steer a new course for ESS education in the Nation. The Earth System Science Literacy Initiative (ESSLI) builds on recent efforts within portions of the geosciences community to reach consensus on what defines scientific literacy within their fields. Individual literacy frameworks now exist for the ocean, atmospheric science, Earth science, and climate topic areas, and others are under development. The essential principles and fundamental concepts articulated in these frameworks provide consistent core messages that can be delivered and reinforced not only through formal education channels, but also through informal education activities and the media, thereby avoiding the inherent obstacles of the formal education setting

  8. Comprehensive growth performance, immune function, plasma biochemistry, gene expressions and cell death morphology responses to a daily corticosterone injection course in broiler chickens.

    Science.gov (United States)

    Mehaisen, Gamal M K; Eshak, Mariam G; Elkaiaty, Ahmed M; Atta, Abdel-Rahman M M; Mashaly, Magdi M; Abass, Ahmed O

    2017-01-01

    The massive meat production of broiler chickens make them continuously exposed to potential stressors that stimulate releasing of stress-related hormones like corticosterone (CORT) which is responsible for specific pathways in biological mechanisms and physiological activities. Therefore, this research was conducted to evaluate a wide range of responses related to broiler performance, immune function, plasma biochemistry, related gene expressions and cell death morphology during and after a 7-day course of CORT injection. A total number of 200 one-day-old commercial Cobb broiler chicks were used in this study. From 21 to 28 d of age, broilers were randomly assigned to one of 2 groups with 5 replicates of 20 birds each; the first group received a daily intramuscular injection of 5 mg/kg BW corticosterone dissolved in 0.5 ml ethanol:saline solution (CORT group), while the second group received a daily intramuscular injection of 0.5 ml ethanol:saline only (CONT group). Growth performance, including body weight (BW), daily weight gain (DG), feed intake (FI) and feed conversion ratio (FC), were calculated at 0, 3 and 7 d after the start of the CORT injections. At the same times, blood samples were collected in each group for hematological (TWBC's and H/L ratio), T- and B-lymphocytes proliferation and plasma biochemical assays (total protein, TP; free triiodothyronine hormone, fT3; aspartate amino transaminase, AST; and alanine amino transaminase, ALT). The liver, thymus, bursa of Fabricius and spleen were dissected and weighed, and the mRNA expression of insulin-like growth factor 1 gene (IGF-1) in liver and cell-death-program gene (caspase-9) in bursa were analyzed for each group and time; while the apoptotic/necrotic cells were morphologically detected in the spleen. From 28 to 35 d of age, broilers were kept for recovery period without CORT injection and the same sampling and parameters were repeated at the end (at 14 d after initiation of the CORT injection). In

  9. Integrating Computational Science Tools into a Thermodynamics Course

    Science.gov (United States)

    Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew

    2018-01-01

    Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of their disciplines, some universities have started to integrate these tools within core courses. This paper evaluates the effect of introducing three computational modules within a thermodynamics course on student disciplinary learning and self-beliefs about computation. The results suggest that using worked examples paired to computer simulations to implement these modules have a positive effect on (1) student disciplinary learning, (2) student perceived ability to do scientific computing, and (3) student perceived ability to do computer programming. These effects were identified regardless of the students' prior experiences with computer programming.

  10. Bridging the Gap: Embedding Communication Courses in the Science Undergraduate Curriculum

    Science.gov (United States)

    Jandciu, Eric; Stewart, Jaclyn J.; Stoodley, Robin; Birol, Gülnur; Han, Andrea; Fox, Joanne A.

    2015-01-01

    The authors describe a model for embedding science communication into the science curriculum without displacing science content. They describe the rationale, development, design, and implementation of two courses taught by science faculty addressing these criteria. They also outline the evaluation plan for these courses, which emphasize broad…

  11. A graduate course for science communicators: a Mexican approach

    Directory of Open Access Journals (Sweden)

    Elaine Reynoso Haynes

    2009-03-01

    Full Text Available Within the UNAM (The National Autonomous University of Mexico there is an institution, the Dirección General de Divulgación de la Ciencia (DGDC devoted to the popularization of science through different media such as museums, exhibitions, journals, books, radio and TV programs, internet, workshops for children, demos, shows, plays, summer courses and outreach programs. Most of these products and materials are planned, designed and manufactured by a multidisciplinary team of professionals in the DGDC. Some of our most outstanding projects are: the creation and operation of two science museums, UNIVERSUM (on the university campus, and the Museo de la Luz (Museum of Light in the center of the city, many temporary and traveling exhibitions, museums in other parts of the country and abroad and a monthly publication for young readers called ¿Cómo ves?

  12. Interdisciplinary Science Courses for College General Education Requirements: Perspectives of Faculty at a State University.

    Science.gov (United States)

    Dass, Pradeep Maxwell

    Science educators have been advocating a broader role for science education--that of helping all students see the relevance of science to their own lives. Yet the only experience with post-secondary science that non-science majors get is through a couple of science courses which are part of the general education requirements (GERs) for a liberal…

  13. Prospective Science Teachers' Attitudes and Views of Using Journal Writing in the "Methods of Teaching Science" Course

    Science.gov (United States)

    Ambusaidi, Abdullah

    2014-01-01

    The aim of this study was to investigate the attitudes of prospective science teachers at Sultan Qaboos University towards and their views about using journal writing in the Methods of Teaching Science course. Twenty-six prospective science teachers were asked to write about each topic in the course in their journal to show their understanding of…

  14. Social Science Boot Camp: Development and Assessment of a Foundational Course on Academic Literacy in the Social Sciences

    Science.gov (United States)

    Eaton, Judy; Long, Jennifer; Morris, David

    2018-01-01

    We developed a course, as part of our institution's core program, which provides students with a foundation in academic literacy in the social sciences: how to find, read, critically assess, and communicate about social science research. It is not a research methods course; rather, it is intended to introduce students to the social sciences and be…

  15. Construction of concept maps as tool for Biochemistry learning

    Directory of Open Access Journals (Sweden)

    Silvia Lopes de Menezes

    2006-07-01

    Full Text Available The use of concept maps on the teaching of sciences has been object of worldwide research with different purposes: to detect the previous knowledge of the students on certain topics or to evaluate learning, among others. Based on Ausubel´s cognitive psychology, concept maps assume that the learning is accomplished by assimilation of new concepts and propositions to the students´ cognitive structure, contributing to establish links between the previous and new knowledge. It is especially interesting on the approach of interdisciplinary issues, as many studied in Biochemistry.The relevance of the use of concept maps on biochemistry learning was evaluated on a thirty-hour undergraduation optional course, with interdisciplinary topics, which are not usually included on introductory Biochemistry courses. The course Biochemistry of Animal Venoms was structured in seven module where the biochemical action mechanisms of the venoms of Crotalus sp (south american rattlesnake, Bothrops sp (jararaca, Loxosceles sp (brown spider, Tityus sp (yellow scorpion, Phoneutria sp (armed spider, Apis mellifera (honey bee and Latrodectus sp (black widowwere discussed. The students worked in small groups and, at each module, there were (1 an oriented study, guided by questions, texts and schemes, supervised by the teachers, (2 the construction of individual concept maps, where the local and systemic effects of the venoms should be predicted by their biochemical composition and (3 the construction of a new map by the group, incorporating the information of the individual maps. The difficulty level of these tasks was gradually increased throughout the course, with lesser time to carry out the tasks, lesser assistance during the oriented study and even lesser information on the venom effects.The course assessment was given by the number, quality and correction of the concepts relationship present in the concept maps, through a questionnaire and by the

  16. Physiotherapy Students’ Attitudes to Basic Medical Sciences Courses

    Directory of Open Access Journals (Sweden)

    Vasaghi Gharamaleki B

    2015-04-01

    Full Text Available  Aims: Students’ attitude to the basic sciences courses has a considerable impact in their clinical practice. The aim of this study was to investigate the attitudes of undergraduate and graduate students to the Physiotherapy rather than basic science. Instrument & Methods: This descriptive cross-sectional study was done on 151 undergraduate and graduate schools of Physiotherapy and Rehabilitation, Tehran and Iran University of Medical Sciences students using easy access sampling in October and November of 2012. To evaluate the attitude and the importance and effectiveness subscales the West questionnaire was used. Data were analyzed using SPSS 17 software using One-way ANOVA, independent T, and logistic regression tests. Findings: There was a significant difference between the sexes in response to items 1, 4, 7 and 8. The attitudes mean and the importance and effectiveness subscales were greater in women in the bachelor fifth and seventh semesters. The attitude and the importance of women were significantly more positive than men in Master degree students of the first semester, but there was no statistically significant difference between the sexes in the third semester of the Master degree students. Conclusion: Bachelor and Master students' positive attitudes toward physical science is affected by their gender and women pay more attention to learn treatment physiologically details, while men are more likely to emphasize on the results of the treatment. By increasing the presence of women in Master degrees their attitude get closer to men.

  17. Study of science students' expectation for university writing courses

    Directory of Open Access Journals (Sweden)

    Shanthi Nadarajan

    2013-07-01

    Full Text Available The New Malaysia Education Blueprint (2012 states that the private sector continues to have concerns for Malaysian graduates’ English proficiency. The present study investigates the views and expectations of science students taking English courses in a public university. The findings revealed that learners saw opportunities to communicate and job applications process as important soft skills. They preferred practical learning methods above traditional teaching methods. Learners considered group performance, personal attitudes and online activities as important learning opportunities, while factual knowledge, report writing were least supported despite the fact that the majority viewed both assessments and instructional process as relevant. The data revealed that though they were dissatisfied with their existing level of proficiency, many students continued to expect an A for their course. An assessment of the learner’s’ language ability revealed that language ability was less under the learner’s control and more dependent on learner proficiency level. Taken together, this study suggests that the curriculum for the Professional Writing course should be highly diversified and balanced, with some emphasis on getting less proficient learners to read and improve their grammar skills while better students should be given opportunities to develop creative talents and interpersonal skills.

  18. Incorporating Geoethics in Introductory Earth System Science Courses

    Science.gov (United States)

    Schmitt, J.

    2014-12-01

    The integrative nature of Earth System Science courses provides extensive opportunities to introduce students to geoethical inquiry focused on globally significant societal issues. Geoscience education has traditionally lagged in its efforts to increase student awareness of the significance of geologic knowledge to understanding and responsibly confronting causes and possible solutions for emergent, newly emerging, and future problems of anthropogenic cause and consequence. Developing an understanding of the human impact on the earth system requires early (lower division) and for geoscience majors, repeated (upper division) curricular emphasis on the interactions of the lithosphere, hydrosphere, atmosphere, biosphere, and pedosphere across space and through time. Capturing the interest of university students in globally relevant earth system issues and their ethical dimensions while first learning about the earth system is an important initial step in bringing geoethical deliberation and awareness to the next generation of geoscientists. Development of a new introductory Earth System Science course replacing a traditional introductory Physical Geology course at Montana State University has involved abandonment of concept-based content organization in favor of a place-based approach incorporating examination of the complex interactions of earth system components and emergent issues and dilemmas deriving from the unique component interactions that characterize each locale. Thirteen different place-based week-long modules (using web- and classroom-based instruction) were developed to ensure cumulative broad coverage across the earth geographically and earth system components conceptually. Each place-based instructional module contains content of societal relevance requiring synthesis, critical evaluation, and reflection by students. Examples include making linkages between deforestation driven by economics and increased seismicity in Haiti, agriculture and development

  19. Using Pamphlets to Teach Biochemistry: A Service-Learning Project

    Science.gov (United States)

    Harrison, Melinda A.; Dunbar, David; Lopatto, David

    2013-01-01

    A service-learning project appropriate for a biochemistry or advanced biochemistry course was designed and implemented. The project involved students partnering with a homeless shelter to design informational pamphlets to be displayed at the shelter for the clients' use. The pamphlet topics were based on diseases studied within the course.…

  20. Blended Learning in Biochemistry Education: Analysis of Medical Students' Perceptions

    Science.gov (United States)

    Wardenski, Rosilaine de Fatima; de Espindola, Marina Bazzo; Struchiner, Miriam; Giannella, Tais Rabetti

    2012-01-01

    The objective of this study was to analyze first-year UFRJ medical students' perceptions about the implementation of a blended learning (BL) experience in their Biochemistry I course. During the first semester of 2009, three Biochemistry professors used the Constructore course management system to develop virtual learning environments (VLEs) for…

  1. A Module-Based Environmental Science Course for Teaching Ecology to Non-Majors

    Science.gov (United States)

    Smith, Geoffrey R.

    2010-01-01

    Using module-based courses has been suggested to improve undergraduate science courses. A course based around a series of modules focused on major environmental issues might be an effective way to teach non-science majors about ecology and ecology's role in helping to solve environmental problems. I have used such a module-based environmental…

  2. College Student Perceptions of Psychology as a Science as a Function of Psychology Course Enrollment

    Science.gov (United States)

    Pettijohn, Terry F., II; Pettijohn, Terry F.; Brenneman, Miranda M.; Glass, Jamie N.; Brito, Gabriela R.; Terranova, Andrew M.; Kim, JongHan; Meyersburg, C. A.; Piroch, Joan

    2015-01-01

    College students (N = 297) completed a perceptions of psychology as a science survey before and after completion of psychology courses. Psychology as a science scores increased significantly from the beginning to the end of the research methods courses, but scores in introductory psychology courses did not change and scores for students in…

  3. Research and Teaching: Reenvisioning the Introductory Science Course as a Cognitive Apprenticeship

    Science.gov (United States)

    Thompson, Meredith M.; Pastorino, Lucia; Lee, Star; Lipton, Paul

    2016-01-01

    Introductory science courses play a critical role in the recruitment and retention of undergraduate science majors. In particular, first-year courses are opportunities to engage students in scientific practices and motivate them to consider scientific careers. We developed an introductory course using a semester-long series of established…

  4. A Comprehensive Course Introducing Environmental Science : Case Study of “Introduction to Environmental Science” as a Common Course in the Graduate School of Environmental Science

    OpenAIRE

    山中, 康裕; 三井, 翔太

    2017-01-01

    The course “Introduction to Environmental Science” was designed and held during the academic year 2015-2016 for new masterʼs course students at the Graduate School of Environmental Science, Hokkaido University. The course was designed in accord with societal needs such as consensus building for environmental conservation and associated scientific evidence, bringing together a large number of students from various disciplines. The course was composed of six modules in which multipl...

  5. Science self-efficacy of African Americans enrolled in freshman level physical science courses in two historically black institutions

    Science.gov (United States)

    Prihoda, Belinda Ann

    2011-12-01

    Science education must be a priority for citizens to function and be productive in a global, technological society. African Americans receive fewer science degrees in proportion to the Caucasian population. The primary purposes of this study were to determine the difference between the pretest and posttest science self-efficacy scores of African-American nonscience majors, the difference between the pretest and posttest science self-efficacy scores of African-American science majors, the relationship between science self-efficacy and course grade, the relationship between gender and science self-efficacy score, and the relationship between science self-efficacy score and course withdrawal. This study utilized a Likert survey instrument. All participants were enrolled in freshman level courses in the physical sciences at a historically black institution: a college or university. Participants completed the pretest survey within two weeks after the 12th class day of the semester. Initially, 458 participants completed the pretest survey. The posttest was administered within two weeks before the final exam. Only 245 participants completed the posttest survey. Results indicate that there is a difference in science self-efficacy of science majors and nonscience majors. There was no significant difference between the pretest and posttest science self-efficacy scores of African-American science majors and nonscience majors. There was no significant relationship between science self-efficacy and course grade, gender and science self-efficacy score, and course withdrawal and science self-efficacy score.

  6. Comparison of student confidence and perceptions of biochemistry concepts using a team-based learning versus traditional lecture-based format.

    Science.gov (United States)

    Gryka, Rebecca; Kiersma, Mary E; Frame, Tracy R; Cailor, Stephanie M; Chen, Aleda M H

    To evaluate differences in student confidence and perceptions of biochemistry concepts using a team-based learning (TBL) format versus a traditional lecture-based format at two universities. Two pedagogies (TBL vs lecture-based) were utilized to deliver biochemistry concepts at two universities in a first-professional year, semester-long biochemistry course. A 21-item instrument was created and administered pre-post semester to assess changes in confidence in learning biochemistry concepts using Bandura's Social Cognitive Theory (eight items, 5-point, Likert-type) and changes in student perceptions of biochemistry utilizing the theory of planned behavior (TPB) domains (13 items, 7- point, Likert-type). Wilcoxon signed-rank tests were used to evaluate pre-post changes, and Mann Whitney U tests for differences between universities. All students (N=111) had more confidence in biochemistry concepts post-semester, but TBL students (N=53) were significantly more confident. TBL students also had greater agreement that they are expected to actively engage in science courses post-semester, according to the perceptions of biochemistry subscale. No other differences between lecture and TBL were observed post-semester. Students in a TBL course had greater gains in confidence. Since students often engage in tasks where they feel confident, TBL can be a useful pedagogy to promote student learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Laboratory Development and Lecture Renovation for a Science of Food and Cooking Course

    Science.gov (United States)

    Miles, Deon T.; Borchardt, Adrienne C.

    2014-01-01

    Several years ago, a new nonscience majors course, The Science of Food and Cooking, was developed at our institution. The course covered basic scientific concepts that would normally be discussed in a typical introductory chemistry course, in the context of food and food preparation. Recently, the course has been revamped in three major ways: (1)…

  8. Students' Attitudes towards Interdisciplinary Education: A Course on Interdisciplinary Aspects of Science and Engineering Education

    Science.gov (United States)

    Gero, Aharon

    2017-01-01

    A course entitled "Science and Engineering Education: Interdisciplinary Aspects" was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is…

  9. Communicating the Benefits of a Full Sequence of High School Science Courses

    Science.gov (United States)

    Nicholas, Catherine Marie

    2014-01-01

    High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit…

  10. Teaching for Conceptual Change in Elementary and Secondary Science Methods Courses.

    Science.gov (United States)

    Marion, Robin; Hewson, Peter W.; Tabachnick, B. Robert; Blomker, Kathryn B.

    1999-01-01

    Describes and analyzes two science methods courses at the elementary and secondary levels for how they addressed four ideas: (1) how students learn science; (2) how teachers teach science to students; (3) how prospective science teachers learn about the first two ideas; and (4) how methods instructors teach prospective science teachers about the…

  11. Increasing Scientific Literacy about Global Climate Change through a Laboratory-Based Feminist Science Course

    Science.gov (United States)

    George, Linda A.; Brenner, Johanna

    2010-01-01

    The authors have developed and implemented a novel general education science course that examines scientific knowledge, laboratory experimentation, and science-related public policy through the lens of feminist science studies. They argue that this approach to teaching general science education is useful for improving science literacy. Goals for…

  12. THE USE OF MULTIPLE TOOLS FOR TEACHING MEDICAL BIOCHEMISTRY

    Directory of Open Access Journals (Sweden)

    A.B. Sé

    2007-05-01

    Full Text Available The pros and cons of Problem Based Learning (PBL have been extensivelydiscussed in the literature. We describe PBL-like strategies used at UnB (some ofthem since 1999 that may be useful elsewhere to improve undergraduatebiochemistry teaching with clinical applications. The main activities are: (i aseminar/poster system, (ii a true-or-false applied biochemistry exam (prepared bypeer tutors, (iii a 9-hour-exam on metabolism (based in actual papers, (iv anAdvanced Biochemistry course (directed to peer tutors, (v pizza-and-pasta (formetabolism teaching and free radicals (real science for students experiments,(vi the BioBio blog (http://www.biobio-unb.blogspot.com, (vii student lectures onhealth issues directed to the community, and (viii the BioBio Show. The mainobjective of these activities is providing students with a more practical andentertaining approach to biochemistry using philosophic PBL principles such asthe application of basic knowledge to real situations (diseases, experiments andscientific discoveries. We also emphasize (a the importance of peer-tutor activityfor optimized learning of students and peer tutors, (b the relevance of a closerinteraction between students and professors, and (c the necessity to initiatestudents precociously in actual basic/medical science and contact with the public.Most activities have been evaluated by the students through written questionnairesand informal conversations, for several semesters, indicating good acceptanceand approval of these methods.

  13. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  14. Clinical biochemistry education in Spain.

    Science.gov (United States)

    Queraltó, J M

    1994-12-31

    Clinical biochemistry in Spain was first established in 1978 as an independent specialty. It is one of several clinical laboratory sciences specialties, together with haematology, microbiology, immunology and general laboratory (Clinical analysis, análisis clinicos). Graduates in Medicine, Pharmacy, Chemistry and Biological Sciences can enter post-graduate training in Clinical Chemistry after a nation-wide examination. Training in an accredited Clinical Chemistry department is 4 years. A national committee for medical and pharmacist specialties advises the government on the number of trainees, program and educational units accreditation criteria. Technical staff includes nurses and specifically trained technologists. Accreditation of laboratories is developed at different regional levels. The Spanish Society for Clinical Biochemistry and Molecular Pathology (SECQ), the national representative in the IFCC, has 1600 members, currently publishes a scientific journal (Química Clinica) and a newsletter. It organizes a continuous education program, a quality control program and an annual Congress.

  15. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  16. Integrating Climate Change Science and Sustainability in Environmental Science, Sociology, Philosophy and Business Courses.

    Science.gov (United States)

    Boudrias, M. A.; Cantzler, J.; Croom, S.; Huston, C.; Woods, M.

    2015-12-01

    Courses on sustainability can be taught from multiple perspectives with some focused on specific areas (environmental, socio-cultural, economic, ethics) and others taking a more integrated approach across areas of sustainability and academic disciplines. In conjunction with the Climate Change Education Program efforts to enhance climate change literacy with innovative approaches, resources and communication strategies developed by Climate Education Partners were used in two distinct ways to integrate climate change science and impacts into undergraduate and graduate level courses. At the graduate level, the first lecture in the MBA program in Sustainable Supply Chain Management is entirely dedicated to climate change science, local and global impacts and discussions about key messages to communicate to the business community. Basic science concepts are integrated with discussions about mitigation and adaptation focused on business leaders. The concepts learned are then applied to the semester-long business plan project for the students. At the undergraduate level, a new model of comprehensive integration across disciplines was implemented in Spring 2015 across three courses on Sustainability each with a specific lens: Natural Science, Sociology and Philosophy. All three courses used climate change as the 'big picture' framing concept and had similar learning objectives creating a framework where lens-specific topics, focusing on depth in a discipline, were balanced with integrated exercises across disciplines providing breadth and possibilities for integration. The comprehensive integration project was the creation of the climate action plan for the university with each team focused on key areas of action (water, energy, transportation, etc.) and each team built with at least one member from each class ensuring a natural science, sociological and philosophical perspective. The final project was presented orally to all three classes and an integrated paper included

  17. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    Science.gov (United States)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    Earth Science II: The Solid Earth -- Earth History and Planetary Science -- is the second of two Earth Science courses, and one of eleven graduate level science Contextualized Content Courses (CCC), that have been developed by the Boston Science Partnership as part of an NSF-funded Math Science Partnership program. A core goal of these courses is to provide high level science content to middle and high school teachers while modeling good instructional practices directly tied to the Boston Public Schools and Massachusetts science curriculum frameworks. All of these courses emphasize hands-on, lab-based, inquiry-driven, student-centered lessons. The Earth Science II team aimed to strictly adhere to ABC (Activity Before Concept) and 5E/7E models of instruction, and limited lecture or teacher-centered instruction to the later “Explanation” stages of all lessons. We also introduced McNeill and Krajick’s Claim-Evidence-Reasoning (CER) model of scientific explanation for middle school classroom discourse, both as a powerful scaffold leading to higher levels of accountable talk in the classroom, and to model science as a social construct. Daily evaluations, dutifully filled out by the course participants and diligently read by the course instructors, were quite useful in adapting instruction to the needs of the class on a real-time basis. We find the structure of the CCC teaching teams - university-based faculty providing expert content knowledge, K-12-based faculty providing age appropriate pedagogies and specific links to the K-12 curriculum - quite a fruitful, two-way collaboration. From the students’ perspective, one of the most useful takeaways from the university-based faculty was “listening to experts model out loud how they reason,” whereas some of the more practical takeaways (i.e., lesson components directly portable to the classroom?) came from the K-12-based faculty. The main takeaways from the course as a whole were the promise to bring more hands

  18. Experiences of Using Automated Assessment in Computer Science Courses

    Directory of Open Access Journals (Sweden)

    John English

    2015-10-01

    Full Text Available In this paper we discuss the use of automated assessment in a variety of computer science courses that have been taught at Israel Academic College by the authors. The course assignments were assessed entirely automatically using Checkpoint, a web-based automated assessment framework. The assignments all used free-text questions (where the students type in their own answers. Students were allowed to correct errors based on feedback provided by the system and resubmit their answers. A total of 141 students were surveyed to assess their opinions of this approach, and we analysed their responses. Analysis of the questionnaire showed a low correlation between questions, indicating the statistical independence of the individual questions. As a whole, student feedback on using Checkpoint was very positive, emphasizing the benefits of multiple attempts, impartial marking, and a quick turnaround time for submissions. Many students said that Checkpoint gave them confidence in learning and motivation to practise. Students also said that the detailed feedback that Checkpoint generated when their programs failed helped them understand their mistakes and how to correct them.

  19. A Science Faculty's Transformation of Nature of Science Understanding into His Teaching Graduate Level Chemistry Course

    Science.gov (United States)

    Aydin, Sevgi

    2015-01-01

    This is an interpretive case study to examine the teaching of an experienced science faculty who had a strong interest in teaching undergraduate and graduate science courses and nature of science specifically. It was interested in how he transformed knowledge from his experience as a scientist and his ideas about nature of science into forms…

  20. The Impact of a Curriculum Course on Pre-Service Primary Teachers' Science Content Knowledge and Attitudes towards Teaching Science

    Science.gov (United States)

    Murphy, Cliona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students'…

  1. The impact of a curriculum course on pre-service primary teachers' science content knowledge and attitudes towards teaching science

    OpenAIRE

    Murphy, Clíona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students' conceptual and pedagogical knowledge of science and on their attitudes towards teaching science in the primary classroom. A questionnaire, containing closed ...

  2. Promoting active learning of graduate student by deep reading in biochemistry and microbiology pharmacy curriculum.

    Science.gov (United States)

    Peng, Ren

    2017-07-08

    To promote graduate students' active learning, deep reading of high quality papers was done by graduate students enrolled in biochemistry and microbiology pharmacy curriculum offered by college of life science, Jiangxi Normal University from 2013 to 2015. The number of graduate students, who participated in the course in 2013, 2014, and 2015 were eleven, thirteen and fifteen, respectively. Through deep reading of papers, presentation, and group discussion in the lecture, these graduate students have improved their academic performances effectively, such as literature search, PPT document production, presentation management, specialty document reading, academic inquiry, and analytical and comprehensive ability. The graduate students also have increased their understanding level of frontier research, scientific research methods, and experimental methods. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):305-312, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  3. The Experimental Teaching Reform in Biochemistry and Molecular Biology for Undergraduate Students in Peking University Health Science Center

    Science.gov (United States)

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and…

  4. A Composite Self-Report: Reasons for Taking Science Courses as Given by Cocoa High School Science Students.

    Science.gov (United States)

    Louwerse, Frances H.

    A self-report instrument (questionnaire/reaction scale) was developed and administered to students in grades 9-12 to: (1) determine the number of science courses taken by each grade level; (2) estimate the number of science courses requested for future years and indicate where recruitment efforts would be needed; (3) examine other-directed reasons…

  5. Early Childhood Pre-Service Teachers' Self-Images of Science Teaching in Constructivism Science Education Courses

    Science.gov (United States)

    Go, Youngmi; Kang, Jinju

    2015-01-01

    The purpose of this study is two-fold. First, it investigates the self-images of science teaching held by early childhood pre-service teachers who took constructivism early childhood science education courses. Second, it analyzes what aspects of those courses influenced these images. The participants were eight pre-service teachers who took these…

  6. Principles of formation of the course of computer science for engineering specialities

    Directory of Open Access Journals (Sweden)

    Валерий Евгеньевич Жужжалов

    2010-03-01

    Full Text Available The article describes the principles of computer science courses. The advantages and disadvantages of functional programming and importance of the Lisp language in teaching computer science are reflected in the article.

  7. DNA Fingerprint Analysis of Three Short Tandem Repeat (STR) Loci for Biochemistry and Forensic Science Laboratory Courses

    Science.gov (United States)

    McNamara-Schroeder, Kathleen; Olonan, Cheryl; Chu, Simon; Montoya, Maria C.; Alviri, Mahta; Ginty, Shannon; Love, John J.

    2006-01-01

    We have devised and implemented a DNA fingerprinting module for an upper division undergraduate laboratory based on the amplification and analysis of three of the 13 short tandem repeat loci that are required by the Federal Bureau of Investigation Combined DNA Index System (FBI CODIS) data base. Students first collect human epithelial (cheek)…

  8. Impact of Virtual Patients as Optional Learning Material in Veterinary Biochemistry Education.

    Science.gov (United States)

    Kleinsorgen, Christin; von Köckritz-Blickwede, Maren; Naim, Hassan Y; Branitzki-Heinemann, Katja; Kankofer, Marta; Mándoki, Míra; Adler, Martin; Tipold, Andrea; Ehlers, Jan P

    2018-01-01

    Biochemistry and physiology teachers from veterinary faculties in Hannover, Budapest, and Lublin prepared innovative, computer-based, integrative clinical case scenarios as optional learning materials for teaching and learning in basic sciences. These learning materials were designed to enhance attention and increase interest and intrinsic motivation for learning, thus strengthening autonomous, active, and self-directed learning. We investigated learning progress and success by administering a pre-test before exposure to the virtual patients (vetVIP) cases, offered vetVIP cases alongside regular biochemistry courses, and then administered a complementary post-test. We analyzed improvement in cohort performance and level of confidence in rating questions. Results of the performance in biochemistry examinations in 2014, 2015, and 2016 were correlated with the use of and performance in vetVIP cases throughout biochemistry courses in Hannover. Surveys of students reflected that interactive cases helped them understand the relevance of basic sciences in veterinary education. Differences between identical pre- and post-tests revealed knowledge improvement (correct answers: +28% in Hannover, +9% in Lublin) and enhanced confidence in decision making ("I don't know" answers: -20% in Hannover, -7.5% in Lublin). High case usage and voluntary participation (use of vetVIP cases in Hannover and Lublin >70%, Budapest learning could be extended and generated cases should be shared across veterinary faculties.

  9. The Impact of Agricultural Science Education on Performance in a Biology Course

    Science.gov (United States)

    Ernest, Byron L.

    The lack of student achievement in science is often cited in U.S. educational reports. At the study site, low student achievement in science has been an ongoing concern for administrators. The purpose of this mixed methods study was to investigate the impact of agricultural science education on student performance in a Biology course. Vygotsky's constructivist theory and Gardner's multiple intelligences theory provided the framework for the study. The quantitative research question examined the relationship between the completion of Fundamentals of Agriculture Science and Business course and student performance in Biology I. Teacher perceptions and experiences regarding the integration of science and agricultural curriculum and traditional science curriculum were examined qualitatively. A sequential explanatory design was employed using 3 years of data collected from 486 high school students and interviews with 10 teachers. Point-biserial correlation and chi square tests revealed statistically significant relationships between whether or not students completed Fundamentals of Agriculture Science and Business and Biology I course performance, as measured by the end of course assessment and the course grade. In the qualitative sequence, typological and inductive data analyses were applied to the interview data, and themes of student impact and teacher experience emerged. Social change implications may be possible through improved science education for students in this program. Agriculture science courses may be used to facilitate learning of complex science concepts, designing teacher collaboration and professional development for teaching science in a relevant context, and resultant improved student performance in science.

  10. A Field Course in Ocean Sciences that Emphasizes Sustainabilty

    Science.gov (United States)

    Macko, S. A.; O'Connell, M. T.

    2016-12-01

    Sustainability awareness is increasingly a subject in educational settings. Marine science classes are perfect settings of establishing sustainability awareness owing to declining populations of organisms and perceived collapse in fisheries worldwide. Students in oceanography classes often request more direct exposure to actual ocean situations or field trips. During regular session (18 week) or shorter term (4 week) summer classes such long trips are logistically difficult owing to large numbers of students involved or timing. This approach, to use a field basis for a course supplement addresses the requests by utilizing local resources and trips for a limited number of students (20) to locations in which Ocean experiences are available, and are often supported through education and outreach components. The vision of the class was a mixture of classroom time, readings, along with paper and laboratories. In addition, short day-long trips to locations where the ocean was "captured" were also used to supplement the experience as well as speakers involved with aquaculture. Central Virginia is a fortunate location for such a class, with close access for travel to the Chesapeake Bay and numerous field stations, museums with ocean-based exhibits (the Smithsonian and NOAA) that address both extant and extinct Earth history, as well as national/state aquaria in Baltimore and Virginia Beach. Furthermore, visits to local seafood markets at local stores, or larger city markets in Washington, Baltimore and Virginia Beach and International distribution centers, enhanced the understanding of productivity in the ocean, and viability of the fisheries sustainability. The course could then address not only the particulars of the marine science, but also aspects of sustainability with discussions on ethics, including keeping animals in captivity or overfishing of particular species and the special difficulties that arise from captive or culturing ocean populations. In addition, the

  11. Integrating Hands-On Undergraduate Research in an Applied Spatial Science Senior Level Capstone Course

    Science.gov (United States)

    Kulhavy, David L.; Unger, Daniel R.; Hung, I-Kuai; Douglass, David

    2015-01-01

    A senior within a spatial science Ecological Planning capstone course designed an undergraduate research project to increase his spatial science expertise and to assess the hands-on instruction methodology employed within the Bachelor of Science in Spatial Science program at Stephen F Austin State University. The height of 30 building features…

  12. International institute for collaborative cell biology and biochemistry--history and memoirs from an international network for biological sciences.

    Science.gov (United States)

    Cameron, L C

    2013-01-01

    I was invited to write this essay on the occasion of my selection as the recipient of the 2012 Bruce Alberts Award for Excellence in Science Education from the American Society for Cell Biology (ASCB). Receiving this award is an enormous honor. When I read the email announcement for the first time, it was more than a surprise to me, it was unbelievable. I joined ASCB in 1996, when I presented a poster and received a travel award. Since then, I have attended almost every ASCB meeting. I will try to use this essay to share with readers one of the best experiences in my life. Because this is an essay, I take the liberty of mixing some of my thoughts with data in a way that it not usual in scientific writing. I hope that this sacrifice of the format will achieve the goal of conveying what I have learned over the past 20 yr, during which time a group of colleagues and friends created a nexus of knowledge and wisdom. We have worked together to build a network capable of sharing and inspiring science all over the world.

  13. Symposium 19: The contributions of the Department of Biochemistry/USP towards Biochemistry teaching

    OpenAIRE

    Baptista Torres, Bayardo; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP)

    2014-01-01

    K-Education(Portuguese) Chair: V. Trindade Bayardo Torres; Clovis Wannmacher; Denise MacedoThe contributions of the Department of Biochemistry/USP towards Biochemistry teaching.O ensino de Bioquímica nos últimos 20 anosBayardo B. TorresDepartamento de Bioquímica, Instituto de Química, USP. São Paulo, Brazil.Among the contributions of the Department of Biochemistry/USP one must recall:1. Winter school for graduate studentsThis course, now at the ninth edition, is intended for students in the f...

  14. Modeling the Activities of Scientists: Prospective Science Teachers' Poster Presentations in An STS Course

    Science.gov (United States)

    Dogan, Alev; Kaya, Osman Nafiz; Kilic, Ziya; Kilic, Esma; Aydogdu, Mustafa

    2004-01-01

    In this study, prospective science teachers' (PSTs) views about their poster presentations were investigated. These posters were developed through PSTs' online and library research and scientific mini-symposiums in chemistry related topics in the framework of science, technology and society course (STS). During the first four weeks of STS course,…

  15. The Importance of Agriculture Science Course Sequencing in High Schools: A View from Collegiate Agriculture Students

    Science.gov (United States)

    Wheelus, Robin P.

    2009-01-01

    The objective of this study was to investigate the importance of Agriculture Science course sequencing in high schools, as a preparatory factor for students enrolled in collegiate agriculture classes. With the variety of courses listed in the Texas Essential Knowledge and Skills (TEKS) for Agriculture Science, it has been possible for counselors,…

  16. Stem Cells and Society: An Undergraduate Course Exploring the Intersections among Science, Religion, and Law

    Science.gov (United States)

    Pierret, Chris; Friedrichsen, Patricia

    2009-01-01

    The intersection of science and our society has led to legal and ethical issues in which we all play a part. To support development of scientific literacy, college science courses need to engage students in difficult dialogues around ethical issues. We describe a new course, Stem Cells and Society, in which students explore the basic biology of…

  17. Using GIS in an Earth Sciences Field Course for Quantitative Exploration, Data Management and Digital Mapping

    Science.gov (United States)

    Marra, Wouter A.; van de Grint, Liesbeth; Alberti, Koko; Karssenberg, Derek

    2017-01-01

    Field courses are essential for subjects like Earth Sciences, Geography and Ecology. In these topics, GIS is used to manage and analyse spatial data, and offers quantitative methods that are beneficial for fieldwork. This paper presents changes made to a first-year Earth Sciences field course in the French Alps, where new GIS methods were…

  18. Path Not Found: Disparities in Access to Computer Science Courses in California High Schools

    Science.gov (United States)

    Martin, Alexis; McAlear, Frieda; Scott, Allison

    2015-01-01

    "Path Not Found: Disparities in Access to Computer Science Courses in California High Schools" exposes one of the foundational causes of underrepresentation in computing: disparities in access to computer science courses in California's public high schools. This report provides new, detailed data on these disparities by student body…

  19. Science, Technology, and Society: Some Philosophical Reflections on a Grade 11 Course.

    Science.gov (United States)

    Gardner, Paul L.

    1993-01-01

    Speculates on factors that may influence the lack of status of a "Science and Technology" course for grade 11 in British Columbia. Suggests that Aristotelian conceptions of the superiority of pure science over practical knowledge affect the status of school subjects. Questions the course's portrayal of the nature of technology and…

  20. Building Political Participation: The Role of Family Policy and Political Science Courses

    Science.gov (United States)

    Parrott, Emily

    2017-01-01

    This mixed-methods study examined the long-term associations between two kinds of politics courses--required political science courses and required family policy courses--and the political participation, knowledge, skill, efficacy, and politically engaged identity of child and family studies alumni. Two special cases were examined: those who…

  1. Making Politics "Click": The Costs and Benefits of Using Clickers in an Introductory Political Science Course

    Science.gov (United States)

    Evans, Heather K.

    2012-01-01

    In this article, the author addresses both the costs and benefits of implementing clickers into an introductory political science course. Comparing student responses to a mid-semester survey in both a clicker and non-clicker course, the results show that students have higher satisfaction of the course and instructor, higher exam scores, and feel…

  2. Design Principles for "Thriving in Our Digital World": A High School Computer Science Course

    Science.gov (United States)

    Veletsianos, George; Beth, Bradley; Lin, Calvin; Russell, Gregory

    2016-01-01

    "Thriving in Our Digital World" is a technology-enhanced dual enrollment course introducing high school students to computer science through project- and problem-based learning. This article describes the evolution of the course and five lessons learned during the design, development, implementation, and iteration of the course from its…

  3. The Effect of a History-based Course in Optics on Students' Views about Science.

    Science.gov (United States)

    Galili, Igal; Hazan, Amnon

    2001-01-01

    Describes an experimental course in optics for 10th grade high school students. The course incorporates those historical ideas, views, and conceptions that constituted the early understanding of light and vision. Presents a part of the course which assesses its impact on students' views about science and some related technological and cultural…

  4. Game Development as Didactic Strategy for Biochemistry Teaching

    Directory of Open Access Journals (Sweden)

    G.G. Hornink

    2010-05-01

    Full Text Available It is well known that students and teachers have difficulties in learning and teaching Biochemistry due to its abstract and interconnected contents. This work proposes a didactic strategy in order to facilitate teaching and learning process in Biochemistry. The strategy was implemented with biological science undergraduate students. At first, the students were divided into groups with a specific topic to develop a game. During the semester, problem based learning cases, online activities like crossword puzzle, essay questions and educational softwares were used to present the content of each topic. The groups were oriented in classroom and online, to choose and organize contents and create ways to approach them in games. At the end of the course the groups played each other games, which were evaluated by teacher and students following some criteria like: creativity, content organization, interdisciplinarity, proposal coherence, instructions clarity, specific content. The game elaboration contributed to the development of social and cognitive functions, such as teamwork and troubleshooting, providing an interesting perspective to the student about knowledge construction process. The strategy showed up students' creativity and ability to reorganize their knowledge to a different education level. In an overview, the results indicate that the proposed didactic strategy is an effective way to enhance learning and to motivate students into Biochemistry topics.

  5. Profiles of Motivated Self-Regulation in College Computer Science Courses: Differences in Major versus Required Non-Major Courses

    Science.gov (United States)

    Shell, Duane F.; Soh, Leen-Kiat

    2013-12-01

    The goal of the present study was to utilize a profiling approach to understand differences in motivation and strategic self-regulation among post-secondary STEM students in major versus required non-major computer science courses. Participants were 233 students from required introductory computer science courses (194 men; 35 women; 4 unknown) at a large Midwestern state university. Cluster analysis identified five profiles: (1) a strategic profile of a highly motivated by-any-means good strategy user; (2) a knowledge-building profile of an intrinsically motivated autonomous, mastery-oriented student; (3) a surface learning profile of a utility motivated minimally engaged student; (4) an apathetic profile of an amotivational disengaged student; and (5) a learned helpless profile of a motivated but unable to effectively self-regulate student. Among CS majors and students in courses in their major field, the strategic and knowledge-building profiles were the most prevalent. Among non-CS majors and students in required non-major courses, the learned helpless, surface learning, and apathetic profiles were the most prevalent. Students in the strategic and knowledge-building profiles had significantly higher retention of computational thinking knowledge than students in other profiles. Students in the apathetic and surface learning profiles saw little instrumentality of the course for their future academic and career objectives. Findings show that students in STEM fields taking required computer science courses exhibit the same constellation of motivated strategic self-regulation profiles found in other post-secondary and K-12 settings.

  6. The General Philosophy Behind the New Integrated and Co-ordinated Science Courses in N.S.W. and the Science Foundation for Physics Textbook Series.

    Science.gov (United States)

    Messel, H.; Barker, E. N.

    Described are the science syllabuses and texts for the science courses written to fulfill the aims of the new system of education in the state of New South Wales, Australia. The science course was developed in two stages: (1) A four year integrated science syllabus for grades 7-10, and (2) separate courses in physics, chemistry, and biology with…

  7. Science Academies' 93rd Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    A Refresher Course in Experimental Physics will be held at the Department of Physics, Indian. Institute of Technology Patna, Bihta, India from November 07–22, 2017 for the benefit of faculty involved in teaching undergraduate and postgraduate courses. Participants in this course will gain hands-on experience with about ...

  8. Science Academies Seventy-Fifth Refresher Course in Experimental ...

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Experimental Physics will be held at Goa University, Goa from 10 to 25 May 2016 for the benefit of faculty involved in teaching undergraduate and postgraduate courses. Participants in this course will gain hands on experience with about twenty five out of forty experiments, with a low cost kit ...

  9. Science Academies' 93rd Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    2017-09-30

    Sep 30, 2017 ... A Refresher Course in Experimental Physics will be held at the Department of Physics, Indian. Institute of Technology Patna, Bihta, India from November 07–22, 2017 for the benefit of faculty involved in teaching undergraduate and postgraduate courses. Participants in this course will gain hands-on ...

  10. A Survey of Introductory Statistics Courses at University Faculties of Pharmaceutical Sciences in Japan.

    Science.gov (United States)

    Matsumura, Mina; Nakayama, Takuto; Sozu, Takashi

    2016-01-01

    A survey of introductory statistics courses at Japanese medical schools was published as a report in 2014. To obtain a complete understanding of the way in which statistics is taught at the university level in Japan, it is important to extend this survey to related fields, including pharmacy, dentistry, and nursing. The current study investigates the introductory statistics courses offered by faculties of pharmaceutical sciences (six-year programs) at Japanese universities, comparing the features of these courses with those studied in the survey of medical schools. We collected relevant data from the online syllabi of statistics courses published on the websites of 71 universities. The survey items included basic course information (for example, the course names, the targeted student grades, the number of credits, and course classification), textbooks, handouts, the doctoral subject and employment status of each lecturer, and course contents. The period surveyed was July-September 2015. We found that these 71 universities offered a total of 128 statistics courses. There were 67 course names, the most common of which was "biostatistics (iryou toukeigaku)." About half of the courses were designed for first- or second-year students. Students earned fewer than two credits. There were 62 different types of textbooks. The lecturers held doctoral degrees in 18 different subjects, the most common being a doctorate in pharmacy or science. Some course content differed, reflecting the lecturers' academic specialties. The content of introductory statistics courses taught in pharmaceutical science programs also differed slightly from the equivalent content taught in medical schools.

  11. Effects of a Science Content Course on Elementary Preservice Teachers' Self-Efficacy of Teaching Science

    Science.gov (United States)

    Bergman, Daniel J.; Morphew, Jason

    2015-01-01

    The preparation of elementary teachers to successfully teach science in their classrooms is a central issue in science education. The teacher preparation program at a large Midwestern university was modified to include a new science content course aimed at this need. A pre-/postassessment research model involved participants (N = 154) completing a…

  12. At the Crossroads of Art and Science: A New Course for University Non-Science Majors

    Science.gov (United States)

    Blatt, S. Leslie

    2004-03-01

    How much did Seurat know about the physics, physiology, and perceptual science of color mixing when he began his experiments in pointillism? Did Vermeer have a camera obscura built into his studio to create the perfect perspective and luminous effects of his canvases? Early in the 20th century, consequences of the idea that "no single reference point is to be preferred above any other" were worked out in physics by Einstein (special and general relativity), in art by Picasso (early cubism), and in music by Schoenberg (12-tone compositions); did this same paradigm-shifting concept arise, in three disparate fields, merely by coincidence? We are developing a new course, aimed primarily at non-science majors, that addresses questions like these through a combination of hands-on experiments on the physics of light, investigations in visual perception, empirical tests of various drawing and painting techniques, and field trips to nearby museums. We will show a few examples of the kinds of art/science intersections our students will be exploring, and present a working outline for the course.

  13. Biochemistry Instrumentation Core Technology Center

    Data.gov (United States)

    Federal Laboratory Consortium — The UCLA-DOE Biochemistry Instrumentation Core Facility provides the UCLA biochemistry community with easy access to sophisticated instrumentation for a wide variety...

  14. Advanced placement math and science courses: Influential factors and predictors for success in college STEM majors

    Science.gov (United States)

    Hoepner, Cynthia Colon

    President Obama has recently raised awareness on the need for our nation to grow a larger pool of students with knowledge in science mathematics, engineering, and technology (STEM). Currently, while the number of women pursuing college degrees continues to rise, there remains an under-representation of women in STEM majors across the country. Although research studies offer several contributing factors that point to a higher attrition rate of women in STEM than their male counterparts, no study has investigated the role that high school advanced placement (AP) math and science courses play in preparing students for the challenges of college STEM courses. The purpose of this study was to discover which AP math and science courses and/or influential factors could encourage more students, particularly females, to consider pursuing STEM fields in college. Further, this study examined which, if any, AP math or science courses positively contribute to a student's overall preparation for college STEM courses. This retrospective study combined quantitative and qualitative research methods. The survey sample consisted of 881 UCLA female and male students pursuing STEM majors. Qualitative data was gathered from four single-gender student focus groups, two female groups (15 females) and two male groups (16 males). This study examined which AP math and science courses students took in high school, who or what influenced them to take those courses, and which particular courses influenced student's choice of STEM major and/or best prepared her/him for the challenges of STEM courses. Findings reveal that while AP math and science course-taking patterns are similar of female and male STEM students, a significant gender-gap remains in five of the eleven AP courses. Students report four main influences on their choice of AP courses; self, desire for math/science major, higher grade point average or class rank, and college admissions. Further, three AP math and science courses were

  15. Exploration of offering photoelectric experimental general elective courses for college students of science and technology

    Science.gov (United States)

    Tao, Shen; Sun, Binchao

    2017-08-01

    The necessity of offering photoelectric experiment general elective courses, such as the experiments of modern optical and innovational photoelectric design for non optic-electric's science and engineering students were discussed based on the analysis of the status quo and problems in experimental general elective course in science and engineering colleges of our country. And the characters of photoelectric disciplines, the goal of science and engineering quality-oriented education and the reform of science education at home and abroad were also considered. The instructional objectives, contents and characteristics of the courses were investigated. The specific methods, the CDIO (conceive, design, implement and operate) mode in the general courses has been proposed; the experiences and practical effects of offering these courses were concluded.

  16. Communicating the Benefits of a Full Sequence of High School Science Courses

    Science.gov (United States)

    Nicholas, Catherine Marie

    High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit in the STEM degree production rate needed to fill the demand of the current job market and remain competitive as a nation. The purpose of the study was to make a difference in the number of students who have access to information about the benefits of completing a full sequence of science courses. This dissertation study employed qualitative research methodology to gain a broad perspective of staff through a questionnaire and document review and then a deeper understanding through semi-structured interview protocol. The data revealed that a universal sequence of science courses in the high school district did not exist. It also showed that not all students had access to all science courses; students were sorted and tracked according to prerequisites that did not necessarily match the skill set needed for the courses. In addition, the study showed a desire for more support and direction from the district office. It was also apparent that there was a disconnect that existed between who staff members believed should enroll in a full sequence of science courses and who actually enrolled. Finally, communication about science was shown to occur mainly through counseling and peers. A common science sequence, detracking of science courses, increased communication about the postsecondary and academic benefits of a science education, increased district direction and realistic mathematics alignment were all discussed as solutions to the problem.

  17. Postmortem Biochemistry and Toxicology

    Directory of Open Access Journals (Sweden)

    Robert Flanagan

    2017-04-01

    Full Text Available The aim of postmortem biochemistry and toxicology is either to help establish the cause of death, or to gain information on events immediately before death. If self-poisoning is suspected, the diagnosis may be straightforward and all that could be required is confirmation of the agents involved. However, if the cause of death is not immediately obvious then suspicion of possible poisoning or of conditions such as alcoholic ketoacidosis is of course crucial. On the other hand, it may be important to investigate adherence to prescribed therapy, for example with anticonvulsants or antipsychotics, hence sensitive methods are required. Blood sampling (needle aspiration, peripheral vein, for example femoral, ideally after proximal ligation before opening the body minimizes the risk of sample contamination with, for example, gut contents or urine. Other specimens (stomach contents, urine, liver, vitreous humor may also be valuable and may be needed to corroborate unexpected or unusual findings in the absence of other evidence. The site of sampling should always be recorded. The availability of antemortem specimens should not necessarily preclude postmortem sampling. Appropriate sample preservation, transport, and storage are mandatory. Interpretation of analytical toxicology results must take into account what is known of the pharmacokinetics and toxicology of the agent(s in question, the circumstances under which death occurred including the mechanism of exposure, and other factors such as the stability of the analyte(s and the analytical methods used. It is important to realise that changes may occur in the composition of body fluids, even peripheral blood, after death. Such changes are likely to be greater after attempted resuscitation, and with centrally-acting drugs with large volumes of distribution given chronically, and may perhaps be minimised by prompt refrigeration of the body and performing the autopsy quickly.

  18. Reproduction, physiology and biochemistry

    Science.gov (United States)

    This chapter summarizes fundamental knowledge and recent discoveries about the reproduction, physiology and biochemistry of plant-parasitic nematodes. Various types of reproduction are reviewed, including sexual reproduction and mitotic and meiotic parthenogenesis. Although much is known about the p...

  19. Prioritizing Active Learning: An Exploration of Gateway Courses in Political Science

    Science.gov (United States)

    Archer, Candace C.; Miller, Melissa K.

    2011-01-01

    Prior research in political science and other disciplines demonstrates the pedagogical and practical benefits of active learning. Less is known, however, about the extent to which active learning is used in political science classrooms. This study assesses the prioritization of active learning in "gateway" political science courses, paying…

  20. Learning Science by Engaging Religion: A Novel Two-Course Approach for Biology Majors

    Science.gov (United States)

    Eisen, Arri; Huang, Junjian

    2014-01-01

    Many issues in science create individual and societal tensions with important implications outside the classroom. We describe one model that directly addresses such tensions by integrating science and religion in two parallel, integrated courses for science majors. Evaluation of the goals of the project--(1) providing students with strategies to…

  1. Learning Environment and Attitudes Associated with an Innovative Science Course Designed for Prospective Elementary Teachers

    Science.gov (United States)

    Martin-Dunlop, Catherine; Fraser, Barry J.

    2008-01-01

    This study assessed the effectiveness of an innovative science course for improving prospective elementary teachers' perceptions of laboratory learning environments and attitudes towards science. The sample consisted of 27 classes with 525 female students in a large urban university. Changing students' ideas about science laboratory teaching and…

  2. BIOLUMINESCENCE: TEACHING BIOCHEMISTRY BEYOND THE UNIVERSITY WALLS

    Directory of Open Access Journals (Sweden)

    Ana Paula Jesus de Almeida

    2016-11-01

    Full Text Available INTRODUCTION: The use of video in teaching and learning processes provides a challenging environment, able to stimulate the intellect and facilitate understanding in life science studies. Videos can be of extraordinary importance in education and dissemination of knowledge, contributing to greater learning, but is rarely used and exploited properly, especially for teaching biochemistry. Biochemistry is considered complex because it involves many molecular structures and processes, especially considering the number of events and molecules involved in the metabolism. OBJECTIVES: This study aimed to introduce biochemistry for the students of basic education using the theme "Light, Science and Life" in a playful and fun way. MATERIALS AND METHODS: A video about bioluminescence was designed and prepared aiming to use it as a support for learning biochemistry by students of basic education of public schools located in Salvador, Bahia. In order to prepare the video, undergraduate students initially revised the literature in order to acquire proper knowledge, and along with their teacher advisor worked the elaboration of texts, textbook and questionnaire and applied at school. DISCUSSION AND RESULTS: Analysis the qualitative results of the experiment on the preparation and use of the video about "Bioluminescence" focused mainly on the content of biochemistry linked to theme Light, Science and Life, and demonstrated the importance of such work in the teaching-learning process. The dynamics used allowed greater interaction between students and teacher, and the teaching of biochemistry in a fun way beyond the university walls. CONCLUSION: The teaching through recreational resources, e.g. videos and other educational strategies that foster learning should be encouraged from basic education, always bearing in order to transmit through these teaching methods the main concepts covered in biochemistry.

  3. Laboratory Experiences in an Introduction to Natural Science Course.

    Science.gov (United States)

    Barnard, Sister Marquita

    1984-01-01

    Describes a two-semester course designed to meet the needs of future elementary teachers, home economists, and occupational therapists. Laboratory work includes homemade calorimeters, inclined planes, and computing. Content areas of the course include measurement, physics, chemistry, astronomy, biology, geology, and meteorology. (JN)

  4. Science Academies' Sixty-sixth Refresher Course in Experimental ...

    Indian Academy of Sciences (India)

    IAS Admin

    2014-09-30

    Sep 30, 2014 ... Mysore from 11 to 26 November 2014 for the benefit of faculty involved in ... local hospitality during the Course in addition to Course material. ... A print copy of the application should be also sent through the Head of the ...

  5. Science Academies' Refresher Course in Plant Taxonomy and ...

    Indian Academy of Sciences (India)

    Selected participants will be provided with round-trip bus/train (III AC) fare by the shortest route and local hospitality during the course in addition to course material. Interested applicants must submit their application ONLINE by clicking on the following link. http://web-japps.ias.ac.in:8080/Refreshcourse/RPPP.jsp. A copy of ...

  6. Personalized System of Instruction (Keller Method) for Medical School Biochemistry

    Science.gov (United States)

    Weisman, Robert A.; Shapiro, David M.

    1973-01-01

    The Keller Method requires abolishing lectures as a vehicle of information transfer in favor of a study guide and breaking the biochemistry course into a number of units each to be mastered at the student's own pace. (Editor)

  7. Science Academies' Refresher Course on Innovations in Genetics ...

    Indian Academy of Sciences (India)

    PG and Research Department of Botany, Vivekananda College of Arts and Sciences for Women. (Autonomous), Elayampalayam ... Academy of Sciences, Bengaluru. Indian National Science Academy, New Delhi ... R Uma Shaankar, Department of Crop physiology and School of Ecology and Conservation, University of ...

  8. Comparisons Between Science Knowledge, Interest, and Information Literacy of Learners in Introductory Astronomy Courses

    Science.gov (United States)

    Buxner, Sanlyn; Impey, Chris David; Formanek, Martin; Wenger, Matthew

    2018-01-01

    Introductory astronomy courses are exciting opportunities to engage non-major students in scientific issues, new discoveries, and scientific thinking. Many undergraduate students take these courses to complete their general education requirements. Many free-choice learners also take these courses, but for their own interest. We report on a study comparing the basic science knowledge, interest in science, and information literacy of undergraduate students and free choice learners enrolled in introductory astronomy courses run by the University of Arizona. Undergraduate students take both in-person and online courses for college credit. Free choice learners enroll in massive open online courses (MOOCs), through commercial platforms, that can earn them a certificate (although most do not take advantage of that opportunity). In general, we find that undergraduate students outperform the general public on basic science knowledge and that learners in our astronomy MOOCs outperform the undergraduate students in the study. Learners in the MOOC have higher interest in science in general. Overall, learners in both groups report getting information about science from online sources. Additionally, learners’ judgement of the reliability of different sources of information is weakly related to their basic science knowledge and more strongly related to how they describe what it means to study something scientifically. We discuss the implications of our findings for both undergraduate students and free-choice learners as well as instructors of these types of courses.

  9. “METABOLIC RIDE” a conceptual evaluation tool for metabolic biochemistry teaching for graduate and postgraduate students in biological sciences and related areas

    Directory of Open Access Journals (Sweden)

    Henrique Hessel Gaeta

    2017-10-01

    Full Text Available Biochemistry as a discipline have a high degree of difficulty. Otherwise, application of creative games as teaching methodology has spread in various disciplines. "METABOLIC RIDE" board game is a conceptual and perceptual evaluation tool for biochemistry teaching, aiming to review concepts transmitted in classroom, promoting a competitive challenge to students without denying tools that are at their disposal, stimulating their skills such as their creativity. Further, it makes possible to correlate metabolic routes and their interconnections to establish that metabolic pathways are not separated, such as a railway map. In addition, this game proved to be an excellent tool for student’s complementary evaluation, which allowed to analyze the student’s perception and thus realize that when properly stimulated some groups could show a great productive and creative capacity. However, this game demonstrated to students new ways to approach complex subjects in biochemistry using creativity.

  10. Assessment of learning gains in a flipped biochemistry classroom.

    Science.gov (United States)

    Ojennus, Deanna Dahlke

    2016-01-01

    The flipped classroom has become an increasingly popular pedagogical approach to teaching and learning. In this study, learning gains were assessed in a flipped biochemistry course and compared to gains in a traditional lecture. Although measured learning gains were not significantly different between the two courses, student perception of learning gains did differ and indicates a higher level of satisfaction with the flipped lecture format. © 2015 The International Union of Biochemistry and Molecular Biology.

  11. Impact of SCALE-UP on science teaching self-efficacy of students in general education science courses

    Science.gov (United States)

    Cassani, Mary Kay Kuhr

    The objective of this study was to evaluate the effect of two pedagogical models used in general education science on non-majors' science teaching self-efficacy. Science teaching self-efficacy can be influenced by inquiry and cooperative learning, through cognitive mechanisms described by Bandura (1997). The Student Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP) model of inquiry and cooperative learning incorporates cooperative learning and inquiry-guided learning in large enrollment combined lecture-laboratory classes (Oliver-Hoyo & Beichner, 2004). SCALE-UP was adopted by a small but rapidly growing public university in the southeastern United States in three undergraduate, general education science courses for non-science majors in the Fall 2006 and Spring 2007 semesters. Students in these courses were compared with students in three other general education science courses for non-science majors taught with the standard teaching model at the host university. The standard model combines lecture and laboratory in the same course, with smaller enrollments and utilizes cooperative learning. Science teaching self-efficacy was measured using the Science Teaching Efficacy Belief Instrument - B (STEBI-B; Bleicher, 2004). A science teaching self-efficacy score was computed from the Personal Science Teaching Efficacy (PTSE) factor of the instrument. Using non-parametric statistics, no significant difference was found between teaching models, between genders, within models, among instructors, or among courses. The number of previous science courses was significantly correlated with PTSE score. Student responses to open-ended questions indicated that students felt the larger enrollment in the SCALE-UP room reduced individual teacher attention but that the large round SCALE-UP tables promoted group interaction. Students responded positively to cooperative and hands-on activities, and would encourage inclusion of more such activities in all of the

  12. Connecting Past with Present: A Mixed-Methods Science Ethics Course and its Evaluation.

    Science.gov (United States)

    Semendeferi, Ioanna; Tsiamyrtzis, Panagiotis; Dcosta, Malcolm; Pavlidis, Ioannis

    2016-02-01

    We present a graduate science ethics course that connects cases from the historical record to present realities and practices in the areas of social responsibility, authorship, and human/animal experimentation. This content is delivered with mixed methods, including films, debates, blogging, and practicum; even the instructional team is mixed, including a historian of science and a research scientist. What really unites all of the course's components is the experiential aspect: from acting in historical debates to participating in the current scientific enterprise. The course aims to change the students' culture into one deeply devoted to the science ethics cause. To measure the sought after cultural change, we developed and validated a relevant questionnaire. Results of this questionnaire from students who took the course, demonstrate that the course had the intended effect on them. Furthermore, results of this questionnaire from controls indicate the need for cultural change in that cohort. All these quantitative results are reinforced by qualitative outcomes.

  13. Sixty-first Science Academies' Refresher Course in Experimental ...

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Experimental Physics will be held at the Department of Physics, School of ... With the aid of a low cost kit developed by ... highly successful and the experiments have been included in 80 institutions including universities,.

  14. Becoming a Scientist: Using First-Year Undergraduate Science Courses to Promote Identification with Science Disciplines

    Science.gov (United States)

    Ruff, Chloe; Jones, Brett D.

    2016-01-01

    In this qualitative study, we examined how two professors (a physicist and biochemist) of first year college students perceived their students' development of identification in biochemistry or physics and how they actively supported this development. The professors described students who entered college with different levels of domain…

  15. Influence of an Intensive, Field-Based Life Science Course on Preservice Teachers' Self-Efficacy for Environmental Science Teaching

    Science.gov (United States)

    Trauth-Nare, Amy

    2015-01-01

    Personal and professional experiences influence teachers' perceptions of their ability to implement environmental science curricula and to positively impact students' learning. The purpose of this study was twofold: to determine what influence, if any, an intensive field-based life science course and service learning had on preservice teachers'…

  16. Assessing Attitudes Towards Science During an Adaptive Online Astrobiology Course: Comparing Online and On-Campus Undergraduates

    Science.gov (United States)

    Perera, Viranga; Mead, Chris; Buxner, Sanlyn; Horodyskyj, Lev; Semken, Steven; Lopatto, David; Anbar, Ariel

    2016-10-01

    General-education Science, Technology, Engineering, and Mathematics (STEM) courses are accepted as essential to a college education. An often cited reason is to train a scientifically literate populace who can think critically and make informed decisions about complex issues such as climate change, health care, and atomic energy. Goals of these STEM courses, therefore, go beyond content knowledge to include generating positive attitudes towards science, developing competence in evaluating scientific information in everyday life and understanding the nature of science. To gauge if such non-content learning outcomes are being met in our course, an online astrobiology course called Habitable Worlds, we administered the Classroom Undergraduate Research Experience (CURE) survey to students. The survey was administered before and after completion of the course for three semesters starting with the Fall 2014 semester and ending with the Fall 2015 semester (N = 774). A factor analysis indicated three factors on attitudes: toward science education, toward the interconnectedness of science with non-science fields, and toward the nature of science. Here we present some differences between students enrolled in online degree programs (o-course) and those enrolled in traditional undergraduate programs (i-course). While mean course grades were similar, changes in attitudes toward science differ significantly between o-course and i-course students. The o-course students began the course with more positive attitudes across all three factors than the i-course students. Their attitudes toward science education improved during the course, while the i-course students showed no change. Attitudes toward the other two factors declined in both populations during the course, but declines were smaller among o-course students. These differences may indicate lesser intrinsic motivation among the i-course students. The CURE survey has not been used before in an online course; therefore, we will

  17. Commentary: Biochemistry and Molecular Biology Educators Launch National Network

    Science.gov (United States)

    Bailey, Cheryl; Bell, Ellis; Johnson, Margaret; Mattos, Carla; Sears, Duane; White, Harold B.

    2010-01-01

    The American Society of Biochemistry and Molecular Biology (ASBMB) has launched an National Science Foundation (NSF)-funded 5 year project to support biochemistry and molecular biology educators learning what and how students learn. As a part of this initiative, hundreds of life scientists will plan and develop a rich central resource for…

  18. Academic Performance and Pass Rates: Comparison of Three First-Year Life Science Courses

    Science.gov (United States)

    Downs, C. T.

    2009-01-01

    First year students' academic performance in three Life Science courses (Botany, Zoology and Bioscience) was compared. Pass rates, as well as the means and distributions of final marks were analysed. Of the three components (coursework, practical and theory examinations) contributing to the final mark of each course, students performed best in the…

  19. Lessons Learned from Undergraduate Students in Designing a Science-Based Course in Bioethics

    Science.gov (United States)

    Loike, John D.; Rush, Brittany S.; Schweber, Adam; Fischbach, Ruth L.

    2013-01-01

    Columbia University offers two innovative undergraduate science-based bioethics courses for student majoring in biosciences and pre-health studies. The goals of these courses are to introduce future scientists and healthcare professionals to the ethical questions they will confront in their professional lives, thus enabling them to strategically…

  20. Scientists Taking a Nature of Science Course: Beliefs and Learning Outcomes of Career Switchers

    Science.gov (United States)

    Peters-Burton, Erin

    2016-01-01

    The purpose of the study was to examine what scientists studying to become teachers know about the nature of science (NOS) before, during and after a course focused on NOS. The 16 scientists had an average of 9.7 years of work experience. The course was structured to teach knowledge about the aspects of NOS, demonstrate effective methods of…

  1. DNA, Drugs, and Detectives: An Interdisciplinary Special Topics Course for Undergraduate Students in Forensic Science

    Science.gov (United States)

    Coticone, Sulekha Rao; Van Houten, Lora Bailey

    2015-01-01

    A special topics course combining two relevant and contemporary themes (forensic DNA analysis and illicit drug detection) was developed to stimulate student enthusiasm and enhance understanding of forensic science. Building on the interest of popular television shows such as "CSI" and "Breaking Bad," this course connects…

  2. How A Flipped Learning Environment Affects Learning In A Course On Theoretical Computer Science

    DEFF Research Database (Denmark)

    Gnaur, Dorina; Hüttel, Hans

    2014-01-01

    This paper reports initial experiences with flipping the classroom in an undergraduate computer science course as part of an overall attempt to enhance the pedagogical support for student learning. Our findings indicate that, just as the flipped classroom implies, a shift of focus in the learning...... context influences the way students engage with the course and their learning strategies....

  3. Including an Exam P/1 Prep Course in a Growing Actuarial Science Program

    Science.gov (United States)

    Wakefield, Thomas P.

    2014-01-01

    The purpose of this article is to describe the actuarial science program at our university and the development of a course to enhance students' problem solving skills while preparing them for Exam P/1 of the Society of Actuaries (SOA) and the Casualty Actuary Society (CAS). The Exam P/1 prep course, formally titled Mathematical Foundations of…

  4. Evaluation of an ESP Course of Qur'anic Sciences and Tradition

    Science.gov (United States)

    Salehi, Hadi; Davari, Ameneh; Yunus, Melor Md

    2015-01-01

    Evaluation is defined as matching process that matches the needs to available solutions. The present study is an attempt to evaluate English for specific purposes (ESP) course book on "the ESP Course of Qur'anic Sciences and Tradition" taught at some universities in Iran. To achieve this goal, a researcher-made questionnaire and an…

  5. Educational Impact of Digital Visualization Tools on Digital Character Production Computer Science Courses

    Science.gov (United States)

    van Langeveld, Mark Christensen

    2009-01-01

    Digital character production courses have traditionally been taught in art departments. The digital character production course at the University of Utah is centered, drawing uniformly from art and engineering disciplines. Its design has evolved to include a synergy of computer science, functional art and human anatomy. It gives students an…

  6. The Effect of Technology on Students' Opinions about Authentic Learning Activities in Science Courses

    Science.gov (United States)

    Coskun, Hilal; Dogan, Alev; Uluay, Gulsah

    2017-01-01

    Today, most of the researchers have agreed on the importance of classroom environment where students responsible of their own learning. It is important to use modern learning methods with technology to reach this aim in courses. The main purpose of this study is to investigate the effect of using Technology in science courses to investigate 7th…

  7. Designing for Deeper Learning in a Blended Computer Science Course for Middle School Students

    Science.gov (United States)

    Grover, Shuchi; Pea, Roy; Cooper, Stephen

    2015-01-01

    The focus of this research was to create and test an introductory computer science course for middle school. Titled "Foundations for Advancing Computational Thinking" (FACT), the course aims to prepare and motivate middle school learners for future engagement with algorithmic problem solving. FACT was also piloted as a seven-week course…

  8. Collaborating to Improve Inquiry-Based Teaching in Elementary Science and Mathematics Methods Courses

    Science.gov (United States)

    Magee, Paula A.; Flessner, Ryan

    2012-01-01

    This study examines the effect of promoting inquiry-based teaching (IBT) through collaboration between a science methods course and mathematics methods course in an elementary teacher education program. During the collaboration, preservice elementary teacher (PST) candidates experienced 3 different types of inquiry as a way to foster increased…

  9. Green Chemistry and Sustainability: An Undergraduate Course for Science and Nonscience Majors

    Science.gov (United States)

    Gross, Erin M.

    2013-01-01

    An undergraduate lecture course in Green Chemistry and Sustainability has been developed and taught to a "multidisciplinary" group of science and nonscience majors. The course introduced students to the topics of green chemistry and sustainability and also immersed them in usage of the scientific literature. Through literature…

  10. Factors Influencing Achievement in Undergraduate Social Science Research Methods Courses: A Mixed Methods Analysis

    Science.gov (United States)

    Markle, Gail

    2017-01-01

    Undergraduate social science research methods courses tend to have higher than average rates of failure and withdrawal. Lack of success in these courses impedes students' progression through their degree programs and negatively impacts institutional retention and graduation rates. Grounded in adult learning theory, this mixed methods study…

  11. A Library Research Course for Graduate and Professional Students in Communication Sciences and Disorders

    Science.gov (United States)

    Tag, Sylvia G.

    2007-01-01

    This article describes the formation and content of a required library and information research course for graduate and professional students enrolled in the Communication Sciences and Disorders Master of Arts degree program at Western Washington University. The course was created as a result of library assessment, student feedback, and faculty…

  12. Explore the Human-Based Teaching for the Professional Course of Materials Science and Engineering

    Science.gov (United States)

    Zhao, Yiping; Chen, Li; Zhang, Yufeng

    2008-01-01

    As viewed from two sides such as teacher and student, in this article, we explore the human-based teaching reform for the college professional course of materials Science and Engineering, point out the qualities and conditions that professional teacher should possess in the process of human-based teaching reform of professional course and the…

  13. Big Data Science Education: A Case Study of a Project-Focused Introductory Course

    Science.gov (United States)

    Saltz, Jeffrey; Heckman, Robert

    2015-01-01

    This paper reports on a case study of a project-focused introduction to big data science course. The pedagogy of the course leveraged boundary theory, where students were positioned to be at the boundary between a client's desire to understand their data and the academic class. The results of the case study demonstrate that using live clients…

  14. Emphasizing Astrobiology: Highlighting Communication in an Elective Course for Science Majors

    Science.gov (United States)

    Offerdahl, Erika G.; Prather, Edward E.; Slater, Timothy F.

    2004-01-01

    The project described here involved the design, implementation, and evaluation of an upper level, undergraduate elective course for science majors. Specific course goals were to help students gain an appreciation of the interdisciplinary nature of astrobiology, understand key ideas in astrobiology, and develop the skills necessary to communicate…

  15. The relationship between competencies acquired through Swiss academic sports science courses and the job requirements.

    Science.gov (United States)

    Schlesinger, T; Studer, F; Nagel, S

    2016-01-01

    In view of the changes in and growing variety of sports-related occupations, it is highly relevant for educational institutions to know how well the educational contents of their sport science courses meet the professional requirements. This study analyses the relationship between the competencies acquired through academic sports science courses and the requirements of the relevant jobs in Switzerland. The data for this empirical analysis were drawn from a sample of n = 1054 graduates of different academic sport science programmes at all eight Swiss universities. The results show that academic sport science courses primarily communicate sports-specific expertise and practical sports skills. On the other hand, most graduates consider that the acquisition of interdisciplinary competencies plays a comparatively minor role in sport science education, even though these competencies are felt to be an important requirement in a variety of work-related environments and challenges.

  16. Successful Massive Open Online Climate Course on Climate Science and Psychology

    Science.gov (United States)

    Nuccitelli, D. A.; Cook, J.

    2015-12-01

    In 2015, the University of Queensland and edX launched a Massive Open Online Course (MOOC), 'Making Sense of Climate Science Denial.' The MOOC debunked approximately 50 common climate myths using elements of both physical science and psychology. Students learned how to recognise the social and psychological drivers of climate science denial, how to better understand climate change, how to identify the techniques and fallacies that climate myths employ to distort climate science, and how to effectively debunk climate misinformation. Contributors to the website Skeptical Science delivered the lectures, which were reinforced via interviews with climate science and psychology experts. Over 15,000 students from 167 countries enrolled in the course, and student feedback was overwhelmingly positive. This MOOC provides a model for effective climate science education.

  17. A national comparison of biochemistry and molecular biology capstone experiences.

    Science.gov (United States)

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the American Society for Biochemistry and Molecular Biology (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end, ASBMB conducted a series of regional workshops to build a BMB Concept Inventory containing validated assessment tools, based on foundational and discipline-specific knowledge and essential skills, for the community to use. A culminating activity, which integrates the educational experience, is often part of undergraduate molecular life science programs. These "capstone" experiences are commonly defined as an attempt to measure student ability to synthesize and integrate acquired knowledge. However, the format, implementation, and approach to outcome assessment of these experiences are quite varied across the nation. Here we report the results of a nation-wide survey on BMB capstone experiences and discuss this in the context of published reports about capstones and the findings of the workshops driving the development of the BMB Concept Inventory. Both the survey results and the published reports reveal that, although capstone practices do vary, certain formats for the experience are used more frequently and similarities in learning objectives were identified. The use of rubrics to measure student learning is also regularly reported, but details about these assessment instruments are sparse in the literature and were not a focus of our survey. Finally, we outline commonalities in the current practice of capstones and suggest the next steps needed to elucidate best practices. © 2015 The International Union of Biochemistry and Molecular Biology.

  18. There is No Overkill in Biochemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 12. There is No Overkill in Biochemistry - Har Gobind Khorana, a Pioneer in Membrane Biology. Sadashiva Karnik Sriram Subramaniam. General Article Volume 17 Issue 12 December 2012 pp 1157-1164 ...

  19. Science Café Course: An Innovative Means of Improving Communication Skills of Undergraduate Biology Majors

    Directory of Open Access Journals (Sweden)

    Anna Goldina

    2013-12-01

    Full Text Available To help bridge the increasing gap between scientists and the public, we developed an innovative two-semester course, called Science Café. In this course undergraduate biology majors learn to develop communication skills to be better able to explain science concepts and current developments in science to non-scientists. Students develop and host outreach events on various topics relevant to the community, thereby increasing interactions between budding scientists and the public. Such a Science Cafe course emphasizes development of science communication skills early, at the undergraduate level and empowers students to use their science knowledge in every day interactions with the public to increase science literacy, get involved in the local community and engage the public in a dialogue on various pressing science issues. We believe that undergraduate science majors can be great ambassadors for science and are often overlooked since many aspire to go on to medical/veterinary/pharmacy schools. However, science communication skills are especially important for these types of students because when they become healthcare professionals, they will interact with the public as part of their everyday jobs and can thus be great representatives for the field.

  20. Students’ acceptance of peer review in Computer Science course

    Directory of Open Access Journals (Sweden)

    Zuzana Kubincová

    2016-04-01

    Full Text Available Peer review technique used in educational context could be beneficial for students from several points of view. Besides of developing students’ writing skills, critical thinking, practising articulation of own knowledge to the others and giving them feedback, it can encourage collaborative learning and boost the students’ interest in the course. In our web design course we successfully introduced peer review activities more than 2 years ago. In this paper we discuss the students’ acceptance of peer review applied on evaluation of other students’ projects.

  1. Skype Synchronous Interaction Effectiveness in a Quantitative Management Science Course

    Science.gov (United States)

    Strang, Kenneth David

    2012-01-01

    An experiment compared asynchronous versus synchronous instruction in an online quantitative course. Mann-Whitney U-tests, correlation, analysis of variance, t tests, and multivariate analysis of covariance (MANCOVA) were utilized to test the hypothesis that more high-quality online experiential learning interactions would increase grade.…

  2. Science Academies' Refresher Course in Quantum Mechanics Post ...

    Indian Academy of Sciences (India)

    Physics Dept

    2016-02-20

    Feb 20, 2016 ... Quantum Mechanics is essential for understanding Physics, Chemistry and even modern Biology. A brief outline of the course is as follows: Schrödinger equation, Hydrogen atom, mathematics of linear vector space, principles and postulates of quantum mechanics, angular momentum, perturbation theory.

  3. A Sustainable Energy Laboratory Course for Non-Science Majors

    Science.gov (United States)

    Nathan, Stephen A.; Loxsom, Fred

    2016-01-01

    Sustainable energy is growing in importance as the public becomes more aware of climate change and the need to satisfy our society's energy demands while minimizing environmental impacts. To further this awareness and to better prepare a workforce for "green careers," we developed a sustainable energy laboratory course that is suitable…

  4. Science Academies' Refresher Course in Foundations of Physical ...

    Indian Academy of Sciences (India)

    Physical Chemistry is the branch of chemistry that deals with the mechanism, the rate and the energy transfer that occur when matter undergoes a change. Understanding the key concepts of physical chemistry is essential for solving practical problems in research and industrial appli- cations. A brief outline of the course is ...

  5. Science Academies' Refresher Course in Developmental Biology 16 ...

    Indian Academy of Sciences (India)

    IAS Admin

    The objectives of this Refresher Course are to update the participants about the advances in the field of Developmental Biology; various small animal models used and give hands-on training on some modern biotechnological practices. A variety of teaching methods like lectures, discussion and laboratory work shall ...

  6. Introduction of a Science Policy Course at the University of Oklahoma

    Science.gov (United States)

    Mishra, S.; Parsons, D.

    2012-12-01

    In modern society, science and policy are two processes that have a symbiotic relationship to each other; wherein policy dictates the direction of science while science shapes the future of policy. Although the policy side is often ignored in scientific environments, the rate of scientific advancement is heavily influenced by policy. Science policy is very different from the conduct of science itself and future scientists need to be aware of the issues and factors that dictate the present and future direction of science. Based on the intricate relationship between science and policy, it is essential to introduce an overview of the policy process to future scientists and decision makers. In the context of climate change, policy implications are extensive and critical owing to their large socio-economic impacts. Hence, knowledge of the policy process is even more relevant to earth scientists. In this regard, the proposal to start an introductory course in science policy is currently being discussed in the department of Meteorology at the University of Oklahoma. If such a course is approved, an interactive graduate level class will be introduced for students pursuing a career in science. Such a course will be cross- disciplinary and will be offered to a wide audience across the university. Since the American Meteorological Society's (AMS) Summer Policy Colloquium has been a very successful program in educating scientists about the policy process, a format similar to the colloquium may be adopted. The primary topics will include the understanding of policy fundamentals, effective communication, ethics and integrity in the conduct of scientific research, executive leadership in science and the responsibilities of a scientific leader, impact of science on globalization and international diplomacy, etc. The AMS policy program office will be consulted to help design the course curriculum. An overview of the steps involved in introducing the class will be presented at the

  7. Science Awareness and Science Literacy through the Basic Physics Course: Physics with a bit of Metaphysics?

    Science.gov (United States)

    Rusli, Aloysius

    2016-08-01

    Until the 1980s, it is well known and practiced in Indonesian Basic Physics courses, to present physics by its effective technicalities: The ideally elastic spring, the pulley and moving blocks, the thermodynamics of ideal engine models, theoretical electrostatics and electrodynamics with model capacitors and inductors, wave behavior and its various superpositions, and hopefully closed with a modern physics description. A different approach was then also experimented with, using the Hobson and Moore texts, stressing the alternative aim of fostering awareness, not just mastery, of science and the scientific method. This is hypothesized to be more in line with the changed attitude of the so-called Millenials cohort who are less attentive if not interested, and are more used to multi-tasking which suits their shorter span of attention. The upside is increased awareness of science and the scientific method. The downside is that they are getting less experience of the scientific method which intensely bases itself on critical observation, analytic thinking to set up conclusions or hypotheses, and checking consistency of the hypotheses with measured data. Another aspect is recognition that the human person encompasses both the reasoning capacity and the mental- spiritual-cultural capacity. This is considered essential, as the world grows even smaller due to increased communication capacity, causing strong interactions, nonlinear effects, and showing that value systems become more challenging and challenged due to physics / science and its cosmology, which is successfully based on the scientific method. So students should be made aware of the common basis of these two capacities: the assumptions, the reasoning capacity and the consistency assumption. This shows that the limits of science are their set of basic quantifiable assumptions, and the limits of the mental-spiritual-cultural aspects of life are their set of basic metaphysical (non-quantifiable) assumptions. The

  8. Science Awareness and Science Literacy through the Basic Physics Course: Physics with a bit of Metaphysics?

    International Nuclear Information System (INIS)

    Rusli, Aloysius

    2016-01-01

    Until the 1980s, it is well known and practiced in Indonesian Basic Physics courses, to present physics by its effective technicalities: The ideally elastic spring, the pulley and moving blocks, the thermodynamics of ideal engine models, theoretical electrostatics and electrodynamics with model capacitors and inductors, wave behavior and its various superpositions, and hopefully closed with a modern physics description. A different approach was then also experimented with, using the Hobson and Moore texts, stressing the alternative aim of fostering awareness, not just mastery, of science and the scientific method. This is hypothesized to be more in line with the changed attitude of the so-called Millenials cohort who are less attentive if not interested, and are more used to multi-tasking which suits their shorter span of attention. The upside is increased awareness of science and the scientific method. The downside is that they are getting less experience of the scientific method which intensely bases itself on critical observation, analytic thinking to set up conclusions or hypotheses, and checking consistency of the hypotheses with measured data. Another aspect is recognition that the human person encompasses both the reasoning capacity and the mental- spiritual-cultural capacity. This is considered essential, as the world grows even smaller due to increased communication capacity, causing strong interactions, nonlinear effects, and showing that value systems become more challenging and challenged due to physics / science and its cosmology, which is successfully based on the scientific method. So students should be made aware of the common basis of these two capacities: the assumptions, the reasoning capacity and the consistency assumption. This shows that the limits of science are their set of basic quantifiable assumptions, and the limits of the mental-spiritual-cultural aspects of life are their set of basic metaphysical (non-quantifiable) assumptions. The

  9. Persuading Girls to Take Elective Physical Science Courses in High School: Who Are the Credible Communicators?

    Science.gov (United States)

    Koballa, Thomas R., Jr.

    1988-01-01

    Identifies communicators whom eighth-grade girls perceive as credible regarding reasons for taking elective physical science courses in high school. Finds that father, woman science teacher, mother, and boy high school student are ranked highly. Attributes associated with the communicators were classified as prestige, trustworthiness, similarity,…

  10. Adopting Just-in-Time Teaching in the Context of an Elementary Science Education Methodology Course

    Science.gov (United States)

    Osmond, Pamela; Goodnough, Karen

    2011-01-01

    In this self-study, Pamela, a new science teacher educator, adopted Just-in-Time Teaching (JiTT) in the context of an elementary science education methodology course. JiTT is a teaching and learning strategy involving interaction between web-based study assignments and face-to-face class sessions. Students respond electronically to web-based…

  11. Spiral and Project-Based Learning with Peer Assessment in a Computer Science Project Management Course

    Science.gov (United States)

    Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol

    2016-01-01

    Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning,…

  12. A Portable Bioinformatics Course for Upper-Division Undergraduate Curriculum in Sciences

    Science.gov (United States)

    Floraino, Wely B.

    2008-01-01

    This article discusses the challenges that bioinformatics education is facing and describes a bioinformatics course that is successfully taught at the California State Polytechnic University, Pomona, to the fourth year undergraduate students in biological sciences, chemistry, and computer science. Information on lecture and computer practice…

  13. Uncovering Students' Environmental Identity: An Exploration of Activities in an Environmental Science Course

    Science.gov (United States)

    Blatt, Erica

    2014-01-01

    This study at a public high school in the Northeastern United States explores how students' environmental identities are affected by various activities in an Environmental Science course. Data was collected as part of an ethnographic study involving an Environmental Science teacher and her tenth-twelfth grade students. The results focus on…

  14. Science Academies' Refresher Course on Innovations in Genetics ...

    Indian Academy of Sciences (India)

    and Abiotic Stress” will be held at PG and Research Department of Botany, ... Arts and Sciences for Women (Autonomous), Elayampalayam, Tiruchengode, Tamil ... November 2017 for the benefit of faculty involved in teaching undergraduate.

  15. Science Academies' 83rd Refresher Course on Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    Science and Technology, Lakshmangarh, District Sikar (Rajasthan). Sponsored by ... Scanned copies of the duly signed documents sent by email will also be accepted. Applications ... E-mail: sbrajraj@gmail.com, sbrajraj@yahoo.com, Phone:.

  16. Laboratory animal science course in Switzerland: participants' points of view and implications for organizers.

    Science.gov (United States)

    Crettaz von Roten, Fabienne

    2018-02-01

    Switzerland has implemented a mandatory training in laboratory animal science since 1999; however a comprehensive assessment of its effects has never been undertaken so far. The results from the analysis of participants in the Swiss Federation of European Laboratory Animal Science Associations (FELASA) Category B compulsory courses in laboratory animal science run in 2010, 2012, 2014 and 2016 showed that the participants fully appreciated all elements of the course. The use of live animals during the course was supported and explained by six arguments characterized with cognitive, emotional and forward-looking factors. A large majority considered that the 3R (replacement, reduction and refinement) principles were adequately applied during the course. Responses to an open question offered some ideas for improvements. This overall positive picture, however, revealed divergent answers from different subpopulations in our sample (for example, scientists with more hindsight, scientists trained in biology, or participants from Asian countries).

  17. Student Buy-In to Active Learning in a College Science Course

    Science.gov (United States)

    Cavanagh, Andrew J.; Aragón, Oriana R.; Chen, Xinnian; Couch, Brian; Durham, Mary; Bobrownicki, Aiyana; Hanauer, David I.; Graham, Mark J.

    2016-01-01

    The benefits of introducing active learning in college science courses are well established, yet more needs to be understood about student buy-in to active learning and how that process of buy-in might relate to student outcomes. We test the exposure–persuasion–identification–commitment (EPIC) process model of buy-in, here applied to student (n = 245) engagement in an undergraduate science course featuring active learning. Student buy-in to active learning was positively associated with engagement in self-regulated learning and students’ course performance. The positive associations among buy-in, self-regulated learning, and course performance suggest buy-in as a potentially important factor leading to student engagement and other student outcomes. These findings are particularly salient in course contexts featuring active learning, which encourage active student participation in the learning process. PMID:27909026

  18. Writing throughout the Biochemistry Curriculum: Synergistic Inquiry-Based Writing Projects for Biochemistry Students

    Science.gov (United States)

    Mertz, Pamela; Streu, Craig

    2015-01-01

    This article describes a synergistic two-semester writing sequence for biochemistry courses. In the first semester, students select a putative protein and are tasked with researching their protein largely through bioinformatics resources. In the second semester, students develop original ideas and present them in the form of a research grant…

  19. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston

    Science.gov (United States)

    Chen, R. F.; Pelletier, P.; Dorsen, J.; Douglas, E. M.; Pringle, M. S.; Karp, J.

    2009-12-01

    Inquiry-based, hands-on, graduate content courses have been developed specifically for Boston Public School middle school teachers of Earth Science. Earth Science I: Weather and Water and Earth Science II: The Solid Earth--Earth History and Planetary Systems have been taught a total of seven times to over 120 teachers. Several key attributes to these successful courses have been identified, including co-instruction by a university professor and a high school and a middle school teacher that are familiar with the Boston curriculum, use of hands-on activities that are closed related to those used in the Boston curriculum, pre- and post-course local field trips, and identification of key learning objectives for each day. This model of professional development was developed over several years in all disciplines (Earth Science, Physics, Biology, Chemistry) by the Boston Science Partnership (BSP), an NSF-funded Math Science Partnership program. One of the core strategies of the BSP is these Contextualized Content Courses (CCC), graduate level, lab-based courses taught at either UMass Boston or Northeastern University during summer intensive or semester formats. Two of the eleven courses developed under the grant are Earth Science I & II. This presentation shares the model of the CCC, the impact on teacher participants, the value of these courses for the professor, and lessons learned for successful professional development. Findings about the courses’ impact and effectiveness come from our external evaluation by the Program Evaluation Research Group (PERG). The combination of content and modeling good instructional practices have many positive outcomes for teachers, including increased self-efficacy in science understanding and teaching, positive impacts on student achievement, and teacher shifts from more traditional, more lecture-based instructional models to more inquiry approaches. STEM faculty members become involved in science education and learn and practice new

  20. Audiopodcasts im Biochemiepraktikum – Kostengünstiges eLearning in bewährtem Hörfunkformat [Audio podcasts in practical courses in biochemistry – cost-efficient e-learning in a well-proven format from radio broadcasting

    OpenAIRE

    Münch-Harrach, Dieter; Hampe, Wolfgang; Kothe, Christian

    2013-01-01

    Introduction: Audio podcasts are an e-learning format that may help to motivate students to deal with the contents of medical education more intensely. We adopted a well-proven format from radio broadcasting, the radio documentary, to direct the listeners' attention to information about practical courses in biochemistry over a period of 20 minutes at most. Information, original sounds, and a specific atmosphere allow listeners to perceive the contents intensely.Method: In order to organise ...

  1. Assessing Student Attitudes Towards Science in an Adaptive Online Astrobiology Course: Comparing Online and On-Campus Undergraduates

    Science.gov (United States)

    Buxner, S.; Perera, V.; Mead, C.; Horodyskyj, L.; Semken, S. C.; Lopatto, D.; Anbar, A. D.

    2016-12-01

    General-education Science, Technology, Engineering, and Mathematics (STEM) courses are considered essential to a college education, in part, to train students to think critically and to make informed decisions about complex scientific issues such as climate change and public health. Therefore, the goals of these STEM courses go beyond content knowledge to include generating positive attitudes towards science, developing competence in evaluating scientific information in everyday life, and understanding the nature of science. The Classroom Undergraduate Research Experience (CURE) survey is frequently used to measure these attitudes, but it has not previously been used in an online, general education course. In this work, we administered the CURE survey for three semesters (N = 774) before and after completion of an online astrobiology course called Habitable Worlds. We compare students taking this course as part of fully-online degree programs (o-course) with those taking it as part of traditional undergraduate programs (i-course). More females and older students were among the o-course group, while overall the course had more white students than the Arizona State University average. Mean course grades were similar between the two groups but attitudes toward science differred significantly. O-course students began the course with more positive attitudes than i-course students, and o-course students also showed more positive changes at the end of the course. These differences suggest lesser intrinsic motivation among the i-course students. Additionally, pre-course attitudes correlated with final course grade for o-course students, but not for i-course students, which implies that success among o-course students is influenced by different factors than i-course students. Thus, effective student support strategies may differ for online-only students. Future work will include student interviews to better calibrate the CURE survey to online science courses.

  2. Development and Implementation of an Integrated Science Course for Elementary Eduation Majors

    Science.gov (United States)

    Gunter, Mickey E.; Gammon, Steven D.; Kearney, Robert J.; Waller, Brenda E.; Oliver, David J.

    1997-02-01

    Currently the scientific community is trying to increase the general populationapos;s knowledge of science. These efforts stem from the fact that the citizenry needs a better understanding of scientific knowledge to make informed decisions on many issues of current concern. The problem of scientific illiteracy begins in grade school and can be traced to inadequate exposure to science and scientific thinking during the preparation of K - 8 teachers. Typically preservice elementary teachers are required to take only one or two disconnected science courses to obtain their teaching certificates. Also, introductory science courses are often large and impersonal, with the result that while students pass the courses, they may learn very little and retain even less.

  3. An integrated biochemistry and genetics outreach program designed for elementary school students.

    Science.gov (United States)

    Ross, Eric D; Lee, Sarah K; Radebaugh, Catherine A; Stargell, Laurie A

    2012-02-01

    Exposure to genetic and biochemical experiments typically occurs late in one's academic career. By the time students have the opportunity to select specialized courses in these areas, many have already developed negative attitudes toward the sciences. Given little or no direct experience with the fields of genetics and biochemistry, it is likely that many young people rule these out as potential areas of study or career path. To address this problem, we developed a 7-week (~1 hr/week) hands-on course to introduce fifth grade students to basic concepts in genetics and biochemistry. These young students performed a series of investigations (ranging from examining phenotypic variation, in vitro enzymatic assays, and yeast genetic experiments) to explore scientific reasoning through direct experimentation. Despite the challenging material, the vast majority of students successfully completed each experiment, and most students reported that the experience increased their interest in science. Additionally, the experiments within the 7-week program are easily performed by instructors with basic skills in biological sciences. As such, this program can be implemented by others motivated to achieve a broader impact by increasing the accessibility of their university and communicating to a young audience a positive impression of the sciences and the potential for science as a career.

  4. Teaching Science Writing in an Introductory Lab Course

    Science.gov (United States)

    Holstein, Sarah E.; Mickley Steinmetz, Katherine R.; Miles, John D.

    2015-01-01

    One challenge that many neuroscience instructors face is how to teach students to communicate within the field. The goal of this project was to improve students’ scientific writing in an introductory psychology laboratory course that serves as a feeder course into the neuroscience curriculum. This course included a scaffolded approach - breaking assignments into different sections that build upon each other to allow for more direction and feedback on each section. Students were also provided with examples of scientific writing, given direction on finding and reading journal articles, and were taught how to effectively peer review a paper. Research papers were assessed before (Year 1) and after (Year 2) this scaffolded approach was instituted. The assessment included measures of “Genre Knowledge” for each section of a research paper (abstract, introduction, method, results, discussion) as well as measures of “Writing Elements” (grammar, formatting, clarity, transitions, building to the hypothesis, using evidence). The results indicated that there was an improvement for Genre Knowledge scores when comparing Year 1 to Year 2. However, there was no systematic improvement in Writing Elements. This suggests that this teaching technique was most effective in improving students’ ability to write within the scientific genre. The logistics of implementing such an approach are discussed. PMID:25838801

  5. Geophysics education on the Internet: Course production and assessment of our MOOC, "Deep Earth Science"

    Science.gov (United States)

    Okuda, Y.; Tazawa, K.; Sugie, K.; Sakuraba, H.; Hideki, M.; Tagawa, S.; Cross, S. J.

    2016-12-01

    Recently, massive open online courses (MOOC or MOOCs) have gained wide-spread attention as a new educational platform delivered via the internet. Many leading institutions all over the world have provided many fascinating MOOC courses in various fields. Students enrolled in MOOCs study their interested topic in a course not only by watching video lectures, reading texts, and answering questions, but also by utilizing interactive online tools such as discussion boards, Q&A sessions and peer assessments. MOOC is also gaining popularity as a way to do outreach activity and diffuse research results. Tokyo Institute of Technology provided its 1st MOOC, "Introduction to Deep Earth Science Part1" on edX, which is one of the largest MOOC providers. This four-week-long course was designed for 1st year college students and with two learning goals in this course; 1) to introduce students to the fascinating knowledge of solid Earth, 2) to provide an opportunity to use scientific thinking as well as to show how interesting and exciting science can be. This course contained materials such as 1) structure of inside of the Earth 2) internal temperature of the earth and how it is estimated and 3) chemical compositions and dynamics inside the earth. After the end of the provision of Part1, this course was re-made as "Introduction to Deep Earth Science"(so to speak, Part2) on the basis of opinions obtained from students who have attended our course and student teaching assistants (TA) who have run and produced this course. In this presentation, we will explain our MOOC making model, which is a team based course creation effort between the course instructor, Tokyo Tech Online Education Development Office (OEDO) staff and TA students. Moreover, we will share details and feedback of Part1 received from some of the 5000 enrolled students from 150 counties and regions, and report the implementation of Part2 in the light of challenges resulted from Part1.

  6. The motivations and experiences of students enrolled in online science courses at the community college

    Science.gov (United States)

    Ghosh, Urbi

    An important question in online learning involves how to effectively motivate and retain students in science online courses. There is a dearth of research and knowledge about the experiences of students enrolled in online science courses in community colleges which has impeded the proper development and implementation of online courses and retention of students in the online environment. This study sought to provide an understanding of the relationships among each of the following variables: self-efficacy, task value, negative-achievement emotions, self-regulation learning strategies (metacognition), learning strategy (elaboration), and course satisfaction to student's performance (course final grade). Bandura's social-cognitive theory was used as a framework to describe the relationships among students' motivational beliefs (perceived task value, self-efficacy, and self-regulation) and emotions (frustration and boredom) with the dependent variables (elaboration and overall course satisfaction). A mixed-method design was used with a survey instrumentation and student interviews. A variety of science online courses in biology, genetics, astronomy, nutrition, and chemistry were surveyed in two community colleges. Community colleges students (N = 107) completed a questionnaire during enrollment in a variety of online science online courses. Upon course completion, 12 respondents were randomly selected for follow-up in-depth interviews. Multiple regression results from the study indicate perceived task value and self-regulatory learning strategies (metacognition) were as important predictors for students' use of elaboration, while self-efficacy and the number of prior online courses was not significant predictors for students' elaboration when all four predictors were included. Frustration was a significant negative predictor of overall course satisfaction, and boredom unexpectedly emerged as a positive predictor when frustration was also in the model. In addition, the

  7. How a science methods course may influence the curriculum decisions of preservice teachers in the Bahamas

    Science.gov (United States)

    Wisdom, Sonya L.

    The purpose of this study was to examine how a science methods course in primary education might influence the curriculum decisions of preservice teachers in The Bahamas related to unit plan development on environmental science topics. Grounded in a social constructivist theoretical framework for teaching and learning science, this study explored the development of the confidence and competence of six preservice teachers to teach environmental science topics at the primary school level. A qualitative case study using action research methodologies was conducted. The perspectives of preservice teachers about the relevancy of methods used in a science methods course were examined as I became more reflective about my practice. Using constant comparative analysis, data from student-written documents and interviews as well as my field notes from class observations and reflective journaling were analyzed for emerging patterns and themes. Findings of the study indicated that while preservice teachers showed a slight increase in interest regarding learning and teaching environmental science, their primary focus during the course was learning effective teaching strategies in science on topics with which they already had familiarity. Simultaneously, I gained a deeper understanding of the usefulness of reflection in my practice. As a contribution to the complexity of learning to teach science at the primary school level, this study suggests some issues for consideration as preservice teachers are supported to utilize more of the national primary science curriculum in The Bahamas.

  8. Darwinism in Context: An interdisciplinary, highly contextualized course on nature of science

    Directory of Open Access Journals (Sweden)

    Kostas Kampourakis

    2015-10-01

    Full Text Available In this article, we describe a course, titled Darwinism in Context, which focuses on the social, cultural and scientific influences on the development of Darwin's theory. This was an interdisciplinary, highly contextualized nature of science course that aimed to help students learn about a core nature of science aspect: that there are historical, cultural and social influences on the practice and directions of science. For this purpose, the course was based on a well-documented historical case study: the development of Darwin's theory. The course consisted of five classes that focused on: (a Victorian society, (b the views and beliefs of scholars that had an impact on Darwin's thinking (historical influences, (c aspects of Darwin's personal and social life that influenced the publication of his theory (social influences, (d the reception of Darwin's theory and the relationship between religion and science (cultural influences and (e the relationship between science and literature. In all cases, teaching included presentations of the historical events but was mostly based on the analysis and discussion of excerpts from the respective original writings. During the classes only a few examples were presented; students were motivated to study further the original writings and identify some key concepts and ideas after the classes. It is concluded that this kind of highly contextualized nature of science instruction can provide students with a more authentic view of science.

  9. Factors associated with staff development processes and the creation of innovative science courses in higher education

    Science.gov (United States)

    Hodges, Jeanelle Bland

    1999-11-01

    The purpose of the study was to determine factors associated with staff development processes and the creation of innovative science courses by higher education faculty who have participated in a model staff development project. The staff development program was designed for college faculty interested in creating interdisciplinary, constructivist-based science, mathematics, or engineering courses designed for non-majors. The program includes workshops on incorporating constructivist pedagogy, alternative assessment, and technology into interdisciplinary courses. Staff development interventions used in the program include grant opportunities, distribution of resource materials, and peer mentoring. University teams attending the workshops are comprised of faculty from the sciences, mathematics, or engineering, as well as education, and administration. A purposeful and convenient sample of three university teams were subjects for this qualitative study. Each team had attended a NASA Opportunities for Visionary Academics (NOVA) workshop, received funding for course development, and offered innovative courses. Five questions were addressed in this study: (a) What methods were used by faculty teams in planning the courses? (b) What changes occurred in existing science courses? (c) What factors affected the team collaboration process? (d) What personal characteristics of faculty members were important in successful course development? and (e) What barriers existed for faculty in the course development process? Data was collected at each site through individual faculty interviews (N = 11), student focus group interviews (N = 15), and classroom observations. Secondary data included original funding proposals. The NOVA staff development model incorporated effective K--12 interventions with higher education interventions. Analysis of data revealed that there were four factors of staff development processes that were most beneficial. First, the team collaborative processes

  10. Living in a material world: Development and evaluation of a new materials science course for non-science majors

    Science.gov (United States)

    Brust, Gregory John

    This study was designed to discover if there is a difference in the scientific attitudes and process skills between a group of students who were instructed with Living in a Material World and groups of students in non-science majors sections of introductory biology, chemistry, and geology courses at the University of Southern Mississippi (USM). Each of the four courses utilized different instructional techniques. Students' scientific attitudes were measured with the Scientific Attitudes Inventory (SAI II) and their knowledge of science process skills were measured with the Test of Integrated Process Skills (TIPS II). The Group Assessment of Logical Thinking (GALT) was also administered to determine if the cognitive levels of students are comparable. A series of four questionnaires called Qualitative Course Assessments (QCA) were also administered to students in the experimental course to evaluate subtle changes in their understanding of the nature and processes of science and attitudes towards science. Student responses to the QCA questionnaires were triangulated with results of the qualitative instruments, and students' work on the final project. Results of the GALT found a significant difference in the cognitive levels of students in the experimental course (PSC 190) and in one of the control group, the introductory biology (BSC 107). Results of the SAI II and the TIPS II found no significant difference between the experimental group and the control groups. Qualitative analyses of students' responses to selected questions from the TIPS II, selected items on the SAI II, QCA questionnaires, and Materials that Fly project reports demonstrate an improvement in the understanding of the nature and processes of science and a change to positive attitude toward science of students in the experimental group. Students indicated that hands-on, inquiry-based labs and performance assessment were the most effective methods for their learning. These results indicate that science

  11. Knowledge loss of medical students on first year basic science courses at the university of Saskatchewan

    Directory of Open Access Journals (Sweden)

    D'Eon Marcel F

    2006-01-01

    Full Text Available Abstract Background Many senior undergraduate students from the University of Saskatchewan indicated informally that they did not remember much from their first year courses and wondered why we were teaching content that did not seem relevant to later clinical work or studies. To determine the extent of the problem a course evaluation study that measured the knowledge loss of medical students on selected first year courses was conducted. This study replicates previous memory decrement studies with three first year medicine basic science courses, something that was not found in the literature. It was expected that some courses would show more and some courses would show less knowledge loss. Methods In the spring of 2004 over 20 students were recruited to retake questions from three first year courses: Immunology, physiology, and neuroanatomy. Student scores on the selected questions at the time of the final examination in May 2003 (the 'test' were compared with their scores on the questions 10 or 11 months later (the 're-test' using paired samples t -tests. A repeated-measures MANOVA was used to compare the test and re-test scores among the three courses. The re-test scores were matched with the overall student ratings of the courses and the student scores on the May 2003 examinations. Results A statistically significant main effect of knowledge loss (F = 297.385; p post hoc comparisons showed a significant difference between Neuroanatomy and Physiology (mean difference of 10.7, p = .004. Conclusion There was considerable knowledge loss among medical students in the three basic science courses tested and this loss was not uniform across courses. Knowledge loss does not seem to be related to the marks on the final examination or the assessment of course quality by the students.

  12. Complementing theoretical biochemistry with the uso of computer aids (Symposium

    Directory of Open Access Journals (Sweden)

    R Herrera

    2012-05-01

    Full Text Available Teaching  biochemistry  in  the  current  state  of  science  and  society  requires  a  special motivation for learning, especially for students where Biochemistry is one of the courses on  their  careers.  The  traditional  way  of  teaching,  based  on  the  teacher-student relationship,  mostly  unidirectional,  does  not  fulfil  the  needs  imposed  in  this  era. Considering  the  current  situation,  University  students  require  new  abilities  in  their training  and  the  use  of  computers  can  be  a  facility  for  discovering  and  research, enabling the experience of new and  diverse situations. The design of teaching material for undergraduate students who take biochemistry as complementary course should be seen  as  an  opportunity  to  complement  theoretical  aspect  on  the  current  courses.  We have used three different approaches: (I Modelling proteins indicating key motifs at the three-dimensional structure and residues where inhibitors can be attach. (II Generation of  activities  by  the  use  of  sensors.  And  (III  elaborating  active  quizzes  where  students can  be  drive  on  their  learning.  Building  knowledge  based  on  practical  experience  can improve  student’s  competence  on  basic  science  and  the  learning  process  can  be complemented in the use of dynamics models.

  13. Students' conceptions of evidence during a university introductory forensic science course

    Science.gov (United States)

    Yeshion, Theodore Elliot

    Students' Conceptions of Science, Scientific Evidence, and Forensic Evidence during a University Introductory Forensic Science Course This study was designed to examine and understand what conceptions undergraduate students taking an introductory forensic science course had about scientific evidence. Because the relationships between the nature of science, the nature of evidence, and the nature of forensic evidence are not well understood in the science education literature, this study sought to understand how these concepts interact and affect students' understanding of scientific evidence. Four participants were purposefully selected for this study from among 89 students enrolled in two sections of an introductory forensic science course taught during the fall 2005 semester. Of the 89 students, 84 were criminal justice majors with minimal science background and five were chemistry majors with academic backgrounds in the natural and physical sciences. All 89 students completed a biographical data sheet and a pre-instruction Likert scale survey consisting of twenty questions relating to the nature of scientific evidence. An evaluation of these two documents resulted in a purposeful selection of four varied student participants, each of whom was interviewed three times throughout the semester about the nature of science, the nature of evidence, and the nature of forensic evidence. The same survey was administered to the participants again at the end of the semester-long course. This study examined students' assumptions, prior knowledge, their understanding of scientific inference, scientific theory, and methodology. Examination of the data found few differences with regard to how the criminal justice majors and the chemistry majors responded to interview questions about forensic evidence. There were qualitative differences, however, when the same participants answered interview questions relating to traditional scientific evidence. Furthermore, suggestions are

  14. Implementation of an Online Climate Science Course at San Antonio College

    Science.gov (United States)

    Reyes, R.; Strybos, J.

    2016-12-01

    San Antonio College (SAC) plans to incorporate an online climate science class into the curriculum with a focus on local weather conditions and data. SAC is part of a network of five community colleges based around San Antonio, Texas, has over 20,000 students enrolled, and its student population reflects the diversity in ethnicity, age and gender of the San Antonio community. The college understands the importance of educating San Antonio residents on climate science and its complexities. San Antonio residents are familiar with weather changes and extreme conditions. The region has experienced an extreme drought, including water rationing in the city. Then, this year's El Niño intensified expected annual rainfalls and flash floods. The proposed climate science course will uniquely prepare students to understand weather data and the evidence of climate change impacting San Antonio at a local level. This paper will discuss the importance and challenges of introducing the new climate science course into the curriculum, and the desired class format that will increase the course's success. Two of the most significant challenges are informing students about the value of this class and identifying the best teaching format. Additionally, measuring and monitoring enrollment will be essential to determine the course performance and success. At the same time, Alamo Colleges is modifying the process of teaching online classes and is officially working to establish an online college. Around 23% of students enrolled in SAC offered courses are currently enrolled in online courses only, representing an opportunity to incorporate the climate science class as an online course. Since the proposed course will be using electronic textbooks and online applications to access hyperlocal weather data, the class is uniquely suited for online students.

  15. Teaching Basic Probability in Undergraduate Statistics or Management Science Courses

    Science.gov (United States)

    Naidu, Jaideep T.; Sanford, John F.

    2017-01-01

    Standard textbooks in core Statistics and Management Science classes present various examples to introduce basic probability concepts to undergraduate business students. These include tossing of a coin, throwing a die, and examples of that nature. While these are good examples to introduce basic probability, we use improvised versions of Russian…

  16. A Bioethics Course for Biology and Science Education Students.

    Science.gov (United States)

    Bryant, John; la Velle, Linda Baggott

    2003-01-01

    Points out the importance of awareness among biologists and biology teachers of the ethical and social implications of their work. Describes the bioethics module established at the University of Exeter mainly targeting students majoring in biology and science education. (Contains 18 references.) (Author/YDS)

  17. Astrobiology Courses--A Useful Framework for Teaching Interdisciplinary Science.

    Science.gov (United States)

    Sauterer, Roger

    2000-01-01

    Explains astrobiology and indicates the possibility of life on other planets and the interest of humankind in this possibility. Defines topics open to public misconception and their primary reinforcements by television shows. Expresses the need for students to learn the connections between different science majors. (YDS)

  18. Evidence of The Importance of Philosophy of Science Course On Undergraduate Level

    Science.gov (United States)

    Suyono

    2018-01-01

    This study aimed to describe academic impact of Philosophy of Science course in change of students’ conceptions on the Nature of science (NOS) before and after attending the course. This study followed one group pretest-posttest design. Treatment in this study was Philosophy of Science course for one semester. Misconception diagnostic tests of the NOS had been developed by Suyono et al. (2015) equipped with Certainty of Response Index (CRI). It consists of 15 concept questions about the NOS. The number of students who were tested on Chemistry Education Program (CEP) and Chemistry Program (CP) respectively 42 and 45 students. This study shows that after the learning of Philosophy of Science course happened: (1) the decrease of the number of misconception students on the NOS from 47.47 to 19.20% in CEP and from 47.47 to 18.18% in CP and (2) the decrease in the number of concepts that understood as misconception by the large number of students from 11 to 2 concepts on the CEP and from 10 to 2 concepts on CP. Therefore, the existence of Philosophy of Science course has a positive academic impact on students from both programs on undergraduate level.

  19. Assessment of an On-Line Earth System Science Course for Teachers

    Science.gov (United States)

    Shuster, R. D.; Grandgenett, N.

    2009-12-01

    The University of Nebraska at Omaha (UNO) has been offering on-line Earth System Science coursework to in-service teachers in Nebraska since 2002 through the Earth Systems Science Education Alliance (ESSEA). The goal of this course is to increase teacher content knowledge in Earth Science, introduce them to Earth System Science, and have them experience cooperative learning. We have offered three different ESSEA courses, with nearly 200 students having taken ESSEA courses at UNO for graduate credit. This effort represents a close collaboration between faculty and students from the Colleges of Arts & Sciences and Education, with periodic assistance of the local schools. In a follow-up study related to ESSEA coursework, UNO examined the perceptions of teachers who have taken the course and the potential benefits of the ESSEA courses for their own educational settings. The study was descriptive in design and included an online survey and a focus group. The results of these assessments indicated that the teachers felt very positive about what they learned in these courses, and in particular, how they could incorporate cooperative learning, inquiry based activities, and Earth System Science interconnections in their own classrooms. Problems identified by the teachers included a perceived lack of time to be able to integrate the learned material into their science curriculua and a lack of computer and/or technological resources in their educational settings. In addition, this Fall, we will conduct two teacher case studies, where we will interview two teachers, visit their classrooms, acquire work samples and talk with students. All of the results of our survey and focus group will be presented.

  20. Gregor Mendel's classic paper and the nature of science in genetics courses.

    Science.gov (United States)

    Westerlund, Julie F; Fairbanks, Daniel J

    2010-12-01

    The discoveries of Gregor Mendel, as described by Mendel in his 1866 paper Versuche uber Pflanzen-Hybriden (Experiments on plant hybrids), can be used in undergraduate genetics and biology courses to engage students about specific nature of science characteristics and their relationship to four of his major contributions to genetics. The use of primary source literature as an instructional tool to enhance genetics students' understanding of the nature of science helps students more clearly understand how scientists work and how the science of genetics has evolved as a discipline. We offer a historical background of how the nature of science developed as a concept and show how Mendel's investigations of heredity can enrich biology and genetics courses by exemplifying the nature of science. © 2010 The Authors.

  1. An integrated course in pain management and palliative care bridging the basic sciences and pharmacy practice.

    Science.gov (United States)

    Kullgren, Justin; Radhakrishnan, Rajan; Unni, Elizabeth; Hanson, Eric

    2013-08-12

    To describe the development of an integrated pain and palliative care course and to investigate the long-term effectiveness of the course during doctor of pharmacy (PharmD) students' advanced pharmacy practice experiences (APPEs) and in their practice after graduation. Roseman University College of Pharmacy faculty developed a 3-week elective course in pain and palliative care by integrating relevant clinical and pharmaceutical sciences. Instructional strategies included lectures, team and individual activities, case studies, and student presentations. Students who participated in the course in 2010 and 2011 were surveyed anonymously to gain their perception about the class as well as the utility of the course during their APPEs and in their everyday practice. Traditional and nontraditional assessment of students confirmed that the learning outcomes objectives were achieved. Students taking the integrated course on pain management and palliative care achieved mastery of the learning outcome objectives. Surveys of students and practicing pharmacists who completed the course showed that the learning experience as well as retention was improved with the integrated mode of teaching. Integrating basic and clinical sciences in therapeutic courses is an effective learning strategy.

  2. Writing throughout the biochemistry curriculum: Synergistic inquiry-based writing projects for biochemistry students.

    Science.gov (United States)

    Mertz, Pamela; Streu, Craig

    2015-01-01

    This article describes a synergistic two-semester writing sequence for biochemistry courses. In the first semester, students select a putative protein and are tasked with researching their protein largely through bioinformatics resources. In the second semester, students develop original ideas and present them in the form of a research grant proposal. Both projects involve multiple drafts and peer review. The complementarity of the projects increases student exposure to bioinformatics and literature resources, fosters higher-order thinking skills, and develops teamwork and communication skills. Student feedback and responses on perception surveys demonstrated that the students viewed both projects as favorable learning experiences. © 2015 The International Union of Biochemistry and Molecular Biology.

  3. Teachers' Perspectives of the New Western Australian Earth and Environmental Science Course: Lessons for the Australian Curriculum

    Science.gov (United States)

    Dawson, Vaille; Moore, Leah

    2011-01-01

    In 2007, a new upper secondary course, Earth and Environmental Science (EES) was introduced in Western Australia. The development and implementation of the course was supported by Earth Science Western Australia (ESWA), a consortium of universities, the CSIRO and other organisations. The role of ESWA is to support the teaching of earth science in…

  4. Exploring the development of science self-efficacy in preservice elementary school teachers participating in a science education methods course

    Science.gov (United States)

    Gunning, Amanda M.

    The demands of society's increasing dependence on science and technology call for our students to have a solid foundation in science education, starting in the earliest grades. However, elementary school teachers often lack the necessary experiences to deliver that education. This qualitative study seeks to explore the development of six preservice elementary teachers in a semester-long science methods course. The course consisted of many components; one in particular was a microteaching experience, which emerged as especially significant. The participants' experiences throughout the semester were studied primarily through the lens of self-efficacy, but were also examined considering learning theories and mental models. It was found that two participants in particular were self-directed learners and were able to construct for themselves a self-selected cognitive apprenticeship. Other findings include the significance of a microteaching experience on development of self-efficacy in science teaching and the role mental models may or may not play in development of self-efficacy in the science methods course. This study has implications both for preservice elementary education in science and in general.

  5. A Course in Earth System Science: Developed for Teachers by Teachers

    Science.gov (United States)

    Wong, K.; Read, K.; Charlevoix, D.; Tomkin, J.; Hug, B.; Williams, M.; Pianfetti, E.

    2008-12-01

    ESES 202 is a new general education course in physical science at the University of Illinois's School of Earth, Society and Environment, designed for pre-service K-8 teachers. The goal of the course is to help future classroom teachers become confident with teaching earth science content. The designers of this course include a faculty expert in earth system science, a pre-service teacher and a former middle school science teacher. The goal of the in the curriculum design was to utilize the unique perspectives and experiences of our team. Our poster will highlight the unique nature of the curriculum development outlining the challenges and successes of designing the course. The general format of the class will be a combination of discussions, hands on experiences, and opportunities for students to design their own lessons. Class meetings will be once per week in a three-hour block, allowing students to immediately transfer new content knowledge into classroom activities. The end goal is that they can use these same activities with their students once they are practicing teachers. The content of the course shall be taught using an earth systems approach by showing the relationships among the four spheres: biosphere, hydrosphere, atmospheric, and anthrosphere. There are five units in the course: Introduction to Earth Systems, Carbon Cycle, Water Quality, El Niño and Climate Change. In addition to the science portion of the course, students will spend time reflecting on the classroom activities from the perspective of future educators. Activities will be presented at a late elementary school level; however, time will be devoted to discussing methods to adapt the lesson to different grade levels and differentiation needs within a classroom. Additionally, students in this course will be instructed on how to utilize a multitude of resources from stream tables to science education databases to prepare them for the dynamic nature of the classroom. By the end of the class

  6. Experience in presenting short courses in waste management technologies for secondary science and mathematics teachers

    International Nuclear Information System (INIS)

    Toth, W.J.; Smith, T.H.; Garcia, M.M.; Ferguson, J.E.

    1991-01-01

    The Department of Energy (DOE) and its Idaho National Engineering Laboratory (INEL) are developing educational programs that will help avert projected shortages in scientific and engineering manpower. One approach to this end is to help teachers become better prepared to teach topics that enthuse more students. INEL developed and offered a Short Course in Waste Management Technologies for Secondary Science and Mathematics Teachers. Short Course has two purposes: (1) to provide secondary-level science and mathematics teachers with training and information that will be useful to them in the classroom, and (2) to provide information on a topic of widespread interest in today's society, i.e., the management of hazardous and radioactive wastes and the restoration and preservation of the environment. This paper describes the development of the Short Course and summarizes some of the lessons learned in the preparation and presentation of such courses. 2 refs., 2 tabs

  7. Glycobiology, How to Sugar-Coat an Undergraduate Advanced Biochemistry Laboratory

    Science.gov (United States)

    McReynolds, Katherine D.

    2006-01-01

    A second semester biochemistry laboratory has been implemented as an independent projects course at California State University, Sacramento since 1999. To incorporate aspects of carbohydrate biochemistry, or glycobiology, into our curriculum, projects in lectin isolation and purification were undertaken over the course of two semesters. Through…

  8. Experiences from introduction of peer-to-peer teaching methods in Advanced Biochemistry E2010

    DEFF Research Database (Denmark)

    Brodersen, Ditlev; Etzerodt, Michael; Rasmussen, Jan Trige

    2012-01-01

    During the autumn semester 2010, we experimented with a range of active teaching methods on the course, Advanced Biochemistry, at the Department of Molecular Biology and Genetics.......During the autumn semester 2010, we experimented with a range of active teaching methods on the course, Advanced Biochemistry, at the Department of Molecular Biology and Genetics....

  9. Hazardous Asteroids: Cloaking STEM Skills Training within an Attention-Grabbing Science/Math Course

    Science.gov (United States)

    Ryan, Eileen V.; Ryan, William H.

    2015-11-01

    A graduate-level course was designed and taught during the summer months from 2009 - 2015 in order to contribute to the training and professional development of K-12 teachers residing in the Southwest. The teachers were seeking Master’s degrees via the New Mexico Institute of Mining and Technology’s (NMT’s) Masters of Science Teaching (MST) program, and the course satisfied a science or math requirement. The MST program provides opportunities for in-service teachers to enhance their content backgrounds in science, mathematics, engineering, and technology (SMET). The ultimate goal is to assist teachers in gaining knowledge that has direct application in the classroom.The engaging topic area of near-Earth object (NEO) characterization studies was used to create a fun and exciting framework for mastering basic skills and concepts in physics and astronomy. The objective was to offer a class that had the appropriate science rigor (with an emphasis on mathematics) within a non-threatening format. The course, entitled “Hazardous Asteroids”, incorporates a basic planetary physics curriculum, with challenging laboratories that include a heavy emphasis on math and technology. Since the authors run a NASA-funded NEO research and follow-up program, also folded into the course is the use of the Magdalena Ridge Observatory’s 2.4-meter telescope so participants can take and reduce their own data on a near-Earth asteroid.In exit assessments, the participants have given the course excellent ratings for design and implementation, and the overall degree of satisfaction was high. This validates that a well-constructed (and rigorous) course can be effective in receptively reaching teachers in need of basic skills refreshment. Many of the teachers taking the course were employed in school districts serving at-risk or under-prepared students, and the course helped provide them with the confidence vital to developing new strategies for successful teaching.

  10. Educational Status of Dental Basic Science Course and its Correlation with Students' Educational Background in Kermanshah University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Mozafar Khazaei

    2014-04-01

    Full Text Available Introduction: Basic science course plays a pivotal role in the academic achievement of the students. The scientific background and educational performance of the students are also influential in this period. The aim of the present study was to investigate the educational status of dental basic science course in the first three admissions (2009-2011 and its association with students’ educational background in Kermanshah University of Medical Sciences (KUMS. Methods: In this descriptive cross-sectional study, all dental students admitted to school of dentistry in 2009-2011 years were included. The students’ academic background (scores, grade point average, score of comprehensive basic sciences examination (CBSE were recorded. Data were analyzed by SPSS 16 using one-way analysis of variance (ANOVA and independent t-test. Results: Kermanshah dental students admitted to university in 2009-2011 were mostly female (59.2%, belonged to regions 2 and 3 (81.6% of university entrance exam, had sciences diploma (89.8% and their grade point average of diploma was nearly 18. There was a significant difference between the three groups of students admitted to university in Biology, Chemistry, Mathematics, Arabic, English language and Theology lessones of entrane exam (P<0.05. The students’ failure rate was 1.5% in university coureses. They all (100% passed CBSE and were ranked second nationally in the year. There was no significant difference between male and female students in terms of age, diploma grade point average, grade point average of basic sciences and score of CBSE. Conclusion: Basic science courses of dentistry in Kermanshah enjoyed a rather constant status and students had a good academic level in these courses.

  11. Redesigning Introductory Science Courses to Teach Sustainability: Introducing the L(SC)2 Paradigm

    Science.gov (United States)

    Myers, J. D.; Campbell-Stone, E.; Massey, G.

    2008-12-01

    Modern societies consume vast quantities of Earth resources at unsustainable levels; at the same time, resource extraction, processing, production, use and disposal have resulted in environmental damage severe enough to threaten the life-support systems of our planet. These threats are produced by multiple, integrative and cumulative environmental stresses, i.e. syndromes, which result from human physical, ecological and social interactions with the environment in specific geographic places. In recent decades, recognition of this growing threat has lead to the concept of sustainability. The science needed to provide the knowledge and know-how for a successful sustainability transition differs markedly from the science that built our modern world. Sustainability science must balanced basic and applied research, promote integrative research focused on specific problems and devise a means of merging fundamental, general scientific principles with understanding of specific places. At the same time, it must use a variety of knowledge areas, i.e. biological systems, Earth systems, technological systems and social systems, to devise solutions to the many complex and difficult problems humankind faces. Clearly, sustainability science is far removed from the discipline-based science taught in most U.S. colleges. Many introductory science courses focus on content, lack context and do not integrate scientific disciplines. To prepare the citizens who will confront future sustainability issues as well as the scientists needed to devise future sustainability strategies, educators and scientists must redesign the typical college science course. A new course paradigm, Literacies and Scientific Content in Social Context (L(SC)2), is ideally suited to teach sustainability science. It offers an alternative approach to liberal science education by redefining and expanding the concept of the interdisciplinary course and merging it with the integrated science course. In addition to

  12. Biochemistry for Medical Students: A Flexible Student-Oriented Approach. AMEE Case Study No. 3

    Science.gov (United States)

    Macqueen, D.; And Others

    1976-01-01

    A personalized account of some experiences in the Department of Biochemistry at the University of Dundee during a radical revision of the course for medical students is offered. Innovations of the course are described in detail. (LBH)

  13. Science and licensing: Let's get off the collision course

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.

    1993-10-01

    Our best possibility for gaining an understanding of the likely future behavior of a high level nuclear waste disposal system is use of the scientific method. However, science has inherent limitations when it comes to making long-term predictions with confidence. This paper examines these limiting factors as well as the criteria for admissibility of scientific evidence in the legal arena, and concludes that the prospects are doubtful for successful licensing of a potential repository under the regulations that were binding until recently. Suggestions are made for remedying this situation

  14. Music and the mind: a new interdisciplinary course on the science of musical experience.

    Science.gov (United States)

    Prichard, J Roxanne; Cornett-Murtada, Vanessa

    2011-01-01

    In this paper the instructors describe a new team-taught transdisciplinary seminar, "Music and Mind: The Science of Musical Experience." The instructors, with backgrounds in music and neuroscience, valued the interdisciplinary approach as a way to capture student interest and to reflect the inherent interconnectivity of neuroscience. The course covered foundational background information about the science of hearing and musical perception and about the phenomenology of musical creation and experience. This two-credit honors course, which attracted students from eleven majors, integrated experiential learning (active listening, journaling, conducting mini-experiments) with rigorous reflection and discussion of academic research. The course culminated in student-led discussions and presentations of final projects around hot topics in the science of music, such as the 'Mozart Effect,' music and religious experience, etc. Although this course was a two-credit seminar, it could easily be expanded to a four-credit lecture or laboratory course. Student evaluations reveal that the course was successful in meeting the learning objectives, that students were intrinsically motivated to learn more about the discipline, and that the team-taught, experiential learning approach was a success.

  15. Integrating international relations and environmental science course concepts through an interactive world politics simulation

    Science.gov (United States)

    Straub, K. H.; Kesgin, B.

    2012-12-01

    During the fall 2012 semester, students in two introductory courses at Susquehanna University - EENV:101 Environmental Science and POLI:131 World Affairs - will participate together in an online international relations simulation called Statecraft (www.statecraftsim.com). In this strategy game, students are divided into teams representing independent countries, and choose their government type (democracy, constitutional monarchy, communist totalitarian, or military dictatorship) and two country attributes (industrial, green, militaristic, pacifist, or scientific), which determine a set of rules by which that country must abide. Countries interact over issues such as resource distribution, war, pollution, immigration, and global climate change, and must also keep domestic political unrest to a minimum in order to succeed in the game. This simulation has typically been run in political science courses, as the goal is to allow students to experience the balancing act necessary to maintain control of global and domestic issues in a dynamic, diverse world. This semester, environmental science students will be integrated into the simulation, both as environmental advisers to each country and as independent actors representing groups such as Greenpeace, ExxonMobil, and UNEP. The goal in integrating the two courses in the simulation is for the students in each course to gain both 1) content knowledge of certain fundamental material in the other course, and 2) a more thorough, applied understanding of the integrated nature of the two subjects. Students will gain an appreciation for the multiple tradeoffs that decision-makers must face in the real world (economy, resources, pollution, health, defense, etc.). Environmental science students will link these concepts to the traditional course material through a "systems thinking" approach to sustainability. Political science students will face the challenges of global climate change and gain an understanding of the nature of

  16. THE USE OF MULTIPLE TOOLS FOR TEACHING MEDICAL BIOCHEMISTRY

    OpenAIRE

    Sé, A.B.; Oxyradical Research Group, CEL, UnB; FM-UnB, Brasília, Brazil.; Passos, R.M.; Oxyradical Research Group, CEL, UnB; 2FM-UnB, Brasília, Brazil.; Rochadel, A.D; FM-UnB, Brasília, Brazil; Ono, A.H.; FM-UnB, Brasília, Brazil; Hermes-Lima, M.; Oxyradical Research Group, CEL, UnB

    2007-01-01

    The pros and cons of Problem Based Learning (PBL) have been extensivelydiscussed in the literature. We describe PBL-like strategies used at UnB (some ofthem since 1999) that may be useful elsewhere to improve undergraduatebiochemistry teaching with clinical applications. The main activities are: (i) aseminar/poster system, (ii) a true-or-false applied biochemistry exam (prepared bypeer tutors), (iii) a 9-hour-exam on metabolism (based in actual papers), (iv) anAdvanced Biochemistry course (di...

  17. Assessment of Learning Gains in a Flipped Biochemistry Classroom

    Science.gov (United States)

    Ojennus, Deanna Dahlke

    2016-01-01

    The flipped classroom has become an increasingly popular pedagogical approach to teaching and learning. In this study, learning gains were assessed in a flipped biochemistry course and compared to gains in a traditional lecture. Although measured learning gains were not significantly different between the two courses, student perception of…

  18. An Integrated Approach to Teaching Biochemistry for Pharmacy Students.

    Science.gov (United States)

    Poirier, Therese I.; Borke, Mitchell L.

    1982-01-01

    A Duquesne course integrating biochemistry lectures, clinical applications lectures, and laboratory sessions has the objectives of (1) making the course more relevant to students' perceived needs; (2) enhancing the learning process; (3) introducing clinical applications early in the students' program; and (4) demonstrating additional…

  19. Persistence and withdrawal by students in a preservice science and mathematics teacher education course

    Science.gov (United States)

    Tulip, David F.; Lucas, Keith B.

    1991-12-01

    At a time when recruitment into preservice teacher education courses in mathematics and science is difficult, one strategy to increase the number of graduates is to minimise the number of students who fail to complete their university courses. This study sought to determine factors which distinguish withdrawers from persisters in the first semester of a B.Ed course. Discriminant analysis was employed; a discriminant function employing seven factors resulted in correct classification in 81% of cases. Further analysis distinguishing between dropouts and transferees resulted in two discriminant functions with some common variables.

  20. Perceptions of psychology as a science among university students: the influence of psychology courses and major of study.

    Science.gov (United States)

    Bartels, Jared M; Hinds, Ryan M; Glass, Laura A; Ryan, Joseph J

    2009-10-01

    The goal was to examine the relationship between the number of psychology courses students have taken and their perceptions of psychology as a science. Additionally, differences in perceptions of psychology among psychology, education, and natural science majors were examined. Results indicated that students who had taken four or more psychology courses had more favorable perceptions of psychology as a science compared to those who had taken no courses or one course and those who had taken two to three courses. No significant differences in overall perceptions of psychology emerged among students in the three majors.

  1. Learning the 'grammar of science': The influence of a physical science content course on teachers' understanding of the nature of science

    Science.gov (United States)

    Hanuscin, Deborah L.

    This research examined the development of practicing K--8 teachers' views of the nature of science (NOS) within a physical science content course. Reforms in science education have called for the teaching of science as inquiry. In order to achieve the vision of the reforms, teachers must understand science, both a body of knowledge and as a process, but also the very nature of science itself-or the values and assumptions inherent in the construction of scientific knowledge. NOS has been deemed a critical component of scientific literacy, with implications for making informed decisions about scientific claims. Research has indicated that despite the emphasis of reforms, teachers generally do not possess accurate views of NOS. Recent work in science education has led to the recommendation that efforts undertaken within teacher education programs to improve teachers' understanding of NOS can be enhanced through relevant coursework in other academic areas, including the sciences. The purpose of this dissertation was to provide an empirical basis for this recommendation, by examining the development of teachers' views of NOS within a physical science content course. To this end, the researcher employed qualitative methodology including participant observation, interview, document analysis, and questionnaire to assess teacher participants' views of the nature of science and the impact of their experience in the content course on these views. As a result of this research, implications for both the course design and science teacher education have been described. In addition, various aspects of the community of practice that characterizes the classroom that inhibit the development of understandings about the nature of science are identified. It is argued that instruction in NOS should be approached from the perspective that builds bridges between the communities of practice of learners and of scientists.

  2. Sources of Science Teaching Self-Efficacy for Preservice Elementary Teachers in Science Content Courses

    Science.gov (United States)

    Menon, Deepika; Sadler, Troy D.

    2018-01-01

    Self-efficacy beliefs play a major role in determining teachers' science teaching practices and have been a topic of great interest in the area of preservice science teacher education. This qualitative study investigated factors that influenced preservice elementary teachers' science teaching self-efficacy beliefs in a physical science content…

  3. BIOCHEMYSTRY DISCIPLINE RELEVANCE IN DIFFERENTS GRADUATION COURSES AT UESB IN JEQUIÉ CITY

    Directory of Open Access Journals (Sweden)

    Kátia Virgínia Galvão Gomes

    2006-10-01

    Full Text Available Biochemistry is a science that study the chemistry of life. It can give support to teaching basics acquirements that several courses,for example, the health and exact need to complete formation. This discipline approach topics common that is comtemplate in Physical Education, Nursing, Physiotherapy, Odontology, Biology and Chemistry to show the relation with courses above through application of contents to understand specific thems. The purpouse of this research was, through bibliography review, to emphasize, the importance of discipline to this courses, to understand its like basic discipline in the same courses, making evidence how the biochemistry can contribute to professional formation this students. The review show to interdiscipline of biochemistry, allowing the change of informations among several areas.

  4. Making Connections to Students' Lives and Careers Throughout a General Education Science Course

    Science.gov (United States)

    LaDue, D. S.

    2014-12-01

    The University of Oklahoma's general education lecture course Severe & Unusual Weather, taught in two sections each fall and spring, covers about nine topics. The sections are taught by different instructors, each of whom has flexibility to employ a variety of instructional strategies and choose specific topics to cover while meeting the requirement that general education courses in the natural sciences help students understand the importance of the science for appreciating the world around them. Students enrolled have been approximately 6-10% returning adult students, some of whom were veterans or active duty military, and about 10% members of racial or ethnic groups. Their majors are mostly in the humanities (theater, photography) and social sciences (education, English, journalism, sociology), with some natural science majors (psychology, aviation). For the past two years, Section 001 has been designed with adult and active learning concepts in mind, using deliberate connections between course content and students' lives and careers to motivate meaningful learning. Students were grouped in teams according to similar majors and assigned group presentations connecting course content to topics that should interest them, such as economic impacts of weather, societal and personal impacts of severe weather, risks to aviation, media coverage of weather, and psychological and sociological responses to weather risks. Students learn about the peer review process for scientific papers while also exploring a connection of course content to their future career or life interests through papers that are run through a mock peer review process. Public policy is discussed in several sections of the course, such as hurricane building codes, wind-resistant construction in tornado alley, and the disproportionate impacts of weather and climate on certain socioeconomic groups. Most students deeply appreciate the opportunity to explore how course content intersects with their lives

  5. Using "Making Sense of Climate Science Denial" MOOC videos in a college course

    Science.gov (United States)

    Schuenemann, K. C.; Cook, J.

    2015-12-01

    The Massive Open Online Course (MOOC) "Denial101x: Making Sense of Climate Science Denial" teaches students to make sense of the science and respond to climate change denial. The course is made up of a series of short, myth-debunking lecture videos that can be strategically used in college courses. The videos and the visuals within have proven a great resource for an introductory college level climate change course. Methods for using the videos in both online and in-classroom courses will be presented, as well as student reactions and learning from the videos. The videos introduce and explain a climate science topic, then paraphrase a common climate change myth, explain why the myth is wrong by identifying the characteristic of climate denial used, and concludes by reinforcing the correct science. By focusing on common myths, the MOOC has made an archive of videos that can be used by anyone in need of a 5-minute response to debunk a myth. By also highlighting five characteristics of climate denial: fake experts, logical fallacies, impossible expectations, cherry picking, and conspiracy theories (FLICC), the videos also teach the viewer the skills they need to critically examine myths they may encounter in the real world on a variety of topics. The videos also include a series of expert scientist interviews that can be used to drive home points, as well as put some faces to the science. These videos are freely available outside of the MOOC and can be found under the relevant "Most used climate myths" section on the skepticalscience.com webpage, as well as directly on YouTube. Discover ideas for using videos in future courses, regardless of discipline.

  6. Poster Display as an Alternative Evaluation Method to Biochemistry Teaching

    Directory of Open Access Journals (Sweden)

    Silas P. Rodrigues

    2004-05-01

    Full Text Available Biochemistry is present in dierent professional under gradation courses in which it seeks to attendseveral objectives. The discipline oered to the students of Biology Science Course at UFES is tra-ditionally organized in a series of lectures to the basic information, a laboratory class related to eachtopic and a three written tests. Our students, as many from other courses, study biochemistry justbecause they have to. The teacher can alter the student behavior by changing the way in which theyexamine them. This work describes and analyses the experience of using poster display as an assess-ment and includes feedback from the students and teachers. At the beginning of the term the activityis explained to the class and groups are formed. They are oriented to search a full research paper, with\\metabolism as a key word. During the students presentation, teachers and graduation studentsevaluate the production of a self-explanatory poster, assurance in the chosen work and involvementof all components of the group. A multiple-choice questionnaire was applied to 15-30 students fromthe ve classes that had already done the activity. The teachers and the graduation students also hadtheir opinions heard. 62.3 % of the students agreed that the activity accomplishes its objective tostimulate the integration of general knowledge and comprehension of a specic scientic work, while itpromotes the practice of presentation at seminars. 62.2 % believed that it allows the learner to showits knowledge in a better way and 51 % of the students were very much motivated within the activity.For 91.2 % of the students, they should choose the article, as it allows a better correlation betweenbiochemistry and personal anities (42.7 %. Also, 98 % believed that the activity should be carriedout in groups, because it allows a deeper discussion (53.6 %, stimulate group activities (20 % orpermits the materials costs division (22 %. Only 1.8 % of the learners thought that the

  7. Biochemistry in the idea of graduation students

    Directory of Open Access Journals (Sweden)

    D. F. Escoto et al

    2015-08-01

    Full Text Available INTRODUCTION AND OBJECTIVE: Biochemistry is an interdisciplinary area that allows us to study chemical phenomena in live organisms. That way, its study is of extreme importance, in all levels, to enlarge the comprehension of natural phenomena. However, it is barely explored in the basic education and often fragmented in the higher education, or in graduation degrees that contemplate this area. Especially in the teacher training, where the fragmentation of knowledge can contribute to form wrong concepts. Based on that, this work aims to identify the concept of Biochemistry according to the future teachers of Natural Science. MATERIALS AND METHODS: The work was developed with 3º, 5º and 9º semesters students of the natural science degree on Universidade Federal do Pampa. 50 students, from 18 to 56 years old, were interviewed. The data was obtained through a semi-structured questionnaire. The methodology of categorization and analysis of content with emergent categories of speech was chosen for the analysis. RESULTS AND CONCLUSION: Initially, 11 categories were chosen by content similarity. In descending order: chemical reactions in organisms, chemistry area, chemistry of life, cell metabolism, the study of living beings, origin of life, biology area, organic balance, chemical-biological study. The reports made possible to identify that most students do understand with clarity the goal of studying biochemistry. Although, we can see that there are some students that fragment the area, what means, they try to discriminate chemistry from biology. This way, they demonstrate a difficulty to comprehend biochemistry as interdisciplinary, what makes it hard to contextualize the built knowledge. It is important to develop strategies to overcome the fragmentation of knowledge, so that biochemistry can be comprehended in its fullness and help on the teaching processes that will be developed by the future teachers.

  8. Student Buy-In to Active Learning in a College Science Course.

    Science.gov (United States)

    Cavanagh, Andrew J; Aragón, Oriana R; Chen, Xinnian; Couch, Brian; Durham, Mary; Bobrownicki, Aiyana; Hanauer, David I; Graham, Mark J

    2016-01-01

    The benefits of introducing active learning in college science courses are well established, yet more needs to be understood about student buy-in to active learning and how that process of buy-in might relate to student outcomes. We test the exposure-persuasion-identification-commitment (EPIC) process model of buy-in, here applied to student (n = 245) engagement in an undergraduate science course featuring active learning. Student buy-in to active learning was positively associated with engagement in self-regulated learning and students' course performance. The positive associations among buy-in, self-regulated learning, and course performance suggest buy-in as a potentially important factor leading to student engagement and other student outcomes. These findings are particularly salient in course contexts featuring active learning, which encourage active student participation in the learning process. © 2016 A. J. Cavanagh et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. The Art of Astronomy: A New General Education Course for Non-Science Majors

    Science.gov (United States)

    Pilachowski, Catherine A.; van Zee, Liese

    2017-01-01

    The Art of Astronomy is a new general education course developed at Indiana University. The topic appeals to a broad range of undergraduates and the course gives students the tools to understand and appreciate astronomical images in a new way. The course explores the science of imaging the universe and the technology that makes the images possible. Topics include the night sky, telescopes and cameras, light and color, and the science behind the images. Coloring the Universe: An Insider's Look at Making Spectacular Images of Space" by T. A. Rector, K. Arcand, and M. Watzke serves as the basic text for the course, supplemented by readings from the web. Through the course, students participate in exploration activities designed to help them first to understand astronomy images, and then to create them. Learning goals include an understanding of scientific inquiry, an understanding of the basics of imaging science as applied in astronomy, a knowledge of the electromagnetic spectrum and how observations at different wavelengths inform us about different environments in the universe, and an ability to interpret astronomical images to learn about the universe and to model and understand the physical world.

  10. Practicing the practice: Learning to guide elementary science discussions in a practice-oriented science methods course

    Science.gov (United States)

    Shah, Ashima Mathur

    University methods courses are often criticized for telling pre-service teachers, or interns, about the theories behind teaching instead of preparing them to actually enact teaching. Shifting teacher education to be more "practice-oriented," or to focus more explicitly on the work of teaching, is a current trend for re-designing the way we prepare teachers. This dissertation addresses the current need for research that unpacks the shift to more practice-oriented approaches by studying the content and pedagogical approaches in a practice-oriented, masters-level elementary science methods course (n=42 interns). The course focused on preparing interns to guide science classroom discussions. Qualitative data, such as video records of course activities and interns' written reflections, were collected across eight course sessions. Codes were applied at the sentence and paragraph level and then grouped into themes. Five content themes were identified: foregrounding student ideas and questions, steering discussion toward intended learning goals, supporting students to do the cognitive work, enacting teacher role of facilitator, and creating a classroom culture for science discussions. Three pedagogical approach themes were identified. First, the teacher educators created images of science discussions by modeling and showing videos of this practice. They also provided focused teaching experiences by helping interns practice the interactive aspects of teaching both in the methods classroom and with smaller groups of elementary students in schools. Finally, they structured the planning and debriefing phases of teaching so interns could learn from their teaching experiences and prepare well for future experiences. The findings were analyzed through the lens of Grossman and colleagues' framework for teaching practice (2009) to reveal how the pedagogical approaches decomposed, represented, and approximated practice throughout course activities. Also, the teacher educators

  11. Trust, Growth Mindset, and Student Commitment to Active Learning in a College Science Course

    Science.gov (United States)

    Cavanagh, Andrew J.; Chen, Xinnian; Bathgate, Meghan; Frederick, Jennifer; Hanauer, David I.; Graham, Mark J.

    2018-01-01

    There is growing consensus regarding the effectiveness of active-learning pedagogies in college science courses. Less is known about ways that student-level factors contribute to positive outcomes in these contexts. The present study examines students' (N = 245) trust in the instructor--defined as perceptions of their instructor's understanding,…

  12. Soil Water: Advanced Crop and Soil Science. A Course of Study.

    Science.gov (United States)

    Miller, Larry E.

    The course of study represents the fourth of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil water. Upon completing the three day module, the student will be able to classify water as to its presence in the soil, outline the hydrological cycle, list the ways water is lost from the soil,…

  13. Academe-Industry Partnership: Basis for Enhanced Learning Guide in the New Science General Education Course

    Directory of Open Access Journals (Sweden)

    Alma D. Agero

    2016-11-01

    Full Text Available This study explores the academe-industry partnership of Cebu Technological University Bachelor of Science in Hospitality Management and Bachelor of Science in Industrial Technology major in Food Preparation and Services courses, SY 2014-2015 to improve the quality of course offering. It takes on the feedback received from supervisors of 50 different hotels and restaurants of Cebu province, as well as the self-rating of 185 OJTs of the two courses as regard to OJTs' level of functional and science-based core competencies. This descriptive research utilizes Likert-type research-made survey questionnaire which was previously tested for validity and reliability. The findings revealed that industry supervisors evaluated the trainees as Competent in core competencies (Bartending, Bread and pastry products, Cookery, Customer services, Front office services, food and beverages as well as functional skills (Problem solving, Leadership, Communication, Independent work, Creativity, Negotiation, Teamwork, Time management and Initiative. However, they found the students need of strengthening their problem solving and communication skills. The researchers therefore developed an enhanced learning guide for the New Science GE course to address the gaps based on the industry feedback.

  14. Map Resource Packet: Course Models for the History-Social Science Framework, Grade Seven.

    Science.gov (United States)

    California State Dept. of Education, Sacramento.

    This packet of maps is an auxiliary resource to the "World History and Geography: Medieval and Early Modern Times. Course Models for the History-Social Science Framework, Grade Seven." The set includes: outline, precipitation, and elevation maps; maps for locating key places; landform maps; and historical maps. The list of maps are…

  15. Spectral Feature Analysis of Minerals and Planetary Surfaces in an Introductory Planetary Science Course

    Science.gov (United States)

    Urban, Michael J.

    2013-01-01

    Using an ALTA II reflectance spectrometer, the USGS digital spectral library, graphs of planetary spectra, and a few mineral hand samples, one can teach how light can be used to study planets and moons. The author created the hands-on, inquiry-based activity for an undergraduate planetary science course consisting of freshman to senior level…

  16. A Sample Application for Use of Biography in Social Studies; Science, Technology and Social Change Course

    Science.gov (United States)

    Er, Harun

    2017-01-01

    The aim of this study is to evaluate the opinions of social studies teacher candidates on use of biography in science, technology and social change course given in the undergraduate program of social studies education. In this regard, convergent parallel design as a mixed research pattern was used to make use of both qualitative and quantitative…

  17. Kids Crash and Burn: An Analysis of Freshmen Failing Science End of Course Exams

    Science.gov (United States)

    Godfrey, Tanya N.

    2012-01-01

    The purpose of this study was to determine how various factors influence student achievement on the physical science EOCE so that students are provided every opportunity to be successful. An understanding of influences such as the type of mathematics course students are taking, participating in block scheduling, participating in freshmen…

  18. Findings from an Independent Evaluation of the AMNH's Online Seminars on Science Course: "The Solar System"

    Science.gov (United States)

    Inverness Research, 2009

    2009-01-01

    Inverness Research studied the American Museum of Natural History (AMNH) Seminars on Science program for eight years, from its inception in 1998 to 2006. In 2009, Inverness Research conducted additional studies of the AMNH's new online course, The Solar System. This paper presents teacher survey ratings for The Solar System, along with profiles of…

  19. Personal and Shared Experiences as Resources for Meaning Making in a Philosophy of Science Course

    Science.gov (United States)

    Arvaja, Maarit

    2012-01-01

    The aim of this case study was to explore health-education students' personal and collaborative meaning making activities during an online science philosophy course in the higher-education context. Through applying the dialogical perspective for learning, the focus was on studying how different contextual resources were used in building…

  20. The Effect of Teaching Strategy Based on Multiple Intelligences on Students' Academic Achievement in Science Course

    Science.gov (United States)

    Abdi, Ali; Laei, Susan; Ahmadyan, Hamze

    2013-01-01

    The purpose of this study was to investigate the effects of Teaching Strategy based on Multiple Intelligences on students' academic achievement in sciences course. Totally 40 students from two different classes (Experimental N = 20 and Control N = 20) participated in the study. They were in the fifth grade of elementary school and were selected…

  1. Full-Cycle Assessment of Critical Thinking in an Ethics and Science Course

    Science.gov (United States)

    Blue, Jennifer; Taylor, Beverley; Yarrison-Rice, Jan

    2008-01-01

    Enhancing critical thinking skills for undergraduate students is important across the curriculum and between disciplines. We report on a method of improving critical thinking skills, which was studied through an Ethics and Science First-Year Seminar course. We used full cycle assessment over a three-year period to assess students' development and…

  2. Soil Erosion: Advanced Crop and Soil Science. A Course of Study.

    Science.gov (United States)

    Miller, Larry E.

    The course of study represents the last of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil erosion. Upon completion of the two day lesson, the student will be able to: (1) define conservation, (2) understand how erosion takes place, and (3) list ways of controlling wind and water erosion.…

  3. Use of a Laboratory Field Project in an Introductory Crop Science Course.

    Science.gov (United States)

    Lane, Robert A.

    1986-01-01

    Assesses the benefits resulting from a laboratory field project and report for agricultural students in an introductory crop science course. Student responses to evaluation statements indicated that the project helped them identify crops, understand cultural and management practices, and recognize environmental influences that affect crop…

  4. Effect of Using Separate Laboratory and Lecture Courses for Introductory Crop Science on Student Performance.

    Science.gov (United States)

    Wiebold, W. J.; Slaughter, Leon

    1986-01-01

    Reviews a study that examined the effects of laboratories on the grade performance of undergraduates in an introductory crop science course. Results indicated that students enrolled in lecture and laboratory concurrently did not receive higher lecture grades than students enrolled solely in lecture, but did have higher laboratory grades. (ML)

  5. The MORPG-Based Learning System for Multiple Courses: A Case Study on Computer Science Curriculum

    Science.gov (United States)

    Liu, Kuo-Yu

    2015-01-01

    This study aimed at developing a Multiplayer Online Role Playing Game-based (MORPG) Learning system which enabled instructors to construct a game scenario and manage sharable and reusable learning content for multiple courses. It used the curriculum of "Introduction to Computer Science" as a study case to assess students' learning…

  6. 77 FR 61767 - The Science of Small Clinical Trials; Notice of Course

    Science.gov (United States)

    2012-10-11

    ... Science of Small Clinical Trials Course is presented by FDA's Office of Orphan Product Development, Center... from outside experts. It will also include case studies of regulatory trials and interactive panel... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-1025...

  7. Teaching Introductory Life Science Courses in Colleges of Agriculture: Faculty Experiences

    Science.gov (United States)

    Balschweid, Mark; Knobloch, Neil A.; Hains, Bryan J.

    2014-01-01

    Insignificant numbers of college students declaring STEM majors creates concern for the future of the U.S. economy within the global marketplace. This study highlights the educational development and teaching strategies employed by STEM faculty in teaching first-year students in contextualized life science courses, such as animal, plant, and food…

  8. Revision and Evaluation of a Course in Behavioral Sciences for Undergraduate Medical Students.

    Science.gov (United States)

    McGuire, Frederick L.; Friedmann, Claude T. H.

    1981-01-01

    The new teaching format of a behavioral science course at the University of California, Irvine, College of Medicine is described. Specific objectives were to present an introduction of life's developmental cycles, the nature of mind-body relationships, and dynamics of the doctor-patient relationship, and to develop interviewing skills. (MLW)

  9. Exploring Environmental Identity and Behavioral Change in an Environmental Science Course

    Science.gov (United States)

    Blatt, Erica N.

    2013-01-01

    This ethnographic study at a public high school in the Northeastern United States investigates the process of change in students' environmental identity and proenvironmental behaviors during an Environmental Science course. The study explores how sociocultural factors, such as students' background, social interactions, and classroom structures,…

  10. Teaching Web Application Development: A Case Study in a Computer Science Course

    Science.gov (United States)

    Del Fabro, Marcos Didonet; de Alimeda, Eduardo Cunha; Sluzarski, Fabiano

    2012-01-01

    Teaching web development in Computer Science undergraduate courses is a difficult task. Often, there is a gap between the students' experiences and the reality in the industry. As a consequence, the students are not always well-prepared once they get the degree. This gap is due to several reasons, such as the complexity of the assignments, the…

  11. Establishing a Pedagogical Framework for the Multicultural Course in Communication Sciences and Disorders

    Science.gov (United States)

    Horton-Ikard, RaMonda; Munoz, Maria L.; Thomas-Tate, Shurita; Keller-Bell, Yolanda

    2009-01-01

    Purpose: To provide an overview of a model for teaching a foundational course in multicultural (MC) issues and to demonstrate how it can be modified for use in communication sciences and disorders (CSD) by integrating 3 primary dimensions of cultural competence: awareness, knowledge, and skills. Method: This tutorial begins by establishing the…

  12. Cultivating the Capacity for Formal Reasoning: Objectives and Procedures in an Introductory Physical Science Course

    Science.gov (United States)

    Arons, A. B.

    1976-01-01

    Describes special factors and procedures which are utilized in an introductory physical science course for nonscience majors. It is designed to enable students who are at a concrete or transitional stage to attain the formal operational level of development. (Author/SL)

  13. Student Buy-In to Active Learning in a College Science Course

    Science.gov (United States)

    Cavanagh, Andrew J.; Aragón, Oriana R.; Chen, Xinnian; Couch, Brian; Durham, Mary; Bobrownicki, Aiyana; Hanauer, David I.; Graham, Mark J.

    2016-01-01

    The benefits of introducing active learning in college science courses are well established, yet more needs to be understood about student buy-in to active learning and how that process of buy-in might relate to student outcomes. We test the exposure-persuasion-identification-commitment (EPIC) process model of buy-in, here applied to student (n =…

  14. Thiol biochemistry of prokaryotes

    Science.gov (United States)

    Fahey, Robert C.

    1986-01-01

    The present studies have shown that GSH metabolism arose in the purple bacteria and cyanobacteria where it functions to protect against oxygen toxicity. Evidence was obtained indicating that GSH metabolism was incorporated into eucaryotes via the endosymbiosis giving rise to mitochrondria and chloroplasts. Aerobic bacteria lacking GSH utilize other thiols for apparently similar functions, the thiol being coenzyme A in Gram positive bacteria and chi-glutamylcysteine in the halobacteria. The thiol biochemistry of prokaryotes is thus seen to be much more highly diversified than that of eucaryotes and much remains to be learned about this subject.

  15. An Elective Course on the Basic and Clinical Sciences Aspects of Vitamins and Minerals

    Science.gov (United States)

    2013-01-01

    Objective. To develop and implement an elective course on vitamins and minerals and their usefulness as dietary supplements. Design. A 2-credit-hour elective course designed to provide students with the most up-to-date basic and clinical science information on vitamins and minerals was developed and implemented in the doctor of pharmacy (PharmD) curriculum. In addition to classroom lectures, an active-learning component was incorporated in the course in the form of group discussion. Assessment. Student learning was demonstrated by examination scores. Performance on pre- and post-course surveys administered in 2011 demonstrated a significant increase in students’ knowledge of the basic and clinical science aspects of vitamins and minerals, with average scores increasing from 61% to 86%. At the end of the semester, students completed a standard course evaluation. Conclusion. An elective course on vitamin and mineral supplements was well received by pharmacy students and helped them to acquire knowledge and competence in patient counseling regarding safe, appropriate, effective, and economical use of these products. PMID:23463149

  16. An elective course on the basic and clinical sciences aspects of vitamins and minerals.

    Science.gov (United States)

    Islam, Mohammed A

    2013-02-12

    Objective. To develop and implement an elective course on vitamins and minerals and their usefulness as dietary supplements. Design. A 2-credit-hour elective course designed to provide students with the most up-to-date basic and clinical science information on vitamins and minerals was developed and implemented in the doctor of pharmacy (PharmD) curriculum. In addition to classroom lectures, an active-learning component was incorporated in the course in the form of group discussion. Assessment. Student learning was demonstrated by examination scores. Performance on pre- and post-course surveys administered in 2011 demonstrated a significant increase in students' knowledge of the basic and clinical science aspects of vitamins and minerals, with average scores increasing from 61% to 86%. At the end of the semester, students completed a standard course evaluation. Conclusion. An elective course on vitamin and mineral supplements was well received by pharmacy students and helped them to acquire knowledge and competence in patient counseling regarding safe, appropriate, effective, and economical use of these products.

  17. An interactive computer lab of the galvanic cell for students in biochemistry.

    Science.gov (United States)

    Ahlstrand, Emma; Buetti-Dinh, Antoine; Friedman, Ran

    2018-01-01

    We describe an interactive module that can be used to teach basic concepts in electrochemistry and thermodynamics to first year natural science students. The module is used together with an experimental laboratory and improves the students' understanding of thermodynamic quantities such as Δ r G, Δ r H, and Δ r S that are calculated but not directly measured in the lab. We also discuss how new technologies can substitute some parts of experimental chemistry courses, and improve accessibility to course material. Cloud computing platforms such as CoCalc facilitate the distribution of computer codes and allow students to access and apply interactive course tools beyond the course's scope. Despite some limitations imposed by cloud computing, the students appreciated the approach and the enhanced opportunities to discuss study questions with their classmates and instructor as facilitated by the interactive tools. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):58-65, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  18. A new course and textbook on Physical Models of Living Systems, for science and engineering undergraduates

    Science.gov (United States)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional courses: Basic modeling skills Probabilistic modeling skills Data analysis methods Computer programming using a general-purpose platform like MATLAB or Python Dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: Virus dynamics Bacterial genetics and evolution of drug resistance Statistical inference Superresolution microscopy Synthetic biology Naturally evolved cellular circuits. Work supported by NSF Grants EF-0928048 and DMR-0832802.

  19. Self-regulated Learning in a Hybrid Science Course at a Community College

    Science.gov (United States)

    Manuelito, Shannon Joy

    Community college students are attracted to courses with alternative delivery formats such as hybrid courses because the more flexible delivery associated with such courses provides convenience for busy students. In a hybrid course, face-to-face, structured seat time is exchanged for online components. In such courses, students take more responsibility for their learning because they assume additional responsibility for learning more of the course material on their own. Thus, self-regulated learning (SRL) behaviors have the potential to be useful for students to successfully navigate hybrid courses because the online components require exercise of more personal control over the autonomous learning situations inherent in hybrid courses. Self-regulated learning theory includes three components: metacognition, motivation, and behavioral actions. In the current study, this theoretical framework is used to examine how inducing self-regulated learning activities among students taking a hybrid course influence performance in a community college science course. The intervention for this action research study consisted of a suite of activities that engage students in self-regulated learning behaviors to foster student performance. The specific SRL activities included predicting grades, reflections on coursework and study efforts in course preparation logs, explanation of SRL procedures in response to a vignette, photo ethnography work on their personal use of SRL approaches, and a personalized study plan. A mixed method approach was employed to gather evidence for the study. Results indicate that community college students use a variety of self-regulated learning strategies to support their learning of course material. Further, engaging community college students in learning reflection activities appears to afford some students with opportunities to refine their SRL skills and influence their learning. The discussion focuses on integrating the quantitative and qualitative

  20. Blended learning in biochemistry education: analysis of medical students' perceptions.

    Science.gov (United States)

    de Fátima Wardenski, Rosilaine; de Espíndola, Marina Bazzo; Struchiner, Miriam; Giannella, Taís Rabetti

    2012-07-01

    The objective of this study was to analyze first-year UFRJ medical students' perceptions about the implementation of a blended learning (BL) experience in their Biochemistry I course. During the first semester of 2009, three Biochemistry professors used the Constructore course management system to develop virtual learning environments (VLEs) for complementing course Modules I, II, and IV, using different resources and activities. Forty-nine students (46%) took part in the study. Results show that, in general, students gave positive evaluations to their experiences with BL, indicating that the VLEs have not only motivated but also facilitated learning. Most of the students reported that access to resources in the three modules provided a more in-depth approach to Biochemistry education and greater study autonomy. Students suggested that the VLEs could be better used for promoting greater communication among participants. Copyright © 2012 Wiley Periodicals, Inc.

  1. Studies of biochemistry and clinical biochemistry. Studies at sample medical schools in 13 EU countries regarding biochemistry and clinical biochemistry teaching.

    Science.gov (United States)

    Stern, Petr; Sebesta, Ivan; Trnkova, Bohuslava; Zima, Tomas

    2008-07-01

    The study summarizes the results obtained during personal visits to 53 medical schools in the 13 original EU countries during 2004--2006. Data from the Czech Republic is shown for comparison. The possibilities of acquiring information from the websites of the medical schools in the local language and English are assessed. The admission process to medical schools and the organization of studies of medicine, dentistry, and non-medical healthcare fields are briefly characterized. Significant attention is paid to the forms of education in biochemistry and clinical (bio)chemistry in the medical study field. The position of these subjects in the studies of dentistry and non-medical healthcare fields is also noted. In addition, the course of subject exams is described. The methods of funding and postgraduate studies at the medical schools are also briefly addressed.

  2. Implementation of Real-World Experiential Learning in a Food Science Course Using a Food Industry-Integrated Approach

    Science.gov (United States)

    Hollis, Francine H.; Eren, Fulya

    2016-01-01

    Success skills have been ranked as the most important core competency for new food science professionals to have by food science graduates and their employers. It is imperative that food science instructors promote active learning in food science courses through experiential learning activities to enhance student success skills such as oral and…

  3. Using wikis to stimulate collaborative learning in two online health sciences courses.

    Science.gov (United States)

    Zitzelsberger, Hilde; Campbell, Karen A; Service, Dorothea; Sanchez, Otto

    2015-06-01

    The use of wiki technology fits well in courses that encourage constructive knowledge building and social learning by a community of learners. Pedagogically, wikis have attracted interest in higher education environments because they facilitate the collaborative processes required for developing student group assignments. This article describes a pilot project to assess the implementation of wikis in two online small- and mid-sized elective courses comprising nursing students in third- or fourth-year undergraduate levels within interdisciplinary health sciences courses. The need exists to further develop the pedagogical use of wiki environments before they can be expected to support collaboration among undergraduate nursing students. Adapting wiki implementation to suitable well-matched courses will make adaptation of wikis into nursing curricula more effective and may increase the chances that nursing students will hone the collaborative abilities that are essential in their future professional roles in communities of practice. Copyright 2015, SLACK Incorporated.

  4. Pathways from parental stimulation of children's curiosity to high school science course accomplishments and science career interest and skill

    Science.gov (United States)

    Eskeles Gottfried, Adele; Johnson Preston, Kathleen Suzanne; Gottfried, Allen W.; Oliver, Pamella H.; Delany, Danielle E.; Ibrahim, Sirena M.

    2016-08-01

    Curiosity is fundamental to scientific inquiry and pursuance. Parents are important in encouraging children's involvement in science. This longitudinal study examined pathways from parental stimulation of children's curiosity per se to their science acquisition (SA). A latent variable of SA was indicated by the inter-related variables of high school science course accomplishments, career interest, and skill. A conceptual model investigated parental stimulation of children's curiosity as related to SA via science intrinsic motivation and science achievement. The Fullerton Longitudinal Study provided data spanning school entry through high school (N = 118). Parental stimulation of curiosity at age 8 years comprised exposing children to new experiences, promoting curiosity, encouraging asking questions, and taking children to a museum. Intrinsic motivation was measured at ages 9, 10, and 13 years, and achievement at ages 9, 10, and 11 years. Structural equation modelling was used for analyses. Controlling for socio-economic status, parental stimulation of curiosity bore positive and significant relations to science intrinsic motivation and achievement, which in turn related to SA. Gender neither related to stimulation of curiosity nor contributed to the model. Findings highlight the importance of parental stimulation of children's curiosity in facilitating trajectories into science, and relevance to science education is discussed.

  5. The Ways to Promote Pre-service Science Teachers’ Pedagogical Content Knowledge for Inquiry in Learning Management in Science Course

    Directory of Open Access Journals (Sweden)

    Siriphan Satthaphon

    2017-09-01

    Full Text Available This classroom action research aimed to study the ways to promote pre-service science teachers’ pedagogical content knowledge for inquiry (PCK for inquiry. The participants were 37 students who enrolled in Learning Management in Science course in academic year 2014. Multiple data sources including students’ lesson plans, reflective journals, teacher’s logs, and worksheets were collected. The inductive approach was used to analyze data. The findings revealed the ways to promote pre-service science teachers’ PCK for inquiry consisted of being teacher’s explicit role model ; providing students to reflect their practices that link between their knowledge and understandings ; reflection from video case ; collaboration between students and teacher in learning activities planning, and allowing students to practice in actual situation could be better influence students not only reflect their understandings but also design, and teach science through inquiry.

  6. The Biochemistry of Mitosis

    Science.gov (United States)

    Wieser, Samuel; Pines, Jonathon

    2015-01-01

    In this article, we will discuss the biochemistry of mitosis in eukaryotic cells. We will focus on conserved principles that, importantly, are adapted to the biology of the organism. It is vital to bear in mind that the structural requirements for division in a rapidly dividing syncytial Drosophila embryo, for example, are markedly different from those in a unicellular yeast cell. Nevertheless, division in both systems is driven by conserved modules of antagonistic protein kinases and phosphatases, underpinned by ubiquitin-mediated proteolysis, which create molecular switches to drive each stage of division forward. These conserved control modules combine with the self-organizing properties of the subcellular architecture to meet the specific needs of the cell. Our discussion will draw on discoveries in several model systems that have been important in the long history of research on mitosis, and we will try to point out those principles that appear to apply to all cells, compared with those in which the biochemistry has been specifically adapted in a particular organism. PMID:25663668

  7. "I am Not a Statistic": Identities of African American Males in Advanced Science Courses

    Science.gov (United States)

    Johnson, Diane Wynn

    The United States Bureau of Labor Statistics (2010) expects new industries to generate approximately 2.7 million jobs in science and technology by the year 2018, and there is concern as to whether there will be enough trained individuals to fill these positions. A tremendous resource remains untapped, African American students, especially African American males (National Science Foundation, 2009). Historically, African American males have been omitted from the so called science pipeline. Fewer African American males pursue a science discipline due, in part; to limiting factors they experience in school and at home (Ogbu, 2004). This is a case study of African American males who are enrolled in advanced science courses at a predominantly African American (84%) urban high school. Guided by expectancy-value theory (EVT) of achievement related results (Eccles, 2009; Eccles et al., 1983), twelve African American male students in two advanced science courses were observed in their science classrooms weekly, participated in an in-depth interview, developed a presentation to share with students enrolled in a tenth grade science course, responded to an open-ended identity questionnaire, and were surveyed about their perceptions of school. Additionally, the students' teachers were interviewed, and seven of the students' parents. The interview data analyses highlighted the important role of supportive parents (key socializers) who had high expectations for their sons and who pushed them academically. The students clearly attributed their enrollment in advanced science courses to their high regard for their science teachers, which included positive relationships, hands-on learning in class, and an inviting and encouraging learning environment. Additionally, other family members and coaches played important roles in these young men's lives. Students' PowerPoint(c) presentations to younger high school students on why they should take advanced science courses highlighted these

  8. English Language Arts and Science Courses in a Virtual School: A Comparative Case Study

    Science.gov (United States)

    Tustin, Rachel Sarah

    Virtual K-12 schools have rapidly become a popular choice for parents and students in the last decade. However, little research has been done on the instructional practices used in virtual courses. As reflected in the central research question, the purpose of this study was to explore how teachers provided instruction for Grade 7-10 students in both English language arts and science courses in a virtual school in a southern state. The conceptual framework was based on Piaget's theory of cognitive development and Garrison, Anderson, and Siemens' research on instructional design. The units of analysis in this qualitative, comparative case study were four virtual courses; the data were collected from teacher and student questionnaires, threaded student discussions, student work samples, and archival records. The first level of data analysis involved coding and categorization using the constant comparative method, and the second level involved examining the data for patterns, themes, and relationships to determine key findings. Results indicated that a standardized virtual course design supported teacher use of direct instruction and summative assessments and some individualized instruction to deliver course content, including adjusting the course pace, conducting individual telephone conferences, and providing small group instruction using Blackboard Elluminate. Opportunities for student interaction and inquiry learning were limited. This study is expected to contribute to positive social change by providing educators and policymakers with an awareness of the critical need for further study of research-based instructional practices in K-12 virtual courses that would improve student learning.

  9. Comparing the Impact of an Astronomy Course and a Science and Society Seminar on Undergraduate Students' Attitudes toward Science

    Science.gov (United States)

    Flohic, Hélène M. L. G.

    2017-01-01

    A common challenge among university professors is how to best design undergraduate courses to successfully enhance students' attitudes. To compare which curriculum was more efficient at fostering a positive attitude towards science in general, I studied the impact of two different general education science courses on the attitudes of college…

  10. A case-based, small-group cooperative learning course in preclinical veterinary science aimed at bridging basic science and clinical literacy

    Directory of Open Access Journals (Sweden)

    J.P. Schoeman

    2009-05-01

    Full Text Available In 1999 a dedicated problem-based learning course was introduced into the lecture-based preclinical veterinary curriculum of the University of Pretoria. The Introduction to Clinical Studies Course combines traditional lectures, practical sessions, student self-learning and guided tutorials. The self-directed component of the course utilises case-based, small group cooperative learning as an educational vehicle to link basic science with clinical medicine. The aim of this article is to describe the objectives and structure of the course and to report the results of the assessment of the students' perceptions on some aspects of the course. Students reacted very positively to the ability of the course to equip them with problem-solving skills. Students indicated positive perceptions about the workload of the course. There were, however, significantly lower scores for the clarity of the course objectives. Although the study guide for the course is very comprehensive, the practice regarding the objectives is still uncertain. It is imperative to set clear objectives in non-traditional, student-centred courses. The objectives have to be explained at the outset and reiterated throughout the course. Tutors should also communicate the rationale behind problem based learning as a pedagogical method to the students. Further research is needed to verify the effectiveness of this course in bridging the gap between basic science and clinical literacy in veterinary science. Ongoing feedback and assessment of the management and content are important to refine this model for integrating basic science with clinical literacy.

  11. A case-based, small-group cooperative learning course in preclinical veterinary science aimed at bridging basic science and clinical literacy.

    Science.gov (United States)

    Schoeman, J P; van Schoor, M; van der Merwe, L L; Meintjes, R A

    2009-03-01

    In 1999 a dedicated problem-based learning course was introduced into the lecture-based preclinical veterinary curriculum of the University of Pretoria. The Introduction to Clinical Studies Course combines traditional lectures, practical sessions, student self-learning and guided tutorials. The self-directed component of the course utilises case-based, small-group cooperative learning as an educational vehicle to link basic science with clinical medicine. The aim of this article is to describe the objectives and structure of the course and to report the results of the assessment of the students' perceptions on some aspects of the course. Students reacted very positively to the ability of the course to equip them with problem-solving skills. Students indicated positive perceptions about the workload of the course. There were, however, significantly lower scores for the clarity of the course objectives. Although the study guide for the course is very comprehensive, the practice regarding the objectives is still uncertain. It is imperative to set clear objectives in non-traditional, student-centred courses. The objectives have to be explained at the outset and reiterated throughout the course. Tutors should also communicate the rationale behind problem-based learning as a pedagogical method to the students. Further research is needed to verify the effectiveness of this course in bridging the gap between basic science and clinical literacy in veterinary science. Ongoing feedback and assessment of the management and content are important to refine this model for integrating basic science with clinical literacy.

  12. Engaging High School Students in Advanced Math and Science Courses for Success in College: Is Advanced Placement the Answer?

    Science.gov (United States)

    Kelley-Kemple, Thomas; Proger, Amy; Roderick, Melissa

    2011-01-01

    The current study provides an in-depth look at Advanced Placement (AP) math and science course-taking in one school district, the Chicago Public Schools (CPS). Using quasi-experimental methods, this study examines the college outcomes of students who take AP math and science courses. Specifically, this study asks whether students who take AP math…

  13. Changes in Critical Thinking Skills Following a Course on Science and Pseudoscience: A Quasi-Experimental Study

    Science.gov (United States)

    McLean, Carmen P.; Miller, Nathan A.

    2010-01-01

    We assessed changes in paranormal beliefs and general critical thinking skills among students (n = 23) enrolled in an experimental course designed to teach distinguishing science from pseudoscience and a comparison group of students (n = 30) in an advanced research methods course. On average, both courses were successful in reducing paranormal…

  14. The Partially Flipped Classroom: The Effects of Flipping a Module on "Junk Science" in a Large Methods Course

    Science.gov (United States)

    Burgoyne, Stephanie; Eaton, Judy

    2018-01-01

    Flipped classrooms are gaining popularity, especially in psychology statistics courses. However, not all courses lend themselves to a fully flipped design, and some instructors might not want to commit to flipping every class. We tested the effectiveness of flipping just one component (a module on junk science) of a large methods course. We…

  15. A New Coherent Science Content Storyline Astronomy Course for Pre-Service Teachers at Penn State

    Science.gov (United States)

    Palma, Christopher; Plummer, Julia; Earth and Space Science Partnership

    2016-01-01

    The Earth and Space Science Partnership (ESSP) is a collaboration among Penn State scientists, science educators and seven school districts across Pennsylvania. One of the ESSP goals has been to provide pre-service teachers with new or improved science course offerings at Penn State in the Earth and Space Science domains. In particular, we aim to provide students with opportunities to learn astronomy content knowledge through teaching methods that engage them in investigations where they experience the practices used by astronomers. We have designed a new course that builds on our research into students' ideas about Solar System astronomy (Plummer et al. 2015) and the curriculum our team created for a professional development workshop for in-service teachers (Palma et al. 2013) with this same theme. The course was offered for the first time in the spring 2015 semester. We designed the course using a coherent science content storyline approach (see, e.g., Palma et al. 2014), which requires all of the student investigations to build towards a big idea in science; in this case, we chose the model for formation of our Solar System. The course led pre-service teachers through a series of investigations that model the type of instruction we hope they will adopt in their own classrooms. They were presented with a series of research questions that all tie in to the big idea of Solar System formation, and they were responsible for collecting and interpreting their own data to draw evidence-based conclusions about one aspect of this model. Students in the course were assessed on their astronomy content knowledge, but also on their ability to construct arguments using scientific reasoning to answer astronomy questions. In this poster, we will present descriptions of the investigations, the assessments used, and our preliminary results about how the course led this group of pre-service teachers to improved understanding of astronomy content and the practices astronomers use in

  16. Identification of multiple intelligences for high school students in theoretical and applied science courses

    Science.gov (United States)

    Wiseman, D. Kim

    Historically educators in the United States have used the Stanford-Binet intelligence test to measure a students' ability in logical/mathematical and linguistic domains. This measurement is being used by a society that has evolved from agrarian and industrial-based economies to what is presently labeled a technological society. As society has changed so have the educational needs of the students who will live in this technological society. This study assessed the multiple intelligences of high school students enrolled in theoretical and applied science (physics and applied physics) courses. Studies have verified that performance and outcomes of students enrolled in these courses are similar in standardized testing but instructional methodology and processes are dissimilar. Analysis of multiple intelligence profiles collected from this study found significant differences in logical/mathematical, bodily/kinesthetic and intrapersonal multiple intelligences of students in theoretical science courses compared to students in applied science courses. Those differences clearly illustrate why it is imperative for educators to expand the definition of intelligence for students entering the new millennium.

  17. Learning Biochemistry by Chocolate

    Directory of Open Access Journals (Sweden)

    M.C Guedes

    2006-07-01

    Full Text Available Both sensations and biochemical reactions taken place or promoted during ingestion of chocolate were the motivation for  investigating  the  organic  compounds  present  in  this  source.  Cocoa  and  chocolate  are  composed  by  several substances , among them, aminoacids and alkaloids.The objective of this investigation was to purpose a contextured approach  of  biochemistry  through  the  sensations  and  reactions  involving  aminoacids,  theobromine  and  hormones. Methodology: 1. Theoretical part:  constituted  by theoretical  and tutorial classes  about aminoacids, theobromine and hormones  involved  at  the  metabolism;  2.  Questionary:  ten  questions  based  upon  theoretical  classes,  personal sensations  and  general  aspects  of chocolate;  3.Lecture:  Cientific  articles  searched  in  periodics  by  own  students  as well  as  newspaper  reports;  4.  Experimental:  Laboratory  experiments  including  extraction,  characterization, spectrometric quantification  after  specific reactions  and identification by  Rf  comparison with  standards  on TLC  from cocoa  almonds  and  both  powder  cocoa  and  chocolate.  The  study  was  applied  in  30  students  from  a  chemistry college. Results: The results pointed out to a higher frequency of the students and to a increased interest  from them by   biochemistry  issues  and  cientific  lectures,  as  well  as  a  satisfactory  acquirement  of  theoretical  and  practice knowledge of aminoacids and hormones, spectrometry and chromatography. Conclusion: A contextured approach is quite positive for learning biochemistry to chemists.

  18. The transfer of learning process: From an elementary science methods course to classroom instruction

    Science.gov (United States)

    Carter, Nina Leann

    The purpose of this qualitative multiple-case study was to explore the transfer of learning process in student teachers. This was carried out by focusing on information learned from an elementary science methods and how it was transferred into classroom instruction during student teaching. Participants were a purposeful sampling of twelve elementary education student teachers attending a public university in north Mississippi. Factors that impacted the transfer of learning during lesson planning and implementation were sought. The process of planning and implementing a ten-day science instructional unit during student teaching was examined through lesson plan documentation, in-depth individual interviews, and two focus group interviews. Narratives were created to describe the participants' experiences as well as how they plan for instruction and consider science pedagogical content knowledge (PCK). Categories and themes were then used to build explanations applying to the research questions. The themes identified were Understanding of Science PCK, Minimalism, Consistency in the Teacher Education Program, and Emphasis on Science Content. The data suggested that the participants lack in their understanding of science PCK, took a minimalistic approach to incorporating science into their ten-day instructional units, experienced inconsistencies in the teacher education program, and encountered a lack of emphasis on science content in their field experience placements. The themes assisted in recognizing areas in the elementary science methods courses, student teaching field placements, and university supervision in need of modification.

  19. Benefits and Limitations of Online Instruction in Natural Science Undergraduate Liberal Arts Courses

    Science.gov (United States)

    Liddicoat, Joseph; Roberts, Godfrey; Liddicoat, Kendra; Porzecanski, Ana Luz; Mendez, Martin; McMullen, David

    2013-04-01

    Online courses in the Natural Sciences are taught three ways at New York University to undergraduate students majoring in the liberal arts and professional programs - synchronous courses in which students communicate online with the instructor and classmates in real time, asynchronous courses when faculty present course material for students to access and learn at their leisure, and hybrid or blended courses when part is taught asynchronously and part is taught face-to-face in a classroom with all students present. We have done online courses each way - Global Ecology (synchronous); Stars, Planets, and Life (synchronous and asynchronous); Darwin to DNA: An Overview of Evolution (asynchronous); Biodiversity Conservation (asynchronous); and Biology of Hunger and Population (blended). We will present the advantages and challenges we experienced teaching courses online in this fashion. Besides the advantages listed in the description for this session, another can be programmed learning that allows a set of sequential steps or a more complex branching of steps that allows students to repeat lessons multiple times to master the material. And from an academic standpoint, course content and assessment can be standardized, making it possible for each student to learn the same material. Challenges include resistance to online learning by a host of stakeholders who might be educators, students, parents, and the community. Equally challenging might be the readiness of instructors and students to teach and learn online. Student integrity issues such as plagiarism and cheating are a concern in a course taught online (Thormann and Zimmerman, 2012), so we will discuss our strategies to mitigate them.

  20. MiTEP's Collaborative Field Course Design Process Based on Earth Science Literacy Principles

    Science.gov (United States)

    Engelmann, C. A.; Rose, W. I.; Huntoon, J. E.; Klawiter, M. F.; Hungwe, K.

    2010-12-01

    Michigan Technological University has developed a collaborative process for designing summer field courses for teachers as part of their National Science Foundation funded Math Science Partnership program, called the Michigan Teacher Excellence Program (MiTEP). This design process was implemented and then piloted during two two-week courses: Earth Science Institute I (ESI I) and Earth Science Institute II (ESI II). Participants consisted of a small group of Michigan urban science teachers who are members of the MiTEP program. The Earth Science Literacy Principles (ESLP) served as the framework for course design in conjunction with input from participating MiTEP teachers as well as research done on common teacher and student misconceptions in Earth Science. Research on the Earth Science misconception component, aligned to the ESLP, is more fully addressed in GSA Abstracts with Programs Vol. 42, No. 5. “Recognizing Earth Science Misconceptions and Reconstructing Knowledge through Conceptual-Change-Teaching”. The ESLP were released to the public in January 2009 by the Earth Science Literacy Organizing Committee and can be found at http://www.earthscienceliteracy.org/index.html. Each day of the first nine days of both Institutes was focused on one of the nine ESLP Big Ideas; the tenth day emphasized integration of concepts across all of the ESLP Big Ideas. Throughout each day, Michigan Tech graduate student facilitators and professors from Michigan Tech and Grand Valley State University consistantly focused teaching and learning on the day's Big Idea. Many Earth Science experts from Michigan Tech and Grand Valley State University joined the MiTEP teachers in the field or on campus, giving presentations on the latest research in their area that was related to that Big Idea. Field sites were chosen for their unique geological features as well as for the “sense of place” each site provided. Preliminary research findings indicate that this collaborative design

  1. Latina girls of Puerto Rican origin who are successful in science and mathematics high school courses

    Science.gov (United States)

    Oquendo-Rodriguez, Aida L.

    Professions and careers related to science and mathematics lack representation of minorities. Within these underrepresented minority populations there is no other group more affected than Latina women and girls. Women in general, are still underrepresented in many areas of our society. While women's roles are changing in today's society, most changes encourage the participation of more White/Anglo women in traditionally male roles. Latina women are still more disadvantaged than White women. There is no doubt that education is significant in increasing the participation of minorities in the fields of science and mathematics, especially for minority girls (Oakes, 1990; Rodriguez, 1993). This study explored the interests, life experiences, characteristics and motivations of Latina girls of Puerto Rican origin who are successful in science and mathematics high school courses. The study identifies factors that can influence the interest of Latina girls of Puerto Rican origin in science and mathematics career choices. This research is significant and relevant to educators and policy makers, especially to science and mathematics educators. The research is primarily descriptive and exploratory. It explores the social characteristics of Latina girls and professional women who have been successful in science and mathematics high school courses. The research offers the reader a visit to the participants' homes with descriptions and the opportunity to explore the thoughts and life experiences of Latina girls, their mothers and young Latina professionals of Puerto Rican origin. This research reveals the common characteristics of successful students found in the Latina girls of Puerto Rican origin who where interviewed. Creating a portrait of Latina girls of Puerto Rican origin who are successful in science and mathematics high school courses in one of the school districts of western Massachusetts. The research findings reveal that teacher relationships, family expectations

  2. Chapter IV: ultrafast biochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chergui, M. [Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Kjelstrup, S. [Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Meuwly, M. [Universitaet Basel, Basel (Switzerland); Schuler, B. [University of Zuerich (ETH), Zurich (Switzerland); Thor, J. van [Imperial College London (IC), London (United Kingdom)

    2009-09-15

    The whole report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the scientific opportunities offered by the institute's SwissFEL X-ray Laser facility. In this sixth part, initial events and fluctuations in biochemical processes at the atomic scale are discussed. Sub-nanosecond processes are fundamental to biochemistry and will be accessible to the ultra-short pulses of the SwissFEL. Time and length scales of biochemical reactions are discussed, as is the photo-initiation of biochemical processes. Time-resolved measurement techniques are looked at. Fluorescence resonant energy transfer is discussed. As an example, the photo cycle of bacteriorhodopsin is examined. The dynamics of protein folding and catalytic action are also looked at. Mesoscopic non-equilibrium thermodynamics is discussed

  3. Biochemistry and radiopharmacy

    International Nuclear Information System (INIS)

    Mendoza de G, M.

    1989-01-01

    The article reviews the historical development of the nuclear medicine in Colombia and the primordial role of the IAN in this field. The main objective of the Biochemistry and Radiopharmacy Area is go to give technical support for the application of the nuclear energy in the human and veterinary medicine. The department has laboratories for the production of radiopharmaceuticals to be labelled with Tc-99m and quality control of the same human and veterinary RIA. Each one of the laboratories develops its work in three different areas: research and development, production, training and teaching. An actualization of the programs, results and publications are analyzed in this review also. Some of these programs have the support of the IAEA

  4. Predictors of performance of students in biochemistry in a doctor of chiropractic curriculum.

    Science.gov (United States)

    Shaw, Kathy; Rabatsky, Ali; Dishman, Veronica; Meseke, Christopher

    2014-01-01

    Objective : This study investigated the effect of completion of course prerequisites, undergraduate grade point average (GPA), undergraduate degree, and study habits on the performance of students in the biochemistry course at Palmer College of Chiropractic Florida. Methods : Students self-reported information regarding academic preparation at the beginning of the semester using a questionnaire. Final exam grade and final course grade were noted and used as measures of performance. Multivariate analysis of variance was used to determine if number of prerequisites completed, undergraduate GPA, undergraduate degree, hours spent studying in undergraduate study, and hours spent studying in the first quarter of the chiropractic program were associated significantly with the biochemistry final exam grade or the final grade for the biochemistry course. Results : The number of prerequisites completed, undergraduate degree, hours spent studying in undergraduate study, and hours spent studying in the first quarter of the chiropractic program did not significantly affect the biochemistry final exam grade or the final grade for the biochemistry course, but undergraduate GPA did. Subsequent univariate analysis and Tukey's post hoc comparisons revealed that students with an undergraduate GPA in the 3.5 to 3.99 range earned significantly higher final course grades than students with an undergraduate GPA in the 2.5 to 2.99 range. Conclusion : No single variable was determined to be a factor that determines student success in biochemistry. The interrelationship between the factors examined warrants further investigation to understand fully how to predict the success of a student in the biochemistry course.

  5. Debates of science vs. religion in undergraduate general education cosmology courses

    Science.gov (United States)

    Lopez-Aleman, Ramon

    2015-04-01

    Recent advances in theoretical physics such as the discovery of the Higgs boson or the BICEP2 data supporting inflation can be part of the general science curriculum of non-science majors in a cosmology course designed as part of the General Education component. Yet to be a truly interdisciplinary experience one must deal with the religious background and faith of most of our students. Religious faith seems to be important in their lives, but the philosophical outlook of sciences like cosmology or evolutionary biology is one in which God is an unnecessary component in explaining the nature and origin of the universe. We will review recent advances in cosmology and suggestions on how to establish a respectful and intelligent science vs. religion debate in a transdisciplinary general education setting.

  6. Embedding Probeware Technology in the Context of Ocean Acidification in Elementary Science Methods Courses

    Science.gov (United States)

    Ensign, Todd I.; Rye, James A.; Luna, Melissa J.

    2017-12-01

    Research indicates that preservice teacher (PT) education programs can positively impact perceptions of scientific probeware use in K-8 environments. Despite the potential of probeware to improve science instruction and student engagement, its use in elementary education has been limited. Sixty-seven PT enrolled across three sections of an elementary science methods course participated in a mixed-methods study through which they utilized probeware in a thematic experience on ocean acidification. One-way repeated measures ANOVA of pre and post survey data measuring subscales of utility, ability, and intent to use probeware demonstrated a statistically significant increase with medium to large effect sizes for all subscales across all sections (p<0.01,{η}_p^2=0.384;p<0.001,{η}_p^2=0.517;p<0.001,{η}_p^2=0.214) . Analysis of reflective journals revealed over 60% felt the multiple capabilities (notably graphing) of probeware make it a useful classroom tool, and almost one-half believed that its use makes science more enjoyable and engaging. Mapping of the unitized data from the journals on the Next Generation Science Standards suggested that probeware use especially engages learners in planning and carrying out investigations and in analyzing and interpreting data. Journals also revealed that despite PT having prior experience with probeware in science courses, its use in their future elementary classroom is conditional on having a positive experience with probeware in a science methods course. Further, embedding a probeware experience in a unit on ocean acidification provides PT with strategies for addressing climate change and engaging in argument from evidence.

  7. Virtue training in medical schools: the perspective of behavioral science course directors.

    Science.gov (United States)

    Olufowote, James Olumide

    2015-01-01

    Although the multidisciplinary research on physician socialization has focused on areas such as developments in learners' ideological commitments and ethics knowledge and skills, the literature on physician virtues has been anecdotal. To contribute empirical knowledge of virtue development during socialization, I performed constant comparisons on interviews with 20 directors of preclinical behavioral science courses. In discussing their courses, participants revealed foci on virtues involved in making intimate connections with patients (e.g., empathy) and "being professional" with colleagues (e.g., trustworthiness). To cultivate virtues for intimate connections, participants used the strategies of learner engagement with patients' narratives of illness, service in underserved communities, and shadowing and observing role models. To develop virtues for being professional, participants used the strategy of small learner groups, which consisted of discussions, project collaborations, and group evaluations. I conclude with implications for training students of various health sciences and managing health care teams.

  8. Symposium 20 - PABMB: Teaching biochemistry in a connected world: KEEPING 3D RESOURCES IN THE WEB TO LEARN ON PROTEIN STRUCTURE

    Directory of Open Access Journals (Sweden)

    Raul Herrera

    2015-08-01

    Full Text Available Symposium 20 - PABMB: Teaching biochemistry in a connected world Chair: Miguel Castanho, Universidade de Lisboa, PortugalAbstract:The new paradigm of higher education requires new teaching strategies to meet the learning objectives of biochemistry courses. Teaching biochemistry in the current state of science and society requires a special motivation for learning, especially for students of degrees other than Biochemistry. The traditional way of teaching, based on the teacher-student relationship, mostly unidirectional, does not fulfil the needs imposed in this era. Considering the current situation universities students require new abilities in their training and the use of computers can constitute a place for discovery and research, enabling the experience of new and diverse situations. The design of teaching material for undergraduate students who take biochemistry courses as complementary subject on their careers should be seen as an opportunity to complement theoretical aspects on the current courses. Three different approaches could be used: (I a description of the basic concepts, like in a book but using dynamics figures. (II Modelling proteins highlighting key motifs at the three-dimensional structure and residues where inhibitors can be attached. And (III elaborating active quizzes where students can be driven on their learning. Building knowledge based on practical experience can improve student competences on basic science and the learning process can be complemented in the use of dynamics models. On the other hand, exploring protein structures from the web could give students a better comprehension of residues interaction and non-covalent forces involved in protein-protein or protein-ligand interaction. The use of dynamic models improves the comprehension of protein structure and their special link to amino acids residues or ligands. This work was supported by Anillo ACT1110 project. Key Words: protein structure, 3D source, learning

  9. A science methods course in a professional development school context: A case study of student teachers

    Science.gov (United States)

    Sopko, Linda Diane

    The purpose of this case study was to explore how six student teachers constructed their personal understanding about teaching science to elementary students in the context of a professional development school (PDS). The science methods course was one of five university courses that they attended at the PDS site. The participants spent the remainder of the school day in an assigned classroom where they assisted the classroom teacher in a paraprofessional role. This study was an attempt to determine the knowledge that the participants constructed of science instruction and the school during the preservice semester of their PDS experience and what knowledge was transferred into their student teaching practices. The methodology selected was qualitative. A case study was conducted to determine the constructs of the participants. Data collection included documents concerning the PDS school and personal artifacts of the student teachers. Student teachers, cooperating teachers, and administrators were interviewed. The student teachers were also observed teaching. Triangulation was achieved with the use of multiple data sources, a reflexive journal, and peer debriefers. A cross case comparison was used to identify issues salient to the research questions. The PDS context immediately challenged the participants' prior conceptions about how children learn and should be instructed. Participants believed that the situational knowledge constructed during the PDS semester contributed to their self-confidence during student teaching. The instructional emphasis on standardized tests in the PDS and the limited emphasis on science curriculum and instruction constructed an image of science as a minor component in the elementary curriculum. The student teachers were able to transfer knowledge of inquiry-based instructional strategies, as modeled and practiced in their science methods course, into their science lesson during student teaching. One student teacher used inquiry

  10. Targeting Future Customers: An Introductory Biobanking Course for Undergraduate Students of Life Sciences.

    Science.gov (United States)

    Abdelhafiz, Ahmed Samir; Fouda, Merhan Ahmed; El-Jaafary, Shaimaa Ibrahim; Farghly, Maysa Ibrahim; Salem, Mazen; Tammam, Ahmed; Gabr, Hala

    2017-08-01

    Biobanking is a relatively new concept in the Arab region. Targeting different stakeholders to introduce the concept of biobanking and develop an acceptance of it among them is important for the growth of biobanking in the region. Undergraduate students of life sciences represent an important segment of stakeholders, since they constitute potential future biobank customers. Limited funding, lack of awareness of the existence of the term "biobanking" itself among these students, and questions regarding best marketing strategies presented challenges to planning for the most effective message delivery to this target group. A specific course was designed for undergraduate students of life sciences, which was conducted at the Faculty of Medicine, Cairo University, Egypt. The course was conducted twice in 2016 and included lectures covering biobanking, quality, ethics, information technology, and translational research. Facebook and word-of-mouth were used for marketing and advertising. A total number of 125 participants attended both courses cumulatively. Facebook appeared to have been an effective marketing outlet, especially when paid advertisements were used. Evaluation of knowledge, measured using a pretest and posttest, demonstrated some improvement in knowledge of participants. Evaluation forms filled after the course showed positive attitude toward content and message delivery by a majority of participants. Facebook was also used as an evaluation method through analysis of engagement with posts created after course completion. Biobanking education can be carried out effectively with limited resources. Understanding the needs of the target group and using appropriate methods of communication are essential prerequisites to a well-tailored curriculum and effective message delivery. Using Facebook appears to be an effective and affordable method of communication and advertising. Targeting undergraduate students of life sciences interested in research is a good

  11. Acceptance of technology-enhanced learning for a theoretical radiological science course: a randomized controlled trial.

    Science.gov (United States)

    Nkenke, Emeka; Vairaktaris, Elefterios; Bauersachs, Anne; Eitner, Stephan; Budach, Alexander; Knipfer, Christoph; Stelzle, Florian

    2012-03-30

    Technology-enhanced learning (TEL) gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience. 42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation) questionnaire for the evaluation of courses given at universities. Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course. The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course. The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group. It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired. However, technology-enhanced learning cannot completely replace

  12. Acceptance of technology-enhanced learning for a theoretical radiological science course: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Nkenke Emeka

    2012-03-01

    Full Text Available Abstract Background Technology-enhanced learning (TEL gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience. Methods 42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation questionnaire for the evaluation of courses given at universities. Results Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course. The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course. The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group. Conclusions It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired

  13. Acceptance of technology-enhanced learning for a theoretical radiological science course: a randomized controlled trial

    Science.gov (United States)

    2012-01-01

    Background Technology-enhanced learning (TEL) gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience. Methods 42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation) questionnaire for the evaluation of courses given at universities. Results Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course. The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course. The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group. Conclusions It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired. However, technology

  14. Raising Environmental Awareness through Applied Biochemistry Laboratory Experiments

    Science.gov (United States)

    Salman Ashraf, S.

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment…

  15. Using Assessment to Improve Learning in the Biochemistry Classroom

    Science.gov (United States)

    Loertscher, Jennifer

    2010-01-01

    In recent years, major drivers of undergraduate science education reform including the National Science Foundation (NSF) and the Howard Hughes Medical Institute (HHMI) have called on college and university instructors to take a more scientific approach to their teaching. Although many biochemistry instructors are gaining confidence in using…

  16. An Interdisciplinary Undergraduate Space Physics Course: Understanding the Process of Science Through One Field's Colorful History

    Science.gov (United States)

    Lopez, Ramon E.

    1996-01-01

    Science education in this country is in its greatest period of ferment since the post-Sputnik frenzy a generation ago. In that earlier time, however, educators' emphasis was on producing more scientists and engineers. Today we recognize that all Americans need a good science background. The ability to observe, measure, think quantitatively, and reach logical conclusions based on available evidence is a set of skills that everyone entering the workforce needs to acquire if our country is to be competitive in a global economy. Moreover, as public policy increasingly crystallizes around scientific issues, it is critical that citizens be educated in science so that they may provide informed debate and on these issues. In order to develop this idea more fully, I proposed to teach a historically based course about space physics as an honors course at the University of Maryland-College Park (UMCP). The honors program at UMCP was established to foster broad-based undergraduate courses that utilize innovative teaching techniques to provide exemplary education to a select group of students. I designed an introductory course that would have four basic goals: to acquaint students with geomagnetic and auroral phenomena and their relationship to the space environment; to examine issues related to the history of science using the evolution of the field as an example; to develop familiarity with basic skills such as describing and interpreting observations, analyzing scientific papers, and communicating the results of their own research; and to provide some understanding of basic physics, especially those aspect that play a role in the near-earth space environment.

  17. Increasing Student Success in Large Survey Science Courses via Supplemental Instruction in Learning Centers

    Science.gov (United States)

    Hooper, Eric Jon; Nossal, S.; Watson, L.; Timbie, P.

    2010-05-01

    Large introductory astronomy and physics survey courses can be very challenging and stressful. The University of Wisconsin-Madison Physics Learning Center (PLC) reaches about 10 percent of the students in four introductory physics courses, algebra and calculus based versions of both classical mechanics and electromagnetism. Participants include those potentially most vulnerable to experiencing isolation and hence to having difficulty finding study partners as well as students struggling with the course. They receive specially written tutorials, conceptual summaries, and practice problems; exam reviews; and most importantly, membership in small groups of 3 - 8 students which meet twice per week in a hybrid of traditional teaching and tutoring. Almost all students who regularly participate in the PLC earn at least a "C,” with many earning higher grades. The PLC works closely with other campus programs which seek to increase the participation and enhance the success of underrepresented minorities, first generation college students, and students from lower-income circumstances; and it is well received by students, departmental faculty, and University administration. The PLC staff includes physics education specialists and research scientists with a passion for education. However, the bulk of the teaching is conducted by undergraduates who are majoring in physics, astronomy, mathematics, engineering, and secondary science teaching (many have multiple majors). The staff train these enthusiastic students, denoted Peer Mentor Tutors (PMTs) in general pedagogy and mentoring strategies, as well as the specifics of teaching the physics covered in the course. The PMTs are among the best undergraduates at the university. While currently there is no UW-Madison learning center for astronomy courses, establishing one is a possible future direction. The introductory astronomy courses cater to non-science majors and consequently are less quantitative. However, the basic structure

  18. Influence of an Intensive, Field-Based Life Science Course on Preservice Teachers' Self-Efficacy for Environmental Science Teaching

    Science.gov (United States)

    Trauth-Nare, Amy

    2015-08-01

    Personal and professional experiences influence teachers' perceptions of their ability to implement environmental science curricula and to positively impact students' learning. The purpose of this study was twofold: to determine what influence, if any, an intensive field-based life science course and service learning had on preservice teachers' self-efficacy for teaching about the environment and to determine which aspects of the combined field-based course/service learning preservice teachers perceived as effective for enhancing their self-efficacy. Data were collected from class documents and written teaching reflections of 38 middle-level preservice teachers. Some participants ( n = 18) also completed the Environmental Education Efficacy Belief Instrument at the beginning and end of the semester. Both qualitative and quantitative data analyses indicated a significant increase in PSTs' personal efficacies for environmental teaching, t(17) = 4.50, p = .000, d = 1.30, 95 % CI (.33, .90), but not outcome expectancy, t(17) = 1.15, p = .268, d = .220, 95 % CI (-.06, .20). Preservice teachers reported three aspects of the course as important for enhancing their self-efficacies: learning about ecological concepts through place-based issues, service learning with K-5 students and EE curriculum development. Data from this study extend prior work by indicating that practical experiences with students were not the sole factor in shaping PSTs' self-efficacy; learning ecological concepts and theories in field-based activities grounded in the local landscape also influenced PSTs' self-efficacy.

  19. Pura Vida: Teacher Experiences in a Science Education Study Abroad Course in Costa Rica

    Science.gov (United States)

    Medina, Stephanie Rae

    The purpose of this study was to explore the experiences of classroom teachers who participated in a science-focused study abroad during their time as a preservice teacher and to explore how they are using their study abroad experiences in science curriculum planning and in classroom instruction. This study is guided by two research questions: 1) what are the study abroad experiences that have influenced classroom teachers; and, 2) how do classroom teachers incorporate study abroad experiences into science curriculum planning and instruction in the classroom? Participants were two in-service science teachers from schools located in the Southwestern United States. The participants were enrolled in the course, Environmental Science and Multicultural Experience for K-8 Teachers offered through the Department of Educational Leadership, Curriculum and Instruction during their time as preservice teachers. The course included a two-week study abroad component in Costa Rica. Participants spent their mornings observing a monolingual, Spanish-speaking elementary classroom followed by a faculty-led multicultural seminar. Afternoons during the study abroad experience were dedicated to field science activities such as quantifying plant and animal biodiversity, constructing elevation profiles, determining nutrient storage in soil, and calculating river velocity. Throughout the course students participated in science-focused excursions. A cross case study design was used to answer the two research questions guiding this dissertation study. Data collection included participant-created concept maps of the science experiences during the study abroad experience, in-depth interviews detailing the study abroad experience and classroom instruction, and participant reflective journal entries. Cross-caseanalysis was employed to explore the uniqueness of each participant's experience and commonalities between the cases. Trustworthiness was established by utilizing multiple sources of data

  20. Teacher candidates in an online post-baccalaureate science methods course: Implications for teaching science inquiry with technology

    Science.gov (United States)

    Colon, Erica L.

    Online learning is becoming more prevalent in today's education and is changing the way students learn and instructors teach. This study proposed using an informative case study design within a multilevel conceptual framework as teacher candidates were learning to teach and use science inquiry while in an online post-baccalaureate science methods course. The purposes were to (a) explore whether the teacher candidates had a thorough understanding of scientific inquiry and how to implement higher-order thinking skills, (b) examine whether or not the teacher candidates used a variety of computer-based instructional technologies when choosing instructional objectives, and (c) identify barriers that impede teacher candidates from using science inquiry or technology singly, or the ability to incorporate technology into learning science inquiry. The findings indicate that an online approach in preparing science teachers holds great potential for using innovative technology to teach science inquiry. First, the teacher candidates did incorporate essential features of classroom inquiry, however it was limited and varied in the type of inquiry used. Second, of the 86 lesson plans submitted by the teacher candidates, less than twelve percent of the learning objectives involved higher-order skills that promoted science inquiry. Third, results supported that when using technology in their lesson planning, participants had widely varying backgrounds in reference to their familiarity with technology. However, even though each participant used some form or another, the technology used was fairly low level. Finally, when discussing implementing inquiry-based science in the lesson plans, this study identified time as a reason that participants may not be pushing for more inquiry-based lessons. The researcher also identifies that school placements were a huge factor in the amount of inquiry-based skills coded in the lesson plans. The study concludes that online teacher preparation

  1. Teaching Basic Science Content via Real-World Applications: A College-Level Summer Course in Veterinary Anatomy and Physiology

    Science.gov (United States)

    Maza, Paul; Miller, Allison; Carson, Brian; Hermanson, John

    2018-01-01

    Learning and retaining science content may be increased by applying the basic science material to real-world situations. Discussing cases with students during lectures and having them participate in laboratory exercises where they apply the science content to practical situations increases students' interest and enthusiasm. A summer course in…

  2. American journal of biochemistry and biotechnology

    National Research Council Canada - National Science Library

    2005-01-01

    .... Areas covered include: general biochemistry, patho-biochemistry, evolutionary biology, structural biology, molecular and cellular biology, molecular medicine, cancer research, virology, immunology, plant molecular biology...

  3. An evaluation of community college student perceptions of the science laboratory and attitudes towards science in an introductory biology course

    Science.gov (United States)

    Robinson, Nakia Rae

    independent predictor of attitudes toward science, albeit negatively. The results from this study indicated that there is a need to increase the opportunity for inquiry in the science laboratory. The data also suggest that although all academic streams may have similar views of the laboratory experiences, more needs to be implemented to improve the scientific attitudes of nonscience majors enrolled in a course for science majors.

  4. Developing and Supporting Students' Autonomy to Plan, Perform, and Interpret Inquiry-Based Biochemistry Experiments

    Science.gov (United States)

    Silva, Thanuci; Galembeck, Eduardo

    2017-01-01

    Laboratory sessions are designed to develop the experimental skills and the acquaintance with instruments that may contribute to a successful career in Biochemistry and associated fields. This study is a report on improving a traditional Biochemistry course by devising the laboratory sessions as an inquiry-based environment to develop the…

  5. Vertical Integration of Biochemistry and Clinical Medicine Using a Near-Peer Learning Model

    Science.gov (United States)

    Gallan, Alexander J.; Offner, Gwynneth D.; Symes, Karen

    2016-01-01

    Vertical integration has been extensively implemented across medical school curricula but has not been widely attempted in the field of biochemistry. We describe a novel curricular innovation in which a near-peer learning model was used to implement vertical integration in our medical school biochemistry course. Senior medical students developed…

  6. Biochemistry Students' Ideas about How an Enzyme Interacts with a Substrate

    Science.gov (United States)

    Linenberger, Kimberly J.; Bretz, Stacey Lowery

    2015-01-01

    Enzyme-substrate interactions are a fundamental concept of biochemistry that is built upon throughout multiple biochemistry courses. Central to understanding enzyme-substrate interactions is specific knowledge of exactly how an enzyme and substrate interact. Within this narrower topic, students must understand the various binding sites on an…

  7. Learning Effectiveness and Satisfaction of International Medical Students: Introducing a Hybrid-PBL Curriculum in Biochemistry

    Science.gov (United States)

    Yan, Qiu; Ma, Li; Zhu, Lina; Zhang, Wenli

    2017-01-01

    A biochemistry course is a fundamental but important subject in medical education in China. In recent years, the number of international medical students has increased. Curriculum reform in biochemistry teaching is needed because of the knowledge limitations of students, a close linkage of biochemical content with clinics, the shortcomings of…

  8. Case Study of How Turkish University Students Improve Their Biochemistry Achievement

    Science.gov (United States)

    Sadi, Özlem

    2013-01-01

    Biochemistry courses have an important place as a common subject in faculties of medicine, food engineering, biology and chemistry. MSLQ, Metacognitive Awareness Inventory and Learning Approach Questionnaire were used. The study also involves repeated observations of the same instructor in a biochemistry class over eight weeks to describe…

  9. Integrating Brain Science into Health Studies: An Interdisciplinary Course in Contemplative Neuroscience and Yoga

    Science.gov (United States)

    Wolfe, Uta; Moran, Amy

    2017-01-01

    As neuroscience knowledge grows in its scope of societal applications so does the need to educate a wider audience on how to critically evaluate its research findings. Efforts at finding teaching approaches that are interdisciplinary, accessible and highly applicable to student experience are thus ongoing. The article describes an interdisciplinary undergraduate health course that combines the academic study of contemplative neuroscience with contemplative practice, specifically yoga. The class aims to reach a diverse mix of students by teaching applicable, health-relevant neuroscience material while directly connecting it to first-hand experience. Outcomes indicate success on these goals: The course attracted a wide range of students, including nearly 50% non-science majors. On a pre/post test, students showed large increases in their knowledge of neuroscience. Students’ ratings of the course overall, of increases in positive feelings about its field, and of their progress on specific course objectives were highly positive. Finally, students in their written work applied neuroscience course content to their personal and professional lives. Such results indicate that this approach could serve as a model for the interdisciplinary, accessible and applied integration of relevant neuroscience material into the undergraduate health curriculum. PMID:29371845

  10. An analysis of interactions and outcomes associated with an online professional development course for science teachers

    Science.gov (United States)

    Randle, David Edward

    This mixed-methods study examined the interactions and learning outcomes of science teachers in an online graduate-level course on evolutionary biology intended to improve their content knowledge and science lesson planning. Discussion posts made by the teachers in this seven-week course were analyzed for cognitive presence using the Community of Inquiry framework. Compared to other studies examining cognitive presence, high levels of Integration level cognitive activity were observed (47% of total posts). This was most likely due to the design of the discussion prompts and expectations used to frame student participation. The questions were open-ended, and students were expected to use reference materials to construct their responses. During the course, 395 student posts contained statements that could be coded for scientific accuracy. Of these, 85% were coded as scientifically accurate. This reinforces reports from previous literature that the online environment is conducive to reflective and careful contributions by participants. As the course progressed, the number of faculty posts per discussion declined, while the number of student posts remained relatively constant. Student-to-student posts increased in frequency as faculty participation dropped. The number of student posts increased towards the end of each two-week discussion period, however the frequencies of posts with scientifically accurate statements and Integration level cognitive activity remained relatively constant over this same period. The increase in total posts was due to the increase in other types of communication in the discussions. Case study analysis was used to examine patterns of online behavior in three participants who achieved different course grades. A low-performing student had a pattern of intermittent activity, made low numbers of posts in each discussion, and had low percentages of posts that contained scientific statements or indicators of Integration level cognitive activity

  11. Developing Earth System Science Courses and Programs at Minority Serving Institutions

    Science.gov (United States)

    Johnson, D. R.; Jackson, C.; Ruzek, M.

    2004-12-01

    In the current NASA/USRA ESSE21 Program, emphasis is placed on the development of Earth System Science courses and degree offerings in Minority Serving Institutions (MSIs). Of the 18 colleges/universities being supported by NASA through USRA, 10 colleges/universities are MSIs. While there is recognition of the need for Earth system science courses, minors and degree programs by NASA and other agencies, within MSIs, a central challenge is how to provide a vision of the future opportunities in ESS and STEM disciplines that attracts and motivates students to these studies. Students need career guidance, role models and mentoring to encourage entry into STEM in general, and Earth system science in particular. Then there is the question of how to bring interested faculty together in institutions to form a critical mass that would forego the breadth and depth of disciplinary interests to undertake the development of multi/cross and interdisciplinary courses, minors and degree programs in ESS. Within the ESSE21 Diversity Working Group, the question has been raised as to how will MSIs ever be mainstream participants in ESS without teaching and engaging in research in remote sensing, modeling of the Earth's climate system and other like endeavors. Two other related questions raised within the Working Group are what are the long-term objectives of MSI adoption of ESS and what course corrections are needed to make ESS viable at MSIs. Within these considerations there are unresolved questions concerning the need and availability of resources from NASA, other agencies and local institutions. Apart from these larger considerations, efforts are underway within the ESSE21 Program that provide for sharing of resources among participants, organization of and access to materials that already exist, online resources, course outlines and successful listings for online resources by topics for particular courses and subject areas. The Lesson Learned Working Group, as well as the program

  12. Wanderings in biochemistry.

    Science.gov (United States)

    Lengyel, Peter

    2014-07-11

    My Ph.D. thesis in the laboratory of Severo Ochoa at New York University School of Medicine in 1962 included the determination of the nucleotide compositions of codons specifying amino acids. The experiments were based on the use of random copolyribonucleotides (synthesized by polynucleotide phosphorylase) as messenger RNA in a cell-free protein-synthesizing system. At Yale University, where I joined the faculty, my co-workers and I first studied the mechanisms of protein synthesis. Thereafter, we explored the interferons (IFNs), which were discovered as antiviral defense agents but were revealed to be components of a highly complex multifunctional system. We isolated pure IFNs and characterized IFN-activated genes, the proteins they encode, and their functions. We concentrated on a cluster of IFN-activated genes, the p200 cluster, which arose by repeated gene duplications and which encodes a large family of highly multifunctional proteins. For example, the murine protein p204 can be activated in numerous tissues by distinct transcription factors. It modulates cell proliferation and the differentiation of a variety of tissues by binding to many proteins. p204 also inhibits the activities of wild-type Ras proteins and Ras oncoproteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Persuading girls to take elective physical science courses in high school: Who are the credible communicators?

    Science.gov (United States)

    Koballa, Thomas R., Jr.

    Eighth-grade girls (N=257) randomly selected from nine different public junior high schools in central Texas were questioned in order to identify the communicators whom they perceive as highly credible regarding reasons for taking elective physical science courses in high school and the attributes associated with these communicators. Four persons were each identified by better than 10 percent of the sample as the best person to try to convince junior high school girls to take elective physical science courses in high school. In order of perceived credibility, these persons are father, woman science teacher, mother, and boy high school student. Slight variations in the order of perceived credibility were found when the responses from girls of the different ethnic groups represented in the sample (Caucasian, Hispanic, Black, and Asian) were examined separately. Attributes listed by the respondents for father, woman science teacher, mother, and boy high school student were examined and classified into the categories of prestige, trustworthiness, similarity, attractiveness, and power. Prestige and trustworthiness are the attributes associates most frequently with communicators identified as highly credible. Implications of the present study and suggestions for further research are discussed.

  14. Measuring Student Improvement in Lower- and Upper-Level University Climate Science Courses

    Science.gov (United States)

    Harris, S. E.; Taylor, S. V.; Schoonmaker, J. E.; Lane, E.; Francois, R. H.; Austin, P.

    2011-12-01

    What do university students know about climate? What do they learn in a climate course? On the second-to-last day of a course about global climate change, only 48% of our upper-level science students correctly answered a multiple-choice question about the greenhouse effect. The good news: improvement. Only 16% had answered correctly on the first day of class. The bad news: the learning opportunities we've provided appear to have missed more than half the class on a fundamental climate concept. To evaluate the effectiveness of instruction on student learning about climate, we have developed a prototype assessment tool, designed to be deployed as a low-stakes pre-post test. The items included were validated through student interviews to ensure that students interpret the wording and answer choices in the way we intend. This type of validated assessment, administered both at the beginning and end of term, with matched individuals, provides insight regarding the baseline knowledge with which our students enter a course, and the impact of that course on their learning. We administered test items to students in (1) an upper-level climate course for science majors and (2) a lower-level climate course open to all students. Some items were given to both groups, others to only one of the groups. Both courses use evidence-based pedagogy with active student engagement (clickers, small group activities, regular pre-class preparation). Our results with upper-level students show strong gains in student thinking (>70% of students who missed a question on the pre-test answered correctly on the post-test) about stock-and-flow (box model) problems, annual cycles in the Keeling curve, ice-albedo feedbacks, and isotopic fractionation. On different questions, lower-level students showed strong gains regarding albedo and blackbody emission spectra. Both groups show similar baseline knowledge and lower-than-expected gains on greenhouse effect fundamentals, and zero gain regarding the

  15. A Comparison of Didactic and Inquiry Teaching Methods in a Rural Community College Earth Science Course

    Science.gov (United States)

    Beam, Margery Elizabeth

    The combination of increasing enrollment and the importance of providing transfer students a solid foundation in science calls for science faculty to evaluate teaching methods in rural community colleges. The purpose of this study was to examine and compare the effectiveness of two teaching methods, inquiry teaching methods and didactic teaching methods, applied in a rural community college earth science course. Two groups of students were taught the same content via inquiry and didactic teaching methods. Analysis of quantitative data included a non-parametric ranking statistical testing method in which the difference between the rankings and the median of the post-test scores was analyzed for significance. Results indicated there was not a significant statistical difference between the teaching methods for the group of students participating in the research. The practical and educational significance of this study provides valuable perspectives on teaching methods and student learning styles in rural community colleges.

  16. Teaching Development of Foundation Environmental Science Course Using Undergraduate Handbook of Buriram Rajabhat University

    Directory of Open Access Journals (Sweden)

    Kuntida Thammamrat

    2017-06-01

    Full Text Available The present study is an attempt to apply the handbook as a tool for teaching foundation of environmental science. The aims of this investigation were 1 to develop a course handbook that fills the standard criteria of 80/80 2 to compare mean derived from pretest and posttest scores 3 to compare student’s attitude toward environmental science from the pretest and posttest scores and 4 to compare student’s environmental scientific skills prior to and after using a study handbook. The key informants were 56 students drawn from 1st- year students of Environmental Science Department of Buriram Rajabhat University in 2558 (B.E academic year. Four instruments of data collection were constructed including 1 the course handbook 2 test of student’s basic knowledge on environmental science, 3 the test of student’s attitude toward environmental science, and 4 the test of student’s environmental scientific skills. The statistics analysis in this study comprised frequency percentage, mean, standard deviation and dependent t – test, which were of used for examining the hypothesis. The findings of this investigation revealed that 1 the efficiency of the handbook entitled “Foundation of environmental science” met the criteria of 80/80 in all aspects with value 83.93/91.81 2 the scores derived from student’s posttest is higher than pretest with .05 statistical significant difference 3 teaching through the handbook enhanced the level of student attitude toward environmental science with .05 statistical significant difference and 4 the environmental scientific skills of the students learning through the handbook are significantly higher than before, at .05 level.

  17. BIOCHEMISTRY TEACHING WITH VIRTUAL DYNAMIC METABOLIC DIAGRAMS

    Directory of Open Access Journals (Sweden)

    G. B. Lazzarotto

    2004-05-01

    Full Text Available This work presents a game like educational software (courseware to study metabolic pathways, calledDiagrama Metabolico Din^amico Virtual (DMDV of Krebs Cycle. The experience acquired teachingwith the logical sequence tray games in the FFFCMPAs Biochemistry Course provides the beddingswith the use of this model as education method. With DMDV, students can assembly the sequenceof reactions that describe the desired metabolic pathway, create situational models which can guidehis/her choices, reduce the subject complexity of the scheme in knowledge construction presentingin a graphical way the current interrelations. Biochemistry teachers can use the present software inclassroom as well as distance classes. This product integrates multimedia resources extensively andis distributed in CD-ROM format. The virtual environment will make possible interaction of thestudent with the environment and with colleagues and teachers, through tools as chats and forum.Experience with the use of this method was carried through with two distinct groups of students.The rst group was composed by 11 students, who were more familiar with the content and answereda specic questionnaire to previously evaluate the software. The second group was formed by 24students regularly registered in the FFFCMPAs Biochemistry Course, who used the software as astudy method. The rst group considered DMDV of easy and pleasant navigation. The knowledgeevaluation of the second group students was made by a written test and the analysis of three conceptualmaps constructed by each one of them: one map before initiating the study with the DMDV, thesecond just after the study and the third one two months later. Every conceptual maps producedafter DMDV method showed an expansion of valid concepts if compared with the rst maps. Simplevisual comparison of maps shows that new elements where added. All students who passed throughthe experiment reached a greater than ve grade in the subjects written

  18. Students’ perceptions of the academic learning environment in seven medical sciences courses based on DREEM

    Science.gov (United States)

    Bakhshialiabad, Hamid; Bakhshi, Mohammadhosien; Hassanshahi, Gholamhossein

    2015-01-01

    Objective Learning environment has a significant role in determining students’ academic achievement and learning. The aim of this study is to investigate the viewpoints of undergraduate medical sciences students on the learning environment using the Dundee Ready Education Environment Measure (DREEM) at Rafsanjan University of Medical Sciences (RUMS). Methods The descriptive cross-sectional study was performed on 493 medical sciences students in the following majors: nursing, midwifery, radiology, operating room nursing, laboratory sciences, medical emergency, and anesthesia. The DREEM questionnaire was used as a standard tool. Data were analyzed using SPSS (v17) software. Student’s t-tests and analysis of variance (ANOVA) statistical tests were used. Results The mean of the achieved scores in the five domains was 113.5 out of 200 (56.74%), which was considered to be more positive than negative. The total mean scores for perception of learning, teaching, and atmosphere were 27.4/48 (57.24%), 24.60/44 (55.91%), and 26.8/48 (55.89%), respectively. Academic and social self-perceptions were 20.5/32 (64.11%) and 15.7/28 (56.36%), respectively. The total DREEM scores varied significantly between courses (Penvironment. The differences between courses and their study pathway should be further investigated by analysis of specific items. Our results showed that it is essential for faculty members and course managers to make more efforts toward observing principles of instructional designs, to create an appropriate educational environment, and to reduce deficits in order to provide a better learning environment with more facilities and supportive systems for the students. PMID:25848331

  19. Development of an ICT in IBSE course for science teachers: A design-based research

    Science.gov (United States)

    Tran, Trinh-Ba

    2018-01-01

    Integration of ICT tools for measuring with sensors, analyzing video, and modelling into Inquiry-Based Science Education (IBSE) is a need globally recognized. The challenge to teachers is how to turn manipulation of equipment and software into manipulation of ideas. We have developed a short ICT in IBSE course to prepare and support science teachers to teach inquiry-based activities with ICT tools. Within the framework of design-based research, we first defined the pedagogical principles from the literature, developed core materials for teacher learning, explored boundary conditions of the training in different countries, and elaborated set-ups of the course for the Dutch, Slovak, and Vietnamese contexts. Next, we taught and evaluated three iterative cycles of the Dutch course set-ups for pre-service science teachers from four teacher-education institutes nationwide. In each cycle, data on the teacher learning was collected via observations, questionnaires, interviews, and documents. These data were then analyzed for the questions about faithful implementation and effectiveness of the course. Following the same approach, we taught and evaluated two cycles of the Slovak course set-ups for in-service science teachers in the context of the national accreditation programme for teacher professional development. In addition, we investigated applicability of the final Dutch course set-up in the context of the physics-education master program in Vietnam with adaptations geared to educational and cultural difference. Through the iterations of implementation, evaluation, and revision, eventually the course objectives were achieved to certain extent; the pedagogical principles and core materials proved to be effective and applicable in different contexts. We started this research and design project with the pedagogical principles and concluded it with these principles (i.e. complete theory-practice cycle, depth first, distributed learning, and ownership of learning) as the

  20. Using Team-based Learning to teach a Large-enrollment Environmental Science Course Online

    Science.gov (United States)

    Harder, V.

    2013-12-01

    Student enrollment in many online courses is usually limited to small classes, ranging from 20-25 students. Over two summers Environmental Science 1301, with an enrollment of 50, has been piloted online using team-based learning (TBL) methods. Teams, consisting of 7 members, were assigned randomly using the group manager tool found in the learning management system. The course was organized around Learning Modules, which consisted of a quiz (individual) over the reading, a team assignment, which covered a topic from one of the chapters was completed for each learning module, and a class/group discussion. The discussion usually entailed a presentation of findings to the class by each team. This allowed teams to interact with one another and was also designed to encourage competition among the teams. Over the course of the class it was observed that as the students became comfortable with the course procedures they developed a commitment to the goals and welfare of their team. They found that as a team they could accomplish much more than an individual; they discovered strengths in their team mates that they, themselves, lacked, and they helped those team mates who struggled with the material. The teams tackled problems that would be overwhelming to an individual in the time allotted, such as running multiple scenarios with the simulations and tackling a large amount of data. Using TBL shifted the majority of responsibility of learning the material to the student with the instructor functioning as a facilitator instead of dispenser of knowledge. Dividing the class into teams made the course load manageable for the instructor while at the same time created a small-class environment for the students. In comparing this course to other, nonTBL-based online courses taught, the work load was very manageable. There were only 7-10 items to be graded per Learning Module and only 7-10 teams to monitor and provide guidance to instead of 50 individuals. Retention rates (86

  1. Projective methodical system of students training to the course «History of computer science»

    OpenAIRE

    С А Виденин

    2008-01-01

    Components of teachers readiness to professional activity are described in the item. The projective methods of training to a course « History of computer science « in favour to improve professional grounding of students' are considered.

  2. Classroom sound can be used to classify teaching practices in college science courses

    Science.gov (United States)

    Seidel, Shannon B.; Wong, Mike; Bejines, Travis E.; Lietz, Susanne; Perez, Joseph R.; Sit, Shangheng; Subedar, Zahur-Saleh; Acker, Gigi N.; Akana, Susan F.; Balukjian, Brad; Benton, Hilary P.; Blair, J. R.; Boaz, Segal M.; Boyer, Katharyn E.; Bram, Jason B.; Burrus, Laura W.; Byrd, Dana T.; Caporale, Natalia; Carpenter, Edward J.; Chan, Yee-Hung Mark; Chen, Lily; Chovnick, Amy; Chu, Diana S.; Clarkson, Bryan K.; Cooper, Sara E.; Creech, Catherine; Crow, Karen D.; de la Torre, José R.; Denetclaw, Wilfred F.; Duncan, Kathleen E.; Edwards, Amy S.; Erickson, Karen L.; Fuse, Megumi; Gorga, Joseph J.; Govindan, Brinda; Green, L. Jeanette; Hankamp, Paul Z.; Harris, Holly E.; He, Zheng-Hui; Ingalls, Stephen; Ingmire, Peter D.; Jacobs, J. Rebecca; Kamakea, Mark; Kimpo, Rhea R.; Knight, Jonathan D.; Krause, Sara K.; Krueger, Lori E.; Light, Terrye L.; Lund, Lance; Márquez-Magaña, Leticia M.; McCarthy, Briana K.; McPheron, Linda J.; Miller-Sims, Vanessa C.; Moffatt, Christopher A.; Muick, Pamela C.; Nagami, Paul H.; Nusse, Gloria L.; Okimura, Kristine M.; Pasion, Sally G.; Patterson, Robert; Riggs, Blake; Romeo, Joseph; Roy, Scott W.; Russo-Tait, Tatiane; Schultheis, Lisa M.; Sengupta, Lakshmikanta; Small, Rachel; Spicer, Greg S.; Stillman, Jonathon H.; Swei, Andrea; Wade, Jennifer M.; Waters, Steven B.; Weinstein, Steven L.; Willsie, Julia K.; Wright, Diana W.; Harrison, Colin D.; Kelley, Loretta A.; Trujillo, Gloriana; Domingo, Carmen R.; Schinske, Jeffrey N.; Tanner, Kimberly D.

    2017-01-01

    Active-learning pedagogies have been repeatedly demonstrated to produce superior learning gains with large effect sizes compared with lecture-based pedagogies. Shifting large numbers of college science, technology, engineering, and mathematics (STEM) faculty to include any active learning in their teaching may retain and more effectively educate far more students than having a few faculty completely transform their teaching, but the extent to which STEM faculty are changing their teaching methods is unclear. Here, we describe the development and application of the machine-learning–derived algorithm Decibel Analysis for Research in Teaching (DART), which can analyze thousands of hours of STEM course audio recordings quickly, with minimal costs, and without need for human observers. DART analyzes the volume and variance of classroom recordings to predict the quantity of time spent on single voice (e.g., lecture), multiple voice (e.g., pair discussion), and no voice (e.g., clicker question thinking) activities. Applying DART to 1,486 recordings of class sessions from 67 courses, a total of 1,720 h of audio, revealed varied patterns of lecture (single voice) and nonlecture activity (multiple and no voice) use. We also found that there was significantly more use of multiple and no voice strategies in courses for STEM majors compared with courses for non-STEM majors, indicating that DART can be used to compare teaching strategies in different types of courses. Therefore, DART has the potential to systematically inventory the presence of active learning with ∼90% accuracy across thousands of courses in diverse settings with minimal effort. PMID:28265087

  3. Classroom sound can be used to classify teaching practices in college science courses.

    Science.gov (United States)

    Owens, Melinda T; Seidel, Shannon B; Wong, Mike; Bejines, Travis E; Lietz, Susanne; Perez, Joseph R; Sit, Shangheng; Subedar, Zahur-Saleh; Acker, Gigi N; Akana, Susan F; Balukjian, Brad; Benton, Hilary P; Blair, J R; Boaz, Segal M; Boyer, Katharyn E; Bram, Jason B; Burrus, Laura W; Byrd, Dana T; Caporale, Natalia; Carpenter, Edward J; Chan, Yee-Hung Mark; Chen, Lily; Chovnick, Amy; Chu, Diana S; Clarkson, Bryan K; Cooper, Sara E; Creech, Catherine; Crow, Karen D; de la Torre, José R; Denetclaw, Wilfred F; Duncan, Kathleen E; Edwards, Amy S; Erickson, Karen L; Fuse, Megumi; Gorga, Joseph J; Govindan, Brinda; Green, L Jeanette; Hankamp, Paul Z; Harris, Holly E; He, Zheng-Hui; Ingalls, Stephen; Ingmire, Peter D; Jacobs, J Rebecca; Kamakea, Mark; Kimpo, Rhea R; Knight, Jonathan D; Krause, Sara K; Krueger, Lori E; Light, Terrye L; Lund, Lance; Márquez-Magaña, Leticia M; McCarthy, Briana K; McPheron, Linda J; Miller-Sims, Vanessa C; Moffatt, Christopher A; Muick, Pamela C; Nagami, Paul H; Nusse, Gloria L; Okimura, Kristine M; Pasion, Sally G; Patterson, Robert; Pennings, Pleuni S; Riggs, Blake; Romeo, Joseph; Roy, Scott W; Russo-Tait, Tatiane; Schultheis, Lisa M; Sengupta, Lakshmikanta; Small, Rachel; Spicer, Greg S; Stillman, Jonathon H; Swei, Andrea; Wade, Jennifer M; Waters, Steven B; Weinstein, Steven L; Willsie, Julia K; Wright, Diana W; Harrison, Colin D; Kelley, Loretta A; Trujillo, Gloriana; Domingo, Carmen R; Schinske, Jeffrey N; Tanner, Kimberly D

    2017-03-21

    Active-learning pedagogies have been repeatedly demonstrated to produce superior learning gains with large effect sizes compared with lecture-based pedagogies. Shifting large numbers of college science, technology, engineering, and mathematics (STEM) faculty to include any active learning in their teaching may retain and more effectively educate far more students than having a few faculty completely transform their teaching, but the extent to which STEM faculty are changing their teaching methods is unclear. Here, we describe the development and application of the machine-learning-derived algorithm Decibel Analysis for Research in Teaching (DART), which can analyze thousands of hours of STEM course audio recordings quickly, with minimal costs, and without need for human observers. DART analyzes the volume and variance of classroom recordings to predict the quantity of time spent on single voice (e.g., lecture), multiple voice (e.g., pair discussion), and no voice (e.g., clicker question thinking) activities. Applying DART to 1,486 recordings of class sessions from 67 courses, a total of 1,720 h of audio, revealed varied patterns of lecture (single voice) and nonlecture activity (multiple and no voice) use. We also found that there was significantly more use of multiple and no voice strategies in courses for STEM majors compared with courses for non-STEM majors, indicating that DART can be used to compare teaching strategies in different types of courses. Therefore, DART has the potential to systematically inventory the presence of active learning with ∼90% accuracy across thousands of courses in diverse settings with minimal effort.

  4. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    Science.gov (United States)

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-06-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS) curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  5. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    Directory of Open Access Journals (Sweden)

    Fred Goldberg1

    2012-05-01

    Full Text Available We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET, for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  6. BIOCHEMYSTRY DISCIPLINE RELEVANCE IN DIFFERENTS GRADUATION COURSES AT UESB IN JEQUIÉ CITY

    OpenAIRE

    Kátia Virgínia Galvão Gomes; Murilo Rangel

    2006-01-01

    Biochemistry is a science that study the chemistry of life. It can give support to teaching basics acquirements that several courses,for example, the health and exact need to complete formation. This discipline approach topics common that is comtemplate in Physical Education, Nursing, Physiotherapy, Odontology, Biology and Chemistry to show the relation with courses above through application of contents to understand specific thems. The purpouse of this research was, through bibliography revi...

  7. Reducing Pseudoscientific and Paranormal Beliefs in University Students Through a Course in Science and Critical Thinking

    Science.gov (United States)

    Wilson, James A.

    2018-03-01

    This study measured the relationship between student's religion, gender, and propensity for fantasy thinking with the change in belief for paranormal and pseudoscientific subjects following a science and critical thinking course that directly confronted these subjects. Student pre-course endorsement of religious, paranormal, and pseudoscientific beliefs ranged from 21 to 53%, with religion having the highest endorsement rate. Pre-course belief in paranormal and pseudoscientific subjects was correlated with high scores in some fantasy thinking scales and showed a gender and a religion effect with females having an 11.1% higher belief across all paranormal and pseudoscience subcategories. Students' religion, and frequency of religious service attendance, was also important with agnostic or atheist students having lower beliefs in paranormal and pseudoscience subjects compared to religious students. Students with either low religious service attendance or very high attendance had lower paranormal and pseudoscientific beliefs. Following the critical thinking course, overall beliefs in paranormal and pseudoscientific subcategories lowered 6.8-28.9%, except for superstition, which did not significantly change. Change in belief had both a gender and religion effect with greater reductions among religious students and females.

  8. Reducing Pseudoscientific and Paranormal Beliefs in University Students Through a Course in Science and Critical Thinking

    Science.gov (United States)

    Wilson, James A.

    2018-02-01

    This study measured the relationship between student's religion, gender, and propensity for fantasy thinking with the change in belief for paranormal and pseudoscientific subjects following a science and critical thinking course that directly confronted these subjects. Student pre-course endorsement of religious, paranormal, and pseudoscientific beliefs ranged from 21 to 53%, with religion having the highest endorsement rate. Pre-course belief in paranormal and pseudoscientific subjects was correlated with high scores in some fantasy thinking scales and showed a gender and a religion effect with females having an 11.1% higher belief across all paranormal and pseudoscience subcategories. Students' religion, and frequency of religious service attendance, was also important with agnostic or atheist students having lower beliefs in paranormal and pseudoscience subjects compared to religious students. Students with either low religious service attendance or very high attendance had lower paranormal and pseudoscientific beliefs. Following the critical thinking course, overall beliefs in paranormal and pseudoscientific subcategories lowered 6.8-28.9%, except for superstition, which did not significantly change. Change in belief had both a gender and religion effect with greater reductions among religious students and females.

  9. Do Policies that Encourage Better Attendance in Lab Change Students' Academic Behaviors and Performances in Introductory Science Courses?

    Science.gov (United States)

    Moore, Randy; Jensen, Philip A.

    2008-01-01

    Science courses with hands-on investigative labs are a typical part of the general education requirements at virtually all colleges and universities. In these courses, labs that satisfy a curricular requirement for "lab experience" are important because they provide the essence of the scientific experience--that is, they give students…

  10. The Importance of a Laboratory Section on Student Learning Outcomes in a University Introductory Earth Science Course

    Science.gov (United States)

    Forcino, Frank L.

    2013-01-01

    Laboratory sections of university Earth science courses provide hands-on, inquiry-based activities for students in support of lecture and discussion. Here, I compare student conceptual knowledge outcomes of laboratory sections by administering an independent concept inventory at the beginning and end of two courses: one that had a lecture and a…

  11. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-Health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-01-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…

  12. Infusing Traditional Knowledge and Ways of Knowing into Science Communication Courses at the University of Hawai'i

    Science.gov (United States)

    Lemus, Judith D.; Seraphin, Kanesa Duncan; Coopersmith, Ann; Correa, Carly K. V.

    2014-01-01

    We describe a philosophy and process by which cultural awareness and traditional ways of knowing were incorporated into courses on communicating ocean sciences for college and graduate students in Hawai'i. The result is a culturally relevant framework that contextualizes the course for Hawai'i audiences while also enabling students to better…

  13. Radioactive isotopes in biochemistry (historical essay)

    International Nuclear Information System (INIS)

    Blanko, M.A.; Shamin, A.N.

    1988-01-01

    A large volume of facts, including little-known biobibliographic data on the the first reserchers who applied the method, are used in the study. The main attention is paid to the use of the method of labelled atoms, when considering intermediate exchange of substances and creating metabolic ways maps (the end of 30-ies - beginning of 50-ies). Using as an example the history of creation of the labelled atom method and its introduction into biochemistry, the problem of the research methods transfer from one branch of science to another is considered

  14. Titration of Alanine Monitored by NMR Spectroscopy: A Biochemistry Laboratory Experiment

    Science.gov (United States)

    Waller, Francis J.; And Others

    1977-01-01

    The experiment described here involves simultaneous monitoring of pH and NMR chemical shifts during an aqueous titration of alpha- and beta-alanine. This experiment is designed for use in an undergraduate biochemistry course. (MR)

  15. Performing the Future. On the Use of Drama in Philosophy Courses for Science Students

    Science.gov (United States)

    Toonders, Winnie; Verhoeff, Roald P.; Zwart, Hub

    2016-10-01

    Drama is a relatively unexplored tool in academic science education. This paper addresses in what way the use of drama may allow science students to deepen their understanding of recent developments in the emerging and controversial field of neuro-enhancement, by means of a case study approach. First, we emphasise the congruency between drama and science, notably the dramatic dimension of experimental research. Subsequently, we draw on educational literature to elaborate the potential of using drama as a teaching modality, specifically focusing on the ethical and moral dimensions of future techno-scientific innovations. Our case study consisted of a drama experiment as a module in a philosophy course on human enhancement. Twenty-two students from various science disciplines performed multiple roles, as authors, actors, audience and reviewers. Qualitative data were collected on the educational process and student performance during the course, i.e. observations and video recordings of class discussions, group work and plays, interviews and questionnaires. Our drama experiment proved to be effective in enabling students to explore and relate to a future life world affected by enhancement technologies. It allowed them to deepen their awareness of social and ethical implications of neuro-technologies and of the different viewpoints people may have on this issue in academic, professional or everyday settings. Moreover, drama allowed them to develop a reflexive position of their own in the neuro-enhancement debate by enacting a moral dilemma in front of an audience. Our results confirm the potential of drama as a tool for exploring techno-scientific futures in science education.

  16. Undergraduate Research or Research-Based Courses: Which Is Most Beneficial for Science Students?

    Science.gov (United States)

    Olivares-Donoso, Ruby; González, Carlos

    2017-06-01

    Over the last 25 years, both research literature and practice-oriented reports have claimed the need for improving the quality of undergraduate science education through linking research and teaching. Two manners of doing this are reported: undergraduate research and research-based courses. Although there are studies reporting benefits of participating in these experiences, few synthesize their findings. In this article, we present a literature review aimed at synthesizing and comparing results of the impact of participating in these research experiences to establish which approach is most beneficial for students to develop as scientists. Twenty studies on student participation in undergraduate research and research-based courses were reviewed. Results show that both types of experiences have positive effects on students. These results have implications for both practice and research. Regarding practice, we propose ideas for designing and implementing experiences that combine both types of experiences. Concerning research, we identify some methodological limitations that should be addressed in further studies.

  17. Social Relations of Science and Technology: perceptions of teachers of technical training, PARFOR course participants

    Directory of Open Access Journals (Sweden)

    Manuella Candéo

    2014-12-01

    Full Text Available We present in this paper a study on the perceptions of teachers of technical training, course participants (PARFOR National Plan for Training Teachers of Basic Education , offered by the Federal Technological University of Paraná, Campus Ponta Grossa (PG - UTFPR on the social relations of science and technology. The study conducted with 15 teachers from various disciplines. The methodological approach was quantitative research , the instrument of data collection was based questionnaire with open questions . The main results show that the vast majority of teachers had a very narrow view about science and technology , consider that the scientific and technological development always bring benefits to its own population of traditional / classic , positivist view. The need to promote reflection on social issues of science and technology in education technology in order to train professionals aware of their responsibilities as citizens in a highly technological age was observed. It is emphasized that these are recorded in the master's thesis entitled Scientific and Technological Literacy (ACT by Focus Science, Technology and Society (STS from commercial films of the University Program Graduate School of Science and Technology Tecnológica Federal do Paraná ( UTFPR Campus Ponta Grossa, Brazil.

  18. The Effect of Enrollment in Middle School Challenge Courses on Advanced Placement Exams in Social Studies and Science

    Science.gov (United States)

    Glaude-Bolte, Katherine

    Educators seek to guide students through appropriate programs and courses that prepare them for future success, in more advanced coursework and in other challenges of life. Some middle schools offer Challenge, or honors, courses for students who have demonstrated high ability. High schools often offer Advanced Placement (AP) courses, which are taught at the college level. This study examined the correlation between enrollment in middle school Challenge courses and subsequent AP exam category scores in social studies and science in a suburban school district. The independent variables were the number of years of enrollment in middle school social studies or science Challenge courses. The dependent variables were the AP exam category scores in the eight social studies AP courses or the six science AP courses. The sample sizes were limited to the number of students who took an AP social studies or science exam and also attended the middle school of study. The null hypothesis was that there was no relationship between the two variables. This study included eight social studies AP courses and six science AP courses. A significant positive correlation was indicated in only two of the courses, U.S. Government and Comparative Government, supporting the claim that enrollment in middle school Challenge social studies was correlated with success, at least on these two AP exams. In the remaining 12 courses, there was not enough evidence to reject the null hypothesis. Therefore, enrollment in middle school Challenge science and social studies courses generally did not seem to correlate with AP exam category scores. Results of this study call into question the validity of the claim by the district that enrollment in Challenge courses helps prepare students for rigorous coursework in high school. Several factors, including student readiness, teacher training, familiarity with course content, and previous AP experience may contribute more to a student's AP exam category score

  19. Structure and Evaluation of a Flipped General Chemistry Course as a Model for Small and Large Gateway Science Courses at an Urban Public Institution

    Science.gov (United States)

    Deri, Melissa A.; Mills, Pamela; McGregor, Donna

    2018-01-01

    A flipped classroom is one where students are first introduced to content outside of the classroom. This frees up class time for more active learning strategies and has been shown to enhance student learning in high school and college classrooms. However, many studies in General Chemistry, a college gateway science course, were conducted in small…

  20. Design and Assessment of a General Science STEM Course with a Blended Learning Approach

    Science.gov (United States)

    Courtier, A. M.; Liu, J. C.; St John, K. K.

    2015-12-01

    Blended learning, a combination of classroom- and computer-mediated teaching and learning, is becoming prominent in higher education, and structured assessment is necessary to determine pedagogical costs and benefits. Assessment of a blended general education science class at James Madison University used a mixed-method causal-comparative design: in Spring 2014, two classes with identical content and similar groups of non-science majors were taught by the same instructor in either blended or full face-to-face formats. The learning experience of 160 students in the two classes was compared based on course and exam grades, classroom observation, and student survey results. Student acquisition of content in both classes was measured with pre-post tests using published concept inventories, and surveys, quizzes, and grade reports in the Blackboard learning management system were additionally used for data collection. Exams were identical between the two sections, and exam questions were validated in advance by a faculty member who teaches other sections of the same course. A course experience questionnaire was administered to measure students' personal experiences in both classes, addressing dimensions of good teaching, clear goals and standards, generic skills, appropriate assessment and workload, and emphasis on independence. Using a STEM classroom observation checklist, two researchers conducted in-class observations for four 75-minute face-to-face meetings with similar content focus in both classes, which allowed assessment of student engagement and participation. We will present details of the course design and research plan, as well as assessment results from both quantitative and qualitative analysis. The preliminary findings include slightly higher average grade distribution and more ready responses to in-class activities in the blended class.