WorldWideScience

Sample records for science core curriculum

  1. A behavioral science/behavioral medicine core curriculum proposal for Japanese undergraduate medical education.

    Science.gov (United States)

    Tsutsumi, Akizumi

    2015-01-01

    Behavioral science and behavioral medicine have not been systematically taught to Japanese undergraduate medical students. A working group under the auspices of Japanese Society of Behavioral Medicine developed an outcome-oriented curriculum of behavioral science/behavioral medicine through three processes: identifying the curriculum contents, holding a joint symposium with related societies, and defining outcomes and proposing a learning module. The behavioral science/behavioral medicine core curriculum consists of 11 units of lectures and four units of practical study. The working group plans to improve the current core curriculum by devising formative assessment methods so that students can learn and acquire attitude as well as the skills and knowledge necessary for student-centered clinical practice.

  2. Environmental Science for All? Considering Environmental Science for Inclusion in the High School Core Curriculum

    Science.gov (United States)

    Edelson, Daniel C.

    2007-01-01

    With the dramatic growth of environmental science as an elective in high schools over the last decade, educators have the opportunity to realistically consider the possibility of incorporating environmental science into the core high school curriculum. Environmental science has several characteristics that make it a candidate for the core…

  3. Special series on "The meaning of behavioral medicine in the psychosomatic field" establishment of a core curriculum for behavioral science in Japan: The importance of such a curriculum from the perspective of psychology.

    Science.gov (United States)

    Shimazu, Akihito; Nakao, Mutsuhiro

    2016-01-01

    This article discusses the core curriculum for behavioral science, from the perspective of psychology, recommended by the Japanese Society of Behavioral Medicine and seeks to explain how the curriculum can be effectively implemented in medical and health-related departments. First, the content of the core curriculum is reviewed from the perspective of psychology. We show that the curriculum features both basic and applied components and that the basic components are closely related to various aspects of psychology. Next, we emphasize two points to aid the effective delivery of the curriculum: 1) It is necessary to explain the purpose and significance of basic components of behavioral science to improve student motivation; and 2) it is important to encourage student self-efficacy to facilitate application of the acquired knowledge and skills in clinical practice.

  4. On track for success: an innovative behavioral science curriculum model.

    Science.gov (United States)

    Freedy, John R; Carek, Peter J; Dickerson, Lori M; Mallin, Robert M

    2013-01-01

    This article describes the behavioral science curriculum currently in place at the Trident/MUSC Family Medicine Residency Program. The Trident/MUSC Program is a 10-10-10 community-based, university-affiliated program in Charleston, South Carolina. Over the years, the Trident/MUSC residency program has graduated over 400 Family Medicine physicians. The current behavioral science curriculum consists of both required core elements (didactic lectures, clinical observation, Balint groups, and Resident Grand Rounds) as well as optional elements (longitudinal patient care experiences, elective rotations, behavioral science editorial experience, and scholars project with a behavioral science focus). All Trident/MUSC residents complete core behavioral science curriculum elements and are free to participate in none, some, or all of the optional behavioral science curriculum elements. This flexibility allows resident physicians to tailor the educational program in a manner to meet individual educational needs. The behavioral science curriculum is based upon faculty interpretation of existing "best practice" guidelines (Residency Review Committee-Family Medicine and AAFP). This article provides sufficient curriculum detail to allow the interested reader the opportunity to adapt elements of the behavioral science curriculum to other residency training programs. While this behavioral science track system is currently in an early stage of implementation, the article discusses track advantages as well as future plans to evaluate various aspects of this innovative educational approach.

  5. An overview of conceptual understanding in science education curriculum in Indonesia

    Science.gov (United States)

    Widiyatmoko, A.; Shimizu, K.

    2018-03-01

    The purpose of this article is to discuss the term of “conceptual understanding” in science education curriculum in Indonesia. The implementation of 2013 Curriculum focuses on the acquisition of contextual knowledge in respective areas and environments. The curriculum seeks to develop students' evaluation skills in three areas: attitude, technical skills, and scientific knowledge. It is based on two layers of competencies: core and basic competencies. The core competencies in the curriculum 2013 represent the ability level to achieve the gradute competency standards of a students at each grade level. There are four mandatory core competencies for all educational levels and all subjects including science, which are spiritual, social, knowledge and skills competencies. In terms of knowledge competencies, conceptual understanding is an inseparable part of science concept since conceptual understanding is one of the basic competencies in science learning. This competency is a part of science graduation standard indicated in MoEC article number 20 in 2016. Therefore, conceptual understanding is needed by students for learning science successfully.

  6. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School

    Directory of Open Access Journals (Sweden)

    Olopade FE

    2016-07-01

    Full Text Available Funmilayo Eniola Olopade,1 Oluwatosin Adekunle Adaramoye,2 Yinusa Raji,3 Abiodun Olubayo Fasola,4 Emiola Oluwabunmi Olapade-Olaopa5 1Department of Anatomy, 2Department of Biochemistry, 3Department of Physiology, 4Department of Oral Pathology, 5Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria Abstract: The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the “old” curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula

  7. A behavioral science/behavioral medicine core curriculum proposal for Japanese undergraduate medical education

    OpenAIRE

    Tsutsumi, Akizumi

    2015-01-01

    Behavioral science and behavioral medicine have not been systematically taught to Japanese undergraduate medical students. A working group under the auspices of Japanese Society of Behavioral Medicine developed an outcome-oriented curriculum of behavioral science/behavioral medicine through three processes: identifying the curriculum contents, holding a joint symposium with related societies, and defining outcomes and proposing a learning module. The behavioral science/behavioral medicine cor...

  8. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School.

    Science.gov (United States)

    Olopade, Funmilayo Eniola; Adaramoye, Oluwatosin Adekunle; Raji, Yinusa; Fasola, Abiodun Olubayo; Olapade-Olaopa, Emiola Oluwabunmi

    2016-01-01

    The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the "old" curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula successfully. The modifications to the teaching and assessment of the core basic medical science subjects have resulted in improved learning and performance at the final examinations.

  9. From Prescribed Curriculum to Classroom Practice: An Examination of the Implementation of the New York State Earth Science Standards

    Science.gov (United States)

    Contino, Julie; Anderson, O. Roger

    2013-01-01

    In New York State (NYS), Earth science teachers use the "National Science Education Standards" (NSES), the NYS "Learning Standards for Mathematics, Science and Technology" (NYS Standards), and the "Physical Setting/Earth Science Core Curriculum" (Core Curriculum) to create local curricula and daily lessons. In this…

  10. Curriculum optimization of College of Optical Science and Engineering

    Science.gov (United States)

    Wang, Xiaoping; Zheng, Zhenrong; Wang, Kaiwei; Zheng, Xiaodong; Ye, Song; Zhu, Yuhui

    2017-08-01

    The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of "optoelectronics + X", according to their individual strengths and preferences.

  11. Science-based occupations and the science curriculum: Concepts of evidence

    Science.gov (United States)

    Aikenhead, Glen S.

    2005-03-01

    What science-related knowledge is actually used by nurses in their day-to-day clinical reasoning when attending patients? The study investigated the knowledge-in-use of six acute-care nurses in a hospital surgical unit. It was found that the nurses mainly drew upon their professional knowledge of nursing and upon their procedural understanding that included a common core of concepts of evidence (concepts implicitly applied to the evaluation of data and the evaluation of evidence - the focus of this research). This core included validity triangulation, normalcy range, accuracy, and a general predilection for direct sensual access to a phenomenon over indirect machine-managed access. A cluster of emotion-related concepts of evidence (e.g. cultural sensitivity) was also discovered. These results add to a compendium of concepts of evidence published in the literature. Only a small proportion of nurses (one of the six nurses in the study) used canonical science content in their clinical reasoning, a result consistent with other research. This study also confirms earlier research on employees in science-rich workplaces in general, and on professional development programs for nurses specifically: canonical science content found in a typical science curriculum (e.g. high school physics) does not appear relevant to many nurses' knowledge-in-use. These findings support a curriculum policy that gives emphasis to students learning how to learn science content as required by an authentic everyday or workplace context, and to students learning concepts of evidence.

  12. [Needs assessment of a core curriculum for residency training].

    Science.gov (United States)

    Kwon, Hyo-Jin; Lee, Young-Mee; Chang, Hyung-Joo; Kim, Ae-Ri

    2015-09-01

    The core curriculum in graduate medical education (GME) is an educational program that covers the minimum body of knowledge and skills that is required of all residents, regardless of their specialty. This study examined the opinions of stakeholders in GME regarding the core curriculum. A questionnaire was administered at three tertiary hospitals that were affiliated with one university; 192 residents and 61 faculty members and attending physicians participated in the survey. The questionnaire comprised six items on physician competency and the needs for a core curriculum. Questions on subjects or topics and adequate training years for each topics were asked only to residents. Most residents (78.6%) and faculty members (86.9%) chose "medical expertise" as the "doctor's role in the 21st century." In contrast, communicator, manager, and collaborator were recognized by less than 30% of all participants. Most residents (74.1%) responded that a core curriculum is "necessary but not feasible," whereas 68.3% of faculty members answered that it is "absolutely needed." Regarding subjects that should be included in the core curriculum, residents and faculty members had disparate preferences- residents preferred more "management of a private clinic" and "financial management," whereas faculty members desired "medical ethics" and "communication skills." Residents and faculty members agree that residents should develop a wide range of competencies in their training. However, the perception of the feasibility and opinions on the contents of the core curriculum differed between groups. Further studies with larger samples should be conducted to define the roles and professional competencies of physicians and the needs for a core curriculum in GME.

  13. A core curriculum for clinical fellowship training in pathology informatics

    Directory of Open Access Journals (Sweden)

    David S McClintock

    2012-01-01

    Full Text Available Background: In 2007, our healthcare system established a clinical fellowship program in Pathology Informatics. In 2010 a core didactic course was implemented to supplement the fellowship research and operational rotations. In 2011, the course was enhanced by a formal, structured core curriculum and reading list. We present and discuss our rationale and development process for the Core Curriculum and the role it plays in our Pathology Informatics Fellowship Training Program. Materials and Methods: The Core Curriculum for Pathology Informatics was developed, and is maintained, through the combined efforts of our Pathology Informatics Fellows and Faculty. The curriculum was created with a three-tiered structure, consisting of divisions, topics, and subtopics. Primary (required and suggested readings were selected for each subtopic in the curriculum and incorporated into a curated reading list, which is reviewed and maintained on a regular basis. Results: Our Core Curriculum is composed of four major divisions, 22 topics, and 92 subtopics that cover the wide breadth of Pathology Informatics. The four major divisions include: (1 Information Fundamentals, (2 Information Systems, (3 Workflow and Process, and (4 Governance and Management. A detailed, comprehensive reading list for the curriculum is presented in the Appendix to the manuscript and contains 570 total readings (current as of March 2012. Discussion: The adoption of a formal, core curriculum in a Pathology Informatics fellowship has significant impacts on both fellowship training and the general field of Pathology Informatics itself. For a fellowship, a core curriculum defines a basic, common scope of knowledge that the fellowship expects all of its graduates will know, while at the same time enhancing and broadening the traditional fellowship experience of research and operational rotations. For the field of Pathology Informatics itself, a core curriculum defines to the outside world

  14. Georgia science curriculum alignment and accountability: A blueprint for student success

    Science.gov (United States)

    Reining-Gray, Kimberly M.

    Current trends and legislation in education indicate an increased dependency on standardized test results as a measure for learner success. This study analyzed test data in an effort to assess the impact of curriculum alignment on learner success as well as teacher perceptions of the changes in classroom instruction due to curriculum alignment. Qualitative and quantitative design methods were used to determine the impact of science curriculum alignment in grades 9-12. To determine the impact of science curriculum alignment from the Quality Core Curriculum (QCC) to the Georgia Performance Standards (GPS) test data and teacher opinion surveys from one Georgia School system were examined. Standardized test scores before and after curriculum alignment were analyzed as well as teacher perception survey data regarding the impact of curriculum change. A quantitative teacher perception survey was administered to science teachers in the school system to identify significant changes in teacher perceptions or teaching strategies following curriculum realignment. Responses to the survey were assigned Likert scale values for analysis purposes. Selected teachers were also interviewed using panel-approved questions to further determine teacher opinions of curriculum realignment and the impact on student success and teaching strategies. Results of this study indicate significant changes related to curriculum alignment. Teachers reported a positive change in teaching strategies and instructional delivery as a result of curriculum alignment and implementation. Student scores also showed improvement, but more research is recommended in this area.

  15. Core curriculum illustration: rib fractures.

    Science.gov (United States)

    Dunham, Gregor M; Perez-Girbes, Alexandre; Linnau, Ken F

    2017-06-01

    This is the 24th installment of a series that will highlight one case per publication issue from the bank of cases available online as part of the American Society of Emergency Radiology (ASER) educational resources. Our goal is to generate more interest in and use of our online materials. To view more cases online, please visit the ASER Core Curriculum and Recommendations for Study online at http://www.aseronline.org/curriculum/toc.htm .

  16. A European core curriculum in cariology: the knowledge base

    NARCIS (Netherlands)

    Anderson, P.; Beeley, J.; Monteiro, P.M.; de Soet, H.; Andrian, S.; Amaechi, B.; Huysmans, M.C.D.N.J.M.

    2011-01-01

    This paper is part of a series of papers towards a European Core Curriculum in Cariology for undergraduate dental students. The European Core Curriculum in Cariology is the outcome of a joint workshop of the European Organization for Caries Research (ORCA) together with the Association for Dental

  17. Advanced Marketing Core Curriculum. Test Items and Assessment Techniques.

    Science.gov (United States)

    Smith, Clifton L.; And Others

    This document contains duties and tasks, multiple-choice test items, and other assessment techniques for Missouri's advanced marketing core curriculum. The core curriculum begins with a list of 13 suggested textbook resources. Next, nine duties with their associated tasks are given. Under each task appears one or more citations to appropriate…

  18. Increasing ocean sciences in K and 1st grade classrooms through ocean sciences curriculum aligned to A Framework for K-12 Science Education, and implementation support.

    Science.gov (United States)

    Pedemonte, S.; Weiss, E. L.

    2016-02-01

    Ocean and climate sciences are rarely introduced at the early elementary levels. Reasons for this vary, but include little direct attention at the national and state levels; lack of quality instructional materials; and, lack of teacher content knowledge. Recent recommendations by the National Research Council, "revise the Earth and Space sciences core ideas and grade band endpoints to include more attention to the ocean whenever possible" (NRC, 2012, p. 336) adopted in the Next Generation Science Standards (NGSS), may increase the call for ocean and climate sciences to be addressed. In response to these recommendations' and the recognition that an understanding of some of the Disciplinary Core Ideas (DCIs) would be incomplete without an understanding of processes or phenomena unique to the ocean and ocean organisms; the ocean Literacy community have created documents that show the alignment of NGSS with the Ocean Literacy Principles and Fundamental Concepts (Ocean Literacy, 2013) as well as the Ocean Literacy Scope and Sequence for Grades K-12 (Ocean Literacy, 2010), providing a solid argument for how and to what degree ocean sciences should be part of the curriculum. However, the percentage of science education curricula focused on the ocean remains very low. This session will describe a new project, that draws on the expertise of curriculum developers, ocean literacy advocates, and researchers to meet the challenges of aligning ocean sciences curriculum to NGSS, and supporting its implementation. The desired outcomes of the proposed project are to provide a rigorous standards aligned curricula that addresses all of the Life Sciences, and some Earth and Space Sciences and Engineering Design Core Ideas for Grades K and 1; and provides teachers with the support they need to understand the content and begin implementation. The process and lessons learned will be shared.

  19. Experimental course of bioethics upon the bioethics core curriculum of UNESCO: methodoloy and result of investigation.

    Science.gov (United States)

    Davtyan, S

    2012-12-01

    In October 2005 the General Conference of UNESCO adopted the Universal Declaration on Bioethics and Human Rights. The aim of this Declaration was to assist in the realization ofprinciples and support the thorough understanding of the consequences of the ethics of scientific and technical progress, especially for youth. In 2008, the Division of Ethics of Science and Technology Sector for Social and Human Sciences of UNESCO worked out an Educational Program (Bioethics Core Curriculum). On November 23, 2010 a Memorandum was signed between UNESCO and the Yerevan State Medical University after M. Heratsi. The Memorandum was aimed to test the Bioethics Core Curriculum of UNESCO. In this article we will analyze the aims and goals of studying the course, as well as disputable shortcomings of the Program, make recommendations for the improvement of the course of bioethics, and highlight the positive aspects of this Educational Program.

  20. The Adoption of Tablet and E-Textbooks: First Grade Core Curriculum and School Administration Attitude

    Science.gov (United States)

    Al-Mashaqbeh, Ibtesam; Al Shurman, Muneera

    2015-01-01

    This study aimed to investigate the effect of using e-textbooks, activities, games, and worksheets that loaded onto students tablets on first grade students' achievement on their core curriculum (science, math, English, Arabic) compared to the use of the traditional teaching method. It also, investigated the school administration reflection toward…

  1. Surviving the Implementation of a New Science Curriculum

    Science.gov (United States)

    Lowe, Beverly; Appleton, Ken

    2015-12-01

    Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2 years getting to know the new science curriculum through meetings, training, and exploring the new Australian curriculum documents. This article examines the support and preparation for implementation provided in two regional schools, with a closer look at six specific teachers and their science teaching practices as they attempted to implement the new science curriculum. The use of a survey, field observations, and interviews revealed the schools' preparation practices and the teachers' practices, including the support provided to implement the new science curriculum. A description and analysis of school support and preparation as well as teachers' views of their experiences implementing the new science curriculum reveal both achievements and shortcomings. Problematic issues for the two schools and teachers include time to read and comprehend the curriculum documents and content expectations as well as time to train and change the current processes effectively. The case teachers' experiences reveal implications for the successful and effective implementation of new curriculum and curriculum reform.

  2. Curriculum Implementation and Reform: Teachers' Views about Kuwait's New Science Curriculum

    Science.gov (United States)

    Alshammari, Ahmad

    2013-01-01

    The MoE (Ministry of Education) in the state of Kuwait is starting to reform the science curriculum in all school academic stages: primary (1-5) grades, intermediate (6-9) grades, and secondary (10-12) grades. The purpose of this study was to explore the opinions of science teachers about Kuwait's new sixth and seventh grade science curriculum,…

  3. A Substantiation of Macdonald's Models in Science Curriculum Development.

    Science.gov (United States)

    Searles, W. E.

    1982-01-01

    A history and analysis of science curriculum development is presented. Factors which influence the selection and organization of content in a science curriculum are discussed, including Macdonald's curriculum development models, propositions for curriculum development, and changes made in science curricula during the last century. (CJ)

  4. Leading Change in the Primary Science Curriculum

    Science.gov (United States)

    Waller, Nicky; Baker, Chris

    2014-01-01

    Nicky Waller and Chris Baker believe that change can be a good thing and explain how their training has helped others to adjust to the new science curriculum. In September 2013, teachers across England received the definitive version of the new primary curriculum "Leading Change in the Primary Science Curriculum." This course aimed to…

  5. Uncovering Portuguese teachers’ difficulties in implementing sciences curriculum

    Directory of Open Access Journals (Sweden)

    Clara Vasconcelos

    2015-12-01

    Full Text Available Many countries recognize the positive and effective results of improving science education through the introduction of reforms in the sciences curriculum. However, some important issues are generally neglected like, for example, the involvement of the teachers in the reform process. Taking the sciences curriculum reform under analysis and benefitting from 10 years of teachers’ experiences in teaching sciences based on this curriculum, 19 semi-structure interviews were applied so as to identify the major difficulties felt by science teachers when implementing the Portuguese sciences curriculum in the third cycle of middle school (pupils’ age range of 12–15. Some of the difficulties depicted by the data analysis include: length of the curriculum, lack of time, unsuitable laboratory facilities, insufficient means and materials for experimental work, pupils’ indiscipline and little interest in learning sciences. Although less frequently mentioned, the lack of professional development was also referred to as a constraint that seems to play an essential role in this process. Some recommendations for improving the success of sciences curriculum reforms’ implementation are given: defining and conceptualizing curricular policies by relating the reality of both the schools and the science classrooms; reorganizing and restructuring pre-service teachers’ courses; organizing professional development courses for in-service teachers.

  6. What does the Development of the European Core Curriculum for Cardiovascular Nurses Mean for Australia?

    Science.gov (United States)

    Neubeck, Lis; Lin, Stella Hsi-Man; Ferry, Cate; Gallagher, Robyn

    2016-04-01

    A core curriculum for the continuing professional development of nurses has recently been published by the Council on Cardiovascular Nursing and Allied Professions of the European Society of Cardiology. This core curriculum was envisaged to bridge the educational gap between qualification as a nurse and an advance practice role. In addition, the shared elements and international consensus on core themes creates a strong pathway for nursing career development that is directly relevant to Australia. Education programs for nurses in Australia must meet the mandatory standards of the Australian Nursing and Midwifery Accreditation Council (ANMAC), but without a national core curriculum, there can be considerable variation in the content of such courses. The core curriculum is developed to be adapted locally, allowing the addition of nationally relevant competencies, for example, culturally appropriate care of Aboriginal and Torres Strait Islander individuals. Two existing specialist resources could be utilised to deliver a tailored cardiovascular core curriculum; the Heart Education Assessment and Rehabilitation Toolkit (HEART) online (www.heartonline.org.au) and HeartOne (www.heartone.com.au). Both resources could be further enhanced by incorporating the core curriculum. The release of the European core curriculum should be viewed as a call to action for Australia to develop a core curriculum for cardiovascular nurses. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  7. Water Pollution, Environmental Science Curriculum Guide Supplement.

    Science.gov (United States)

    McKenna, Harold J.

    This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers…

  8. Application of the Intervention Mapping Framework to Develop an Integrated Twenty-first Century Core Curriculum-Part Two: Translation of MPH Core Competencies into an Integrated Theory-Based Core Curriculum.

    Science.gov (United States)

    Corvin, Jaime A; DeBate, Rita; Wolfe-Quintero, Kate; Petersen, Donna J

    2017-01-01

    In the twenty-first century, the dynamics of health and health care are changing, necessitating a commitment to revising traditional public health curricula to better meet present day challenges. This article describes how the College of Public Health at the University of South Florida utilized the Intervention Mapping framework to translate revised core competencies into an integrated, theory-driven core curriculum to meet the training needs of the twenty-first century public health scholar and practitioner. This process resulted in the development of four sequenced courses: History and Systems of Public Health and Population Assessment I delivered in the first semester and Population Assessment II and Translation to Practice delivered in the second semester. While the transformation process, moving from traditional public health core content to an integrated and innovative curriculum, is a challenging and daunting task, Intervention Mapping provides the ideal framework for guiding this process. Intervention mapping walks the curriculum developers from the broad goals and objectives to the finite details of a lesson plan. Throughout this process, critical lessons were learned, including the importance of being open to new ideologies and frameworks and the critical need to involve key-stakeholders in every step of the decision-making process to ensure the sustainability of the resulting integrated and theory-based curriculum. Ultimately, as a stronger curriculum emerged, the developers and instructors themselves were changed, fostering a stronger public health workforce from within.

  9. A Core Curriculum for Tomorrow's Citizens

    Science.gov (United States)

    Lewis, Harry R.

    2007-01-01

    Should the 21st-century university have a core curriculum? The report of the Secretary of Education's Commission on the Future of Higher Education said nothing about general education, the learning that educated Americans should share. Instead the Spellings commission report highlighted broad access and measurable "value added" as the major…

  10. Teaching Grade Eight Science with Reference to the Science Curriculum

    Directory of Open Access Journals (Sweden)

    Rasel Babu

    2016-08-01

    Full Text Available A mixed methodological approach was used to explore to what extent the science curriculum was being reflected in science teaching-learning of grade VIII students in Bangladesh. 160 students were randomly selected and 10 science teachers were purposively selected as study respondents. Fifteen science lessons were observed. Data were collected via student questionnaires, teacher interviews, and classroom observation checklists. Grade VIII science teaching-learning activities were not conducted according to the instructions of the science curriculum. Most teachers did not adhere to the curriculum and teacher's guide. Teachers mainly depended on lecture methods for delivering lessons. Learning by doing, demonstrating experiments, scientific inquiry, rational thinking, and analysing cause-effect relationships were noticeably absent. Teachers reported huge workloads and a lack of ingredients as reasons for not practising these activities. Teachers did not use teaching aids properly. Science teaching-learning was fully classroom centred, and students were never involved in any creative activities. 

  11. Representation and Analysis of Chemistry Core Ideas in Science Education Standards between China and the United States

    Science.gov (United States)

    Wan, Yanlan; Bi, Hualin

    2016-01-01

    Chemistry core ideas play an important role in students' chemistry learning. On the basis of the representations of chemistry core ideas about "substances" and "processes" in the Chinese Chemistry Curriculum Standards (CCCS) and the U.S. Next Generation Science Standards (NGSS), we conduct a critical comparison of chemistry…

  12. El "core curriculum": un debate en la educación médica The "core curriculum": a debate on medical education

    Directory of Open Access Journals (Sweden)

    Emilio Gerardo Martínez Marreros

    2006-12-01

    Full Text Available Uno de los aspectos más debatidos en educación médica es la dificultad de evaluar contenidos que tengan validez para la formación del médico, y cómo definir cuáles deberán ser incluidos dentro de los planes de estudio, de manera que se eliminen temas que no sean relevantes en su formación. Durante el proceso de enseñanza de cualquier profesional, es muy importante la clara definición de los contenidos que debe abordar el educando, y la pertinencia de los mismos, de manera que permitan desarrollar las competencias específicas esperadas al terminar su ciclo de estudios. El presente artículo hace una reflexión acerca de la determinación del "core currículum", las dificultades para su concreción en las ciencias básicas, y se proponen unos criterios para su determinación.Difficulties on how to evaluate valuable contents for future doctors and the way to include them into the Curriculum, in order to eliminate those items not really important for them as professionals, is one of the most discussed points in Medical Education. For any professional person (during his/her educational process is very important to have a clear definition of the contents he/she will study and their relevance in order to permit him/her developing specific abilities needed when he or she will end School. This article makes a reflection about the "core curriculum": its determination and the problems to make it real within Basic Sciences. We also propose some criteria for its determination.

  13. Curriculum-Dependent and Curriculum-Independent Factors in Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Science

    Science.gov (United States)

    Forbes, Cory T.

    2013-01-01

    In this nested mixed methods study I investigate factors influencing preservice elementary teachers' adaptation of science curriculum materials to better support students' engagement in science as inquiry. Analyses focus on two "reflective teaching assignments" completed by 46 preservice elementary teachers in an undergraduate elementary science…

  14. K-6 Science Curriculum.

    Science.gov (United States)

    Blueford, J. R.; And Others

    A unified science approach is incorporated in this K-6 curriculum mode. The program is organized into six major cycles. These include: (1) science, math, and technology cycle; (2) universe cycle; (3) life cycle; (4) water cycle; (5) plate tectonics cycle; and (6) rock cycle. An overview is provided of each cycle's major concepts. The topic…

  15. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    Science.gov (United States)

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  16. Science Curriculum Components Favored by Taiwanese Biology Teachers

    Science.gov (United States)

    Lin, Chen-Yung; Hu, Reping; Changlai, Miao-Li

    2005-09-01

    The new 1-9 curriculum framework in Taiwan provides a remarkable change from previous frameworks in terms of the coverage of content and the powers of teachers. This study employs a modified repertory grid technique to investigate biology teachers' preferences with regard to six curriculum components. One hundred and eighty-five in-service and pre-service biology teachers were asked to determine which science curriculum components they liked and disliked most of all to include in their biology classes. The data show that the rank order of these science curriculum components, from top to bottom, was as follows: application of science, manipulation skills, scientific concepts, social/ethical issues, problem-solving skills, and the history of science. They also showed that pre-service biology teachers, as compared with in-service biology teachers, favored problem-solving skills significantly more than manipulative skills, while in-service biology teachers, as compared with pre-service biology teachers, favored manipulative skills significantly more than problem-solving skills. Some recommendations for ensuring the successful implementation of the Taiwanese 1-9 curriculum framework are also proposed.

  17. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    Science.gov (United States)

    Weiss, E.; Skene, J.; Tran, L.

    2011-12-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, there are few high quality curricula available to teachers that address these topics in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8 aims to address this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. The Ocean Sciences Sequence for Grades 6-8 is developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified GEMS (Great Explorations in Math & Science) curriculum development team. Scientists are active partners throughout the whole development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. As with all GEMS Sequences, the Ocean Sciences Sequence for Grades 6-8 is designed to provide significant scientific and educational depth, systematic assessments and informational readings, and incorporate new learning technologies. The goal is to focus strategically and effectively on the core concepts within ocean and climate sciences that students need to understand. This curriculum is designed in accordance with the latest research from the learning sciences, and provides numerous opportunities for students to develop inquiry skills and abilities as they learn about the practice of science through hands-on activities. The Ocean Sciences Sequence for Grades 6-8 addresses in depth a significant number of national, state, and district standards and benchmarks. It

  18. Science Curriculum Guide, Level 4.

    Science.gov (United States)

    Newark School District, DE.

    The fourth of four levels in a K-12 science curriculum is outlined. In Level 4 (grades 9-12), science areas include earth science, biology, chemistry, and physics. Six major themes provide the basis for study in all levels (K-12). These are: Change, Continuity, Diversity, Interaction, Limitation, and Organization. In Level 4, all six themes are…

  19. Columbia Public Health Core Curriculum: Short-Term Impact.

    Science.gov (United States)

    Begg, Melissa D; Fried, Linda P; Glover, Jim W; Delva, Marlyn; Wiggin, Maggie; Hooper, Leah; Saxena, Roheeni; de Pinho, Helen; Slomin, Emily; Walker, Julia R; Galea, Sandro

    2015-12-01

    We evaluated a transformed core curriculum for the Columbia University, Mailman School of Public Health (New York, New York) master of public health (MPH) degree. The curriculum, launched in 2012, aims to teach public health as it is practiced: in interdisciplinary teams, drawing on expertise from multiple domains to address complex health challenges. We collected evaluation data starting when the first class of students entered the program and ending with their graduation in May 2014. Students reported being very satisfied with and challenged by the rigorous curriculum and felt prepared to integrate concepts across varied domains and disciplines to solve public health problems. This novel interdisciplinary program could serve as a prototype for other schools that wish to reinvigorate MPH training.

  20. ASER core curriculum illustration project: aortic intramural hematoma (IMH).

    Science.gov (United States)

    Perez-Girbes, Alexandre; Dunham, Gregor M; Linnau, Ken F

    2017-04-01

    This is the 23rd installment of a series that will highlight one case per publication issue from the bank of cases available online as part of the American Society of Emergency Radiology (ASER) educational resources. Our goal is to generate more interest in and use of our online materials. To view more cases online, please visit the ASER Core Curriculum and Recommendations for Study online at http://www.aseronline.org/curriculum/toc.htm .

  1. Essential Distinctiveness: Strategic Alternatives in Updating the Business Core Curriculum

    Science.gov (United States)

    Alstete, Jeffrey W.

    2013-01-01

    Purpose: This paper seeks to propose the use of specific strategic management tools for identifying opportunities for gaining competitive advantage in the business core curricula offered at colleges and universities. Design/methodology/approach: A brief review of the literature on business core curriculum innovation and change is examined, and…

  2. A core undergraduate curriculum in plastic surgery - a Delphi consensus study in Scandinavia

    DEFF Research Database (Denmark)

    Almeland, Stian K; Lindford, Andrew; Berg, Jais Oliver

    2017-01-01

    .00 on a 1-4 Likert scale. Final agreement in the third round resulted in a list of 68 competences with agreement above 80% (31 skills and 37 knowledge items). CONCLUSIONS: This study proposes the first scientifically developed undergraduate core curriculum in plastic surgery. It comprises of a consensus......, there appears to be a need to define the core competences that are to be taught. The aim of this study was to establish a Scandinavian core undergraduate curriculum of competences in plastic surgery, using scientific methods. METHODS: The Delphi technique for group consensus was employed. An expert panel...... of anonymous questionnaires; a final core curriculum competency list was agreed upon based on a consensus agreement level of 80%. RESULTS: Two hundred and ninety-five competences were suggested in the first round. In the second round, 76 competences (33 skills and 43 knowledge items) received a score ≥3...

  3. A Study of Changes in the Library and Information Science Curriculum with Evaluation of Its Practicality

    Science.gov (United States)

    Noh, Younghee; Ahn, In-Ja; Choi, Sang-Ki

    2012-01-01

    Purpose: This study analyzed the process of changes in Korean Library and Information Science curriculum and evaluated the courses currently available by using a perception survey of librarians in the field. It also explored a possible demand for new courses, while suggesting compulsory, core, and optional courses for Bachelor's degree curriculum…

  4. Augustine’s Confessions: Interiority at the Core of the Core Curriculum

    Directory of Open Access Journals (Sweden)

    Michael Chiariello

    2015-06-01

    Full Text Available When St. Bonaventure University decided to redesign its core curriculum, we turned to Bonaventure’s account of the mind’s journey to God in the Itinerarium Mentis in Deum as a paradigm by which to give coherence to the undergraduate experience consistent with our mission and tradition. Bonaventure was himself an Augustinian philosopher and thus Augustine’s Confessions holds a place of great significance in our first year seminar where it is studied in conjunction with Bonaventure’s inward turn to find God imprinted on his soul. This paper is an account of the original rationale for including Augustine’s Confessions in our curriculum and a report of continuing faculty and student attitudes towards that text nearly two decades later.

  5. The Impact of Science Integrated Curriculum Supplements on Early Childhood Teachers' Attitudes and Beliefs towards Science while In-Service: A Multiple Case

    Science.gov (United States)

    Collins, Kellian L.

    Science at the early childhood level has been rarely taught as a single subject or integrated into the curriculum. One reason why early childhood educators avoid teaching science are their attitudes, beliefs, and lack of understanding scientific concepts as presented in traditional science curriculums. The intervention used by researchers for improving beliefs and attitudes in K-6 pre-service teachers towards teaching science in early childhood has been science method courses. For in service teachers, the intervention has been professional development workshops, seminars, and symposiums. Though these interventions have had a positive impact on teachers' attitudes and beliefs toward teaching science, the interventions have not necessarily guaranteed more science being taught in the preschool classroom. The specific problem investigated for this study was how to improve the interventions designed to improve preschool teachers' attitudes and beliefs so that they would feel more confident in teaching science to young children. The purpose of this study was to examine how implementing a one-week science integrated curriculum supplement could be an effective tool for improving preschool teachers' attitudes and beliefs toward teaching science. This study utilized the qualitative multiple case study research method. A logical model was created based on negative teacher attitudes and beliefs attributes that were the core components of the Preschool Teachers' Attitudes and Beliefs toward Science teaching (P-TABS) questionnaire. The negative attributes were paired with positive interventions and encapsulated in a one-week science integrated curriculum supplement based on the factors of teacher comfort, child benefit and challenges. The primary source of evidence for this study was the semi-structured interview. The researcher contacted 24 early childhood facilities, 44 emails were sent to preschool teachers, four teachers agreed to participate in the study. The results of the

  6. Integrating Gender into the Political Science Core Curriculum

    Science.gov (United States)

    Cassese, Erin C.; Bos, Angela L.; Duncan, Lauren E.

    2012-01-01

    The New Research on Gender in Political Psychology Conference brought together new and experienced teachers with interests in gender politics. The conference session "Teaching Gender throughout the Curriculum" generated a great deal of discussion concerning the pedagogical practice of gender mainstreaming. Gender mainstreaming--the integration of…

  7. Models for Instruction and Curriculum.

    Science.gov (United States)

    Toth, Elizabeth L.

    1999-01-01

    Proposes three models of course-specific curricula and a content-curriculum model for undergraduate public-relations education, and proposes core and elective areas for a master's of public-relations curriculum. Agrees that public-relations curricula should have a broad liberal arts and science basis, and recommended more attention to ethics,…

  8. Improving the Science Curriculum with Bioethics.

    Science.gov (United States)

    Lundmark, Cathy

    2002-01-01

    Explains the importance of integrating bioethics into the science curriculum for student learning. Introduces a workshop designed for middle and high school science teachers teaching bioethics, its application to case studies, and how teachers can fit bioethics into their classroom. (YDS)

  9. Associate in science degree education programs: organization, structure, and curriculum.

    Science.gov (United States)

    Galvin, William F

    2005-09-01

    After years of discussion, debate, and study, the respiratory care curriculum has evolved to a minimum of an associate degree for entry into practice. Although programs are at liberty to offer the entry-level or advanced level associate degree, most are at the advanced level. The most popular site for sponsorship of the associate degree in respiratory care is the community college. The basis for community college sponsorship seems to be its comprehensive curriculum, which focuses on a strong academic foundation in writing, communication, and the basic sciences as well as supporting a career-directed focus in respiratory care. Issues facing the community college are tied to literacy, outcomes, assessment, placement,cooperation with the community, partnerships with industry, and articulation arrangements with granting institutions granting baccalaureate degrees. Community colleges must produce a literate graduate capable of thriving in an information-saturated society. Assessment and placement will intensify as the laissez-faire attitudes toward attendance and allowing students to select courses without any accountability and evaluation of outcome become less acceptable. Students will be required to demonstrate steady progress toward established outcomes. Maintaining relations and cooperation with the local community and the health care industry will continue to be a prominent role for the community college. The challenge facing associate degree education in respiratory care at the community college level is the ability to continue to meet the needs of an expanding professional scope of practice and to provide a strong liberal arts or general education core curriculum. The needs for a more demanding and expanding respiratory care curriculum and for a rich general education core curriculum have led to increased interest in baccalaureate and graduate degree education. The value of associate degree education at the community college level is well established. It is

  10. Professional Learning Communities (PLCs) as a Means for School-Based Science Curriculum Change

    Science.gov (United States)

    Browne, Christi L.

    The challenge of school-based science curriculum change and educational reform is often presented to science teachers and departments who are not necessarily prepared for the complexity of considerations that change movements require. The development of a Professional Learning Community (PLC) focused on a science department's curriculum change efforts, may provide the necessary tools to foster sustainable school-based curriculum science changes. This research presents a case study of an evolving science department PLC consisting of 10 middle school science teachers from the same middle school and their efforts of school-based science curriculum change. A transformative mixed model case study with qualitative data and deepened by quantitative analysis, was chosen to guide the investigation. Collected data worked to document the essential developmental steps, the occurrence and frequency of the five essential dimensions of successful PLCs, and the influences the science department PLC had on the middle school science department's progression through school-based science curriculum change, and the barriers, struggles and inhibiting actions of the science department PLC. Findings indicated that a science department PLC was unique in that it allowed for a focal science departmental lens of science curriculum change to be applied to the structure and function of the PLC and therefore the process, proceedings, and results were directly aligned to and driven by the science department. The science PLC, while logically difficult to set-up and maintain, became a professional science forum where the middle school science teachers were exposed to new science teaching and learning knowledge, explored new science standards, discussed effects on student science learning, designed and critically analyzed science curriculum change application. Conclusions resulted in the science department PLC as an identified tool providing the ability for science departmental actions to lead to

  11. Measuring Science Curriculum Improvement Study Teachers' Attitudinal Changes Toward Science.

    Science.gov (United States)

    Hovey, Larry Michael

    Investigated were three questions related to the relationship between a science teacher's attitude regarding the use of a newer science program, in this instance the Science Curriculum Improvement Study (SCIS): (1) Could the Projective Tests of Attitudes, originally designed for fifth-grade students, be modified for use with adults? (2) Is there a…

  12. Teachers' sense-making of curriculum structures and its impact on the implementation of an innovative reform-based science curriculum

    Science.gov (United States)

    Beckford-Smart, Meredith

    This study discusses the social interactions involved in teachers' enactment and use of new science curricula. The teachers studied participated in the LiFE program, a university-school partnership, which is an inquiry based science and nutrition education program. In this program fifth and sixth grade students learned science through the study of food. The program used the study of food and food systems to teach life sciences and nutrition through inquiry based studies. Through the partnership teachers received professional development which aimed to deepen their conceptual understandings of life science and develop skills in implementing inquiry-base teaching. Using qualitative research methods of ethnography and narrative inquiry to study teachers' sense-making of messages from curriculum structures, the intention was to explore how teachers' sense-making of these structures guided their classroom practices. Two research questions were addressed: (a) How do teachers make sense of curriculum given their perceptions, their school context and their curricular context; (b) What influence do their identities as science teachers/learners have on their enactment of an innovative science curriculum. I used comparative analysis to examine teacher's beliefs and identities as teachers/learners. In the process of studying these teachers an understanding of how teachers' stories and identities shape their use and enactment of science curriculum came to light. The initial analysis revealed four distinct teacher identities: (a) social responsibility teacher/learner; (b) experiential teacher/learner; (c) supportive institution teacher/learner; and (d) turning point teacher. Besides these distinct teacher identities three cross cutting themes emerged: (a) creating environments conducive to their teaching visions; (b) empowering student through science teaching; and (c) dealing with the uncertainty of teaching. The information gathered from this study will illuminate how these

  13. Grade 6 Science Curriculum Specifications.

    Science.gov (United States)

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    This material describes curriculum specifications for grade 6 science in Alberta. Emphases recommended are: (1) process skills (50%); (2) psychomotor skills (10%); (3) attitudes (10%); and (4) subject matter (30%). Priorities within each category are identified. (YP)

  14. Core Science Systems--Mission overview

    Science.gov (United States)

    Gallagher, Kevin T.

    2012-01-01

    The Core Science Systems Mission Area delivers nationally focused Earth systems and information science that provides fundamental research and data that underpins all Mission Areas of the USGS, the USGS Science Strategy, and Presidential, Secretarial, and societal priorities. —Kevin T. Gallagher, Associate Director, Core Science Systems

  15. Shifts in funding for science curriculum design and their (unintended) consequences

    NARCIS (Netherlands)

    Pareja Roblin, Natalie; Schunn, Christian; Bernstein, Debra; McKenney, Susan

    2016-01-01

    Federal agencies in the Unites States invest heavily in the development of science curriculum materials, which can significantly facilitate science education reform. The current study describes the characteristics of K-12 science curriculum materials produced by federally funded projects between

  16. [An example of self-evaluation of a sense of achievement by students in 6-year pharmacy school with the model core curriculum of pharmaceutical education].

    Science.gov (United States)

    Shingaki, Tomoteru; Koyanagi, Jyunichi; Nakamura, Hiroshi; Hirata, Takahiro; Ohta, Atsutane; Akimoto, Masayuki; Shirahata, Akira; Mitsumoto, Atsushi

    2013-01-01

    In March 2012, the first students, finishing the newly introduced 6-year-course of pharmaceutical education, have graduated and gone out into the world. At this point, the Ministry of Education, Culture, Sports, Science and Technology (MEXT) is going to revise the model core curriculum of pharmaceutical education to be more suited for educating students to achieve their goal of becoming the clinical pharmacist standard defined by the revised School Education Act. Here we report the self-evaluation study based on the survey using questionnaire about a sense of achievement with Visual Analog Scales, regarding the fundamental quality as a pharmacist standard proposed by the Professional Activities Committee in the MEXT. The sample size of survey was about 600 of students studying in the Faculty of Pharmaceutical Sciences in Josai International University (JIU) and the survey was carried out during the period of March-April in 2012. The study suggested that the majority of graduates were satisfied with the new education system and marked as a well-balanced quality to be a pharmacist standard, after completing the 6-year pharmaceutical education based on "the model core-curriculum". It would be worthwhile to perform this kind of survey continuously to monitor the student's self-evaluation of a sense of achievement to verify the effectiveness of 6-year-course pharmaceutical education based on the newly establishing core curriculum in Japan.

  17. The Gas Laws and the Kinetic Theory: Curriculum Guide for the Thirteen-College Curriculum Program.

    Science.gov (United States)

    Daniel, Army; And Others

    This booklet is both a teacher's manual and a student's manual in a series of booklets that make up the core of a Physical Science course designed for the freshman year of college and used by teachers in the 27 colleges participating in the Thirteen College Curriculum Program. This program is a curriculum revision project in support of 13…

  18. A statistical analysis of the characteristics of the intended curriculum for Japanese primary science and its relationship to the attained curriculum

    Directory of Open Access Journals (Sweden)

    Kenji Matsubara

    2016-08-01

    Full Text Available Abstract This study statistically investigates the characteristics of the intended curriculum for Japanese primary science, focusing on the learning content. The study used the TIMSS 2011 Grade 4 Curriculum Questionnaire data as a major source for the learning content prescribed at the national level. Confirmatory factor analysis was used to determine the extent to which a topic area was covered, as compared to the average among the 59 TIMSS 2011 participating countries. The study revealed that the topic areas of “Human Health” and “Changes in Environments,” both in the life science domain, showed statistically less coverage in the Japanese primary science curriculum when compared to the international average. Furthermore, in discussion, the study relates the characteristics found in the intended curriculum to those in the attained curriculum, examining the percent correct statistics for relevant items from the science assessment. Based on these findings, the study proposes two recommendations for revision of the Japanese primary science curriculum.

  19. chemistry syllabus of the nigeria science curriculum

    African Journals Online (AJOL)

    Preferred Customer

    The senior secondary two chemistry course content of the Nigerian science curriculum was assessed ... of the students. In Nigeria, the need to re-examine both what to teach in science and how to teach it led ..... primary school. Our industries ...

  20. A competency-based longitudinal core curriculum in medical neuroscience.

    Science.gov (United States)

    Merlin, Lisa R; Horak, Holli A; Milligan, Tracey A; Kraakevik, Jeff A; Ali, Imran I

    2014-07-29

    Current medical educational theory encourages the development of competency-based curricula. The Accreditation Council for Graduate Medical Education's 6 core competencies for resident education (medical knowledge, patient care, professionalism, interpersonal and communication skills, practice-based learning, and systems-based practice) have been embraced by medical schools as the building blocks necessary for becoming a competent licensed physician. Many medical schools are therefore changing their educational approach to an integrated model in which students demonstrate incremental acquisition and mastery of all competencies as they progress through medical school. Challenges to medical schools include integration of preclinical and clinical studies as well as development of learning objectives and assessment measures for each competency. The Undergraduate Education Subcommittee (UES) of the American Academy of Neurology (AAN) assembled a group of neuroscience educators to outline a longitudinal competency-based curriculum in medical neuroscience encompassing both preclinical and clinical coursework. In development of this curriculum, the committee reviewed United States Medical Licensing Examination content outlines, Liaison Committee on Medical Education requirements, prior AAN-mandated core curricula for basic neuroscience and clinical neurology, and survey responses from educators in US medical schools. The newly recommended curriculum provides an outline of learning objectives for each of the 6 competencies, listing each learning objective in active terms. Documentation of experiences is emphasized, and assessment measures are suggested to demonstrate adequate achievement in each competency. These guidelines, widely vetted and approved by the UES membership, aspire to be both useful as a stand-alone curriculum and also provide a framework for neuroscience educators who wish to develop a more detailed focus in certain areas of study. © 2014 American Academy

  1. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    Science.gov (United States)

    Halversen, C.; Weiss, E. L.; Pedemonte, S.

    2016-02-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, few high quality curriculum materials exist that address climate change in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8: The Ocean-Atmosphere Connection and Climate Change (OSS) addresses this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. OSS was developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified curriculum development team. Scientists were active partners throughout the entire development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. The goal was to focus strategically and effectively on core concepts within ocean and climate sciences that students should understand. OSS was designed in accordance with the latest research from the learning sciences and provides numerous opportunities for students to develop facility with science practices by "doing" science.Through hands-on activities, technology, informational readings, and embedded assessments, OSS deeply addresses a significant number of standards from the Next Generation Science Standards and is being used by many teachers as they explore the shifts required by NGSS. It also aligns with the Ocean Literacy and Climate Literacy Frameworks. OSS comprises 33 45-minute sessions organized into three thematic units, each driven by an exploratory question: (1) How do the ocean and atmosphere

  2. Science as a general education: Conceptual science should constitute the compulsory core of multi-disciplinary undergraduate degrees.

    Science.gov (United States)

    Charlton, Bruce G

    2006-01-01

    It is plausible to assume that in the future science will form the compulsory core element both of school curricula and multi-disciplinary undergraduate degrees. But for this to happen entails a shift in the emphasis and methods of science teaching, away from the traditional concern with educating specialists and professionals. Traditional science teaching was essentially vocational, designed to provide precise and comprehensive scientific knowledge for practical application. By contrast, future science teaching will be a general education, hence primarily conceptual. Its aim should be to provide an education in flexible rationality. Vocational science teaching was focused on a single-discipline undergraduate degree, but a general education in abstract systematic thinking is best inculcated by studying several scientific disciplines. In this sense, 'science' is understood as mathematics and the natural sciences, but also the abstract and systematic aspects of disciplines such as economics, linguistics, music theory, history, sociology, political science and management science. Such a wide variety of science options in a multi-disciplinary degree will increase the possibility of student motivation and aptitude. Specialist vocational science education will progressively be shifted to post-graduate level, in Masters and Doctoral programs. A multi-disciplinary and conceptually-based science core curriculum should provide an appropriate preparation for dealing with the demands of modern societies; their complex and rapidly changing social systems; and the need for individual social and professional mobility. Training in rational conceptual thinking also has potential benefits to human health and happiness, since it allows people to over-ride inappropriate instincts, integrate conflicting desires and pursue long-term goals.

  3. Horizontal integration of the basic sciences in the chiropractic curriculum.

    Science.gov (United States)

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  4. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    Science.gov (United States)

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  5. Language games: Christian fundamentalism and the science curriculum

    Science.gov (United States)

    Freund, Cheryl J.

    Eighty years after the Scope's Trial, the debate over evolution in the public school curriculum is alive and well. Historically, Christian fundamentalists, the chief opponents of evolution in the public schools, have used the court system to force policymakers, to adopt their ideology regarding evolution in the science curriculum. However, in recent decades their strategy has shifted from the courts to the local level, where they pressure teachers and school boards to include "alternate theories" and the alleged "flaws" and "inconsistencies" of evolution in the science curriculum. The purpose of this content analysis study was to answer the question: How do Christian fundamentalists employ rhetorical strategies to influence the science curriculum? The rhetorical content of several public legal and media documents resulting from a lawsuit filed against the Athens Public Schools by the American Center of Law and Justice were analyzed for the types of rhetorical strategies employed by the participants engaged in the scientific, legal, and public discourse communities. The study employed an analytical schema based on Ludwig Wittgenstein's theory of language games, Lawrence Prelli's theory of discourse communities, and Michael Apple's notion of constitutive and preference rules. Ultimately, this study revealed that adroit use of the constitutive and preference rules of the legal and public discourse communities allowed the school district to reframe the creation-evolution debate, thereby avoiding a public spectacle and ameliorating the power of creationist language to affect change in the science curriculum. In addition, the study reinforced the assertion that speakers enjoy the most persuasive power when they attend to the preference rules of the public discourse community.

  6. International Society on Thrombosis and Haemostasis core curriculum project: core competencies in clinical thrombosis and hemostasis

    NARCIS (Netherlands)

    McLintock, C.; Pabinger, I.; Bauer, K. A.; Laffan, M.; Angchaisuksiri, P.; Rezende, S. M.; Middeldorp, S.; Ross, M.

    2016-01-01

    Essentials The priority of ISTH was to establish a global core curriculum in thrombosis and hemostasis. International survey to determine competencies required for clinical specialists was carried out in the field. Competency framework provides a reference point for mapping and developing regional

  7. Science and Technology Teachers' Views of Primary School Science and Technology Curriculum

    Science.gov (United States)

    Yildiz-Duban, Nil

    2013-01-01

    This phenomenographic study attempts to explicit science and technology teachers' views of primary school science and technology curriculum. Participants of the study were selected through opportunistic sampling and consisted of 30 science and technology teachers teaching in primary schools in Afyonkarahisar, Turkey. Data were collected through an…

  8. Gap analysis: a method to assess core competency development in the curriculum.

    Science.gov (United States)

    Fater, Kerry H

    2013-01-01

    To determine the extent to which safety and quality improvement core competency development occurs in an undergraduate nursing program. Rapid change and increased complexity of health care environments demands that health care professionals are adequately prepared to provide high quality, safe care. A gap analysis compared the present state of competency development to a desirable (ideal) state. The core competencies, Nurse of the Future Nursing Core Competencies, reflect the ideal state and represent minimal expectations for entry into practice from pre-licensure programs. Findings from the gap analysis suggest significant strengths in numerous competency domains, deficiencies in two competency domains, and areas of redundancy in the curriculum. Gap analysis provides valuable data to direct curriculum revision. Opportunities for competency development were identified, and strategies were created jointly with the practice partner, thereby enhancing relevant knowledge, attitudes, and skills nurses need for clinical practice currently and in the future.

  9. A Creative Approach to the Common Core Standards: The Da Vinci Curriculum

    Science.gov (United States)

    Chaucer, Harry

    2012-01-01

    "A Creative Approach to the Common Core Standards: The Da Vinci Curriculum" challenges educators to design programs that boldly embrace the Common Core State Standards by imaginatively drawing from the genius of great men and women such as Leonardo da Vinci. A central figure in the High Renaissance, Leonardo made extraordinary contributions as a…

  10. Curriculum Design for Inquiry: Preservice Elementary Teachers' Mobilization and Adaptation of Science Curriculum Materials

    Science.gov (United States)

    Forbes, Cory T.; Davis, Elizabeth A.

    2010-01-01

    Curriculum materials are crucial tools with which teachers engage students in science as inquiry. In order to use curriculum materials effectively, however, teachers must develop a robust capacity for pedagogical design, or the ability to mobilize a variety of personal and curricular resources to promote student learning. The purpose of this study…

  11. Forensic Science Curriculum for High School Students

    Science.gov (United States)

    Burgess, Christiana J.

    Over the last several decades, forensic science---the application of science to civil and criminal legal matters---has become of increasing popularity with the public. The range of disciplines within the field is immense, offering individuals the potential for a unique career, regardless of their specific interests or expertise. In response to this growth, many organizations, both public and private, have recognized the need to create forensic science programs that strive to maintain and enhance the quality of forensic science education. Unfortunately, most of the emphasis placed on developing these materials relates to post-secondary education, and creates a significant lack of forensic science educational materials available in the U.S., especially in Oklahoma. The purpose of this project was to create a high school curriculum that provides the foundation for building a broad, yet comprehensive, overview of the field of forensic science and its associated disciplines. The overall goal was to create and provide course materials to high school teachers in order to increase their knowledge of forensic science such that they are able to teach its disciplines effectively and with accuracy. The Forensic Science Curriculum for High School Students includes sample lesson plans, PowerPoint presentations, and lab activities with step-by-step instructions.

  12. ASTRO's 2007 Core Physics Curriculum for Radiation Oncology Residents

    International Nuclear Information System (INIS)

    Klein, Eric E.; Gerbi, Bruce J.; Price, Robert A.; Balter, James M.; Paliwal, Bhudatt; Hughes, Lesley; Huang, Eugene

    2007-01-01

    In 2004, American Society for Therapeutic Radiology and Oncology (ASTRO) published a curriculum for physics education. The document described a 54-hour course. In 2006, the committee reconvened to update the curriculum. The committee is composed of physicists and physicians from various residency program teaching institutions. Simultaneously, members have associations with American Association of Physicists in Medicine, ASTRO, Association of Residents in Radiation Oncology, American Board of Radiology, and American College of Radiology. Representatives from the latter two organizations are key to provide feedback between the examining organizations and ASTRO. Subjects are based on Accreditation Council for Graduate Medical Education requirements (particles and hyperthermia), whereas the majority of subjects and appropriated hours/subject were developed by consensus. The new curriculum is 55 hours, containing new subjects, redistribution of subjects with updates, and reorganization of core topics. For each subject, learning objectives are provided, and for each lecture hour, a detailed outline of material to be covered is provided. Some changes include a decrease in basic radiologic physics, addition of informatics as a subject, increase in intensity-modulated radiotherapy, and migration of some brachytherapy hours to radiopharmaceuticals. The new curriculum was approved by the ASTRO board in late 2006. It is hoped that physicists will adopt the curriculum for structuring their didactic teaching program, and simultaneously, American Board of Radiology, for its written examination. American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee added suggested references, a glossary, and a condensed version of lectures for a Postgraduate Year 2 resident physics orientation. To ensure continued commitment to a current and relevant curriculum, subject matter will be updated again in 2 years

  13. Elements of Contemporary Integrated Science Curriculum: Impacts ...

    African Journals Online (AJOL)

    This paper acknowledged the vital roles played by integration of ideas and established the progress brought about when science is taught as a unified whole through knowledge integration which birthed integrated science as a subject in Nigerian school curriculum. The efforts of interest groups at regional, national and ...

  14. Mentoring BUGS: An Integrated Science and Technology Curriculum

    Science.gov (United States)

    Harrell, Pamela Esprivalo; Walker, Michelle; Hildreth, Bertina; Tyler-Wood, Tandra

    2004-01-01

    The current study describes an authentic learning experience designed to develop technology and science process skills through a carefully scaffolded curriculum using mealworms as a content focus. An individual mentor assigned to each 4th and 5th grade girl participating in the program delivered the curriculum. Results indicate mastery of science…

  15. Bringing Data Science, Xinformatics and Semantic eScience into the Graduate Curriculum

    Science.gov (United States)

    Fox, P.

    2012-04-01

    Committee on Information and Data (SCCID), features this excerpt from section 4.2.4 Data scientists and professionals: "An unfortunate state in the recognition of data science, is that there is a lack of appreciation of the need for a set of professional knowledge in skill in key areas, many of which have not been emphasized to date, e.g. professional approaches to the management of data over its lifecycle. As such, the effort required to be a data scientists is not valued sufficiently by the remainder of the scientific community." SCCID Recommendation 6 reads: "We recommend the development of education at university level in the new and vital field of data science. The curriculum included in appendix D can be used as a starting point for curriculum development. Appendix D. is entitled "Example curriculum for data science" and explicitly uses the "Curriculum for Data Science taught at Rensselaer Polytechnic Institute, USA" . This contribution will present relevant curriculum offerings at the Rensselaer Polytechnic Institute. http://tw.rpi.edu/web/Courses

  16. The Study of Literacy Reinforcement of Science Teachers in Implementing 2013 Curriculum

    Science.gov (United States)

    Dewi, W. S.; Festiyed, F.; Hamdi, H.; Sari, S. Y.

    2018-04-01

    This research aims to study and collect data comprehensively, new and actual about science literacy to improve the ability of educators in implementing the 2013 Curriculum at Junior High School Padang Pariaman District. The specific benefit of this research is to give description and to know the problem of science literacy problem in interaction among teacher, curriculum, facilities and infrastructure, evaluation, learning technology and students. This study uses explorative in deep study approach, studying and collecting data comprehensively from the interaction of education process components (curriculum, educator, learner, facilities and infrastructure, learning media technology, and evaluation) that influence the science literacy. This research was conducted in the districts of Padang Pariaman consisting of 17 subdistricts and 84 junior high schools managed by the government and private. The sample of this research is science teachers of Padang Pariaman District with sampling technique is stratified random sampling. The instrument used in this study is a questionnaire to the respondents. Research questionnaire data are processed by percentage techniques (quantitative). The results of this study explain that the understanding of science teachers in Padang Pariaman District towards the implementation of 2013 Curriculum is still lacking. The science teachers of Padang Pariaman District have not understood the scientific approach and the effectiveness of 2013 Curriculum in shaping the character of the students. To improve the understanding of the implementation of Curriculum 2013, it is necessary to strengthen the literacy toward science teachers at the Junior High School level in Padang Pariaman District.

  17. Designing a Science Curriculum Fit for Purpose

    Science.gov (United States)

    Millar, Robin

    2014-01-01

    The science curriculum to age 16 should be judged on how well it meets the needs of students who progress to A-level science courses and those (a larger number) who do not. To address the diversity of students' interests and aspirations, we need a clear view of the purposes of science education rooted in a view of the purposes of education itself.…

  18. Surviving the Implementation of a New Science Curriculum

    Science.gov (United States)

    Lowe, Beverly; Appleton, Ken

    2015-01-01

    Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2 years getting to know the new…

  19. Changing Curriculum: A Critical Inquiry into the Revision of the British Columbia Science Curriculum For Grades K-9

    Science.gov (United States)

    Searchfield, Mary A.

    In 2010 British Columbia's Ministry of Education started the process of redesigning the provincial school curriculum, Kindergarten to Grade 12. Mandatory implementation of the new curriculum was set for the 2016/17 school year for Grades K-9, and 2017/18 for Grades 10-12. With a concerted emphasis on personalized learning and through the frame of a Know-Do-Understand curriculum model, the new curriculum aims to meet the needs of today's learners, described as living in a technology-rich, fast-paced and ever-changing world, through a concept-based and competency-driven emphasis. This thesis is a critical analysis of the BC K-9 Science curriculum as written and published, looking specifically at how science is treated as a form of knowledge, its claimed presentation as a story, and on whether the intentions claimed by the designers are matched in the curriculum's final form.

  20. Teachers and Science Curriculum Materials: Where We Are and Where We Need to Go

    Science.gov (United States)

    Davis, Elizabeth A.; Janssen, Fred J. J. M.; Van Driel, Jan H.

    2016-01-01

    Curriculum materials serve as a key conceptual tool for science teachers, and better understanding how science teachers use these tools could help to improve both curriculum design and theory related to teacher learning and decision-making. The authors review the literature on teachers and science curriculum materials. The review is organised…

  1. Core II Materials for Rural Agriculture Programs. Units E-H.

    Science.gov (United States)

    Biondo, Ron; And Others

    This curriculum guide includes teaching packets for 21 problem areas to be included in a core curriculum for 10th grade students enrolled in a rural agricultural program. Covered in the four units included in this volume are crop science (harvesting farm crops and growing small grains); soil science and conservation of natural resources…

  2. Kansas Vocational Agriculture Education. Basic Core Curriculum Project, Horticulture III.

    Science.gov (United States)

    Albracht, James, Ed.

    This secondary horticulture curriculum guide is one of a set of three designated as the basic core of instruction for horticulture programs in Kansas. Units of instruction are presented in eight sections: (1) Human Relations, (2) Business Operations, (3) Greenhouse, (4) Retail Flowershop Operation, (5) Landscape Nursery, (6) Lawn Maintenance, (7)…

  3. The American Society for Radiation Oncology's 2015 Core Physics Curriculum for Radiation Oncology Residents

    International Nuclear Information System (INIS)

    Burmeister, Jay; Chen, Zhe; Chetty, Indrin J.; Dieterich, Sonja; Doemer, Anthony; Dominello, Michael M.; Howell, Rebecca M.; McDermott, Patrick; Nalichowski, Adrian; Prisciandaro, Joann; Ritter, Tim; Smith, Chadd; Schreiber, Eric; Shafman, Timothy; Sutlief, Steven; Xiao, Ying

    2016-01-01

    Purpose: The American Society for Radiation Oncology (ASTRO) Physics Core Curriculum Subcommittee (PCCSC) has updated the recommended physics curriculum for radiation oncology resident education to improve consistency in teaching, intensity, and subject matter. Methods and Materials: The ASTRO PCCSC is composed of physicists and physicians involved in radiation oncology residency education. The PCCSC updated existing sections within the curriculum, created new sections, and attempted to provide additional clinical context to the curricular material through creation of practical clinical experiences. Finally, we reviewed the American Board of Radiology (ABR) blueprint of examination topics for correlation with this curriculum. Results: The new curriculum represents 56 hours of resident physics didactic education, including a 4-hour initial orientation. The committee recommends completion of this curriculum at least twice to assure both timely presentation of material and re-emphasis after clinical experience. In addition, practical clinical physics and treatment planning modules were created as a supplement to the didactic training. Major changes to the curriculum include addition of Fundamental Physics, Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy, and Safety and Incidents sections, and elimination of the Radiopharmaceutical Physics and Dosimetry and Hyperthermia sections. Simulation and Treatment Verification and optional Research and Development in Radiation Oncology sections were also added. A feedback loop was established with the ABR to help assure that the physics component of the ABR radiation oncology initial certification examination remains consistent with this curriculum. Conclusions: The ASTRO physics core curriculum for radiation oncology residents has been updated in an effort to identify the most important physics topics for preparing residents for careers in radiation oncology, to reflect changes in technology and practice since

  4. Family and Consumer Sciences Teacher Needs Assessment of a STEM-Enhanced Food and Nutrition Sciences Curriculum

    OpenAIRE

    Merrill, Cathy A.

    2016-01-01

    Science, technology, engineering and mathematics (STEM) education concepts are naturally contextualized in the study of food and nutrition. In 2014 a pilot group of Utah high school Career and Technical Education Family and Consumer Sciences teachers rewrote the Food and Nutrition Sciences curriculum to add and enhance the STEM-related content. This study is an online needs assessment by Utah Food and Nutrition 1 teachers on the implementation of the STEM-enhanced curriculum after its first y...

  5. Study of graduate curriculum in the radiological science: problems and suggestions

    International Nuclear Information System (INIS)

    Ko, Seong Jin; Kim, Hwa Gon; Kang, Se Sik; Park, Byeong Rae; Kim, Chang Soo

    2006-01-01

    Currently, Educational program of radiological science is developed in enormous growth, our educational environments leading allied health science education program in the number of super high speed medical industry. Radiological science may be the fastest growing technologies in our medical department today. In this way, Medical industry fields converged in the daily quick, the fact that department of radiological science didn't discharged ones duties on current educational environments. The curriculum of radiological technologists that play an important part between skill and occupation's education as major and personality didn't performed one's part most effectively on current medical environments and digital radiological equipment interface. We expect improvement and suggestion to grow natural disposition as studies in the graduate of radiological science. Therefore, in this paper, current curriculum of radiological science are catched hold of trend and problems on digital radiology environments, on fact the present state of problems, for Graduate program of radiological science, graduate courses of MS and ph.D. are suggested a reform measure of major education curriculum introduction

  6. Rad World -- computer-animated video radiation and hazardous waste-management science curriculum

    International Nuclear Information System (INIS)

    Powell, B.

    1996-01-01

    The Rad World computer-animated video and curriculum materials were developed through a grant from the Waste-management Education and Research Consortium. The package, which includes a computer-animated video, hands-on activities, and multidisciplinary lessons concerning radiation and hazardous-waste management, was created to approach these subjects in an informative, yet entertaining, manner. The lessons and video, designed to supplement studies of energy and physical science at the middle school and high school level, also implement quality and consistent science education as outlined by the New Mexico Science Standards and Benchmarks (1995). Consistent with the curriculum standards and benchmarks, the curriculum includes library research, collaborative learning, hands-on-science, and discovery learning. Pre- and post-tests are included

  7. Interdisciplinary Climate Change Curriculum Materials based on the Next Generation Science Standards and The Earth Charter

    Science.gov (United States)

    Barbosa, A.; Robertson, W. H.

    2013-12-01

    In the 2012, the National Research Council (NRC) of the National Academies' reported that one of the major issues associated with the development of climate change curriculum was the lack of interdisciplinary materials that also promoted a correlation between science standards and content. Therefore, in order to respond to this need, our group has developed an interdisciplinary climate change curriculum that has had as its fundamental basis the alignment with the guidelines presented by the Next Generation Science Standards (NGSS) and the ones presented by the international document entitled The Earth Charter. In this regards, while the alignment with NGSS disciplinary core ideas, cross-concepts and students' expectations intended to fulfill the need for the development of climate change curriculum activities that were directly associated with the appropriate set of NGSS guidelines, the alignment with The Earth Charter document intended to reinforce the need the for the integration of sociological, philosophical and intercultural analysis of the theme 'climate change'. Additionally, our curriculum was also developed as part of a collaborative project between climate scientists and engineers, who are responsible for the development of a Regional Arctic Simulation Model (RASM). Hence, another important curriculum constituent was the feedback, suggestions and reviews provided by these professionals, who have also contributed to these pedagogical materials' scientific accuracy by facilitating the integration of datasets and visualizations developed by RASM. Furthermore, our group has developed a climate change curriculum for two types of audience: high school and early undergraduate students. Each curriculum unit is divided into modules and each module contains a set of lesson plans. The topics selected to compose each unit and module were designated according to the surveys conducted with scientists and engineers involved with the development of the climate change

  8. The Social Science Curriculum of the Two-Year College.

    Science.gov (United States)

    Friedlander, Jack

    1980-01-01

    Describes a nationwide study to identify: (1) the representation of different areas within the social sciences (i.e. anthropology, economics, history, political science, psychology, social/ethnic studies, sociology, and interdisciplinary social sciences) in the two-year college curriculum, and (2) which courses were offered for transfer,…

  9. Consensus statement on an updated core communication curriculum for UK undergraduate medical education.

    Science.gov (United States)

    Noble, Lorraine M; Scott-Smith, Wesley; O'Neill, Bernadette; Salisbury, Helen

    2018-04-22

    Clinical communication is a core component of undergraduate medical training. A consensus statement on the essential elements of the communication curriculum was co-produced in 2008 by the communication leads of UK medical schools. This paper discusses the relational, contextual and technological changes which have affected clinical communication since then and presents an updated curriculum for communication in undergraduate medicine. The consensus was developed through an iterative consultation process with the communication leads who represent their medical schools on the UK Council of Clinical Communication in Undergraduate Medical Education. The updated curriculum defines the underpinning values, core components and skills required within the context of contemporary medical care. It incorporates the evolving relational issues associated with the more prominent role of the patient in the consultation, reflected through legal precedent and changing societal expectations. The impact on clinical communication of the increased focus on patient safety, the professional duty of candour and digital medicine are discussed. Changes in the way medicine is practised should lead rapidly to adjustments to the content of curricula. The updated curriculum provides a model of best practice to help medical schools develop their teaching and argue for resources. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Design of the Information Science and Systems (IS Curriculum in a Computer and Information Sciences Department

    Directory of Open Access Journals (Sweden)

    Behrooz Seyed-Abbassi

    2004-12-01

    Full Text Available Continuous technological changes have resulted in a rapid turnover of knowledge in the computing field. The impact of these changes directly affects the computer-related curriculum offered by educational institutions and dictates that curriculum must evolve to keep pace with technology and to provide students with the skills required by businesses. At the same time, accreditations of curricula from reviewing organizations provide additional guidelines and standardization for computing science as well as information science programs. One of the areas significantly affected by these changes is the field of information systems. This paper describes the evaluation and course structure for the undergraduate information science and systems program in the Computer and Information Sciences Department at the University of North Florida. A list of the major required and elective courses as well as an overview of the challenges encountered during the revision of the curriculum is given.

  11. Implementing the Expanded Core Curriculum in Specialized Schools for the Blind

    Science.gov (United States)

    Lohmeier, Keri L.

    2005-01-01

    Historically, specialized schools for the blind were the only options for educational programming available to students with visual impairments. Throughout the 19th century and into the mid-20th century, the instruction in specialized schools consisted primarily of the core curriculum or academic areas (Zebehazy & Whitten, 1998). Current…

  12. A K-6 Computational Thinking Curriculum Framework : Implications for Teacher Knowledge

    NARCIS (Netherlands)

    Angeli, C.; Voogt, J.; Fluck, A.; Webb, M.; Cox, M.; Malyn-Smith, J.; Zagami, J.

    2016-01-01

    Adding computer science as a separate school subject to the core K-6 curriculum is a complex issue with educational challenges. The authors herein address two of these challenges: (1) the design of the curriculum based on a generic computational thinking framework, and (2) the knowledge teachers

  13. Specifying a curriculum for biopolitical critical literacy in science teacher education: exploring roles for science fiction

    Science.gov (United States)

    Gough, Noel

    2017-12-01

    In this essay I suggest some ways in which science teacher educators in Western neoliberal economies might facilitate learners' development of a critical literacy concerning the social and cultural changes signified by the concept of biopolitics. I consider how such a biopolitically inflected critical literacy might find expression in a science teacher education curriculum and suggest a number of ways of materializing such a curriculum in specific literatures, media, procedures, and assessment tasks, with particular reference to the contributions of science fiction in popular media.

  14. Science in Hawaii/Haawina Hoopapau: A Culturally Responsive Curriculum Project

    Science.gov (United States)

    Galloway, L. M.; Roberts, K.; Leake, D. W.; Stodden, R. S.; Crabbe, V.

    2005-12-01

    The marvels of modern science often fail to engage indigenous students, as the content and instructional style are usually rooted in the Western experience. This 3 year project, funded by the US Dept. of Education for the Education of Native Hawaiians, offers a curriculum that teaches science through (rather than just about) Native Hawaiian culture. The curriculum focuses on the interdependence of natural resources in our ahupuaa, or watersheds, and helps students strengthen their sense of place and self to malama i ka aina, to care for the land. Further, the curriculum is designed to: engage students in scientific study with relevant, interesting content and activities; improve student achievement of state department of education standards; increase student knowledge and skills in science, math and language arts; respond to the learning needs of Native Hawaiian and/or at-risk students. The project will be presented by a curriculum writer who created and adapted more than a year's worth of materials by teaming with kupuna (respected elders), local cultural experts and role models, educators (new, veteran, Hawaiian, non-Hawaiian, mainland, general and special education teachers), and professionals at the Center on Disability Studies at the University of Hawaii and ALU LIKE, Inc, a non-profit organization to assist Native Hawaiians. The materials created thus far are available for viewing at: www.scihi.hawaii.edu The curriculum, designed for grades 8-11 science classes, can be used to teach a year-long course, a unit, or single lesson related to astronomy, biology, botany, chemistry, geology, oceanography, physical and environmental sciences. This project is in its final year of field testing, polishing and dissemination, and therefore this session will encourage idea sharing, as does our copyright free Web site.

  15. A critical review of the core medical training curriculum in the UK: A medical education perspective.

    Science.gov (United States)

    Laskaratos, Faidon-Marios; Gkotsi, Despoina; Panteliou, Eleftheria

    2014-01-01

    This paper represents a systematic evaluation of the Core Medical Training Curriculum in the UK. The authors critically review the curriculum from a medical education perspective based mainly on the medical education literature as well as their personal experience of this curriculum. They conclude in practical recommendations and suggestions which, if adopted, could improve the design and implementation of this postgraduate curriculum. The systematic evaluation approach described in this paper is transferable to the evaluation of other undergraduate or postgraduate curricula, and could be a helpful guide for medical teachers involved in the delivery and evaluation of any medical curriculum.

  16. Computer Science (CS) in the Compulsory Education Curriculum: Implications for Future Research

    Science.gov (United States)

    Passey, Don

    2017-01-01

    The subject of computer science (CS) and computer science education (CSE) has relatively recently arisen as a subject for inclusion within the compulsory school curriculum. Up to this present time, a major focus of technologies in the school curriculum has in many countries been on applications of existing technologies into subject practice (both…

  17. Rock Cycle. K-6 Science Curriculum.

    Science.gov (United States)

    Blueford, J. R.; And Others

    Rock Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) chemistry (introducing the topics of matter, elements, compounds, and chemical bonding); (2) characteristics (presenting hands-on activities with rocks and minerals); (3) minerals (emphasizing the aesthetic and economic…

  18. Arguing for Computer Science in the School Curriculum

    Science.gov (United States)

    Fluck, Andrew; Webb, Mary; Cox, Margaret; Angeli, Charoula; Malyn-Smith, Joyce; Voogt, Joke; Zagami, Jason

    2016-01-01

    Computer science has been a discipline for some years, and its position in the school curriculum has been contested differently in several countries. This paper looks at its role in three countries to illustrate these differences. A reconsideration of computer science as a separate subject both in primary and secondary education is suggested. At…

  19. A core curriculum for the continuing professional development of nurses: Developed by the Education Committee on behalf of the Council on Cardiovascular Nursing and Allied Professions of the ESC.

    Science.gov (United States)

    Astin, Felicity; Carroll, Diane L; Ruppar, Todd; Uchmanowicz, Izabella; Hinterbuchner, Lynne; Kletsiou, Eleni; Serafin, Agnieszka; Ketchell, Alison

    2015-06-01

    The European Society of Cardiology and the Council on Cardiovascular Nursing and Allied Professions share a vision; to decrease the burden of cardiovascular disease in Europe. Nurses represent the largest sector of the health professional workforce and have a significant contribution to make, which has not yet been fully realised. Recent evidence highlights an association between the level of nurse education and inpatient mortality making this an important topic, particularly as the provision of nurse education in Europe is variable. To develop a core curriculum to inform the education of nurses following initial qualification for work in cardiovascular settings. A syllabus was developed using published literature, policy documents and existing curricula with expert input from service users, specialist nurses, cardiologists, educationalists and academics. The syllabus formed the framework for the development of the core curriculum. Eight key themes characterise the core curriculum which are presented together with an account of the development process. While the curriculum is not intended to cover all aspects of the highly complex role of the cardiovascular nurse, the themes do exemplify the science and art of nursing and are transferable across different levels of clinical practice and settings. The curriculum functions both as a 'map', which identifies key themes to include in nurse education, and as a 'tool' to inform educational provision that bridges' the gap between initial nurse education and advanced specialist practice. Content can be adapted for use to fit the national context and reflects the specific needs, health priorities, legislative and regulatory standards that govern safe nursing practice across different countries. The core curriculum can be used as a learning framework to guide nurse education, in particular the continuing professional education of post-qualifying nurses working in cardiovascular settings. This represents a significant step

  20. Leading change: curriculum reform in graduate education in the biomedical sciences.

    Science.gov (United States)

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were also 15 unique curricula. Departments and programs offered courses independently, and students participated in curricula that were overlapping combinations of these courses. This system created curricula that were not coordinated and that had redundant course content as well as content gaps. A partnership of key stakeholders began a curriculum reform process to completely restructure doctoral education at the Boston University School of Medicine. The key pedagogical goals, objectives, and elements designed into the new curriculum through this reform process created a curriculum designed to foster the interdisciplinary thinking that students are ultimately asked to utilize in their research endeavors. We implemented comprehensive student and peer evaluation of the new Foundations in Biomedical Sciences integrated curriculum to assess the new curriculum. Furthermore, we detail how this process served as a gateway toward creating a more fully integrated graduate experience, under the umbrella of the Program in Biomedical Sciences. © 2015 The International Union of Biochemistry and Molecular Biology.

  1. ASTRO's core physics curriculum for radiation oncology residents

    International Nuclear Information System (INIS)

    Klein, Eric E.; Balter, James M.; Chaney, Edward L.; Gerbi, Bruce J.; Hughes, Lesley

    2004-01-01

    In 2002, the Radiation Physics Committee of the American Society of Therapeutic Radiology and Oncology (ASTRO) appointed an Ad-hoc Committee on Physics Teaching to Medical Residents. The main initiative of the committee was to develop a core curriculum for physics education. Prior publications that have analyzed physics teaching have pointed to wide discrepancies among teaching programs. The committee was composed of physicists or physicians from various residency program based institutions. Simultaneously, members had associations with the American Association of Physicists in Medicine (AAPM), ASTRO, Association of Residents in Radiation Oncology (ARRO), American Board of Radiology (ABR), and the American College of Radiology (ACR). The latter two organizations' representatives were on the physics examination committees, as one of the main agendas was to provide a feedback loop between the examining organizations and ASTRO. The document resulted in a recommended 54-h course. Some of the subjects were based on American College of Graduate Medical Education (ACGME) requirements (particles, hyperthermia), whereas the majority of the subjects along with the appropriated hours per subject were devised and agreed upon by the committee. For each subject there are learning objectives and for each hour there is a detailed outline of material to be covered. Some of the required subjects/h are being taught in most institutions (i.e., Radiation Measurement and Calibration for 4 h), whereas some may be new subjects (4 h of Imaging for Radiation Oncology). The curriculum was completed and approved by the ASTRO Board in late 2003 and is slated for dissemination to the community in 2004. It is our hope that teaching physicists will adopt the recommended curriculum for their classes, and simultaneously that the ABR for its written physics examination and the ACR for its training examination will use the recommended curriculum as the basis for subject matter and depth of

  2. Using the AGsploration: the Science of Maryland Agriculture Curriculum as a Tool to Increase Youth Appreciation and Understanding of Agriculture and Science

    Directory of Open Access Journals (Sweden)

    April Hall Barczewski

    2017-01-01

    Full Text Available AGsploration: The Science of Maryland Agriculture is a 24-lesson, peer-reviewed curriculum that includes experiential hands-on activities and built-in pre-/post-evaluation tools. Lesson topics include production agriculture, the environment and nutrition with emphasis on how science relates to each topic. Student pre-/post- evaluation data reflects participation in AGsploration positively affects students’ attitudes about agriculture and science. Separate evaluations were developed to survey two groups of trained teen teachers about the curriculum immediately following their training, 1-2 years after using the curriculum and another 3-4 years post involvement. The results demonstrated that teen teachers were an effective way to disseminate the curriculum and these same teens increased their agriculture knowledge, life skills and interest in agriculture science education and careers. A similar evaluation was conducted with adult educators following a training session and another 1-2 years after actively using the curriculum. This data suggests that the curriculum is well received and valued.

  3. The Innovative Immersion of Mobile Learning into a Science Curriculum in Singapore: an Exploratory Study

    Science.gov (United States)

    Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting

    2016-08-01

    With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear program of school-based research. The foci of this paper is on the design principles of the curriculum and its enactment, and the establishment of a teacher learning community. Through elucidating the design features of the innovative curriculum and evaluating teacher and student involvement in science instruction and learning, we introduce the science curriculum, called Mobilized 5E Science Curriculum (M5ESC), and present a representative case study of how one experienced teacher and her class adopted the curriculum. The findings indicate the intervention promoted this teacher's questioning competency, enabled her to interact with students frequently and flexibly in class, and supported her technology use for promoting different levels of cognition. Student learning was also improved in terms of test achievement and activity performance in and out of the classroom. We propose that the study can be used to guide the learning design of mobile technology-supported curricula, as well as teacher professional development for curriculum enactment.

  4. General surgery training in Spain: core curriculum and specific areas of training.

    Science.gov (United States)

    Miguelena Bobadilla, José Ma; Morales-García, Dieter; Iturburu Belmonte, Ignacio; Alcázar Montero, José Antonio; Serra Aracil, Xabier; Docobo Durantez, Fernando; López de Cenarruzabeitia, Ignacio; Sanz Sánchez, Mercedes; Hernández Hernández, Juan Ramón

    2015-03-01

    The royal decree RD 639/2014 has been published, regulating among others, the core curriculum, and specific areas of training (SAT). It is of great interest for the specialty of General and Digestive Surgery (GS and DS). The aim is to expose and clarify the main provisions and reflect on their implications for the practical application of the core curriculum and SAT in the specialty of General and Digestive Surgery, to promote initiatives and regulations. This RD will be a milestone in our specialty that will test the strength of the specialty, if it does not finally culminate in its degradation against the emergence of new surgical specialties. A new stage begins in which the Spanish Association of Surgeons should be involved to define the conceptual basis of GS and DS in the XXI century, and the creation of new SAT to continue to maintain the "essence of our specialty". Copyright © 2014 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Curriculum Assessment in Social Sciences at Universiti Pendidikan Sultan Idris

    Science.gov (United States)

    Saleh, Hanifah Mahat Yazid; Hashim, Mohmadisa; Yaacob, Norazlan Hadi; Kasim, Adnan Jusoh Ahmad Yunus

    2015-01-01

    The purpose of this paper is to discuss the effectiveness of the curriculum implementation for undergraduate programme in the Faculty of Human Sciences, UPSI producing quality and competitive educators. Curriculum implementation has to go through an assessment process that aims to determine the problem, select relevant information and collect and…

  6. New curriculum at Nuclear Science Department, National University of Malaysia

    International Nuclear Information System (INIS)

    Shahidan bin Radiman; Ismail bin Bahari

    1995-01-01

    A new undergraduate curriculum at the Department of Nuclear Science, Universiti Kebangsaan Malaysia is discussed. It includes the rational and objective of the new curriculum, course content and expectations due to a rapidly changing job market. The major change was a move to implement only on one Nuclear Science module rather than the present three modules of Radiobiology, Radiochemistry and Nuclear Physics. This will optimise not only laboratory use of facilities but also effectiveness of co-supervision. Other related aspects like industrial training and research exposures for the undergraduates are also discussed

  7. Farm Management Basic Core Curriculum. Kansas Postsecondary Farm and Ranch Management Project.

    Science.gov (United States)

    Albracht, James, Ed.

    Thirty-five units of instruction are included in this core curriculum in farm management for postsecondary farm and ranch management programs. Units of instruction are divided into 12 instructional areas: (1) Introduction to Financial Management, (2) Farm Business Arrangement, (3) Credit Management, (4) Budgeting, (5) Recordkeeping, (6) Record…

  8. The American Society for Radiation Oncology's 2015 Core Physics Curriculum for Radiation Oncology Residents

    Energy Technology Data Exchange (ETDEWEB)

    Burmeister, Jay, E-mail: burmeist@karmanos.org [Department of Oncology, Karmanos Cancer Center/Wayne State University, Detroit, Michigan (United States); Chen, Zhe [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States); Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Dieterich, Sonja [Department of Radiation Oncology, University of California – Davis, Sacramento, California (United States); Doemer, Anthony [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Dominello, Michael M. [Department of Oncology, Karmanos Cancer Center/Wayne State University, Detroit, Michigan (United States); Howell, Rebecca M. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); McDermott, Patrick [Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan (United States); Nalichowski, Adrian [Karmanos Cancer Center, Detroit, Michigan (United States); Prisciandaro, Joann [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Ritter, Tim [VA Ann Arbor Healthcare and the University of Michigan, Ann Arbor, Michigan (United States); Smith, Chadd [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Schreiber, Eric [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina (United States); Shafman, Timothy [21st Century Oncology, Fort Myers, Florida (United States); Sutlief, Steven [Department of Radiation Oncology, University of California – San Diego, La Jolla, California (United States); Xiao, Ying [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States)

    2016-07-15

    Purpose: The American Society for Radiation Oncology (ASTRO) Physics Core Curriculum Subcommittee (PCCSC) has updated the recommended physics curriculum for radiation oncology resident education to improve consistency in teaching, intensity, and subject matter. Methods and Materials: The ASTRO PCCSC is composed of physicists and physicians involved in radiation oncology residency education. The PCCSC updated existing sections within the curriculum, created new sections, and attempted to provide additional clinical context to the curricular material through creation of practical clinical experiences. Finally, we reviewed the American Board of Radiology (ABR) blueprint of examination topics for correlation with this curriculum. Results: The new curriculum represents 56 hours of resident physics didactic education, including a 4-hour initial orientation. The committee recommends completion of this curriculum at least twice to assure both timely presentation of material and re-emphasis after clinical experience. In addition, practical clinical physics and treatment planning modules were created as a supplement to the didactic training. Major changes to the curriculum include addition of Fundamental Physics, Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy, and Safety and Incidents sections, and elimination of the Radiopharmaceutical Physics and Dosimetry and Hyperthermia sections. Simulation and Treatment Verification and optional Research and Development in Radiation Oncology sections were also added. A feedback loop was established with the ABR to help assure that the physics component of the ABR radiation oncology initial certification examination remains consistent with this curriculum. Conclusions: The ASTRO physics core curriculum for radiation oncology residents has been updated in an effort to identify the most important physics topics for preparing residents for careers in radiation oncology, to reflect changes in technology and practice since

  9. The influence of secondary science teachers' pedagogical content knowledge, educational beliefs and perceptions of the curriculum on implementation and science reform

    Science.gov (United States)

    Bonner, Portia Selene

    2001-07-01

    Science education reform is one of the focal points of restructuring the educational system in the United States. However, research indicates a slow change in progression towards science literacy among secondary students. One of the factors contributing to slow change is how teachers implement the curriculum in the classroom. Three constructs are believed to be influential in curriculum implementation: educational beliefs, pedagogical knowledge and perception of the curriculum. Earlier research suggests that there is a strong correlation between teachers' educational beliefs and instructional practices. These beliefs can be predictors of preferred strategies employed in the classroom. Secondly, teachers' pedagogical knowledge, that is the ability to apply theory and appropriate strategies associated with implementing and evaluating a curriculum, contributes to implementation. Thirdly, perception or how the curriculum itself is perceived also effects implementation. Each of these constructs has been examined independently, but never the interplay of the three. The purpose of this qualitative study was to examine the interplay of teachers' educational beliefs, pedagogical content knowledge and perceptions of a science curriculum with respect to how these influence curriculum implementation. This was accomplished by investigating the emerging themes that evolved from classroom observations, transcripts from interview and supplementary data. Five high school biology teachers in an urban school system were observed for ten months for correspondence of teaching strategies to the curriculum. Teachers were interviewed formally and informally about their perceptions of science teaching, learning and the curriculum. Supplementary material such as lesson plans, course syllabus and notes from classroom observations were collected and analyzed. Data were transcribed and analyzed for recurring themes using a thematic matrix. A theoretical model was developed from the emerging

  10. Integration of the primary health care approach into a community nursing science curriculum.

    Science.gov (United States)

    Vilakazi, S S; Chabeli, M M; Roos, S D

    2000-12-01

    The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994: 155). Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.

  11. Integration of the primary health care approach into a community nursing science curriculum

    Directory of Open Access Journals (Sweden)

    SS Vilakazi

    2000-09-01

    Full Text Available The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994:155. Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/ goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.

  12. Effect of an environmental science curriculum on students' leisure time activities

    Science.gov (United States)

    Blum, Abraham

    Cooley and Reed's active interest measurement approach was combined with Guttman's Facet Design to construct a systematic instrument for the assessment of the impact of an environmental science course on students' behavior outside school. A quasimatched design of teacher allocation to the experimental and control groups according to their preferred teaching style was used. A kind of dummy control curriculum was devised to enable valid comparative evaluation of a new course which differs from the traditional one in both content and goal. This made it possible to control most of the differing factors inherent in the old and new curriculum. The research instrument was given to 1000 students who were taught by 28 teachers. Students who learned according to the experimental curriculum increased their leisure time activities related to the environmental science curriculum significantly. There were no significant differences between boys and girls and between students with different achievement levels.

  13. Story - Science - Solutions: A new middle school science curriculum that promotes climate-stewardship

    Science.gov (United States)

    Cordero, E.; Centeno Delgado, D. C.

    2017-12-01

    Over the last five years, Green Ninja has been developing educational media to help motivate student interest and engagement around climate science and solutions. The adoption of the Next Generation Science Standards (NGSS) offers a unique opportunity where schools are changing both what they teach in a science class and how they teach. Inspired by the new emphasis in NGSS on climate change, human impact and engineering design, Green Ninja developed a technology focused, integrative, and yearlong science curriculum (6th, 7th and 8th grade) focused broadly around solutions to environmental problems. The use of technology supports the development of skills valuable for students, while also offering real-time metrics to help measure both student learning and environmental impact of student actions. During the presentation, we will describe the design philosophy around our middle school curriculum and share data from a series of classes that have created environmental benefits that transcend the traditional classroom. The notion that formal education, if done correctly, can be leveraged as a viable climate mitigation strategy will be discussed.

  14. Student teachers' views: what is an interesting life sciences curriculum?

    Directory of Open Access Journals (Sweden)

    Rian de Villiers

    2011-01-01

    Full Text Available In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology curriculum which focuses on outcomes-based education (OBE. This paper presents an exploration of what students (as learners considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university responded to a questionnaire in regard to their experiences with the newly implemented FET Life Sciences curricula. The responses to the questions were analysed qualitatively and/or quantitatively. Friedman tests were used to compare the mean rankings of the four different content knowledge areas within each curriculum, and to make cross-curricular comparisons of the mean rankings of the same content knowledge area for all three curricula. All four content areas of Grade 12 were considered as being more interesting than the other two grades. In terms of difficulty, the students found the Grade 10 curriculum themes the most difficult, followed by the Grade 12 and the Grade 11 curricula. Most of the students found the themes under the content area Diversity, change and continuity (Grades 10-12 more difficult to learn than the other three content areas. It is recommended that more emphasis needs to be placed on what learners are interested in, and on having this incorporated into Life Sciences curricula.

  15. Bridging the Gap: Embedding Communication Courses in the Science Undergraduate Curriculum

    Science.gov (United States)

    Jandciu, Eric; Stewart, Jaclyn J.; Stoodley, Robin; Birol, Gülnur; Han, Andrea; Fox, Joanne A.

    2015-01-01

    The authors describe a model for embedding science communication into the science curriculum without displacing science content. They describe the rationale, development, design, and implementation of two courses taught by science faculty addressing these criteria. They also outline the evaluation plan for these courses, which emphasize broad…

  16. Social Science Disciplines. Fundamental for Curriculum Development.

    Science.gov (United States)

    McLendon, Johathan C., Ed.

    This guide is written for the social studies curriculum developer interested in developing a structured multidisciplinary program based on the concepts, methodology, and structure of social science disciplines and history. Seven 15-29 page chapters are included on each discipline: Anthropology and Psychology, by Charles R. Berryman; Economics, by…

  17. Electromagnetic Spectrum. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    Science.gov (United States)

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the second in a set of six, contains teacher and student materials for a unit on the electromagnetic spectrum prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for…

  18. Theme: The Role of Science in the Agricultural Education Curriculum.

    Science.gov (United States)

    Agricultural Education Magazine, 2002

    2002-01-01

    Thirteen theme articles discuss integration of science and agriculture, the role of science in agricultural education, biotechnology, agriscience in Tennessee and West Virginia, agriscience and program survival, modernization of agricultural education curriculum, agriscience and service learning, and biotechnology websites. (SK)

  19. Science curriculum formation in Denmark

    DEFF Research Database (Denmark)

    Chaiklin, Seth

    Cultural-historical theory is primarily a psychological theory about and human action and development within meaningful contexts. As a psychologically-oriented theory, it can be relevant to science education research, even if it was not been developed or elaborated specifically in relation...... to problems within science education. STEM education research can be reduced (roughly) to four major problem areas: curriculum, empirical evaluation of existing practices and conditions, didactics, and professional development, where each of these categories can be concretised further according to grade...... between research and practice, (b) the idea of developmental teaching, and (c) the idea of theoretical thinking. This paper will present an example of subject-matter analysis for food production and food chemistry to illustrate practical consequences that follow from these three points....

  20. Clinic teaching made easy: a prospective study of the American Academy of Dermatology core curriculum in primary care learners.

    Science.gov (United States)

    McCleskey, Patrick E

    2013-08-01

    Dermatology instruction for primary care learners is limited, and the American Academy of Dermatology (AAD) has developed a new core curriculum for dermatology. This study sought to prospectively evaluate short-term knowledge acquisition and long-term knowledge retention after using the AAD core curriculum during a clinical dermatology clerkship. Resident physicians and physician assistant students performing clerkships at military dermatology clinics were given access to the AAD core curriculum teaching modules before their public availability. Knowledge acquisition was measured with pretests and posttests, and a follow-up quiz was given up to a year after the dermatology rotation to assess knowledge retention. In all, 82 primary care learners met inclusion criteria. Knowledge improved significantly from pretest to posttest (60.1 vs 77.4, P dermatology clerkship. Copyright © 2012 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  1. Taiwanese Science and Life Technology Curriculum Standards and Earth Systems Education

    Science.gov (United States)

    Chang, Chun-Yen

    2005-01-01

    In the past several years, curriculum reform has received increasing attention from educators in many countries around the world. Recently, Taiwan has developed new Science and Life Technology Curriculum Standards (SaLTS) for grades 1-9. SaLTS features a systematic way for developing students' understanding and appreciation of…

  2. Noise Pollution--An Overlooked Issue in the Science Curriculum.

    Science.gov (United States)

    Treagust, David F.; Kam, Goh Ah

    1985-01-01

    Discusses the need for including noise pollution in the science curriculum and describes 10 activities for improving students' awareness and understanding of and concern for noise and its effects. (Author/JN)

  3. History of Science in the Physics Curriculum: A Directed Content Analysis of Historical Sources

    Science.gov (United States)

    Seker, Hayati; Guney, Burcu G.

    2012-01-01

    Although history of science is a potential resource for instructional materials, teachers do not have a tendency to use historical materials in their lessons. Studies showed that instructional materials should be adaptable and consistent with curriculum. This study purports to examine the alignment between history of science and the curriculum in…

  4. The Implementation of the New Lower Secondary Science Curriculum in Three Schools in Rwanda

    Science.gov (United States)

    Nsengimana, Théophile; Ozawa, Hiroaki; Chikamori, Kensuke

    2014-01-01

    In 2006, Rwanda began implementing an Outcomes Based Education (OBE) lower secondary science curriculum that emphasises a student-centred approach. The new curriculum was designed to transform Rwandan society from an agricultural to a knowledge-based economy, with special attention to science and technology education. Up until this point in time…

  5. From FRA to RFN, or How the Family Resemblance Approach Can Be Transformed for Science Curriculum Analysis on Nature of Science

    Science.gov (United States)

    Kaya, Ebru; Erduran, Sibel

    2016-12-01

    The inclusion of Nature of Science (NOS) in the science curriculum has been advocated around the world for several decades. One way of defining NOS is related to the family resemblance approach (FRA). The family resemblance idea was originally described by Wittgenstein. Subsequently, philosophers and educators have applied Wittgenstein's idea to problems of their own disciplines. For example, Irzik and Nola adapted Wittgenstein's generic definition of the family resemblance idea to NOS, while Erduran and Dagher reconceptualized Irzik and Nola's FRA-to-NOS by synthesizing educational applications by drawing on perspectives from science education research. In this article, we use the terminology of "Reconceptualized FRA-to-NOS (RFN)" to refer to Erduran and Dagher's FRA version which offers an educational account inclusive of knowledge about pedagogical, instructional, curricular and assessment issues in science education. Our motivation for making this distinction is rooted in the need to clarify the various accounts of the family resemblance idea.The key components of the RFN include the aims and values of science, methods and methodological rules, scientific practices, scientific knowledge as well as the social-institutional dimensions of science including the social ethos, certification, and power relations. We investigate the potential of RFN in facilitating curriculum analysis and in determining the gaps related to NOS in the curriculum. We analyze two Turkish science curricula published 7 years apart and illustrate how RFN can contribute not only to the analysis of science curriculum itself but also to trends in science curriculum development. Furthermore, we present an analysis of documents from USA and Ireland and contrast them to the Turkish curricula thereby illustrating some trends in the coverage of RFN categories. The results indicate that while both Turkish curricula contain statements that identify science as a cognitive-epistemic system, they

  6. Mentoring and Argumentation in a Game-Infused Science Curriculum

    Science.gov (United States)

    Gould, Deena L.; Parekh, Priyanka

    2018-04-01

    Engaging in argumentation from evidence is challenging for most middle school students. We report the design of a media-based mentoring system to support middle school students in engaging in argumentation in the context of a game-infused science curriculum. Our design emphasizes learners apprenticing with college student mentors around the socio-scientific inquiry of a designed video game. We report the results of a mixed-methods study examining the use of this media-based mentoring system with students ages 11 through 14. We observed that the discourse of groups of students that engaged with the game-infused science curriculum while interacting with college student mentors via a social media platform demonstrated statistically significant higher ratings of cognitive, epistemic, and social aspects of argumentation than groups of students that engaged with the social media platform and game-infused science curriculum without mentors. We further explored the differences between the Discourses of the mentored and non-mentored groups. This analysis showed that students in the mentored groups were invited, guided, and socialized into roles of greater agency than students in the non-mentored groups. This increased agency might explain why mentored groups demonstrated higher levels of scientific argumentation than non-mentored groups. Based on our analyses, we argue that media-based mentoring may be designed around a video game to support middle school students in engaging in argumentation from evidence.

  7. Teaching contextual knowledge in engineering education – Theory of Engineering Science and the Core Curriculum at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik; Brodersen, Søsser

    2011-01-01

    practice. Consequently courses added into engineering curricula emphasizing contextual issues stay in stark contrast to the dominant instrumental disciplines of mathematics and techno-science content of core engineering courses. Based on several years of teaching and experimenting with Theory of Science...

  8. Revising and Updating the Plant Science Components of the Connecticut Vocational Agriculture Curriculum.

    Science.gov (United States)

    Connecticut Univ., Storrs. Dept. of Educational Leadership.

    This curriculum guide provides the plant science components of the vocational agriculture curriculum for Regional Vocational Agriculture Centers. The curriculum is divided into exploratory units for students in the 9th and 10th grades and specialized units for students in grades 11 and 12. The five exploratory units are: agricultural pest control;…

  9. Fostering Student Sense Making in Elementary Science Learning Environments: Elementary Teachers' Use of Science Curriculum Materials to Promote Explanation Construction

    Science.gov (United States)

    Zangori, Laura; Forbes, Cory T.; Biggers, Mandy

    2013-01-01

    While research has shown that elementary (K-5) students are capable of engaging in the scientific practice of explanation construction, commonly-used elementary science curriculum materials may not always afford them opportunities to do so. As a result, elementary teachers must often adapt their science curriculum materials to better support…

  10. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    Science.gov (United States)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  11. Searching for the Core of Journalism Education: Program Directors Disagree on Curriculum Priorities

    Science.gov (United States)

    Blom, Robin; Davenport, Lucinda D.

    2012-01-01

    To carry out their mission of preparing students to be successful journalism professionals, educators make important decisions on the core curriculum: the common courses that all journalism students must take to graduate, no matter their area of emphasis or academic constraints. This national study of U.S. journalism program directors shows they…

  12. The American Society for Radiation Oncology's 2010 core physics curriculum for radiation oncology residents.

    Science.gov (United States)

    Xiao, Ying; Bernstein, Karen De Amorim; Chetty, Indrin J; Eifel, Patricia; Hughes, Lesley; Klein, Eric E; McDermott, Patrick; Prisciandaro, Joann; Paliwal, Bhudatt; Price, Robert A; Werner-Wasik, Maria; Palta, Jatinder R

    2011-11-15

    In 2004, the American Society for Radiation Oncology (ASTRO) published its first physics education curriculum for residents, which was updated in 2007. A committee composed of physicists and physicians from various residency program teaching institutions was reconvened again to update the curriculum in 2009. Members of this committee have associations with ASTRO, the American Association of Physicists in Medicine, the Association of Residents in Radiation Oncology, the American Board of Radiology (ABR), and the American College of Radiology. Members reviewed and updated assigned subjects from the last curriculum. The updated curriculum was carefully reviewed by a representative from the ABR and other physics and clinical experts. The new curriculum resulted in a recommended 56-h course, excluding initial orientation. Learning objectives are provided for each subject area, and a detailed outline of material to be covered is given for each lecture hour. Some recent changes in the curriculum include the addition of Radiation Incidents and Bioterrorism Response Training as a subject and updates that reflect new treatment techniques and modalities in a number of core subjects. The new curriculum was approved by the ASTRO board in April 2010. We anticipate that physicists will use this curriculum for structuring their teaching programs, and subsequently the ABR will adopt this educational program for its written examination. Currently, the American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee updated suggested references and the glossary. The ASTRO physics education curriculum for radiation oncology residents has been updated. To ensure continued commitment to a current and relevant curriculum, the subject matter will be updated again in 2 years. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Kick-Starting the Nature of Science

    Science.gov (United States)

    Bull, Ally; Joyce, Chris; Spiller, Lorraine; Hipkins, Rosemary

    2010-01-01

    Nature of Science is the core strand of science in "The New Zealand Curriculum". This resource aims to support teachers to understand the different aspects of the Nature of Science and what this might mean in practice. All aspects of this strand are covered: Understanding about science; Investigating in science; Communicating in science;…

  14. Student teachers' views: what is an interesting life sciences curriculum?

    OpenAIRE

    Rian de Villiers

    2011-01-01

    In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET) phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university...

  15. SU-F-E-08: Medical Physics as a Teaching Tool for High School Science Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, L [The Ottawa Hospital Cancer Ctr., Ottawa, ON (Canada)

    2016-06-15

    Purpose: Delivering high school science curriculum in a timely manner and in way that is accessible to all students is a challenge for teachers. Although many high schools offer career workshops, these are typically directed at senior students and do not relate directly to details of the curriculum. The objective of this initiative was to create a series of lectures that use medical physics to relate many aspects of the high school science curriculum to tangible clinical applications and to introduce students to alternate pathways into a career in health sciences. Methods: A series of lectures has been developed based on the Ontario High School Science Curriculum. Each lecture uses a career in radiotherapy medical physics as the framework for discussion of topics specific to the high school course being addressed. Results: At present, these lectures have been delivered in five area high schools to students ranging from sophomores to seniors. Survey documents are given to the students before and after the lecture to assess their awareness of careers in health care, applications of physics and their general interest in the subject areas. As expected, students have limited up front awareness of the wide variety of health related career paths. The idea of combining a career lecture with topics specific to the classroom curriculum has been well-received by teachers and students alike. Conclusion: Career talks for high school students are useful for students contemplating their post- secondary career path. Relating career discussion with direct course curriculum makes their studies more relevant and engaging. Students aspiring to a career in health sciences often focus their studies on life sciences due to limited knowledge of potential careers. An early introduction to medical physics presents them with an alternate path through the physical sciences into health care.

  16. SU-F-E-08: Medical Physics as a Teaching Tool for High School Science Curriculum

    International Nuclear Information System (INIS)

    Buckley, L

    2016-01-01

    Purpose: Delivering high school science curriculum in a timely manner and in way that is accessible to all students is a challenge for teachers. Although many high schools offer career workshops, these are typically directed at senior students and do not relate directly to details of the curriculum. The objective of this initiative was to create a series of lectures that use medical physics to relate many aspects of the high school science curriculum to tangible clinical applications and to introduce students to alternate pathways into a career in health sciences. Methods: A series of lectures has been developed based on the Ontario High School Science Curriculum. Each lecture uses a career in radiotherapy medical physics as the framework for discussion of topics specific to the high school course being addressed. Results: At present, these lectures have been delivered in five area high schools to students ranging from sophomores to seniors. Survey documents are given to the students before and after the lecture to assess their awareness of careers in health care, applications of physics and their general interest in the subject areas. As expected, students have limited up front awareness of the wide variety of health related career paths. The idea of combining a career lecture with topics specific to the classroom curriculum has been well-received by teachers and students alike. Conclusion: Career talks for high school students are useful for students contemplating their post- secondary career path. Relating career discussion with direct course curriculum makes their studies more relevant and engaging. Students aspiring to a career in health sciences often focus their studies on life sciences due to limited knowledge of potential careers. An early introduction to medical physics presents them with an alternate path through the physical sciences into health care.

  17. Customization of Curriculum Materials in Science: Motives, Challenges, and Opportunities

    Science.gov (United States)

    Romine, William L.; Banerjee, Tanvi

    2012-01-01

    Exemplary science instructors use inquiry to tailor content to student's learning needs; traditional textbooks treat science as a set of facts and a rigid curriculum. Publishers now allow instructors to compile pieces of published and/or self-authored text to make custom textbooks. This brings numerous advantages, including the ability to produce…

  18. What Are Critical Features of Science Curriculum Materials That Impact Student and Teacher Outcomes?

    Science.gov (United States)

    Roblin, Natalie Pareja; Schunn, Christian; McKenney, Susan

    2018-01-01

    Large investments are made in curriculum materials with the goal of supporting science education reform. However, relatively little evidence is available about what features of curriculum materials really matter to impact student and teacher learning. To address this need, the current study examined curriculum features associated with student and…

  19. Otolaryngology Resident Education and the Accreditation Council for Graduate Medical Education Core Competencies: A Systematic Review.

    Science.gov (United States)

    Faucett, Erynne A; Barry, Jonnae Y; McCrary, Hilary C; Saleh, Ahlam A; Erman, Audrey B; Ishman, Stacey L

    2018-04-01

    To date, there have been no reports in the current literature regarding the use of the Accreditation Council for Graduate Medical Education (ACGME) core competencies in otolaryngology residency training. An evaluation may help educators address these core competencies in the training curriculum. To examine the quantity and nature of otolaryngology residency training literature through a systematic review and to evaluate whether this literature aligns with the 6 core competencies. A medical librarian assisted in a search of all indexed years of the PubMed, Embase, Education Resources Information Center (via EBSCOhost), Cochrane Library (Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, and Cochrane Methodology Register), Thomson Reuters Web of Science (Science Citation Index Expanded, Social Sciences Citation Index Expanded, Conference Proceedings Citation Index-Science, and Conference Proceedings Citation Index-Social Science and Humanities), Elsevier Scopus, and ClinicalTrials.gov databases to identify relevant English-language studies. Included studies contained original human data and focused on otolaryngology resident education. Data regarding study design, setting, and ACGME core competencies addressed were extracted from each article. Initial searches were performed on May 20, 2015, and updated on October 4, 2016. In this systematic review of 104 unique studies, interpersonal communication skills were reported 15 times; medical knowledge, 48 times; patient care, 44 times; practice-based learning and improvement, 31 times; professionalism, 15 times; and systems-based practices, 10 times. Multiple studies addressed more than 1 core competency at once, and 6 addressed all 6 core competencies. Increased emphasis on nonclinical core competencies is needed, including professionalism, interpersonal and communication skills, and systems-based practices in the otolaryngology residency training curriculum. A formal curriculum

  20. Hydromania II: Journey of the Oncorhynchus. Summer Science Camp Curriculum 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Joan; Swerin, Rod

    1995-01-01

    The Hydromania II curriculum was written for the third in a series of summer science camp experiences targeting students in grades 4--6 who generally have difficulty accessing supplementary academic programs. The summer science camp in Portland is a collaborative effort between Bonneville Power Administration (BPA), the US Department of Energy (DOE), and the Portland Parks and Recreation Community Schools Program along with various other cooperating businesses and organizations. The curriculum has also been incorporated into other summer programs and has been used by teachers to supplement classroom activities. Camps are designed to make available, affordable learning experiences that are fun and motivating to students for the study of science and math. Inner-city, under-represented minorities, rural, and low-income families are particularly encouraged to enroll their children in the program.

  1. Factors Affecting Student Success with a Google Earth-Based Earth Science Curriculum

    Science.gov (United States)

    Blank, Lisa M.; Almquist, Heather; Estrada, Jen; Crews, Jeff

    2016-01-01

    This study investigated to what extent the implementation of a Google Earth (GE)-based earth science curriculum increased students' understanding of volcanoes, earthquakes, plate tectonics, scientific reasoning abilities, and science identity. Nine science classrooms participated in the study. In eight of the classrooms, pre- and post-assessments…

  2. Common Core Science Standards: Implications for Students with Learning Disabilities

    Science.gov (United States)

    Scruggs, Thomas E.; Brigham, Frederick J.; Mastropieri, Margo A.

    2013-01-01

    The Common Core Science Standards represent a new effort to increase science learning for all students. These standards include a focus on English and language arts aspects of science learning, and three dimensions of science standards, including practices of science, crosscutting concepts of science, and disciplinary core ideas in the various…

  3. Update on Diabetic Nephropathy: Core Curriculum 2018.

    Science.gov (United States)

    Umanath, Kausik; Lewis, Julia B

    2018-06-01

    Diabetic kidney disease and diabetic nephropathy are the leading cause of end-stage kidney disease in the United States and most developed countries. Diabetes accounts for 30% to 50% of the incident cases of end-stage kidney disease in the United States. Although this represents a significant public health concern, it is important to note that only 30% to 40% of patients with diabetes develop diabetic nephropathy. Specific treatment of patients with diabetic nephropathy can be divided into 4 major arenas: cardiovascular risk reduction, glycemic control, blood pressure control, and inhibition of the renin-angiotensin system (RAS). Recommendations for therapy include targeting a hemoglobin A 1c concentration diabetic nephropathy is therapy with a RAS-blocking medication. This Core Curriculum outlines and discusses in detail the epidemiology, pathophysiology, diagnosis, and management of diabetic nephropathy. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  4. Cascade-sea : Computer Assisted Curriculum Analysis, Design & Evaluation for Science Education in Africa.

    NARCIS (Netherlands)

    McKenney, Susan; van den Akker, Jan; Maribe, Robert; Gustafson, Kent; Nieveen, Nienke; Plomp, Tjeerd

    1999-01-01

    The CASCADE-SEA program aims to support curriculum development within the context of secondary level science and mathematics education in sub-Saharan Africa. This project focuses on the iterative design of a computer-based curriculum development support system for the creation of classroom

  5. Work-Based Curriculum to Broaden Learners' Participation in Science: Insights for Designers

    Science.gov (United States)

    Bopardikar, Anushree; Bernstein, Debra; Drayton, Brian; McKenney, Susan

    2018-05-01

    Around the globe, science education during compulsory schooling is envisioned for all learners regardless of their educational and career aspirations, including learners bound to the workforce upon secondary school completion. Yet, a major barrier in attaining this vision is low learner participation in secondary school science. Because curricula play a major role in shaping enacted learning, this study investigated how designers developed a high school physics curriculum with positive learning outcomes in learners with varied inclinations. Qualitative analysis of documents and semistructured interviews with the designers focused on the curriculum in different stages—from designers' ideas about learning goals to their vision for enactment to the printed materials—and on the design processes that brought them to fruition. This revealed designers' emphases on fostering workplace connections via learning goals and activities, and printed supports. The curriculum supported workplace-inspired, hands-on design-and-build projects, developed to address deeply a limited set of standards aligned learning goals. The curriculum also supported learners' interactions with relevant workplace professionals. To create these features, the designers reviewed other curricula to develop vision and printed supports, tested activities internally to assess content coverage, surveyed states in the USA receiving federal school-to-work grants and reviewed occupational information to choose unit topics and career contexts, and visited actual workplaces to learn about authentic praxis. Based on the worked example, this paper offers guidelines for designing work-based science curriculum products and processes that can serve the work of other designers, as well as recommendations for research serving designers and policymakers.

  6. Core Support of the Board on Mathematical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-04-04

    This proposal summarizes activities conducted by the Board on Mathematical Sciences (BMS) during the period August 1, 1994 to July 31, 1995 and describes future plans of the Board for the period August 1, 1995 to July 31, 1998. We are requesting core support in the amount of $105,000 ($35,000 each year) from the Department of Energy for the additional three-year period. The BMS activities supported exclusively by core funding are the annual Department Chairs Colloquia, the National Science and Technology Symposia, specific reports, the initiation of all projects, continuous oversight of all activities, and partial core support of the Committee on Applied and Theoretical Statistics (CATS). Other activities of the Board include giving recommendations on research directions to federal agencies, and reports on education in the mathematical sciences, interaction of mathematical sciences with other areas, health of the mathematical sciences, and emerging research directions.

  7. Identifying and Eliminating Deficiencies in the General Surgery Resident Core Competency Curriculum.

    Science.gov (United States)

    Tapia, Nicole M; Milewicz, Allen; Whitney, Stephen E; Liang, Michael K; Braxton, Carla C

    2014-06-01

    Although the Accreditation Council for Graduate Medical Education has defined 6 core competencies required of resident education, no consensus exists on best practices for reaching resident proficiency. Surgery programs must develop resourceful methods to incorporate learning. While patient care and medical knowledge are approached with formal didactics and traditional Halstedian educational formats, other core competencies are presumed to be learned on the job or emphasized in conferences. To test the hypothesis that our residents lack a foundation in several of the nonclinical core competencies and to seek to develop a formal curriculum that can be integrated into our current didactic time, with minimal effect on resident work hours and rest hours. Anonymous Likert-type scale needs assessment survey requesting residents within a large single general surgery residency program to rate their understanding, working knowledge, or level of comfort on the following 10 topics: negotiation and conflict resolution; leadership styles; health care legislation; principles of quality delivery of care, patient safety, and performance improvement; business of medicine; clinical practice models; role of advocacy in health care policy and government; personal finance management; team building; and roles of innovation and technology in health care delivery. Proportions of resident responses scored as positive (agree or strongly agree) or negative (disagree or strongly disagree). In total, 48 surgery residents (70%) responded to the survey. Only 3 topics (leadership styles, team building, and roles of innovation and technology in health care delivery) had greater than 70% positive responses, while 2 topics (negotiation and conflict resolution and principles of quality delivery of care, patient safety, and performance improvement) had greater than 60% positive responses. The remaining topics had less than 40% positive responses, with the least positive responses on the topics

  8. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  9. Re-visioning Curriculum and Pedagogy in a University Science and ...

    African Journals Online (AJOL)

    Re-visioning Curriculum and Pedagogy in a University Science and Technology Education Setting: Case Studies Interrogating Socio-Scientific Issues. Overson Shumba, George Kasali, Yaki Namiluko, Beauty Choobe, Gezile Mbewe, Moola Mutondo, Kenneth Maseka ...

  10. Support of a Problem-Based Learning Curriculum by Basic Science Faculty

    Directory of Open Access Journals (Sweden)

    William L. Anderson

    2002-11-01

    Full Text Available Although published reports describe benefits to students of learning in a problem-based, student-centered environment, questions have persisted about the excessive faculty time commitments associated with the implementation of PBL pedagogy. The argument has been put forward that the excessive faculty costs of such a curriculum cannot be justified based upon the potential benefits to students. However, the magnitude of the faculty time commitment to a PBL curriculum to support the aforementioned argument is not clear to us and we suspect that it is also equally unclear to individuals charged with making resource decisions supporting the educational efforts of the institution. Therefore, to evaluate this cost - benefit question, we analyzed the actual basic science faculty time commitment in a hybrid PBL curriculum during the first phase 18 months of undergraduate medical education. The results of this analysis do demonstrate an increase in faculty time commitments but do not support the argument that PBL pedagogy is excessively costly in terms of faculty time. For the year analyzed in this report, basic science faculty members contributed on average of 27.4 hours to the instruction of medical students. The results of the analysis did show significant contributions (57% of instructional time by the clinical faculty during the initial 18 months of medical school. In addition, the data revealed a four-fold difference between time commitments of the four basic science departments. We conclude that a PBL curriculum does not place unreasonable demands on the time of basic science faculty. The demands on clinical faculty, in the context of their other commitments, could not be evaluated. Moreover, this type of analysis provides a tool that can be used to make faculty resource allocation decisions fairly.

  11. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    Science.gov (United States)

    Kulo, Violet; Bodzin, Alec

    2013-02-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade students classified in three ability level tracks. Data were gathered through pre/posttest content knowledge assessments, daily classroom observations, and daily reflective meetings with the teacher. Findings indicated a significant increase in the energy content knowledge for all the students. Effect sizes were large for all three ability level tracks, with the middle and low track classes having larger effect sizes than the upper track class. Learners in all three tracks were highly engaged with the curriculum. Curriculum effectiveness and practical issues involved with using geospatial technologies to support science learning are discussed.

  12. The American Society for Radiation Oncology’s 2010 Core Physics Curriculum for Radiation Oncology Residents

    International Nuclear Information System (INIS)

    Xiao Ying; De Amorim Bernstein, Karen; Chetty, Indrin J.; Eifel, Patricia; Hughes, Lesley; Klein, Eric E.; McDermott, Patrick; Prisciandaro, Joann; Paliwal, Bhudatt; Price, Robert A.; Werner-Wasik, Maria; Palta, Jatinder R.

    2011-01-01

    Purpose: In 2004, the American Society for Radiation Oncology (ASTRO) published its first physics education curriculum for residents, which was updated in 2007. A committee composed of physicists and physicians from various residency program teaching institutions was reconvened again to update the curriculum in 2009. Methods and Materials: Members of this committee have associations with ASTRO, the American Association of Physicists in Medicine, the Association of Residents in Radiation Oncology, the American Board of Radiology (ABR), and the American College of Radiology. Members reviewed and updated assigned subjects from the last curriculum. The updated curriculum was carefully reviewed by a representative from the ABR and other physics and clinical experts. Results: The new curriculum resulted in a recommended 56-h course, excluding initial orientation. Learning objectives are provided for each subject area, and a detailed outline of material to be covered is given for each lecture hour. Some recent changes in the curriculum include the addition of Radiation Incidents and Bioterrorism Response Training as a subject and updates that reflect new treatment techniques and modalities in a number of core subjects. The new curriculum was approved by the ASTRO board in April 2010. We anticipate that physicists will use this curriculum for structuring their teaching programs, and subsequently the ABR will adopt this educational program for its written examination. Currently, the American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee updated suggested references and the glossary. Conclusions: The ASTRO physics education curriculum for radiation oncology residents has been updated. To ensure continued commitment to a current and relevant curriculum, the subject matter will be updated again in 2 years.

  13. The Analysis of Curriculum Development Studies Which are Applied For Effective Science Teaching at Primary Level in Turkey and Suggestions to Problems Encountered

    OpenAIRE

    Rahmi YAĞBASAN; Murat DEMİRBAŞ

    2005-01-01

    In this study, curriculum development studies for effective science teaching were analyzed in Turkey, solution suggestions were made by determining the confronted problems. The studies for curriculum analysis toward science teaching were done by covering applications of modern science teaching started in 1970s, curriculum of science teaching made in 1990s and applications of science teaching curriculum put into practice in 2000. It was determined that new science teaching studies that will be...

  14. Idaho Marketing Education Core Curriculum. Career Sustaining Level, Specialist Level, Supervisory Level, Entrepreneurial Level.

    Science.gov (United States)

    Miller, Linda Wise; Winn, Richard

    This document contains Idaho's marketing education (ME) core curriculum. Presented first are a list of 22 ME strategies that are aligned with the Idaho State Division of Vocational-Technical Education's strategic plan and a chart detailing the career pathways of ME in Idaho (arts and communication, business and management, health services, human…

  15. A Reexamination of Ontario's Science Curriculum: Toward a More Inclusive Multicultural Science Education?

    Science.gov (United States)

    Mujawamariya, Donatille; Hujaleh, Filsan; Lima-Kerckhoff, Ashley

    2014-01-01

    The rapid diversification of communities in Ontario has necessitated the provincial government to reevaluate public school curriculums and policies to make schools more inclusive and reflective of its diverse population. This article critically analyzes the content of the latest revised science curricula for Grades 1 to 10 and assesses the degree…

  16. Developing a flexible core Dental Public Health curriculum for predoctoral dental and dental hygiene schools.

    Science.gov (United States)

    Atchison, Kathryn; Mascarenhas, Ana Karina; Bhoopathi, Vinodh

    2015-01-01

    The curriculum for graduating dental and dental hygiene students must prepare them to contribute to the improvement or maintenance of health for individual patient's and the public's health. The objective is to describe the background for and the process used to develop a core Dental Public Health Curriculum for such students. The process used was to solicit and review existing dental public health curriculum in dental and dental hygiene schools; review curriculum for other health professionals; identify the themes needed to frame the curriculum; select usable materials and identify gaps in existing curricular materials; and develop appropriate curriculum materials that would embody the competencies developed for undergraduate dental and dental hygiene education. Twenty-three topics were identified as embodying the eight competencies. Based on these topics, six courses, Principles of Dental Public Health, Evidence-Based Dentistry, Ethics and Dental Public Health, Dental Public Health Policy and Advocacy, Oral Health Promotion and Disease Prevention, and Oral Health Literacy and Dental Public Health, were prepared. Each course includes syllabus, PowerPoint presentations, student assignments and activities, instructor guide, and classroom discussion points. Depending on the hours available in the existing curriculum at the dental or hygiene school, lecture presentations and take home assignments/discussions may be used independently or in combination with presentations from other courses. In addition, individual discussions and activities may be used to integrate dental public health materials into other courses. A flexible curriculum is available at the AAPHD website to enable the incorporation of DPH topics into the curriculum. © 2015 American Association of Public Health Dentistry.

  17. The Content Analysis, Material Presentation, and Readability of Curriculum 2013 Science Textbook for 1st Semester of Junior High School 7th Grade

    Directory of Open Access Journals (Sweden)

    Endik Deni Nugroho

    2017-07-01

    Full Text Available Based on the early observation by researchers of the two Science textbooks 7thGrade about biological material, 1stand 2ndsemester of curriculum 2013, there were errors in the material presentation and legibility. This study aimed to compare and find the contents suitability of the book based on standard of competence and basic competences, readability, materials presentation and supporting material in the science textbook VII grade, 1st and 2nd semester and measured student legibility. This study used a qualitative descriptive approach by using document analysis. The data resources were obtained by using purposive, the data collection was triangulation, data analysis was inductive/qualitative and the results emphasized the meaning. This research results showed that the Integrated Sciences and Sciences textbook 1st and 2nd semester meet the standards of the core competencies and basic competence on the syllabus curriculum 2013 and also meet the books standart. The results of the analysis conducted in misstatement concept and principles and material llustration in the Integrated Science textbook 1st semester were found 5 misstatement concept, for the presentation of the principles and material illustration was found no error. In the book Integrated Sciences there was no delivery errors concept, principle, and material illustration. Science textbook 1st semester found 8 concepts misstatements and 8 illustration material misstatements. In general, Integrated Sciences and Sciences textbooks 1st and 2nd semester are illegibility so not appropriate for students.

  18. The Impact of a Curriculum Course on Pre-Service Primary Teachers' Science Content Knowledge and Attitudes towards Teaching Science

    Science.gov (United States)

    Murphy, Cliona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students'…

  19. Student attitudes to UNDP Social Science curriculum in Fiji — Personal and environmental influences

    Science.gov (United States)

    Baba, Tupeni L.; Fraser, Barry J.

    1983-12-01

    A sample of 834 seventh grade students in Fiji participated in an evaluation of the UNDP Social Science curriculum by responding to questionnaires measuring attitudes to or perceptions of three important curriculum process criteria (Interest, Ease and Adequacy of Time). The three major purposes of the evaluation were to provide formative information to guide curriculum revision, to provide summative information about the overall efficacy of the curriculum, and to explore the differential suitability of the curriculum for students varying in personal and environmental characteristics. Examination of means on individual questionnaire items led to the identification of certain curriculum activities requiring modification to improve their level of Interest, Ease, or Adequacy of Time. The finding that the mean score was relatively high for most questionnaire items suggested that the majority of activities in the curriculum were perceived by students as interesting and easy and having sufficient time for completion. Multiple regression analyses revealed that a block of personal variables and a block of environmental variables, but not a block of person-environment interactions, accounted for a significant amount of variance in the three process criteria. In particular, it was found that student attitudes to the curriculum varied systematically with certain personal variables (e.g., student general interest in social science, student ethnicity) and environmental variables (e.g., school location, teacher training).

  20. The Digestive System and Alcohol Use. Science of Alcohol Curriculum for American Indians. Training Unit [and] Participant Booklet.

    Science.gov (United States)

    Jacobs, Cecelia; And Others

    The Science of Alcohol Curriculum for American Indians uses the Medicine Circle and the "new science paradigm" to study the science of alcohol through a culturally relevant holistic approach. Intended for teachers and other educational personnel involved with American Indians, this curriculum presents a framework for alcohol education…

  1. An analysis of teaching competence in science teachers involved in the design of context-based curriculum materials

    NARCIS (Netherlands)

    Putter - Smits, de L.G.A.; Taconis, R.; Driel, van J.H.; Jochems, W.M.G.

    2012-01-01

    The committees for the current Dutch context-based innovation in secondary science education employed teachers to design context-based curriculum materials. A study on the learning of science teachers in design teams for context-based curriculum materials is presented in this paper. In a correlation

  2. Teacher enactment of an inquiry-based science curriculum and its relationship to student interest and achievement in science

    Science.gov (United States)

    Dimichino, Daniela C.

    This mixed-methods case study, influenced by aspects of grounded theory, aims to explore the relationships among a teacher's attitude toward inquiry-based middle school reform, their enactment of such a curriculum, and student interest and achievement in science. A solid theoretical basis was constructed from the literature on the benefits of inquiry-based science over traditional science education, the benefits of using constructivist learning techniques in the classroom, the importance of motivating teachers to change their teaching practices to be more constructive, and the importance of motivating and exciting students in order to boost achievement in science. Data was collected using qualitative documents such as teacher and student interviews, classroom observations, and curriculum development meetings, in addition to quantitative documents such as student science interest surveys and science skills tests. The qualitative analysis focused on examining teacher attitudes toward curricular reform efforts, and the enactments of three science teachers during the initial year of an inquiry-based middle school curriculum adoption using a fidelity of implementation tool constructed from themes that emerged from the data documents utilized in this study. In addition, both qualitative and quantitative tools were used to measure an increase or decrease in student interest and student achievement over the study year, and their resulting relationships to their teachers' attitudes and enactments of the curriculum. Results from data analysis revealed a positive relationship between the teachers' attitude toward curricular change and their fidelity of implementation to the developers' intentions, or curricular enactment. In addition, strong positive relationships were also discovered among teacher attitude, student interest, and student achievement. Variations in teacher enactment also related to variations in student interest and achievement, with considerable positive

  3. Systematic Testing should not be a Topic in the Computer Science Curriculum!

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2003-01-01

    In this paper we argue that treating "testing" as an isolated topic is a wrong approach in computer science and software engineering teaching. Instead testing should pervade practical topics and exercises in the computer science curriculum to teach students the importance of producing software...

  4. An Ecological System Curriculum: An Integrated MST Approach to Environmental Science Education.

    Science.gov (United States)

    Leonhardt, Nina A.

    This paper describes an inquiry-based, student-centered mathematics, science, and technology curriculum guide. It features activities addressing such environmental science topics as groundwater modeling, water filtration, soil permeability and porosity, water temperature and salinity, and quadrant studies. Activities are organized so that the…

  5. Investigating the Role of the Teacher in Science Curriculum: New Evidence for an Old Debate

    Science.gov (United States)

    Penuel, W.; McAuliffe, C.; McWilliams, H.

    2007-12-01

    It is widely believed that teachers need high-quality curriculum materials to improve teaching and learning. Professional development designs differ, however, in whether they emphasize preparing teachers to use expert- designed curricula or preparing teachers with the tools needed to design and implement high-quality science units themselves. Evidence exists for the effectiveness of providing teachers with training in how to implement expert-designed curricula (Bredderman, 1983; Shymansky, Hedges, & Woodworth, 1990; Weinstein, Boulanger, & Walberg, 1982) and for providing teachers with professional development aimed at preparing teachers to design instruction and assessments (Black & Harrison, 2001; Shepard, 1997; Sneider, Adams, Ibanez, Templeton, & Porter, 1996). However, no studies, however, have compared explicitly these different approaches to preparing teachers to plan and enact instruction in science. The Transforming Instruction by Design in Earth Science (TIDES) project is an experimental study comparing the efficacy of three different approaches to professional development. The approaches differ with respect to the role that teachers are expected to play in curriculum. In one condition (Earth Science by Design), teachers learn how to design curriculum units in Earth science. In a second condition (Investigating Earth Systems), teachers learn how to adopt and implement curriculum materials developed by experts. In the third condition (Hybrid), teachers learn a principled approach to adapt expert-developed curriculum materials. The TIDES study is examining the impacts of each of the approaches to professional development on instructional planning and on the quality of assignments and assessments they give to students. We measured impacts on instructional planning using an end-of-unit questionnaire that focused on changes to teachers" overall approach to planning units of instruction, their strategies for organizing assignment, and materials they use in

  6. COMPUTATIONAL SCIENCE IN IN THE EDUCATIONAL CURRICULUM

    Directory of Open Access Journals (Sweden)

    José Manuel Cabrera Delgado

    2017-06-01

    Full Text Available How to incorporate Computer Science (CS into the basic education curriculum continues to be subject of controversy at the European level. Without there being a defined strategy on behalf of the European Union in this respect, several countries have begun their incorporation showing us the advantages and difficulties of such action. Main elements of CS, such as computational thinking and coding, are already being taught in schools, establishing the need for a curriculum adapted to the ages of the students, training for teachers and enough resources. The purpose of this article, from the knowledge of the experience of these countries, is to respond, or at least to reflect, on the answers to the following questions: what is CS?, what are their main elements?, why is it necessary?, at what age should CS be taught?, what requirements are needed for their incorporation?

  7. What are critical features of science curriculum materials that impact student and teacher outcomes?

    NARCIS (Netherlands)

    Roblin, Natalie Pareja; Schunn, Christian; McKenney, Susan

    2018-01-01

    Large investments are made in curriculum materials with the goal of supporting science education reform. However, relatively little evidence is available about what features of curriculum materials really matter to impact student and teacher learning. To address this need, the current study examined

  8. Implementing Curriculum-Embedded Formative Assessment in Primary School Science Classrooms

    Science.gov (United States)

    Hondrich, Annika Lena; Hertel, Silke; Adl-Amini, Katja; Klieme, Eckhard

    2016-01-01

    The implementation of formative assessment strategies is challenging for teachers. We evaluated teachers' implementation fidelity of a curriculum-embedded formative assessment programme for primary school science education, investigating both material-supported, direct application and subsequent transfer. Furthermore, the relationship between…

  9. Go Ask Alice: Uncovering the Role of a University Partner in an Informal Science Curriculum Support Network

    Science.gov (United States)

    Baker-Doyle, Kira J.

    2013-01-01

    This article describes a study from the Linking Instructors Networks of Knowledge in Science Education project, which aims to examine the informal science curriculum support networks of teachers in a school-university curriculum reform partnership. We used social network analysis and qualitative methods to reveal characteristics of the informal…

  10. Dissemination of an innovative mastery learning curriculum grounded in implementation science principles: a case study.

    Science.gov (United States)

    McGaghie, William C; Barsuk, Jeffrey H; Cohen, Elaine R; Kristopaitis, Theresa; Wayne, Diane B

    2015-11-01

    Dissemination of a medical education innovation, such as mastery learning, from a setting where it has been used successfully to a new and different medical education environment is not easy. This article describes the uneven yet successful dissemination of a simulation-based mastery learning (SBML) curriculum on central venous catheter (CVC) insertion for internal medicine and emergency medicine residents across medical education settings. The dissemination program was grounded in implementation science principles. The article begins by describing implementation science which addresses the mechanisms of medical education and health care delivery. The authors then present a mastery learning case study in two phases: (1) the development, implementation, and evaluation of the SBML CVC curriculum at a tertiary care academic medical center; and (2) the dissemination of the SBML CVC curriculum to an academic community hospital setting. Contextual information about the drivers and barriers that affected the SBML CVC curriculum dissemination is presented. This work demonstrates that dissemination of mastery learning curricula, like all other medical education innovations, will fail without active educational leadership, personal contacts, dedication, hard work, rigorous measurement, and attention to implementation science principles. The article concludes by presenting a set of lessons learned about disseminating an SBML CVC curriculum across different medical education settings.

  11. AIAA Educator Academy - Mars Rover Curriculum: A 6 week multidisciplinary space science based curriculum

    Science.gov (United States)

    Henriquez, E.; Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.

    2013-12-01

    The Curiosity mission has captured the imagination of children, as NASA missions have done for decades. The AIAA and the University of Houston have developed a flexible curriculum program that offers children in-depth science and language arts learning culminating in the design and construction of their own model rover. The program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students learn to research Mars in order to pick a science question about Mars that is of interest to them. They learn principles of spacecraft design in order to build a model of a Mars rover to carry out their mission on the surface of Mars. The model is a mock-up, constructed at a minimal cost from art supplies. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the structure and organization of the 6 week curriculum. A set of 30 new 5E lesson plans have been written to support this project as a classroom activity. The challenge of developing interactive

  12. The American Society for Radiation Oncology's 2010 Core Physics Curriculum for Radiation Oncology Residents

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Ying, E-mail: ying.xiao@jefferson.edu [Thomas Jefferson University Hospital, Philadelphia, PA (United States); De Amorim Bernstein, Karen [Montefiore Medical Center, Bronx, NY (United States); Chetty, Indrin J. [Henry Ford Health System, Detroit, MI (United States); Eifel, Patricia [M. D. Anderson Cancer Center, Houston, TX (United States); Hughes, Lesley [Cooper University Hospital, Camden, NJ (United States); Klein, Eric E. [Washington University, Saint Louis, MO (United States); McDermott, Patrick [William Beaumont Hospital, Royal Oak, MI (United States); Prisciandaro, Joann [University of Michigan, Ann Arbor, MI (United States); Paliwal, Bhudatt [University of Wisconsin, Madison, WI (United States); Price, Robert A. [Fox Chase Cancer Center, Philadelphia, PA (United States); Werner-Wasik, Maria [Thomas Jefferson University Hospital, Philadelphia, PA (United States); Palta, Jatinder R. [University of Florida, Gainesville, FL (United States)

    2011-11-15

    Purpose: In 2004, the American Society for Radiation Oncology (ASTRO) published its first physics education curriculum for residents, which was updated in 2007. A committee composed of physicists and physicians from various residency program teaching institutions was reconvened again to update the curriculum in 2009. Methods and Materials: Members of this committee have associations with ASTRO, the American Association of Physicists in Medicine, the Association of Residents in Radiation Oncology, the American Board of Radiology (ABR), and the American College of Radiology. Members reviewed and updated assigned subjects from the last curriculum. The updated curriculum was carefully reviewed by a representative from the ABR and other physics and clinical experts. Results: The new curriculum resulted in a recommended 56-h course, excluding initial orientation. Learning objectives are provided for each subject area, and a detailed outline of material to be covered is given for each lecture hour. Some recent changes in the curriculum include the addition of Radiation Incidents and Bioterrorism Response Training as a subject and updates that reflect new treatment techniques and modalities in a number of core subjects. The new curriculum was approved by the ASTRO board in April 2010. We anticipate that physicists will use this curriculum for structuring their teaching programs, and subsequently the ABR will adopt this educational program for its written examination. Currently, the American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee updated suggested references and the glossary. Conclusions: The ASTRO physics education curriculum for radiation oncology residents has been updated. To ensure continued commitment to a current and relevant curriculum, the subject matter will be updated again in 2 years.

  13. The Central Nervous System and Alcohol Use. Science of Alcohol Curriculum for American Indians. Training Unit [and] Participant Booklet.

    Science.gov (United States)

    Jacobs, Cecelia; And Others

    The Science of Alcohol Curriculum for American Indians uses the Medicine Circle and the "new science paradigm" to study the science of alcohol through a culturally relevant holistic approach. Intended for teachers and other educational personnel involved with American Indians, this curriculum aims to present a framework for alcohol…

  14. Abstraction to Implementation: A Two Stage Introduction to Computer Science.

    Science.gov (United States)

    Wolz, Ursula; Conjura, Edward

    A three-semester core curriculum for undergraduate computer science is proposed and described. Both functional and imperative programming styles are taught. The curriculum particularly addresses the problem of effectively presenting both abstraction and implementation. Two courses in the first semester emphasize abstraction. The next courses…

  15. The impact of a curriculum course on pre-service primary teachers' science content knowledge and attitudes towards teaching science

    OpenAIRE

    Murphy, Clíona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students' conceptual and pedagogical knowledge of science and on their attitudes towards teaching science in the primary classroom. A questionnaire, containing closed ...

  16. Application of the Reggio Emilia Approach to Early Childhood Science Curriculum.

    Science.gov (United States)

    Stegelin, Dolores A.

    2003-01-01

    This article focuses on the relevance of the Reggio Emilia approach to early childhood education for science knowledge and content standards for the preK-12 student population. The article includes: (1) a summary of key concepts; (2) a description of the science curriculum standards for K-3 in the United States; and (3) an example of an in-depth…

  17. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    Science.gov (United States)

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  18. The Politics of Developing and Maintaining Mathematics and Science Curriculum Content Standards. Research Monograph.

    Science.gov (United States)

    Kirst, Michael W.; Bird, Robin L.

    The movement toward math and science curriculum standards is inextricably linked with high-stakes politics. There are two major types of politics discussed in this paper: the allocation of curriculum content, and the political issues involved in systemic change. Political strategies for gaining assent to national, state, and local content…

  19. The Future Curriculum for School Science: What Can Be Learnt from the Past?

    Science.gov (United States)

    Fensham, Peter J.

    2016-01-01

    In the 1960s, major reforms of the curriculum for school science education occurred that set a future for school science education that has been astonishingly robust at seeing off alternatives. This is not to say that there are not a number of good reasons for such alternative futures. The sciences, their relation to the socio-scientific context,…

  20. The South Carolina Amazing Coast Program: Using Ocean Sciences to Address Next Generation Science Standards in Grades 3-5

    Science.gov (United States)

    Bell, E. V.; Thomas, C.; Weiss, B.; Bliss, A.; Spence, L.

    2013-12-01

    The Next Generation Science Standards (NGSS) are more inclusive of ocean sciences than the National Science Standards and respective state science standards. In response, the Center for Ocean Sciences Education Excellence-SouthEast (COSEE SE) is piloting the South Carolina's Amazing Coast (SCAC) program: a three-year initiative that incorporates ocean science concepts in grades 3-5 with the goals of addressing NGSS, STEM (science-technology-engineering-math) disciplines, and inquiry skills. The SCAC program targeted two Charleston County, South Carolina elementary schools that were demographically similar: Title 1 status (75% free or reduced lunch), > 90% African American student population, grade level size inquiry skills. Specifically, third grade students learn about coastal habitats, animal and plant adaptations, and human impacts to the environment, and engage in a salt marsh restoration capstone project. This part of the curriculum aligns with the NGSS Core Ideas 3-LS1, 3-LS3, 3-LS4, 3-ESS3. The fourth grade students learn about weather, organism responses to the environment, and engage in a weather buoy construction capstone project. This part of the curriculum aligns with the NGSSS Core Ideas 4-LS1, 4-ESS2, 4-ESS3, 3-5-ETS1. In 5th grade, students focus specifically on the ocean ecosystem, human impacts on the environment and engage in a capstone project of designing and constructing remotely operated vehicles. This part of the curriculum aligns with NGSS Core Ideas 5-PS2, 5-LS1, 5-LS2, 5-ESS2, 3-5-ETS1. Initial evaluation results indicate that the SCAC teachers value the coach mentor approach for teacher professional development as well as the impact of field based experiences, place-based learning, and a culminating capstone project on student learning. Teacher feedback also indicates elements of sustainability that extend beyond the scope of the pilot project.These initial evaluation results poise the SCAC curriculum to be replicated in other

  1. The Efficacy of Educative Curriculum Materials to Support Geospatial Science Pedagogical Content Knowledge

    Science.gov (United States)

    Bodzin, Alec; Peffer, Tamara; Kulo, Violet

    2012-01-01

    Teaching and learning about geospatial aspects of energy resource issues requires that science teachers apply effective science pedagogical approaches to implement geospatial technologies into classroom instruction. To address this need, we designed educative curriculum materials as an integral part of a comprehensive middle school energy…

  2. A New Approach to Teaching Business Writing: Writing across the Core--A Document Based Curriculum

    Science.gov (United States)

    Hutchins, Teresa D.

    2015-01-01

    This paper describes the transition that the Anisfield School of Business of Ramapo College of New Jersey made from a conventional Writing Across the Curriculum approach to a Writing Across the Business Core approach. The impetus for the change is explained as well as the creation and design of the program. The document driven program is analyzed,…

  3. Consumer Citizenship Curriculum Guides for Social Studies, English, Science, Mathematics.

    Science.gov (United States)

    MacKenzie, Louise; Smith, Alice

    These four consumer citizenship curriculum guides for social studies, English, science, and mathematics incorporate consumer education into these subject matter areas in grades 8-12. Each guide is organized around 10 main component/goals. They are basic economics in the marketplace, credit, consumer law/protection, banking skills, comparison…

  4. Boundary Interaction: Towards Developing a Mobile Technology-Enabled Science Curriculum to Integrate Learning in the Informal Spaces

    Science.gov (United States)

    Sun, Daner; Looi, Chee-Kit

    2018-01-01

    This paper explores the crossover between formal learning and learning in informal spaces supported by mobile technology, and proposes design principles for educators to carry out a science curriculum, namely Boundary Activity-based Science Curriculum (BAbSC). The conceptualization of the boundary object, and the principles of boundary activity as…

  5. The Cradleboard Teaching Project: Using Curriculum and Cross-Cultural Partnering To Change Perceptions.

    Science.gov (United States)

    Sainte-Marie, Buffy

    1999-01-01

    Native Americans developed core curriculum units at the elementary, intermediate, and secondary levels in geography, history, music, social studies, and science presented from a Native American cultural perspective. Mainstream classes are paired with Native American classes and learn authentic information through cross-cultural exchange via…

  6. The design of a medical school social justice curriculum.

    Science.gov (United States)

    Coria, Alexandra; McKelvey, T Greg; Charlton, Paul; Woodworth, Michael; Lahey, Timothy

    2013-10-01

    The acquisition of skills to recognize and redress adverse social determinants of disease is an important component of undergraduate medical education. In this article, the authors justify and define "social justice curriculum" and then describe the medical school social justice curriculum designed by the multidisciplinary Social Justice Vertical Integration Group (SJVIG) at the Geisel School of Medicine at Dartmouth. The SJVIG addressed five goals: (1) to define core competencies in social justice education, (2) to identify key topics that a social justice curriculum should cover, (3) to assess social justice curricula at other institutions, (4) to catalog institutionally affiliated community outreach sites at which teaching could be paired with hands-on service work, and (5) to provide examples of the integration of social justice teaching into the core (i.e., basic science) curriculum. The SJVIG felt a social justice curriculum should cover the scope of health disparities, reasons to address health disparities, and means of addressing these disparities. The group recommended competency-based student evaluations and advocated assessing the impact of medical students' social justice work on communities. The group identified the use of class discussion of physicians' obligation to participate in social justice work as an educational tool, and they emphasized the importance of a mandatory, longitudinal, immersive, mentored community outreach practicum. Faculty and administrators are implementing these changes as part of an overall curriculum redesign (2012-2015). A well-designed medical school social justice curriculum should improve student recognition and rectification of adverse social determinants of disease.

  7. Microsoft Excel Software Usage for Teaching Science and Engineering Curriculum

    Science.gov (United States)

    Singh, Gurmukh; Siddiqui, Khalid

    2009-01-01

    In this article, our main objective is to present the use of Microsoft Software Excel 2007/2003 for teaching college and university level curriculum in science and engineering. In particular, we discuss two interesting and fascinating examples of interactive applications of Microsoft Excel targeted for undergraduate students in: 1) computational…

  8. Models and Materials: Bridging Art and Science in the Secondary Curriculum

    Science.gov (United States)

    Pak, D.; Cavazos, L.

    2006-12-01

    Creating and sustaining student engagement in science is one challenge facing secondary teachers. The visual arts provide an alternative means of communicating scientific concepts to students who may not respond to traditional formats or identify themselves as interested in science. We have initiated a three-year teacher professional development program at U C Santa Barbara focused on bridging art and science in secondary curricula, to engage students underrepresented in science majors, including girls, English language learners and non-traditional learners. The three-year format provides the teams of teachers with the time and resources necessary to create innovative learning experiences for students that will enhance their understanding of both art and science content. Models and Materials brings together ten secondary art and science teachers from six Santa Barbara County schools. Of the five participating science teachers, three teach Earth Science and two teach Life Science. Art and science teachers from each school are teamed and challenged with the task of creating integrated curriculum projects that bring visual art concepts to the science classroom and science concepts to the art classroom. Models and Materials were selected as unifying themes; understanding the concept of models, their development and limitations, is a prominent goal in the California State Science and Art Standards. Similarly, the relationship between composition, structure and properties of materials is important to both art and science learning. The program began with a 2-week institute designed to highlight the natural links between art and science through presentations and activities by both artists and scientists, to inspire teachers to develop new ways to present models in their classrooms, and for the teacher teams to brainstorm ideas for curriculum projects. During the current school year, teachers will begin to integrate science and art and the themes of modeling and materials

  9. Perceptions of Critical Thinking, Task Value, Autonomy and Science Lab Self-Efficacy: A Longitudinal Examination of Students' CASE Experience

    Science.gov (United States)

    Velez, Jonathan J.; Lambert, Misty D.; Elliott, Kristopher M.

    2015-01-01

    The purpose of this study was to begin examining the impact of the Curriculum for Agricultural Science Education (CASE). Under development since 2008, the curriculum is intended to integrate core academics and Science, Technology, Engineering, and Math (STEM) into agricultural education programs. This longitudinal descriptive correlational study…

  10. Science strategy for Core Science Systems in the U.S. Geological Survey, 2013-2023

    Science.gov (United States)

    Bristol, R. Sky; Euliss, Ned H.; Booth, Nathaniel L.; Burkardt, Nina; Diffendorfer, Jay E.; Gesch, Dean B.; McCallum, Brian E.; Miller, David M.; Morman, Suzette A.; Poore, Barbara S.; Signell, Richard P.; Viger, Roland J.

    2012-01-01

    Core Science Systems is a new mission of the U.S. Geological Survey (USGS) that grew out of the 2007 Science Strategy, “Facing Tomorrow’s Challenges: U.S. Geological Survey Science in the Decade 2007–2017.” This report describes the vision for this USGS mission and outlines a strategy for Core Science Systems to facilitate integrated characterization and understanding of the complex earth system. The vision and suggested actions are bold and far-reaching, describing a conceptual model and framework to enhance the ability of USGS to bring its core strengths to bear on pressing societal problems through data integration and scientific synthesis across the breadth of science.The context of this report is inspired by a direction set forth in the 2007 Science Strategy. Specifically, ecosystem-based approaches provide the underpinnings for essentially all science themes that define the USGS. Every point on earth falls within a specific ecosystem where data, other information assets, and the expertise of USGS and its many partners can be employed to quantitatively understand how that ecosystem functions and how it responds to natural and anthropogenic disturbances. Every benefit society obtains from the planet—food, water, raw materials to build infrastructure, homes and automobiles, fuel to heat homes and cities, and many others, are derived from or effect ecosystems.The vision for Core Science Systems builds on core strengths of the USGS in characterizing and understanding complex earth and biological systems through research, modeling, mapping, and the production of high quality data on the nation’s natural resource infrastructure. Together, these research activities provide a foundation for ecosystem-based approaches through geologic mapping, topographic mapping, and biodiversity mapping. The vision describes a framework founded on these core mapping strengths that makes it easier for USGS scientists to discover critical information, share and publish

  11. Reaching Consensus on Essential Biomedical Science Learning Objectives in a Dental Curriculum.

    Science.gov (United States)

    Best, Leandra; Walton, Joanne N; Walker, Judith; von Bergmann, HsingChi

    2016-04-01

    This article describes how the University of British Columbia Faculty of Dentistry reached consensus on essential basic biomedical science objectives for DMD students and applied the information to the renewal of its DMD curriculum. The Delphi Method was used to build consensus among dental faculty members and students regarding the relevance of over 1,500 existing biomedical science objectives. Volunteer panels of at least three faculty members (a basic scientist, a general dentist, and a dental specialist) and a fourth-year dental student were formed for each of 13 biomedical courses in the first two years of the program. Panel members worked independently and anonymously, rating each course objective as "need to know," "nice to know," "irrelevant," or "don't know." Panel members were advised after each round which objectives had not yet achieved a 75% consensus and were asked to reconsider their ratings. After a maximum of three rounds to reach consensus, a second group of faculty experts reviewed and refined the results to establish the biomedical science objectives for the renewed curriculum. There was consensus on 46% of the learning objectives after round one, 80% after round two, and 95% after round three. The second expert group addressed any remaining objectives as part of its review process. Only 47% of previous biomedical science course objectives were judged to be essential or "need to know" for the general dentist. The consensus reached by participants in the Delphi Method panels and a second group of faculty experts led to a streamlined, better integrated DMD curriculum to prepare graduates for future practice.

  12. Prospects and challenges in teachers’ adoption of a new modeling orientated science curriculum in lower secondary school in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Sanne Schnell

    A new science curriculum with a significant emphasis on modeling has recently been enacted in the Danish compulsory school. This design based study aims to investigate science teachers’ beliefs, practice and reflections in response to the new curriculum. The data sources include teacher...... towards the modeling emphasis in the new curriculum, but nevertheless use a restricted range of modeling practices and pay limited attention to the purpose and utility of models. Teachers raised concerns in enacting the new curriculum due to: (i) Lack of time for preparations and teamwork, (ii) Shortage...... of clarifications and examples in the curriculum materials and teacher education on how to enact modeling in practice, (iii) Overcrowded curriculum, and (iv) Lack of alignment with a national test. In addition, the results indicate an inconsistence between teachers’ intentions and their classroom practice...

  13. Student Teachers' Views: What Is an Interesting Life Sciences Curriculum?

    Science.gov (United States)

    de Villiers, Rian

    2011-01-01

    In South Africa, the Grade 12 "classes of 2008 and 2009" were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences…

  14. The core content of the undergraduate curriculum in Manchester.

    Science.gov (United States)

    O'Neill, P A; Metcalfe, D; David, T J

    1999-02-01

    To identify the core content for the new undergraduate medical curriculum in Manchester. The initial step was to produce a list of 'index clinical situations' (ICSs), for which a newly graduated doctor must have a required level of competence. Using repeated consultation with consultants and general practitioners involved in medical education in the North-West of England, a list of 215 ICSs was agreed. Specialists and generalists were then asked to identify the components of the knowledge base and the performance (skills) base for each ICS. The knowledge base was divided into technical (biomedical facts/concepts) and contextual (effect/management of disease within the individual, family and society) domains. The performance base was divided into intellectual (problem solving and decision making) and interpersonal (history, examination, communication and procedural skills) domains. Forty specialties were consulted and 11,021 items (defined as a piece of knowledge, a concept or a skill) were identified. There was considerable overlap in the items listed, such that when the returns for each ICS were amalgamated, the 215 ICSs contained 6434 items with a mean of 34 +/- 14.2 per situation (range 6-85). UTILISATION: We have used the defined ICSs in the design of the trigger material used in the weekly problem-based learning sessions. Over 4 years almost all (207/215, 96%) of the ICS are covered, with many being revisited at several points in the curriculum.

  15. Revision of Primary I-III Science Curriculum in Somalia. African Studies in Curriculum Development & Evaluation No. 83.

    Science.gov (United States)

    Abdi, Ahmed Ali

    This study was designed to evaluate: (1) the content of the primary I-III science curriculum in Somalia; (2) the instructional materials that back up the content and methodologies; and (3) the professional competence of the teachers in charge of teaching this subject. Data were collected by means of a questionnaire, observations, and unstructured…

  16. The effects of an integrated Algebra 1/physical science curriculum on student achievement in Algebra 1, proportional reasoning and graphing abilities

    Science.gov (United States)

    Lawrence, Lettie Carol

    1997-08-01

    The purpose of this investigation was to determine if an integrated curriculum in algebra 1/physical science facilitates acquisition of proportional reasoning and graphing abilities better than a non-integrated, traditional, algebra 1 curriculum. Also, this study was to ascertain if the integrated algebra 1/physical science curriculum resulted in greater student achievement in algebra 1. The curriculum used in the experimental class was SAM 9 (Science and Mathematics 9), an investigation-based curriculum that was written to integrate physical science and basic algebra content. The experiment was conducted over one school year. The subjects in the study were 61 ninth grade students. The experimental group consisted of one class taught concurrently by a mathematics teacher and a physical science teacher. The control group consisted of three classes of algebra 1 students taught by one mathematics teacher and taking physical science with other teachers in the school who were not participating in the SAM 9 program. This study utilized a quasi-experimental non-randomized control group pretest-posttest design. The investigator obtained end-of-algebra 1 scores from student records. The written open-ended graphing instruments and the proportional reasoning instrument were administered to both groups as pretests and posttests. The graphing instruments were also administered as a midtest. A two sample t-test for independent means was used to determine significant differences in achievement on the end-of-course algebra 1 test. Quantitative data from the proportional reasoning and graphing instruments were analyzed using a repeated measures analysis of variance to determine differences in scores over time for the experimental and control groups. The findings indicate no significant difference between the experimental and control groups on the end-of-course algebra 1 test. Results also indicate no significant differences in proportional reasoning and graphing abilities between

  17. Curriculum

    Directory of Open Access Journals (Sweden)

    Robi Kroflič

    1997-12-01

    Full Text Available Modern curriculum theories emphasize that if we understand the curriculum as a real core substance of education. We have to bear in mind, when planning the curriculum, the whole multitude of factors (curricula which have an influence on the educational impact. In the field of andragogy, we especially have to consider educational needs, and linking the strategies of instruction with those of learning. The best way of realizing this principle is the open strategy of planning the national curriculum and process-developmental strategy of planning with the microandragogic situation. This planning strategy is S1m1lar to the system-integration strategy and Jarvis's model of negotiated curriculum, which derive from the basic andragogic principle: that the interests and capacities of adults for education increase if we enable them to cooperate in the planning and production of the curriculum.

  18. The "Curriculum for Excellence": A Major Change for Scottish Science Education

    Science.gov (United States)

    Brown, Sally

    2014-01-01

    The Curriculum for Excellence and new National Qualifications offer innovative reform, based on widely supported ideas and aims, for Scottish preschool, primary and secondary education levels. "Objectives and syllabuses" for science are replaced by "experiences and outcomes". Most strikingly, central prescription makes way for…

  19. Teacher change and professional development: A case study of teachers engaged in an innovative constructivist science curriculum

    Science.gov (United States)

    Akura, Okong'o. Gabriel

    This study examined both the changes that elementary school teachers experienced when they implemented a reform-based science curriculum and the impact of professional development on this transformation. The research involved a case study of three purposefully selected teachers implementing the Linking Food and the Environment (LIFE) program during the 2002--2003 school year. The LIFE program is a curriculum designed to enhance science literacy among learners from high poverty urban environments. While the study was grounded in the tradition of critical theory (Carspecken, 1996), the theoretical perspective of hermeneutic phenomenology (van Manen, 1990) guided data collection and analysis. Extensive observations of the teachers were made in order to capture and record the teacher change phenomenon. Data were recorded by means of field notes, audio and videotapes, semi-structured interviews, classroom observations, and video Stimulated Recall (SR) interviews. Emerging themes relating to teacher change, knowledge interests, constructivist pedagogy, and professional development illustrated how teachers grapple with various aspects of implementing a reform-based science curriculum. The teachers in this study were similar to those in earlier investigations, which found that sustained professional development programs involving mentoring and constant reflection enable elementary science teachers to change their instructional strategies from the technical-realist orientation towards the practical-hermeneutic and emancipatory-liberatory orientations. The study has implications for science curriculum developers and designers of professional development programs.

  20. An Exploratory Analysis of a Middle School Science Curriculum: Implications for Students with Learning Disabilities

    Science.gov (United States)

    Taylor, Gregory S.; Hord, Casey

    2016-01-01

    An exploratory study of a middle school curriculum directly aligned with the Next Generation Science Standards was conducted with a focus on how the curriculum addresses the instructional needs of students with learning disabilities. A descriptive analysis of a lesson on speed and velocity was conducted and implications discussed for students with…

  1. Experiencing Wireless Sensor Network Concepts in an Undergraduate Computer Science Curriculum

    NARCIS (Netherlands)

    Zwartjes, G.J.; van de Voort, M.; Dil, B.J.; Havinga, Paul J.M.

    2009-01-01

    Incorporating Embedded Systems courses in a general and broad Computer Science undergraduate curriculum can be a challenging task. The lack of experience with relevant tools and programming languages tends to limit the amount material that can be included in courses on this area. This, combined with

  2. Position paper: proposal for a core curriculum for a European Sports Cardiology qualification.

    Science.gov (United States)

    Heidbuchel, Hein; Papadakis, Michael; Panhuyzen-Goedkoop, Nicole; Carré, François; Dugmore, Dorian; Mellwig, Klaus-Peter; Rasmusen, Hanne Kruuse; Solberg, Erik E; Borjesson, Mats; Corrado, Domenico; Pelliccia, Antonio; Sharma, Sanjay

    2013-10-01

    Sports cardiology is a new and rapidly evolving subspecialty. It aims to elucidate the cardiovascular effects of regular exercise and delineate its benefits and risks, so that safe guidance can be provided to all individuals engaging in sports and/or physical activity in order to attain the maximum potential benefit at the lowest possible risk. The European Society of Cardiology (ESC) advocates systematic preparticipation cardiovascular screening in an effort to identify competitive athletes at risk of exercise-related cardiovascular events and sudden cardiac death. However, the implementation of preparticipation screening is hindered because of lack of structured training and as a result lack of sufficient expertise in the field of sports cardiology. In 2008 the European Society of Cardiology published a core curriculum for the general cardiologist, in which sports cardiology was incorporated within the topic 'Rehabilitation and Exercise Physiology'. However, the exponential rise in knowledge and the growing demand for expertise in the field of sports cardiology dictates the need to systematically structure the knowledge base of sports cardiology into a detailed curriculum. We envisage that the curriculum would facilitate more uniform training and guideline implementation throughout Europe, and safeguard that evaluation and guidance of competitive athletes or individuals who wish to engage in leisure-time sports activities is performed by physicians with expertise in the field. The current manuscript provides a comprehensive curriculum for sports cardiology, which may serve as a framework upon which universities and national and international health authorities will develop the training, evaluation and accreditation in sports cardiology.

  3. Poultry Production for Agricultural Science I Core Curriculum. Instructor's Guide. Volume 19, Number 2.

    Science.gov (United States)

    Timko, Joseph J.; Stewart, Bob R.

    This unit is designed to aid teachers in lesson planning in the secondary agricultural education curriculum in Missouri. Intended to be taught to ninth-grade students of vocational agriculture, the unit contains six lessons for developing competencies needed in poultry production. The lessons are as follows: (1) the importance of the poultry…

  4. The ongoing evolution of the core curriculum of a clinical fellowship in pathology informatics

    Directory of Open Access Journals (Sweden)

    Andrew M Quinn

    2014-01-01

    Full Text Available The Partners HealthCare system′s Clinical Fellowship in Pathology Informatics (Boston, MA, USA faces ongoing challenges to the delivery of its core curriculum in the forms of: (1 New classes of fellows annually with new and varying educational needs and increasingly fractured, enterprise-wide commitments; (2 taxing electronic health record (EHR and laboratory information system (LIS implementations; and (3 increasing interest in the subspecialty at the academic medical centers (AMCs in what is a large health care network. In response to these challenges, the fellowship has modified its existing didactic sessions and piloted both a network-wide pathology informatics lecture series and regular "learning laboratories". Didactic sessions, which had previously included more formal discussions of the four divisions of the core curriculum: Information fundamentals, information systems, workflow and process, and governance and management, now focus on group discussions concerning the fellows′ ongoing projects, updates on the enterprise-wide EHR and LIS implementations, and directed questions about weekly readings. Lectures are given by the informatics faculty, guest informatics faculty, current and former fellows, and information systems members in the network, and are open to all professional members of the pathology departments at the AMCs. Learning laboratories consist of small-group exercises geared toward a variety of learning styles, and are driven by both the fellows and a member of the informatics faculty. The learning laboratories have created a forum for discussing real-time and real-world pathology informatics matters, and for incorporating awareness of and timely discussions about the latest pathology informatics literature. These changes have diversified the delivery of the fellowship′s core curriculum, increased exposure of faculty, fellows and trainees to one another, and more equitably distributed teaching responsibilities among

  5. The ongoing evolution of the core curriculum of a clinical fellowship in pathology informatics.

    Science.gov (United States)

    Quinn, Andrew M; Klepeis, Veronica E; Mandelker, Diana L; Platt, Mia Y; Rao, Luigi K F; Riedlinger, Gregory; Baron, Jason M; Brodsky, Victor; Kim, Ji Yeon; Lane, William; Lee, Roy E; Levy, Bruce P; McClintock, David S; Beckwith, Bruce A; Kuo, Frank C; Gilbertson, John R

    2014-01-01

    The Partners HealthCare system's Clinical Fellowship in Pathology Informatics (Boston, MA, USA) faces ongoing challenges to the delivery of its core curriculum in the forms of: (1) New classes of fellows annually with new and varying educational needs and increasingly fractured, enterprise-wide commitments; (2) taxing electronic health record (EHR) and laboratory information system (LIS) implementations; and (3) increasing interest in the subspecialty at the academic medical centers (AMCs) in what is a large health care network. In response to these challenges, the fellowship has modified its existing didactic sessions and piloted both a network-wide pathology informatics lecture series and regular "learning laboratories". Didactic sessions, which had previously included more formal discussions of the four divisions of the core curriculum: Information fundamentals, information systems, workflow and process, and governance and management, now focus on group discussions concerning the fellows' ongoing projects, updates on the enterprise-wide EHR and LIS implementations, and directed questions about weekly readings. Lectures are given by the informatics faculty, guest informatics faculty, current and former fellows, and information systems members in the network, and are open to all professional members of the pathology departments at the AMCs. Learning laboratories consist of small-group exercises geared toward a variety of learning styles, and are driven by both the fellows and a member of the informatics faculty. The learning laboratories have created a forum for discussing real-time and real-world pathology informatics matters, and for incorporating awareness of and timely discussions about the latest pathology informatics literature. These changes have diversified the delivery of the fellowship's core curriculum, increased exposure of faculty, fellows and trainees to one another, and more equitably distributed teaching responsibilities among the entirety of the

  6. LIFE SKILLS ORIENTATION IN MADRASAH CURRICULUM

    Directory of Open Access Journals (Sweden)

    Ahmadi Ahmadi

    2016-02-01

    Full Text Available This article intends to elaborate a charge include life skills opportunities in both madrasah curriculum of ibtidaiyah, tsanawiyah and aliyah. The approach used is the science of Islamic education. Some important concepts in Islam that allows it to be analyzed and used as the basis of life skills-based curriculum contained in QS. Al-Ghâsyiyah [88]: 17-20, QS. Fâthir [35]: 39, QS. Al-Jâtsiyah [45]: 12-13, QS. Al-A‟râf [7]: 56-85 and QS. Al-Hujurât [49]: 1, 13, 18. Ethical values (Rasul Muhammad Islam that allows elaborating life skills is shiddiq, amanah, fathanah and tabligh. The fourth value is assumed to equip graduates of madrassas that he later had a number of personal, social, academic, vocational and soft. The fourth value is assumed to equip graduates of madrassas that he later had the skills. A number of core Islamic values should be in synergy with the age issues such as democracy, globalization, the mastery of science, technology and information (the environment.

  7. Life Sciences Teachers Negotiating Professional Development Agency in Changing Curriculum Times

    Science.gov (United States)

    Singh-Pillay, Asheena; Samuel, Michael Anthony

    2017-01-01

    This article probes teacher responses to three curricular reform initiatives from a South African situated contextual perspective. It focuses on Life Sciences teachers who have initially reported feeling overwhelmed by this rapidly changing curriculum environment: adopting and re-adapting to the many expected shifts. The research question posed…

  8. Teachers' Sensemaking about Implementation of an Innovative Science Curriculum Across the Settings of Professional Development and Classroom Enactment

    Science.gov (United States)

    de los Santos, Xeng

    Designing professional development that effectively supports teachers in learning new and often challenging practices remains a dilemma for teacher educators. Within the context of current reform efforts in science education, such as the Next Generation Science Standards, teacher educators are faced with managing the dilemma of how to support a large number of teachers in learning new practices while also considering factors such as time, cost, and effectiveness. Implementation of educative, reform-aligned curricula is one way to reach many teachers at once. However, one question is whether large-scale curriculum implementation can effectively support teachers in learning and sustaining new teaching practices. To address this dilemma, this study used a comparative, multiple case study design to investigate how secondary science teachers engaged in sensemaking about implementation of an innovative science curriculum across the settings of professional development and classroom enactment. In using the concept of sensemaking from organizational theory, I focused specifically on how teachers' roles in social organizations influenced their decisions to implement the curriculum in particular ways, with differing outcomes for their own learning and students' engagement in three-dimensional learning. My research questions explored: (1) patterns in teachers' occasions of sensemaking, including critical noticing of interactions among themselves, the curriculum, and their students; (2) how teachers' social commitments to different communities influenced their sensemaking; and, (3) how sustained sensemaking over time could facilitate teacher learning of rigorous and responsive science teaching practices. In privileging teachers' experiences in the classroom using the curriculum with their students, I used data generated primarily from teacher interviews with their case study coaches about implementation over the course of one school year. Secondary sources of data included

  9. Developing Oral and Written Communication Skills in Undergraduate Computer Science and Information Systems Curriculum

    Science.gov (United States)

    Kortsarts, Yana; Fischbach, Adam; Rufinus, Jeff; Utell, Janine M.; Yoon, Suk-Chung

    2010-01-01

    Developing and applying oral and written communication skills in the undergraduate computer science and computer information systems curriculum--one of the ABET accreditation requirements - is a very challenging and, at the same time, a rewarding task that provides various opportunities to enrich the undergraduate computer science and computer…

  10. Professional development as a strategy for curriculum implementation in multidisciplinary science education

    NARCIS (Netherlands)

    Visser, Talitha Christine

    2012-01-01

    Schoolteachers must deal with curriculum innovations during their teaching careers. In 2005, the Dutch Ministry of Education, Culture and Science introduced committees to develop and redesign the curricula for chemistry, biology, physics, and mathematics in secondary education. The purpose of

  11. The Expanded Core Curriculum at the Indiana School for the Blind and Visually Impaired: A Case Study

    Science.gov (United States)

    Ringwalt, Gail Mulholland

    2013-01-01

    This case study investigated how the Expanded Core Curriculum (ECC) was taught to high school students who are blind or visually impaired at the Indiana School for the Blind and Visually Impaired (ISBVI). The study focused on three students pursing different academic tracks with varying degrees of vision. The students were observed throughout…

  12. The Delphi Technique in Identifying Learning Objectives for the Development of Science, Technology and Society Modules for Palestinian Ninth Grade Science Curriculum

    Science.gov (United States)

    Abualrob, Marwan M. A.; Daniel, Esther Gnanamalar Sarojini

    2013-01-01

    This article outlines how learning objectives based upon science, technology and society (STS) elements for Palestinian ninth grade science textbooks were identified, which was part of a bigger study to establish an STS foundation in the ninth grade science curriculum in Palestine. First, an initial list of STS elements was determined. Second,…

  13. Perspective of Lecturers in Implementing PISMP Science Curriculum in Malaysia's IPG

    Science.gov (United States)

    Yahya, Fauziah Hj; Bin Hamdan, Abdul Rahim; Jantan, Hafsah Binti; Saleh, Halimatussadiah Binti

    2015-01-01

    The article aims to identify lecturers' perspectives in implementing PISMP science curriculum in IPG Malaysia based on teaching experience with KIPP model. The respondents consisted of 105 lecturers from 20 IPG Malaysia. The study used a questionnaire consisting of 74 items covering the four dimensions (Context, Input, Process and Product). Data…

  14. Designing a primary science curriculum in a globalizing world: How do social constructivism and Vietnamese culture meet?

    Science.gov (United States)

    Hằng, Ngô Vũ Thu; Meijer, Marijn Roland; Bulte, Astrid M. W.; Pilot, Albert

    2017-09-01

    The implementation of social constructivist approaches to learning science in primary education in Vietnamese culture as an example of Confucian heritage culture remains challenging and problematic. This theoretical paper focuses on the initial phase of a design-based research approach; that is, the description of the design of a formal, written curriculum for primary science education in which features of social constructivist approaches to learning are synthesized with essential aspects of Vietnamese culture. The written design comprises learning aims, a framework that is the synthesis of learning functions, learning settings and educational expectations for learning phases, and exemplary curriculum units. Learning aims are formulated to comprehensively develop scientific knowledge, skills, and attitudes toward science for primary students. Derived from these learning aims, the designed framework consists of four learning phases respectively labeled as Engagement, Experience, Exchange, and Follow-up. The designed framework refers to knowledge of the "nature of science" education and characteristics of Vietnamese culture as an example of Confucian heritage culture. The curriculum design aims to serve as an educational product that addresses previously analyzed problems of primary science education in the Vietnamese culture in a globalizing world.

  15. Ka Hana `Imi Na`auao: A Science Curriculum Project

    Science.gov (United States)

    Napeahi, K.; Roberts, K. D.; Galloway, L. M.; Stodden, R. A.; Akuna, J.; Bruno, B.

    2005-12-01

    In antiquity, the first people to step foot on what are now known as the Hawaiian islands skillfully traversed the Pacific Ocean using celestial navigation and learned observations of scientific phenomena. Long before the Western world ventured beyond the horizon, Hawaiians had invented the chronometer, built aqueduct systems (awai) that continue to amaze modern engineers, and had preventive health systems as well as a comprehensive knowledge of medicinal plants (including antivirals) which only now are working their way through trials for use in modern pharmacopia. Yet, today, Native Hawaiians are severely underrepresented in science-related fields, reflecting (in part) a failure of the Western educational system to nurture the potential of these resourceful students, particularly the many "at-risk" students who are presently over-represented in special education. A curriculum which draws from and incorporates traditional Hawaiian values and knowledge is needed to reinforce links to the inquiry process which nurtured creative thinking during the renaissance of Polynesian history. The primary goal of the Ka Hana `Imi Na`auao Project (translation: `science` or `work in which you seek enlightenment, knowledge or wisdom`) is to increase the number of Native Hawaiian adults in science-related postsecondary education and employment fields. Working closely with Native Hawaiian cultural experts and our high school partners, we will develop and implement a culturally responsive 11th and 12th grade high school science curriculum, infused with math, literacy and technology readiness skills. Software and assistive technology will be used to adapt instruction to individual learners` reading levels, specific disabilities and learning styles. To ease the transition from secondary to post-secondary education, selected grade 12 students will participate in planned project activities that link high school experiences with college science-related programs of study. Ka Hana `Imi Na

  16. Computational Experiments for Science and Engineering Education

    Science.gov (United States)

    Xie, Charles

    2011-01-01

    How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.

  17. Access, Astronomy and Science Fiction. A Case Study in Curriculum Design

    Science.gov (United States)

    Saunders, Danny; Brake, Mark; Griffiths, Martin; Thornton, Rosi

    2004-01-01

    It is argued that a positive response to lifelong learning policies involves the use of imaginative curriculum design in order to attract learners from disadvantaged backgrounds who are otherwise alienated from higher education. In this article a case study is presented based on the popularity of science fiction within popular culture, beginning…

  18. Living in Water: An Aquatic Science Curriculum for Grades 5-7.

    Science.gov (United States)

    National Aquarium in Baltimore, MD. Dept. of Education.

    "Living in Water" is a classroom-based, scientific study of water, aquatic environments, and the plants and animals that live in water. The lessons in this curriculum integrate basic physical, biological, and earth sciences, and mathematics. The integration of language arts is also considered essential to its success. These lessons do not require…

  19. Science-Based Thematic Cultural Art Learning in Primary School (2013 Curriculum

    Directory of Open Access Journals (Sweden)

    Warih Handayaningrum

    2016-12-01

    Full Text Available This study is aimed at discussing the development result of thematic cultural art subject’s learning material based on science for primary school (2013 curriculum. This study is expected to inspire teacher to develop learning material that may explore artworks exist in our living environment (based on the context of children’s environment. This study applies steps in developmental research collaboration by Borg & Gall (1989 and Puslitjaknov (2008 to create the product. The development stages comprise observation in several primary schools in Surabaya, Gresik, and Sidoarjo that has implemented 2013 curriculum that is followed up by stages of development. Furthermore, prototype of cultural and art thematic learning material development results are verified by learning material experts, material expert, primary school teacher, and revised afterwards. The result of this research development is a set of teacher and student books. Science-based cultural art here means cultural art learning as the main medium to introduce local culture products (music, drawing, dance, and drama by integrating mathematics, sciences, Bahasa Indonesia, and local language subjects. Cultural art products in the form of dance, music, drawing, dramas will help children to understand a simple mathematical concept, such as: two-dimensional figure, geometry, comparing or estimating longer-shorter, smaller-bigger, or more-less.

  20. The CoRe of the Matter: Developing Primary Teachers' Professional Knowledge in Science

    Science.gov (United States)

    Hume, Anne

    2016-01-01

    In an educational landscape of primary teachers' underdeveloped professional knowledge and low feelings of self-efficacy around science teaching, the prospects for science losing status in the primary school curriculum seems grim. This paper reports positive findings from a New Zealand research project designed to support and enhance primary…

  1. Developing Workforce Capacity in Public Health Informatics: Core Competencies and Curriculum Design

    Directory of Open Access Journals (Sweden)

    Douglas R. Wholey

    2018-05-01

    Full Text Available We describe a master’s level public health informatics (PHI curriculum to support workforce development. Public health decision-making requires intensive information management to organize responses to health threats and develop effective health education and promotion. PHI competencies prepare the public health workforce to design and implement these information systems. The objective for a Master’s and Certificate in PHI is to prepare public health informaticians with the competencies to work collaboratively with colleagues in public health and other health professions to design and develop information systems that support population health improvement. The PHI competencies are drawn from computer, information, and organizational sciences. A curriculum is proposed to deliver the competencies and result of a pilot PHI program is presented. Since the public health workforce needs to use information technology effectively to improve population health, it is essential for public health academic institutions to develop and implement PHI workforce training programs.

  2. Developing Workforce Capacity in Public Health Informatics: Core Competencies and Curriculum Design

    Science.gov (United States)

    Wholey, Douglas R.; LaVenture, Martin; Rajamani, Sripriya; Kreiger, Rob; Hedberg, Craig; Kenyon, Cynthia

    2018-01-01

    We describe a master’s level public health informatics (PHI) curriculum to support workforce development. Public health decision-making requires intensive information management to organize responses to health threats and develop effective health education and promotion. PHI competencies prepare the public health workforce to design and implement these information systems. The objective for a Master’s and Certificate in PHI is to prepare public health informaticians with the competencies to work collaboratively with colleagues in public health and other health professions to design and develop information systems that support population health improvement. The PHI competencies are drawn from computer, information, and organizational sciences. A curriculum is proposed to deliver the competencies and result of a pilot PHI program is presented. Since the public health workforce needs to use information technology effectively to improve population health, it is essential for public health academic institutions to develop and implement PHI workforce training programs. PMID:29770321

  3. Science teachers designing context-based curriculum materials : developing context-based teaching competence

    NARCIS (Netherlands)

    Putter - Smits, de L.G.A.

    2012-01-01

    The intended new context-based curriculum for four science subjects (AS-MaT1, biology, chemistry, and physics) in senior general secondary education and pre-university education has been the subject of numerous research and teacher professionalisation efforts in the Netherlands for the last seven

  4. Using Evolution as a Context for Teaching the Nature of Science to Diverse Student Populations: A High School Unit of Curriculum

    Science.gov (United States)

    Metcalfe, Angela C.

    Teaching evolution provides teachers with the opportunity to educate students on how science aims to understand the natural world. Rooted in research, the purpose of this project was to create NGSS-aligned curriculum focused on teaching the nature of science (NOS) within the context of biological evolution. Field testing and review of the unit resulted in revisions aimed at creating more comprehensive teacher resource materials and explicit inclusion of NOS. Emphasizing NOS in curriculum development and teaching scientific qualities through an evolutionary context has taken the focus off belief or disbelief, keeping the attention on the scientific concept at hand. Designing curriculum around compelling subject matter and embracing student-led learning increased and maintained student interest in the classroom. Implementation of this curriculum not only requires the teacher to be knowledgeable in conventional educational pedagogy, but also the subjects of NGSS and NOS. Additional training and support centered around NGSS is recommended for science educators interested in integrating NOS into their curriculum and instruction.

  5. From FRA to RFN, or How the Family Resemblance Approach Can Be Transformed for Science Curriculum Analysis on Nature of Science

    Science.gov (United States)

    Kaya, Ebru; Erduran, Sibel

    2016-01-01

    The inclusion of Nature of Science (NOS) in the science curriculum has been advocated around the world for several decades. One way of defining NOS is related to the family resemblance approach (FRA). The family resemblance idea was originally described by Wittgenstein. Subsequently, philosophers and educators have applied Wittgenstein's idea to…

  6. A national survey to define a new core curriculum to prepare physicians for managed care practice.

    Science.gov (United States)

    Meyer, G S; Potter, A; Gary, N

    1997-08-01

    All levels of medical education will require modification to address the challenges in health care practice brought about by managed care. Because preparation for practice in a managed care environment has received insufficient attention, and because the need for change is so great, in 1995 the authors sought information from a variety of sources to serve as a basis for identifying the core curricular components and the staging of these components in the medical education process. This research effort consisted of a survey of 125 U.S. medical school curriculum deans (or equivalent school representatives); four focus groups of managed care practitioners, administrators, educators, and residents; and a survey of a national sample of physicians and medical directors. Findings indicate that almost all the 91 responding school representatives recognized the importance of revising their curricula to meet the managed care challenge and that the majority either had or were developing programs to train students for practice in managed care environments. The focus groups identified a core set of competencies for managed care practice, although numbers differed on whether the classroom or a managed care setting was the best place to teach the components of a new curriculum. Although medical directors and staff physicians differed with respect to the relative levels of importance of these competencies, the findings suggest that before medical school, training should focus on communication and interpersonal skills, information systems, and customer relations; during medical school, on clinical epidemiology, quality assurance, risk management, and decision analysis; during residency, on utilization management, managed care essentials, and multidisciplinary team building; and after residency, on a review of customer relations, communication skills, and utilization management. The authors conclude that a core curriculum and its sequencing can be identified, that the majority of

  7. The Value of Fidelity of Implementation Criteria to Evaluate School-Based Science Curriculum Innovations

    Science.gov (United States)

    Lee, Yew-Jin; Chue, Shien

    2013-10-01

    School-based curriculum innovations, including those in science education, are usually not adequately evaluated, if at all. Furthermore, current procedures and instruments for programme evaluations are often unable to support evidence-based decision-making. We suggest that adopting fidelity of implementation (FOI) criteria from healthcare research can both characterize and narrow the separation between programme intent and actual implementation, which is a mandatory stage of evaluation before determining overall programme value. We demonstrate how such a process could be applied by science educators using data from a secondary school in Singapore that had devised a new curriculum to promote interest, investigative processes, and knowledge in science. Results showed that there were ambivalent student responses to this programme, while there were high levels of science process skill instruction and close alignment with the intended lesson design. The implementation of this programme appeared to have a satisfactory overall level of FOI, but we also detected tensions between programme intent and everyday classroom teaching. If we want to advance science education, then our argument is that applying FOI criteria is necessary when evaluating all curricular innovations, not just those that originate from schools.

  8. Into the Curriculum. Art: Whistler's Mother; Reading/Language Arts: Finding My Voice; Science: Where on My Tongue? Taste; Social Studies/Science: Volcanoes; Social Studies: Pompeii.

    Science.gov (United States)

    Reed-Mundell, Charlie

    2001-01-01

    Provides five fully developed library media activities that are designed for use with specific curriculum units in art, reading, language arts, science, and social studies. Describes library media skills, curriculum objectives, grade levels, resources, instructional roles, procedures, evaluation, and follow-up for each activity. (LRW)

  9. Capturing and portraying science student teachers' pedagogical content knowledge through CoRe construction

    Science.gov (United States)

    Thongnoppakun, Warangkana; Yuenyong, Chokchai

    2018-01-01

    Pedagogical content knowledge (PCK) is an essential kind of knowledge that teacher have for teaching particular content to particular students for enhance students' understanding, therefore, teachers with adequate PCK can give content to their students in an understandable way rather than transfer subject matter knowledge to learner. This study explored science student teachers' PCK for teaching science using Content representation base methodology. Research participants were 68 4th year science student teachers from department of General Science, faculty of Education, Phuket Rajabhat University. PCK conceptualization for teaching science by Magnusson et al. (1999) was applied as a theoretical framework in this study. In this study, Content representation (CoRe) by Loughran et al. (2004) was employed as research methodology in the lesson preparation process. In addition, CoRe consisted of eight questions (CoRe prompts) that designed to elicit and portray teacher's PCK for teaching science. Data were collected from science student teachers' CoRes design for teaching a given topic and student grade. Science student teachers asked to create CoRes design for teaching in topic `Motion in one direction' for 7th grade student and further class discussion. Science student teachers mostly created a same group of science concepts according to subunits of school science textbook rather than planned and arranged content to support students' understanding. Furthermore, they described about the effect of student's prior knowledge and learning difficulties such as students' knowledge of Scalar and Vector quantity; and calculating skill. These responses portrayed science student teacher's knowledge of students' understanding of science and their content knowledge. However, they still have inadequate knowledge of instructional strategies and activities for enhance student learning. In summary, CoRes design can represented holistic overviews of science student teachers' PCK related

  10. Computer science education for medical informaticians.

    Science.gov (United States)

    Logan, Judith R; Price, Susan L

    2004-03-18

    The core curriculum in the education of medical informaticians remains a topic of concern and discussion. This paper reports on a survey of medical informaticians with Master's level credentials that asked about computer science (CS) topics or skills that they need in their employment. All subjects were graduates or "near-graduates" of a single medical informatics Master's program that they entered with widely varying educational backgrounds. The survey instrument was validated for face and content validity prior to use. All survey items were rated as having some degree of importance in the work of these professionals, with retrieval and analysis of data from databases, database design and web technologies deemed most important. Least important were networking skills and object-oriented design and concepts. These results are consistent with other work done in the field and suggest that strong emphasis on technical skills, particularly databases, data analysis, web technologies, computer programming and general computer science are part of the core curriculum for medical informatics.

  11. Next Generation Science Partnerships

    Science.gov (United States)

    Magnusson, J.

    2016-02-01

    I will provide an overview of the Next Generation Science Standards (NGSS) and demonstrate how scientists and educators can use these standards to strengthen and enhance their collaborations. The NGSS are rich in content and practice and provide all students with an internationally-benchmarked science education. Using these state-led standards to guide outreach efforts can help develop and sustain effective and mutually beneficial teacher-researcher partnerships. Aligning outreach with the three dimensions of the standards can help make research relevant for target audiences by intentionally addressing the science practices, cross-cutting concepts, and disciplinary core ideas of the K-12 science curriculum that drives instruction and assessment. Collaborations between researchers and educators that are based on this science framework are more sustainable because they address the needs of both scientists and educators. Educators are better able to utilize science content that aligns with their curriculum. Scientists who learn about the NGSS can better understand the frameworks under which educators work, which can lead to more extensive and focused outreach with teachers as partners. Based on this model, the International Ocean Discovery Program (IODP) develops its education materials in conjunction with scientists and educators to produce accurate, standards-aligned activities and curriculum-based interactions with researchers. I will highlight examples of IODP's current, successful teacher-researcher collaborations that are intentionally aligned with the NGSS.

  12. Challenging traditional assumptions of high school science through the physics and Everyday Thinking Curriculum(TM)

    Science.gov (United States)

    Ross, Michael J.

    Science education in the U.S. has failed for over a century to bring the experience of scientific induction to classrooms, from elementary science to undergraduate courses. The achievement of American students on international comparisons of science proficiency is unacceptable, and the disparities between groups underrepresented in STEM and others are large and resistant to reform efforts. This study investigated the enactment of a physics curriculum designed upon the inductive method in a high school serving mostly students from groups underrepresented in science. The Physics and Everyday Thinking curriculum was designed to model the central practices of science and to provide opportunities for students to both extract general principles of physics and to develop scientific models from laboratory evidence. The findings of this study suggest that scientific induction is not only a process that is well within the capacity of high school students, but they enjoy it as well. Students that engaged in the central practices of science through the inductive method reported a new sense of agency and control in their learning. These findings suggest that modeling the pedagogy of the science classroom upon the epistemology of science can result in a mode of learning that can lead to positive identification with physics and the development of scientific literacy.

  13. Improvement on a science curriculum including experimental demonstration of environmental radioactivity for secondary school students

    International Nuclear Information System (INIS)

    Watanabe, Kenji; Matsubara, Shizuo; Aiba, Yoshio; Eriguchi, Hiroshi; Kiyota, Saburo; Takeyama, Tetsuji.

    1988-01-01

    A science curriculum previously prepared for teaching environmental radioactivity was modified on the basis of the results of trial instructions in secondary schools. The main subject of the revised curriculum is an understanding of the natural radioactivity through the experimental demonstration about air-borne β and γ ray emitters. The other subjects included are the radioactive decay, the biological effects of radiation, the concept of risk-benefit balance (acceptable level) and the peaceful uses of nuclear energy and radiation. The work sheets and reference data prepared as learning materials are in two levels corresponding to the ability of students for this curriculum. (author)

  14. The Proof of the Pudding?: A Case Study of an "At-Risk" Design-Based Inquiry Science Curriculum

    Science.gov (United States)

    Chue, Shien; Lee, Yew-Jin

    2013-12-01

    When students collaboratively design and build artifacts that require relevant understanding and application of science, many aspects of scientific literacy are developed. Design-based inquiry (DBI) is one such pedagogy that can serve these desired goals of science education well. Focusing on a Projectile Science curriculum previously found to be implemented with satisfactory fidelity, we investigate the many hidden challenges when using DBI with Grade 8 students from one school in Singapore. A case study method was used to analyze video recordings of DBI lessons conducted over 10 weeks, project presentations, and interviews to ascertain the opportunities for developing scientific literacy among participants. One critical factor that hindered learning was task selection by teachers, which emphasized generic scientific process skills over more important cognitive and epistemic learning goals. Teachers and students were also jointly engaged in forms of inquiry that underscored artifact completion over deeper conceptual and epistemic understanding of science. Our research surfaced two other confounding factors that undermined the curriculum; unanticipated teacher effects and the underestimation of the complexity of DBI and of inquiry science in general. Thus, even though motivated or experienced teachers can implement an inquiry science curriculum with good fidelity and enjoy school-wide support, these by themselves will not guarantee deep learning of scientific literacy in DBI. Recommendations are made for navigating the hands- and minds-on aspects of learning science that is an asset as well as inherent danger during DBI teaching.

  15. Examining the Features of Earth Science Logical Reasoning and Authentic Scientific Inquiry Demonstrated in a High School Earth Science Curriculum: A Case Study

    Science.gov (United States)

    Park, Do-Yong; Park, Mira

    2013-01-01

    The purpose of this study was to investigate the inquiry features demonstrated in the inquiry tasks of a high school Earth Science curriculum. One of the most widely used curricula, Holt Earth Science, was chosen for this case study to examine how Earth Science logical reasoning and authentic scientific inquiry were related to one another and how…

  16. A Curriculum Development for the Enhancement of Learning Management Performances Emphasizing Higher Order Thinking Skills for Lower Secondary Science Teachers

    Directory of Open Access Journals (Sweden)

    Saksit Seeluangpetch

    2016-12-01

    Full Text Available This study aimed at 1 investigating the problems and needs for the enhancement of learning management performances emphasizing the higher order thinking skills for lower secondary Science teachers, 2 developing an effective curriculum to enhance the learning management performances which emphasized the higher order thinking skills for lower secondary Science teachers, and 3 studying the effects of using the curriculum developed for the enhancement of learning management performances emphasizing the higher order thinking skills for lower secondary Science teachers. The research was conducted in 4 phases. Phase 1 of the research was the study of fundamental information regarding problems and needs for the enhancement of learning management performances emphasizing the higher order thinking skills for lower secondary Science teachers. It was carried out by studying the related literature and exploring the needs. The instrument used in Phase 1 study was the needs assessment. The statistics used for data analysis were mean ( , percentage (%, and standard deviation (S.D.. The result of the study revealed that the Science teachers’ prior knowledge was at low level and the need to enhance their performances was at high level. The development of the curriculum was carried out in Phase 2 of the study. The curriculum was constructed and developed in order to enhance the learning management performances which emphasized the higher order thinking skills. The instrument used was the appropriateness the assessment of the curriculum framework. Mean ( , percentage (%, and standard deviation (S.D. were used to analyze the data. The result of the assessment showed that the overall appropriateness of the curriculum was at high level. The main components of the curriculum comprised of curriculum’s problem and necessity, rationale, objective, structure, training activity, training media, training duration, and evaluation and assessment. The curriculum trial was

  17. Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration

    Science.gov (United States)

    Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.

    2017-12-01

    "Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of

  18. The Curriculum-Faculty-Reinforcement Alignment and Its Effect on Learning Retention of Core Marketing Concepts of Marketing Capstone Students

    Science.gov (United States)

    Raska, David; Keller, Eileen Weisenbach; Shaw, Doris

    2014-01-01

    Curriculum-Faculty-Reinforcement (CFR) alignment is an alignment between fundamental marketing concepts that are integral to the mastery of knowledge expected of our marketing graduates, their perceived importance by the faculty, and their level of reinforcement throughout core marketing courses required to obtain a marketing degree. This research…

  19. The Effects of Gender and Type of Inquiry Curriculum on Sixth Grade Students' Science Process Skills and Epistemological Beliefs in Science

    Science.gov (United States)

    Zaleta, Kristy L.

    The purpose of this study was to investigate the impact of gender and type of inquiry curriculum (open or structured) on science process skills and epistemological beliefs in science of sixth grade students. The current study took place in an urban northeastern middle school. The researcher utilized a sample of convenience comprised of 303 sixth grade students taught by four science teachers on separate teams. The study employed mixed methods with a quasi-experimental design, pretest-posttest comparison group with 17 intact classrooms of students. Students' science process skills and epistemological beliefs in science (source, certainty, development, and justification) were measured before and after the intervention, which exposed different groups of students to different types of inquiry (structured or open). Differences between comparison and treatment groups and between male and female students were analyzed after the intervention, on science process skills, using a two-way analysis of covariance (ANCOVA), and, on epistemological beliefs in science, using a two-way multivariate analysis of covariance (MANCOVA). Responses from two focus groups of open inquiry students were cycle coded and examined for themes and patterns. Quantitative measurements indicated that girls scored significantly higher on science process skills than boys, regardless of type of inquiry instruction. Neither gender nor type of inquiry instruction predicted students' epistemological beliefs in science after accounting for students' pretest scores. The dimension Development accounted for 10.6% of the variance in students' science process skills. Qualitative results indicated that students with sophisticated epistemological beliefs expressed engagement with the open-inquiry curriculum. Students in both the sophisticated and naive beliefs groups identified challenges with the curriculum and improvement in learning as major themes. The types of challenges identified differed between the groups

  20. Using just-in-time teaching and peer instruction in a residency program's core curriculum: enhancing satisfaction, engagement, and retention.

    Science.gov (United States)

    Schuller, Mary C; DaRosa, Debra A; Crandall, Marie L

    2015-03-01

    To assess use of the combined just-in-time teaching (JiTT) and peer instruction (PI) instructional strategy in a residency program's core curriculum. In 2010-2011, JiTT/PI was piloted in 31 core curriculum sessions taught by 22 faculty in the Northwestern University Feinberg School of Medicine's general surgery residency program. JiTT/PI required preliminary and categorical residents (n=31) to complete Web-based study questions before weekly specialty topic sessions. Responses were examined by faculty members "just in time" to tailor session content to residents' learning needs. In the sessions, residents answered multiple-choice questions (MCQs) using clickers and engaged in PI. Participants completed surveys assessing their perceptions of JiTT/PI. Videos were coded to assess resident engagement time in JiTT/PI sessions versus prior lecture-based sessions. Responses to topic session MCQs repeated in review sessions were evaluated to study retention. More than 70% of resident survey respondents indicated that JiTT/PI aided in the learning of key points. At least 90% of faculty survey respondents reported positive perceptions of aspects of the JiTT/PI strategy. Resident engagement time for JiTT/PI sessions was significantly greater than for prior lecture-based sessions (z=-2.4, P=.016). Significantly more review session MCQ responses were correct for residents who had attended corresponding JiTT/PI sessions than for residents who had not (chi-square=13.7; df=1; P<.001). JiTT/PI increased learner participation, learner retention, and the amount of learner-centered time. JiTT/PI represents an effective approach for meaningful and active learning in core curriculum sessions.

  1. The Innovative Immersion of Mobile Learning into a Science Curriculum in Singapore: An Exploratory Study

    Science.gov (United States)

    Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting

    2016-01-01

    With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear…

  2. Social Science Curriculum Guide and Selected Multi-Media, K-6.

    Science.gov (United States)

    Gaydosh, Ronald; And Others

    GRADES OR AGES: K-6. SUBJECT MATTER: Social science. ORGANIZATION AND PHYSICAL APPEARANCE: The introductory material includes an explanation of the rationale, definitions of the social science core disciplines, glossary of terms, guidelines for teaching, and descriptions of concepts. The main body of the guide is designed in a five-column…

  3. Developing a virtual community for health sciences library book selection: Doody's Core Titles.

    Science.gov (United States)

    Shedlock, James; Walton, Linda J

    2006-01-01

    The purpose of this article is to describe Doody's Core Titles in the Health Sciences as a new selection guide and a virtual community based on an effective use of online systems and to describe its potential impact on library collection development. The setting is the availability of health sciences selection guides. Participants include Doody Enterprise staff, Doody's Library Board of Advisors, content specialists, and library selectors. Resources include the online system used to create Doody's Core Titles along with references to complementary databases. Doody's Core Titles is described and discussed in relation to the literature of selection guides, especially in comparison to the Brandon/Hill selected lists that were published from 1965 to 2003. Doody's Core Titles seeks to fill the vacuum created when the Brandon/Hill lists ceased publication. Doody's Core Titles is a unique selection guide based on its method of creating an online community of experts to identify and score a core list of titles in 119 health sciences specialties and disciplines. The result is a new selection guide, now available annually, that will aid health sciences librarians in identifying core titles for local collections. Doody's Core Titles organizes the evaluation of core titles that are identified and recommended by content specialists associated with Doody's Book Review Service and library selectors. A scoring mechanism is used to create the selection of core titles, similar to the star rating system employed in other Doody Enterprise products and services.

  4. Towards a Philosophically and a Pedagogically Reasonable Nature of Science Curriculum

    Science.gov (United States)

    Yacoubian, Hagop Azad

    This study, primarily theoretical in nature, explores a philosophically and pedagogically reasonable way of addressing nature of science (NOS) in school science. NOS encompasses what science is and how scientific knowledge develops. I critically evaluate consensus frameworks of NOS in school science, which converge contentious philosophical viewpoints into general NOS-related ideas. I argue that they (1) lack clarity in terms of how NOS-related ideas could be applied for various ends, (2) portray a distorted image of the substantive content of NOS and the process of its development, and (3) lack a developmental trajectory for how to address NOS at different grade levels. As a remedy to these problems, I envision a NOS curriculum that (1) explicates and targets both NOS as an educational end and NOS as a means for socioscientific decision making, (2) has critical thinking as its foundational pillar, and (3) provides a developmental pathway for NOS learning using critical thinking as a progression unit. Next, I illustrate a framework for addressing NOS in school science referred to as the critical thinking—nature of science (CT-NOS) framework. This framework brings together the first two of the three elements envisioned in the NOS curriculum. I address the third element by situating the CT-NOS framework in a developmental context, borrowing from the literature on learning progressions in science and using critical thinking as a progression unit. Finally, I present an empirical study of experienced secondary science teachers’ views of a NOS lesson prepared using the CT-NOS framework. The teachers attended a professional development workshop at which the lesson, and the characteristics of the CT-NOS framework, were presented. The analysis of the qualitative data revealed that most teachers found the lesson to be somewhat feasible for a secondary science classroom, useful or somewhat useful to their students, and interesting. The teachers focused on 14 features of

  5. Science Education Curriculum Development Principles in Taiwan: Connecting with Aboriginal Learning and Culture

    Science.gov (United States)

    Huang, Tzu-Hua; Liu, Yuan-Chen

    2017-01-01

    This paper reflects thorough consideration of cultural perspectives in the establishment of science curriculum development principles in Taiwan. The authority explicitly states that education measures and activities of aboriginal peoples' ethnic group should be implemented consistently to incorporate their history, language, art, living customs,…

  6. Middle School Teacher Misconceptions and Anxieties Concerning Space Science Disciplinary Core Ideas in NGSS

    Science.gov (United States)

    Larsen, Kristine

    2017-01-01

    The Disciplinary Core Ideas (DCI) of the Next Generation Science Standards (NGSS) are grouped into the broad disciplinary areas of Physical Sciences, Life Sciences, Earth and Space Sciences, and Engineering, Technology and Application of Science, and feature learning progressions based on endpoint targets for each grade band. Since the Middle School DCIs build on the expected learning achievements to be reached by the end of Fifth Grade, and High School DCI similarly build on the expected learning achievements expected for the end of Eighth Grade, the Middle School grade band is of particular importance as the bridge between the Elementary and High School curriculum. In states where there is not a special Middle School Certification many of these science classes are taught by teachers prepared to teach at the Elementary level (and who may have limited content background). As a result, some pre-service and in-service teachers have expressed reduced self-confidence in both their own science content knowledge and their ability to apply it in the NGSS-based classroom, while decades of research has demonstrated the pervasiveness of science misconceptions among teachers. Thus the adoption of NGSS has the potential to drive talented teachers out of the profession who feel that they are ill-prepared for this sweeping transition. The key is providing rigorous education in both content and pedagogy for pre-service teachers and quality targeted professional development for in-service teachers. This report focuses on the Middle School Space Sciences grade band DCIs and presents research on specific difficulties, misconceptions and uncertainties with the material demonstrated by pre-service education students over the past four years in a required university science content course, as well as two year-long granted workshop series for current Middle School teachers. This information is relevant to the development of both new content courses aligned with NGSS for pre

  7. Curriculum and instruction in nuclear waste disposal

    International Nuclear Information System (INIS)

    Robinson, M.; Lugaski, T.; Pankratius, B.

    1991-01-01

    Curriculum and instruction in nuclear waste disposal is part of the larger problem of curriculum and instruction in science. At a time when science and technological literacy is crucial to the nation's economic future fewer students are electing to take needed courses in science that might promote such literacy. The problem is directly related to what science teachers teach and how they teach it. Science content that is more relevant and interesting to students must be a part of the curriculum. Science instruction must allow students to be actively involved in investigating or playing the game of science

  8. Nurturing At-Risk Youth in Math and Science: Curriculum and Teaching Considerations.

    Science.gov (United States)

    Tobias, Randolf

    The social environment of today has necessitated revision in educators' beliefs about what students are considered to be at risk of failing to complete their education with adequate levels of skills. This book addresses this issue in the areas of mathematics and science and is intended as a curriculum and teacher training accompaniment that can…

  9. Management of Heart Failure in Advancing CKD: Core Curriculum 2018.

    Science.gov (United States)

    House, Andrew A

    2018-02-23

    Heart failure and chronic kidney disease have increasing incidence and prevalence owing in part to the aging population and increasing rates of hypertension, diabetes, and other cardiovascular and kidney disease risk factors. The presence of one condition also has a strong influence on the other, leading to greater risks for hospitalization, morbidity, and death, as well as very high health care costs. Despite the frequent coexistence of heart failure and chronic kidney disease, many of the pivotal randomized trials that guide the management of heart failure have excluded patients with more advanced stages of chronic kidney disease. In this Core Curriculum article, management of a challenging, yet not unusual, case of heart failure with reduced ejection fraction in a patient with stage 4 chronic kidney disease provides an opportunity to review the relevant literature and highlight gaps in our knowledge. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  10. Study on Spatial Cultural Heritage Integrated into the Core Curriculum

    Science.gov (United States)

    Hsu, W. H.; Lai, Y. P.

    2015-08-01

    These Many countries have put a lot of efforts, promoting education of cultural heritage, to raise the conservation awareness and increase people's participation. However, the development of Taiwan's higher education about cultural heritage has not shown a significant growth, so it didn't train talents with enough cultural heritage awareness. In the workplace, these professionals will inevitably lack of comprehensions and the appropriate professional assessments for cultural heritage. Hence, the main objective of this paper is to study and combine these concepts into the core curriculum of Department of Construction and Spatial Design at Tungnan University. It takes the local "Shenkeng historic cultural district" as a case study, and will gradually develop an proper interdisciplinary course in order to help local residents implement projects of conserving cultural heritage. This plan not only can increase schools' engagements toward communities, with an ability of social civilization, but also it can encourage the conservation and maintenance of cultural heritages.

  11. Is there a Core Curriculum across Higher Education Doctoral Programs?

    Directory of Open Access Journals (Sweden)

    Sydney Freeman Jr.

    2016-03-01

    Full Text Available Currently the study of higher education has been referred to as a multidisciplinary field. Consensus is continuing to evolve regarding both what is considered the appropriate coursework and the foundational knowledgebase of this field. The study of higher education is maturing and has the potential to transition from being seen as a field to being respected as an academic discipline. The purpose of the present study is to investigate the status of the core curriculum in higher education doctoral programs from the perspective of program directors with programs that required the completion of standardized coursework prior to beginning a dissertation. We used online survey analytic techniques to query program directors about their EdD and PhD programs in higher education, credit hours, and curricular content. Our study confirms previous work finding that there is common agreement in the subject matter areas of organization, leadership, administration, and history. What our work adds is that there is a growing consensus among higher education doctoral programs about the position of higher education law and finance in the curricular core. In addition, we find there is a growing interest in public policy and community colleges over time, with a majority of EdD programs including instruction in these areas. Nevertheless, majoritarian agreement does not meet at a level wherein consensus can be inferred, especially within PhD programs where requirements are more varied across programs. In addition, while there is an increasing trend in the inclusion of multiculturalism in higher education doctoral programming, multiculturalism is not currently part of higher education’s core. We conclude with research and practice implications for doctoral programs in higher education as a field of study.

  12. Primary Science Education in China

    Science.gov (United States)

    Pook, Gayle

    2013-01-01

    Consider the extent to which primary science teaching has evolved since it became a core subject in England with the introduction of the National Curriculum in 1988, and the pace at which theory-driven classroom practice has advanced. It is no wonder that, given the recent economic restructuring and boom in technological development in China,…

  13. Exploring the Associations Among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum.

    Science.gov (United States)

    Stage, Virginia C; Kolasa, Kathryn M; Díaz, Sebastián R; Duffrin, Melani W

    2018-01-01

    Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across North Carolina and Ohio; mean age 10 years old; gender (I = 53.2% female; C = 51.6% female). Dependent variable = post-test-nutrition knowledge; independent variables = baseline-nutrition knowledge, and post-test science and mathematics knowledge. Analyses included descriptive statistics and multiple linear regression. The hypothesized model predicted post-nutrition knowledge (F(437) = 149.4, p mathematics knowledge were predictive of nutrition knowledge indicating use of an integrative science and mathematics curriculum to improve academic knowledge may also simultaneously improve nutrition knowledge among fourth-grade students. Teachers can benefit from integration by meeting multiple academic standards, efficiently using limited classroom time, and increasing nutrition education provided in the classroom. © 2018, American School Health Association.

  14. Science for Survival: The Modern Synthesis of Evolution and The Biological Sciences Curriculum Study

    Science.gov (United States)

    Green, Lisa Anne

    In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called "the modern synthesis of evolution." Building primarily on the work of historians Vassiliki Smocovitis and John L. Rudolph, I used the archival papers and published writings of the four architects of the modern synthesis and the four most influential leaders of the BSCS in regards to evolution to investigate how the modern synthetic theory of evolution shaped the BSCS curriculum. The central question was "Why was evolution so important to the BSCS to make it the central theme of the texts?" Important answers to this question had already been offered in the historiography, but it was still not clear why every citizen in the world needed to understand evolution. I found that the emphasis on natural selection in the modern synthesis shifted the focus away from humans as passive participants to the recognition that humans are active agents in their own cultural and biological evolution. This required re-education of the world citizenry, which was accomplished in part by the BSCS textbooks. I also found that BSCS leaders Grobman, Glass, and Muller had serious concerns regarding the effects of nuclear radiation on the human gene pool, and were actively involved in informing th public. Lastly, I found that concerns of 1950s reform eugenicists were addressed in the BSCS textbooks, without mentioning eugenics by name. I suggest that the leaders of the BSCS, especially Bentley Glass and Hermann J. Muller, thought that students needed to understand genetics and evolution to be able to make some of the tough choices they might be called on to make as the dominant species on earth and the next reproductive generation in the nuclear age. This

  15. Innovative curriculum: Integrating the bio-behavioral and social science principles across the LifeStages in basic science years.

    Science.gov (United States)

    Lele Mookerjee, Anuradha; Fischer, Bradford D; Cavanaugh, Susan; Rajput, Vijay

    2018-05-20

    Behavioral and social science integration in clinical practice improves health outcomes across the life stages. The medical school curriculum requires an integration of the behavioral and social science principles in early medical education. We developed and delivered a four-week course entitled "LifeStages" to the first year medical students. The learning objectives of the bio-behavioral and social science principles along with the cultural, economic, political, and ethical parameters were integrated across the lifespan in the curriculum matrix. We focused on the following major domains: Growth and Brain Development; Sexuality, Hormones and Gender; Sleep; Cognitive and Emotional Development; Mobility, Exercise, Injury and Safety; Nutrition, Diet and Lifestyle; Stress and coping skills, Domestic Violence; Substance Use Disorders; Pain, Illness and Suffering; End of Life, Ethics and Death along with Intergenerational issues and Family Dynamics. Collaboration from the clinical and biomedical science departments led to the dynamic delivery of the course learning objectives and content. The faculty developed and led a scholarly discussion, using the case of a multi-racial, multi-generational family during Active Learning Group (ALG) sessions. The assessment in the LifeStages course involved multiple assessment tools: including the holistic assessment by the faculty facilitator inside ALGs, a Team-Based Learning (TBL) exercise, multiple choice questions and Team Work Assessment during which the students had to create a clinical case on a LifeStages domain along with the facilitators guide and learning objectives.

  16. When Are Students Ready for Research Methods? A Curriculum Mapping Argument for the Political Science Major

    Science.gov (United States)

    Bergbower, Matthew L.

    2017-01-01

    For many political science programs, research methods courses are a fundamental component of the recommended undergraduate curriculum. However, instructors and students often see these courses as the most challenging. This study explores when it is most appropriate for political science majors to enroll and pass a research methods course. The…

  17. Windmills by Design: Purposeful Curriculum Design to Meet Next Generation Science Standards in a 9-12 Physics Classroom

    Science.gov (United States)

    Concannon, James; Brown, Patrick L.

    2017-01-01

    The "Next Generation Science Standards" (NGSS) challenges science teachers to think beyond specific content standards when considering how to design and implement curriculum. This lesson, "Windmills by Design," is an insightful lesson in how science teachers can create and implement a cross-cutting lesson to teach the concepts…

  18. Integrated Curriculum and Subject-based Curriculum: Achievement and Attitudes

    Science.gov (United States)

    Casady, Victoria

    The research conducted for this mixed-method study, qualitative and quantitative, analyzed the results of an academic year-long study to determine whether the use of an integrated fourth grade curriculum would benefit student achievement in the areas of English language arts, social studies, and science more than a subject-based traditional curriculum. The research was conducted based on the international, national, and state test scores, which show a slowing or lack of growth. Through pre- and post-assessments, student questionnaires, and administrative interviews, the researcher analyzed the phenomenological experiences of the students to determine if the integrated curriculum was a beneficial restructuring of the curriculum. The research questions for this study focused on the achievement and attitudes of the students in the study and whether the curriculum they were taught impacted their achievement and attitudes over the course of one school year. The curricula for the study were organized to cover the current standards, where the integrated curriculum focused on connections between subject areas to help students make connections to what they are learning and the world beyond the classroom. The findings of this study indicated that utilizing the integrated curriculum could increase achievement as well as students' attitudes toward specific content areas. The ANOVA analysis for English language arts was not determined to be significant; although, greater growth in the students from the integrated curriculum setting was recorded. The ANOVA for social studies (0.05) and the paired t-tests (0.001) for science both determined significant positive differences. The qualitative analysis led to the discovery that the experiences of the students from the integrated curriculum setting were more positive. The evaluation of the data from this study led the researcher to determine that the integrated curriculum was a worthwhile endeavor to increase achievement and attitudes

  19. Incorporating nanoscale science and technology into secondary school curriculum: Views of nano-trained science teachers

    Directory of Open Access Journals (Sweden)

    Antti Laherto

    2011-09-01

    Full Text Available The growing societal significance of nanoscience and nanotechnology (NST entails needs for addressing these topics in school curricula. This study lays groundwork for responding to those needs in Finland. The purpose was to analyse the appropriateness of NST for secondary school curriculum contents. First, a week-long in-service teacher training course was arranged on content knowledge of NST. After attending the course, 23 experienced science teachers were surveyed regarding their views on the educational significance of these issues, and on prospects for including them into the curriculum. A questionnaire with open-ended questions was used. Qualitative content analysis of the responses revealed that the respondents considered NST as desirable contents for secondary school, but arranging instruction is problematic. The teachers emphasised the educational significance of many applications, scientific principles and ethical issues related to NST. The outcomes are discussed with reference to recent studies on teachers’ barriers and educational concerns regarding NST.

  20. Mapping Physical Sciences Teachers' Concerns Regarding the New Curriculum in South Africa

    Science.gov (United States)

    Gudyanga, Remeredzayi; Jita, Loyiso C.

    2018-01-01

    This article reports on a study investigating physical sciences teachers' stages of concern (SoC) profiles during the implementation of the curriculum and assessment policy statement (CAPS) in South Africa. Throughout reform implementation, it is conceivable that teachers go through different SoC, ranging from giving low priority to the reform…

  1. INTRODUCTION TO SCIENCE: A CURRICULUM APPROACH

    Directory of Open Access Journals (Sweden)

    André A. G. Bianco

    2007-05-01

    Full Text Available International and national institutions concerned with higher education recommendthe inclusion in curriculum of strategies to promote development of aditional skills thentraditionals memorazing habilities and contents reproduction. Between this, specialattention is given to stimulating the critical capacitie. To develop this skills, was given aproject, included into the Biochemistry discipline, with freshmen students in the Nutritioncourse of the Saúde Pública College of USP. The project consisted into the scientificarticles analysis and in the elaboration of research projects at the Scientific Initiation level.The first part presented the way how Science is divulged and the second, the mold that thescientific knowledge is generated. All activities was always conducted by activecommunication strategy. The general goal was bring near the students of scientificproceedings, contribute to developed scientific attitude, that is to say, critical sense. Theproceeding was evaluated by quantitative methods (questionnaire and qualitative(interview with differents participant and the results point for a significative increase ofknowledge of scientific job and a developed of yerned skills.

  2. Learning transfer of geospatial technologies in secondary science and mathematics core areas

    Science.gov (United States)

    Nielsen, Curtis P.

    The purpose of this study was to investigate the transfer of geospatial technology knowledge and skill presented in a social sciences course context to other core areas of the curriculum. Specifically, this study explored the transfer of geospatial technology knowledge and skill to the STEM-related core areas of science and mathematics among ninth-grade students. Haskell's (2001) research on "levels of transfer" provided the theoretical framework for this study, which sought to demonstrate the experimental group's higher ability to transfer geospatial skills, higher mean assignment scores, higher post-test scores, higher geospatial skill application and deeper levels of transfer application than the control group. The participants of the study consisted of thirty ninth-graders enrolled in U.S. History, Earth Science and Integrated Mathematics 1 courses. The primary investigator of this study had no previous classroom experiences with this group of students. The participants who were enrolled in the school's existing two-section class configuration were assigned to experimental and control groups. The experimental group had ready access to Macintosh MacBook laptop computers, and the control group had ready access to Macintosh iPads. All participants in U.S. History received instruction with and were required to use ArcGIS Explorer Online during a Westward Expansion project. All participants were given the ArcGIS Explorer Online content assessment following the completion of the U.S. History project. Once the project in U.S. History was completed, Earth Science and Integrated Mathematics 1 began units of instruction beginning with a multiple-choice content pre-test created by the classroom teachers. Experimental participants received the same unit of instruction without the use or influence of ArcGIS Explorer Online. At the end of the Earth Science and Integrated Math 1 units, the same multiple-choice test was administered as the content post-test. Following the

  3. The role of project-based learning in the "Political and social sciences of the environment" curriculum at Nijmegen University

    NARCIS (Netherlands)

    Leroy, P.; Bosch, van den H.; Ligthart, S.S.H.

    2001-01-01

    Since the end of 1996, teachers at the Faculty of Policy Sciences at Nijmegen University, The Netherlands, have been working on a new educational programme called "Political and Social Sciences of the Environment" (PSSE). In fact, the PSSE curriculum builds on the Environmental Policy Sciences

  4. Curriculum Package: Elementary Science Lessons. [A Visit to the Louisville, Kentucky Airports: Standiford and Bowman Fields.

    Science.gov (United States)

    Squires, Frances H.

    This science curriculum was written for teachers of children in the elementary grades. It contains science activities for the following lessons: (1) Whirly Birds and the Concept of Lift; (2) Parachutes; (3) Weather Vanes; (4) Paper Airplanes; (5) Flying an Airplane; (6) Jet Engine; (7) Identifying Flying Objects; (8) It's a Bird! It's a Plane; (9)…

  5. Exploring Ivorian Perspectives on the Effectiveness of the Current Ivorian Science Curriculum in Addressing Issues Related to HIV/AIDS

    Science.gov (United States)

    Ado, Gustave Firmin

    2014-01-01

    School-based HIV/AIDS science education has the potential to impact students when integrated into the science curriculum. However, this mixed method study shows that school-based HIV/AIDS science education is often not infused into career subjects such as science education but integrated into civics education and taught by teachers who lack the…

  6. How a science methods course may influence the curriculum decisions of preservice teachers in the Bahamas

    Science.gov (United States)

    Wisdom, Sonya L.

    The purpose of this study was to examine how a science methods course in primary education might influence the curriculum decisions of preservice teachers in The Bahamas related to unit plan development on environmental science topics. Grounded in a social constructivist theoretical framework for teaching and learning science, this study explored the development of the confidence and competence of six preservice teachers to teach environmental science topics at the primary school level. A qualitative case study using action research methodologies was conducted. The perspectives of preservice teachers about the relevancy of methods used in a science methods course were examined as I became more reflective about my practice. Using constant comparative analysis, data from student-written documents and interviews as well as my field notes from class observations and reflective journaling were analyzed for emerging patterns and themes. Findings of the study indicated that while preservice teachers showed a slight increase in interest regarding learning and teaching environmental science, their primary focus during the course was learning effective teaching strategies in science on topics with which they already had familiarity. Simultaneously, I gained a deeper understanding of the usefulness of reflection in my practice. As a contribution to the complexity of learning to teach science at the primary school level, this study suggests some issues for consideration as preservice teachers are supported to utilize more of the national primary science curriculum in The Bahamas.

  7. South African physical sciences teachers' perceptions of new ...

    African Journals Online (AJOL)

    This paper reports on South African teachers' perceptions of the educational value of new topics in a revised physical sciences high school curriculum, their content .... identify the core issues surrounding teachers' views on the new topics, and ... A were generated, enabling us to construct a profile of schools and teachers.

  8. Teaching pharmacology to medical students in an integrated problem-based learning curriculum:an Australian perspective

    Institute of Scientific and Technical Information of China (English)

    Owen L WOODMAN; Agnes E DODDS; Albert G FRAUMAN; Mosepele MOSEPELE

    2004-01-01

    The world-wide move away from the didactic teaching of single disciples to integrated Problem-based Learning (PBL) curricula in medical education has posed challenges for the basic sciences. In this paper we identify two major challenges. The first challenge is the need to describe a core disciplinary curriculum that can be articulated and mapped onto the new structure. We illustrate how the British Pharmacological Society (BPS) Guidelines are used to evaluate the curriculum coverage in the medical course at The University of Melbourne. The second challenge is to ensure that foundational concepts are given adequate emphasis within the new structure, and in particular, that students have the opportunity to pursue these concepts in their self-directed learning. We illustrate one approach to teaching important pharmacological concepts in an integrated curriculum with a case study from the first year curriculum at The University of Melbourne. Finally, we propose the features of an integrated curriculum that facilitates the learning of basic pharmacology in a situation where PBL and integration sets the curriculum framework.

  9. Establishing Enabling Conditions to Develop Critical Thinking Skills: A Case of Innovative Curriculum Design in Environmental Science

    Science.gov (United States)

    Belluigi, Dina Zoe; Cundill, Georgina

    2017-01-01

    This paper considers a curriculum design motivated by a desire to explore more valid pedagogical approaches that foster critical thinking skills among students engaged in an Environmental Science course in South Africa, focussing specifically on the topic of Citizen Science. Fifty-three under graduate students were involved in the course, which…

  10. Evolution: Its Treatment in K-12 State Science Curriculum Standards

    Science.gov (United States)

    Lerner, L. S.

    2001-12-01

    State standards are the basis upon which states and local schools build curricula. Usually taking the form of lists of what students are expected to learn at specified grades or clusters of grades, they influence statewide examinations, textbooks, teacher education and credentialing, and other areas in which states typically exercise control over local curriculum development. State science standards vary very widely in overall quality.1,2 This is especially true in their treatment of evolution, both in the life sciences and to a somewhat lesser extent in geology and astronomy. Not surprisingly, a detailed evaluation of the treatment of evolution in state science standards3 has evoked considerably more public interest than the preceding studies of overall quality. We here consider the following questions: What constitutes a good treatment of evolution in science standards and how does one evaluate the standards? Which states have done well, and which less well? What nonscientific influences have been brought to bear on standards, for what reasons, and by whom? What strategies have been used to obscure or distort the role of evolution as the central organizing principle of the historical sciences? What are the effects of such distortions on students' overall understanding of science? What can the scientific community do to assure the publication of good science standards and to counteract attacks on good science teaching? 1. Lerner, L. S., State Science Standards: An Appraisal of Science Standards in 36 States, The Thomas B. Fordham Foundation, Washington, D.C., March 1998. 2. Lerner, L. S. et al ., The State of State Standards 2000, ibid., January 2000. 3. Lerner, L. S., Good Science, Bad Science: Teaching Evolution In the States, ibid., September 2000.

  11. Cool Science Explains a Warming World: Using Ice Core Science to Bridge the Gap Between Researchers and the K-12 Classroom

    Science.gov (United States)

    Huffman, L. T.

    2017-12-01

    Changing ice has urgent implications for people around the world. The Ice Drilling Program Office (IDPO) provides scientific leadership and oversight of ice coring and drilling activities funded by the US National Science Foundation and also has goals to enhance education and communication of current research information. In a time when misinformation is rampant and climate change science is suspect, it is essential that students receive accurate scientific information and engage in learning activities that model complex ideas through engaging and age appropriate ways, while also learning to validate and recognize reliable sources. The IDPO Education and Outreach (EO) office works to create resources, activities and professional development that bridge the gap between ice core science research and educators and their students. Ice core science is on the cutting edge of new discoveries about climate change and understanding better the past to predict the future. Hands-on inquiry activities based on ice core data allow teachers to lead their students to new discoveries about climate secrets hidden deep in the ice. Capitalizing on the inherent interest in the extremes of the Polar Regions, IDPO materials engage students in activities aligned with NGSS standards. Ice drilling technologies make an ideal platform for intertwining engineering concepts and practices with science research to meet the SEP (Science and Engineering Practices) in the NGSS. This session will highlight how the IDPO EO office has built a community of ice core scientists willing to take part in education and outreach projects and events and share some of the resources available to K-12 educators. We will highlight some of the successes and lessons learned as we continually evolve our work toward more effective science education and communication highlighting ice core and climate change science.

  12. Design of a social constructivism-based curriculum for primary science education in Confucian heritage culture

    NARCIS (Netherlands)

    Vu Thu Hang, N.

    2014-01-01

    This study is about the application of social constructivism in primary science curriculum in Confucian heritage culture. It was found that the implementation of social constructivism in Confucian heritage culture was low and influenced by cultural divergences between Confucian cultural philosophy

  13. Participatory action inquiry using baccalaureate nursing students: The inclusion of integrative health care modalities in nursing core curriculum.

    Science.gov (United States)

    Chan, Roxane Raffin; Schaffrath, Michelle

    2017-01-01

    Nurses, nursing educators and students support the inclusion of integrative health care (IHC) into nursing core curriculum as a way to create nurses who deliver nursing care to the full extent of their scope of practice and advance evidenced based IHC. Because of the holistic nature of IHC modalities, research to investigate appropriate teaching strategies and potential efficacy of learning IHC in the baccalaureate core curriculum requires a holistic approach. Therefore a phenomenological exploration using participatory action inquiry was conducted at a large Midwestern university. Eighteen first year nursing students were selected as co-researchers. Their experiences in learning and delivering three 15 min IHC interventions (foot reflexology, lavender aromatherapy and mindful breathing) in an acute care setting were captured using reflexive journaling and participation in structured and organic communicative spaces. Of the patients approached, 67% accepted to receive one or more IHC modalities (147/219). Using van Manen's model for holistic data reduction three themes emerged: The experience of presence, competency and unexpected results. Learning IHC modalities is best supported by a self-reflective process that is constructed and modeled by a nurse faculty member with experience in delivering IHC modalities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Defining core elements and outstanding practice in Nutritional Science through collaborative benchmarking.

    Science.gov (United States)

    Samman, Samir; McCarthur, Jennifer O; Peat, Mary

    2006-01-01

    Benchmarking has been adopted by educational institutions as a potentially sensitive tool for improving learning and teaching. To date there has been limited application of benchmarking methodology in the Discipline of Nutritional Science. The aim of this survey was to define core elements and outstanding practice in Nutritional Science through collaborative benchmarking. Questionnaires that aimed to establish proposed core elements for Nutritional Science, and inquired about definitions of " good" and " outstanding" practice were posted to named representatives at eight Australian universities. Seven respondents identified core elements that included knowledge of nutrient metabolism and requirement, food production and processing, modern biomedical techniques that could be applied to understanding nutrition, and social and environmental issues as related to Nutritional Science. Four of the eight institutions who agreed to participate in the present survey identified the integration of teaching with research as an indicator of outstanding practice. Nutritional Science is a rapidly evolving discipline. Further and more comprehensive surveys are required to consolidate and update the definition of the discipline, and to identify the optimal way of teaching it. Global ideas and specific regional requirements also need to be considered.

  15. Supports and Concerns for Teacher Professional Growth During the Implementation of a Science Curriculum Innovation

    Science.gov (United States)

    Peers, Cheryl (Shelley) E.; Diezmann, Carmel M.; Watters, James J.

    2003-02-01

    Internationally, considerable reform in science education is occurring which promotes constructivist philosophies and advocates constructivist-inspired pedagogical strategies that are new to many teachers. This paper reports on the supporting factors necessary for teacher professional growth and the issues of concern that were evident during one primary teacher''s successful implementation of a unit of work based on a draft of a new state-wide science syllabus which proposes such approaches. One researcher (CEP) provided guidance during the writing and implementation of the unit through professional development workshops complemented by ongoing collegial support. The analysis of the teacher''s practice reveals that professional growth required a willingness of the teacher to engage with change and modify his professional practice. The support factors for teacher growth consisted of an appropriate program of professional development, teacher understanding of the elements of the curriculum innovation, and successful experiences in implementing new approaches. In contrast, the issues of concern were: the adequacy of support for planning including the time required to understand the innovation and make changes to teaching practice; science equipment; teacher knowledge; classroom management strategies; and ways to cope with change. Understanding of these support factors and issues of concern is vital for the successful implementation of science curriculum innovations.

  16. Transformative Multicultural Science curriculum: A case study of middle school robotics

    Science.gov (United States)

    Grimes, Mary Katheryn

    Multicultural Science has been a topic of research and discourse over the past several years. However, most of the literature concerning this topic (or paradigm) has centered on programs in tribal or Indigenous schools. Under the framework of instructional congruence, this case study explored how elementary and middle school students in a culturally diverse charter school responded to a Multicultural Science program. Furthermore, this research sought to better understand the dynamics of teaching and learning strategies used within the paradigm of Multicultural Science. The school's Robotics class, a class typically stereotyped as fitting within the misconceptions associated with the Western Modern Science paradigm, was the center of this case study. A triangulation of data consisted of class observations throughout two semesters; pre and post student science attitude surveys; and interviews with individual students, Robotic student teams, the Robotics class instructor, and school administration. Three themes emerged from the data that conceptualized the influence of a Multicultural Science curriculum with ethnically diverse students in a charter school's Robotics class. Results included the students' perceptions of a connection between science (i.e., Robotics) and their personal lives, a positive growth in the students' attitude toward science (and engineering), and a sense of personal empowerment toward being successful in science. However, also evident in the findings were the students' stereotypical attitudes toward science (and scientists) and their lack of understanding of the Nature of Science. Implications from this study include suggestions toward the development of Multicultural Science curricula in public schools. Modifications in university science methods courses to include the Multicultural Science paradigm are also suggested.

  17. An exploration of the science teaching orientations of Indian science teachers in the context of curriculum reform

    Science.gov (United States)

    Nargund-Joshi, Vanashri

    This study explores the concepts and behaviors, otherwise referred to as orientations, of six Indian science teachers and the alignment of these orientations to the 2005 India National Curriculum Framework (NCF-2005). Differences in teachers' orientations across grade bands (elementary, middle, and secondary) and school types (public versus private) are also examined to determine how contextual factors may influence this alignment. First, a content analysis of the NCF-2005 was completed to identify the overarching principles of the NCF-2005 and goals specific to the teaching and learning of science. Interviews with school principals were also analyzed to understand how the goals of NCF-2005 were communicated to schools and teachers. Together, these data sources served to answer research question one. Next, profiles were created based on three interviews with each teacher and several observations of their teaching. These profiles provide a point of reference for answering the remaining three research questions. Findings include teacher's orientations falling along a continuum from traditionalist in nature to inquiry/constructivist in nature. Stark contrasts were found between traditionalist orientations and the goals of NCF-2005, with much of this contrast due to the limited pedagogical content knowledge these teachers have regarding students' scientific thinking, curriculum design, instructional strategies, and assessment. Inquiry/constructivist teachers' orientations, while more in line with reform, still have a few key areas of pedagogical content knowledge needing attention (e.g., knowledge of assessment and a variety of purposes for constructivist instructional strategies). In response to the final research question, several contextual factors contributed to teachers' orientations including environmental constraints, such as limited resources and large class sizes, cultural testing pressures, and limited accessibility to professional development. Suggestions

  18. Aeronautics and Aviation Science: Careers and Opportunities Project

    Science.gov (United States)

    Texter, P. Cardie

    1998-01-01

    The National Aeronautics and Space Administration funded project, Aeronautics and Aviation Science: Careers and Opportunities has been in operation since July, 1995. This project operated as a collaboration with Massachusetts Corporation for Educational Telecommunications, the Federal Aviation Administration, Bridgewater State College and four targeted "core sites" in the greater Boston area. In its first and second years, a video series on aeronautics and aviation science was developed and broadcast via "live, interactive" satellite feed. Accompanying teacher and student supplementary instructional materials for grades 6-9 were produced and disseminated by the Massachusetts Corporation for Educational Telecommunications (MCET). In the MCET grant application it states that project Take Off! in its initial phase would recruit and train teachers at "core" sites in the greater Boston area, as well as opening participation to other on-line users of MCET's satellite feeds. "Core site" classrooms would become equipped so that teachers and students might become engaged in an interactive format which aimed at not only involving the students during the "live" broadcast of the instructional video series, but which would encourage participation in electronic information gathering and sharing among participants. As a Take Off! project goal, four schools with a higher than average proportion of minority and underrepresented youth were invited to become involved with the project to give these students the opportunity to consider career exploration and development in the field of science aviation and aeronautics. The four sites chosen to participate in this project were: East Boston High School, Dorchester High School, Randolph Junior-Senior High School and Malden High School. In year 3 Dorchester was unable to continue to fully participate and exited out. Danvers was added to the "core site" list in year 3. In consideration of Goals 2000, the National Science Foundation

  19. The role of project‐based learning in the “Political and Social Sciences of the Environment” curriculum at Nijmegen University

    NARCIS (Netherlands)

    Leroy, P.; Ligthart, S.S.H.; Bosch, H. van den

    2001-01-01

    Since the end of 1996, teachers at the Faculty of Policy Sciences at Nijmegen University, The Netherlands, have been working on a new educational programme called “Political and Social Sciences of the Environment” (PSSE). In fact, the PSSE curriculum builds on the Environmental Policy Sciences

  20. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum

    Science.gov (United States)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.

    2017-12-01

    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  1. Imprinting Community College Computer Science Education with Software Engineering Principles

    Science.gov (United States)

    Hundley, Jacqueline Holliday

    2012-01-01

    Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and…

  2. Large-Scale Curriculum Reform in Finland--Exploring the Interrelation between Implementation Strategy, the Function of the Reform, and Curriculum Coherence

    Science.gov (United States)

    Pietarinen, Janne; Pyhältö, Kirsi; Soini, Tiina

    2017-01-01

    The study aims to gain a better understanding of the national large-scale curriculum process in terms of the used implementation strategies, the function of the reform, and the curriculum coherence perceived by the stakeholders accountable in constructing the national core curriculum in Finland. A large body of school reform literature has shown…

  3. The Biome Project: Developing a Legitimate Parallel Curriculum for Physical Education and Life Sciences

    Science.gov (United States)

    Hastie, Peter Andrew

    2013-01-01

    The purpose of this article is to describe the outcomes of a parallel curriculum project between life sciences and physical education. Throughout a 6-week period, students in grades two through five became members of teams that represented different animal species and biomes, and concurrently participated in a season of gymnastics skills and…

  4. Probing the Natural World, Level III, Student Guide: Investigating Variation. Intermediate Science Curriculum Study.

    Science.gov (United States)

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's text of one unit of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit focuses on diversity in human populations, measurement, and data collection. Numerous activities are given and optional excursions encourage students to pursue a topic in greater depth. Data tables within the…

  5. Children's science learning: A core skills approach.

    Science.gov (United States)

    Tolmie, Andrew K; Ghazali, Zayba; Morris, Suzanne

    2016-09-01

    Research has identified the core skills that predict success during primary school in reading and arithmetic, and this knowledge increasingly informs teaching. However, there has been no comparable work that pinpoints the core skills that underlie success in science. The present paper attempts to redress this by examining candidate skills and considering what is known about the way in which they emerge, how they relate to each other and to other abilities, how they change with age, and how their growth may vary between topic areas. There is growing evidence that early-emerging tacit awareness of causal associations is initially separated from language-based causal knowledge, which is acquired in part from everyday conversation and shows inaccuracies not evident in tacit knowledge. Mapping of descriptive and explanatory language onto causal awareness appears therefore to be a key development, which promotes unified conceptual and procedural understanding. This account suggests that the core components of initial science learning are (1) accurate observation, (2) the ability to extract and reason explicitly about causal connections, and (3) knowledge of mechanisms that explain these connections. Observational ability is educationally inaccessible until integrated with verbal description and explanation, for instance, via collaborative group work tasks that require explicit reasoning with respect to joint observations. Descriptive ability and explanatory ability are further promoted by managed exposure to scientific vocabulary and use of scientific language. Scientific reasoning and hypothesis testing are later acquisitions that depend on this integration of systems and improved executive control. © 2016 The British Psychological Society.

  6. Exploring the role of curriculum materials to support teachers in science education reform

    Science.gov (United States)

    Schneider, Rebecca M.

    2001-07-01

    For curriculum materials to succeed in promoting large-scale science education reform, teacher learning must be supported. Materials were designed to reflect desired reforms and to be educative by including detailed lesson descriptions that addressed necessary content, pedagogy, and pedagogical content knowledge for teachers. The goal of this research was to describe how such materials contributed to classroom practices. As part of an urban systemic reform effort, four middle school teachers' initial enactment of an inquiry-based science unit on force and motion were videotaped. Enactments focused on five lesson sequences containing experiences with phenomena, investigation, technology use, or artifact development. Each sequence spanned three to five days across the 10-week unit. For each lesson sequence, intended and actual enactment were compared using ratings of (1) accuracy and completeness of science ideas presented, (2) amount student learning opportunities, similarity of learning opportunities with those intended, and quality of adaptations , and (3) amount of instructional supports offered, appropriateness of instructional supports and source of ideas for instructional supports. Ratings indicated two teachers' enactments were consistent with intentions and two teachers' enactments were not. The first two were in school contexts supportive of the reform. They purposefully used the materials to guide enactment, which tended to be consistent with standards-based reform. They provided students opportunities to use technology tools, design investigations, and discuss ideas. However, enactment ratings were less reflective of curriculum intent when challenges were greatest, such as when teachers attempted to present challenging science ideas, respond to students' ideas, structure investigations, guide small-group discussions, or make adaptations. Moreover, enactment ratings were less consistent in parts of lessons where materials did not include lesson specific

  7. U.S. Geological Survey core science systems strategy: characterizing, synthesizing, and understanding the critical zone through a modular science framework

    Science.gov (United States)

    Bristol, R. Sky; Euliss, Ned H.; Booth, Nathaniel L.; Burkardt, Nina; Diffendorfer, Jay E.; Gesch, Dean B.; McCallum, Brian E.; Miller, David M.; Morman, Suzette A.; Poore, Barbara S.; Signell, Richard P.; Viger, Roland J.

    2013-01-01

    Core Science Systems is a new mission of the U.S. Geological Survey (USGS) that resulted from the 2007 Science Strategy, "Facing Tomorrow's Challenges: U.S. Geological Survey Science in the Decade 2007-2017." This report describes the Core Science Systems vision and outlines a strategy to facilitate integrated characterization and understanding of the complex Earth system. The vision and suggested actions are bold and far-reaching, describing a conceptual model and framework to enhance the ability of the USGS to bring its core strengths to bear on pressing societal problems through data integration and scientific synthesis across the breadth of science. The context of this report is inspired by a direction set forth in the 2007 Science Strategy. Specifically, ecosystem-based approaches provide the underpinnings for essentially all science themes that define the USGS. Every point on Earth falls within a specific ecosystem where data, other information assets, and the expertise of USGS and its many partners can be employed to quantitatively understand how that ecosystem functions and how it responds to natural and anthropogenic disturbances. Every benefit society obtains from the planet-food, water, raw materials to build infrastructure, homes and automobiles, fuel to heat homes and cities, and many others, are derived from or affect ecosystems. The vision for Core Science Systems builds on core strengths of the USGS in characterizing and understanding complex Earth and biological systems through research, modeling, mapping, and the production of high quality data on the Nation's natural resource infrastructure. Together, these research activities provide a foundation for ecosystem-based approaches through geologic mapping, topographic mapping, and biodiversity mapping. The vision describes a framework founded on these core mapping strengths that makes it easier for USGS scientists to discover critical information, share and publish results, and identify potential

  8. Exploring the Associations among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum

    Science.gov (United States)

    Stage, Virginia C.; Kolasa, Kathryn M.; Díaz, Sebastián R.; Duffrin, Melani W.

    2018-01-01

    Background: Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Methods: Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across…

  9. Interacting with a Suite of Educative Features: Elementary Science Teachers' Use of Educative Curriculum Materials

    Science.gov (United States)

    Arias, Anna Maria; Bismack, Amber Schultz; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2016-01-01

    New reform documents underscore the importance of learning both the practices and content of science. This integration of practices and content requires sophisticated teaching that does not often happen in elementary classrooms. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited…

  10. Integration of Cognitive Skills as a Cross-Cutting Theme Into the Undergraduate Medical Curriculum at Tehran University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Akbar Soltani

    2017-02-01

    Full Text Available Nowadays, improvement of thinking skills of students is one of the universally supported aims in the majority of medical schools. This study aims to design longitudinal theme of reasoning, problem-solving and decision-making into the undergraduate medical curriculum at Tehran University of Medical Sciences (TUMS. A participatory approach was applied to design the curriculum during 2009-2011. The project was conducted by the contribution of representatives of both basic and clinical faculty members, students and graduates at Tehran University of Medical Sciences. The first step toward integrating cognitive skills into the curriculum was to assemble a taskforce of different faculty and students, including a wide variety of fields with multidisciplinary expertise using nonprobability sampling and the snowball method. Several meetings with the contribution of experts and some medical students were held to generate the draft of expected outcomes. Subsequently, the taskforce also determined what content would fit best into each phase of the program and what teaching and assessment methods would be more appropriate for each outcome. After a pilot curriculum with a small group of second-year medical students, we implemented this program for all first-year students since 2011 at TUMS. Based on findings, the teaching of four areas, including scientific and critical thinking skills (Basic sciences, problem-solving and reasoning (Pathophysiology, evidence-based medicine (Clerkship, and clinical decision-making (Internship were considered in the form of a longitudinal theme. The results of this study could be utilized as a useful pattern for integration of psycho-social subjects into the medical curriculum.

  11. Ethics Instruction in Library and Information Science: The Role of "Ethics across the Curriculum"

    Science.gov (United States)

    Smith, Bernie Todd

    2010-01-01

    Ethics is an important element of most graduate professional training programs. In the field of Library and Information Science (LIS) the inclusion of ethics in the curriculum is supported by a position paper by library educators and is monitored in the accreditation of graduate programs. Despite the many LIS programs which claim to integrate…

  12. Probing the Natural World, Level III, Teacher's Edition: Investigating Variation. Intermediate Science Curriculum Study.

    Science.gov (United States)

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit focuses on diversity in human populations, measurement, and data collection. Optional excursions are described for students who wish to study a topic in greater depth. An introduction describes…

  13. Probing the Natural World, Level III, Student Guide: What's Up? Intermediate Science Curriculum Study.

    Science.gov (United States)

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's text of one unit of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). The chapters contain basic information about rockets, space, and principles of physics, as well as activities related to the subject and optional excursions. A section of introductory notes to the student discusses how the…

  14. O Core Curriculum da Unesco como Base para Formação em Bioética

    Directory of Open Access Journals (Sweden)

    Fabiano Maluf

    Full Text Available RESUMO A revolução biotecnológica das últimas décadas teve como resultado o desenvolvimento de um poder quase sem limites sobre a vida humana. Tal contexto exige do profissional uma visão globalizada dos problemas éticos e sociais da era contemporânea, alicerçada em sólidas bases filosóficas e legais. Este contexto torna necessária a promoção de novas competências e habilidades relacionadas à vida profissional. Neste sentido, o ensino da Bioética desponta como uma possibilidade de inovação curricular alternativa ao tradicional modelo prescritivo e normativo. Este artigo relata a experiência da Cátedra Unesco de Bioética da Universidade de Brasília com a utilização do Core Curriculum proposto pela Unesco como instrumento didático-pedagógico adequado ao ensino da Bioética. Entre os dilemas pedagógicos enfrentados pela Bioética como disciplina encontram-se: a construção de seus conteúdos, sua estruturação, as concepções teóricas a serem seguidas e seus objetivos. A contextualização e o aperfeiçoamento da estratégia proposta pelo Core Curriculum podem significar importantes instrumentos facilitadores para docentes que buscam organizar práticas didático-pedagógicas inovadoras em Bioética com o intuito de proporcionar resultados efetivos na formação de seus estudantes.

  15. Lessons learned from curriculum changes and setting curriculum objectives at the University of Pennsylvania's Earth and Environmental Science Department

    Science.gov (United States)

    Dmochowski, J. E.

    2009-12-01

    Recent restructuring of the University of Pennsylvania’s curriculum, including a revised multi-disciplinary Environmental Studies major and a proposed Environmental Science major has led to several changes, including a mandatory junior research seminar. Feedback from students indicates that a more structured curriculum has helped guide them through the multi-disciplinary Environmental Studies major. The addition of mandatory courses in Statistics, Geographical and Environmental Modeling, as well as Economics and Policy has ensured that students have important skills needed to succeed after graduation. We have compiled a curriculum objective matrix to clarify both the broad and focused objectives of our curriculum and how each course helps to fulfill these objectives. An important aspect of both majors is the Senior Thesis. The junior research seminar was recently revised to help students prepare for their thesis research. Topic selection, library research, data presentation, basic research methods, advisor identification, and funding options are discussed. Throughout the course, faculty from within the department lecture about their research and highlight opportunities for undergraduates. In one assignment, students are given a few types of datasets and asked to present the data and error analysis in various formats using different software (SPSS and Excel). The final paper was a research proposal outlining the student’s Senior Thesis. Based on both the university and instructor written course evaluations, students felt they benefited most from writing their senior thesis proposal; doing assignments on data analysis, library research and critical analysis; and the faculty research lectures. The lessons learned in restructuring this flexible major and providing a research seminar in the junior year may benefit other departments considering such changes.

  16. Exploring shifts in the characteristics of US government-funded science curriculum materials and their (unintended) consequences

    NARCIS (Netherlands)

    Pareja Roblin, Natalie; Schunn, Christian; Bernstein, Debra; McKenney, Susan

    2018-01-01

    Grant-funded curriculum development efforts can substantially impact practice and research in science education. Therefore, understanding the sometimes-unintended consequences of changes in grant priorities is crucial. Using the case of two large funding agencies in the United States, the current

  17. Maximising Students' Progress and Engagement in Science through the Use of the Biological Sciences Curriculum Study (BSCS) 5E Instructional Model

    Science.gov (United States)

    Hoskins, Peter

    2013-01-01

    The Biological Sciences Curriculum Studies (BSCS) 5E Instructional Model (often referred to as the 5Es) consists of five phases. Each phase has a specific function and contributes both to teachers' coherent instruction and to students' formulation of a better understanding of scientific knowledge, attitudes and skills. Evidence indicates that the…

  18. Crop and Soil Science. A Curriculum Guide for Idaho Vocational Agriculture Instructors. Volume 1 and Volume 2.

    Science.gov (United States)

    Ledington, Richard L.

    The 24 units that comprise this crop and soil science curriculum guide are not geared to a particular age level and must be adapted to the students for whom they are used. Units 1 through 6 are general units covering topics common to soil science. Units 7 through 24 are units covering topics common to crop production. Each unit includes objectives…

  19. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  20. The Hegemonic Curriculum and School Dropout: The Newfoundland Case.

    Science.gov (United States)

    Gedge, Joseph L.

    1991-01-01

    Confronted by a disturbing dropout rate and low student achievement, the Newfoundland (Canada) government is attempting to rationalize organizational restructuring and curriculum reform based on a centralized core academic curriculum aimed at college entrance. This article argues for an expanded, hegemonic curriculum that is organic to the…

  1. Into the Curriculum. Interdisciplinary: Celebrating Our Animal Friends: An Across-the-Curriculum Unit for Middle Level Students [and] Music: Program Notes [and] Reading-Language Arts: Letters: Written, Licked, and Stamped [and] Science: Plants in Families [and] Science: Physics and Holiday Toys (Gravity) [and] Social Studies: Learning about Geography through Children's Literature.

    Science.gov (United States)

    Gillen, Rose; And Others

    1995-01-01

    Presents six curriculum guides for elementary and secondary education. Subjects include interdisciplinary instruction, music, reading/language arts, science, and social studies. Each guide provides library media skills objectives, curriculum objectives, grade levels, resources, instructional roles, activity and procedures for completion, a…

  2. Attitudes among students and teachers on vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum.

    Science.gov (United States)

    Brynhildsen, J; Dahle, L O; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M

    2002-05-01

    Important elements in the curriculum at the Faculty of Health Sciences in Linköping are vertical integration, i.e. integration between the clinical and basic science sections of the curriculum, and horizontal integration between different subject areas. Integration throughout the whole curriculum is time-consuming for both teachers and students and hard work is required for planning, organization and execution. The aim was to assess the importance of vertical and horizontal integration in an undergraduate medical curriculum, according to opinions among students and teachers. In a questionnaire 102 faculty teachers and 106 students were asked about the importance of 14 different components of the undergraduate medical curriculum including vertical and horizontal integration. They were asked to assign between one and six points to each component (6 points = extremely important for the quality of the curriculum; 1 point = unimportant). Students as well as teachers appreciated highly both forms of integration. Students scored horizontal integration slightly but significantly higher than the teachers (median 6 vs 5 points; p=0.009, Mann-Whitney U-test), whereas teachers scored vertical integration higher than students (6 vs 5; p=0.019, Mann-Whitney U-test). Both students and teachers considered horizontal and vertical integration to be highly important components of the undergraduate medical programme. We believe both kinds of integration support problem-based learning and stimulate deep and lifelong learning and suggest that integration should always be considered deeply when a new curriculum is planned for undergraduate medical education.

  3. Paths through interpretive territory: Two teachers' enactment of a technology-rich, inquiry-fostering science curriculum

    Science.gov (United States)

    McDonald, Scott Powell

    New understandings about how people learn and constructivist pedagogy pose challenges for teachers. Science teachers face an additional challenge of developing inquiry-based pedagogy to foster complex reasoning skills. Theory provides only fuzzy guidance as to how constructivist or inquiry pedagogy can be accomplished in a wide variety of contexts and local constraints. This study contributes to the understanding of the development of constructivist, inquiry-based pedagogy by addressing the question: How do teachers interpret and enact a technology-rich, inquiry fostering science curricula for fifth grade students' biodiversity learning? This research is a case study of two teachers chosen as critical contrasting cases and represent differences across multiple criteria including: urban I suburban, teaching philosophy, and content preparation. The two fifth grade teachers each enacted BioKIDS: Kids' Inquiry in Diverse Species, an eight week curriculum focused on biodiversity. BioKIDS incorporates multiple learning technologies to support student learning including handheld computer software designed to help students collect field data, and a web-based resource for data on local animal species. The results of this study indicate there are tensions teachers must struggle with when setting goals during enactment of inquiry science curricula. They must find a balance between an emphasis on authentic learning and authentic science, and between natural history and natural science. Authentic learning focuses on students' interests and lives; Authentic science focuses on students working with the tools and processes of science. Natural history focuses on the foundational skills in science of observation and classification. Natural science focuses on analytical science drawing on data to develop claims about the world. These two key tensions in teachers' goal setting were critical in defining and understanding differences in how teachers interpreted a curriculum to meet

  4. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    Science.gov (United States)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  5. Dissect, Design, and Customize the Curriculum

    Science.gov (United States)

    Tienken, Christopher H.

    2013-01-01

    Education bureaucrats in 45 states have approved the Common Core State Standards ([CCSS], 2010) as the de facto national curriculum. The implementation of the CCSS will be monitored by a national standardized test in language arts and mathematics. The confluence of a standardized curriculum enforced with a standardized test will entrench a…

  6. The MORPG-Based Learning System for Multiple Courses: A Case Study on Computer Science Curriculum

    Science.gov (United States)

    Liu, Kuo-Yu

    2015-01-01

    This study aimed at developing a Multiplayer Online Role Playing Game-based (MORPG) Learning system which enabled instructors to construct a game scenario and manage sharable and reusable learning content for multiple courses. It used the curriculum of "Introduction to Computer Science" as a study case to assess students' learning…

  7. Cores to the rescue: how old cores enable new science

    Science.gov (United States)

    Ito, E.; Noren, A. J.; Brady, K.

    2016-12-01

    The value of archiving scientific specimens and collections for the purpose of enabling further research using new analytical techniques, resolving conflicting results, or repurposing them for entirely new research, is often discussed in abstract terms. We all agree that samples with adequate metadata ought to be archived systematically for easy access, for a long time and stored under optimal conditions. And yet, as storage space fills, there is a temptation to cull the collection, or when a researcher retires, to discard the collection unless the researcher manages to make his or her own arrangement for the collection to be accessioned elsewhere. Nobody has done anything with these samples in over 20 years! Who would want them? It turns out that plenty of us do want them, if we know how to find them and if they have sufficient metadata to assess past work and suitability for new analyses. The LacCore collection holds over 33 km of core from >6700 sites in diverse geographic locations worldwide with samples collected as early as 1950s. From these materials, there are many examples to illustrate the scientific value of archiving geologic samples. One example that benefitted Ito personally were cores from Lakes Mirabad and Zeribar, Iran, acquired in 1963 by Herb Wright and his associates. Several doctoral and postdoctoral students generated and published paleoecological reconstructions based on cladocerans, diatoms, pollen or plant macrofossils, mostly between 1963 and 1967. The cores were resampled in 1990s by a student being jointly advised by Wright and Ito for oxygen isotope analysis of endogenic calcite. The results were profitably compared with pollen and the results published in 2001 and 2006. From 1979 until very recently, visiting Iran for fieldwork was not pallowed for US scientists. Other examples will be given to further illustrate the power of archived samples to advance science.

  8. [The 2010 curriculum of the faculty of medicine at the National University of Mexico].

    Science.gov (United States)

    Sánchez-Mendiola, Melchor; Durante-Montiel, Irene; Morales-López, Sara; Lozano-Sánchez, Rogelio; Martínez-González, Adrián; Graue Wiechers, Enrique

    2011-01-01

    The 2010 undergraduate medical degree curriculum at the faculty of medicine of the Universidad Nacional Autonoma de Mexico (UNAM) constitutes an important curricular reform of medical education in our country. It is the result of an institutional reflective process and academic dialog, which culminated in its approval by UNAM’s Academic Council for the Biology, Chemistry, and Health Sciences areas on February 2nd, 2010. Some distinguishing characteristics of the new academic curriculum are: organization by courses with a focus on outcome competencies; three curricular axes that link three knowledge areas; four educational phases with achievement profiles; new courses (biomedical informatics, basic-clinical and clinical-basic integration, among others); and core curriculum. The aforementioned curriculum was decided within a framework of effective teaching strategies, competency oriented learning assessment methods, restructuring of the training of teaching staff, and establishment of a curriculum committee follow-up and evaluation of the program. Curricular change in medical education is a complex process through which the institution can achieve its mission and vision. This change process faces challenges and opportunities, and requires strategic planning with long-term foresight to guarantee a successful dynamic transition for students, teachers, and for the institution itself.

  9. The relevance of basic sciences in undergraduate medical education.

    Science.gov (United States)

    Lynch, C; Grant, T; McLoughlin, P; Last, J

    2016-02-01

    Evolving and changing undergraduate medical curricula raise concerns that there will no longer be a place for basic sciences. National and international trends show that 5-year programmes with a pre-requisite for school chemistry are growing more prevalent. National reports in Ireland show a decline in the availability of school chemistry and physics. This observational cohort study considers if the basic sciences of physics, chemistry and biology should be a prerequisite to entering medical school, be part of the core medical curriculum or if they have a place in the practice of medicine. Comparisons of means, correlation and linear regression analysis assessed the degree of association between predictors (school and university basic sciences) and outcomes (year and degree GPA) for entrants to a 6-year Irish medical programme between 2006 and 2009 (n = 352). We found no statistically significant difference in medical programme performance between students with/without prior basic science knowledge. The Irish school exit exam and its components were mainly weak predictors of performance (-0.043 ≥ r ≤ 0.396). Success in year one of medicine, which includes a basic science curriculum, was indicative of later success (0.194 ≥ r (2) ≤ 0.534). University basic sciences were found to be more predictive than school sciences in undergraduate medical performance in our institution. The increasing emphasis of basic sciences in medical practice and the declining availability of school sciences should mandate medical schools in Ireland to consider how removing basic sciences from the curriculum might impact on future applicants.

  10. What to Consider When Preparing a Model Core Curriculum for GIS Ethics: Objectives, Methods, and a Sketch of Content

    Science.gov (United States)

    Davis, Michael

    2014-01-01

    The purpose of this article is to provide a summary of what is known about teaching ethics in engineering, science, and related disciplines. Such a summary should provide a useful starting point for preparation of a detailed curriculum for teaching the ethics of geo-coded information systems broadly understood ("GIS ethics" for short).…

  11. Simplifying the ELA Common Core; Demystifying Curriculum

    Science.gov (United States)

    Schmoker, Mike; Jago, Carol

    2013-01-01

    The English Language Arts (ELA) Common Core State Standards ([CCSS], 2010) could have a transformational effect on American education. Though the process seems daunting, one can begin immediately integrating the essence of the ELA Common Core in every subject area. This article shows how one could implement the Common Core and create coherent,…

  12. Engineering the curriculum: Towards an adaptive curriculum

    Science.gov (United States)

    Johns-Boast, Lynette Frances

    The curriculum is one of the most important artefacts produced by higher education institutions, yet it is one of the least studied. Additionally, little is known about the decision-making of academics when designing and developing their curricula, nor how they make use of them. This research investigates how 22 Australian higher education engineering, software engineering, computer science, and information systems academics conceive of curriculum, what approaches they take when designing, and developing course and program curricula, and what use they make of the curriculum. It also considers the implications of these conceptions and behaviour upon their curricula. Data were collected through a series of one-to-one, in-depth, qualitative interviews as well as small focus group sessions and were analysed following Charmaz’ (2006) approach to grounded theory. In this thesis, I argue that the development of curricula for new higher degree programs and courses and / or the updating and innovating of an existing curriculum is a design problem. I also argue that curriculum is a complex adaptive system. Surrounding the design and development of a curriculum is a process of design that leads to the creation of a designed object - the official-curriculum. The official-curriculum provides the guiding principles for its implementation, which involves the design and development of the curriculum-in-use, its delivery, and evaluation. Data show that while the participants conceive of curriculum as a problem of design involving a design process leading to the development of the official-curriculum, surprisingly, their behaviour does not match their conceptions. Over a very short period, their behaviour leads to a process I have called curriculum drift where the official-curriculum and the curriculum-in-use drift away from each other causing the curriculum to lose its integrity. Curricular integrity is characterised through the attributes of alignment, coherence, and

  13. National Undergraduate Medical Core Curriculum in Turkey: Evaluation of Residents

    Directory of Open Access Journals (Sweden)

    Işıl İrem Budakoğlu

    2014-03-01

    Full Text Available Background: There is very little information available on self-perceived competence levels of junior medical doctors with regard to definitions by the National Core Curriculum (NCC for Undergraduate Medical Education. Aims: This study aims to determine the perceived level of competence of residents during undergraduate medical education within the context of the NCC. Study Design: Descriptive study. Methods: The survey was conducted between February 2010 and December 2011; the study population comprised 450 residents. Of this group, 318 (71% participated in the study. Self-assessment questionnaires on competencies were distributed and residents were asked to assess their own competence in different domains by scoring them on a scale of 1 to 10. Results: Nearly half of the residents reported insufficient experience of putting clinical skills into practice when they graduated. In the theoretical part of NCC, the lowest competency score was reported for health-care administration, while the determination of level of chlorine in water, delivering babies, and conducting forensic examinations had the lowest perceived levels of competency in the clinical skills domain. Conclusion: Residents reported low levels of perceived competency in skills they rarely performed outside the university hospital. They were much more confident in skills they performed during their medical education.

  14. Curriculum Guidelines for Periodontics.

    Science.gov (United States)

    Journal of Dental Education, 1985

    1985-01-01

    Guidelines describe the interrelationships of this and other dental fields, give an overview of the curriculum and its primary educational objectives, and outline the suggested prerequisites, core content, specific behavioral objectives, sequencing, and faculty requirements. (MSE)

  15. Inquiry in early years science teaching and learning: Curriculum design and the scientific story

    Science.gov (United States)

    McMillan, Barbara Alexander

    2001-07-01

    Inquiry in school science, as conceived by the authors of the Common Framework of Science Learning Outcomes K--12, is dependent upon four areas of skills. These are the skills of initiating and planning, performing and recording, analysing and interpreting, and communication and teamwork that map onto what Hodson calls the five phases of scientific inquiry in school science: initiation, design and planning, performance, interpretation, and reporting and communicating. This study looked at initiation in a multiage (Grades 1--3) classroom, and the curriculum, design tools, and inquiry acts believed to be necessary precursors of design and planning phases whether the inquiry in which young children engage is archival or laboratory investigation. The curriculum was designed to build upon children's everyday biological knowledge and through a series of carefully organized lessons to help them to begin to build scientifically valid conceptual models in the area of animal life cycles. The lessons began with what is called benchmark-invention after the historical work of Robert Karplus and the contemporary work of Earl Hunt and Jim Minstrell. The introduction of a biological concept was followed by a series of exploration activities in which children were encouraged to apply the concept invented in the benchmark lesson. Enlargement followed. This was the instructional phase in which children were helped to establish scientifically valid relationships between the invented concept and other biological concepts. The pre-instruction and post-instruction interview data suggest that the enacted curriculum and sequence in which the biological knowledge was presented helped the nineteen children in the study to recognize the connections and regularities within the life cycles of the major groupings of animals, and to begin to build scientific biological conceptual models. It is, however, argued that everyday biology, in the form of the person analogy, acts as an obstacle to

  16. Application of the Intervention Mapping Framework to Develop an Integrated Twenty-First Century Core Curriculum-Part 1: Mobilizing the Community to Revise the Masters of Public Health Core Competencies.

    Science.gov (United States)

    DeBate, Rita; Corvin, Jaime A; Wolfe-Quintero, Kate; Petersen, Donna J

    2017-01-01

    Twenty-first century health challenges have significantly altered the expanding role and functions of public health professionals. Guided by a call from the Association of Schools and Programs of Public Health's (ASPPH) and the Framing the Future: The Second 100 Years of Education for Public Health report to adopt new and innovative approaches to prepare public health leaders, the University of South Florida College of Public Health aimed to self-assess the current Masters of Public Health (MPH) core curriculum with regard to preparing students to meet twenty-first century public health challenges. This paper describes how Intervention Mapping was employed as a framework to increase readiness and mobilize the COPH community for curricular change. Intervention Mapping provides an ideal framework, allowing organizations to access capacity, specify goals, and guide the change process from curriculum development to implementation and evaluation of competency-driven programs. The steps outlined in this paper resulted in a final set of revised MPH core competencies that are interdisciplinary in nature and fulfill the emergent needs to address changing trends in both public health education and challenges in population health approaches. Ultimately, the competencies developed through this process were agreed upon by the entire College of Public Health faculty, signaling one college's readiness for change, while providing the impetus to revolutionize the delivery of public health education at the University of South Florida.

  17. Developing the New Columbia Core Curriculum: A Case Study in Managing Radical Curriculum Change

    Science.gov (United States)

    Galea, Sandro; Fried, Linda P.; Walker, Julia R.; Rudenstine, Sasha; Glover, Jim W.

    2015-01-01

    Curricular change is essential for maintaining vibrant, timely, and relevant educational programming. However, major renewal of a long-standing curriculum at an established university presents many challenges for leaders, faculty, staff, and students. We present a case study of a dramatic curriculum renewal of one of the nation’s largest Master of Public Health degree programs: Columbia University’s Mailman School of Public Health. We discuss context, motivation for change, the administrative structure established to support the process, data sources to inform our steps, the project timeline, methods for engaging the school community, and the extensive planning that was devoted to evaluation and communication efforts. We highlight key features that we believe are essential for successful curricular change. PMID:25706010

  18. Curriculum Package: Junior High - Middle School Science Lessons. [A Visit to the Louisville, Kentucky Airports: Standiford and Bowman Fields.

    Science.gov (United States)

    Squires, Frances H.

    This science curriculum was written for teachers of children in junior high or middle school. It contains science activities for the following lessons: (1) Anemometers and Wind Speed; (2) Up! Up! and Away; (3) Jet Lag--Time Zones; (4) Inventors; (5) Model Rocketry; (6) Geometry and Kites; and (7) Super Savers. In lesson one, students construct an…

  19. A proposed core curriculum for dental English education in Japan

    OpenAIRE

    Rodis, Omar MM; Barroga, Edward; Barron, J Patrick; Hobbs, James; Jayawardena, Jayanetti A; Kageyama, Ikuo; Kalubi, Bukasa; Langham, Clive; Matsuka, Yoshizo; Miyake, Yoichiro; Seki, Naoko; Oka, Hiroko; Peters, Martin; Shibata, Yo; Stegaroiu, Roxana

    2014-01-01

    Background Globalization of the professions has become a necessity among schools and universities across the world. It has affected the medical and dental professions in terms of curriculum design and student and patient needs. In Japan, where medicine and dentistry are taught mainly in the Japanese language, profession-based courses in English, known as Medical English and Dental English, have been integrated into the existing curriculum among its 83 medical and 29 dental schools. Unfortunat...

  20. The Impact of High School Science Teachers' Beliefs, Curricular Enactments and Experience on Student Learning during an Inquiry-Based Urban Ecology Curriculum

    Science.gov (United States)

    McNeill, Katherine L.; Pimentel, Diane Silva; Strauss, Eric G.

    2013-01-01

    Inquiry-based curricula are an essential tool for reforming science education yet the role of the teacher is often overlooked in terms of the impact of the curriculum on student achievement. Our research focuses on 22 teachers' use of a year-long high school urban ecology curriculum and how teachers' self-efficacy, instructional practices,…

  1. Founders' Weekend. North Country Workshop on Science, Technology and the Undergraduate Curriculum. Proceedings (Potsdam, New York, November 9-10, 1984).

    Science.gov (United States)

    State Univ. of New York, Potsdam. Coll. at Potsdam.

    Proceedings of the North Country Workshop on Science, Technology, and the Undergraduate Curriculum are presented. The Sloan Foundation's call for reform of the liberal arts and coverage of mathematics, science, and technology is noted in welcoming remarks by State University of New York, Potsdam, President Humphrey Tonkin. Stephen H. Cutcliffe…

  2. Imprinting Community College Computer Science Education with Software Engineering Principles

    Science.gov (United States)

    Hundley, Jacqueline Holliday

    Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and maintenance. We proposed that some software engineering principles can be incorporated into the introductory-level of the computer science curriculum. Our vision is to give community college students a broader exposure to the software development lifecycle. For those students who plan to transfer to a baccalaureate program subsequent to their community college education, our vision is to prepare them sufficiently to move seamlessly into mainstream computer science and software engineering degrees. For those students who plan to move from the community college to a programming career, our vision is to equip them with the foundational knowledge and skills required by the software industry. To accomplish our goals, we developed curriculum modules for teaching seven of the software engineering knowledge areas within current computer science introductory-level courses. Each module was designed to be self-supported with suggested learning objectives, teaching outline, software tool support, teaching activities, and other material to assist the instructor in using it.

  3. Experience in the United States with a secondary resource curriculum on ''Science, society and America's nuclear waste''

    International Nuclear Information System (INIS)

    King, G.P.

    1994-01-01

    The nuclear power and nuclear waste situation in the Usa, is first reviewed. In order to enhance information concerning these topics among pupils and teachers, a resource curriculum, 'Science, society, and America's Nuclear Waste', was developed by teachers for teachers; it consists of four units: nuclear waste, ionizing radiation, the nuclear waste policy act, and the waste management system. It has been well received by teachers. Within nine months after its national introduction, 350000 teacher and student curriculum documents were requested by teachers from all 50 states. Requests have been also received from 250 foreign colleges and universities

  4. Learning of Core Disciplinary Ideas: Efficacy Comparison of Two Contrasting Modes of Science Instruction

    Science.gov (United States)

    Schuster, David; Cobern, William W.; Adams, Betty A. J.; Undreiu, Adriana; Pleasants, Brandy

    2018-01-01

    Science curricula and teaching methods vary greatly, depending in part on which facets of science are emphasized, e.g., core disciplinary ideas or science practices and process skills, and perspectives differ considerably on desirable pedagogies. Given the multi-faceted nature of science and the variety of teaching methods found in practice, it is…

  5. A Look at the Relationship of Curriculum and Instruction and the Art and Science of Teaching

    Science.gov (United States)

    Flake, Lee Hatch

    2017-01-01

    The definition of instruction and curriculum may take on different meanings based on the purpose or interpretation whether political, social, or educational. Teaching effectively requires the skill of a knowledgeable and experienced educator. Teaching can be convincingly debated as being an art or a science or defined collectively as an art and a…

  6. Neo-Liberal Individualism and a New Essentialism: A Comparison of Two Australian Curriculum Documents

    Science.gov (United States)

    Smith, Dorothy V.

    2011-01-01

    This article explores a significant shift in the science curriculum in Victoria, Australia, in the mid-1990s by using the idea of essentialism to compare two science curriculum documents that span the shift. The accounts given in these documents of desirable approaches to teaching science, science itself and the proper scope of curriculum, are…

  7. Innovating Science Teaching by Participatory Action Research – Reflections from an Interdisciplinary Project of Curriculum Innovation on Teaching about Climate Change

    Directory of Open Access Journals (Sweden)

    Timo Feierabend

    2011-01-01

    Full Text Available This paper describes a three-year curriculum innovation project on teaching about climate change. The innovation for this study focused on a socio-critical approach towards teaching climate change in four different teaching domains (biology, chemistry, physics and politics. The teaching itself explicitly aimed at general educational objectives, i.e., fostering students’ communication and evaluation abilities as essential components for preparing young people for active participation in society. Participatory Action Research has been used as a collaborative strategy of cyclical curriculum innovation and research. Using past experiences and selected results from accompanying research, this project and its methodology will be reflected upon from the viewpoint of the chemistry group taking part in the project. Core issues reflected upon include how the project contributed to the creation of feasible curriculum materials, how it led to innovative structures in practice, and whether it supported experienced teachers’ ongoing professional development. General considerations for the process of curriculum innovation will also be derived.

  8. Current Status of Regulatory Science Education in Faculties of Pharmaceutical Science in Japan.

    Science.gov (United States)

    Tohkin, Masahiro

    2017-01-01

    I introduce the current pharmaceutical education system in Japan, focusing on regulatory science. University schools or faculties of pharmaceutical science in Japan offer two courses: a six-year course for pharmacists and a four-year course for scientists and technicians. Students in the six-year pharmaceutical course receive training in hospitals and pharmacies during their fifth year, and those in the four-year life science course start research activities during their third year. The current model core curriculum for pharmaceutical education requires them to "explain the necessity and significance of regulatory science" as a specific behavior object. This means that pharmacists should understand the significance of "regulatory science", which will lead to the proper use of pharmaceuticals in clinical practice. Most regulatory science laboratories are in the university schools or faculties of pharmaceutical sciences; however, there are too few to conduct regulatory science education. There are many problems in regulatory science education, and I hope that those problems will be resolved not only by university-based regulatory science researchers but also by those from the pharmaceutical industry and regulatory authorities.

  9. Hydrogen Technology and Energy Curriculum (HyTEC)

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, Barbara

    2013-02-28

    The Lawrence Hall of Science of the University of California, Berkeley has collaborated with scientists and engineers, a local transit agency, school districts, and a commercial curriculum publisher to develop, field-test nationally, and publish a two-week curriculum module on hydrogen and fuel cells for high school science. Key partners in this project are the Schatz Energy Research Center (SERC) of Humboldt State University, the Alameda-Contra Costa Transit District (AC Transit), FilmSight Productions, Lab-Aids, Inc., and 32 teachers and 2,370 students in field-test classrooms in California, Connecticut, Ohio, New York, South Carolina, and Washington. Field-test teachers received two to three days of professional development before teaching the curriculum and providing feedback used for revision of the curriculum. The curriculum, titled Investigating Alternative Energy: Hydrogen and Fuel Cells and published by Lab-Aids, Inc., includes a teachers guide (with lesson plans, resources, and student handout pages), two interactive computer animations, a video, a website, and a laboratory materials kit. The project has been disseminated to over 950 teachers through awareness workshops at state, regional, and national science teacher conferences.

  10. Why Astronomy Should BE Part of the School Curriculum

    Science.gov (United States)

    Percy, John

    Why is astronomy useful? Why should it be supported by taxpayers? Why should it be part of the school curriculum? In this paper I will list 20 reasons. They include: cultural historical and philosophical reasons; practical technological and scientific reasons; environmental aesthetic and emotional reasons; and pedagogical reasons. Astronomy can attract young people to science and technology. It can promote public awareness understanding and appreciation of science. It can be done as an inexpensive hobby; ""the stars belong to everyone"". Finally: I will connect the 20 reasons to the expectations of the modern school curriculum: knowledge skills applications and attitudes. In the context of the science curriculum this includes science technology society and environment.

  11. Making the Transition to Three-Dimensional Teaching: An NGSS@NSTA Curator and Elementary Science Specialist Shares How to Evaluate Teaching Materials Using the EQuIP Rubric

    Science.gov (United States)

    O'Day, Betsy

    2016-01-01

    Curriculum and lesson planning require the consideration of many things. With a shift to the "Next Generation Science Standards" ("NGSS"), integrating the dimensions of science and engineering practices, disciplinary core ideas, and crosscutting concepts becomes a focus of that planning. The author, Betsy O'Day, an elementary…

  12. Reproductive Science for High School Students: A Shared Curriculum Model to Enhance Student Success.

    Science.gov (United States)

    Castle, Megan; Cleveland, Charlotte; Gordon, Diana; Jones, Lynda; Zelinski, Mary; Winter, Patricia; Chang, Jeffrey; Senegar-Mitchell, Ericka; Coutifaris, Christos; Shuda, Jamie; Mainigi, Monica; Bartolomei, Marisa; Woodruff, Teresa K

    2016-07-01

    The lack of a national reproductive biology curriculum leads to critical knowledge gaps in today's high school students' comprehensive understanding of human biology. The Oncofertility Consortium developed curricula that address the basic and clinical aspects of reproductive biology. Launching this academy and creating easy-to-disseminate learning modules allowed other universities to implement similar programs across the country. The expansion of this informal, extracurricular academy on reproductive health from Northwestern University to the University of California, San Diego, Oregon Health & Science University, and the University of Pennsylvania magnifies the scope of scientific learning to students who might not otherwise be exposed to this important information. To assess the experience gained from this curriculum, we polled alumni from the four centers. Data were collected anonymously from de-identified users who elected to self-report on their experiences in their respective reproductive science academy. The alumni survey asked participants to report on their current academic standing, past experiences in the academy, and future academic and career goals. The results of this national survey suggest the national oncofertility academies had a lasting impact on participants and may have contributed to student persistence in scientific learning. © 2016 by the Society for the Study of Reproduction, Inc.

  13. Pros and cons of vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum: examples and experiences from Linköping, Sweden.

    Science.gov (United States)

    Dahle, L O; Brynhildsen, J; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M

    2002-05-01

    Problem-based learning (PBL), combined with early patient contact, multiprofessional education and emphasis on development of communications skills, has become the basis for the medical curriculum at the Faculty of Health Sciences in Linköping (FHS), Sweden, which was started in 1986. Important elements in the curriculum are vertical integration, i.e. integration between the clinical and basic science parts of the curriculum and horizontal integration between different subject areas. This article discusses the importance of vertical integration in an undergraduate medical curriculum, according to experiences from the Faculty of Health Sciences in Linköping, and also give examples on how it has been implemented during the latest 15 years. Results and views put forward in published articles concerning vertical integration within undergraduate medical education are discussed in relation to the experiences in Linköping. Vertical integration between basic sciences and clinical medicine in a PBL setting has been found to stimulate profound rather than superficial learning, and thereby stimulates better understanding of important biomedical principles. Integration probably leads to better retention of knowledge and the ability to apply basic science principles in the appropriate clinical context. Integration throughout the whole curriculum entails a lot of time and work in respect of planning, organization and execution. The teachers have to be deeply involved and enthusiastic and have to cooperate over departmental borders, which may produce positive spin-off effects in teaching and research but also conflicts that have to be resolved. The authors believe vertical integration supports PBL and stimulates deep and lifelong learning.

  14. The quest for balanced curriculum: The perceptions of secondary students and teachers who experienced an integrated art and science curriculum

    Science.gov (United States)

    Schramm, Susan Lynn

    The purpose of this study was to describe how an integrated high school curriculum unit connecting the different subject areas of art and science could be used to give students a voice in the decisions about learning. Through the data generated I examined the obstacles of integrating curriculum in a traditionally subject-centered high school. Forty-one students, nineteen biology students in the ninth grade, and twenty-two art students ranging from the tenth grade through the twelfth grade, along with their two teachers and a student teacher, were the subjects of the research. An integrated curricular unit, "Genetic Robotics," was designed specifically for this research to enable students to integrate scientific and artistic processes such as communication skills, problem-solving, critical thinking, creativity and responsiveness to the aesthetic; thus empowering them for future learning. Semi-structured interviews, surveys, questionnaires, informal conversations, reaction journals, field observations, video tapes, and official documents from the school, provided the data for this research. Data were collected using a strategy of participant-observation. The constant comparative analysis method was employed to explore emerging themes. Oak Park students' adaptability to an integrated art and science unit was found to be limited because of their inability to conceptualize curricular structures that are different from the traditional ones to which they are accustomed. Students typically scored high on standardized proficiency tests and college entrance exams. Therefore, for them to experience an innovation that is not based on the memorize-and-recall mode of learning is to risk failure and many are unwilling to do so, especially the high achieving students.

  15. The Integrated Early Childhood Curriculum.

    Science.gov (United States)

    Krogh, Suzanne

    This textbook provides an outline of an integrated curriculum for early childhood education. Part 1 discusses the human element in school: the child and the teacher and child development. Part 2 contains the curriculum itself and covers the subjects of language, mathematics, science, social studies, art, music, and movement. Guidelines provide…

  16. Master of science in medical leadership and management and its role in the current NHS.

    Science.gov (United States)

    Barratt, Shaney; Bateman, Kathryn; Harvey, John

    2010-10-01

    Traditionally there has been little formal leadership and management education in the core medical curriculum. The Department of Health has recently emphasised the development of clinical leadership within the NHS. In this article, trainees share their experience of the Master of Science in medical leadership and management postgraduate qualification.

  17. Evolution of the New Pathway curriculum at Harvard Medical School: the new integrated curriculum.

    Science.gov (United States)

    Dienstag, Jules L

    2011-01-01

    In 1985, Harvard Medical School adopted a "New Pathway" curriculum, based on active, adult learning through problem-based, faculty-facilitated small-group tutorials designed to promote lifelong skills of self-directed learning. Despite the successful integration of clinically relevant material in basic science courses, the New Pathway goals were confined primarily to the preclinical years. In addition, the shifting balance in the delivery of health care from inpatient to ambulatory settings limited the richness of clinical education in clinical clerkships, creating obstacles for faculty in their traditional roles as teachers. In 2006, Harvard Medical School adopted a more integrated curriculum based on four principles that emerged after half a decade of self-reflection and planning: (1) integrate the teaching of basic/population science and clinical medicine throughout the entire student experience; (2) reestablish meaningful and intensive faculty-student interactions and reengage the faculty; (3) develop a new model of clinical education that offers longitudinal continuity of patient experience, cross-disciplinary curriculum, faculty mentoring, and student evaluation; and (4) provide opportunities for all students to pursue an in-depth, faculty-mentored scholarly project. These principles of our New Integrated Curriculum reflect our vision for a curriculum that fosters a partnership between students and faculty in the pursuit of scholarship and leadership.

  18. The Effect of Design Modifications to the Typographical Layout of the New York State Elementary Science Learning Standards on User Preference and Process Time

    Science.gov (United States)

    Arnold, Jeffery E.

    2010-01-01

    The purpose of this study was to determine the effect of four different design layouts of the New York State elementary science learning standards on user processing time and preference. Three newly developed layouts contained the same information as the standards core curriculum. In this study, the layout of the core guide is referred to as Book.…

  19. Problem based learning (PBL) vs. Case based curriculum in clinical clerkship, Internal Medicine innovated Curriculum, Student prospective.

    Science.gov (United States)

    Aljarallah, Badr; Hassan, Mohammad Saleh

    2015-04-01

    The vast majority of PBL experience is in basic science courses. Application of classic Problem based learning in clerkship phase is challenging. Although the clinical case is considered a problem, yet solving this problem following the burrow's law has faced hurdles. The difficulties are facing the learner, the teacher and curricula. We implement innovative curriculum for the clerkship year in internal medicine course. We surveyed the student just before coming to an internal medicine course to ask them about continuing PBL or other types of learning in clinical years. A committee was created to study the possible ways to integrate PBL in the course. After multiple brainstorming meeting, an innovated curriculum was implemented. Student surveyed again after they completed their course. The survey is asking them about what is the effect of the implemented curriculum in their skills, attitude, and knowledge. 70% of Students, who finished their basic science in PBL, preferred not to have classical PBL, but more a clinical oriented case based curriculum in the clinical years. After this innovated curriculum, 50-60 % of students who completed it showed a positive response in all aspects of effects including skill, attitude, and knowledge. The Innovated curriculum includes daily morning report, 3 bedside teaching, investigation session, and clinical reasoning weekly, and Lectures up to twice a week. We suggest implementing a curriculum with PBL and case-based criteria in clinical phase are feasible, we are providing a framework with this innovated curriculum.

  20. Problems and the present status of radiation educational curriculum

    International Nuclear Information System (INIS)

    Hiroi, Tadashi; Muraishi, Yukimasa; Mikado, Shogo; Watanabe, Tomohiro

    1999-01-01

    To examine teaching curriculum for radiation education requires a collective and extensive consideration on various subjects from many fields. The present study has been made from 4 points of view, namely 'physics', physics experiment', 'chemistry', and 'general science'. In 'physics', a curriculum in which learning about radiation followed by learning Newtonian mechanics was examined. Some group experiments taking radiation as the subject, a curriculum including radiation and radioactivity in high school chemistry course and general science are proposed and discussed briefly. (S. Ohno)

  1. Effect of Personal Response Systems on Student Perception and Academic Performance in Courses in a Health Sciences Curriculum

    Science.gov (United States)

    FitzPatrick, Kathleen A.; Finn, Kevin E.; Campisi, Jay

    2011-01-01

    To increase student engagement, active participation, and performance, personal response systems (clickers) were incorporated into six lecture-based sections of four required courses within the Health Sciences Department major curriculum: freshman-level Anatomy and Physiology I and II, junior-level Exercise Physiology, and senior-level Human…

  2. Nuclear power and the science curriculum

    International Nuclear Information System (INIS)

    Scott, W.

    1980-01-01

    The curriculum provision in UK schools for studies of nuclear power, its scientific aspects, its technologies and its effect upon society are examined in the light of present concern for an informed lay opinion. (U.K.)

  3. Program for Educational Mobility for Health Manpower (The Basic Sciences), June 12-August 25, 1970. Preliminary Report.

    Science.gov (United States)

    Coordinating Council for Education in the Health Sciences for San Diego and Imperial Counties, CA.

    Community college administrators and faculty in the areas of anatomy, physiology, chemistry, physics, and microbiology attended an 11-day workshop to redefine, modify, and develop science concepts for a core curriculum in the allied health field. To achieve workshop objectives, the committee heard presentations by consultants, visited clinical…

  4. Graduates from a reformed undergraduate medical curriculum based on Tomorrow's Doctors evaluate the effectiveness of their curriculum 6 years after graduation through interviews.

    Science.gov (United States)

    Watmough, Simon D; O'Sullivan, Helen; Taylor, David C M

    2010-09-29

    In 1996 Liverpool reformed its medical curriculum from a traditional lecture based course to a curriculum based on the recommendations in Tomorrow's Doctors. A project has been underway since 2000 to evaluate this change. This paper focuses on the views of graduates from that reformed curriculum 6 years after they had graduated. Between 2007 and 2009 45 interviews took place with doctors from the first two cohorts to graduate from the reformed curriculum. The interviewees felt like they had been clinically well prepared to work as doctors and in particular had graduated with good clinical and communication skills and had a good knowledge of what the role of doctor entailed. They also felt they had good self directed learning and research skills. They did feel their basic science knowledge level was weaker than traditional graduates and perceived they had to work harder to pass postgraduate exams. Whilst many had enjoyed the curriculum and in particular the clinical skills resource centre and the clinical exposure of the final year including the "shadowing" and A & E attachment they would have liked more "structure" alongside the PBL when learning the basic sciences. According to the graduates themselves many of the aims of curriculum reform have been met by the reformed curriculum and they were well prepared clinically to work as doctors. However, further reforms may be needed to give confidence to science knowledge acquisition.

  5. Science and Literacy: Incorporating Vocabulary, Reading Comprehension, Research Methods, and Writing into the Science Curriculum

    Science.gov (United States)

    Nieser, K.; Carlson, C.; Bering, E. A.; Slagle, E.

    2012-12-01

    Part of preparing the next generation of STEM researchers requires arming these students with the requisite literacy and research skills they will need. In a unique collaboration, the departments of Physics (ECE) and Psychology at the University of Houston have teamed up with NASA in a grant to develop a supplemental curriculum for elementary (G3-5) and middle school (G6-8) science teachers called Mars Rover. During this six week project, students work in teams to research the solar system, the planet Mars, design a research mission to Mars, and create a model Mars Rover to carry out this mission. Targeted Language Arts skills are embedded in each lesson so that students acquire the requisite academic vocabulary and research skills to enable them to successfully design their Mars Rover. Students learn academic and scientific vocabulary using scientifically based reading research. They receive direct instruction in research techniques, note-taking, summarizing, writing and other important language skills. The interdisciplinary collaboration empowers students as readers, writers and scientists. After the curriculum is completed, a culminating Mars Rover event is held at a local university, bringing students teams in contact with real-life scientists who critique their work, ask questions, and generate excite about STEM careers. Students have the opportunity to showcase their Mars Rover and to orally demonstrate their knowledge of Mars. Students discover the excitement of scientific research, STEM careers, important research and writing tools in a practical, real-life setting.

  6. Understanding Curriculum, Instruction and Assessment within Eighth Grade Science Classrooms for Special Needs Students

    Science.gov (United States)

    Riedell, Kate Elizabeth

    The Individuals with Disabilities Education Act (IDEA, 2004) cemented the fact that students with disabilities must be placed in the least restrictive environment and be given the necessary supports to help them succeed (Lawrence-Brown, 2004). This provides significant challenges for general education teachers, especially in an era of standards based reform with the adoption of the Common Core State Standards (CCSSI, 2014) by most states, along with the Next Generation Science Standards (NGSS, 2013). While a variety of methods, strategies, and techniques are available to teachers, there is a dearth of literature that clearly investigates how teachers take into account the ability and motivation of students with special needs when planning and implementing curriculum, instruction, and assessment. Thus, this study sought to investigate this facet through the lens of differentiation, personalization, individualization and universal design for learning (UDL) (CAST, 2015), all of which are designed to meet the needs of diverse learners, including students with special needs. An embedded single-case study design (Yin, 2011) was used in this study with the case being differentiated and/or personalized curriculum, instruction and/or assessment, along with UDL for students with special needs, with each embedded unit of analysis being one eighth grade general education science teacher. Analyzing each sub-unit or case, along with a cross-case analysis, three eighth grade general education science teachers were observed over the course of two 10-day units of study in the fall and spring, as they collected artifacts and completed annotations within their electronic portfolios (ePortfolios). All three eighth grade general education science teachers collected ePortfolios as part of their participation in a larger study within California, "Measuring Next Generation Science Instruction Using Tablet-Based Teacher Portfolios," funded by the National Science Foundation. Each teacher

  7. Evaluating the Effects of Medical Explorers a Case Study Curriculum on Critical Thinking, Attitude Toward Life Science, and Motivational Learning Strategies in Rural High School Students

    Science.gov (United States)

    Brand, Lance G.

    2011-12-01

    The purpose of this study was three-fold: to measure the ability of the Medical Explorers case-based curriculum to improve higher order thinking skills; to evaluate the impact of the Medical Explorers case-based curriculum to help students be self directed learners; and to investigate the impact of the Medical Explorers case-based curriculum to improve student attitudes of the life sciences. The target population for this study was secondary students enrolled in advanced life science programs. The resulting sample (n = 71) consisted of 36 students in the case-based experimental group and 35 students in the control group. Furthermore, this study employed an experimental, pretest-posttest control group research design. The treatment consisted of two instructional strategies: case-based learning and teacher-guided learning. Analysis of covariance indicated no treatment effect on critical thinking ability or Motivation and Self-regulation of Learning. However, the Medical Explorers case-based curriculum did show a treatment effect on student attitudes toward the life sciences. These results seem to indicate that case-based curriculum has a positive impact on students' perspectives and attitudes about the study of life science as well as their interest in life science based careers. Such outcomes are also a good indicator that students enjoy and perceive the value to use of case studies in science, and because they see value in the work that they do they open up their minds to true learning and integration. Of additional interest was the observationthat on average eleventh graders showed consistently stronger gains in critical thinking, motivation and self-regulation of learning strategies, and attitudes toward the life sciences as compared to twelfth grade students. In fact, twelfth grade students showed a pre to post loss on the Watson-Glaser and the MSLQ scores while eleventh grade students showed positive gains on each of these instruments. This decline in twelfth

  8. Exploring Corn-Ethanol As A Complex Problem To Teach Sustainability Concepts Across The Science-Business-Liberal Arts Curriculum

    Science.gov (United States)

    Oches, E. A.; Szymanski, D. W.; Snyder, B.; Gulati, G. J.; Davis, P. T.

    2012-12-01

    The highly interdisciplinary nature of sustainability presents pedagogic challenges when sustainability concepts are incorporated into traditional disciplinary courses. At Bentley University, where over 90 percent of students major in business disciplines, we have created a multidisciplinary course module centered on corn ethanol that explores a complex social, environmental, and economic problem and develops basic data analysis and analytical thinking skills in several courses spanning the natural, physical, and social sciences within the business curriculum. Through an NSF-CCLI grant, Bentley faculty from several disciplines participated in a summer workshop to define learning objectives, create course modules, and develop an assessment plan to enhance interdisciplinary sustainability teaching. The core instructional outcome was a data-rich exercise for all participating courses in which students plot and analyze multiple parameters of corn planted and harvested for various purposes including food (human), feed (animal), ethanol production, and commodities exchanged for the years 1960 to present. Students then evaluate patterns and trends in the data and hypothesize relationships among the plotted data and environmental, social, and economic drivers, responses, and unintended consequences. After the central data analysis activity, students explore corn ethanol production as it relates to core disciplinary concepts in their individual classes. For example, students in Environmental Chemistry produce ethanol using corn and sugar as feedstocks and compare the efficiency of each process, while learning about enzymes, fermentation, distillation, and other chemical principles. Principles of Geology students examine the effects of agricultural runoff on surface water quality associated with extracting greater agricultural yield from mid-continent croplands. The American Government course examines the role of political institutions, the political process, and various

  9. History, philosophy and science teaching new perspectives

    CERN Document Server

    2018-01-01

    This anthology opens new perspectives in the domain of history, philosophy, and science teaching research. Its four sections are: first, science, culture and education; second, the teaching and learning of science; third, curriculum development and justification; and fourth, indoctrination. The first group of essays deal with the neglected topic of science education and the Enlightenment tradition. These essays show that many core commitments of modern science education have their roots in this tradition, and consequently all can benefit from a more informed awareness of its strengths and weaknesses. Other essays address research on leaning and teaching from the perspectives of social epistemology and educational psychology. Included here is the first ever English translation of Ernst Mach’s most influential 1890 paper on ‘The Psychological and Logical Moment in Natural Science Teaching’. This paper launched the influential Machian tradition in education. Other essays address concrete cases of the ...

  10. Integrating technology, curriculum, and online resources: A multilevel model study of impacts on science teachers and students

    Science.gov (United States)

    Ye, Lei

    This scale-up study investigated the impact of a teacher technology tool (Curriculum Customization Service, CCS), curriculum, and online resources on earth science teachers' attitudes, beliefs, and practices and on students' achievement and engagement with science learning. Participants included 73 teachers and over 2,000 ninth-grade students within five public school districts in the western U.S. To assess the impact on teachers, changes between pre- and postsurveys were examined. Results suggest that the CCS tool appeared to significantly increase both teachers' awareness of other earth science teachers' practices and teachers' frequency of using interactive resources in their lesson planning and classroom teaching. A standard multiple regression model was developed. In addition to "District," "Training condition" (whether or not teachers received CCS training) appeared to predict teachers' attitudes, beliefs, and practices. Teachers who received CCS training tended to have lower postsurvey scores than their peers who had no CCS training. Overall, usage of the CCS tool tended to be low, and there were differences among school districts. To assess the impact on students, changes were examined between pre- and postsurveys of (1) knowledge assessment and (2) students' engagement with science learning. Students showed pre- to postsurvey improvements in knowledge assessment, with small to medium effect sizes. A nesting effect (students clustered within teachers) in the Earth's Dynamic Geosphere (EDG) knowledge assessment was identified and addressed by fitting a two-level hierarchical linear model (HLM). In addition, significant school district differences existed for student post-knowledge assessment scores. On the student engagement questionnaire, students tended to be neutral or to slightly disagree that science learning was important in terms of using science in daily life, stimulating their thinking, discovering science concepts, and satisfying their own

  11. James Madison High School. A Curriculum for American Students.

    Science.gov (United States)

    Bennett, William J.

    This document presents the Secretary of Education's personal concept of a sound secondary school core curriculum. It is called "James Madison High School" in honor of President James Madison and his strong views that the people, in order to govern properly, must arm themselves with knowledge. The theoretical curriculum consists of four…

  12. Real time curriculum map for internal medicine residency

    Directory of Open Access Journals (Sweden)

    Roberts J Mark

    2007-11-01

    Full Text Available Abstract Background To manage the voluminous formal curriculum content in a limited amount of structured teaching time, we describe the development and evaluation of a curriculum map for academic half days (AHD in a core internal medicine residency program. Methods We created a 3-year cyclical curriculum map (an educational tool combining the content, methodology and timetabling of structured teaching, comprising a matrix of topics under various specialties/themes and corresponding AHD hours. All topics were cross-matched against the ACP-ASIM in-training examination, and all hours were colour coded based on the categories of core competencies. Residents regularly updated the map on a real time basis. Results There were 208 topics covered in 283 AHD hours. All topics represented core competencies with minimal duplication (78% covered once in 3 years. Only 42 hours (15% involved non-didactic teaching, which increased after implementation of the map (18–19 hours/year versus baseline 5 hours/year. Most AHD hours (78% focused on medical expert competencies. Resident satisfaction (90% response was high throughout (range 3.64 ± 0.21, 3.84 ± 0.14 out of 4, which improved after 1 year but returned to baseline after 2 years. Conclusion We developed and implemented an internal medicine curriculum map based on real time resident input, with minimal topic duplication and high resident satisfaction. The map provided an opportunity to balance didactic versus non-didactic teaching, and teaching on medical versus non medical expert topics.

  13. Curriculum Framework (CF) Implementation Conference. Report of the Regional Educational Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia (Hilton Head Island, South Carolina, January 26-27, 1995).

    Science.gov (United States)

    Palmer, Jackie; Powell, Mary Jo

    The Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia, operating as the Curriculum Frameworks Task Force, jointly convened a group of educators involved in implementing state-level mathematics or science curriculum frameworks (CF). The Hilton Head (South Carolina) conference had a dual…

  14. Engaging Students In The Science Of Climate Change

    Science.gov (United States)

    Rhew, R. C.; Halversen, C.; Weiss, E.; Pedemonte, S.; Weirman, T.

    2013-12-01

    Climate change is arguably the defining environmental issue of our generation. It is thus increasingly necessary for every member of the global community to understand the basic underlying science of Earth's climate system and how it is changing in order to make informed, evidence-based decisions about how we will respond individually and as a society. Through exploration of the inextricable interconnection between Earth's ocean, atmosphere and climate, we believe students will be better prepared to tackle the complex issues surrounding the causes and effects of climate change and evaluate possible solutions. If students are also given opportunities to gather evidence from real data and use scientific argumentation to make evidence-based explanations about climate change, not only will they gain an increased understanding of the science concepts and science practices, the students will better comprehend the nature of climate change science. Engaging in argument from evidence is a scientific practice not only emphasized in the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS), but also emphasized in the Common Core State Standards for English Language Arts & Literacy in History/Social Studies and Science (CCSS). This significant overlap between NGSS and CCSS has implications for science and language arts classrooms, and should influence how we support and build students' expertise with this practice of sciences. The featured exemplary curricula supports middle school educators as they address climate change in their classrooms. The exemplar we will use is the NOAA-funded Ocean Sciences Sequence (OSS) for Grades 6-8: The ocean-atmosphere connection and climate change, which are curriculum units that deliver rich science content correlated to the Next Generation Science Standards (NGSS) Disciplinary Core Ideas and an emphasis on the Practices of Science, as called for in NGSS and the Framework. Designed in accordance with the latest

  15. An evaluative study of the impact of the "Curriculum Alignment Toolbox" on middle school science achievement

    Science.gov (United States)

    Jones, Carol L.

    The number of computer-assisted education programs on the market is overwhelming science teachers all over the Michigan. Though the need is great, many teachers are reluctant to procure computer-assisted science education programs because they are unsure of the effectiveness of such programs. The Curriculum Alignment Toolbox (CAT) is a computer-based program, aligned to the Michigan Curriculum Framework's Benchmarks for Science Education and designed to supplement science instruction in Michigan middle schools. The purpose of this study was to evaluate the effectiveness of CAT in raising the standardized test scores of Michigan students. This study involved 419 students from one urban, one suburban and one rural middle school. Data on these students was collected from 4 sources: (1) the 8th grade Michigan Education Assessment Program (MEAP) test, (2) a 9 question, 5-point Likert-type scale student survey, (3) 4 open-response student survey questions and (4) classroom observations. Results of this study showed that the experimental group of 226 students who utilized the CAT program in addition to traditional instruction did significantly better on the Science MEAP test than the control group of 193 students who received only traditional instruction. The study also showed that the urban students from a "high needs" school seemed to benefit most from the program. Additionally, though both genders and all identified ethnic groups benefited from the program, males benefited more than females and whites, blacks and Asian/Pacific Islander students benefited more than Hispanic and multi-racial students. The CAT program's success helping raise the middle school MEAP scores may well be due to some of its components. CAT provided students with game-like experiences all based on the benchmarks required for science education and upon which the MEAP test is based. The program also provided visual and auditory stimulation as well as numerous references which students indicated

  16. Political Science and the Good Citizen: The Genealogy of Traditionalist Paradigm of Citizenship Education in the American School Curriculum

    Science.gov (United States)

    Ahmad, Iftikhar

    2017-01-01

    Purpose: The purpose of this article is to chronicle paradigm shifts in American political science during the twentieth century and their influence on political scientists' perspectives on pre-collegiate citizenship education curriculum. Methodology: The research questions explored in this article are concerned with the history of political…

  17. Should Intelligent Design Be Included in Today's Public School Curriculums?

    Science.gov (United States)

    Costley, Kevin C.; Killins, Pam

    2010-01-01

    The controversial concept of evolution makes up only a small part of the science curriculum stated in Arkansas. During the past few years, the curriculum topic of "Intelligent Design" has caught the attention of many science teachers in the public schools. The Intelligent Design Movement has been successful in attracting the attention of…

  18. Application of the Intervention Mapping Framework to Develop an Integrated Twenty-first Century Core Curriculum—Part Three: Curriculum Implementation and Evaluation

    Directory of Open Access Journals (Sweden)

    Jaime A. Corvin

    2017-11-01

    Full Text Available Public health professionals have been challenged to radically reform public health training to meet evolving demands of twenty-first century public health. Such a transformation requires a systems thinking approach with an interdisciplinary focus on problem solving, leadership, management and teamwork, technology and information, budgeting and finance, and communication. This article presents processes for implementing and evaluating a revised public health curriculum and outlines lessons learned from this initiative. To date, more than 200 students have participated in the initial pilot testing of this program. A rigorous process and outcome evaluation plan was developed and employed. Results from the evaluation were used to enhance the resulting curriculum. Specifically, all instructional materials were evaluated by both the students who received the materials and the faculty who presented the materials. As each successive pilot is delivered, both enrollment and faculty involvement has increased. Through this process, the value of committed faculty, the importance of engaging learners in the evaluation of an education program, and the need to implement curriculum that has been carefully evaluated and evidence-informed in nature has emerged. We credit our successful transformation of the Masters in Public Health core to the challenge provided by the Framing the Future task force, the commitment of our College of Public Health leadership, the engagement of our faculty, and the time we allowed for the process to unfold. Ultimately, we believe this transformed curriculum will result in better trained public health professionals, interdisciplinary practitioners who can see public health challenges in new and different ways.

  19. KUSPACE: Embedding Science Technology and Mathematics Ambassador Activities in the Undergradiuate Engineering Curriculum

    Science.gov (United States)

    Welch, C.; Osborne, B.

    The UK national STEM Ambassadors programme provides inspiring role models for school students in science, technology, engineering, mathematics (STEM) subjects. STEMNET, the national body responsible for STEM Ambassa- dors aims to provide more than 27,000 STEM Ambassadors nationwide by the end of 2011. This paper reports on a project at Kingston University to embed STEM Ambassador training and activity in Year 2 of the undergraduate Aerospace Engineering, Astronautics and Space Technology degree. The project, known as KUSPACE (Kingston University Students Providing Amazing Classroom Experiences), was conceived to develop students' communication, planning and presentation skills and build links between different cohort years, while providing a valuable contribution to local primary schools' STEM programmes and simultaneously raising the public engagement profile of the university. This paper describes the pedagogical conception of the KUSPACE, its implementation in the curriculum, the delivery of it in the university and schools and its effect on the undergraduate students, as well as identifying good practice and drawing attention to lessons learned.STEMNET (www.stemnet.org) is the UK's Science, Technol- ogy, Engineering and Mathematics Network. Working with a broad range of UK partners and funded by the UK govern- ment's Department for Business Innovation and Skills, STEMNET plays a significant role in ensuring that five to nineteen year olds and their teachers can experience a wide range of activities and schemes which enhance and enrich the school curriculum [1]. Covering all aspects of Science, Tech- nology, Engineering and Maths (STEM), these activities and schemes are designed both to increase STEM awareness and literacy in the young people and also to encourage more of them to undertake post-16 STEM qualifications and associated careers [2]. STEMNET operates through forty-five local con- tract holders around the UK which help the network deliver its

  20. Predoctoral Curriculum Guidelines for Biomaterials.

    Science.gov (United States)

    Journal of Dental Education, 1986

    1986-01-01

    The American Association of Dental Schools' predoctoral guidelines for biomaterials curricula includes notes on interrelationships between this and other fields, a curriculum overview, primary educational goals, prerequisites, a core content outline, specific behavioral objectives for each content area, and information on sequencing, faculty and…

  1. Islamic values in the Kuwaiti curriculum

    Science.gov (United States)

    Alshahen, Ghanim A.

    This study investigated the influence of Islamic values on the curriculum, in particular the Islamic studies and science curricula. Three questionnaires were developed, validated, and used to investigate teachers' and pupils' attitudes toward Islamic values in the curriculum. Four main sections deal with Islamic values in the Islamic studies and science curricula, namely: Islamic values in the textbook, teaching Islamic values, the relationship between Islamic values and the science curriculum, and the Islamic values model. Two instruments were used in this study: questionnaires and interviews. Both qualitative and quantitative data were generated from the sample, which consisted of Islamic studies and science teachers and supervisors in intermediate schools, and pupils studying in the eighth grade in intermediate schools. In the last case, the data were gathered by questionnaire only. The interviews and questionnaires provided explanatory data. The research was carried out in three phases, considering respectively 55 Islamic studies teachers, 55 science teachers who teach the eighth grade in intermediate schools, and 786 pupils who study in the eighth grade in 20 schools. In each school, the researcher selected two classes. This thesis consists of eight chapters. Chapter One provides a general introduction and highlights the general framework of this study. Chapter Two is concerned with the development of the education system in Kuwait and the objectives of the Islamic studies and science curricula in the intermediate stage. Chapter Three presents the conceptions of values, the Islamic values model, and Islamic values in the curriculum. Chapter Four describes the objectives of the study, and its research design methods and procedures used to develop the instruments. The sampling procedure, the data collection procedures, and the statistical methods used to analyse the data are also described. Chapter Five presents and interprets the findings of this study. Data

  2. Graduates from a reformed undergraduate medical curriculum based on Tomorrow's Doctors evaluate the effectiveness of their curriculum 6 years after graduation through interviews

    Directory of Open Access Journals (Sweden)

    Taylor David CM

    2010-09-01

    Full Text Available Abstract Background In 1996 Liverpool reformed its medical curriculum from a traditional lecture based course to a curriculum based on the recommendations in Tomorrow's Doctors. A project has been underway since 2000 to evaluate this change. This paper focuses on the views of graduates from that reformed curriculum 6 years after they had graduated. Methods Between 2007 and 2009 45 interviews took place with doctors from the first two cohorts to graduate from the reformed curriculum. Results The interviewees felt like they had been clinically well prepared to work as doctors and in particular had graduated with good clinical and communication skills and had a good knowledge of what the role of doctor entailed. They also felt they had good self directed learning and research skills. They did feel their basic science knowledge level was weaker than traditional graduates and perceived they had to work harder to pass postgraduate exams. Whilst many had enjoyed the curriculum and in particular the clinical skills resource centre and the clinical exposure of the final year including the "shadowing" and A & E attachment they would have liked more "structure" alongside the PBL when learning the basic sciences. Conclusion According to the graduates themselves many of the aims of curriculum reform have been met by the reformed curriculum and they were well prepared clinically to work as doctors. However, further reforms may be needed to give confidence to science knowledge acquisition.

  3. Middle school science curriculum design and 8th grade student achievement in Massachusetts public schools

    Science.gov (United States)

    Clifford, Betsey A.

    The Massachusetts Department of Elementary and Secondary Education (DESE) released proposed Science and Technology/Engineering standards in 2013 outlining the concepts that should be taught at each grade level. Previously, standards were in grade spans and each district determined the method of implementation. There are two different methods used teaching middle school science: integrated and discipline-based. In the proposed standards, the Massachusetts DESE uses grade-by-grade standards using an integrated approach. It was not known if there is a statistically significant difference in student achievement on the 8th grade science MCAS assessment for students taught with an integrated or discipline-based approach. The results on the 8th grade science MCAS test from six public school districts from 2010 -- 2013 were collected and analyzed. The methodology used was quantitative. Results of an ANOVA showed that there was no statistically significant difference in overall student achievement between the two curriculum models. Furthermore, there was no statistically significant difference for the various domains: Earth and Space Science, Life Science, Physical Science, and Technology/Engineering. This information is useful for districts hesitant to make the change from a discipline-based approach to an integrated approach. More research should be conducted on this topic with a larger sample size to better support the results.

  4. Determining a Core Curriculum: The Limitations of Transcendental Deductions.

    Science.gov (United States)

    Wellington, J.J.

    1981-01-01

    Suggests that educational philosphers have adopted Immanuel Kant's argument that 12 categories are necessary for a complete understanding of the natural and moral worlds. Concludes that using Kantian arguments to determine curriculum is logically invalid. The key to educational philosophy lies in inquiry into the nature of thought and…

  5. Time: Assessing Understanding of Core Ideas

    Science.gov (United States)

    Thomas, Margaret; McDonough, Andrea; Clarkson, Philip; Clarke, Doug

    2016-01-01

    Although an understanding of time is crucial in our society, curriculum documents have an undue emphasis on reading time and little emphasis on core underlying ideas. Given this context, a one-to-one assessment interview, based on a new framework, was developed and administered to investigate students' understanding of core ideas undergirding the…

  6. Endoscopic training in gastroenterology fellowship: adherence to core curriculum guidelines.

    Science.gov (United States)

    Jirapinyo, Pichamol; Imaeda, Avlin B; Thompson, Christopher C

    2015-12-01

    The Gastroenterology Core Curriculum and American Society of Gastrointestinal Endoscopy provide guidelines for endoscopic training. Program adherence to these recommendations is unclear. This study aims to assess endoscopic training experience during fellowship. Questionnaire study. The questionnaire was circulated to US fellowship programs, with the assistance of the American Gastroenterological Association. Graduating third-year fellows. Seventy-three fellows returned the questionnaire. Nearly all fellows met the required numbers for esophagoduodenoscopy (98%) and colonoscopy (100%), with fewer meeting requirements for PEG (73%) and non-variceal hemorrhage (75%). The majority of fellows did not meet minimum numbers for variceal banding (40%), esophageal dilation (43%), capsule endoscopy (42%). Fellows rated training in cognitive aspects of endoscopy as 3.86 [1 (inadequate), 5 (excellent)] and reported greatest emphasis on interpreting endoscopic findings and least on virtual colonography. Quality indicators of endoscopy received little emphasis (rating of 3.04; p = 0.00001), with adenoma detection rate being least emphasized. Fifty-six percent of fellows reported having routine endoscopy conferences. Half of the programs have endoscopic simulators, with 15% of fellows being required to use simulation. Following direct hands-on experience, fellows rated external endoscopy courses (64%) as the next most useful experience. Many fellows do not meet required numbers for several endoscopic procedures, and quality indicators receive little emphasis during training. Most programs do not provide simulation training or hold regular endoscopy conferences. Fellowship programs should perform internal audits and make feasible adjustments. Furthermore, it may be time for professional societies to revisit training guidelines.

  7. Development of mathematics curriculum for Medialogy studentsat Aalborg University

    DEFF Research Database (Denmark)

    Timcenko, Olga

    Abstract This paper addresses mathematics curriculum development for Medialogy education. Medialogy as a study line was established in 2002 at Faculty for Engineering and Natural Sciences at Aalborg University, and mathematics curriculum has already been revised tree times. Some of the reasoning...... behind curriculum development, lessons learned and remaining issues are presented and discussed....

  8. The Quality of Instruction in Urban High Schools: Comparing Mathematics and Science to English and Social Studies Classes in Chicago

    Science.gov (United States)

    Lee, Valerie E.; Robinson, Shanta R.; Sebastian, James

    2012-01-01

    Is the quality of instruction systematically better in one subject than another? Teachers and students in the same Chicago high schools reported on one core-curriculum class (English, mathematics, science, or social studies) in 2007 surveys. Teachers commented on instructional demands and student participation. Students described engagement,…

  9. Did We Have Science before 1988?

    Science.gov (United States)

    Peacock, Alan; Dunne, Mick

    2014-01-01

    In this "Primary Science" interview, science educators Alan Peacock and Mick Dunne reflect on their own experiences of what science was like in England before a National Curriculum was introduced. Among the topics covered are: earliest memories of science in school, teaching science before 1988 (pre-science curriculum for primary…

  10. Student Project and Curriculum Based on Light at Night Data Collection

    Science.gov (United States)

    Craine, Erin M.; DeBenedetti, Jennifer C.

    2012-05-01

    There is a growing movement in the educational field to promote science, technology, engineering and math studies, stemming from a concern about waning understanding and interest among K-12 students in these topics. STEM Laboratory, Inc. (STEM) has developed a Sky Brightness Meter (SBM) that can be used with ease yet produces complex information relating to light at night monitoring. STEM sees the SBM and its corresponding data archive as a means to involve students in projects that relate to scientific method exploration, makes science more accessible, and encourages a life long appreciation and understanding of scientific endeavors. In this paper we present an example of a project template that could be used by students studying effects of artificial light on sky brightness. STEM has developed several outreach lessons aligned with the National Common Core Curriculum, Systems Thinking concepts and local standards to be implemented in classrooms or independent youth organizations.

  11. Implementing a new mathematics curriculum: Mathematics teachers’ beliefs and practices

    OpenAIRE

    Ernest Ampadu

    2013-01-01

    Mathematics has become a ‘critical filter’ in the social, economic and professional development of individuals and forms a core component of the school curriculum in most countries. It is upon this utilitarian nature of mathematics to the individual and the society as a whole that the school mathematics curriculum has been undergoing a number of restructuring over the last three decades. In Ghana, a new mathematics curriculum was introduced in September 2007 which aims at shifting the teachin...

  12. Perceptions of Native Americans: Indigenous science and connections to ecology

    Science.gov (United States)

    Bellcourt, Mark Alan

    2005-11-01

    Indigenous peoples of Turtle Island (North America) have had a special connection to and understanding of Mother Earth and Father Sky, and a long tradition of respect for the earth's resources. Based on this connection, understanding and respect, they have developed and used their own scientific theories and methods, and have used sustainable environmental practices. However, the problem is that despite centuries of scientific environmental practice and knowledge, Indigenous wisdom is virtually absent from the dominant mainstream Western science curriculums, literature, and practice. The purpose of this study is to explore Indigenous wisdom and how it might be better integrated into science and ecology education programs which are currently taught almost exclusively from Western perspectives. This study addresses the following two research questions: (1) What are the worldviews of Native American and science? (2) How can these worldviews be brought into mainstream Western science? The study of Indigenous wisdom involves an exploration of the stories a population of people whose core beliefs can not be easily quantified. A qualitative research approach, in-depth interviews and observations, have been selected for this study. The interviews and observations will be transcribed and the text will be reviewed and analyzed to find Indigenous worldviews and strategies for including these worldviews in current science curriculums.

  13. Curriculum Guidelines for Clinical Dental Hygiene.

    Science.gov (United States)

    Journal of Dental Education, 1985

    1985-01-01

    The American Association of Dental Schools curriculum guidelines for clinical dental hygiene include definitions, notes on the interrelationship of courses, an overview of course objectives, and suggested primary educational goals, prerequisites, core content, specific objectives, sequencing, faculty, and facilities. (MSE)

  14. Outcomes of a Self-Regulated Learning Curriculum Model

    Science.gov (United States)

    Peters-Burton, Erin E.

    2015-10-01

    The purpose of this study was to describe connections among students' views of nature of science in relation to the goals of a curriculum delivered in a unique setting, one where a researcher and two teachers collaborated to develop a course devoted to teaching students about how knowledge is built in science. Students proceeded through a cycle of self-regulated phases, forethought, performance, and self-reflection, during each segment of the curriculum: (a) independent research, (b) knowledge building in the discipline of science, and (c) a citizen science project. Student views were measured at the beginning and end of the course using epistemic network analysis. The pretest map reported student understanding of science as experimentation and indicated three clusters representing the durability of knowledge, empirical evidence, and habits of mind, which were loosely connected and represented knowledge generation as external to personal thinking. The posttest map displayed a broader understanding of scientific endeavors beyond experimentation, a shift toward personal knowledge generation, and indicated a larger number of connections among three more tightly oriented clusters: empirical evidence, habits of mind, and tentativeness. Implications include the potential to build curriculum that purposefully considers reinforcing cycles of learning of the nature of science in different contexts.

  15. the impact of digital technology revolution on surveying curriculum ...

    African Journals Online (AJOL)

    the impact of digital technology revolution on surveying curriculum review in ... Global Journal of Environmental Sciences ... Also, it focuses on the need to review the current surveying curriculum to meet the technological advancement. Finally ...

  16. Using Symbolic Interactionism to Analyze a Specialized STEM High School Teacher's Experience in Curriculum Reform

    Science.gov (United States)

    Teo, Tang Wee; Osborne, Margery

    2012-01-01

    In this paper, we present a microanalysis of a specialized STEM (science, technology, engineering, and mathematics) high school teacher's experience of self-initiated science inquiry curriculum reform. We examine the meanings of these two constructs: "inquiry curriculum" and "curriculum change" through the process lens of interactions, actions,…

  17. Conceptualising 'knowledge management' in the context of library and information science using the core/periphery model

    Directory of Open Access Journals (Sweden)

    O.B. Onyancha

    2009-04-01

    Full Text Available This study took cognisance of the fact that the term 'knowledge management' lacks a universally accepted definition, and consequently sought to describe the term using the most common co-occurring terms in knowledge management (KM literature as indexed in the Library, Information Science and Technology Abstracts (LISTA database. Using a variety of approaches and analytic techniques (e.g. core/periphery analysis and co-occurrence of words as subject terms, data were analysed using the core/periphery model and social networks through UCINET for Windows, TI, textSTAT and Bibexcel computer-aided software. The study identified the following as the compound terms with which KM co-occurs most frequently: information resources management, information science, information technology, information services, information retrieval, library science, management information systems and libraries. The core single subject terms with which KM can be defined include resources, technology, libraries, systems, services, retrieval, storage, data and computers. The article concludes by offering the library and information science (LIS professionals' general perception of KM based on their use of terms, through which KM can be defined within the context of LIS.

  18. Spaceship Earth: A partnership in curriculum writing

    Science.gov (United States)

    Lindstrom, Marilyn M.

    1993-01-01

    As the Apollo astronauts left Earth to venture onto the surface of another planetary body, they saw their home planet in a new global perspective. Unmanned NASA missions have given us a closer look at all the other planets in our solar system and emphasized the uniqueness of Earth as the only place in our solar system that can sustain life as we know it. Spaceship Earth is a new science curriculum which was developed to help students and teachers to explore the Earth, to see it in the global perspective, and to understand the relationships among life, the planet, and the sun. Astronaut photographs, especially shuttle pictures, are used as groundbased studies to help students to understand global Earth Science and integrate various aspects of physical, life, and social science. The Spaceship Earth curriculum was developed at by a team of JSC scientists working in collaboration with teachers from local school districts. This project was done under the auspices of Partner-In-Space, a local non-profit organization dedicated to improving science education and our general knowledge of space. The team met once a month for a year then assembled the curriculum during the summer. The project is now in the testing stage as the teachers try it out in their classrooms. It was supported by the Texas Education Agency and will be offered by the State of Texas as a supplemental curriculum for statewide use. Because the curriculum was developed by teachers, it is self contained and the lessons are easy to implement and give students concrete experiences. The three sub-units follow in a logical order, but may be used independently. If they are used separately, they may be tied together by the teacher returning to the basic theme of the global Earth as each unit is completed.

  19. UWHS Climate Science: Uniting University Scientists and High School Teachers in the Development and Implementation of a Dual-Credit STEM-Focused Curriculum

    Science.gov (United States)

    Bertram, M. A.; Thompson, L.; Ackerman, T. P.

    2012-12-01

    The University of Washington is adapting a popular UW Atmospheric Sciences course on Climate and Climate Change for the high school environment. In the process, a STEM-focused teaching and learning community has formed. With the support of NASA Global Climate Change Education 20 teachers have participated in an evolving professional development program that brings those actively engaged in research together with high school teachers passionate about bringing a formal climate science course into the high school. Over a period of several months participating teachers work through the UW course homework and delve deeply into specific subject areas. Then, during a week-long summer institute, scientists bring their particular expertise (e.g. radiation, modeling) to the high school teachers through lectures or labs. Together they identify existing lectures, textbook material and peer-reviewed resources and labs available through the internet that can be used to effectively teach the UW material to the high school students. Through this process the scientists learn how to develop teaching materials around their area of expertise, teachers engage deeply in the subject matter, and both the university and high school teachers are armed with the tools to effectively teach a STEM-focused introductory course in climate science. To date 12 new hands-on modules have been completed or are under development, exploring ice-cores, isotopes, historical temperature trends, energy balance, climate models, and more. Two modules have been tested in the classroom and are ready for peer-review through well-respected national resources such as CLEAN or the National Earth Science Teachers Association; three others are complete and will be implemented in a high school classroom this year, and the remainder under various stages of development. The UWHS ATMS 211 course was piloted in two APES (Advanced Placement Environmental Science classrooms) in Washington State in 2011/2012. The high school

  20. Development of a Systems Science Curriculum to Engage Rural African American Teens in Understanding and Addressing Childhood Obesity Prevention

    Science.gov (United States)

    Frerichs, Leah; Lich, Kristen Hassmiller; Young, Tiffany L.; Dave, Gaurav; Stith, Doris; Corbie-Smith, Giselle

    2018-01-01

    Engaging youth from racial and ethnic minority communities as leaders for change is a potential strategy to mobilize support for addressing childhood obesity, but there are limited curricula designed to help youth understand the complex influences on obesity. Our aim was to develop and pilot test a systems science curriculum to elicit rural…

  1. Research on the integration of teaching content of core courses in Agro-ecological environmental specialties of higher vocational colleges

    Science.gov (United States)

    Chen, Juan; Ma, Guosheng

    2018-02-01

    Curriculum is the means to cultivate higher vocational talents. On the basis of analyzing the core curriculum problems of curriculum reform and Agro-ecological environmental specialties in higher vocational colleges, this paper puts forward the optimization and integration measures of 6 core courses, including “Eco-environment Repair Technology”, “Agro-environmental Management Plan”, “Environmental Engineering Design”, “Environmental Pest Management Technology”, “Agro-chemical Pollution Control Technology”, “Agro-environmental Testing and Analysis”. It integrates the vocational qualification certificate education and professional induction certificate training items, and enhances the adaptability, skills and professionalism of professional core curriculum.

  2. NASA Goddard Space Flight Center presents Enhancing Standards Based Science Curriculum through NASA Content Relevancy: A Model for Sustainable Teaching-Research Integration Dr. Robert Gabrys, Raquel Marshall, Dr. Evelina Felicite-Maurice, Erin McKinley

    Science.gov (United States)

    Marshall, R. H.; Gabrys, R.

    2016-12-01

    NASA Goddard Space Flight Center has developed a systemic educator professional development model for the integration of NASA climate change resources into the K-12 classroom. The desired outcome of this model is to prepare teachers in STEM disciplines to be globally engaged and knowledgeable of current climate change research and its potential for content relevancy alignment to standard-based curriculum. The application and mapping of the model is based on the state education needs assessment, alignment to the Next Generation Science Standards (NGSS), and implementation framework developed by the consortium of district superintendents and their science supervisors. In this presentation, we will demonstrate best practices for extending the concept of inquiry-based and project-based learning through the integration of current NASA climate change research into curriculum unit lessons. This model includes a significant teacher development component focused on capacity development for teacher instruction and pedagogy aimed at aligning NASA climate change research to related NGSS student performance expectations and subsequent Crosscutting Concepts, Science and Engineering Practices, and Disciplinary Core Ideas, a need that was presented by the district steering committee as critical for ensuring sustainability and high-impact in the classroom. This model offers a collaborative and inclusive learning community that connects classroom teachers to NASA climate change researchers via an ongoing consultant/mentoring approach. As a result of the first year of implementation of this model, Maryland teachers are implementing NGSS unit lessons that guide students in open-ended research based on current NASA climate change research.

  3. THE EFFECTS OF ELECTIVE COURSE DESIGNED WITH DIFFERENT CONTENTS ON PRE-SERVICE SCIENCE TEACHERS’ SELF-EFFICACY BELIEFS AND KNOWLEDGE ABOUT ORGANIZING CURRICULUM BASED FIELD TRIPS

    Directory of Open Access Journals (Sweden)

    Aykut Emre Bozdoğan

    2018-06-01

    Full Text Available This research examined the effect of a course designed with different content on pre-service science teachers’ self-efficacy beliefs and knowledge about organizing curriculum-based trips. A pre-test post-test quasi experimental design was used in the research. One-hundred and thirty pre-service science teachers participated in the research. The research was carried out within the context of an elective course called “Informal Learning Environments in Science Education” and was conducted over 14 weeks in total for two hours per week. The research data were obtained by means of a questionnaire, self–efficacy scale for designing curriculum-based field trips (CFTSES and semi-structured focus-group interviews. As a result of the research, it was found that the course content which included in-class and out-of-school setting practices in the 3rd group was the most effective. This was followed by the 2nd group which included only in-class implementations. The first group which was supported with visuals and theoretical related presented information was the group which was the least effected. The results of the research revealed that pre-service science teachers had mainly different concerns about safety, but that this did not deter them, as they still continued to design curriculum-based field trips for learners.

  4. The Information Systems Core: A Study from the Perspective of IS Core Curricula in the U.S.

    Science.gov (United States)

    Hwang, Drew; Ma, Zhongming; Wang, Ming

    2015-01-01

    To keep up with technology changes and industry trends, it is essential for Information Systems (IS) programs to maintain up to date curricula. In doing so, IS educators need to determine what the IS core is and implement it in their curriculum. This study performed a descriptive analysis of 2,229 core courses offered by 394 undergraduate IS…

  5. Scientific Skills and Processes in Curriculum Resources

    Science.gov (United States)

    Kremer, Joe

    2017-11-01

    Increasingly, the science education community has recognized the need for curriculum resources that support student development of authentic scientific practices, rather than focusing exclusively on content knowledge. This paper proposes a tool for teachers and researchers to assess the degree to which certain curriculum resources and lessons achieve this goal. After describing a method for reflecting on and categorizing curriculum resources, I apply the method to highlight differences across three teaching methods: Modeling Instruction, Physics Union Mathematics, and a traditional, lecture-based approach.

  6. Interaction of Vietnamese teachers with a social constructivism-based primary science curriculum in a framework appropriate for a Confucian heritage culture

    NARCIS (Netherlands)

    Vu Thu Hang, N.; Bulte, A.M.W.; Pilot, A.

    2017-01-01

    This paper describes the perception of a social constructivist approach to teaching and learning among Vietnamese teachers in a Confucian heritage culture and the changes these teachers undergo through their interaction with a new science curriculum that was designed culturally appropriate. A

  7. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    Science.gov (United States)

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-06-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS) curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  8. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    Directory of Open Access Journals (Sweden)

    Fred Goldberg1

    2012-05-01

    Full Text Available We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET, for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  9. Science education ahead?

    Science.gov (United States)

    1999-01-01

    In spite of the achievements and successes of science education in recent years, certain problems undoubtedly remain. Firstly the content taught at secondary level has largely remained unchanged from what had been originally intended to meet the needs of those who would go on to become scientists. Secondly the curriculum is overloaded with factual content rather than emphasizing applications of scientific knowledge and skills and the connections between science and technology. Thirdly the curriculum does not relate to the needs and interests of the pupils. A recent report entitled Beyond 2000: Science Education for the Future, derived from a series of seminars funded by the Nuffield Foundation, attempts to address these issues by setting out clear aims and describing new approaches to achieve them. Joint editors of the report are Robin Millar of the University of York and Jonathan Osborne of King's College London. The recommendations are that the curriculum should contain a clear statement of its aims, with the 5 - 16 science curriculum seen as enhancing general `scientific literacy'. At key stage 4 there should be more differentiation between the literacy elements and those designed for the early stages of a specialist training in science; up to the end of key stage 3 a common curriculum is still appropriate. The curriculum should be presented clearly and simply, following on from the statement of aims, and should provide young people with an understanding of some key `ideas about science'. A wide variety of teaching methods and approaches should be encouraged, and the assessment approaches for reporting on students' performance should focus on their ability to understand and interpret information as well as their knowledge and understanding of scientific ideas. The last three recommendations in the report cover the incorporation of aspects of technology and the applications of science into the curriculum, with no substantial change overall in the short term but a

  10. Nucleonics across the curriculum

    International Nuclear Information System (INIS)

    Marrano, Rich

    2005-01-01

    Many within the ''nuclear'' community are interested in attracting young people to careers in nuclear related fields while they are at the age when they are considering career choices. High school is a good to introduce students to ideas that may lead them to investigate careers in nuclear science. However, they may not even be exposed to those ideas for various reasons. For example, many teachers may not see the connection between nuclear issues and other areas of instruction. In addition, most teachers already have a full curriculum, and adding another topic is unlikely. As a result many students will not see some of the practical applications of nuclear science in other fields of study unless they take a class where nuclear science is a specified topic of study. A good alternative is to incorporate nuclear examples across the curriculum to illustrate concepts already included in other classes. This would be a simple step that teachers may find interesting and would expose a variety of students to nuclear issues. (author)

  11. Revidert læreplan i naturfag – Økt fokus på grunnleggende ferdigheter og forskerspirenRevised Norwegian science curriculum – Increased focus on literacy and inquiry skills

    Directory of Open Access Journals (Sweden)

    Sonja M. Mork

    2013-11-01

    Full Text Available One of the main consequences of the large Norwegian curriculum reform in 2006 is that teachers in all subjects are now responsible for focusing on the basic skills of reading, writing, oral, arithmetic and the use of digital tools. However, research following the implementation of the reform report a gap between curriculum intentions and classroom practice regarding basic skills. Hence the curriculum in science and four other subjects are now revised to clarify basic skills. This article describes some of the background for the revision, the revision process and some main changes in the revised curriculum.

  12. A Cooking Curriculum.

    Science.gov (United States)

    Wright, Wynn D., Ed.

    This cooking curriculum, issued by the Washington District Early Childhood Council, details specific ways in which language arts, math, science, and social studies may be taught through cooking specific recipes. Cooking activities and recipes are presented for the fall, winter, and spring months, and guidelines are provided for preparing…

  13. The Conceptual Complexity of Vocabulary in Elementary-Grades Core Science Program Textbooks

    Science.gov (United States)

    Fitzgerald, W. Jill; Elmore, Jeff; Kung, Melody; Stenner, A. Jackson

    2017-01-01

    The researchers explored the conceptual complexity of vocabulary in contemporary elementary-grades core science program textbooks to address two research questions: (1) Can a progression of concepts' complexity level be described across grades? (2) Was there gradual developmental growth of the most complex concepts' networks of associated concepts…

  14. Scientists in the classroom: Curriculum reform and the Cold War, 1949--1963

    Science.gov (United States)

    Rudolph, John Laurence

    This dissertation focuses on the origins of the National Science Foundation-supported curriculum reform movement of the 1950s and 1960s. Using the Physical Science Study Committee (PSSC) and the Biological Sciences Curriculum Study (BSCS) as exemplars of the curriculum projects that proliferated during this era, this work provides a historical analysis of the shift in school curriculum from the life adjustment, functional approach to schooling prevalent after World War II to the discipline-centered approach characteristic of the 1960s. Important factors in this shift include the rising technological threat posed by the Soviet Union along with the Red Scare in the United States, which aroused public suspicion of the ideological underpinnings of the life adjustment curricular program. The efforts of the scientific elite to develop new science curricula were welcomed as a means to combat both the technological threat of the Soviets and, through science's identification with free inquiry and democracy, the ideological threat of communism. This dissertation specifically illustrates how the key elements of the new science curriculum materials---the focus on inquiry, laboratory work, and instructional technology---were shaped by the social and political atmosphere of the Cold War and how those elements were designed to advance the interests of the American scientific community in the postwar period. This social and political atmosphere, this work argues, was not only responsible for moving science instruction away from an emphasis on the every-day applications of science toward the disciplinary structure of scientific knowledge, but also contributed to a fundamental restructuring of the substantive content of the scientific knowledge itself that made up the subject matter of the new curricula.

  15. Curriculum Reform and School Performance: An Evaluation of the "New Basics."

    Science.gov (United States)

    Alexander, Karl L.; Pallas, Aaron M.

    This report examines whether a high school curriculum organized around the five "new basics" suggested by the National Commission on Excellence in Education is likely to enhance student achievement. Data from the ETS Growth Study reveals that completion of the core curriculum has sizable effects on senior-year test performance, even when…

  16. Investigation of Environmental Topics in the Science and Technology Curriculum and Textbooks in Terms of Environmental Ethics and Aesthetics

    Science.gov (United States)

    Lacin Simsek, Canan

    2011-01-01

    In order to solve environmental problems, it is thought that education should be connected with values. For this reason, it is emphasized that environmental issues should be integrated with ethical and aesthetic values. In this study, 6th, 7th and 8th grade science and technology curriculum and textbooks were investigated to find out how much…

  17. Data Science Programs in U.S. Higher Education: An Exploratory Content Analysis of Program Description, Curriculum Structure, and Course Focus

    Science.gov (United States)

    Tang, Rong; Sae-Lim, Watinee

    2016-01-01

    In this study, an exploratory content analysis of 30 randomly selected Data Science (DS) programs from eight disciplines revealed significant gaps in current DS education in the United States. The analysis centers on linguistic patterns of program descriptions, curriculum requirements, and DS course focus as pertaining to key skills and domain…

  18. Gender Effects on Curriculum Elements Based on Mathematics and Science and Technology Teachers' Opinions: A Meta-Analysis for Turkish Studies

    Science.gov (United States)

    Küçüktepe, Seval Eminoglu; Yildiz, Nilgün

    2016-01-01

    The purpose of this study is to investigate the gender effect on elementary mathematics and science and technology teachers' opinions regarding curriculum elements which are objectives, content, learning situation and evaluation. Meta-analysis was used in order to analyze data. Two articles, 11 master and one doctorate thesis which were conducted…

  19. A Study on the Development of Curriculum Track for Civil Service Librarian

    Directory of Open Access Journals (Sweden)

    Younghee Noh

    2013-06-01

    Full Text Available The goal of this study is to improve the competitiveness of professional librarians in society. To this end, we analyzed domestic and international LIS curriculum, determined demand from field librarians through a survey, carried out job analysis by library types, and developed an operating model for LIS curriculum by synthesizing all of these results. Finally, we suggested a course of study for civil service librarians based on this model. As a result, the six required courses for civil service librarians are: Introduction to Library and Information Science, Information Organization, Information Services (Reference and Information Services, Library Management, Information Retrieval, and Field Work. The four core courses for the civil service concentration are: Collection Development, Information Sources by Subjects, Public Library Management, and Digital Libraries. Suggested electives best suited to this career path include Using Web Resources, Information Literacy, Information Services in Culturally Diverse Communities, Library Marketing, Libraries and Cultural Programs, Reading Guidance, Library History, Small Library Management, Studies in Library Buildings, Library Cooperation, Managing Digital Collections, and Information and Communication in a Digital Age.

  20. Clinical nutrition in the hepatogastroenterology curriculum

    DEFF Research Database (Denmark)

    Mulder, Chris J J; Wanten, Geert J A; Semrad, Carol E

    2016-01-01

    of Gastroenterology and Hepatology has defined specific expertise areas in Advanced endoscopy, hepatology, digestive oncology and clinical nutrition, training for the latter topic is lacking in the current hepatogastroenterology (HGE) curriculum. Given its relevance for HGE practice, and being at the core...... of gastrointestinal functioning, there is an obvious need for training in nutrition and related issues including the treatment of disease-related malnutrition and obesity and its associated metabolic derangements. This document aims to be a starting point for the integration of nutritional expertise in the HGE...... curriculum, allowing a central role in the management of malnutrition and obesity. We suggest minimum endpoints for nutritional knowledge and expertise in the standard curriculum and recommend a focus period of training in nutrition issues in order to produce well-trained HGE specialists. This article...

  1. Impacts of a Place-Based Science Curriculum on Student Place Attachment in Hawaiian and Western Cultural Institutions at an Urban High School in Hawai'i

    Science.gov (United States)

    Kuwahara, Jennifer L. H.

    2013-01-01

    This study investigates how students' participation in a place-based science curriculum may influence their place attachment (dependence and identity). Participants attend an urban high school in Hawai'i and are members of different cultural institutions within the school. Students are either enrolled in an environmental science class within the…

  2. Development of new core competencies for Taiwanese Emergency Medical Technicians

    Directory of Open Access Journals (Sweden)

    Chang YT

    2018-03-01

    Full Text Available Yu-Tung Chang,1,2 Kuang-Chau Tsai,2 Brett Williams1,3 1Department of Community Emergency Health and Paramedic Practice, Faculty of Medicine, Nursing and Health Sciences, Monash University, Frankston, VIC, Australia; 2Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; 3Division of Paramedicine, University of Tasmania, Hobart, TAS, Australia Objectives: Core competencies are considered the foundation for establishing Emergency Medical Technician (EMT and paramedic curricula, and for ensuring performance standards in the delivery of prehospital care. This study surveyed EMT instructors and medical directors to identify the most desirable core competencies for all levels of EMTs in Taiwan. Methods: A principal components analysis with Varimax rotation was conducted. An online questionnaire was distributed to obtain perspectives of EMT instructors and medical directors on the most desirable core competencies for EMTs. The target population was EMT training-course instructors and medical directors of fire departments in Taiwan. The questionnaire comprised 61 competency items, and multiple-choice and open-ended questions were used to obtain respondents’ perspectives of the Taiwanese EMT training and education system. Results: The results identified three factors at EMT-1 and EMT-2 levels and five factors at the EMT-Paramedic level. The factors for EMT-1 and EMT-2 were similar, and those for EMT-Paramedics identified further comprehensive competence perspectives. The key factors that appear to influence the development of the Taiwanese Emergency Medical Services (EMS education system are the attitude of authorities, the licensure system, and legislation. Conclusion: The findings present new core competencies for the Taiwanese EMT system and provide capacity to redesign curricula and reconsider roles for EMT-1 and EMT-2 technicians. At the EMT-Paramedic level, the findings demonstrate the importance of

  3. Across the Curriculum.

    Science.gov (United States)

    Burns, Marilyn; And Others

    1994-01-01

    Across-the-curriculum articles focus on four areas. A math activity describes optical illusions and the properties of shapes. A hands-on science activity presents the chemistry of secret messages. A writing lesson helps students capture the essence of character. An art lesson presents a project on medieval castles. (SM)

  4. A comparative analysis of Science-Technology-Society standards in elementary, middle and high school state science curriculum frameworks

    Science.gov (United States)

    Tobias, Karen Marie

    An analysis of curriculum frameworks from the fifty states to ascertain the compliance with the National Science Education Standards for integrating Science-Technology-Society (STS) themes is reported within this dissertation. Science standards for all fifty states were analyzed to determine if the STS criteria were integrated at the elementary, middle, and high school levels of education. The analysis determined the compliance level for each state, then compared each educational level to see if the compliance was similar across the levels. Compliance is important because research shows that using STS themes in the science classroom increases the student's understanding of the concepts, increases the student's problem solving skills, increases the student's self-efficacy with respect to science, and students instructed using STS themes score well on science high stakes tests. The two hypotheses for this study are: (1) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school levels. (2) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school level when examined individually. The Analysis of Variance F ratio was used to determine the variance between and within the three educational levels. This analysis addressed hypothesis one. The Analysis of Variance results refused to reject the null hypothesis, meaning there is significant difference in the compliance to STS themes between the elementary, middle and high school educational levels. The Chi-Square test was the statistical analysis used to compare the educational levels for each individual criterion. This analysis addressed hypothesis two. The Chi-Squared results showed that none of the states were equally compliant with each

  5. Science youth action research: Promoting critical science literacy through relevance and agency

    Science.gov (United States)

    Coleman, Elizabeth R.

    This three-article dissertation presents complementary perspectives on Science Youth Action Research (Sci-YAR), a K-12 curriculum designed to emphasize relevance and agency to promote youth's science learning. In Sci-YAR, youth conduct action research projects to better understand science-related issues in their lives, schools, or communities, while they simultaneously document, analyze, and reflect upon their own practices as researchers. The first article defines Sci-YAR and argues for its potential to enhance youth's participation as citizens in a democratic society. The second article details findings from a case study of youth engaged in Sci-YAR, describing how the curriculum enabled and constrained youth's identity work in service of critical science agency. The third article provides guidance to science teachers in implementing student-driven curriculum and instruction by emphasizing Sci-YAR's key features as a way to promote student agency and relevance in school science.

  6. Resident learning across the full range of core competencies through a transitions of care curriculum.

    Science.gov (United States)

    Pavon, Juliessa M; Pinheiro, Sandro O; Buhr, Gwendolen T

    2018-01-01

    The authors developed a Transitions of Care (TOC) curriculum to teach and measure learner competence in performing TOC tasks for older adults. Internal medicine interns at an academic residency program received the curriculum, which consisted of experiential learning, self-study, and small group discussion. Interns completed retrospective pre/post surveys rating their confidence in performing five TOC tasks, qualitative open-ended survey questions, and a self-reflection essay. A subset of interns also completed follow-up assessments. For all five TOC tasks, the interns' confidence improved following completion of the TOC curriculum. Self-confidence persisted for up to 3 months later for some but not all tasks. According to the qualitative responses, the TOC curriculum provided interns with learning experiences and skills integral to performing safe care transitions. The TOC curriculum and a mixed-method assessment approach effectively teaches and measures learner competency in TOC across all six Accreditation Council for Graduate Medical Education competency domains.

  7. Core-Plus Mathematics. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2010

    2010-01-01

    "Core-Plus Mathematics" is a four-year curriculum that replaces the traditional sequence with courses that each feature interwoven strands of algebra and functions, statistics and probability, geometry and trigonometry, and discrete mathematics. The first three courses in the series provide a common core of broadly useful mathematics,…

  8. Integrating Ethics into the Social Studies Curriculum.

    Science.gov (United States)

    Howe, Kenneth R.

    1991-01-01

    Urges incorporation of ethics into social studies curriculum. Provides an overview of ethical theory including principle-based theories of utilitarianism and deontology and virtue-based theories. Discusses philosophies of social science including positivism, interpretivism, and critical social science. Suggests teaching methods and curriculum…

  9. INTRODUCTION TO SCIENCE: A CURRICULUM APPROACH

    OpenAIRE

    Bianco, André A. G.; Biochemistry Departament, Chemistry Institute, Sao Paulo University, Sao Paulo.; Torres, Bayardo B.; Biochemistry Departament, Chemistry Institute, Sao Paulo University, Sao Paulo.

    2007-01-01

    International and national institutions concerned with higher education recommendthe inclusion in curriculum of strategies to promote development of aditional skills thentraditionals memorazing habilities and contents reproduction. Between this, specialattention is given to stimulating the critical capacitie. To develop this skills, was given aproject, included into the Biochemistry discipline, with freshmen students in the Nutritioncourse of the Saúde Pública College of USP. The project cons...

  10. Exploring the Effectiveness of Curriculum Provided Through Transmedia Books for Increasing Students' Knowledge and Interest in Science

    Science.gov (United States)

    Ponners, Pamela Jones

    Transmedia books are new and emerging technologies which are beginning to be used in current classrooms. Transmedia books are a traditional printed book that uses multiple media though the use of Quick Response (QR) codes and augmented reality (AR) triggers to access web-based technology. Using the transmedia book Skills That Engage Me students in kindergarten through second grade engage in curriculum designed to introduce science skills and careers. Using the modified Draw-a-Scientist Test (mDAST), observations and interviews, researchers analyzed pre and post data to describe changes students have about science and scientists. Future study may include the development and validation of a new instrument, Draw a Science Student, and examining the mDAST checklist with the intention of updating the parameters of what is considered positive and negative in relationship with work a scientist conducts.

  11. Influence of Science, Technology, and Engineering Curriculum on Rural Midwestern High School Student Career Decisions

    Science.gov (United States)

    Killingsworth, John

    Low degree completion in technical and engineering degrees is a growing concern for policymakers and educators in the United States. This study was an examination of the behaviors of adolescents specific to career decisions related to technology and engineering. The central research question for this study was: do rural, Midwestern high school technical and engineering curricula serve to engage students sufficiently to encourage them to persist through high school while sustaining their interests in technology and engineering careers? Engaging students in technology and engineering fields is the challenge for educators throughout the country and the Midwest. Rural schools have the additional challenge of meeting those issues because of resource limitations. Students in three Midwestern schools were surveyed to determine the level of interest in technology and engineering. The generalized likelihood ratio test was used to overcome concerns for small sample sizes. Accounting for dependent variables, multiple independent variables are examined using descriptive statistics to determine which have greater influence on career decisions, specifically those related to technology and engineering. A typical science curriculum is defined for rural Midwestern high schools. This study concludes that such curriculum achieves the goal of maintaining or increasing student interest and engagement in STEM careers. Furthermore, those schools that incorporate contextual and experiential learning activities into the curriculum demonstrate increased results in influencing student career choices toward technology and engineering careers. Implications for parents, educators, and industry professionals are discussed.

  12. Curriculum Guidelines on Predoctoral Oral and Maxillofacial Surgery.

    Science.gov (United States)

    Journal of Dental Education, 1985

    1985-01-01

    The American Association of Dental Schools' Curriculum Guidelines include an introduction to the discipline and its interrelationships with other disciplines, prerequisites, a core content outline, specific behavioral objectives, and notes on sequencing and faculty. (MSE)

  13. Experiencing the Implementation of New Inquiry Science Curricula

    Science.gov (United States)

    Ower, Peter S.

    Using a phenomenological methodology, a cohort of four experienced science teachers was interviewed about their experience transitioning from traditional, teacher and fact-centered science curricula to inquiry-based curricula. Each teacher participated in two interviews that focused on their teaching backgrounds, their experience teaching the prior traditional curriculum, and their experience teaching the new inquiry-based curriculum. The findings are presented as a narrative of each teachers' experience with the new curriculum implementation. Analyzing the data revealed four key themes. 1) The teachers felt trapped by the old curriculum as it did not align with their positive views of teaching science through inquiry. 2) The teachers found a way to fit their beliefs and values into the old and new curriculum. This required changes to the curriculum. 3) The teachers attempted to make the science curriculum as meaningful as possible for their students. 4) The teachers experienced a balancing act between their beliefs and values and the various aspects of the curriculum. The revealed essence of the curriculum transition is one of freedom and reconciliation of their beliefs. The teachers experienced the implementation of the new curriculum as a way to ensure their values and beliefs of science education were embedded therein. They treated the new curriculum as a malleable structure to impart their grander ideas of science education (e.g. providing important skills for future careers, creating a sense of wonder, future problem solving) to the students. Their changes were aligned with the philosophy of the curriculum kits they were implementing. Thus, the fidelity of the curriculum's philosophy was not at risk even though the curriculum kits were not taught as written. This study showed that phenomenological methods are able to reveal the relationship between a teacher's prior experiences, values and beliefs and their current instructional philosophy in science

  14. Earth & Space Science in the Next Generation Science Standards: Promise, Challenge, and Future Actions. (Invited)

    Science.gov (United States)

    Pyle, E. J.

    2013-12-01

    of match must be supported not just by disciplinary core ideas, but also by SEPs and CCCs. Such a structured approach to Earth science instruction also requires specialized approaches to teacher preparation and professional development. Many teachers of Earth science are underprepared, and an examination of how Earth science teachers are prepared and supported to use to new curricular materials is also warranted. This presentation will (a) compare the structure of the NGSS and NSES for Earth & Space Science, (b) discuss the review of the NGSS drafts with respect to the intent of the Curriculum Framework, (c) provide definition to the particular challenges to instruction offered by the NGSS beyond prior instructional experience, and (d) define and reinforce concepts of what it means for curricula, instructional materials, and teacher preparation and professional development to be considered 'aligned' with the NGSS.

  15. Curriculum Guidelines for Pathology and Oral Pathology.

    Science.gov (United States)

    Journal of Dental Education, 1985

    1985-01-01

    Guidelines for dental school pathology courses describe the interrelationships of general, systemic, and oral pathology; primary educational goals; prerequisites; a core curriculum outline and behavioral objectives for each type of pathology. Notes on sequencing, faculty, facilities, and occupational hazards are included. (MSE)

  16. BIBLIOGRAPHY ON CURRICULUM DEVELOPMENT.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Graduate School of Education.

    THIS BIBLIOGRAPHY LISTS MATERIALS ON VARIOUS ASPECTS OF CURRICULUM DEVELOPMENT. FORTY UNANNOTATED REFERENCES ARE PROVIDED FOR DOCUMENTS DATING FROM 1960 TO 1966. BOOKS, JOURNALS, REPORT MATERIALS, AND SOME UNPUBLISHED MANUSCRIPTS ARE LISTED IN SUCH AREAS AS COGNITIVE STUDIES, VOCATIONAL REHABILITATION, INSTRUCTIONAL MATERIALS, SCIENCE STUDIES, AND…

  17. A web-based resource for the nuclear science/technology high school curriculum - a summary

    International Nuclear Information System (INIS)

    Ripley, C.

    2009-01-01

    On November 15, 2008, the CNA launched a new Nuclear Science Technology High School Curriculum Website. Located at www.cna.ca the site was developed over a decade, first with funding from AECL and finally by the CNA, as a tool to explain concepts and issues related to energy and in particular nuclear energy targeting the public, teachers and students in grades 9-12. It draws upon the expertise of leading nuclear scientists and science educators. Full lesson plans for the teacher, videos for discussion, animations, games, electronic publications, laboratory exercises and quick question and answer sheets will give the student greater knowledge, skills and attitudes necessary to solve problems and to critically examine issues in making decisions. Eight modules focus on key areas: Canada's Nuclear History, Atomic Theory, What is Radiation?, Biological Effects of Radiation, World Energy Sources, Nuclear Technology at Work, Safety (includes Waste Disposal) in the Nuclear Industry and Careers. (author)

  18. Into the Curriculum. Reading/Language Arts: Three Little Kittens and the Lost Mittens; Reading/Language Arts: A Caldecott Archaeological Dig; Science: Discovering the Periodic Table of Elements; Science: The Red-Eyed Tree Frog Jumps into Nonfiction; Social Studies: Our Nation's Beginnings-Jamestown and Plymouth Settlements.

    Science.gov (United States)

    Cherry, Carolyn; Louk, Cathy; Barwick, Martha; Kidd, Gentry E.

    2001-01-01

    Provides five fully developed school library media activities that are designed for use with specific curriculum units in reading/language arts, science, and social studies. Library media skills objectives, curriculum (subject area) objectives, grade levels, resources, instructional roles, activity and procedures for completion, evaluation, and…

  19. The Effectiveness of an Educational Game for Teaching Optometry Students Basic and Applied Science.

    Science.gov (United States)

    Trevino, Richard; Majcher, Carolyn; Rabin, Jeff; Kent, Theresa; Maki, Yutaka; Wingert, Timothy

    2016-01-01

    To compare the effectiveness of an educational board game with interactive didactic instruction for teaching optometry students elements of the core optometric curriculum. Forty-two optometry students were divided into two GPA-matched groups and assigned to either 12 hours of game play (game group) or 12 hours of interactive didactic instruction (lecture group). The same material from the core optometric curriculum was delivered to both groups. Game play was accomplished via an original board game. Written examinations assessed change in knowledge level. A post-intervention opinion survey assessed student attitudes. There was no significant difference in pre- or post-intervention test scores between the lecture and game groups (Pre-test: p = 0.9; Post-test: p = 0.5). Post-intervention test scores increased significantly from baseline (Game group: 29.3% gain, Didactic group: 31.5% gain; poptometry students basic and applied science. Furthermore, both modes of instruction have the potential to be equally engaging and enjoyable experiences.

  20. Effects of the layered curriculum on student’s success, permanence and attitudes in Science and Technology Course

    OpenAIRE

    Mehmet Nuri Gömleksiz; Serav Biçer

    2012-01-01

    This study aims to determine the effects of the layered curriculum on students’ achievement, permanence and attitudes towards Science and Technology course.  The research was conducted with two classes including an experimental and a control class at 6th grade of Elazig İstiklal Primary School in 2009-2010 academic year. Mixed research model that utilize both quantitative and qualitative research methods together was preferred in this research. To that end, achievement test and attitude scale...

  1. The World Needs a New Curriculum

    Science.gov (United States)

    Prensky, Marc

    2014-01-01

    The author proposes that today's existing, world-wide curriculum--based on offering roughly the same math, language arts, science, and social studies to all--is not what is required for the future, and is hurting rather than helping the world's students. Math, language arts, science, and social studies, he argues, are really "proxies"…

  2. Methods and Tools to Align Curriculum to the Skills and Competencies Needed by the Workforce - an Example from Geospatial Science and Technology

    Science.gov (United States)

    Johnson, A. B.

    2012-12-01

    Geospatial science and technology (GST) including geographic information systems, remote sensing, global positioning systems and mobile applications, are valuable tools for geoscientists and students learning to become geoscientists. GST allows the user to analyze data spatially and temporarily and then visualize the data and outcomes in multiple formats (digital, web and paper). GST has evolved rapidly and it has been difficult to create effective curriculum as few guidelines existed to help educators. In 2010, the US Department of Labor (DoL), in collaboration with the National Geospatial Center of Excellence (GeoTech Center), a National Science Foundation supported grant, approved the Geospatial Technology Competency Mode (GTCM). The GTCM was developed and vetted with industry experts and provided the structure and example competencies needed across the industry. While the GTCM was helpful, a more detailed list of skills and competencies needed to be identified in order to build appropriate curriculum. The GeoTech Center carried out multiple DACUM events to identify the skills and competencies needed by entry-level workers. DACUM (Developing a Curriculum) is a job analysis process whereby expert workers are convened to describe what they do for a specific occupation. The outcomes from multiple DACUMs were combined into a MetaDACUM and reviewed by hundreds of GST professionals. This provided a list of more than 320 skills and competencies needed by the workforce. The GeoTech Center then held multiple workshops across the U.S. where more than 100 educators knowledgeable in teaching GST parsed the list into Model Courses and a Model Certificate Program. During this process, tools were developed that helped educators define which competency should be included in a specific course and the depth of instruction for that competency. This presentation will provide details about the process, methodology and tools used to create the Models and suggest how they can be used

  3. Developing Sport Psychology in a Girls' Sport Academy Curriculum

    Science.gov (United States)

    Lewis, Andrew

    2014-01-01

    This article explores the initial steps in developing and presenting Sport Psychology in a leadership and sport curriculum at Stellenbosch University's (SU) Centre for Human Performance Sciences' (CHPS) Academy for Girls' Leadership and Sport Development. Sport Psychology does not feature within the South African school curriculum specifically,…

  4. Utah's New Mathematics Core

    Science.gov (United States)

    Utah State Office of Education, 2011

    2011-01-01

    Utah has adopted more rigorous mathematics standards known as the Utah Mathematics Core Standards. They are the foundation of the mathematics curriculum for the State of Utah. The standards include the skills and understanding students need to succeed in college and careers. They include rigorous content and application of knowledge and reflect…

  5. Standardized Curriculum for Service Station Retailing.

    Science.gov (United States)

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    This curriculum guide for service station retailing was developed by the state of Mississippi to standardize vocational education course titles and core contents. The objectives contained in this document are common to all service station retailing programs in the state. The guide contains objectives for service station retailing I and II courses.…

  6. The botanical content in the South African curriculum: A barren desert or a thriving forest?

    Directory of Open Access Journals (Sweden)

    Amelia L. Abrie

    2016-02-01

    Full Text Available Botanists who are interested in education have often expressed their dismay at how plant sciences are neglected in Biology curricula, despite the important roles that plants play. While botanists in several overseas countries have studied the ways in which plant sciences are represented in curricula, no research has been done on how botany is neglected in the South African curriculum. Currently, the South African curriculum is known as the Curriculum and Assessment Policy Statements (CAPS for Grades R–12. In this study, a comparison was made among the content that is generally taught in introductory plant sciences courses, the American Society of Plant Biologists’ principles for plant biology education and the relevant CAPS documents. The time spent on plant, animal or human-focused content was established and compared at both phase and grade level. It was found that while the curriculum addresses all the major concepts in the plant sciences, very little time was being allocated to exclusively plant-focused content as compared to animal and human-focused content. This neglect was particularly prevalent in the Foundation Phase. The way in which the content is structured and presented in the curriculum may in all likelihood not be sufficient to provide a strong knowledge and skills foundation in the plant sciences, nor will it encourage the development of positive values towards plants. While consensus regarding the content of a curriculum will be difficult to achieve, awareness of potential gaps in the curriculum should be brought to the attention of the botanical and educational communities.

  7. Evaluation of the New Curriculum of the College of Health Sciences ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The changes to the curriculum were designed through a facilitated participatory process aimed at producing health professionals with expanded competencies. The new curriculum was deemed necessary to prepare health professionals to respond to the new demands of decentralized health service delivery, to tackle new ...

  8. Risk communication as a core public health competence in infectious disease management: Development of the ECDC training curriculum and programme.

    Science.gov (United States)

    Dickmann, Petra; Abraham, Thomas; Sarkar, Satyajit; Wysocki, Piotr; Cecconi, Sabrina; Apfel, Franklin; Nurm, Ülla-Karin

    2016-01-01

    Risk communication has been identified as a core competence for guiding public health responses to infectious disease threats. The International Health Regulations (2005) call for all countries to build capacity and a comprehensive understanding of health risks before a public health emergency to allow systematic and coherent communication, response and management. Research studies indicate that while outbreak and crisis communication concepts and tools have long been on the agenda of public health officials, there is still a need to clarify and integrate risk communication concepts into more standardised practices and improve risk communication and health, particularly among disadvantaged populations. To address these challenges, the European Centre for Disease Prevention and Control (ECDC) convened a group of risk communication experts to review and integrate existing approaches and emerging concepts in the development of a training curriculum. This curriculum articulates a new approach in risk communication moving beyond information conveyance to knowledge- and relationship-building. In a pilot training this approach was reflected both in the topics addressed and in the methods applied. This article introduces the new conceptual approach to risk communication capacity building that emerged from this process, presents the pilot training approach developed, and shares the results of the course evaluation.

  9. To What Extent Do Pupils Perceive Science to Be Inconsistent with Religious Faith? An Exploratory Survey of 13-14 Year-Old English Pupils

    Science.gov (United States)

    Taber, Keith S.; Billingsley, Berry; Riga, Fran; Newdick, Helen

    2011-01-01

    Scientists hold a wide range of beliefs on matters of religion, although popular media coverage in the UK commonly suggests that atheism is a core commitment for scientists. Considering the relationship between religion and science is a recommended topic in the English National Curriculum for lower secondary pupils (11-14 year-olds), and it is…

  10. Management Science in U.S. AACSB International-Accredited Core Undergraduate Business School Curricula

    Science.gov (United States)

    Palocsay, Susan W.; Markham, Ina S.

    2014-01-01

    In 2003, accreditation standards were revised to require coverage of management science (MS) after previously removing it in 1991. Meanwhile, increasing awareness of the value of business analytics stimulated a renewed interest in MS. To examine its present status in undergraduate core business curricula, the authors conducted two studies to…

  11. Implementing Jesuit Charisms and Core Values in Distance Education

    Science.gov (United States)

    Dickel, Charles Timothy; Ishii-Jordan, Sharon R.

    2008-01-01

    Given the ever-increasing number of students who are taking distance education courses, it seems appropriate to look beyond the explicit, academic curriculum and consider how institutional charisms and core values might be implemented in distance education courses. This article explores the incorporation of charisms and core values in distance…

  12. The “unknown” Greek Paleoenvironment: Curriculum Proposals through an Infusion Model for Elementary School, Using Ammonite Fossils

    Directory of Open Access Journals (Sweden)

    Stiliani FRAGOULI

    2017-06-01

    Full Text Available In this study we introduce an infusion model to “inject” ammonites and ammonite fossils in current subjects of Greek primary curriculum. Paleontology and mainly fossils attract more and more elementary students and teachers, yet in Greece this trend is solely about dinosaurs, despite the fact that the most common Greek fossils are not dinosaurs, but ammonites. Ammonites can be found in large population and diversity inside Greek rocks, as these rocks were part of Tethys΄ seafloor at their geological time. Apart from the informal sources of education, these science topics are excluded from elementary national curriculum, and leave the regional paleoenvironment and geological history practically “unknown” to students. Data collected through a pre-test study, in 558 students of 4th, 5th, and 6th grade confirmed the above belief. A post-test at the original sample, using an open ended questionnaire and students’ drawings, evaluated positively the infusion teaching model, whose core were the ammonite fossils.

  13. Emerging identities: A proposed model for an interactive science curriculum for First Nations students

    Science.gov (United States)

    Sable, Trudy

    Mi'kmaw students face a complexity of personal, cultural, and social conditions within contemporary educational systems that affect their continued participation in the educational process offered within Atlantic Canada. Despite a variety of approaches developed by educators to address the high drop out rate and lack of interest in science, the statistics remain largely unchanged. Aboriginal educators are calling for a "new story" in education that better meets the needs of Aboriginal students. This study attempts to identify the conditions and contexts necessary to bridge the gap that currently exists for Aboriginal students in science studies. The research investigates the basic relationship between learning in general and the meaning-making processes engaged in by students of a Grade 7/8 class within a Mi'kmaw reserve school. It leads to a proposal for an alternative pedagogy, or a new narrative, for teaching science to Aboriginal students and the foundations for a culturally interactive science curriculum. For educators to understand the complexity of issues affecting Mi'kmaw student achievement in science requires a theoretical framework that allows the students' lived experience to emerge. Toward this end, the research includes both phenomenological and ethnographic approaches to understanding the lived experiences and cultural narratives based on interviews with the students, a field trip within the community, and a trial chemistry lesson. I examined how these students perceive themselves in different contexts and how their sense of identity establishes the meaningfulness of particular educational content. I also assessed how person, community/cultural and social contexts affect the students' learning. Part of creating this new narrative requires recognizing knowledge, including science, as a cultural product Taking this cultural view of scientific knowledge allows us to view learning as a process of identity formation and culture as a system of symbols

  14. An integrative approach to cultural competence in the psychiatric curriculum.

    Science.gov (United States)

    Fung, Kenneth; Andermann, Lisa; Zaretsky, Ari; Lo, Hung-Tat

    2008-01-01

    As it is increasingly recognized that cultural competence is an essential quality for any practicing psychiatrist, postgraduate psychiatry training programs need to incorporate cultural competence training into their curricula. This article documents the unique approach to resident cultural competence training being developed in the Department of Psychiatry at the University of Toronto, which has the largest residency training program in North America and is situated in an ethnically diverse city and country. The authors conducted a systematic review of cultural competence by searching databases including PubMed, PsycINFO, PsycArticles, CINAHL, Social Science Abstracts, and Sociological Abstracts; by searching government and professional association publications; and through on-site visits to local cross-cultural training programs. Based on the results of the review, a resident survey, and a staff retreat, the authors developed a deliberate "integrative" approach with a mindful, balanced emphasis on both generic and specific cultural competencies. Learning objectives were derived from integrating the seven core competencies of a physician as defined by the Canadian Medical Education Directions for Specialists (CanMEDS) roles framework with the tripartite model of attitudes, knowledge, and skills. The learning objectives and teaching program were further integrated across different psychiatric subspecialties and across the successive years of residency. Another unique strategy used to foster curricular and institutional change was the program's emphasis on evaluation, making use of insights from modern educational theories such as formative feedback and blueprinting. Course evaluations of the core curriculum from the first group of residents were positive. The authors propose that these changes to the curriculum may lead to enhanced cultural competence and clinical effectiveness in health care.

  15. An Interprofessional Consensus of Core Competencies for Prelicensure Education in Pain Management: Curriculum Application for Nursing

    Science.gov (United States)

    Herr, Keela; St. Marie, Barbara; Gordon, Debra B.; Paice, Judith A.; Watt-Watson, Judy; Stevens, Bonnie J.; Bakerjian, Debra; Young, Heather M.

    2015-01-01

    Background Ineffective assessment and management of pain is a significant problem. A gap in prelicensure health science program pain content has been identified for the improvement of pain care in the United States. Method Through consensus processes, an expert panel of nurses, who participated in the interdisciplinary development of core competencies in pain management for prelicensure health professional education, developed recommendations to address the gap in nursing curricula. Results Challenges and incentives for implementation of pain competencies in nursing education are discussed, and specific recommendations for how to incorporate the competencies into entry-level nursing curricula are provided. Conclusion Embedding pain management core competencies into prelicensure nursing education is crucial to ensure that nurses have the essential knowledge and skills to effectively manage pain and to serve as a foundation on which clinical practice skills can be later honed. PMID:26057425

  16. Narrative Inquiry for Science Education: Teachers' repertoire-making in the case of environmental curriculum

    Science.gov (United States)

    Hwang, Seyoung

    2011-04-01

    This paper considers how the school science curriculum can be conceptualised in order to address the contingent and complex nature of environmental and sustainability-related knowledge and understanding. A special concern lies in the development of research perspectives and tools for investigating ways, in which teachers are faced with complex and various situations in the sense-making of science-related issues, and subsequent pedagogic issues. Based on an empirical examination of Korean teachers' sense-making of their curricular practice, the paper develops a narrative approach to teachers' perspectives and knowledge by considering the value of stories as sense-making tools for reflective questioning of what is worth teaching, how and why. By employing the idea of 'repertoire', the study regards teachers' stories about their environment-related personal and teaching experiences as offering angles with which to understand teachers' motivation and reflection in curricular development and implementation. Furthermore, three empirical cases present ways in which the nature of knowledge and understanding is recognised and potentially integrated into pedagogies through teachers' narratives. Finally, the paper argues for the need to reconsider the role of the science teacher in addressing environmental and sustainability-related issues, in ways that facilitate teachers' reflexive interpretation of meanings in cultural texts and the construction of pedagogic text.

  17. Customization of Curriculum Materials in Science: Motives, Challenges, and Opportunities

    Science.gov (United States)

    Romine, William L.; Banerjee, Tanvi

    2012-02-01

    Exemplary science instructors use inquiry to tailor content to student's learning needs; traditional textbooks treat science as a set of facts and a rigid curriculum. Publishers now allow instructors to compile pieces of published and/or self-authored text to make custom textbooks. This brings numerous advantages, including the ability to produce smaller, cheaper text and added flexibility on the teaching models used. Moreover, the internet allows instructors to decentralize textbooks through easy access to educational objects such as audiovisual simulations, individual textbook chapters, and scholarly research articles. However, these new opportunities bring with them new problems. With educational materials easy to access, manipulate and duplicate, it is necessary to define intellectual property boundaries, and the need to secure documents against unlawful copying and use is paramount. Engineers are developing and enhancing information embedding technologies, including steganography, cryptography, watermarking, and fingerprinting, to label and protect intellectual property. While these are showing their utility in securing information, hackers continue to find loop holes in these protection schemes, forcing engineers to constantly assess the algorithms to make them as secure as possible. As newer technologies rise, people still question whether custom publishing is desirable. Many instructors see the process as complex, costly, and substandard in comparison to using traditional text. Publishing companies are working to improve attitudes through advertising. What lacks is peer reviewed evidence showing that custom publishing improves learning. Studies exploring the effect of custom course materials on student attitude and learning outcomes are a necessary next step.

  18. Using implementation science as the core of the doctor of nursing practice inquiry project.

    Science.gov (United States)

    Riner, Mary E

    2015-01-01

    New knowledge in health care needs to be implemented for continuous practice improvement. Doctor of nursing practice (DNP) programs are designed to increase clinical practice knowledge and leadership skills of graduates. This article describes an implementation science course developed in a DNP program focused on advancing graduates' capacity for health systems leadership. Curriculum and course development are presented, and the course is mapped to depict how the course objectives and assignments were aligned with DNP Essentials. Course modules with rational are described, and examples of how students implemented assignments are provided. The challenges of integrating this course into the life of the school are discussed as well as steps taken to develop faculty for this capstone learning experience. This article describes a model of using implementation science to provide DNP students an experience in designing and managing an evidence-based practice change project. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Assessment of the resident’s promotion exam: One step to validity of competency measurement in Arak University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Z Anbari

    2013-03-01

    Full Text Available Introduction: Designing a tool for measuring of residents’competency with attention to their main role in education and practice of university. This study aims to assess the residents’ promotion tests of clinical departments at Arak University of Medicals Sciences. Methods: This cross- sectional study that was undertook in 2010 at Arak University of Medical Sciences. Seven hundred and fifty multiple choice questions related to resident promotion tests in surgery, internal medicine, pediatrics, gynecology and anesthesiology was compared. Questionnaire of each department contained 150 questions.   These questions were evaluated in the following domains: structure, Blum taxonomy, discrimination and difficulty index of questions and compliance to the core curriculums. Data gathering tool were: Millmen standard check list for evaluating questions’ structure and check list for evaluating Blum taxonomy and core curriculum and OMR system for evaluating discrimination and difficulty index. The validity and reliability of tools was confirmed and data were analyzed using by ANOVA and X2 tests. Results: Results showed gynecology department had structural problem (4.5±4.2 compared with other departments. Internal medicine department had the highest Blum domain (40% application and 47% comprehension, surgery department had the highest learning aims (90.7% and was assessed as the most suitable questions from difficulty index (67.3% and discrimination index (73.5%. There was significant difference between structural problem, core curriculum and rate of standard questions in various clinical departments (P=0.001. Conclusion: This study confirmed the necessity of test assessment in universities, to form effective educational workshops, control of questions before exams and incentives for clinical departments to design standard questions. Development of electronic question analysis system is recommended.

  20. Using consensus methods to develop a country-specific Master of Public Health curriculum for the Republic of Maldives

    Directory of Open Access Journals (Sweden)

    Robotin MC

    2016-02-01

    Full Text Available Monica C Robotin,1,2 Muthau Shaheem,3 Aishath S Ismail3 1Faculty of Medicine, School of Public Health, University of Sydney, 2Cancer Programs Division, Cancer Council New South Wales, Sydney, Australia; 3Faculty of Health Sciences, Maldives National University, Male, Maldives Background: Over the last four decades, the health status of Maldivian people improved considerably, as reflected in child and maternal mortality indicators and the eradication or control of many communicable diseases. However, changing disease patterns are now undermining these successes, so the local public health practitioners need new skills to perform effectively in this changing environment. To address these needs, in 2013 the Faculty of Health Sciences of the Maldives National University developed the country's first Master of Public Health (MPH program.Methods: The process commenced with a wide scoping exercise and an analysis of the curricular structure of MPH programs of high-ranking universities. Thereafter, a stakeholder consultation using consensus methods reached agreement on overall course structure and the competencies required for local MPH graduates. Subsequently, a working group developed course descriptors and identified local public health research priorities, which could be addressed by MPH students.Results: Ten semistructured interviews explored specific training needs of prospective MPH students, key public health competencies required by local employers and preferred MPH training models. The recommendations informed a nominal group meeting, where participants agreed on MPH core competencies, overall curricular structure and core subjects. The 17 public health electives put forward by the group were prioritized using an online Delphi process. Participants ranked them by their propensity to address local public health needs and the locally available teaching expertise. The first student cohort commenced their MPH studies in January 2014.Conclusion

  1. The GenDev Curriculum Development Workshop.

    Science.gov (United States)

    D'cunha, J

    1997-01-01

    This article describes the second Curriculum Development Workshop held in May 1997 at the Asian Institute of Technology (AIT) in Bangkok, Thailand. The workshop aimed to review critically and restructure the Gender and Development Studies (GenDev) curriculum and to assess AIT's role in training gender experts for the region. Participants included 22 people from 16 countries in Asia, Europe, and the US who were teaching graduate students about gender issues and who were activists with nongovernmental organizations working on gender issues. It was determined that the following were required courses: Culture, Knowledge and Gender Relations; Gender, Technology, and Development; Principles of Gender Research and Methodology in Science and Technology; and Gender Analysis and Field Methods. Other suggested core courses included: Gender and Natural Resource Management; Enterprise Management, Technology, and Gender; Gender and Agrarian Reform; Urbanization: A Gender Perspective; Gender-Responsive Development Planning; and Gender and Economic Change: Past and Present Concerns. Participants distinguished between GenDev courses offered to anyone attending AIT and training courses designed to produce gender experts in the region. The aim of training courses for AIT graduate students was to sensitize potential managers, technologists, and others on gender issues and to create awareness of the importance of including gender perspectives within decision-making, policy formation, and implementation. Training courses to produce gender experts should be directed to those with a prior background in gender studies and include gender analysis in field methods. Participants agreed that there should be an independent and autonomous field of gender and development studies. Participants made six recommendations for such a field of study.

  2. Crowdsourced Curriculum Development for Online Medical Education.

    Science.gov (United States)

    Shappell, Eric; Chan, Teresa M; Thoma, Brent; Trueger, N Seth; Stuntz, Bob; Cooney, Robert; Ahn, James

    2017-12-08

    In recent years online educational content, efforts at quality appraisal, and integration of online material into institutional teaching initiatives have increased. However, medical education has yet to develop large-scale online learning centers. Crowd-sourced curriculum development may expedite the realization of this potential while providing opportunities for innovation and scholarship. This article describes the current landscape, best practices, and future directions for crowdsourced curriculum development using Kern's framework for curriculum development and the example topic of core content in emergency medicine. A scoping review of online educational content was performed by a panel of subject area experts for each step in Kern's framework. Best practices and recommendations for future development for each step were established by the same panel using a modified nominal group consensus process. The most prevalent curriculum design steps were (1) educational content and (2) needs assessments. Identified areas of potential innovation within these steps included targeting gaps in specific content areas and developing underrepresented instructional methods. Steps in curriculum development without significant representation included (1) articulation of goals and objectives and (2) tools for curricular evaluation. By leveraging the power of the community, crowd-sourced curriculum development offers a mechanism to diffuse the burden associated with creating comprehensive online learning centers. There is fertile ground for innovation and scholarship in each step along the continuum of curriculum development. Realization of this paradigm's full potential will require individual developers to strongly consider how their contributions will align with the work of others.

  3. A Proposed Concentration Curriculum Design for Big Data Analytics for Information Systems Students

    Science.gov (United States)

    Molluzzo, John C.; Lawler, James P.

    2015-01-01

    Big Data is becoming a critical component of the Information Systems curriculum. Educators are enhancing gradually the concentration curriculum for Big Data in schools of computer science and information systems. This paper proposes a creative curriculum design for Big Data Analytics for a program at a major metropolitan university. The design…

  4. Curriculum Theory and the Welfare State

    Directory of Open Access Journals (Sweden)

    Benjamin Justice

    2017-07-01

    Full Text Available How do states make citizens? The question is as old as states themselves. Surprisingly, however, the approaches to answering it have emerged as a form of parallel play, uncoordinated (and poorly understood across fields. This essay attempts to reconcile disparate realms of social research that address the question. The first, curriculum theory, grows out of educational research that for a century has focused almost exclusively on schools, schooling, and intentional settings for academic knowledge transmission. The second realm draws primarily on research from psychology, sociology, and political science to look empirically for effects of exposure to particular kinds of social phenomena. These include, but are not exclusive to, public institutions and policies. This essay begins by developing a mainstream conception of curriculum theory. It then compares and contrasts social science traditions that engage questions related to the state’s role in civic identity formation. Finally, it offers a case study on New York City’s controversial policing strategy known as Stop, Question, and Frisk, exploring how curriculum theory (developed in the context of mass schooling can be a useful framework for understanding the educational features of a distinct social policy.

  5. The Rise and Fall of the Social Science Curriculum Project in Iceland, 1974-1984: Reflections on Reason and Power in Educational Progress.

    Science.gov (United States)

    Edelstein, Wolfgang

    1987-01-01

    Examines the demise of the Icelandic Social Science Curriculum Project (SSCP) as an example of progressive educational reform thwarted by neofundamentalist ideologies. States that the paper goes beyond Jerome Bruner's 1984 account of the rise and fall of "Man: A Course of Study" to provide a deeper analysis of the politics of…

  6. Developing and Implementing a Pediatric Emergency Care Curriculum for Providers at District Level Hospitals in Sub-Saharan Africa: A Case Study in Kenya

    Directory of Open Access Journals (Sweden)

    Colleen Diane Fant

    2017-12-01

    Full Text Available IntroductionEmergency medicine is a relatively new field in sub-Saharan Africa and dedicated training in pediatric emergency care is limited. While guidelines from the African Federation of Emergency Medicine (AFEM regarding emergency training exist, a core curriculum in pediatric emergency care has not yet been established for providers at the district hospital level.MethodsThe objective of the project was to develop a curriculum for providers with limited training in pediatric emergencies, and contain didactic and simulation components with emphasis on treatment and resuscitation using available resources. A core curriculum for pediatric emergency care was developed using a validated model of medical education curriculum development and through review of existing guidelines and literature. Based on literature review, as well as a review of existent guidelines in pediatric and emergency care, 10 core topics were chosen and agreed upon by experts in the field, including pediatric and emergency care providers in Kenya and the United States. These topics were confirmed to be consistent with the principles of emergency care endorsed by AFEM as well as complimentary to existing Kenyan medical school syllabi. A curriculum based on these 10 core topics was created and subsequently piloted with a group of medical residents and clinical officers at a community hospital in western Kenya.ResultsThe 10 core pediatric topics prioritized were airway management, respiratory distress, thoracic and abdominal trauma, head trauma and cervical spine management, sepsis and shock, endocrine emergencies, altered mental status/toxicology, orthopedic emergencies, burn and wound management, and pediatric advanced life support. The topics were incorporated into a curriculum comprised of ten 1.5-h combined didactic plus low-fidelity simulation modules. Feedback from trainers and participating providers gave high ratings to the ease of information delivery, relevance, and

  7. How In-Service Science Teachers Integrate History and Nature of Science in Elementary Science Courses

    Science.gov (United States)

    Hacieminoglu, Esme

    2014-01-01

    The purpose of this study is to investigate how the in-service science teachers' (IST) perceptions and practices about curriculum and integration of the history of science (HOS) and the nature of science (NOS) affect their science courses. For this aim, how ISTs integrated the NOS and HOS in their elementary science courses for understanding of…

  8. The re-theorisation of collective pedagogy and emergent curriculum

    Science.gov (United States)

    Fleer, Marilyn

    2010-09-01

    This essay review of Goulart and Roth's work explores the cultural-historical concepts that they have drawn upon to create a new conception of emergent curriculum in early childhood science education. The pedagogical contexts of Brazilian preschools is discussed in relation to other practices found across cultural communities, with a view to locating the specific research need that has arisen for preschools within Brazil. In the latter part of this article, Davydov's (International perspectives in non-classical psychology, 2008) work on theoretical knowledge and dialectical thinking is discussed in order to further develop Goulart and Roth's conception of early childhood science curriculum.

  9. Working Alongside Scientists. Impacts on Primary Teacher Beliefs and Knowledge About Science and Science Education

    Science.gov (United States)

    Anderson, Dayle; Moeed, Azra

    2017-05-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the impact on teacher beliefs about science and science education of a programme where 26 New Zealand primary (elementary) teachers worked fulltime for 6 months alongside scientists, experiencing the nature of work in scientific research institutes. During the 6 months, teachers were supported, through a series of targeted professional development days, to make connections between their experiences working with scientists, the curriculum and the classroom. Data for the study consisted of mid- and end-of-programme written teacher reports and open-ended questionnaires collected at three points, prior to and following 6 months with the science host and after 6 to 12 months back in school. A shift in many teachers' beliefs was observed after the 6 months of working with scientists in combination with curriculum development days; for many, these changes were sustained 6 to 12 months after returning to school. Beliefs about the aims of science education became more closely aligned with the New Zealand curriculum and its goal of developing science for citizenship. Responses show greater appreciation of the value of scientific ways of thinking, deeper understanding about the nature of scientists' work and the ways in which science and society influence each other.

  10. Taking Chances: A New Librarian and Curriculum Redesign.

    Science.gov (United States)

    Kovar-Gough, Iris

    2017-01-01

    As technology becomes ubiquitous in designing and delivering medical school curricula, health sciences librarians can embrace emerging opportunities for participation in curriculum design. A new medical librarian at Michigan State University Libraries engaged her user base outside of established duties, learned new skills, and challenged preconceived notions about librarians' roles. In the process, she became a partner in copyright education, amended license agreements for enhanced curricular multimedia use, and facilitated curriculum mapping through taxonomy building. These projects helped create the informational foundation for a novel hybrid medical education curriculum and introduced new curricular roles for the librarian.

  11. The Curriculum Customization Service: A Tool for Customizing Earth Science Instruction and Supporting Communities of Practice

    Science.gov (United States)

    Melhado, L. C.; Devaul, H.; Sumner, T.

    2010-12-01

    Accelerating demographic trends in the United States attest to the critical need to broaden access to customized learning: reports refer to the next decade as the era of “extreme diversity” in K-12 classrooms, particularly in large urban school districts. This diverse student body possesses a wide range of knowledge, skills, and abilities in addition to cultural differences. A single classroom may contain students with different levels of quantitative skills, different levels of English language proficiency, and advanced students preparing for college-level science. A uniform curriculum, no matter how well designed and implemented, cannot possibly serve the needs of such diverse learners equally well. Research has shown positive learning outcomes when pedagogical strategies that customize instruction to address specific learner needs are implemented, with under-achieving students often benefiting most. Supporting teachers in the effective adoption and use of technology to meet these instructional challenges is the underlying goal of the work to be presented here. The Curriculum Customization Service (CCS) is an integrated web-based platform for middle and high school Earth science teachers designed to facilitate teachers’ instructional planning and delivery; enhancing existing curricula with digital library resources and shared teacher-contributed materials in the context of articulated learning goals. The CCS integrates interactive resources from the Digital Library for Earth System Education (DLESE) with an inquiry-based curriculum component developed by the American Geological Institute (EarthComm and Investigating Earth Systems). The digital library resources emphasize visualizations and animations of Earth processes that often challenge students’ understanding, offering multiple representations of phenomena to address different learning styles, reading abilities, and preconceived ideas. Teachers can access these materials, as well as those created or

  12. Science Teachers’ Pedagogical Content Knowledge and Integrated Approach

    Science.gov (United States)

    Adi Putra, M. J.; Widodo, A.; Sopandi, W.

    2017-09-01

    The integrated approach refers to the stages of pupils’ psychological development. Unfortunately, the competences which are designed into the curriculum is not appropriate with the child development. This Manuscript presents PCK (pedagogical content knowledge) of teachers who teach science content utilizing an integrated approach. The data has been collected by using CoRe, PaP-eR, and interviews from six elementary teachers who teach science. The paper informs that high and stable teacher PCKs have an impact on how teachers present integrated teaching. Because it is influenced by the selection of important content that must be submitted to the students, the depth of the content, the reasons for choosing the teaching procedures and some other things. So for teachers to be able to integrate teaching, they should have a balanced PCK.

  13. Systematic Changes in the Undergraduate Chemistry Curriculum Progam Award and Course and Curriculum Development Program Awards

    Science.gov (United States)

    1996-06-01

    Eight awards in chemistry curriculum development for FY1996 have been announced. One award, to a consortium centered at the University of California-Los Angeles, represents the fifth award in the Systemic Changes in the Undergraduate Chemistry Curriculum program. Although no proposals will be accepted in this program for either planning or full grants for FY1997, it is anticipated that proposals will be accepted in June of 1997 for projects that would adapt and adopt materials developed by the five funded consortia: Molecular Science centered at the University of California-Los Angeles; ChemLinks centered at Beloit College; MolecularChem Consortium centered at the University of California-Berkeley; Workshop Chemistry centered at CUNY City College; and New Traditions centered at the University of Wisconsin-Madison. Seven awards have been made in the Course and Curriculum Development program. This ongoing program continues to accept proposals in chemistry as usual. Systemic Changes in the Undergraduate Chemistry Curriculum Program Award. Molecular Science. Orville L. Chapman University of California-Los Angeles DUE 9555605 FY96 725,000 FY97 575,000, FY98 575,000 FY99 275,000, FY00 275,000 The UCLA-CSUF-Community College Alliance (24 area community colleges that have worked together for more than 15 years) proposes a sweeping restructuring of the lower division chemistry curriculum and the auxiliary learning and assessment processes. In forming our new curriculum, we reject the positivist approach to science education in favor of a constructivist approach that emphasizes problem solving and exploratory learning. We make this change in order to focus on the developing key skills, traits, and abilities of our students. Our new curriculum, the Molecular Science Curriculum, cuts across departments and disciplines to embrace all activities that involve the study of atoms and molecules. In particular, environmental science, materials science, and molecular life science have

  14. The application of Legacy Cycles in the development of Earth Science curriculum

    Science.gov (United States)

    Ellins, K.; Abernathy, E.; Negrito, K.; McCall, L.

    2009-04-01

    The Institute for Geophysics in the Jackson School of Geosciences at The University of Texas at Austin actively contributes to K-12 education, including the development of rigorous Earth and Space Science curriculum designed for secondary school learning environments. Here we report on our efforts to apply an innovative new pedagogical approach, the Legacy Cycle, to scientific ocean drilling paleoclimate data from fossil corals collected offshore Barbados in 2006 and to the creation of a high school water resources education program for Texas high school students supported by a grant from the Texas Water Development Board. The Legacy Cycle makes use of the Internet and computer technology to engage students in extended inquiry learning. A series of inquiry activities are organized around a set of three driving questions, or challenges. Students mimic the work of scientists by generating ideas to address a given challenge, listening to multiple perspectives from experts on the topic, researching a set of sub-questions and revising their original ideas, testing their mettle with labs and quizzes, and finally composing a project or paper that answers the original challenge. The technology makes it easy for students to move through the challenges and the organizational framework since there are hyperlinks to each of the sections (and to reach the other challenges) at the bottom of each webpage. Students' final work is posted to the Internet for others to see, and in this way they leave behind their legacy. Our Legacy Cycle activities use authentic hydrologic, water quality, geochemical, geophysical data, as well as remotely sensed data such as is collected by satellites. They are aligned with the U.S. National Science Education Standards, the new Ocean, Climate and Earth Science Literacy Principles (in development), and the Texas Essential Knowledge and Skills for Earth and Space Science. The work represents a collaboration involving teachers from The University of

  15. An interprofessional consensus of core competencies for prelicensure education in pain management: curriculum application for nursing.

    Science.gov (United States)

    Herr, Keela; Marie, Barbara St; Gordon, Debra B; Paice, Judith A; Watt-Watson, Judy; Stevens, Bonnie J; Bakerjian, Debra; Young, Heather M

    2015-06-01

    Ineffective assessment and management of pain is a significant problem. A gap in prelicensure health science program pain content has been identified for the improvement of pain care in the United States. Through consensus processes, an expert panel of nurses, who participated in the interdisciplinary development of core competencies in pain management for prelicensure health professional education, developed recommendations to address the gap in nursing curricula. Challenges and incentives for implementation of pain competencies in nursing education are discussed, and specific recommendations for how to incorporate the competencies into entry-level nursing curricula are provided. Embedding pain management core competencies into prelicensure nursing education is crucial to ensure that nurses have the essential knowledge and skills to effectively manage pain and to serve as a foundation on which clinical practice skills can be later honed. [J Nurs Educ. 2015;54(6):317-327.]. Copyright 2015, SLACK Incorporated.

  16. Wind-energy Science, Technology and Research (WindSTAR) Consortium: Curriculum, Workforce Development, and Education Plan Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, James [Univ. of Massachusetts, Amherst, MA (United States)

    2013-03-19

    The purpose of the project is to modify and expand the current wind energy curriculum at the University of Massachusetts Amherst and to develop plans to expand the graduate program to a national scale. The expansion plans include the foundational steps to establish the American Academy of Wind Energy (AAWE). The AAWE is intended to be a cooperative organization of wind energy research, development, and deployment institutes and universities across North America, whose mission will be to develop and execute joint RD&D projects and to organize high-level science and education in wind energy

  17. Integrated Assessment for an Integrated Curriculum.

    Science.gov (United States)

    Mockrish, Rob

    1989-01-01

    In a sixth grade science classroom for able students, major grades are broken down into four categories: lab reports, projects, creative writing, and written tests. These four components of assessment structure how the curriculum content is presented. (JDD)

  18. Clinical leadership as an integral curriculum thread in pre-registration nursing programmes.

    Science.gov (United States)

    Brown, Angela; Dewing, Jan; Crookes, Patrick

    2016-03-01

    In recent years there has been a growth in leadership development frameworks in health for the existing workforce. There has also been a related abundance of leadership programmes developed specifically for qualified nurses. There is a groundswell of opinion that clinical leadership preparation needs to extend to preparatory programmes leading to registration as a nurse. To this end a doctoral research study has been completed that focused specifically on the identification and verification of the antecedents of clinical leadership (leadership and management) so they can shape the curriculum content and the best way to deliver the curriculum content as a curriculum thread. To conceptualise how the curriculum content, identified and verified empirically, can be structured within a curriculum thread and to contribute to the discussion on effective pedagogical approaches and educational strategies for learning and teaching of clinical leadership. A multi-method design was utilised in the research in Australia. Drawing on core principles in critical social theory, an integral curriculum thread is proposed for pre-registration nursing programmes that identifies the antecedents of clinical leadership; the core concepts, together with the continuum of enlightenment, empowerment, and emancipation. The curriculum content, the effective pedagogical approaches and the educational strategies are supported theoretically and we believe this offers a design template for action and a way of thinking about this important aspect of preparatory nursing education. Moreover, we hope to have created a process contributing to a heighten sense of awareness in the nursing student (and other key stakeholders) of the what, how and when of clinical leadership for a novice registered nurse. The next stage is to further test through research the proposed integral curriculum thread. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Scientific Management as part of the curriculum of Pedagogical Sciences.

    Directory of Open Access Journals (Sweden)

    Martha Margarita López Ruiz

    2013-07-01

    Full Text Available The Psychology and Pedagogy carer is developed in pedagogical sciences Cuban universities and the plan of the teaching learning process is organized on disciplines, subjects and activities from the working practice are distributed during the five years of the career which guarantee the fulfilment of the objectives in the professional qualification degree. Scientific educational management is included as part of the curriculum of this specialty in Pedagogical Universities. Scientific educational management has a great importance in the existence of state who is worried for the preparation and training of pedagogical specialists to whom ethics becomes a daily practice in their jobs in a society in which the formation and development of Cuban citizens is carried out by social programs encouraged by the government. The growing of this specialist is supported on the existence of a government that is interested on teaching, innovate and develop human beings by means of putting into practice social and cultural activities. The main goal of this article is to exemplify how to organize the contents of scientific educational management and the way of planning the teaching learning process to better future Cuban teacher trainers and managers.

  20. Effectiveness of a 2-year menopause medicine curriculum for obstetrics and gynecology residents.

    Science.gov (United States)

    Christianson, Mindy S; Washington, Chantel I; Stewart, Katherine I; Shen, Wen

    2016-03-01

    Previous work has shown American obstetrics and gynecology (OB/GYN) residents are lacking in menopause training. Our objective was to assess the effectiveness of a 2-year menopause medicine curriculum in improving OB/GYN residents' knowledge and self-assessed competency in menopause topics. We developed a menopause medicine-teaching curriculum for OB/GYN residents at our academic hospital-based residency program. The 2-year curriculum was composed of year 1: four 1-hour lectures and one 2-hour lab with cases presentations, and year 2: three 1-hour lectures and one 2-hour lab. Core topics included menopause physiology, hormone therapy, breast health, bone health, cardiovascular disease, and autoimmune disease. Pre- and posttests assessed resident knowledge and comfort in core topics, and a pre- and postcurriculum survey assessed utility and learning satisfaction. From July 2011 to June 2013, 34 OB/GYN residents completed the menopause curriculum annually with an average attendance at each module of 23 residents. Pre-/posttest scores improved from a mean pretest score of 57.3% to a mean posttest score of 78.7% (P menopause patients with 75.8% reporting feeling "barely comfortable" and 8.4% feeling "not at all comfortable." After the 2-year curriculum, 85.7% reported feeling "comfortable/very comfortable" taking care of menopause patients. The majority of residents (95.2%) reported the menopause curriculum was "extremely useful." A 2-year menopause medicine curriculum for OB/GYN residents utilizing lectures and a lab with case studies is an effective modality to improve resident knowledge required to manage menopause patients.

  1. Multicultural Science Education and Curriculum Materials

    Science.gov (United States)

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  2. The Pennsylvania Academy for the Profession of Teaching; Rural Fellowship Program: A Science Curriculum Development Partnership. Project "Prepare Them for the Future."

    Science.gov (United States)

    Beisel, Raymond W.

    This report describes development of the "Prepare Them for the Future" project, a K-3 activity-oriented science curriculum. The program, funded through two grants, was driven by the need to boost the distressed labor-based economy in rural western Pennsylvania. Data showed a drop of 1,100 coal-mining jobs between 1980 and 1986 in Indiana…

  3. Core Content for Wilderness Medicine Training: Development of a Wilderness Medicine Track Within an Emergency Medicine Residency.

    Science.gov (United States)

    Schrading, Walter A; Battaglioli, Nicole; Drew, Jonathan; McClure, Sarah Frances

    2018-03-01

    Wilderness medicine training has become increasingly popular among medical professionals with numerous educational opportunities nationwide. Curricula for fellowship programs and for medical student education have previously been developed and published, but a specific curriculum for wilderness medicine education during emergency medicine (EM) residency has not. The objective of this study is to create a longitudinal wilderness medicine curriculum that can be incorporated into an EM residency program. Interest-specific tracks are becoming increasingly common in EM training. We chose this model to develop our curriculum specific to wilderness medicine. Outlined in the article is a 3-year longitudinal course of study that includes a core didactic curriculum and a plan for graduated level of responsibility. The core content is specifically related to the required EM core content for residency training with additions specific to wilderness medicine for the residents who pursue the track. The wilderness medicine curriculum would give residencies a framework that can be used to foster learning for residents interested in wilderness medicine. It would enhance the coverage of wilderness and environmental core content education for all EM residents in the program. It would provide wilderness-specific education and experience for interested residents, allowing them to align their residency program requirements through a focused area of study and enhancing their curriculum vitae at graduation. Finally, given the popularity of wilderness medicine, the presence of a wilderness medicine track may improve recruitment for the residency program. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  4. Learning Science and the Science of Learning. Science Educators' Essay Collection.

    Science.gov (United States)

    Bybee, Rodger W., Ed.

    This yearbook addresses critical issues in science learning and teaching. Contents are divided into four sections: (1) "How Do Students Learn Science?"; (2) "Designing Curriculum for Student Learning"; (3) "Teaching That Enhances Student Learning"; and (4) "Assessing Student Learning." Papers include: (1) "How Students Learn and How Teachers…

  5. Lessons of Researcher-Teacher Co-design of an Environmental Health Afterschool Club Curriculum

    Science.gov (United States)

    Hundal, Savreen; Levin, Daniel M.; Keselman, Alla

    2014-06-01

    This paper addresses the impact of teachers' beliefs about argumentation and their community of practice framed views of teaching on co-designing an environmental health afterschool club curriculum with researchers. Our team collaborated with a group of four middle school teachers, asking them to co-design a club that would facilitate (1) students' understanding of environmental health, (2) use of electronic resources, and (3) argumentation skills. The process included researcher-led sessions emphasizing the importance of argumentation to science and teacher-led curriculum design sessions. The qualitative analysis of the meetings and teacher interview transcripts suggests that while teachers viewed argumentation as important, its practice was relegated to the background by the focus on student engagement and perceived logistical and systemic constraints. The paper concludes that in addition to stressing relevance of argumentation to science learning, researchers involved in co-design need to emphasize the potential of argumentation to engage students and to fit into science curriculum. The analysis also reveals teacher-participants' views of environmental health as an important area of middle school education, relevant to students' lives, linkable to the existing curriculum, essential for informed citizenship, and capable of inspiring interest in science. These findings underscore the importance of integrating environmental health into science education and advocating for its inclusion in informal and formal educational settings.

  6. Core journals in library and information science: measuring the level of specialization over time

    DEFF Research Database (Denmark)

    Nicolaisen, J.; Frandsen, T. F.

    2013-01-01

    years. The method is applied to a selection of core journals in library and information science (1990-2012). The reference lists of each journal are compared year by year, and the percentage of re-citations is calculated by dividing the number of re-citations with the total number of citations each year......Introduction. Specialization in science is a process that occurs over time. The present paper presents a bibliometric method for measuring the degree of specialization over time. Methods. The method is based on bibliographic coupling, and counts the percentage of recitations given in subsequent...

  7. Nanomedicine concepts in the general medical curriculum: initiating a discussion

    Directory of Open Access Journals (Sweden)

    Sweeney AE

    2015-12-01

    Full Text Available Aldrin E Sweeney Center for Teaching & Learning, Ross University School of Medicine, Roseau, Commonwealth of Dominica Abstract: Various applications of nanoscale science to the field of medicine have resulted in the ongoing development of the subfield of nanomedicine. Within the past several years, there has been a concurrent proliferation of academic journals, textbooks, and other professional literature addressing fundamental basic science research and seminal clinical developments in nanomedicine. Additionally, there is now broad consensus among medical researchers and practitioners that along with personalized medicine and regenerative medicine, nanomedicine is likely to revolutionize our definitions of what constitutes human disease and its treatment. In light of these developments, incorporation of key nanomedicine concepts into the general medical curriculum ought to be considered. Here, I offer for consideration five key nanomedicine concepts, along with suggestions regarding the manner in which they might be incorporated effectively into the general medical curriculum. Related curricular issues and implications for medical education also are presented. Keywords: medical education, basic science, teaching, learning, assessment, nanoscience curriculum, nanomedicine concepts

  8. A Case Study of German Language Core Journals for Characterizing Citation Patterns in the Social Sciences

    Directory of Open Access Journals (Sweden)

    Pei-Shan Chi

    2013-12-01

    Full Text Available Publication practices in the social sciences are characterized by the use of heterogeneous publication channels and a stronger national focus (Nederhof, 2006; Hicks & Wang, 2011. At the same time the use of bibliometric indicators in research evaluation promotes journal articles in international peer reviewed journals as the main style of publishing research results. The question emerges to which extent this changes publication practices in these disciplines. In our contribution we address this question and present results of a case study which investigates publication and referencing patterns of core German language journals in sociology and political science. Based on an explorative analysis of reference lists we describe patterns and changes of the parameters of the knowledge base of these journals. The analysis of the results in this study shows that with a total of 67% in the sociology and 76% in the political science the core German journals predominantly refer to non-journal publications. Besides, the share of non-source publications basically remains constant in the time period 2000-2009, and the share of references to source journals is the same in both disciplines. The difference between sociology and political science is: publications in the German language sociology journals have more references to monographs (46% than publications in the German language political science journals (38%, but these political science journals reference to other non-source publications (38% much more than sociology (21%.

  9. California Diploma Project Technical Report II: Alignment Study--Alignment Study of the Health Sciences and Medical Technology Draft Standards and California's Exit Level Common Core State Standards

    Science.gov (United States)

    McGaughy, Charis; de Gonzalez, Alicia

    2012-01-01

    The California Department of Education is in the process of revising the Career and Technical Education (CTE) Model Curriculum Standards. The Educational Policy Improvement Center (EPIC) conducted an investigation of the draft version of the Health Sciences and Medical Technology Standards (Health Science). The purpose of the study is to…

  10. Curriculum development in the Netherlands: introduction of tracks in the 2001 curriculum at Utrecht University, The Netherlands.

    Science.gov (United States)

    van Beukelen, Peter

    2004-01-01

    The Faculty of Veterinary Medicine in Utrecht has recently introduced two major curriculum changes in order to keep pace with developments in research (the vast increase in scientific knowledge), in society (the quality awareness of veterinary clients), and in the veterinary profession, where a species and sector differentiation can be observed. After about 15 years during which the curriculum remained more or less unchanged, a radical curriculum revision was introduced in 1995. A further revision, with the introduction of separate study tracks, began in 2001. The 2001 curriculum focuses on academic and scientific training, active learning and problem solving, training in communication and professional behavior, and lifelong learning. It is divided into a four-year core curriculum, in which a broad, cross-species pathobiological insight is central, and a two-year track curriculum, through which students achieve a starting competence in a specific species or sector. The main teaching methods are tutorials and group tasks; practical work is used mainly to achieve specific veterinary skills. Teaching hours represent 30-35% of all study hours. Self-teaching is encouraged by providing study materials, self-teaching questions, teachers assigned to assist with self-teaching, and adequate facilities. The five tracks offered are Companion Animals/Equine; Food Animals; Veterinary Public Health; Veterinary Research; and Veterinary Administration and Management. All students follow a uniform 30-week clinical rotation program, while the track program is 42 weeks. A summary of admission procedures is given, as well as the times and procedures for track selection.

  11. Developing Curriculum to Help Students Explore the Geosciences' Cultural Relevance

    Science.gov (United States)

    Miller, G.; Schoof, J. T.; Therrell, M. D.

    2011-12-01

    Even though climate change and an unhealthy environment have a disproportionate affect on persons of color, there is a poor record of diversity in geoscience-related fields where researchers are investigating ways to improve the quality of the environment and human health. This low percentage of representation in the geosciences is equally troubling at the university where we are beginning the third and final year of a project funded through the National Science Foundation's (NSF) Opportunities to Enhance Diversity in the Geosciences (OEDG). The purpose of this project is to explore a novel approach to using the social sciences to help students, specifically underrepresented minorities, discover the geosciences' cultural relevance and consider a career in the earth, atmospheric, and ocean sciences. To date, over 800 college freshmen have participated in a design study to evaluate the curriculum efficacy of a geoscience reader. Over half of these participants are students of color. The reader we designed allows students to analyze multiple, and sometimes conflicting, sources such as peer-reviewed journal articles, political cartoons, and newspaper articles. The topic for investigation in the reader is the 1995 Chicago Heat Wave, a tragic event that killed over 700 residents. Students use this reader in a core university course required for entering freshmen with low reading comprehension scores on standardized tests. To support students' comprehension, evaluation, and corroboration of these sources, we incorporated instructional supports aligned with the principles of Universal Design for Learning (UDL), reciprocal teaching, historical reasoning, media literacy, and quantitative reasoning. Using a digital format allows students to access multiple versions of the sources they are analyzing and definitions of challenging vocabulary and scientific concepts. Qualitative and quantitative data collected from participating students and their instructors included focus

  12. RAFTing with Raptors: Connecting Science, English Language Arts, and the Common Core State Standards

    Science.gov (United States)

    Senn, Gary J.; McMurtrie, Deborah H.; Coleman, Bridget K.

    2013-01-01

    This article explores using the RAFT strategy (Role, Audience, Format, Topic) for writing in science classes. The framework of the RAFT strategy will be explained, and connections with Common Core State Standards (CCSS) for ELA/Literacy will be discussed. Finally, there will be a discussion of a professional learning experience for teachers in…

  13. Revisiting Traveling Books: Early Literacy, Social Studies, and the Common Core

    Science.gov (United States)

    Swain, Holly Hilboldt; Coleman, Julianne

    2015-01-01

    With the development and institution of the Common Core Standards, teachers must be prepared to integrate content areas such as social studies within the language arts curriculum. Teachers following the suggestions of the Common Core Standards should develop practical and meaningful strategies within their classrooms that encourage and support…

  14. Competency based ophthalmology training curriculum for ...

    African Journals Online (AJOL)

    Background: The establishment of a credible, defensible and acceptable “formal competency based ophthalmology training curriculum for undergraduate medical and dental students” is fundamental to program recognition, monitoring and evaluation. The University of Zimbabwe College of Health Sciences (UZ-CHS) has ...

  15. A model curriculum of health care informatics for Dutch higher professional education.

    Science.gov (United States)

    Aarts, J.

    1995-01-01

    This paper describes the results of a two year project to design a model curriculum of health care informatics for Dutch higher professional education. The core of the curriculum are sixteen modules which cover the broad range of medical informatics and which are closely related to the profiles of the professions involved (nursing, physiotherapy, speech therapy, occupational therapy and dietetics). The curriculum emphasizes the need of using structured data and information to perform tasks in health care delivery and management, for which modern information technology is indispensable. The model curriculum will enable faculty to redesign existing undergraduate programs and to select the contents they see appropriate. In this way we hope that the model curriculum will contribute to an innovative attitude of future graduating health care professionals. A new three year project just has started to develop learning materials using professional health care software based on the sixteen modules of the curriculum. PMID:8563329

  16. Adapting to a New Core Curriculum at Hood College: From Computation to Quantitative Literacy

    Directory of Open Access Journals (Sweden)

    Betty Mayfield

    2015-07-01

    Full Text Available Our institution, a small, private liberal arts college, recently revised its core curriculum. In the Department of Mathematics, we took this opportunity to formally introduce Quantitative Literacy into the language and the reality of the academic requirements for all students. We developed a list of characteristics that we thought all QL courses should exhibit, no matter in which department they are taught. We agreed on a short list of learning outcomes for students who complete those courses. Then we conducted a preliminary assessment of those two attributes: the fidelity of QL-labeled courses to our list of desired characteristics, and our students’ success in meeting the learning objectives. We also performed an attitudes survey in two courses, measuring students’ attitudes towards mathematics before and after completing a QL course. In the process we have had valuable conversations with full- and part-time faculty, and we have been led to re-examine the role of adjunct faculty in our department. In this paper we list our course characteristics and include one instructor’s description of how she ensured that her QL course exhibited many of those traits. We include examples of student work illustrating how they met the learning objectives, and we report on the results of our attitudes survey. Much remains to be done; we describe our preliminary conclusions and plans for the future.

  17. Teaching a Geographical Component in World History Curriculum

    Science.gov (United States)

    Kachina, Olga A.

    2011-01-01

    This article is devoted to the topic of teaching a geographical component in World History curriculum in American public high schools. Despite the fact that the federal legislation entitled "No Child Left Behind" (2001) declared geography as a "core" academic subject, geography was the only subject dropped from federal funding.…

  18. SSMA Science Reviewers' Forecasts for the Future of Science Education.

    Science.gov (United States)

    Jinks, Jerry; Hoffer, Terry

    1989-01-01

    Described is a study which was conducted as an exploratory assessment of science reviewers' perceptions for the future of science education. Arrives at interpretations for identified categories of computers and high technology, science curriculum, teacher education, training, certification, standards, teaching methods, and materials. (RT)

  19. Shared Canadian Curriculum in Family Medicine (SHARC-FM): Creating a national consensus on relevant and practical training for medical students.

    Science.gov (United States)

    Keegan, David A; Scott, Ian; Sylvester, Michael; Tan, Amy; Horrey, Kathleen; Weston, W Wayne

    2017-04-01

    In 2006, leaders of undergraduate family medicine education programs faced a series of increasing curriculum mandates in the context of limited time and financial resources. Additionally, it became apparent that a hidden curriculum against family medicine as a career choice was active in medical schools. The Shared Canadian Curriculum in Family Medicine was developed by the Canadian Undergraduate Family Medicine Education Directors and supported by the College of Family Physicians of Canada as a national collaborative project to support medical student training in family medicine clerkship. Its key objective is to enable education leaders to meet their educational mandates, while at the same time countering the hidden curriculum and providing a route to scholarship. The Shared Canadian Curriculum in Family Medicine is an open-access, shared, national curriculum ( www.sharcfm.ca ). It contains 23 core clinical topics (determined through a modified Delphi process) with demonstrable objectives for each. It also includes low- and medium-fidelity virtual patient cases, point-of-care learning resources (clinical cards), and assessment tools, all aligned with the core topics. French translation of the resources is ongoing. The core topics, objectives, and educational resources have been adopted by medical schools across Canada, according to their needs. The lessons learned from mounting this multi-institutional collaborative project will help others develop their own collaborative curricula. Copyright© the College of Family Physicians of Canada.

  20. Curriculum Redesign in Veterinary Medicine: Part I.

    Science.gov (United States)

    Chaney, Kristin P; Macik, Maria L; Turner, Jacqueline S; Korich, Jodi A; Rogers, Kenita S; Fowler, Debra; Scallan, Elizabeth M; Keefe, Lisa M

    Curricular review is considered a necessary component for growth and enhancement of academic programs and requires time, energy, creativity, and persistence from both faculty and administration. At Texas A&M College of Veterinary Medicine & Biomedical Sciences (TAMU), the faculty and administration partnered with the university's Center for Teaching Excellence to create a faculty-driven, data-enhanced curricular redesign process. The 8-step process begins with the formation of a dedicated faculty curriculum design team to drive the redesign process and to support the college curriculum committee. The next steps include defining graduate outcomes and mapping the current curriculum to identify gaps and redundancies across the curriculum. Data are collected from internal and external stakeholders including veterinary students, faculty, alumni, and employers of graduates. Data collected through curriculum mapping and stakeholder engagement substantiate the curriculum redesign. The guidelines, supporting documents, and 8-step process developed at TAMU are provided to assist other veterinary schools in successful curricular redesign. This is the first of a two-part report that provides the background, context, and description of the process for charting the course for curricular change. The process involves defining expected learning outcomes for new graduates, conducting a curriculum mapping exercise, and collecting stakeholder data for curricular evaluation (steps 1-4). The second part of the report describes the development of rubrics that were applied to the graduate learning outcomes (steps 5-8) and engagement of faculty during the implementation phases of data-driven curriculum change.

  1. The Comparison of the Inquiry Behavior of ISCS and Non-ISCS Science Students as Measured by the Tab Science Test

    Science.gov (United States)

    Stallings, Everett S.; Snyder, William R.

    1977-01-01

    Studies of a group of seventh-grade students who were tested for inquiry skills using the TAB Science Test showed no significant differences between those students who had studied the Intermediate Science Curriculum Study (ISCS) and those who studied another curriculum. (MLH)

  2. Harnessing Petaflop-Scale Multi-Core Supercomputing for Problems in Space Science

    Science.gov (United States)

    Albright, B. J.; Yin, L.; Bowers, K. J.; Daughton, W.; Bergen, B.; Kwan, T. J.

    2008-12-01

    The particle-in-cell kinetic plasma code VPIC has been migrated successfully to the world's fastest supercomputer, Roadrunner, a hybrid multi-core platform built by IBM for the Los Alamos National Laboratory. How this was achieved will be described and examples of state-of-the-art calculations in space science, in particular, the study of magnetic reconnection, will be presented. With VPIC on Roadrunner, we have performed, for the first time, plasma PIC calculations with over one trillion particles, >100× larger than calculations considered "heroic" by community standards. This allows examination of physics at unprecedented scale and fidelity. Roadrunner is an example of an emerging paradigm in supercomputing: the trend toward multi-core systems with deep hierarchies and where memory bandwidth optimization is vital to achieving high performance. Getting VPIC to perform well on such systems is a formidable challenge: the core algorithm is memory bandwidth limited with low compute-to-data ratio and requires random access to memory in its inner loop. That we were able to get VPIC to perform and scale well, achieving >0.374 Pflop/s and linear weak scaling on real physics problems on up to the full 12240-core Roadrunner machine, bodes well for harnessing these machines for our community's needs in the future. Many of the design considerations encountered commute to other multi-core and accelerated (e.g., via GPU) platforms and we modified VPIC with flexibility in mind. These will be summarized and strategies for how one might adapt a code for such platforms will be shared. Work performed under the auspices of the U.S. DOE by the LANS LLC Los Alamos National Laboratory. Dr. Bowers is a LANL Guest Scientist; he is presently at D. E. Shaw Research LLC, 120 W 45th Street, 39th Floor, New York, NY 10036.

  3. Development and implementation of a science training course for breast cancer activists: Project LEAD (leadership, education and advocacy development).

    Science.gov (United States)

    Dickersin, K; Braun, L; Mead, M; Millikan, R; Wu, A M; Pietenpol, J; Troyan, S; Anderson, B; Visco, F

    2001-12-01

    To develop and implement Project LEAD (leadership, education, and advocacy development), a science course for breast cancer activists. Students were breast cancer activists and other consumers, mainly affiliated with advocacy organizations in the United States of America. Project LEAD is offered by the National Breast Cancer Coalition; the course takes place over 5 days and is offered 4 times a year, in various cities in the United States of America. The Project LEAD curriculum has developed over 5 years to include lectures, problem-based study groups, case studies, interactive critical appraisal sessions, a seminar by an 'expert' scientist, role play, and homework components. A core faculty has been valuable for evaluating and revising the course and has proved necessary to provide consistent high quality teaching. Course evaluations indicated that students gained critical appraisal skills, enhanced their knowledge and developed confidence in selected areas of basic science and epidemiology. Project LEAD comprises a unique curriculum for training breast cancer activists in science and critical appraisal. Course evaluations indicate that students gain confidence and skills from the course.

  4. Moral education and values education in curriculum reform In China

    Institute of Scientific and Technical Information of China (English)

    Zhu Xiaoman

    2006-01-01

    In the new curriculum reform in China,moral education and values education have been defined from the angles of the integrity and conformity of curriculum functions.Accordingly, a new education concept based on complete/integral curriculum functions is established.By discussing the essences of the curriculum,the basis of moral and values education,integrated curriculum setting in instruction structure,the presence of emotional and attitudinal goals in the subject standards,and teaching methods,this text points out that this curriculum reform looks to moral and values education in schools.The reform also emphasizes and will guarantee moral and values education in schools.Finally,the article recommends to elementary and secondary schools the studies on moral education in class conducted by the Research Institute of Moral Education of Nanjing Normal University,one of the Key Bases for Humanities and Social Sciences Research for the Ministry of Education.

  5. Self-reported competency ratings of graduates of a problem-leased medical curriculum

    NARCIS (Netherlands)

    van der Molen, H. T.

    Purpose. To study the self-reports of professional competencies by graduates of a problem-based medical curriculum. Method. All graduates from a medical school and a faculty of health sciences with a problem-based curriculum were sent a questionnaire asking them to compare their own performances in

  6. Self-reported competency ratings of graduates of a problem-based medical curriculum

    NARCIS (Netherlands)

    H.G. Schmidt (Henk); H.M. van der Molen

    2001-01-01

    textabstractPurpose. To study the self-reports of professional competencies by graduates of a problem-based medical curriculum. Method. All graduates from a medical school and a faculty of health sciences with a problem-based curriculum were sent a questionnaire asking them to compare their own

  7. The Next Generation Science Standards: A Focus on Physical Science

    Science.gov (United States)

    Krajcik, Joe

    2013-01-01

    This article describes ways to adapt U.S. science curriculum to the U.S. National Research Council (NRC) "Framework for K-12 Science Education" and "Next Generation of Science Standards" (NGSS), noting their focus on teaching the physical sciences. The overall goal of the Framework and NGSS is to help all learners develop the…

  8. Horizontal and vertical integration of academic disciplines in the medical school curriculum.

    Science.gov (United States)

    Vidic, Branislav; Weitlauf, Harry M

    2002-05-01

    A rapid expansion of new scientific information and the introduction of new technology in operative and diagnostic medicine has marked the last several decades. Medical educators, because of and parallel to these developments, initiated a search for a more effective system of presenting core material to medical students. The new educational trends, although varying somewhat from one institution to another, concentrated on the following pedagogical shifts: 1) expansion of conceptual presentation of material at the expense of detail-oriented education; 2) amplification of an integrated approach, as opposed to subject-oriented instruction; 3) scheduling of elective courses to compliment required courses in the curriculum; and 4) institution of small group instruction (i.e., problem-based learning) to actively involve students in the educational process and to develop deductive reasoning based on clinical cases. The future pedagogical system in medical schools will most likely be a combination of "classical" presentation of material combined with concept-oriented, subject-integrated and small group instruction based on either hypothetical or real clinical cases. It is imperative for the success of the new curriculum, however, that certain criteria are satisfied: 1) reorganize basic science departments to determine course ownership; 2) establish a reward system for teaching faculty; and 3) establish new course objectives. Copyright 2002 Wiley-Liss, Inc.

  9. High-level radioactive waste curriculum usage, evaluation, and customer focus

    International Nuclear Information System (INIS)

    King, G.P.

    1994-01-01

    In August 1992, the U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) issued for educator use, a secondary school resource curriculum entitled open-quotes Science, Society, and America's Nuclear Wasteclose quotes. This resource curriculum was developed in response to years and thousands of teacher, student, and general public requests for facts about nuclear waste -- specifically, what the United States was doing and why. The curriculum materials when issued were the result of six years of development and testing by science and social studies teachers as well as multi-state field-testing and international critique. The curriculum is provided only to educators who specifically request it; and in the first one-and-a-half years following its availability more than 500,000 curriculum documents have been requested. Of all the requests for information received by OCRWM for any information or materials, most requests received are from educators or students. So one might consider educators and students to be open-quotes customerclose quotes, that is, as the business world might define customers: anyone expecting a product or a service from us. To determine usefulness and content for future editions of open-quotes Science, Society, and America's Nuclear Wasteclose quotes, the Office of Civilian Radioactive Waste Management has undertaken a usage evaluation to ensure that it focuses on the needs of the open-quotes customerclose quotes; that is, those who need and request it. This paper presents preliminary findings based on a formal evaluation provided to and requested from educators, unsolicited comments received from educator requesters of the material, and comments from others

  10. Executing and teaching science---The breast cancer genetics and technology-rich curriculum professional development studies of a science educator

    Science.gov (United States)

    Wragg, Regina E.

    This dissertation presents my explorations in both molecular biology and science education research. In study one, we determined the ADIPOQ and ADIPORI genotypes of 364 White and 148 Black BrCa patients and used dominant model univariate logistic regression analyses to determine individual SNP and haplotype associations with tumor or patient characteristics in a case-case comparison. We found twelve associations between individual SNPs and patient or tumor characteristics that impact BrCa prognosis. For example, the ADIPOQ rs1501299 C allele was associated with ER+ tumors (OR=4.73, p=0.001) among White women >50 years of age at their time of diagnosis. Also, the A allele was more frequent in the Black patient population among whom more aggressive subtypes are common. Similarly, the ADIPORI rs12733285 T allele was associated with both PR+ and ER+ tumors. (OR=2.18 p=0.001; OR=1.88 p=0.019, respectively). Our data suggest that several polymorphisms individually or as specific ADIPOQ and ADIPOR1 haplotypes are associated with tumor characteristics that impact prognosis in BrCa patients. Thus, genotyping additional groups of patients for these SNPs could offer insight into the involvement of adiponectin signaling allele variance in BrCa outcomes. In our second study, we examined 1) how teachers' beliefs about themselves and their students influence the fidelity of implementation of their enactment of a technology-rich curriculum, and 2) how professional development support during the enactment leads to changes in teacher beliefs. From the analysis of two teachers' experiences through interviews, surveys, journal entries, and video recordings of their enactments, several different themes were identified. For example, teachers' beliefs regarding students' ability to learn using the curriculum influenced the fidelity of implementation and student learning. These observations led to the development of a model of professional development that would promote faithful

  11. Key steps for integrating a basic science throughout a medical school curriculum using an e-learning approach.

    Science.gov (United States)

    Dubois, Eline Agnès; Franson, Kari Lanette

    2009-09-01

    Basic sciences can be integrated into the medical school curriculum via e-learning. The process of integrating a basic science in this manner resembles a curricular change. The change usually begins with an idea for using e-learning to teach a basic science and establishing the need for the innovation. In the planning phase, learning outcomes are formulated and a prototype of the program is developed based on the desired requirements. A realistic concept is formed after considering the limitations of the current institute. Next, a project team is assembled to develop the program and plan its integration. Incorporation of the e-learning program is facilitated by a well-developed and communicated integration plan. Various course coordinators are contacted to determine content of the e-learning program as well as establish assessment. Linking the e-learning program to existing course activities and thereby applying the basic science into the clinical context enhances the degree of integration. The success of the integration is demonstrated by a positive assessment of the program including favourable cost-benefit analysis and improved student performance. Lastly, when the program becomes institutionalised, continuously updating content and technology (when appropriate), and evaluating the integration contribute to the prolonged survival of the e-learning program.

  12. Core Requirements for the Economics Major

    Science.gov (United States)

    Petkus, Marie; Perry, John J.; Johnson, Bruce K.

    2014-01-01

    In this article, the authors are the first to describe the core economics curriculum requirements for economics majors at all American colleges and universities, as opposed to a sample of institutions. Not surprisingly, principles of economics is nearly universally required and implemented as a two-semester course in 85 percent of economics major…

  13. Core subjects at the end of primary school: identifying and explaining relative strengths of children with specific language impairment (SLI)

    Science.gov (United States)

    Durkin, Kevin; Mok, Pearl L H; Conti-Ramsden, Gina

    2015-01-01

    Background In general, children with specific language impairment (SLI) tend to fall behind their typically developing (TD) peers in educational attainment. Less is known about how children with SLI fare in particular areas of the curriculum and what predicts their levels of performance. Aims To compare the distributions of performance of children with SLI in three core school subjects (English, Mathematics and Science); to test the possibility that performance would vary across the core subjects; and to examine the extent to which language impairment predicts performance. Methods & Procedures This study was conducted in England and reports historical data on educational attainments. Teacher assessment and test scores of 176 eleven-year-old children with SLI were examined in the three core subjects and compared with known national norms. Possible predictors of performance were measured, including language ability at ages 7 and 11, educational placement type, and performance IQ. Outcomes & Results Children with SLI, compared with national norms, were found to be at a disadvantage in core school subjects. Nevertheless, some children attained the levels expected of TD peers. Performance was poorest in English; relative strengths were indicated in Science and, to a lesser extent, in Mathematics. Language skills were significant predictors of performance in all three core subjects. PIQ was the strongest predictor for Mathematics. For Science, both early language skills at 7 years and PIQ made significant contributions. Conclusions & Implications Language impacts on the school performance of children with SLI, but differentially across subjects. English for these children is the most challenging of the core subjects, reflecting the high levels of language demand it incurs. Science is an area of relative strength and mathematics appears to be intermediate, arguably because some tasks in these subjects can be performed with less reliance on verbal processing. Many children

  14. Core subjects at the end of primary school: identifying and explaining relative strengths of children with specific language impairment (SLI).

    Science.gov (United States)

    Durkin, Kevin; Mok, Pearl L H; Conti-Ramsden, Gina

    2015-01-01

    In general, children with specific language impairment (SLI) tend to fall behind their typically developing (TD) peers in educational attainment. Less is known about how children with SLI fare in particular areas of the curriculum and what predicts their levels of performance. To compare the distributions of performance of children with SLI in three core school subjects (English, Mathematics and Science); to test the possibility that performance would vary across the core subjects; and to examine the extent to which language impairment predicts performance. This study was conducted in England and reports historical data on educational attainments. Teacher assessment and test scores of 176 eleven-year-old children with SLI were examined in the three core subjects and compared with known national norms. Possible predictors of performance were measured, including language ability at ages 7 and 11, educational placement type, and performance IQ. Children with SLI, compared with national norms, were found to be at a disadvantage in core school subjects. Nevertheless, some children attained the levels expected of TD peers. Performance was poorest in English; relative strengths were indicated in Science and, to a lesser extent, in Mathematics. Language skills were significant predictors of performance in all three core subjects. PIQ was the strongest predictor for Mathematics. For Science, both early language skills at 7 years and PIQ made significant contributions. Language impacts on the school performance of children with SLI, but differentially across subjects. English for these children is the most challenging of the core subjects, reflecting the high levels of language demand it incurs. Science is an area of relative strength and mathematics appears to be intermediate, arguably because some tasks in these subjects can be performed with less reliance on verbal processing. Many children with SLI do have the potential to reach or exceed educational targets that are set

  15. Cybersecurity Curriculum Development: Introducing Specialties in a Graduate Program

    Science.gov (United States)

    Bicak, Ali; Liu, Michelle; Murphy, Diane

    2015-01-01

    The cybersecurity curriculum has grown dramatically over the past decade: once it was just a couple of courses in a computer science graduate program. Today cybersecurity is introduced at the high school level, incorporated into undergraduate computer science and information systems programs, and has resulted in a variety of cybersecurity-specific…

  16. Investigating engagement, thinking, and learning among culturally diverse, urban sixth graders experiencing an inquiry-based science curriculum, contextualized in the local environment

    Science.gov (United States)

    Kelley, Sybil Schantz

    This mixed-methods study combined pragmatism, sociocultural perspectives, and systems thinking concepts to investigate students' engagement, thinking, and learning in science in an urban, K-8 arts, science, and technology magnet school. A grant-funded school-university partnership supported the implementation of an inquiry-based science curriculum, contextualized in the local environment through field experiences. The researcher worked as co-teacher of 3 sixth-grade science classes and was deeply involved in the daily routines of the school. The purposes of the study were to build a deeper understanding of the complex interactions that take place in an urban science classroom, including challenges related to implementing culturally-relevant instruction; and to offer insight into the role educational systems play in supporting teaching and learning. The central hypothesis was that connecting learning to meaningful experiences in the local environment can provide culturally accessible points of engagement from which to build science learning. Descriptive measures provided an assessment of students' engagement in science activities, as well as their levels of thinking and learning throughout the school year. Combined with analyses of students' work files and focus group responses, these findings provided strong evidence of engagement attributable to the inquiry-based curriculum. In some instances, degree of engagement was found to be affected by student "reluctance" and "resistance," terms defined but needing further examination. A confounding result showed marked increases in thinking levels coupled with stasis or decrease in learning. Congruent with past studies, data indicated the presence of tension between the diverse cultures of students and the mainstream cultures of school and science. Findings were synthesized with existing literature to generate the study's principal product, a grounded theory model representing the complex, interacting factors involved in

  17. Planning and implementing an honors degree in environmental science curricula: a case study from the University of Delaware, USA

    Science.gov (United States)

    Levia, Delphis

    2015-04-01

    Environmental degradation is undermining the sustainability of our planet. The multi-faceted nature of environmental stressors, which inherently couples human-environment interactions across space and time, necessitates that we train environmental scientists holistically within an interdisciplinary framework. Recruiting top-notch honors students to major in the environmental sciences is a critical step to ensure that we have the human capital to tackle complicated environmental problems successfully. Planning and implementing an honors degree is no trivial task. Based upon a recently completed and implemented set of programmatic revisions*, this poster showcases a successful example of an honors curriculum in environmental science to recruit and educate dynamic thinkers capable of improving the quality of our environment. The interdisciplinary environmental science program at the University of Delaware emphasizes the cross-cutting among earth's spheres through a core set of courses which employ a quantitative approach which is supplemented by several environmental policy courses. The core is coupled with six different thematic concentrations (students choose one) which permit the student to delve into a particular area of environmental science. The honors component of the degree consists of twelve additional credits. These credits are met through a specially designed introductory environmental course, a field experience requiring data collection, analysis, and write-up, a capstone course, and one other environmentally related course. The environmental sciences honors curriculum outlined in this poster may serve as a useful guide to others wishing to establish an honors program of their own in environmental science to recruit and prepare the next generation to mitigate environmental degradation. -------------- * Please note that the planning process for the environmental programs was and is the collective effort of many dedicated people. Current members of the

  18. Dismantling the Curriculum in Higher Education

    Directory of Open Access Journals (Sweden)

    Richard Hall

    2016-04-01

    Full Text Available The higher education curriculum in the global North is increasingly co-opted for the production of measurable outcomes, framed by determinist narratives of employability and enterprise. Such co-option is immanent to processes of financialisation and marketisation, which encourage the production of quantifiable curriculum activities and tradable academic services. Yet the university is also affected by global socio-economic and socio-environmental crises, which can be expressed as a function of a broader crisis of social reproduction or sociability. As the labour of academics and students is increasingly driven by a commodity-valuation rooted in the measurement of performance, the ability for academics and students to respond to crises from inside the university is constrained by the market. This article argues that in understanding the relationship between the university and society, and in responding to a crisis of sociability, revealing the bounded nature of the curriculum is central. One possible way to address this crisis is by re-imagining the university through the co-operative practices of groups like the Dismantling the Masters House community and the Social Science Centre. Such an exploration, rooted in the organising principles of the curriculum, asks educators to consider how their curriculum reproduces an on-going colonisation by Capital. It is argued that such work enables a re-imagination of higher education that is rooted in a co-operative curriculum, and which might enable activist-educators to build an engaged curriculum, through which students and academics no longer simply learn to internalise, monitor and manage their own alienation.

  19. Another Nibble at the Core: Student Learning in a Thematically-Focused Introductory Sociology Course

    Science.gov (United States)

    Howard, Jay R.; Novak, Katherine B.; Cline, Krista M. C.; Scott, Marvin B.

    2014-01-01

    Identifying and assessing core knowledge has been and continues to be a challenge that vexes the discipline of sociology. With the adoption of a thematic approach to courses in the core curriculum at Butler University, faculty teaching Introductory Sociology were presented with the opportunity and challenge of defining the core knowledge and…

  20. Charles Darwin and Evolution: Illustrating Human Aspects of Science

    Science.gov (United States)

    Kampourakis, Kostas; McComas, William F.

    2010-01-01

    Recently, the nature of science (NOS) has become recognized as an important element within the K-12 science curriculum. Despite differences in the ultimate lists of recommended aspects, a consensus is emerging on what specific NOS elements should be the focus of science instruction and inform textbook writers and curriculum developers. In this…