WorldWideScience

Sample records for science conceptual understanding

  1. A Functional Conceptualization of Understanding Science in the News

    Science.gov (United States)

    Anderson, Megan M.

    The idea that the public should have the capacity for understanding science in the news has been embraced by scientists, educators, and policymakers alike. An oft-cited goal of contemporary science education, in fact, is to enhance students' understanding of science in the news. But what exactly does it mean to understand science in the news? Surprisingly few have asked this question, or considered the significance of its answer. This dissertation steps away from issues of science teaching and learning to examine the nature of understanding science in the news itself. My work consolidates past scholarship from the multiple fields concerned with the relationship between science and society to produce a theoretical model of understanding science in the news as a complex, multidimensional process that involves an understanding of science as well as journalism. This thesis begins by exploring the relationship between the understanding implicit in understanding science in the news and understanding science. Many assume these two ways of knowing are one in the same. To rebut this assumption, I examine the types of knowledge necessary for understanding science and understanding science in the news. I then use the literature devoted to scientific literacy to show how past research has imagined the knowledge necessary to understand science in the news. Next, I argue that one of the principle difficulties with these conceptualizations is that they define science in the news in essentially the same terms as science. They also, I suggest, oversimplify how and why public interacts with science in the news. This dissertation concludes with a proposal for one way we might think about understanding science in the news on its own terms rather than those of understanding science. This dissertation attempts to connect two fields of research that rarely intersect, despite their multiple common interests: science education and mass communication. It considers the notion of

  2. Effect of a Problem Based Simulation on the Conceptual Understanding of Undergraduate Science Education Students

    Science.gov (United States)

    Kumar, David Devraj; Sherwood, Robert D.

    2007-01-01

    A study of the effect of science teaching with a multimedia simulation on water quality, the "River of Life," on the science conceptual understanding of students (N = 83) in an undergraduate science education (K-9) course is reported. Teaching reality-based meaningful science is strongly recommended by the National Science Education Standards…

  3. How Augmented Reality Enables Conceptual Understanding of Challenging Science Content

    Science.gov (United States)

    Yoon, Susan; Anderson, Emma; Lin, Joyce; Elinich, Karen

    2017-01-01

    Research on learning about science has revealed that students often hold robust misconceptions about a number of scientific ideas. Digital simulation and dynamic visualization tools have helped to ameliorate these learning challenges by providing scaffolding to understand various aspects of the phenomenon. In this study we hypothesize that…

  4. Development of preservice elementary teachers' science self- efficacy beliefs and its relation to science conceptual understanding

    Science.gov (United States)

    Menon, Deepika

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. This study used a mixed-methods approach to investigate the changes in preservice elementary teachers' science self-efficacy beliefs and the factors associated in a specialized elementary physics content course. In addition, the study is one of few to investigate the relationship between the changes in science self-efficacy beliefs and changes in physical science conceptual understanding. Participants included fifty-one preservice elementary teachers enrolled in two term of the physical science content course. Data collection and analysis procedures included both qualitative and quantitative measures. Data collection included implementation of Science Teaching Efficacy Belief Instrument-B (STEBI-B) (Bleicher, 2004) and Physical Science Concept Test as pre- and post-test, two semi-structured interviews with 18 participants (nine each semester), classroom observations and artifacts. A pre-post, repeated measures multivariate analysis of variance (MANOVA) design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs on both scales of STEBI-B - personal science teaching beliefs and outcome expectancy beliefs. Additionally, a positive moderate relationship between science conceptual understandings and personal science teaching efficacy beliefs was found. Post-hoc analysis of the STEBI-B data was used to select 18 participants for interviews. The participants belonged to each group representing the low, medium and high initial levels of self-efficacy beliefs. Participants' responses indicated positive shifts in their science teacher self-image and confidence to teach science in future. Four categories that represented the course-related factors contributing towards science self

  5. Spatial abilities, Earth science conceptual understanding, and psychological gender of university non-science majors

    Science.gov (United States)

    Black, Alice A. (Jill)

    Research has shown the presence of many Earth science misconceptions and conceptual difficulties that may impede concept understanding, and has also identified a number of categories of spatial ability. Although spatial ability has been linked to high performance in science, some researchers believe it has been overlooked in traditional education. Evidence exists that spatial ability can be improved. This correlational study investigated the relationship among Earth science conceptual understanding, three types of spatial ability, and psychological gender, a self-classification that reflects socially-accepted personality and gender traits. A test of Earth science concept understanding, the Earth Science Concepts (ESC) test, was developed and field tested from 2001 to 2003 in 15 sections of university classes. Criterion validity was .60, significant at the .01 level. Spearman/Brown reliability was .74 and Kuder/Richardson reliability was .63. The Purdue Visualization of Rotations (PVOR) (mental rotation), the Group Embedded Figures Test (GEFT) (spatial perception), the Differential Aptitude Test: Space Relations (DAT) (spatial visualization), and the Bem Inventory (BI) (psychological gender) were administered to 97 non-major university students enrolled in undergraduate science classes. Spearman correlations revealed moderately significant correlations at the .01 level between ESC scores and each of the three spatial ability test scores. Stepwise regression analysis indicated that PVOR scores were the best predictor of ESC scores, and showed that spatial ability scores accounted for 27% of the total variation in ESC scores. Spatial test scores were moderately or weakly correlated with each other. No significant correlations were found among BI scores and other test scores. Scantron difficulty analysis of ESC items produced difficulty ratings ranging from 33.04 to 96.43, indicating the percentage of students who answered incorrectly. Mean score on the ESC was 34

  6. Effect of science magic applied in interactive lecture demonstrations on conceptual understanding

    Science.gov (United States)

    Taufiq, Muhammad; Suhandi, Andi; Liliawati, Winny

    2017-08-01

    Research about the application of science magic-assisting Interactive Lecture Demonstrations (ILD) has been conducted. This research is aimed at providing description about the comparison of the improvement of the conceptual understanding of lesson on pressure between students who receive physics lesson through science magic-assisting ILD and students who receive physics lesson through ILD without science magic. This research used a quasi-experiment methods with Control Group Pretest-Posttest Design. The subject of the research is all students of class VIII in one of MTs (Islamic junior high school) in Pekalongan. Research samples were selected using random sampling technique. Data about students' conceptual understanding was collected using test instrument of conceptual understanding in the form of multiple choices. N-gain average calculation was performed in order to determine the improvement of students' conceptual understanding. The result of the research shows that conceptual understanding of students on lesson about pressure who received lesson with ILD using science magic is higher than students who received lesson with ILD without science magic . Therefore, the conclusion is that the application of science magic ILD is more effective to improve the conceptual understanding of lesson on pressure.

  7. Chinese and Australian Year 3 Children's Conceptual Understanding of Science: A Multiple Comparative Case Study

    Science.gov (United States)

    Tao, Ying; Oliver, Mary Colette; Venville, Grady Jane

    2012-01-01

    Children have formal science instruction from kindergarten in Australia and from Year 3 in China. The purpose of this research was to explore the impact that different approaches to primary science curricula in China and Australia have on children's conceptual understanding of science. Participants were Year 3 children from three schools of high,…

  8. Conceptual Change in Understanding the Nature of Science Learning: An Interpretive Phenomenological Analysis

    Science.gov (United States)

    DiBenedetto, Christina M.

    This study is the first of its kind to explore the thoughts, beliefs, attitudes and values of secondary educators as they experience conceptual change in their understanding of the nature of science learning vis a vis the Framework for K-12 Science Education published by the National Research Council. The study takes aim at the existing gap between the vision for science learning as an active process of inquiry and current pedagogical practices in K-12 science classrooms. For students to understand and explain everyday science ideas and succeed in science studies and careers, the means by which they learn science must change. Focusing on this change, the study explores the significance of educator attitudes, beliefs and values to science learning through interpretive phenomenological analysis around the central question, "In what ways do educators understand and articulate attitudes and beliefs toward the nature of science learning?" The study further explores the questions, "How do educators experience changes in their understanding of the nature of science learning?" and "How do educators believe these changes influence their pedagogical practice?" Study findings converge on four conceptions that science learning: is the action of inquiry; is a visible process initiated by both teacher and learner; values student voice and changing conceptions is science learning. These findings have implications for the primacy of educator beliefs, attitudes and values in reform efforts, science teacher leadership and the explicit instruction of both Nature of Science and conceptual change in educator preparation programs. This study supports the understanding that the nature of science learning is cognitive and affective conceptual change. Keywords: conceptual change, educator attitudes and beliefs, framework for K-12 science education, interpretive phenomenological analysis, nature of science learning, next generation science standards, science professional development

  9. The Effect of Using the History of Sciences on Conceptual Understanding and Intrinsic Motivation

    Science.gov (United States)

    Blizak, Djanette

    2017-01-01

    This study investigates the effect of using the history of science in teaching geometrical optics on the motivation and conceptual understanding of first year university students. For this purpose, 54 students were randomly selected, then divided into two groups: the experimental group was taught by using history of science before traditional…

  10. An overview of conceptual understanding in science education curriculum in Indonesia

    Science.gov (United States)

    Widiyatmoko, A.; Shimizu, K.

    2018-03-01

    The purpose of this article is to discuss the term of “conceptual understanding” in science education curriculum in Indonesia. The implementation of 2013 Curriculum focuses on the acquisition of contextual knowledge in respective areas and environments. The curriculum seeks to develop students' evaluation skills in three areas: attitude, technical skills, and scientific knowledge. It is based on two layers of competencies: core and basic competencies. The core competencies in the curriculum 2013 represent the ability level to achieve the gradute competency standards of a students at each grade level. There are four mandatory core competencies for all educational levels and all subjects including science, which are spiritual, social, knowledge and skills competencies. In terms of knowledge competencies, conceptual understanding is an inseparable part of science concept since conceptual understanding is one of the basic competencies in science learning. This competency is a part of science graduation standard indicated in MoEC article number 20 in 2016. Therefore, conceptual understanding is needed by students for learning science successfully.

  11. Exploring the Impact of Argumentation on Pre-Service Science Teachers' Conceptual Understanding of Chemical Equilibrium

    Science.gov (United States)

    Aydeniz, Mehmet; Dogan, Alev

    2016-01-01

    This study examines the impact of argumentation on pre-service science teachers' (PST) conceptual understanding of chemical equilibrium. The sample consisted of 57 first-year PSTs enrolled in a teacher education program in Turkey. Thirty two of the 57 PSTs who participated in this study were in the experimental group and 25 in the control group.…

  12. Measuring and Comparing Academic Language Development and Conceptual Understanding via Science Notebooks

    Science.gov (United States)

    Huerta, Margarita; Tong, Fuhui; Irby, Beverly J.; Lara-Alecio, Rafael

    2016-01-01

    The authors of this quantitative study measured and compared the academic language development and conceptual understanding of fifth-grade economically disadvantaged English language learners (ELL), former ELLs, and native English-speaking (ES) students as reflected in their science notebook scores. Using an instrument they developed, the authors…

  13. The Effect of 7E Learning Model on Conceptual Understandings of Prospective Science Teachers on "de Broglie Matter Waves" Subject

    Science.gov (United States)

    Gorecek Baybars, Meryem; Kucukozer, Huseyin

    2018-01-01

    The object of this study is to determine the conceptual understanding that prospective Science teachers have relating "de Broglie: Matter waves" and to investigate the effect of the instruction performed, on the conceptual understanding. This study was performed at a state university located in the western part of Turkey, with the…

  14. Learning science in small groups: The relationship of conversation to conceptual understanding

    Science.gov (United States)

    McDonald, James Tarleton

    The purpose of this study was to investigate the relationship between conversation and conceptual understanding of erosion. The objective of this study was to investigate how fifth grade students' conceptions of erosion changed while they used stream tables and worked in groups of four within an inquiry-based curriculum. This study used symbolic interactionism and sociocognitive frameworks to interpret science learning in the elementary classroom. The research focused on the conceptual understanding of the focal group students, their use of classroom discourse to talk about their understandings of erosion, and the expertise that emerged while using stream tables. This study took place over a one-semester long study on erosion. Key informants were eight fifth graders. The data sources consisted of children's journals; transcripts of audiotaped interviews with the key informants before, during, and after the erosion unit; transcripts of videotapes of the students using the stream tables; and field notes recording children's discourse and activity. Individual and group cases were constructed during the study. The knowledge of the eight focal group children was placed on a hierarchy of conceptual understanding that contained 8 components of the erosion process. All four of the students whose ideas were examined in depth gained in their conceptual understanding of erosion. Students' individual expertise enhanced their own conceptual understanding. The contribution of classroom discourse and expertise to conceptual understanding differed between the two focal groups. Group 1 used essential expertise to sustain generative conversations, maximizing their learning opportunities. Students in Group 1 got along with one another, rotated assigned roles and jobs, and were able to start their own generative conversations. Members of Group 1 asked generative questions, connected stream table events to real life situations, and involved everyone in the group. Group 2 engaged in a

  15. Conceptualizing In-service Secondary School Science Teachers' Knowledge Base for Promoting Understanding about the Science of Global Climate Change

    Science.gov (United States)

    Bhattacharya, Devarati

    Efforts to adapt and mitigate the effects of global climate change (GCC) have been ongoing for the past two decades and have become a major global concern. However, research and practice for promoting climate literacy and understanding about GCC have only recently become a national priority. The National Research Council (NRC), has recently emphasized upon the importance of developing learners' capacity of reasoning, their argumentation skills and understanding of GCC (Framework for K-12 Science Education, National Research Council, 2012). This framework focuses on fostering conceptual clarity about GCC to promote innovation, resilience, and readiness in students as a response towards the threat of a changing environment. Previous research about teacher understanding of GCC describes that in spite of the prevalent frameworks like the AAAS Science Literacy Atlas (AAAS, 2007) and the Essential Principles for Climate Literacy (United States Global Climate Research Program, 2009; Bardsley, 2007), most learners are challenged in understanding the science of GCC (Michail et al., 2007) and misinformed perceptions about basic climate science content and the role of human activities in changing climate remain persistent (Reibich and Gautier, 2006). Our teacher participants had a rather simplistic knowledge structure. While aware of climate change, teacher participants lacked in depth understanding of how change in climate can impact various ecosystems on the Earth. Furthermore, they felt overwhelmed with the extensive amount of information needed to comprehend the complexity in GCC. Hence, extensive efforts not only focused on assessing conceptual understanding of GCC but also for teaching complex science topics like GCC are essential. This dissertation explains concept mapping, and the photo elicitation method for assessing teachers' understanding of GCC and the use of metacognitive scaffolding in instruction of GCC for developing competence of learners in this complex

  16. Argumentation in elementary science education: addressing methodological issues and conceptual understanding

    Science.gov (United States)

    Kaya, Ebru

    2017-11-01

    In this review essay I respond to issues raised in Mijung Kim and Wolff-Michael Roth's paper titled "Dialogical argumentation in elementary science classrooms", which presents a study dealing with dialogical argumentation in early elementary school classrooms. Since there is very limited research on lower primary school students' argumentation in school science, their paper makes a contribution to research on children's argumentation skills. In this response, I focus on two main issues to extend the discussion in Kim and Roth's paper: (a) methodological issues including conducting a quantitative study on children's argumentation levels and focusing on children's written argumentation in addition to their dialogical argumentation, and (b) investigating children's conceptual understanding along with their argumentation levels. Kim and Roth emphasize the difficulty in determining the level of children's argumentation through the Toulmin's Argument Pattern and lack of high level arguments by children due to their difficulties in writing texts. Regarding these methodological issues, I suggest designing quantitative research on coding children's argument levels because such research could potentially provide important findings on children's argumentation. Furthermore, I discuss alternative written products including posters, figures, or pictures generated by children in order to trace children's arguments, and finally articulating argumentation and conceptual understanding of children.

  17. Texas Science Teacher Characteristics and Conceptual Understanding of Newton's Laws of Motion

    Science.gov (United States)

    Busby, Karin Burk

    Misconceptions of Newtonian mechanics and other physical science concepts are well documented in primary and pre-service teacher populations (Burgoon, Heddle, & Duran, 2009; Allen & Coole, 2012; Kruger, Summers, & Palacio, 1990; Ginns & Watters, 1995; Trumper, 1999; Asikainen & Hirovonen, 2014). These misconceptions match the misconceptions held by students, leaving teachers ill-equipped to rectify these concepts in the classroom (Kind, 2014; Kruger et al., 1990; Cochran & Jones, 1998). Little research has been devoted to misconceptions held by in-service secondary teachers, the population responsible for teaching Newtonian mechanics. This study focuses on Texas in-service science teachers in middle school and high school science, specifically sixth grade science, seventh grade science, eighth grade science, integrated physics and chemistry, and physics teachers. This study utilizes two instruments to gauge conceptual understanding of Newton's laws of motion: the Force Concept Inventory [FCI] (Hestenes, Wells, & Swackhamer, 1992) and a custom instrument developed for the Texas Regional Collaboratives for Excellence in Science and Mathematics Teaching (Urquhart, M., e-mail, April 4, 2017). Use of each instrument had its strengths and limitations. In the initial work of this study, the FCI was given to middle and high school teacher volunteers in two urban school districts in the Dallas- Fort Worth area to assess current conceptual understanding of Newtonian mechanics. Along with the FCI, each participant was asked to complete a demographic survey. Demographic data collected included participant's sex, years of service in teaching position, current teaching position, degrees, certification type, and current certifications for science education. Correlations between variables and overall average on the FCI were determined by t-tests and ANOVA tests with a post-hoc Holm-Bonferroni correction test. Test questions pertaining to each of Newton's three laws of motion were

  18. Tools for Science Inquiry Learning: Tool Affordances, Experimentation Strategies, and Conceptual Understanding

    Science.gov (United States)

    Bumbacher, Engin; Salehi, Shima; Wieman, Carl; Blikstein, Paulo

    2017-12-01

    Manipulative environments play a fundamental role in inquiry-based science learning, yet how they impact learning is not fully understood. In a series of two studies, we develop the argument that manipulative environments (MEs) influence the kind of inquiry behaviors students engage in, and that this influence realizes through the affordances of MEs, independent of whether they are physical or virtual. In particular, we examine how MEs shape college students' experimentation strategies and conceptual understanding. In study 1, students engaged in two consecutive inquiry tasks, first on mass and spring systems and then on electric circuits. They either used virtual or physical MEs. We found that the use of experimentation strategies was strongly related to conceptual understanding across tasks, but that students engaged differently in those strategies depending on what ME they used. More students engaged in productive strategies using the virtual ME for electric circuits, and vice versa using the physical ME for mass and spring systems. In study 2, we isolated the affordance of measurement uncertainty by comparing two versions of the same virtual ME for electric circuits—one with and one without noise—and found that the conditions differed in terms of productive experimentation strategies. These findings indicate that measures of inquiry processes may resolve apparent ambiguities and inconsistencies between studies on MEs that are based on learning outcomes alone.

  19. From Words to Concepts: Focusing on Word Knowledge When Teaching for Conceptual Understanding within an Inquiry-Based Science Setting

    Science.gov (United States)

    Haug, Berit S.; Ødegaard, Marianne

    2014-01-01

    This qualitative video study explores how two elementary school teachers taught for conceptual understanding throughout different phases of science inquiry. The teachers implemented teaching materials with a focus on learning science key concepts through the development of word knowledge. A framework for word knowledge was applied to examine the…

  20. The Effect of 7E Learning Model on Conceptual Understandings of Prospective Science Teachers on 'de Broglie Matter Waves' Subject

    Directory of Open Access Journals (Sweden)

    Meryem Gorecek Baybars

    2018-04-01

    Full Text Available The object of this study is to determine the conceptual understanding that prospective Science teachers have relating "de Broglie: Matter waves" and to investigate the effect of the instruction performed, on the conceptual understanding. This study was performed at a state university located in the western part of Turkey, with the Faculty of Education-Science Teaching students (2nd year / 48 individual in the academic year of 2010-2011. The study was planned as a single group pretest-posttest design. A two-step question was used in the study, prior to and after the instruction. Lessons were conducted using the 7E learning model in the instruction process. When all these results are evaluated, it can be said that the conceptual understanding of the prospective teachers regarding "de Broglie; matter waves" has been taken place. In general, when all the sections are examined, it has been observed that the prospective teachers have more alternative concepts prior to the instruction and more scientific concepts after the instruction. In this process, besides instruction, the prospective teachers have not taken any place in a different application regarding the basic concepts of quantum physics. Therefore, it has been determined that the 7E learning model used in the research and the activities included in the 7E learning model are effective in conceptual understanding.

  1. Determining Students' Conceptual Understanding Level of Thermodynamics

    Science.gov (United States)

    Saricayir, Hakan; Ay, Selahattin; Comek, Arif; Cansiz, Gokhan; Uce, Musa

    2016-01-01

    Science students find heat, temperature, enthalpy and energy in chemical reactions to be some of the most difficult subjects. It is crucial to define their conceptual understanding level in these subjects so that educators can build upon this knowledge and introduce new thermodynamics concepts. This paper reports conceptual understanding levels of…

  2. The effect of activity-based nanoscience and nanotechnology education on pre-service science teachers' conceptual understanding

    Science.gov (United States)

    Şenel Zor, Tuba; Aslan, Oktay

    2018-03-01

    The purpose of the study was to examine the effect of activity-based nanoscience and nanotechnology education (ABNNE) on pre-service science teachers' (PST') conceptual understanding of nanoscience and nanotechnology. Within this context, the study was conducted according to mixed methods research with the use of both quantitative and qualitative methods. The participants were 32 PST who were determined by using criterion sampling that is one of the purposive sampling methods. ABNNE was carried out during 7 weeks as 2 h per week in special issues at physics course. Design and implementation of ABNNE were based on "Big Ideas" which was found in literature and provided guidance for teaching nanoscience and nanotechnology. All activities implemented during ABNNE were selected from literature. "Nanoscience and Nanotechnology Concept Test (NN-CT)" and "Activity-Based Nanoscience and Nanotechnology Education Assessment Form (ABNNE-AF)" were used as data collection tools in research. Findings obtained with data collection tools were discussed with coverage of literature. The findings revealed that PST conceptual understanding developed following ABNNE. Various suggestions for increasing PST conceptual understanding of nanoscience and nanotechnology were presented according to the results of the study.

  3. Promoting Climate Literacy and Conceptual Understanding among In-service Secondary Science Teachers requires an Epistemological Perspective

    Science.gov (United States)

    Bhattacharya, D.; Forbes, C.; Roehrig, G.; Chandler, M. A.

    2017-12-01

    Promoting climate literacy among in-service science teachers necessitates an understanding of fundamental concepts about the Earth's climate System (USGCRP, 2009). Very few teachers report having any formal instruction in climate science (Plutzer et al., 2016), therefore, rather simple conceptions of climate systems and their variability exist, which has implications for students' science learning (Francies et al., 1993; Libarkin, 2005; Rebich, 2005). This study uses the inferences from a NASA Innovations in Climate Education (NICE) teacher professional development program (CYCLES) to establish the necessity for developing an epistemological perspective among teachers. In CYCLES, 19 middle and high school (male=8, female=11) teachers were assessed for their understanding of global climate change (GCC). A qualitative analysis of their concept maps and an alignment of their conceptions with the Essential Principles of Climate Literacy (NOAA, 2009) demonstrated that participants emphasized on EPCL 1, 3, 6, 7 focusing on the Earth system, atmospheric, social and ecological impacts of GCC. However, EPCL 4 (variability in climate) and 5 (data-based observations and modeling) were least represented and emphasized upon. Thus, participants' descriptions about global climatic patterns were often factual rather than incorporating causation (why the temperatures are increasing) and/or correlation (describing what other factors might influence global temperatures). Therefore, engaging with epistemic dimensions of climate science to understand the processes, tools, and norms through which climate scientists study the Earth's climate system (Huxter et al., 2013) is critical for developing an in-depth conceptual understanding of climate. CLiMES (Climate Modeling and Epistemology of Science), a NSF initiative proposes to use EzGCM (EzGlobal Climate Model) to engage students and teachers in designing and running simulations, performing data processing activities, and analyzing

  4. Science Learning Cycle Method to Enhance the Conceptual Understanding and the Learning Independence on Physics Learning

    Science.gov (United States)

    Sulisworo, Dwi; Sutadi, Novitasari

    2017-01-01

    There have been many studies related to the implementation of cooperative learning. However, there are still many problems in school related to the learning outcomes on science lesson, especially in physics. The aim of this study is to observe the application of science learning cycle (SLC) model on improving scientific literacy for secondary…

  5. Improving pupils conceptual understanding by an in- and out-of-school science program

    NARCIS (Netherlands)

    Steenbeek, Henderien; Doornenbal, Jeannette; van Geert, Paul; Geveke, Carla

    Research in the field of out-of-school science is gradually increasing. These programs are considered to be important, yet more evidence about the learning effect is needed. This study aims to contribute to that matter by means of microgenetic measurements. We wanted to answer the question: How is

  6. Fundamental Computer Science Conceptual Understandings for High School Students Using Original Computer Game Design

    Science.gov (United States)

    Ernst, Jeremy V.; Clark, Aaron C.

    2012-01-01

    In 2009, the North Carolina Virtual Public Schools worked with researchers at the William and Ida Friday Institute to produce and evaluate the use of game creation by secondary students as a means for learning content related to career awareness in Science, Technology, Engineering and Mathematics (STEM) disciplines, with particular emphasis in…

  7. Defining Conceptual Understanding in General Chemistry

    Science.gov (United States)

    Holme, Thomas A.; Luxford, Cynthia J.; Brandriet, Alexandra

    2015-01-01

    Among the many possible goals that instructors have for students in general chemistry, the idea that they will better understand the conceptual underpinnings of the science is certainly important. Nonetheless, identifying with clarity what exemplifies student success at achieving this goal is hindered by the challenge of clearly articulating what…

  8. Revealing conceptual understanding of international business

    NARCIS (Netherlands)

    Sue Ashley; Dr. Harmen Schaap; Prof.Dr. Elly de Bruijn

    2017-01-01

    This study aims to identify an adequate approach for revealing conceptual understanding in higher professional education. Revealing students’ conceptual understanding is an important step towards developing effective curricula, assessment and aligned teaching strategies to enhance conceptual

  9. The Comparative Effectiveness of Physical, Virtual, and Virtual-Physical Manipulatives on Third-Grade Students' Science Achievement and Conceptual Understanding of Evaporation and Condensation

    Science.gov (United States)

    Wang, Tzu-Ling; Tseng, Yi-Kuan

    2018-01-01

    The purpose of this study was to investigate the relative effectiveness of experimenting with physical manipulatives alone, virtual manipulatives alone, and virtual preceding physical manipulatives (combination environment) on third-grade students' science achievement and conceptual understanding in the domain of state changes of water, focusing…

  10. Revealing Conceptual Understanding of International Business

    Science.gov (United States)

    Ashley, Sue; Schaap, Harmen; de Bruijn, Elly

    2017-01-01

    This study aims to identify an adequate approach for revealing conceptual understanding in higher professional education. Revealing students' conceptual understanding is an important step towards developing effective curricula, assessment and aligned teaching strategies to enhance conceptual understanding in higher education. Essays and concept…

  11. A conceptual framework for understanding the perspectives on the causes of the science-practice gap in ecology and conservation.

    Science.gov (United States)

    Bertuol-Garcia, Diana; Morsello, Carla; N El-Hani, Charbel; Pardini, Renata

    2018-05-01

    Applying scientific knowledge to confront societal challenges is a difficult task, an issue known as the science-practice gap. In Ecology and Conservation, scientific evidence has been seldom used directly to support decision-making, despite calls for an increasing role of ecological science in developing solutions for a sustainable future. To date, multiple causes of the science-practice gap and diverse approaches to link science and practice in Ecology and Conservation have been proposed. To foster a transparent debate and broaden our understanding of the difficulties of using scientific knowledge, we reviewed the perceived causes of the science-practice gap, aiming to: (i) identify the perspectives of ecologists and conservation scientists on this problem, (ii) evaluate the predominance of these perspectives over time and across journals, and (iii) assess them in light of disciplines studying the role of science in decision-making. We based our review on 1563 sentences describing causes of the science-practice gap extracted from 122 articles and on discussions with eight scientists on how to classify these sentences. The resulting process-based framework describes three distinct perspectives on the relevant processes, knowledge and actors in the science-practice interface. The most common perspective assumes only scientific knowledge should support practice, perceiving a one-way knowledge flow from science to practice and recognizing flaws in knowledge generation, communication, and/or use. The second assumes that both scientists and decision-makers should contribute to support practice, perceiving a two-way knowledge flow between science and practice through joint knowledge-production/integration processes, which, for several reasons, are perceived to occur infrequently. The last perspective was very rare, and assumes scientists should put their results into practice, but they rarely do. Some causes (e.g. cultural differences between scientists and decision

  12. Conceptions and Characterization: An Explanation for the Theory-Practice Gap in Conceptual Change Theory. (Sponsored Session Strand 1 Science Learning, Understanding and Conceptual Change)

    NARCIS (Netherlands)

    Eijck, van M.W.; Czermak, Charlene M.; Duschl, Richard A.; Kyle, William C.; Sondergeld, Toni

    2009-01-01

    The theory building on conceptual change has led to the paradox that, in order to address teaching-learning processes, research yields an increasingly sophisticated output which alienates the teachers. The aim of this study is to explain the origin of this paradox. Drawing on exemplary data from a

  13. Reliability of Using Piaget's Logic of Meanings to Analyze Pre-Service Teachers' Understanding of Conceptual Problems in Earth Science

    Science.gov (United States)

    Wavering, Michael; Mangione, Katherine; McBride, Craig

    2013-01-01

    A dissertation study looking at preservice teachers' alternative conceptions in earth science was completed by one of the authors. The data used for this study from the dissertation were a series of eleven interviews. (Purpose) The authors of this manuscript wanted to provide more in-depth analysis of these interviews, specifically to provide a…

  14. Understanding Global Change (UGC) as a Unifying Conceptual Framework for Teaching Ecology: Using UGC in a High School Biology Program to Integrate Earth Science and Biology, and to Demonstrate the Value of Modeling Global Systems in Promoting Conceptual Learning

    Science.gov (United States)

    Levine, J.; Bean, J. R.

    2017-12-01

    Global change science is ideal for NGSS-informed teaching, but presents a serious challenge to K-12 educators because it is complex and interdisciplinary- combining earth science, biology, chemistry, and physics. Global systems are themselves complex. Adding anthropogenic influences on those systems creates a formidable list of topics - greenhouse effect, climate change, nitrogen enrichment, introduced species, land-use change among them - which are often presented as a disconnected "laundry list" of "facts." This complexity, combined with public and mass-media scientific illiteracy, leaves global change science vulnerable to misrepresentation and politicization, creating additional challenges to teachers in public schools. Ample stand-alone, one-off, online resources, many of them excellent, are (to date) underutilized by teachers in the high school science course taken by most students: biology. The Understanding Global Change project (UGC) from the UC Berkeley Museum of Paleontology has created a conceptual framework that organizes, connects, and explains global systems, human and non-human drivers of change in those systems, and measurable changes in those systems. This organization and framework employ core ideas, crosscutting concepts, structure/function relationships, and system models in a unique format that facilitates authentic understanding, rather than memorization. This system serves as an organizing framework for the entire ecology unit of a forthcoming mainstream high school biology program. The UGC system model is introduced up front with its core informational graphic. The model is elaborated, step by step, by adding concepts and processes as they are introduced and explained in each chapter. The informational graphic is thus used in several ways: to organize material as it is presented, to summarize topics in each chapter and put them in perspective, and for review and critical thinking exercises that supplement the usual end-of-chapter lists of

  15. Learning environment, learning styles and conceptual understanding

    Science.gov (United States)

    Ferrer, Lourdes M.

    1990-01-01

    In recent years there have been many studies on learners developing conceptions of natural phenomena. However, so far there have been few attempts to investigate how the characteristics of the learners and their environment influence such conceptions. This study began with an attempt to use an instrument developed by McCarthy (1981) to describe learners in Malaysian primary schools. This proved inappropriate as Asian primary classrooms do not provide the same kind of environment as US classrooms. It was decided to develop a learning style checklist to suit the local context and which could be used to describe differences between learners which teachers could appreciate and use. The checklist included four dimensions — perceptual, process, self-confidence and motivation. The validated instrument was used to determine the learning style preferences of primary four pupils in Penang, Malaysia. Later, an analysis was made regarding the influence of learning environment and learning styles on conceptual understanding in the topics of food, respiration and excretion. This study was replicated in the Philippines with the purpose of investigating the relationship between learning styles and achievement in science, where the topics of food, respiration and excretion have been taken up. A number of significant relationships were observed in these two studies.

  16. On Automatic Assessment and Conceptual Understanding

    Science.gov (United States)

    Rasila, Antti; Malinen, Jarmo; Tiitu, Hannu

    2015-01-01

    We consider two complementary aspects of mathematical skills, i.e. "procedural fluency" and "conceptual understanding," from a point of view that is related to modern e-learning environments and computer-based assessment. Pedagogical background of teaching mathematics is discussed, and it is proposed that the traditional book…

  17. Ghanaian Teacher Trainees' Conceptual Understanding of Stoichiometry

    Science.gov (United States)

    Hanson, Ruby

    2016-01-01

    Chemical stoichiometry is a conceptual framework that encompasses other concepts such as the mole, writing of chemical equations in word and representative form, balancing of equations and the equilibrium concept. The underlying concepts enable students to understand relationships among entities of matter and required amounts for use when…

  18. The semiosis of students’ conceptual understanding of biochemistry

    DEFF Research Database (Denmark)

    Musaeus, Peter; Mathiesen, Søren Læssøe; Dahl, Mads Ronald

    2013-01-01

    University students learning of scientific concepts can be described as a process of semiosis at three different levels: Ontogenetic, whereby students over time actively acquire signs that represent new meaning to themselves; mesogenetic, whereby a teacher through teaching an dialogue activities...... together with students build conceptual understanding; sociogenetic, whereby the scientific achievements of a science disseminate into the classroom. Semiotic processes have been investigated in educational semiotics (Cunningham, 1992), sociocultural psychology (Valsiner, 2007) and research on math...

  19. Identification of Conceptual Understanding in Biotechnology Learning

    Science.gov (United States)

    Suryanti, E.; Fitriani, A.; Redjeki, S.; Riandi, R.

    2018-04-01

    Research on the identification of conceptual understanding in the learning of Biotechnology, especially on the concept of Genetic Engineering has been done. The lesson is carried out by means of discussion and presentation mediated-powerpoint media that contains learning materials with relevant images and videos. This research is a qualitative research with one-shot case study or one-group posttest-only design. Analysis of 44 students' answers show that only 22% of students understand the concept, 18% of students lack understanding of concepts, 57% of students have misconceptions, and 3% of students are error. It can be concluded that most students has misconceptions in learning the concept of Genetic Engineering.

  20. A Worksheet to Enhance Students’ Conceptual Understanding in Vector Components

    Science.gov (United States)

    Wutchana, Umporn; Emarat, Narumon

    2017-09-01

    With and without physical context, we explored 59 undergraduate students’conceptual and procedural understanding of vector components using both open ended problems and multiple choice items designed based on research instruments used in physics education research. The results showed that a number of students produce errors and revealed alternative conceptions especially when asked to draw graphical form of vector components. It indicated that most of them did not develop a strong foundation of understanding in vector components and could not apply those concepts to such problems with physical context. Based on the findings, we designed a worksheet to enhance the students’ conceptual understanding in vector components. The worksheet is composed of three parts which help students to construct their own understanding of definition, graphical form, and magnitude of vector components. To validate the worksheet, focus group discussions of 3 and 10 graduate students (science in-service teachers) had been conducted. The modified worksheet was then distributed to 41 grade 9 students in a science class. The students spent approximately 50 minutes to complete the worksheet. They sketched and measured vectors and its components and compared with the trigonometry ratio to condense the concepts of vector components. After completing the worksheet, their conceptual model had been verified. 83% of them constructed the correct model of vector components.

  1. Investigation of students’ intermediate conceptual understanding levels: the case of direct current electricity concepts

    International Nuclear Information System (INIS)

    Aktan, D Cobanoglu

    2013-01-01

    Conceptual understanding is one of the main topics in science and physics education research. In the majority of conceptual understanding studies, students’ understanding levels were categorized dichotomously, either as alternative or scientific understanding. Although they are invaluable in many ways, namely developing new instructional materials and assessment instruments, students’ alternative understandings alone are not sufficient to describe students’ conceptual understanding in detail. This paper introduces an example of a study in which a method was developed to assess and describe students’ conceptual understanding beyond alternative and scientific understanding levels. In this study, six undergraduate students’ conceptual understanding levels of direct current electricity concepts were assessed and described in detail by using their answers to qualitative problems. In order to do this, conceptual understanding indicators are described based on science and mathematics education literature. The students’ understanding levels were analysed by assertion analysis based on the conceptual understanding indicators. The results indicated that the participants demonstrated three intermediate understanding levels in addition to alternative and scientific understanding. This paper presents the method and its application to direct current electricity concepts. (paper)

  2. Assessing Conceptual Understanding via Literacy-Infused, Inquiry-Based Science among Middle School English Learners and Economically-Challenged Students

    Directory of Open Access Journals (Sweden)

    Rafael Lara-Alecio

    2018-02-01

    Full Text Available The overarching purpose of our study was to compare performances of treatment and control condition students who completed a literacy-infused, inquiry-based science intervention through sixth grade as measured by a big idea assessment tool which we refer to as the Big Ideas in Science Assessment (BISA. First, we determine the concurrent validity of the BISA; second, we investigate the differences in the post-test of the BISA between treatment and control English Learners (ELs, controlling for their performance in the pre-test; third, we analyze the differences in the post-test of the BISA between treatment and control non-ELs, controlling for their performance in the pre-test; and fourth, we examine the relationship between students’ English language proficiency as measured by standardized assessment, and their performance in the BISA among ELs and non-ELs, respectively. Our findings indicate: (a literacy-infused science lessons with big ideas, implemented through the tested intervention, improved students’ language acquisition and science concept understanding for ELs and economically challenged students (ECs; (b there was a positive relationship between language and content for both ELs and non-ELs, with a similar magnitude, suggesting that students with a higher level of English proficiency score higher in science assessment; and (c the lesson plans prepared were successful for promoting a literacy-infused science curriculum via a 5E Model (Engage, Explore, Explain, Elaborate, and Evaluate that includes three to five of the Es used daily. A pedagogical approach for a literacy-infused science model with big ideas is proposed.

  3. Using Theory of Mind to Promote Conceptual Change in Science

    Science.gov (United States)

    Kyriakopoulou, Natassa; Vosniadou, Stella

    2014-01-01

    We argue that learning science requires children to move from perceptually based representations to more abstract conceptual representations and to understand that appearance may sometimes deceive us and that the same phenomenon in the world can have more than one representation when seen from different perspectives. We also argue that the…

  4. TOCUSO: Test of Conceptual Understanding on High School Optics Topics

    Science.gov (United States)

    Akarsu, Bayram

    2012-01-01

    Physics educators around the world often need reliable diagnostic materials to measure students' understanding of physics concept in high school. The purpose of this study is to evaluate a new diagnostic tool on High School Optics concept. Test of Conceptual Understanding on High School Optics (TOCUSO) consists of 25 conceptual items that measures…

  5. Conceptual Understanding of Multiplicative Properties through Endogenous Digital Game Play

    Science.gov (United States)

    Denham, Andre

    2012-01-01

    This study purposed to determine the effect of an endogenously designed instructional game on conceptual understanding of the associative and distributive properties of multiplication. Additional this study sought to investigate if performance on measures of conceptual understanding taken prior to and after game play could serve as predictors of…

  6. Defining Conceptual Understanding for Teaching in International Business

    Science.gov (United States)

    Ashley, Sue; Schaap, Harmen; de Bruijn, Elly

    2016-01-01

    The aim of this exploratory study is to develop a definition of conceptual understanding for teaching in international business. In international business, professionals face complex problems like what to produce, where to manufacture, which markets to target, and when to expand abroad. A clear definition of conceptual understanding needed to…

  7. Science + Maths = A Better Understanding of Science!

    Science.gov (United States)

    Markwick, Andy; Clark, Kris

    2016-01-01

    Science and mathematics share a common purpose: to explore, understand and explain the pure beauty of our universe and how it works. Using mathematics in science enquiry can enhance children's understanding of science and also provide opportunities for children to apply their mathematical knowledge to "real" contexts. The authors…

  8. Science Olympiad students' nature of science understandings

    Science.gov (United States)

    Philpot, Cindy J.

    2007-12-01

    Recent reform efforts in science education focus on scientific literacy for all citizens. In order to be scientifically literate, an individual must have informed understandings of nature of science (NOS), scientific inquiry, and science content matter. This study specifically focused on Science Olympiad students' understanding of NOS as one piece of scientific literacy. Research consistently shows that science students do not have informed understandings of NOS (Abd-El-Khalick, 2002; Bell, Blair, Crawford, and Lederman, 2002; Kilcrease and Lucy, 2002; Schwartz, Lederman, and Thompson, 2001). However, McGhee-Brown, Martin, Monsaas and Stombler (2003) found that Science Olympiad students had in-depth understandings of science concepts, principles, processes, and techniques. Science Olympiad teams compete nationally and are found in rural, urban, and suburban schools. In an effort to learn from students who are generally considered high achieving students and who enjoy science, as opposed to the typical science student, the purpose of this study was to investigate Science Olympiad students' understandings of NOS and the experiences that formed their understandings. An interpretive, qualitative, case study method was used to address the research questions. The participants were purposefully and conveniently selected from the Science Olympiad team at a suburban high school. Data collection consisted of the Views of Nature of Science -- High School Questionnaire (VNOS-HS) (Schwartz, Lederman, & Thompson, 2001), semi-structured individual interviews, and a focus group. The main findings of this study were similar to much of the previous research in that the participants had informed understandings of the tentative nature of science and the role of inferences in science, but they did not have informed understandings of the role of human imagination and creativity, the empirical nature of science, or theories and laws. High level science classes and participation in

  9. Improving pupils’ conceptual understanding by a connected in-school and out-of-school science program: a multiple case study

    NARCIS (Netherlands)

    Geveke, Carla; Steenbeek, Henderien; Doornenbal, Jeannette; van Geert, Paul

    2016-01-01

    The number of out-of-school science programs, which refers to science education at outside school environments, is gradually increasing. Although out-of-school programs are generally considered to be important for the development of pupils’ science knowledge and skills, more evidence concerning the

  10. Understanding the Greenhouse Effect by Embodiment--Analysing and Using Students' and Scientists' Conceptual Resources

    Science.gov (United States)

    Niebert, Kai; Gropengießer, Harald

    2014-01-01

    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding…

  11. Teaching Physics for Conceptual Understanding Exemplified for Einstein's Special Relativity

    Science.gov (United States)

    Undreiu, Lucian M.

    2006-12-01

    In most liberal arts colleges the prerequisites for College Physics, Introductory or Calculus based, are strictly related to Mathematics. As a state of fact, the majorities of the students perceive Physics as a conglomerate of mathematical equations, a collection of facts to be memorized and they regard Physics as one of the most difficult subjects. A change of this attitude towards Physics, and Science in general, is intrinsically connected with the promotion of conceptual understanding and stimulation of critical thinking. In such an environment, the educators are facilitators, rather than the source of knowledge. One good way of doing this is to challenge the students to think about what they see around them and to connect physics with the real world. Motivation occurs when students realize that what was learned is interesting and relevant. Visual teaching aids such as educational videos or computer simulations, as well as computer-assisted experiments, can greatly enhance the effectiveness of a science lecture or laboratory. Difficult topics can be discussed through animated analogies. Special Relativity is recognized as a challenging topic and is probably one of the most misunderstood theories of Physics. While understanding Special Relativity requires a detachment from ordinary perception and every day life notions, animated analogies can prove to be very successful in making difficult topics accessible.

  12. Evaluation of Students' Conceptual Understanding of Malaria

    Science.gov (United States)

    Cheong, Irene Poh-Ai; Treagust, David; Kyeleve, Iorhemen J.; Oh, Peck-Yoke

    2010-01-01

    In this study, a two-tier diagnostic test for understanding malaria was developed and administered to 314 Bruneian students in Year 12 and in a nursing diploma course. The validity, reliability, difficulty level, discriminant indices, and reading ability of the test were examined and found to be acceptable in terms of measuring students'…

  13. Crafting an International Study of Students' Conceptual Understanding of Astronomy

    Science.gov (United States)

    Slater, Stephanie; Bretones, P. S.; McKinnon, D.; Schleigh, S.; Slater, T. F.; Astronomy, Center; Education Research, Physics

    2013-01-01

    Large international investigations into the learning of science, such as the TIMSS and PISA studies, have been enlightening with regard to effective instructional practices. Data from these studies revealed weaknesses and promising practices within nations' educational systems, with evidence to suggest that these studies have led to international reforms in science education. However, these reforms have focused on the general characteristics of teaching and learning across all sciences. While extraordinarily useful, these studies have provided limited insight for any given content domain. To date, there has been no systematic effort to measure individual's conceptual astronomy understanding across the globe. This paper describes our motivations for a coordinated, multinational study of astronomy understanding. First, reformed education is based upon knowing the preexisting knowledge state of our students. The data from this study will be used to assist international astronomy education and public outreach (EPO) professionals in their efforts to improve practices across global settings. Second, while the US astronomy EPO community has a long history of activity, research has established that many practices are ineffective in the face of robust misconceptions (e.g.: seasons). Within an international sample we hope to find subpopulations that do not conform to our existing knowledge of student misconceptions, leading us to cultural or educational practices that hint at alternative, effective means of instruction. Finally, it is our hope that this first venture into large-scale disciplinary collaboration will help us to craft a set of common languages and practices, building capacity and leading toward long-term cooperation across the international EPO community. This project is sponsored and managed by the Center for Astronomy & Physics Education Research (CAPER), in collaboration with members of the International Astronomical Union-Commission 46. We are actively

  14. Primary Student-Teachers' Conceptual Understanding of the Greenhouse Effect: A mixed method study

    Science.gov (United States)

    Ratinen, Ilkka Johannes

    2013-04-01

    The greenhouse effect is a reasonably complex scientific phenomenon which can be used as a model to examine students' conceptual understanding in science. Primary student-teachers' understanding of global environmental problems, such as climate change and ozone depletion, indicates that they have many misconceptions. The present mixed method study examines Finnish primary student-teachers' understanding of the greenhouse effect based on the results obtained via open-ended and closed-form questionnaires. The open-ended questionnaire considers primary student-teachers' spontaneous ideas about the greenhouse effect depicted by concept maps. The present study also uses statistical analysis to reveal respondents' conceptualization of the greenhouse effect. The concept maps and statistical analysis reveal that the primary student-teachers' factual knowledge and their conceptual understanding of the greenhouse effect are incomplete and even misleading. In the light of the results of the present study, proposals for modifying the instruction of climate change in science, especially in geography, are presented.

  15. A conceptual change analysis of nature of science conceptions: The deep roots and entangled vines of a conceptual ecology

    Science.gov (United States)

    Johnston, Adam Thomas

    This research used theories of conceptual change to analyze learners' understandings of the nature of science (NOS). Ideas regarding the NOS have been advocated as vital aspects of science literacy, yet learners at many levels (students and teachers) have difficulty in understanding these aspects in the way that science literacy reforms advocate. Although previous research has shown the inadequacies in learners' NOS understandings and have documented ways by which to improve some of these understandings, little has been done to show how these ideas develop and why learners' preexisting conceptions of NOS are so resistant to conceptual change. The premise of this study, then, was to describe the nature of NOS conceptions and of the conceptual change process itself by deeply analyzing the conceptions of individual learners. Toward this end, 4 individuals enrolled in a physical science course designed for preservice elementary teachers were selected to participate in a qualitative research study. These individuals answered questionnaires, surveys, direct interview questions, and a variety of interview probes (e.g., critical incidents, responses to readings/videos, reflections on coursework, card sorting tasks, etc.) which were administered throughout the duration of a semester. By utilizing these in-depth, qualitative probes, learners' conceptions were not only assessed but also described in great detail, revealing the source of their conceptions as well as identifying many instances in which a learner's directly stated conception was contradictory to that which was reflected by more indirect probes. As a result of this research, implications regarding NOS conceptions and their development have been described. In addition, various descriptions of conceptual change have been further refined and informed. Especially notable, the influence of a learner's conceptual ecology and its extrarational influences on conceptual change have been highlighted. It is argued that

  16. Perspectives on Information Literacy: A Framework for Conceptual Understanding

    Science.gov (United States)

    Addison, Colleen; Meyers, Eric

    2013-01-01

    Information literacy, 40 years since the term was coined, remains a conceptually contested aspect of library and information science research. This paper uses a review of the literature related to the concept of information literacy to identify three different perspectives, their historical origins, and connection to library and information…

  17. Quality Teaching in Science: an Emergent Conceptual Framework

    Science.gov (United States)

    Jordens, J. Zoe; Zepke, Nick

    2017-09-01

    Achieving quality in higher education is a complex task involving the interrelationship of many factors. The influence of the teacher is well established and has led to some general principles of good teaching. However, less is known about the extent that specific disciplines influence quality teaching. The purposes of the paper are to investigate how quality teaching is perceived in the sciences and from these perceptions to develop for discussion a framework for teaching practice in the sciences. A New Zealand study explored the views of national teaching excellence award winners in science on quality teaching in undergraduate science. To capture all possible views from this expert panel, a dissensus-recognising Delphi method was used together with sensitising concepts based on complexity and wickedity. The emergent conceptual framework for quality teaching in undergraduate science highlighted areas of consensus and areas where there were a variety of views. About the purposes of science and its knowledge base, there was relative consensus, but there was more variable support for values underpinning science teaching. This highlighted the complex nature of quality teaching in science. The findings suggest that, in addition to general and discipline-specific influences, individual teacher values contribute to an understanding of quality in undergraduate science teaching.

  18. [Conceptual Development in Cognitive Science. Part II].

    Science.gov (United States)

    Fierro, Marco

    2012-03-01

    Cognitive science has become the most influential paradigm on mental health in the late 20(th) and the early 21(st) centuries. In few years, the concepts, problem approaches and solutions proper to this science have significantly changed. Introduction and discussion of the fundamental concepts of cognitive science divided in four stages: Start, Classic Cognitivism, Connectionism, and Embodying / Enacting. The 2(nd) Part of the paper discusses the above mentioned fourth stage and explores the clinical setting, especially in terms of cognitive psychotherapy. The embodying/enacting stage highlights the role of the body including a set of determined evolutionary movements which provide a way of thinking and exploring the world. The performance of cognitive tasks is considered as a process that uses environmental resources that enhances mental skills and deploys them beyond the domestic sphere of the brain. On the other hand, body and mind are embedded in the world, thus giving rise to cognition when interacting, a process known as enacting. There is a close connection between perception and action, hence the interest in real-time interactions with the world rather than abstract reasoning. Regarding clinics, specifically the cognitive therapy, there is little conceptual discussion maybe due to good results from practice that may led us to consider that theoretical foundations are firm and not problem-raising. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  19. An Epistemological Inquiry into Organic Chemistry Education: Exploration of Undergraduate Students' Conceptual Understanding of Functional Groups

    Science.gov (United States)

    Akkuzu, Nalan; Uyulgan, Melis Arzu

    2016-01-01

    This study sought to determine the levels of conceptual understanding of undergraduate students regarding organic compounds within different functional groups. A total of 60 students who were enrolled in the Department of Secondary Science and Mathematics Education of a Faculty of Education at a state university in Turkey and who had followed an…

  20. A conceptual framework to understand academic student volunteerism

    NARCIS (Netherlands)

    Cunha, Jorge; Mensing, Rainer; Benneworth, Paul Stephen

    2018-01-01

    This paper develops a conceptual framework to understand the value of an increasing number of university study programmes that send students to the global south by learning through volunteering. We ask the research question what determines the benefit that these activities bring to the host

  1. Graduate Employability: A Conceptual Framework for Understanding Employers' Perceptions

    Science.gov (United States)

    Cai, Yuzhuo

    2013-01-01

    This study provides a conceptual framework for understanding what employers think about the value of graduates with similar educational credentials in the workplace (their employability), using insights from the new institutionalism. In this framework, the development of employers' beliefs about graduates' employability is broken into a number of…

  2. Epistemic Beliefs and Conceptual Understanding in Biotechnology: A Case Study

    Science.gov (United States)

    Rebello, Carina M.; Siegel, Marcelle A.; Witzig, Stephen B.; Freyermuth, Sharyn K.; McClure, Bruce A.

    2012-01-01

    The purpose of this investigation was to explore students' epistemic beliefs and conceptual understanding of biotechnology. Epistemic beliefs can influence reasoning, how individuals evaluate information, and informed decision making abilities. These skills are important for an informed citizenry that will participate in debates regarding areas in…

  3. Does Conceptual Understanding of Limit Partially Lead Students to Misconceptions?

    Science.gov (United States)

    Mulyono, B.; Hapizah

    2017-09-01

    This article talks about the result of preliminary research of my dissertation, which will investigate student’s retention of conceptual understanding. In my preliminary research, I surveyed 73 students of mathematics education program by giving some questions to test their retention of conceptual understanding of limits. Based on the results of analyzing of students’ answers I conclude that most of the students have problems with their retention of conceptual understanding and they also have misconception of limits. The first misconception I identified is that students always used the substitution method to determine a limit of a function at a point, but they did not check whether the function is continue or not at the point. It means that they only use the substitution theorem partially, because they do not consider that the substitution theorem \\mathop{{lim}}\\limits\\text{x\\to \\text{c}}f(x)=f(c) works only if f(x) is defined at χ = c. The other misconception identified is that some students always think there must be available of variables χ in a function to determine the limit of the function. I conjecture that conceptual understanding of limit partially leads students to misconceptions.

  4. Defining conceptual understanding for teaching in international business

    NARCIS (Netherlands)

    Ashley, S.M.|info:eu-repo/dai/nl/345732790; Schaap, H.|info:eu-repo/dai/nl/304822914; de Bruijn, E.|info:eu-repo/dai/nl/074460919

    2016-01-01

    The aim of this exploratory study is to develop a definition of conceptual understanding for teaching in international business. In international business, professionals face complex problems like what to produce, where to manufacture, which markets to target, and when to expand abroad. A clear

  5. Defining Conceptual Understanding for Teaching in International Business

    NARCIS (Netherlands)

    Ashley, S.; Schaap, H.; Bruijn, E. de

    2016-01-01

    The aim of this exploratory study is to develop a definition of conceptual understanding for teaching in international business. In international business, professionals face complex problems like what to produce, where to manufacture, which markets to target, and when to expand abroad. A clear

  6. A New Conceptual Model for Understanding International Students' College Needs

    Science.gov (United States)

    Alfattal, Eyad

    2016-01-01

    This study concerns the theory and practice of international marketing in higher education with the purpose of exploring a conceptual model for understanding international students' needs in the context of a four-year college in the United States. A transcendental phenomenological design was employed to investigate the essence of international…

  7. Impact of Math Snacks Games on Students' Conceptual Understanding

    Science.gov (United States)

    Winburg, Karin; Chamberlain, Barbara; Valdez, Alfred; Trujillo, Karen; Stanford, Theodore B.

    2016-01-01

    This "Math Snacks" intervention measured 741 fifth grade students' gains in conceptual understanding of core math concepts after game-based learning activities. Teachers integrated four "Math Snacks" games and related activities into instruction on ratios, coordinate plane, number systems, fractions and decimals. Using a…

  8. From Human Activity to Conceptual Understanding of the Chain Rule

    Science.gov (United States)

    Jojo, Zingiswa Mybert Monica; Maharaj, Aneshkumar; Brijlall, Deonarain

    2013-01-01

    This article reports on a study which investigated first year university engineering students' construction of the definition of the concept of the chain rule in differential calculus at a University of Technology in South Africa. An APOS (Action-Process-Objects-Schema) approach was used to explore conceptual understanding displayed by students in…

  9. Promoting Conceptual Change in First Year Students' Understanding of Evaporation

    Science.gov (United States)

    Costu, Bayram; Ayas, Alipasa; Niaz, Mansoor

    2010-01-01

    We constructed the PDEODE (Predict-Discuss-Explain-Observe-Discuss-Explain) teaching strategy, a variant of the classical POE (Predict-Observe-Explain) activity, to promote conceptual change, and investigated its effectiveness on student understanding of the evaporation concept. The sample consisted of 52 first year students in a primary science…

  10. At-Risk and Bilingual Fifth-Grade Students' On-Task Behavior and Conceptual Understanding in Earth Science-Related Topics during Inquiry-, Technology-, and Game-Based Activities

    Science.gov (United States)

    McNeal, K.; Vasquez, Y.; Avandano, C.; Moreno, K.; Besinaiz, J.

    2007-12-01

    The Graduate K-12 (GK12) program has been developed by NSF to support the national effort to advance scientific knowledge through educational partnerships. This paper highlights research conducted during the 2006-2007 school year with the Texas A&M University GK12 project. Two elementary schools with very high numbers of at risk students - those who are poor, speak English as their second language, and have a history of failing state-mandated tests were identified to be the field site for the GK12 project. In these two, high-minority (97% and 40% African American and Hispanic) schools, 80% and 56% of the children have been identified by the state as at risk; 94% and 52% are classified as economically disadvantaged; and 46% and 2% are limited English proficient, respectively. In the past year, 30% and 73% of fifth grade students in these schools passed the science portion of the Texas Assessment of Knowledge and Skills (TAKS) test. Data collected during a three- week period where GK12 fellows taught the fifth graders Earth science-related topics is presented. During the implementation, students were engaged in technology-, inquiry-, and game-based activities. Students were divided into low-, medium-, and high-abilities in one school, and regular and bilingual groups in the other. Pre- post open-ended multiple choice tests indicated that all but the low performing students' conceptual understanding (CU) significantly (p significantly improved during the inquiry activity, and the high and bilingual students' CU significantly improved for the game activities. Classroom observation assessments showed that there was a significant (p Significant differences between student groups' CU and on-task behavior indicated that technology-based activities showed greatest differences between the low- ability learners and the other students, whereas, inquiry-based activities tended not to show such extremes. In the case of the bilingual and regular students however, technology

  11. Kuhn and conceptual change: on the analogy between conceptual changes in science and children

    Science.gov (United States)

    Greiffenhagen, Christian; Sherman, Wendy

    2008-01-01

    This article argues that the analogy between conceptual changes in the history of science and conceptual changes in the development of young children is problematic. We show that the notions of ‘conceptual change’ in Kuhn and Piaget’s projects, the two thinkers whose work is most commonly drawn upon to support this analogy, are not compatible in the sense usually claimed. We contend that Kuhn’s work pertains not so much to the psychology of individual scientists, but to the way philosophers and historians should describe developments in communities of scientists. Furthermore, we argue that the analogy is based on a misunderstanding of the nature of science and the relation between science and common sense. The distinctiveness of the two notions of conceptual change has implications for science education research, since it raises serious questions about the relevance of Kuhn’s remarks for the study of pedagogical issues.

  12. Teaching 5th grade science for aesthetic understanding

    Science.gov (United States)

    Girod, Mark A.

    Many scientists speak with great zeal about the role of aesthetics and beauty in their science and inquiry. Few systematic efforts have been made to teach science in ways that appeal directly to aesthetics and this research is designed to do just that. Drawing from the aesthetic theory of Dewey, I describe an analytic lens called learning for aesthetic understanding that finds power in the degree to which our perceptions of the world are transformed, our interests and enthusiasm piqued, and our actions changed as we seek further experiences in the world. This learning theory is contrasted against two other current and popular theories of science learning, that of learning for conceptual understanding via conceptual change theory and learning for a language-oriented or discourse-based understanding. After a lengthy articulation of the pedagogical strategies used to teach for aesthetic understanding the research is described in which comparisons are drawn between students in two 5th grade classrooms---one taught for the goal of conceptual understanding and the other taught for the goal of aesthetic understanding. Results of this comparison show that more students in the treatment classroom had aesthetic experiences with science ideas and came to an aesthetic understanding when studying weather, erosion, and structure of matter than students in the control group. Also statistically significant effects are shown on measures of interest, affect, and efficacy for students in the treatment class. On measures of conceptual understanding it appears that treatment class students learned more and forgot less over time than control class students. The effect of the treatment does not generally depend on gender, ethnicity, or prior achievement except in students' identity beliefs about themselves as science learners. In this case, a significant interaction for treatment class females on science identity beliefs did occur. A discussion of these results as well as elaboration and

  13. Longitudinal study of student conceptual understanding in electricity and magnetism

    Directory of Open Access Journals (Sweden)

    S. J. Pollock

    2009-12-01

    Full Text Available We have investigated the long-term effect of student-centered instruction at the freshman level on juniors’ performance on a conceptual survey of Electricity and Magnetism (E&M. We measured student performance on a research-based conceptual instrument—the Brief Electricity & Magnetism Assessment (BEMA–over a period of 8 semesters (2004–2007. Concurrently, we introduced the University of Washington's Tutorials in Introductory Physics as part of our standard freshman curriculum. Freshmen took the BEMA before and after this Tutorial-based introductory course, and juniors took it after completion of their traditional junior-level E&M I and E&M II courses. We find that, on average, individual BEMA scores do not change significantly after completion of the introductory course—neither from the freshman to the junior year, nor from upper-division E&M I to E&M II. However, we find that juniors who had completed a non-Tutorial freshman course scored significantly lower on the (post-upper-division BEMA than those who had completed the reformed freshman course—indicating a long-term positive impact of freshman Tutorials on conceptual understanding.

  14. The Role of Computer Modeling in Enhancing Students' Conceptual Understanding of Physics

    Directory of Open Access Journals (Sweden)

    F. Ornek

    2012-04-01

    Full Text Available The purpose of this study was to investigate how the use of the computer simulations program VPython facilitated students’ conceptual understanding of fundamental physical principles and in constructing new knowledge of physics. We focused on students in a calculus-based introductory physics course, based on the Matter and Interactions curriculum of Chabay & Sherwood (2002 at a large state engineering and science university in the USA. A major emphasis of this course was on computer modeling by using VPython to write pro¬grams simulating physical systems. We conducted multiple student interviews, as well as an open-ended exit survey, to find out student views on how creating their own simulations to enhanced-conceptual understanding of physics and in constructing new knowledge of phys¬ics. The results varied in relation to the phases when the interviews were conducted. At the beginning of the course, students viewed the simulation program as a burden. However, dur¬ing the course, students stated that it promoted their knowledge and better conceptual understanding of physical phenomena. We deduce that VPython computer simulations can improve students’ conceptual understanding of fundamental physical concepts and promote construction of new knowledge in physics, once they overcome the initial learning curve associated with the VPython software package.

  15. A Conceptual Framework for Understanding Unintended Prolonged Opioid Use.

    Science.gov (United States)

    Hooten, W Michael; Brummett, Chad M; Sullivan, Mark D; Goesling, Jenna; Tilburt, Jon C; Merlin, Jessica S; St Sauver, Jennifer L; Wasan, Ajay D; Clauw, Daniel J; Warner, David O

    2017-12-01

    An urgent need exists to better understand the transition from short-term opioid use to unintended prolonged opioid use (UPOU). The purpose of this work is to propose a conceptual framework for understanding UPOU that posits the influence of 3 principal domains that include the characteristics of (1) individual patients, (2) the practice environment, and (3) opioid prescribers. Although no standardized method exists for developing a conceptual framework, the process often involves identifying corroborative evidence, leveraging expert opinion to identify factors for inclusion in the framework, and developing a graphic depiction of the relationships between the various factors and the clinical problem of interest. Key patient characteristics potentially associated with UPOU include (1) medical and mental health conditions; (2) pain etiology; (3) individual affective, behavioral, and neurophysiologic reactions to pain and opioids; and (4) sociodemographic factors. Also, UPOU could be influenced by structural and health care policy factors: (1) the practice environment, including the roles of prescribing clinicians, adoption of relevant practice guidelines, and clinician incentives or disincentives, and (2) the regulatory environment. Finally, characteristics inherent to clinicians that could influence prescribing practices include (1) training in pain management and opioid use; (2) personal attitudes, knowledge, and beliefs regarding the risks and benefits of opioids; and (3) professionalism. As the gatekeeper to opioid access, the behavior of prescribing clinicians directly mediates UPOU, with the 3 domains interacting to determine this behavior. This proposed conceptual framework could guide future research on the topic and allow plausible hypothesis-based interventions to reduce UPOU. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  16. Understanding leadership in the environmental sciences

    Directory of Open Access Journals (Sweden)

    Louisa S. Evans

    2015-03-01

    Full Text Available Leadership is often assumed, intuitively, to be an important driver of sustainable development. To understand how leadership is conceptualized and analyzed in the environmental sciences and to discover what this research says about leadership outcomes, we conducted a review of environmental leadership research over the last 10 years. We found that much of the environmental leadership literature focuses on a few key individuals and desirable leadership competencies. The literature also reports that leadership is one of the most important of a number of factors contributing to effective environmental governance. Only a subset of the literature highlights interacting sources of leadership, disaggregates leadership outcomes, or evaluates leadership processes in detail. We argue that the literature on environmental leadership is highly normative. Leadership is typically depicted as an unequivocal good, and its importance is often asserted rather than tested. We trace how leadership studies in the management sciences are evolving and argue that, taking into account the state of the art in environmental leadership research, more critical approaches to leadership research in environmental science can be developed.

  17. Influence of Nature and History of Science Courses on Value Perceptions of Elementary Science Teacher Candidates in Conceptual Dimension in Turkey

    Science.gov (United States)

    Aktamis, Hilal; Higde, Emrah

    2018-01-01

    This study aimed to determine the changes in understanding about the nature of science (NOS) and conceptual values of 28 elementary science teacher candidates who engaged in the instruction of the nature and history of science (NHOS). A values scale was used to determine the values of science teacher candidates in six areas of the conceptual…

  18. A Study of Novice Science Teachers' Conceptualizations of Culturally Relevant Pedagogy

    Science.gov (United States)

    Redman, Elizabeth Horst

    This qualitative study examined new science teachers' conceptualization of culturally relevant pedagogy (CRP). The study followed six novice science teachers from their preservice teaching placements into their first jobs as instructors of record, observing in their classrooms and interviewing them about their use of CRP. The study sought to understand (1) how the participating teachers conceptualize CRP in science, and (2) what challenges the teachers faced in trying to implement CRP. Findings suggest that the teachers conceptualized CRP in ways that were consistent with Enyedy, Danish and Fields' (2011) interpretations of relevance: relevance of authentic purpose, relevance of content and/or context, and relevance of practices. The teachers, however, translated those interpretations of relevance into their conceptualizations and classroom practice in a variety of ways. While they encountered difficulties in conceptualizing and practicing CRP, they also made productive moves in their practice and evidenced positive elements in their conceptualizations of CRP. In order to address the challenges these teachers faced in implementing CRP, I suggest an approach to teacher preparation in CRP that builds upon the understandings and productive moves the teachers evidenced in this study.

  19. Using computer simulations to facilitate conceptual understanding of electromagnetic induction

    Science.gov (United States)

    Lee, Yu-Fen

    This study investigated the use of computer simulations to facilitate conceptual understanding in physics. The use of computer simulations in the present study was grounded in a conceptual framework drawn from findings related to the use of computer simulations in physics education. To achieve the goal of effective utilization of computers for physics education, I first reviewed studies pertaining to computer simulations in physics education categorized by three different learning frameworks and studies comparing the effects of different simulation environments. My intent was to identify the learning context and factors for successful use of computer simulations in past studies and to learn from the studies which did not obtain a significant result. Based on the analysis of reviewed literature, I proposed effective approaches to integrate computer simulations in physics education. These approaches are consistent with well established education principles such as those suggested by How People Learn (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). The research based approaches to integrated computer simulations in physics education form a learning framework called Concept Learning with Computer Simulations (CLCS) in the current study. The second component of this study was to examine the CLCS learning framework empirically. The participants were recruited from a public high school in Beijing, China. All participating students were randomly assigned to two groups, the experimental (CLCS) group and the control (TRAD) group. Research based computer simulations developed by the physics education research group at University of Colorado at Boulder were used to tackle common conceptual difficulties in learning electromagnetic induction. While interacting with computer simulations, CLCS students were asked to answer reflective questions designed to stimulate qualitative reasoning and explanation. After receiving model reasoning online, students were asked to submit

  20. Introduction: From "The Popularization of Science through Film" to "The Public Understanding of Science".

    Science.gov (United States)

    Vidal, Fernando

    2018-03-01

    Science in film, and usual equivalents such as science on film or science on screen, refer to the cinematographic representation, staging, and enactment of actors, information, and processes involved in any aspect or dimension of science and its history. Of course, boundaries are blurry, and films shot as research tools or documentation also display science on screen. Nonetheless, they generally count as scientific film, and science in and on film or screen tend to designate productions whose purpose is entertainment and education. Moreover, these two purposes are often combined, and inherently concern empirical, methodological, and conceptual challenges associated with popularization, science communication, and the public understanding of science. It is in these areas that the notion of the deficit model emerged to designate a point of view and a mode of understanding, as well as a set of practical and theoretical problems about the relationship between science and the public.

  1. Emphasizing the process of science using demonstrations in conceptual chemistry

    Science.gov (United States)

    Lutz, Courtney A.

    The purpose of this project was to teach students a method for employing the process of science in a conceptual chemistry classroom when observing a demonstration of a discrepant event. Students observed six demonstrations throughout a trimester study of chemistry and responded to each demonstration by asking as many questions as they could think of, choosing one testable question to answer by making as many hypotheses as possible, and choosing one hypothesis to make predictions about observed results of this hypothesis when tested. Students were evaluated on their curiosity, confidence, knowledge of the process of science, and knowledge of the nature of science before and after the six demonstrations. Many students showed improvement in using or mastery of the process of science within the context of conceptual chemistry after six intensive experiences with it. Results of the study also showed students gained confidence in their scientific abilities after completing one trimester of conceptual chemistry. Curiosity and knowledge of the nature of science did not show statistically significant improvement according to the assessment tool. This may have been due to the scope of the demonstration and response activities, which focused on the process of science methodology instead of knowledge of the nature of science or the constraints of the assessment tool.

  2. How Pre-Service Teachers' Understand and Perform Science Process Skills

    Science.gov (United States)

    Chabalengula, Vivien Mweene; Mumba, Frackson; Mbewe, Simeon

    2012-01-01

    This study explored pre-service teachers' conceptual understanding and performance on science process skills. A sample comprised 91 elementary pre-service teachers at a university in the Midwest of the USA. Participants were enrolled in two science education courses; introductory science teaching methods course and advanced science methods course.…

  3. Identifying students’ mental models of sound propagation: The role of conceptual blending in understanding conceptual change

    Directory of Open Access Journals (Sweden)

    Zdeslav Hrepic

    2010-09-01

    Full Text Available We investigated introductory physics students’ mental models of sound propagation. We used a phenomenographic method to analyze the data in the study. In addition to the scientifically accepted Wave model, students used the “Entity” model to describe the propagation of sound. In this latter model sound is a self-standing entity, different from the medium through which it propagates. All other observed alternative models contain elements of both Entity and Wave models, but at the same time are distinct from each of the constituent models. We called these models “hybrid” or “blend” models. We discuss how students use these models in various contexts before and after instruction and how our findings contribute to the understanding of conceptual change. Implications of our findings for teaching are summarized.

  4. Effect of Collaborative Learning in Interactive Lecture Demonstrations (ILD on Student Conceptual Understanding of Motion Graphs

    Directory of Open Access Journals (Sweden)

    Erees Queen B. Macabebe

    2017-04-01

    Full Text Available To assess effectively the influence of peer discussion in understandingconcepts, and to evaluate if the conceptual understanding through Interactive Lecture Demonstrations (ILD and collaborative learning can be translated to actual situations, ten (10 questions on human and carts in motion were presented to 151 university students comprising mostly of science majors but of different year levels. Individual and group predictions were conducted to assess the students’ pre-conceptual understanding of motion graphs. During the ILD, real-time motion graphs were obtained and analysed after each demonstration and an assessment that integrates the ten situations into two scenarios was given to evaluate the conceptual understanding of the students. Collaborative learning produced a positive effect on the prediction scores of the students and the ILD with real-time measurement allowed the students to validate their prediction. However, when the given situations were incorporated to create a scenario, it posted a challenge to the students. The results of this activity identified the area where additional instruction and emphasis is necessary.

  5. Conceptual Model of Artifacts for Design Science Research

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2015-01-01

    We present a conceptual model of design science research artifacts. The model views an artifact at three levels. At the artifact level a selected artifact is viewed as a combination of material and immaterial aspects and a set of representations hereof. At the design level the selected artifact...

  6. An educational ethnography of teacher-developed science curriculum implementation: Enacting conceptual change-based science inquiry with Hispanic students

    Science.gov (United States)

    Brunsell, Eric Steven

    An achievement gap exists between White and Hispanic students in the United States. Research has shown that improving the quality of instruction for minority students is an effective way to narrow this gap. Science education reform movements emphasize that science should be taught using a science inquiry approach. Extensive research in teaching and learning science also shows that a conceptual change model of teaching is effective in helping students learn science. Finally, research into how Hispanic students learn best has provided a number of suggestions for science instruction. The Inquiry for Conceptual Change model merges these three research strands into a comprehensive yet accessible model for instruction. This study investigates two questions. First, what are teachers' perceptions of science inquiry and its implementation in the classroom? Second, how does the use of the Inquiry for Conceptual Change model affect the learning of students in a predominantly Hispanic, urban neighborhood. Five teachers participated in a professional development project where they developed and implemented a science unit based on the Inquiry for Conceptual Change model. Three units were developed and implemented for this study. This is a qualitative study that included data from interviews, participant reflections and journals, student pre- and post-assessments, and researcher observations. This study provides an in-depth description of the role of professional development in helping teachers understand how science inquiry can be used to improve instructional quality for students in a predominantly Hispanic, urban neighborhood. These teachers demonstrated that it is important for professional development to be collaborative and provide opportunities for teachers to enact and reflect on new teaching paradigms. This study also shows promising results for the ability of the Inquiry for Conceptual Change model to improve student learning.

  7. Understanding medical symptoms: a conceptual review and analysis.

    Science.gov (United States)

    Malterud, Kirsti; Guassora, Ann Dorrit; Graungaard, Anette Hauskov; Reventlow, Susanne

    2015-12-01

    The aim of this article is to present a conceptual review and analysis of symptom understanding. Subjective bodily sensations occur abundantly in the normal population and dialogues about symptoms take place in a broad range of contexts, not only in the doctor's office. Our review of symptom understanding proceeds from an initial subliminal awareness by way of attribution of meaning and subsequent management, with and without professional involvement. We introduce theoretical perspectives from phenomenology, semiotics, social interactionism, and discourse analysis. Drew Leder's phenomenological perspectives deal with how symptom perception occurs when any kind of altered balance brings forward a bodily attention. Corporeality is brought to explicit awareness and perceived as sensations. Jesper Hoffmeyer's biosemiotic perspectives provide access to how signs are interpreted to attribute meaning to the bodily messages. Symptom management is then determined by the meaning of a symptom. Dorte E. Gannik's concept "situational disease" explains how situations can be reviewed not just in terms of their potential to produce signs or symptoms, but also in terms of their capacity to contain symptoms. Disease is a social and relational phenomenon of containment, and regulating the situation where the symptoms originate implies adjusting containment. Discourse analysis, as presented by Jonathan Potter and Margaret Wetherell, provides a tool to notice the subtle ways in which language orders perceptions and how language constructs social interaction. Symptoms are situated in culture and context, and trends in modern everyday life modify symptom understanding continuously. Our analysis suggests that a symptom can only be understood by attention to the social context in which the symptom emerges and the dialogue through which it is negotiated.

  8. Effect of the 5E Model on Prospective Teachers' Conceptual Understanding of Diffusion and Osmosis: A Mixed Method Approach

    Science.gov (United States)

    Artun, Huseyin; Costu, Bayram

    2013-01-01

    The aim of this study was to explore a group of prospective primary teachers' conceptual understanding of diffusion and osmosis as they implemented a 5E constructivist model and related materials in a science methods course. Fifty prospective primary teachers' ideas were elicited using a pre- and post-test and delayed post-test survey consisting…

  9. Corporate Social Responsibility and Corporate Social Innovation: A Conceptual Understanding

    Directory of Open Access Journals (Sweden)

    Jali Muhamad Nizam

    2017-01-01

    Full Text Available In decades, various organizations worldwide engaged with Corporate Social Responsibility (CSR in order to show their corporate commitments and responsibilities towards societies at large. These commitments and responsibilities are coming from monetary and non-monetary resources for example cash, equipment’s and human resources whom are used for social purposes and activities that leads to a betterment of society and also to improved organization reputation. However, in today’s knowledge and innovation led economy, organizations can no longer affords to get involve in charity and community services merely to fulfil social return without having any sort of economic payoffs. This situation warrants organizations moving beyond CSR to Corporate Social Innovation. This paper explores conceptual understanding between CSR and Corporate Social Innovation. CSR is a traditional philanthropy and old paradigm which is somewhat no longer sufficient in coping with current economic situation. Hence, this paper provides an insight and suggests that corporate social innovation as an emergence new paradigm that perhaps could provide a comprehensive representation in the era of knowledge and innovation led economy that will leads to real change in improving the well-being of people’s life, enhance economic and technological growth. Furthermore, this paper also highlighted knowledge resource is the most significant resource of Corporate Social Innovation.

  10. Understanding Nursing Home Worker Conceptualizations about Good Care

    Science.gov (United States)

    Chung, Gawon

    2013-01-01

    This study explored how direct care workers in nursing homes conceptualize good care and how their conceptualizations are influenced by external factors surrounding their work environment and the relational dynamics between them and residents. Study participants were drawn from a local service employees' union, and in-depth interviews were…

  11. Understanding the Conceptual Development Phase of Applied Theory-Building Research: A Grounded Approach

    Science.gov (United States)

    Storberg-Walker, Julia

    2007-01-01

    This article presents a provisional grounded theory of conceptual development for applied theory-building research. The theory described here extends the understanding of the components of conceptual development and provides generalized relations among the components. The conceptual development phase of theory-building research has been widely…

  12. Multiple intelligences and alternative teaching strategies: The effects on student academic achievement, conceptual understanding, and attitude

    Science.gov (United States)

    Baragona, Michelle

    The purpose of this study was to investigate the interactions between multiple intelligence strengths and alternative teaching methods on student academic achievement, conceptual understanding and attitudes. The design was a quasi-experimental study, in which students enrolled in Principles of Anatomy and Physiology, a developmental biology course, received lecture only, problem-based learning with lecture, or peer teaching with lecture. These students completed the Multiple Intelligence Inventory to determine their intelligence strengths, the Students' Motivation Toward Science Learning questionnaire to determine student attitudes towards learning in science, multiple choice tests to determine academic achievement, and open-ended questions to determine conceptual understanding. Effects of intelligence types and teaching methods on academic achievement and conceptual understanding were determined statistically by repeated measures ANOVAs. No significance occurred in academic achievement scores due to lab group or due to teaching method used; however, significant interactions between group and teaching method did occur in students with strengths in logical-mathematical, interpersonal, kinesthetic, and intrapersonal intelligences. Post-hoc analysis using Tukey HSD tests revealed students with strengths in logical-mathematical intelligence and enrolled in Group Three scored significantly higher when taught by problem-based learning (PBL) as compared to peer teaching (PT). No significance occurred in conceptual understanding scores due to lab group or due to teaching method used; however, significant interactions between group and teaching method did occur in students with strengths in musical, kinesthetic, intrapersonal, and spatial intelligences. Post-hoc analysis using Tukey HSD tests revealed students with strengths in logical-mathematical intelligence and enrolled in Group Three scored significantly higher when taught by lecture as compared to PBL. Students with

  13. Understanding the Greenhouse Effect by Embodiment - Analysing and Using Students' and Scientists' Conceptual Resources

    Science.gov (United States)

    Niebert, Kai; Gropengießer, Harald

    2014-01-01

    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding climate change. In our study, we interviewed 35 secondary school students on their understanding of the greenhouse effect and analysed the conceptions of climate scientists as drawn from textbooks and research reports. We analysed all data by metaphor analysis and qualitative content analysis to gain insight into students' and scientists' resources for understanding. In our analysis, we found that students and scientists refer to the same schemata to understand the greenhouse effect. We categorised their conceptions into three different principles the conceptions are based on: warming by more input, warming by less output, and warming by a new equilibrium. By interrelating students' and scientists' conceptions, we identified the students' learning demand: First, our students were afforded with experiences regarding the interactions of electromagnetic radiation and CO2. Second, our students reflected about the experience-based schemata they use as source domains for metaphorical understanding of the greenhouse effect. By uncovering the-mostly unconscious-deployed schemata, we gave students access to their source domains. We implemented these teaching guidelines in interventions and evaluated them in teaching experiments to develop evidence-based and theory-guided learning activities on the greenhouse effect.

  14. Biofunctional Understanding and Conceptual Control: Searching for Systematic Consensus in Systemic Cohesion.

    Science.gov (United States)

    Iran-Nejad, Asghar; Bordbar, Fareed

    2017-01-01

    For first generation scientists after the cognitive revolution, knowers were in active control over all (stages of) information processing. Then, following a decade of transition shaped by intense controversy, embodied cognition emerged and suggested sources of control other than those implied by metaphysical information processing. With a thematic focus on embodiment science and an eye toward systematic consensus in systemic cohesion, the present study explores the roles of biofunctional and conceptual control processes in the wholetheme spiral of biofunctional understanding (see Iran-Nejad and Irannejad, 2017b, Figure 1). According to this spiral, each of the two kinds of understanding has its own unique set of knower control processes. For conceptual understanding (CU), knowers have deliberate attention-allocation control over their first-person "knowthat" and "knowhow" content combined as mutually coherent corequisites. For biofunctional understanding (BU), knowers have attention-allocation control only over their knowthat content but knowhow control content is ordinarily conspicuously absent. To test the hypothesis of differences in the manner of control between CU and BU, participants in two experiments read identical-format statements for internal consistency, as response time was recorded. The results of Experiment 1 supported the hypothesis of differences in the manner of control between the two types of control processes; and Experiment 2 confirmed the results of Experiment 1. These findings are discussed in terms of the predicted differences between BU and CU control processes, their roles in regulating the physically unobservable flow of systemic cohesion in the wholetheme spiral, and a proposal for systematic consensus in systemic cohesion to serve as the second guiding principle in biofunctional embodiment science next to physical science's first guiding principle of systematic observation.

  15. Effectiveness of Conceptual Change Text-oriented Instruction on Students' Understanding of Energy in Chemical Reactions

    Science.gov (United States)

    Taştan, Özgecan; Yalçınkaya, Eylem; Boz, Yezdan

    2008-10-01

    The aim of this study is to compare the effectiveness of conceptual change text instruction (CCT) in the context of energy in chemical reactions. The subjects of the study were 60, 10th grade students at a high school, who were in two different classes and taught by the same teacher. One of the classes was randomly selected as the experimental group in which CCT instruction was applied, and the other as the control group in which traditional teaching method was used. The data were obtained through the use of Energy Concept Test (ECT), the Attitude Scale towards Chemistry (ASC) and Science Process Skill Test (SPST). In order to find out the effect of the conceptual change text on students' learning of energy concept, independent sample t-tests, ANCOVA (analysis of covariance) and ANOVA (analysis of variance) were used. Results revealed that there was a statistically significant mean difference between the experimental and control group in terms of students' ECT total mean scores; however, there was no statistically significant difference between the experimental and control group in terms of students' attitude towards chemistry. These findings suggest that conceptual change text instruction enhances the understanding and achievement.

  16. CONCEPTUAL CHALLENGES IN UNDERSTANDING INNOVATIVE EDUCATION IN ORGANIZATIONAL CONTEXT

    Directory of Open Access Journals (Sweden)

    Mikhail Klarin

    2016-06-01

    Full Text Available The paper suggests shifts in educational thinking about adult and continuing education practices including: goal setting, nature of the learner, character of education, and its elements including the sources in the educational process, evaluation of its outcomes, and social (micro-social role of education. The author explores innovative vs. conventional adult learning, and introduces several new approaches to adult education. Several conceptual challenges (paradoxes are considered that do not fit the traditional educationalist’s thinking. The conceptual shifts are explored as cognitive gaps, leading to insights about the nature of adult education, and pragmatic changes in shaping education to transform individual and collective experience.

  17. Understanding Early Elementary Children's Conceptual Knowledge of Plant Structure and Function through Drawings

    Science.gov (United States)

    Anderson, Janice L.; Ellis, Jane P.; Jones, Alan M.

    2014-01-01

    This study examined children's drawings to explain children's conceptual understanding of plant structure and function. The study explored whether the children's drawings accurately reflect their conceptual understanding about plants in a manner that can be interpreted by others. Drawing, survey, interview, and observational data were collected…

  18. Gestures: A Mode of Conceptualization in Science Gestures: A Mode of Conceptualization in Science

    OpenAIRE

    Givry , Damien; Roth , Wolff-Michael

    2003-01-01

    International audience; Problem Since the late 1970's there has been a lot of research to identify students' conceptions about physics (e.g., Pfundt & Duit, 1999). Now, more recent studies attempt to identify the factors that support the evolution of students' initial knowledge towards scientific knowledge. Among the studies of conceptual change (Posner, Strike, Hewson & Gertzog, 1982), we belong to small group of researchers that follow learning and change processes in real time, that is, "t...

  19. Biofunctional Understanding and Conceptual Control: Searching for Systematic Consensus in Systemic Cohesion

    Science.gov (United States)

    Iran-Nejad, Asghar; Bordbar, Fareed

    2017-01-01

    For first generation scientists after the cognitive revolution, knowers were in active control over all (stages of) information processing. Then, following a decade of transition shaped by intense controversy, embodied cognition emerged and suggested sources of control other than those implied by metaphysical information processing. With a thematic focus on embodiment science and an eye toward systematic consensus in systemic cohesion, the present study explores the roles of biofunctional and conceptual control processes in the wholetheme spiral of biofunctional understanding (see Iran-Nejad and Irannejad, 2017b, Figure 1). According to this spiral, each of the two kinds of understanding has its own unique set of knower control processes. For conceptual understanding (CU), knowers have deliberate attention-allocation control over their first-person “knowthat” and “knowhow” content combined as mutually coherent corequisites. For biofunctional understanding (BU), knowers have attention-allocation control only over their knowthat content but knowhow control content is ordinarily conspicuously absent. To test the hypothesis of differences in the manner of control between CU and BU, participants in two experiments read identical-format statements for internal consistency, as response time was recorded. The results of Experiment 1 supported the hypothesis of differences in the manner of control between the two types of control processes; and Experiment 2 confirmed the results of Experiment 1. These findings are discussed in terms of the predicted differences between BU and CU control processes, their roles in regulating the physically unobservable flow of systemic cohesion in the wholetheme spiral, and a proposal for systematic consensus in systemic cohesion to serve as the second guiding principle in biofunctional embodiment science next to physical science’s first guiding principle of systematic observation. PMID:29114235

  20. Biofunctional Understanding and Conceptual Control: Searching for Systematic Consensus in Systemic Cohesion

    Directory of Open Access Journals (Sweden)

    Asghar Iran-Nejad

    2017-10-01

    Full Text Available For first generation scientists after the cognitive revolution, knowers were in active control over all (stages of information processing. Then, following a decade of transition shaped by intense controversy, embodied cognition emerged and suggested sources of control other than those implied by metaphysical information processing. With a thematic focus on embodiment science and an eye toward systematic consensus in systemic cohesion, the present study explores the roles of biofunctional and conceptual control processes in the wholetheme spiral of biofunctional understanding (see Iran-Nejad and Irannejad, 2017b, Figure 1. According to this spiral, each of the two kinds of understanding has its own unique set of knower control processes. For conceptual understanding (CU, knowers have deliberate attention-allocation control over their first-person “knowthat” and “knowhow” content combined as mutually coherent corequisites. For biofunctional understanding (BU, knowers have attention-allocation control only over their knowthat content but knowhow control content is ordinarily conspicuously absent. To test the hypothesis of differences in the manner of control between CU and BU, participants in two experiments read identical-format statements for internal consistency, as response time was recorded. The results of Experiment 1 supported the hypothesis of differences in the manner of control between the two types of control processes; and Experiment 2 confirmed the results of Experiment 1. These findings are discussed in terms of the predicted differences between BU and CU control processes, their roles in regulating the physically unobservable flow of systemic cohesion in the wholetheme spiral, and a proposal for systematic consensus in systemic cohesion to serve as the second guiding principle in biofunctional embodiment science next to physical science’s first guiding principle of systematic observation.

  1. Linear Algebra Revisited: An Attempt to Understand Students' Conceptual Difficulties

    Science.gov (United States)

    Britton, Sandra; Henderson, Jenny

    2009-01-01

    This article looks at some of the conceptual difficulties that students have in a linear algebra course. An overview of previous research in this area is given, and the various theories that have been espoused regarding the reasons that students find linear algebra so difficult are discussed. Student responses to two questions testing the ability…

  2. Probing Students' Understanding of Some Conceptual Themes in General Relativity

    Science.gov (United States)

    Bandyopadhyay, Atanu; Kumar, Arvind

    2010-01-01

    This work is an attempt to see how physics undergraduates view the basic ideas of general relativity when they are exposed to the topic in a standard introductory course. Since the subject is conceptually and technically difficult, we adopted a "case studies" approach, focusing in depth on about six students who had just finished a one semester…

  3. Understanding understanding in secondary school science: An interpretive study

    Science.gov (United States)

    O'Neill, Maureen Gail

    This study investigated the teaching of secondary school science with an emphasis on promoting student understanding. In particular, I focused on two research questions: What are the possible meanings of teaching for understanding? And, how might one teach secondary school science for understanding? After semi-structured interviews were conducted with 13 secondary school science teachers, grounded theory methodology was used to interpret the data. As a result of the selective coding process, I was able to identify 14 connected components of teaching for understanding (TfU). The process of TfU involves: puzzle-solving, a specific pedagogy and a conscious decision. The teacher must be a reflective practitioner who has some knowledge of the facets of understanding. The teacher comes to a critical incident or crisis in his or her pedagogy and adopts a mindset which highlights TfU as a personal problematic. Teachers operate with student-centred rather than teacher-centred metaphors. TfU requires a firm belief in and passion for the process, a positive attitude and excellent pedagogical content knowledge. It hinges on a performance view of understanding and demands risk-taking in the science classroom. Abstracting these ideas to a theory led me to the notion of Purposive Teaching . In their purposive-driven role as pedagogues, these teachers have placed TfU at the core of their daily practice. Constraints and challenges facing TfU as well as implications of the findings are discussed. Keywords. science teaching, teaching for understanding, purposive teaching, constructivism, understanding, pedagogy, pedagogical content knowledge, memorization, meaningful learning, reflective practice.

  4. Conceptual Blending Monitoring Students' Use of Metaphorical Concepts to Further the Learning of Science

    Science.gov (United States)

    Fredriksson, Alexandra; Pelger, Susanne

    2018-03-01

    The aim of this study is to explore how tertiary science students' use of metaphors in their popular science article writing may influence their understanding of subject matter. For this purpose, six popular articles written by students in physics or geology were analysed by means of a close textual analysis and a metaphor analysis. In addition, semi-structured interviews were conducted with the students. The articles showed variation regarding the occurrence of active (non-conventional) metaphors, and metaphorical concepts, i.e. metaphors relating to a common theme. In addition, the interviews indicated that students using active metaphors and metaphorical concepts reflected more actively upon their use of metaphors. These students also discussed the possible relationship between subject understanding and creation of metaphors in terms of conceptual blending. The study suggests that students' process of creating metaphorical concepts could be described and visualised through integrated networks of conceptual blending. Altogether, the study argues for using conceptual blending as a tool for monitoring and encouraging the use of adequate metaphorical concepts, thereby facilitating students' opportunities of understanding and influencing the learning of science.

  5. Effect of problem type toward students’ conceptual understanding level on heat and temperature

    Science.gov (United States)

    Ratnasari, D.; Sukarmin; Suparmi, S.

    2017-11-01

    The aim of this research is to analyze the level of students’ understanding of heat and temperature concept and effect of problem type toward students’ conceptual understanding of heat and temperature. This research is descriptive research with the subjects of the research are 96 students from high, medium, and low categorized school in Surakarta. Data of level of students’ conceptual understanding is from students’ test result using essay instrument (arranged by researcher and arranged by the teacher) and interview. Before being tested in the samples, essay instrument is validated by the experts. Based on the result and the data analysis, students’ conceptual understanding level of 10th grade students on heat and temperature is as follows: (1) Most students have conceptual understanding level at Partial Understanding with a Specific Misconception (PUSM) with percentage 28,85%; (2) Most students are able to solve mathematic problem from teacher, but don’t understand the underlying concept.

  6. Conceptual Challenges of the Systemic Approach in Understanding Cell Differentiation.

    Science.gov (United States)

    Paldi, Andras

    2018-01-01

    The cells of a multicellular organism are derived from a single zygote and genetically identical. Yet, they are phenotypically very different. This difference is the result of a process commonly called cell differentiation. How the phenotypic diversity emerges during ontogenesis or regeneration is a central and intensely studied but still unresolved issue in biology. Cell biology is facing conceptual challenges that are frequently confused with methodological difficulties. How to define a cell type? What stability or change means in the context of cell differentiation and how to deal with the ubiquitous molecular variations seen in the living cells? What are the driving forces of the change? We propose to reframe the problem of cell differentiation in a systemic way by incorporating different theoretical approaches. The new conceptual framework is able to capture the insights made at different levels of cellular organization and considered previously as contradictory. It also provides a formal strategy for further experimental studies.

  7. Teachers' Understanding and Operationalisation of `Science Capital'

    Science.gov (United States)

    King, Heather; Nomikou, Effrosyni; Archer, Louise; Regan, Elaine

    2015-12-01

    Across the globe, governments, industry and educationalists are in agreement that more needs to be done to increase and broaden participation in post-16 science. Schools, as well as teachers, are seen as key in this effort. Previous research has found that engagement with science, inclination to study science and understanding of the value of science strongly relates to a student's science capital. This paper reports on findings from the pilot year of a one-year professional development (PD) programme designed to work with secondary-school teachers to build students' science capital. The PD programme introduced teachers to the nature and importance of science capital and thereafter supported them to develop ways of implementing science capital-building pedagogy in their practice. The data comprise interviews with the participating teachers (n = 10), observations of classroom practices and analyses of the teachers' accounts of their practice. Our findings suggest that teachers found the concept of science capital to be compelling and to resonate with their own intuitive understandings and experiences. However, the ways in which the concept was operationalised in terms of the implementation of pedagogical practices varied. The difficulties inherent in the operationalisation are examined and recommendations for future work with teachers around the concept of science capital are developed.

  8. Science and Human Behavior, dualism, and conceptual modification.

    Science.gov (United States)

    Zuriff, G E

    2003-11-01

    Skinner's Science and Human Behavior is in part an attempt to solve psychology's problem with mind-body dualism by revising our everyday mentalistic conceptual scheme. In the case of descriptive mentalism (the use of mentalistic terms to describe behavior), Skinner offers behavioral "translations." In contrast, Skinner rejects explanatory mentalism (the use of mental concepts to explain behavior) and suggests how to replace it with a behaviorist explanatory framework. For experiential mentalism, Skinner presents a theory of verbal behavior that integrates the use of mentalistic language in first-person reports of phenomenal experience into a scientific framework.

  9. Conceptualizing, Understanding, and Predicting Responsible Decisions and Quality Input

    Science.gov (United States)

    Wall, N.; PytlikZillig, L. M.

    2012-12-01

    In areas such as climate change, where uncertainty is high, it is arguably less difficult to tell when efforts have resulted in changes in knowledge, than when those efforts have resulted in responsible decisions. What is a responsible decision? More broadly, when it comes to citizen input, what is "high quality" input? And most importantly, how are responsible decisions and quality input enhanced? The aim of this paper is to contribute to the understanding of the different dimensions of "responsible" or "quality" public input and citizen decisions by comparing and contrasting the different predictors of those different dimensions. We first present different possibilities for defining, operationalizing and assessing responsible or high quality decisions. For example, responsible decisions or quality input might be defined as using specific content (e.g., using climate change information in decisions appropriately), as using specific processes (e.g., investing time and effort in learning about and discussing the issues prior to making decisions), or on the basis of some judgment of the decision or input itself (e.g., judgments of the rationale provided for the decisions, or number of issues considered when giving input). Second, we present results from our work engaging people with science policy topics, and the different ways that we have tried to define these two constructs. In the area of climate change specifically, we describe the development of a short survey that assesses exposure to climate information, knowledge of and attitudes toward climate change, and use of climate information in one's decisions. Specifically, the short survey was developed based on a review of common surveys of climate change related knowledge, attitudes, and behaviors, and extensive piloting and cognitive interviews. Next, we analyze more than 200 responses to that survey (data collection is currently ongoing and will be complete after the AGU deadline), and report the predictors of

  10. Stepping into Science Fiction: Understanding the Genre

    Science.gov (United States)

    Barone, Diane; Barone, Rebecca

    2014-01-01

    This manuscript focuses on fifth graders' understanding of science fiction. It is argued that it is necessary for students to understand both reading strategies and the key elements of a genre for comprehension. Students read "The Giver" within literature circles and conversation and written responses about the book were used for…

  11. High school student's motivation to engage in conceptual change-learning in science

    Science.gov (United States)

    Barlia, Lily

    1999-11-01

    This study investigated motivational factors that are related to engaging in conceptual change learning. While previous studies have recognized the resistance of students' scientific conception to change, few have investigated the role that non-cognitive factors might play when students are exposed to conceptual change instruction. Three research questions were examined: (a) What instructional strategies did the teacher use to both promote students' learning for conceptual change and increase their motivation in learning science? (b) What are the patterns of students' motivation to engage in conceptual change learning? And (c) what individual profiles can be constructed from the four motivational factors (i.e., goals, values, self-efficacy, and control beliefs) and how are these profiles linked to engagement (i.e., behavioral and cognitive engagement) in conceptual change learning of science? Eleven twelfth grade students (senior students) and the teacher in which conceptual change approach to teaching was used in daily activities were selected. Data collection for this study included student's self-reported responses to the Motivated Strategies for Learning Questionnaire (MSLQ), classroom observation of students and the teacher, and structured interviews. Analysis of these data resulted in a motivational factor profile for each student and cross case analysis for entire group. Results from this study indicate that each student has different motivation factors that are mostly influenced individual student to learn science. Among these motivation factors, task value and control beliefs were most important for students. The implication of these findings are that teachers need to encourage students to find learning for conceptual change a valuable task, and that students need to find applications for their new conceptions within their everyday lives. In addition, teachers need to encourage students to develop learning strategies for conceptual understanding

  12. The Effect of a Conceptual Change Approach on Understanding of Students' Chemical Equilibrium Concepts

    Science.gov (United States)

    Atasoy, Basri; Akkus, Huseyin; Kadayifci, Hakki

    2009-01-01

    The purpose of this study was to compare the effects of a conceptual change approach over traditional instruction on tenth-grade students' conceptual achievement in understanding chemical equilibrium. The study was conducted in two classes of the same teacher with participation of a total of 44 tenth-grade students. In this study, a…

  13. Understanding integrated care: a comprehensive conceptual framework based on the integrative functions of primary care.

    NARCIS (Netherlands)

    Valentijn, P.P.; Schepman, S.M.; Opheij, W.; Bruijnzeels, M.A.

    2013-01-01

    Introduction: Primary care has a central role in integrating care within a health system. However, conceptual ambiguity regarding integrated care hampers a systematic understanding. This paper proposes a conceptual framework that combines the concepts of primary care and integrated care, in order to

  14. Analogy-Integrated e-Learning Module: Facilitating Students' Conceptual Understanding

    Science.gov (United States)

    Florida, Jennifer

    2012-01-01

    The study deals with the development of an analogy-integrated e-learning module on Cellular Respiration, which is intended to facilitate conceptual understanding of students with different brain hemisphere dominance and learning styles. The module includes eight analogies originally conceptualized following the specific steps used to prepare…

  15. Integrating Felting in Elementary Science Classrooms to Facilitate Understanding of the Polar Auroras

    Directory of Open Access Journals (Sweden)

    Brandy Terrill

    2017-10-01

    Full Text Available The Next Generation Science Standards (NGSS emphasize conceptual science instruction that draws on students’ ability to make observations, explain natural phenomena, and examine concept relationships. This paper explores integrating the arts, in the form of felting, in elementary science classrooms as a way for students to model and demonstrate understanding of the complex scientific processes that cause the polar auroras. The steps for creating felting, and using the felting artwork students create for assessing science learning, are described.

  16. A bridge between conceptual frameworks sciences, society and technology studies

    CERN Document Server

    2015-01-01

    This book analyzes scientific problems within the history of physics, engineering, chemistry, astronomy and medicine, correlated with technological applications in the social context. When and how is tension between disciplines explicitly practised? What is the conceptual bridge between science researches and the organization of technological researches in the development of  industrial applications?  The authors explain various ways in which the sciences allowed advanced modelling on the one hand, and the development of new technological ideas on the other hand. An emphasis on the role played by mechanisms, production methods and instruments bestows a benefit on historical and scientific discourse: theories, institutions, universities, schools for engineers, social implications as well.  Scholars from different traditions discuss the emerging style of thinking in methodology and, in theoretical perspective, aim to gather and re-evaluate the current thinking on this subject. It brings together contribution...

  17. Towards a Common Understanding of the Health Sciences.

    Science.gov (United States)

    Stucki, G; Rubinelli, S; Reinhardt, J D; Bickenbach, J E

    2016-09-01

    The aim of health sciences is to maintain and improve the health of individuals and populations and to limit disability. Health research has expanded astoundingly over the last century and a variety of scientific disciplines rooted in very different scientific and intellectual traditions has contributed to these goals. To allow health scientists to fully contextualize their work and engage in interdisciplinary research, a common understanding of the health sciences is needed. The aim of this paper is to respond to the call of the 1986 Ottawa Charter to improve health care by looking both within and beyond health and health care, and to use the opportunity offered by WHO's International Classification of Functioning, Disability and Health (ICF) for a universal operationalization of health, in order to develop a common understanding and conceptualization of the field of health sciences that account for its richness and vitality. A critical analysis of health sciences based on WHO's ICF, on WHO's definition of health systems and on the content and methodological approaches promoted by the biological, clinical and socio-humanistic traditions engaged in health research. The field of health sciences is presented according to: 1) a specification of the content of the field in terms of people's health needs and the societal response to them, 2) a meta-level framework to exhaustively represent the range of mutually recognizable scientific disciplines engaged in health research and 3) a heuristic framework for the specification of a set of shared methodological approaches relevant across the range of these disciplines. This conceptualization of health sciences is offered to contextualize the work of health researchers, thereby fostering interdisciplinarity. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Why should I care? Engaging students in conceptual understanding using global context to develop social attitudes.

    Science.gov (United States)

    Forder, S. E.; Welstead, C.; Pritchard, M.

    2014-12-01

    A glance through the Harvard Business Review reveals many suggestions and research pieces reviewing sales and marketing techniques. Most educators will be familiar with the notion that making accurate first impressions and being responsive, whilst maintaining pace is critical to engaging an audience. There are lessons to be learnt from industry that can significantly impact upon our teaching. Eisenkraft, in his address to the NSTA, proposed four essential questions. This presentation explores one of those questions: 'Why should I care?', and discusses why this question is crucial for engaging students by giving a clear purpose for developing their scientific understanding. Additionally, this presentation explores how The ISF Academy has adapted the NGSS, using the 14 Grand Engineering Challenges and the IB MYP, to provide current, authentic global contexts, in order to give credibility to the concepts, understandings and skills being learnt. The provision of global contexts across units and within lessons supports a platform for students to have the freedom to explore their own sense of social responsibility. The Science Department believes that planning lessons with tasks that elaborate on the student's new conceptualisations, has helped to transfer the student's new understanding into social behavior beyond the classroom. Furthermore, extension tasks have been used to transfer conceptual understanding between different global contexts.

  19. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    Science.gov (United States)

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  20. A Conceptual Culture Model for Design Science Research

    Directory of Open Access Journals (Sweden)

    Thomas Richter

    2016-03-01

    Full Text Available The aim of design science research (DSR in information systems is the user-centred creation of IT-artifacts with regard to specific social environments. For culture research in the field, which is necessary for a proper localization of IT-artifacts, models and research approaches from social sciences usually are adopted. Descriptive dimension-based culture models most commonly are applied for this purpose, which assume culture being a national phenomenon and tend to reduce it to basic values. Such models are useful for investigations in behavioural culture research because it aims to isolate, describe and explain culture-specific attitudes and characteristics within a selected society. In contrast, with the necessity to deduce concrete decisions for artifact-design, research results from DSR need to go beyond this aim. As hypothesis, this contribution generally questions the applicability of such generic culture dimensions’ models for DSR and focuses on their theoretical foundation, which goes back to Hofstede’s conceptual Onion Model of Culture. The herein applied literature-based analysis confirms the hypothesis. Consequently, an alternative conceptual culture model is being introduced and discussed as theoretical foundation for culture research in DSR.

  1. Designing for Enhanced Conceptual Understanding in an Online Physics Course

    Science.gov (United States)

    Dunlap, Joanna C.; Furtak, Thomas E.; Tucker, Susan A.

    2009-01-01

    The calculus-based, introductory physics course is the port of entry for any student interested in pursuing a college degree in the sciences, mathematics, or engineering. There is increasing demand for online delivery options that make the course more widely available, especially those that use best practices in student engagement. However,…

  2. Effectiveness of Ninth-Grade Physics in Maine: Conceptual Understanding

    OpenAIRE

    O'Brien, Michael; Thompson, John

    2009-01-01

    The Physics First movement - teaching a true physics course to ninth grade students - is gaining popularity in high schools. There are several different rhetorical arguments for and against this movement, and it is quite controversial in physics education. However, there is no actual evidence to assess the success, or failure, of this substantial shift in the science teaching sequence. We have undertaken a comparison study of physics classes taught in ninth- and 12th grade classes in Maine. C...

  3. Student Use of Scaffolding Software: Relationships with Motivation and Conceptual Understanding

    Science.gov (United States)

    Butler, Kyle A.; Lumpe, Andrew

    2008-10-01

    This study was designed to theoretically articulate and empirically assess the role of computer scaffolds. In this project, several examples of educational software were developed to scaffold the learning of students performing high level cognitive activities. The software used in this study, Artemis, focused on scaffolding the learning of students as they performed information seeking activities. As 5th grade students traveled through a project-based science unit on photosynthesis, researchers used a pre-post design to test for both student motivation and student conceptual understanding of photosynthesis. To measure both variables, a motivation survey and three methods of concept map analysis were used. The student use of the scaffolding features was determined using a database that tracked students' movement between scaffolding tools. The gain scores of each dependent variable was then correlated to the students' feature use (time and hits) embedded in the Artemis Interface. This provided the researchers with significant relationships between the scaffolding features represented in the software and student motivation and conceptual understanding of photosynthesis. There were a total of three significant correlations in comparing the scaffolding use by hits (clicked on) with the dependent variables and only one significant correlation when comparing the scaffold use in time. The first significant correlation ( r = .499, p students' task value. This correlation supports the assumption that there is a positive relationship between the student use of the saving/viewing features and the students' perception of how interesting, how important, and how useful the task is. The second significant correlation ( r = 0.553, p students' self-efficacy for learning and performance. This correlation supports the assumption that there is a positive relationship between the student use of the searching features and the students' perception of their ability to accomplish a task as

  4. Upgrading geometry conceptual understanding and strategic competence through implementing rigorous mathematical thinking (RMT)

    Science.gov (United States)

    Nugraheni, Z.; Budiyono, B.; Slamet, I.

    2018-03-01

    To reach higher order thinking skill, needed to be mastered the conceptual understanding and strategic competence as they are two basic parts of high order thinking skill (HOTS). RMT is a unique realization of the cognitive conceptual construction approach based on Feurstein with his theory of Mediated Learning Experience (MLE) and Vygotsky’s sociocultural theory. This was quasi-experimental research which compared the experimental class that was given Rigorous Mathematical Thinking (RMT) as learning method and the control class that was given Direct Learning (DL) as the conventional learning activity. This study examined whether there was different effect of two learning model toward conceptual understanding and strategic competence of Junior High School Students. The data was analyzed by using Multivariate Analysis of Variance (MANOVA) and obtained a significant difference between experimental and control class when considered jointly on the mathematics conceptual understanding and strategic competence (shown by Wilk’s Λ = 0.84). Further, by independent t-test is known that there was significant difference between two classes both on mathematical conceptual understanding and strategic competence. By this result is known that Rigorous Mathematical Thinking (RMT) had positive impact toward Mathematics conceptual understanding and strategic competence.

  5. Teaching Care Ethics: Conceptual Understandings and Stories for Learning

    Science.gov (United States)

    Rabin, Colette; Smith, Grinell

    2013-01-01

    An ethic of care acknowledges the centrality of the role of caring relationships in moral education. Care ethics requires a conception of "care" that differs from the quotidian use of the word. In order to teach care ethics more effectively, this article discusses four interrelated ways that teachers' understandings of care differ…

  6. Conceptual Understanding in Social Education. ACER Research Monograph No. 45.

    Science.gov (United States)

    Doig, Brian; And Others

    This report describes the results of a 1992 survey of students' economic, geographical, cultural, historical, and political understandings in the state of Victoria (Australia). The conception of some 2,900 students in Years 5 and 9 in government, Catholic and independent schools are investigated and described. The survey is one of a series of…

  7. A Conceptual Understanding of Employability: The Employers' View in Rwanda

    Science.gov (United States)

    Bamwesiga, Penelope Mbabazi

    2013-01-01

    Many governments believe that investing in human capital should increase citizens' employability, which is why it is often presented as a solution to the problems of knowledge-based economies and societies, rising unemployment rates and economic competiveness. The aim of this study is to understand employers' views regarding the employability of…

  8. How online learning modules can improve the representational fluency and conceptual understanding of university physics students

    Science.gov (United States)

    Hill, M.; Sharma, M. D.; Johnston, H.

    2015-07-01

    The use of online learning resources as core components of university science courses is increasing. Learning resources range from summaries, videos, and simulations, to question banks. Our study set out to develop, implement, and evaluate research-based online learning resources in the form of pre-lecture online learning modules (OLMs). The aim of this paper is to share our experiences with those using, or considering implementing, online learning resources. Our first task was to identify student learning issues in physics to base the learning resources on. One issue with substantial research is conceptual understanding, the other with comparatively less research is scientific representations (graphs, words, equations, and diagrams). We developed learning resources on both these issues and measured their impact. We created weekly OLMs which were delivered to first year physics students at The University of Sydney prior to their first lecture of the week. Students were randomly allocated to either a concepts stream or a representations stream of online modules. The programme was first implemented in 2013 to trial module content, gain experience and process logistical matters and repeated in 2014 with approximately 400 students. Two validated surveys, the Force and Motion Concept Evaluation (FMCE) and the Representational Fluency Survey (RFS) were used as pre-tests and post-tests to measure learning gains while surveys and interviews provided further insights. While both streams of OLMs produced similar positive learning gains on the FMCE, the representations-focussed OLMs produced higher gains on the RFS. Conclusions were triangulated with student responses which indicated that they have recognized the benefit of the OLMs for their learning of physics. Our study shows that carefully designed online resources used as pre-instruction can make a difference in students’ conceptual understanding and representational fluency in physics, as well as make them more aware

  9. Towards Building Science Teachers’ Understandings of Contemporary Science Practices

    Directory of Open Access Journals (Sweden)

    Greg Lancaster

    2017-03-01

    Full Text Available Faculties of Education and Science at Monash University have designed a Masters unit to assist pre-service and in-service science teachers in exploring the practices of contemporary science and examine how varied understandings can influence science communication. Teachers are encouraged to explore their current understandings of the Nature of Science (NoS and to contrast their views with those known to be widely held by society (Cobern & Loving, 1998. Teachers are challenged to provide insights into their thinking relating to the NoS. In order to build understandings of contemporary science practice each teacher shadows a research scientist and engages them in conversations intended to explore the scientists’ views of NoS and practice. Findings suggest that teachers were initially uncomfortable with the challenge to express ideas relating to their NoS and were also surprised how diverse the views of NoS can be among teachers, scientists and their peers, and that these views can directly impact ways of communicating contemporary science practice.

  10. An integrated conceptual framework for evaluating and improving 'understanding' in informed consent.

    Science.gov (United States)

    Bossert, Sabine; Strech, Daniel

    2017-10-17

    The development of understandable informed consent (IC) documents has proven to be one of the most important challenges in research with humans as well as in healthcare settings. Therefore, evaluating and improving understanding has been of increasing interest for empirical research on IC. However, several conceptual and practical challenges for the development of understandable IC documents remain unresolved. In this paper, we will outline and systematize some of these challenges. On the basis of our own experiences in empirical user testing of IC documents as well as the relevant literature on understanding in IC, we propose an integrated conceptual model for the development of understandable IC documents. The proposed conceptual model integrates different methods for the participatory improvement of written information, including IC, as well as quantitative methods for measuring understanding in IC. In most IC processes, understandable written information is an important prerequisite for valid IC. To improve the quality of IC documents, a conceptual model for participatory procedures of testing, revising, and retesting can be applied. However, the model presented in this paper needs further theoretical and empirical elaboration and clarification of several conceptual and practical challenges.

  11. Uncertainty in biodiversity science, policy and management: a conceptual overview

    Directory of Open Access Journals (Sweden)

    Yrjö Haila

    2014-10-01

    Full Text Available The protection of biodiversity is a complex societal, political and ultimately practical imperative of current global society. The imperative builds upon scientific knowledge on human dependence on the life-support systems of the Earth. This paper aims at introducing main types of uncertainty inherent in biodiversity science, policy and management, as an introduction to a companion paper summarizing practical experiences of scientists and scholars (Haila et al. 2014. Uncertainty is a cluster concept: the actual nature of uncertainty is inherently context-bound. We use semantic space as a conceptual device to identify key dimensions of uncertainty in the context of biodiversity protection; these relate to [i] data; [ii] proxies; [iii] concepts; [iv] policy and management; and [v] normative goals. Semantic space offers an analytic perspective for drawing critical distinctions between types of uncertainty, identifying fruitful resonances that help to cope with the uncertainties, and building up collaboration between different specialists to support mutual social learning.

  12. Can citizen science enhance public understanding of science?

    Science.gov (United States)

    Bonney, Rick; Phillips, Tina B; Ballard, Heidi L; Enck, Jody W

    2016-01-01

    Over the past 20 years, thousands of citizen science projects engaging millions of participants in collecting and/or processing data have sprung up around the world. Here we review documented outcomes from four categories of citizen science projects which are defined by the nature of the activities in which their participants engage - Data Collection, Data Processing, Curriculum-based, and Community Science. We find strong evidence that scientific outcomes of citizen science are well documented, particularly for Data Collection and Data Processing projects. We find limited but growing evidence that citizen science projects achieve participant gains in knowledge about science knowledge and process, increase public awareness of the diversity of scientific research, and provide deeper meaning to participants' hobbies. We also find some evidence that citizen science can contribute positively to social well-being by influencing the questions that are being addressed and by giving people a voice in local environmental decision making. While not all citizen science projects are intended to achieve a greater degree of public understanding of science, social change, or improved science -society relationships, those projects that do require effort and resources in four main categories: (1) project design, (2) outcomes measurement, (3) engagement of new audiences, and (4) new directions for research. © The Author(s) 2015.

  13. Extreme Apprenticeship – Emphasising conceptual understanding in undergraduate mathematics

    OpenAIRE

    Rämö , Johanna; Oinonen , Lotta; Vikberg , Thomas

    2015-01-01

    International audience; Extreme Apprenticeship (XA) is an educational method that has been used in teaching undergraduate mathematics in the University of Helsinki. In this paper, we analyse the course assignments and exam questions of a certain lecture course that has recently been reformed to an XA-based course. The results show that the XA method has made it possible to move the emphasis from rote learning towards understanding the concepts behind the procedures.

  14. Promoting students' conceptual understanding using STEM-based e-book

    Science.gov (United States)

    Komarudin, U.; Rustaman, N. Y.; Hasanah, L.

    2017-05-01

    This study aims to examine the effect of Science, Technology, Engineering, and Mathematics (STEM) based e-book in promoting students'conceptual understanding on lever system in human body. The E-book used was the e-book published by National Ministry of Science Education. The research was conducted by a quasi experimental with pretest and posttest design. The subjects consist of two classes of 8th grade junior high school in Pangkalpinang, Indonesia, which were devided into experimental group (n=34) and control group (n=32). The students in experimental group was taught by STEM-based e-book, while the control group learned by non STEM-based e-book. The data was collected by an instrument pretest and postest. Pretest and posttest scored, thenanalyzed using descriptive statistics and independent t-test. The result of independent sample t-test shows that no significant differenceson students' pretest score between control and experimental group. However, there were significant differences on students posttest score and N-gain score between control and experimental group with sig = 0.000(pscience.

  15. Gestures and metaphors as indicators of conceptual understanding of sedimentary systems

    Science.gov (United States)

    Riggs, E. M.; Herrera, J. S.

    2012-12-01

    Understanding the geometry and evolution of sedimentary systems and sequence stratigraphy is crucial to the development of geoscientists and engineers working in the petroleum industry. There is a wide variety of audiences within industry who require relatively advanced instruction in this area of geoscience, and there is an equally wide array of approaches to teaching this material in the classroom and field. This research was undertaken to develop a clearer picture of how conceptual understanding in this area of sedimentary geology grows as a result of instruction and how instructors can monitor the completeness and accuracy of student thinking and mental models. We sought ways to assess understanding that did not rely on model-specific jargon but rather was based in physical expression of basic processes and attributes of sedimentary systems. Advances in cognitive science and educational research indicate that a significant part of spatial cognition is facilitated by gesture, (e.g. giving directions, describing objects or landscape features). We aligned the analysis of gestures with conceptual metaphor theory to probe the use of mental image-schemas as a source of concept representation for students' learning of sedimentary processes. In order to explore image schemas that lie in student explanations, we focused our analysis on four core ideas about sedimentary systems that involve sea level change and sediment deposition, namely relative sea level, base level, and sea-level fluctuations and resulting basin geometry and sediment deposition changes. The study included 25 students from three U.S. Midwestern universities. Undergraduate and graduate-level participants were enrolled in senior-level undergraduate courses in sedimentology and stratigraphy. We used semi-structured interviews and videotaping for data collection. We coded the data to focus on deictic, iconic, and metaphoric gestures, and coded interview transcripts for linguistic metaphors using the

  16. Examining the Conceptual Understandings of Geoscience Concepts of Students with Visual Impairments: Implications of 3-D Printing

    Science.gov (United States)

    Koehler, Karen E.

    The purpose of this qualitative study was to explore the use of 3-D printed models as an instructional tool in a middle school science classroom for students with visual impairments and compare their use to traditional tactile graphics for aiding conceptual understanding of geoscience concepts. Specifically, this study examined if the students' conceptual understanding of plate tectonics was different when 3-D printed objects were used versus traditional tactile graphics and explored the misconceptions held by students with visual impairments related to plate tectonics and associated geoscience concepts. Interview data was collected one week prior to instruction and one week after instruction and throughout the 3-week instructional period and additional ata sources included student journals, other student documents and audio taped instructional sessions. All students in the middle school classroom received instruction on plate tectonics using the same inquiry-based curriculum but during different time periods of the day. One group of students, the 3D group, had access to 3-D printed models illustrating specific geoscience concepts and the group of students, the TG group, had access to tactile graphics illustrating the same geoscience concepts. The videotaped pre and post interviews were transcribed, analyzed and coded for conceptual understanding using constant comparative analysis and to uncover student misconceptions. All student responses to the interview questions were categorized in terms of conceptual understanding. Analysis of student journals and classroom talk served to uncover student mental models and misconceptions about plate tectonics and associated geoscience concepts to measure conceptual understanding. A slight majority of the conceptual understanding before instruction was categorized as no understanding or alternative understanding and after instruction the larger majority of conceptual understanding was categorized as scientific or scientific

  17. Understanding a Firm in a Holonic Conceptual Framework

    DEFF Research Database (Denmark)

    Jensen, Povl Erik; Jacobsen, Peter

    2005-01-01

    In history, production has been organized in mainly two different ways: Hierarchical or heterarchical (as network and/or modularized). However, a third way has been introduced by using the concept a holonic system of production (Brussel, 1999). This concept is introduced and a model of a holonic...... possible unit of production, which is able to produce on its own for a period of time, is self-regulating/autonomous and can communicate with other holons. The communication between holons in and outside a firm, ex stakeholders, is shown to be a very fruitful way to understand the existence of firms...

  18. On the Conceptual Understanding of the Photoelectric Effect

    Science.gov (United States)

    Foong, S. K.; Lee, P.; Wong, D.; Chee, Y. P.

    2010-07-01

    We attempt an in-depth literature review that focuses on some finer aspects of the photoelectric effect that will help build a more coherent understanding of the phenomenon. These include the angular distribution of photoelectrons, multi-photon photoelectron emission and the work function in the photoelectric equation as being that associated with the collector rather than the emitter. We attempt to explain the intricacies of the related concepts in a way that is accessible to teachers and students at the Singapore GCE A-level or pre-university level.

  19. An analysis of science conceptual knowledge in journals of students with disabilities and normally achieving students

    Science.gov (United States)

    Grigg, Gail S.

    Science education reforms of the last two decades have focused on raising the bar for ALL students which includes students with mild to moderate disabilities. Formative assessment can be used to assess the progress of these students to inquire, understand scientific concepts, reason scientifically, make decisions, and communicate effectively in science. The purpose of this study is to examine the use of science journals as a formative assessment in a guided inquiry unit of study for students with learning disabilities. Two normally achieving students (NA) and five students with learning disabilities (SLD) participated in a study of mammals that utilized journals to record the development of student knowledge through the course of study. Students were interviewed after the lessons were complete using the same prompts required in the journals. Themes were developed from the student writings and their verbal discourse using Grounded Theory. Journals and verbal discourse were rated following the themes of Knowledge Telling (KT) and Knowledge Transformation (KTR). Concept maps were developed for the Pre and Post test lessons (written and verbal discourses) by the raters in an attempt to further explain the knowledge that the students conveyed. The results of this study suggest that SLD are able to demonstrate knowledge about mammals better through verbal discourse than written discourse. While the NA students wrote more and used more technical discourse than did their SLD peers, the conceptual understanding of the topic by the SLD was no less inclusive than their NA peers when accessed verbally. The journals demonstrated limited conceptual growth for the SLD. Further, while lexical density is important to the development of knowledge in science, this study suggests the "conceptual density" may be another important indicator to examine.

  20. Investigation of the relationship between students' problem solving and conceptual understanding of electricity

    Science.gov (United States)

    Cobanoglu Aktan, Derya

    The purpose of this study was to investigate the relationship between students' qualitative problem solving and conceptual understanding of electricity. For the analysis data were collected from observations of group problem solving, from their homework artifacts, and from semi-structured interviews. The data for six undergraduate students were analyzed by qualitative research methods. The students in the study were found to use tools (such as computer simulations and formulas) differently from one another, and they made different levels of interpretations for the electricity representations. Consequently each student had different problem solving strategies. The students exhibited a wide range of levels of understanding of the electricity concepts. It was found that students' conceptual understandings and their problem solving strategies were closely linked with one another. The students who tended to use multiple tools to make high level interpretations for representations to arrive at a single solution exhibited a higher level of understanding than the students who tended to use tools to make low level interpretations to reach a solution. This study demonstrates a relationship between conceptual understanding and problem solving strategies. Similar to the results of the existing research on students' quantitative problem solving, it was found that students were able to give correct answers to some problems without fully understanding the concepts behind the problem. However, some problems required a conceptual understanding in order for a student to arrive at a correct answer. An implication of this study is that careful selection of qualitative questions is necessary for capturing high levels of conceptual understanding. Additionally, conceptual understanding among some types of problem solvers can be improved by activities or tasks that can help them reflect on their problem solving strategies and the tools they use.

  1. Measuring the development of conceptual understanding in chemistry

    Science.gov (United States)

    Claesgens, Jennifer Marie

    The purpose of this dissertation research is to investigate and characterize how students learn chemistry from pre-instruction to deeper understanding of the subject matter in their general chemistry coursework. Based on preliminary work, I believe that students have a general pathway of learning across the "big ideas," or concepts, in chemistry that can be characterized over the course of instruction. My hypothesis is that as students learn chemistry they build from experience and logical reasoning then relate chemistry specific ideas in a pair-wise fashion before making more complete multi-relational links for deeper understanding of the subject matter. This proposed progression of student learning, which starts at Notions, moves to Recognition, and then to Formulation, is described in the ChemQuery Perspectives framework. My research continues the development of ChemQuery, an NSF-funded assessment system that uses a framework of the key ideas in the discipline and criterion-referenced analysis using item response theory (IRT) to map student progress. Specifially, this research investigates the potential for using criterion-referenced analysis to describe and measure how students learn chemistry followed by more detailed task analysis of patterns in student responses found in the data. My research question asks: does IRT work to describe and measure how students learn chemistry and if so, what is discovered about how students learn? Although my findings seem to neither entirely support nor entirely refute the pathway of student understanding proposed in the ChemQuery Perspectives framework. My research does provide an indication of trouble spots. For example, it seems like the pathway from Notions to Recognition is holding but there are difficulties around the transition from Recognition to Formulation that cannot be resolved with this data. Nevertheless, this research has produced the following, which has contributed to the development of the Chem

  2. Conceptualising forensic science and forensic reconstruction. Part I: A conceptual model.

    Science.gov (United States)

    Morgan, R M

    2017-11-01

    There has been a call for forensic science to actively return to the approach of scientific endeavour. The importance of incorporating an awareness of the requirements of the law in its broadest sense, and embedding research into both practice and policy within forensic science, is arguably critical to achieving such an endeavour. This paper presents a conceptual model (FoRTE) that outlines the holistic nature of trace evidence in the 'endeavour' of forensic reconstruction. This model offers insights into the different components intrinsic to transparent, reproducible and robust reconstructions in forensic science. The importance of situating evidence within the whole forensic science process (from crime scene to court), of developing evidence bases to underpin each stage, of frameworks that offer insights to the interaction of different lines of evidence, and the role of expertise in decision making are presented and their interactions identified. It is argued that such a conceptual model has value in identifying the future steps for harnessing the value of trace evidence in forensic reconstruction. It also highlights that there is a need to develop a nuanced approach to reconstructions that incorporates both empirical evidence bases and expertise. A conceptual understanding has the potential to ensure that the endeavour of forensic reconstruction has its roots in 'problem-solving' science, and can offer transparency and clarity in the conclusions and inferences drawn from trace evidence, thereby enabling the value of trace evidence to be realised in investigations and the courts. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.

  3. Subject- and Experience-Bound Differences in Teachers' Conceptual Understanding of Sustainable Development

    Science.gov (United States)

    Borg, C.; Gericke, N.; Höglund, H.-O.; Bergman, E.

    2014-01-01

    This article describes the results of a nationwide questionnaire study of 3229 Swedish upper secondary school teachers' conceptual understanding of sustainable development in relation to their subject discipline and teaching experience. Previous research has shown that teachers have difficulties understanding the complex concept of sustainable…

  4. The Value of Conceptual Models in Coping with Complexity and Interdisciplinarity in Environmental Sciences Education

    Science.gov (United States)

    Fortuin, Karen P. J.; van Koppen, C. S. A.; Leemans, Rik

    2011-01-01

    Conceptual models are useful for facing the challenges of environmental sciences curriculum and course developers and students. These challenges are inherent to the interdisciplinary and problem-oriented character of environmental sciences curricula. In this article, we review the merits of conceptual models in facing these challenges. These…

  5. Conceptual Demand of Science Curricula: A Study at the Middle School Level

    Science.gov (United States)

    Calado, Sílvia; Neves, Isabel P.; Morais, Ana M.

    2013-01-01

    This article addresses the issue of the level of conceptual demand of science curricula by analysing the case of the current Portuguese Natural Sciences curriculum for middle school. Conceptual demand is seen in terms of the complexity of cognitive skills, the complexity of scientific knowledge and the intra-disciplinary relations between distinct…

  6. Understanding leadership in the environmental sciences

    OpenAIRE

    Evans, L.; Hicks, C.; Cohen, P.; Case, P.; Prideaux, M.; Mills, D.

    2015-01-01

    Leadership is often assumed, intuitively, to be an important driver of sustainable development. To understand how leadership is conceptualised and analysed in the environmental sciences and to discover what this research says about leadership outcomes, we conducted a review of environmental leadership research over the last ten years. We find that much of the environmental leadership literature we reviewed focuses on a few key individuals and desirable leadership competencies. It also reports...

  7. Making a Map of Science: General Systems Theory as a Conceptual Framework for Tertiary Science Education.

    Science.gov (United States)

    Gulyaev, Sergei A.; Stonyer, Heather R.

    2002-01-01

    Develops an integrated approach based on the use of general systems theory (GST) and the concept of 'mapping' scientific knowledge to provide students with tools for a more holistic understanding of science. Uses GST as the core methodology for understanding science and its complexity. Discusses the role of scientific community in producing…

  8. Penerapan Model Pembelajaran Conceptual Understanding Procedures (CUPS sebagai Upaya Mengatasi Miskonsepsi Matematis Siswa

    Directory of Open Access Journals (Sweden)

    Asri Gita

    2018-01-01

    Full Text Available Kesalahan dalam memahami konsep menjadi salah satu faktor yang menyebabkan miskonsepsi pada pelajaran matematika. Miskonsepsi pada materi bangun datar disebabkan oleh cara belajar siswa yang hanya menghafalkan bentuk dasar tanpa memahami hubungan antar bangun datar dan sifat-sifatnya. Upaya yang dilakukan dalam mengatasi miskonsepsi tersebut adalah dengan menerapkan pembelajaran konstruktivis. Salah satu model pembelajaran konstruktivis adalah Conceptual Understanding Procedures (CUPs. Tujuan dari penelitian ini adalah untuk mengetahui penerapan model pembelajaran Conceptual Understanding Procedures (CUPs sebagai upaya mengatasi miskonsepsi matematis siswa pada materi sifat-sifat bangun datar segiempat. Subjek penelitian adalah 12 orang siswa SMP yang mengalami miskonsepsi pada materi sifat-sifat bangun datar segiempat. Teknik pengumpulan data pada penelitian ini melalui tes, video, observasi, dan wawancara. Validitas dan reliabilitas data melalui credibility, dependability, transferability, dan confirmability. Hasil dari penelitian ini menunjukkan bahwa penerapan model pembelajaran Conceptual Understanding Procedures (CUPs yang terdiri dari fase individu, fase kelompok triplet, dan fase interpretasi seluruh kelas dapat mengatasi miskonsepsi siswa pada materi sifat-sifat bangun datar segiempat. Perubahan miskonsepsi siswa juga dapat dilihat dari nilai tes yang mengalami peningkatan nilai berdasarkan nilai tes awal dan tes akhir siswa. Kata Kunci: Conceptual Understanding Procedures (CUPs, miskonsepsi, segiempat.   ABSTRACT Mistakes in understanding the concept became one of the factors that led to misconceptions in mathematics. The misconceptions in plane shapes are caused by the way of learning of students who only memorize the basic form without understanding the relationship between the plane shapes and its properties. Efforts made in overcoming these misconceptions is to apply constructivist learning. One of the constructivist learning

  9. The Effects of Hands-On Learning Stations on Building American Elementary Teachers' Understanding about Earth and Space Science Concepts

    Science.gov (United States)

    Bulunuz, Nermin; Jarrett, Olga S.

    2010-01-01

    Research on conceptual change indicates that not only children, but also teachers have incomplete understanding or misconceptions on science concepts. This mixed methods study was concerned with in-service teachers' understanding of four earth and space science concepts taught in elementary school: reason for seasons, phases of the moon, rock…

  10. Primary School Teachers' Understanding of Science Process Skills in Relation to Their Teaching Qualifications and Teaching Experience

    Science.gov (United States)

    Shahali, Edy H. M.; Halim, Lilia; Treagust, David F.; Won, Mihye; Chandrasegaran, A. L.

    2017-04-01

    This study investigated the understanding of science process skills (SPS) of 329 science teachers from 52 primary schools selected by random sampling. The understanding of SPS was measured in terms of conceptual and operational aspects of SPS using an instrument called the Science Process Skills Questionnaire (SPSQ) with a Cronbach's alpha reliability of 0.88. The findings showed that the teachers' conceptual understanding of SPS was much weaker than their practical application of SPS. The teachers' understanding of SPS differed by their teaching qualifications but not so much by their teaching experience. Emphasis needs to be given to both conceptual and operational understanding of SPS during pre-service and in-service teacher education to enable science teachers to use the skills and implement inquiry-based lessons in schools.

  11. The Effect of the Conceptual Change Oriented Instruction through Cooperative Learning on 4th Grade Students' Understanding of Earth and Sky Concepts

    Science.gov (United States)

    Celikten, Oksan; Ipekcioglu, Sevgi; Ertepinar, Hamide; Geban, Omer

    2012-01-01

    The purpose of this study was to compare the effectiveness of the conceptual change oriented instruction through cooperative learning (CCICL) and traditional science instruction (TI) on 4th grade students' understanding of earth and sky concepts and their attitudes toward earth and sky concepts. In this study, 56 fourth grade students from the…

  12. The Contribution of Constructivist Instruction Accompanied by Concept Mapping in Enhancing Pre-Service Chemistry Teachers' Conceptual Understanding of Chemistry in the Laboratory Course

    Science.gov (United States)

    Aydin, Sevgi; Aydemir, Nurdane; Boz, Yezdan; Cetin-Dindar, Ayla; Bektas, Oktay

    2009-01-01

    The present study aimed to evaluate whether a chemistry laboratory course called "Laboratory Experiments in Science Education" based on constructivist instruction accompanied with concept mapping enhanced pre-service chemistry teachers' conceptual understanding. Data were collected from five pre-service chemistry teachers at a university…

  13. Understanding integrated care: a comprehensive conceptual framework based on the integrative functions of primary care.

    Science.gov (United States)

    Valentijn, Pim P; Schepman, Sanneke M; Opheij, Wilfrid; Bruijnzeels, Marc A

    2013-01-01

    Primary care has a central role in integrating care within a health system. However, conceptual ambiguity regarding integrated care hampers a systematic understanding. This paper proposes a conceptual framework that combines the concepts of primary care and integrated care, in order to understand the complexity of integrated care. The search method involved a combination of electronic database searches, hand searches of reference lists (snowball method) and contacting researchers in the field. The process of synthesizing the literature was iterative, to relate the concepts of primary care and integrated care. First, we identified the general principles of primary care and integrated care. Second, we connected the dimensions of integrated care and the principles of primary care. Finally, to improve content validity we held several meetings with researchers in the field to develop and refine our conceptual framework. The conceptual framework combines the functions of primary care with the dimensions of integrated care. Person-focused and population-based care serve as guiding principles for achieving integration across the care continuum. Integration plays complementary roles on the micro (clinical integration), meso (professional and organisational integration) and macro (system integration) level. Functional and normative integration ensure connectivity between the levels. The presented conceptual framework is a first step to achieve a better understanding of the inter-relationships among the dimensions of integrated care from a primary care perspective.

  14. Verbal understanding: Integrating the conceptual analyses of Skinner, Ryle, and Wittgenstein.

    Science.gov (United States)

    Schoneberger, T

    1991-01-01

    Gilbert Ryle's (1949) and Ludwig Wittgenstein's (1953; 1958; 1974/78) conceptual analyses of verbal understanding are presented. For Ryle, the term understanding signifies simultaneously an acquired disposition and a behavioral episode. For Wittgenstein, it signifies simultaneously a skill and a criterial behavior. Both argued that episodes of understanding comprise heterogenious classes of behaviors, and that each member of such a class is neither a necessary nor a sufficient condition of understanding. Next, an approach integrating the analyses of Ryle and Wittgenstein with that of Skinner is presented. Lastly, it is argued that this integrated analysis adequately counters Parrott's (1984) argument that understanding, for Skinner, is potential behavior and not an event.

  15. Development of two tier test to assess conceptual understanding in heat and temperature

    Science.gov (United States)

    Winarti; Cari; Suparmi; Sunarno, Widha; Istiyono, Edi

    2017-01-01

    Heat and temperature is a concept that has been learnt from primary school to undergraduate levels. One problem about heat and temperature is that they are presented abstractly, theoretical concept. A student conceptual frameworks develop from their daily experiences. The purpose of this research was to develop a two-tier test of heat and temperature concept and measure conceptual understanding of heat and temperature of the student. This study consist of two method is qualitative and quantitative method. The two-tier test was developed using procedures defined by Borg and Gall. The two-tier test consisted of 20 question and was tested for 137 students for collecting data. The result of the study showed that the two-tier test was effective in determining the students’ conceptual understanding and also it might be used as an alternative for assessment and evaluation of students’ achievement

  16. A view of the tip of the iceberg: revisiting conceptual continuities and their implications for science learning

    Science.gov (United States)

    Brown, Bryan A.; Kloser, Matt

    2009-12-01

    We respond to Hwang and Kim and Yeo's critiques of the conceptual continuity framework in science education. First, we address the criticism that their analysis fails to recognize the situated perspective of learning by denying the dichotomy of the formal and informal knowledge as a starting point in the learning process. Second, we address the critique that students' descriptions fail to meet the "gold standard" of science education—alignment with an authoritative source and generalizability—by highlighting some student-expert congruence that could serve as the foundation for future learning. Third, we address the critique that a conceptual continuity framework could lead to less rigorous science education goals by arguing that the ultimate goals do not change, but rather that if the pathways that lead to the goals' achievement could recognize existing lexical continuities' science teaching may become more efficient. In sum, we argue that a conceptual continuities framework provides an asset, not deficit lexical perspective from which science teacher educators and science educators can begin to address and build complete science understandings.

  17. General Chemistry Students' Conceptual Understanding and Language Fluency: Acid-Base Neutralization and Conductometry

    Science.gov (United States)

    Nyachwaya, James M.

    2016-01-01

    The objective of this study was to examine college general chemistry students' conceptual understanding and language fluency in the context of the topic of acids and bases. 115 students worked in groups of 2-4 to complete an activity on conductometry, where they were given a scenario in which a titration of sodium hydroxide solution and dilute…

  18. Towards a Novel Conceptual Framework for Understanding Mergers in Higher Education

    Science.gov (United States)

    Cai, Yuzhuo; Pinheiro, Rómulo; Geschwind, Lars; Aarrevaara, Timo

    2016-01-01

    This paper tries to develop a conceptual framework for a comprehensive understanding of the merger process, which is regarded as a matter of institutionalization of organizational innovation. In the framework, a number of factors affecting merger process or institutionalization of merger are identified, such as those related to environmental…

  19. Cross-Grade Comparison of Students' Conceptual Understanding with Lenses in Geometric Optics

    Science.gov (United States)

    Tural, G.

    2015-01-01

    Students commonly find the field of physics difficult. Therefore, they generally have learning problems. One of the subjects with which they have difficulties is optics within a physics discipline. This study aims to determine students' conceptual understanding levels at different education levels relating to lenses in geometric optics. A…

  20. Developing Conceptual Understanding of Fractions with Year Five and Six Students

    Science.gov (United States)

    Mills, Judith

    2016-01-01

    This paper presents findings from classroom observations of one teacher (Beth). It focusses on the development of conceptual understanding of fractions with her students, articulated in Kieren's sub-constructs (Kieren, 1980,1988), and Hansen's progressions (Hansen, 2005). The study covers three lessons within a six week unit. Findings from this…

  1. Reflective Learning and Prospective Teachers' Conceptual Understanding, Critical Thinking, Problem Solving, and Mathematical Communication Skills

    Science.gov (United States)

    Junsay, Merle L.

    2016-01-01

    This is a quasi-experimental study that explored the effects of reflective learning on prospective teachers' conceptual understanding, critical thinking, problem solving, and mathematical communication skills and the relationship of these variables. It involved 60 prospective teachers from two basic mathematics classes of an institution of higher…

  2. The Collaboration of Cooperative Learning and Conceptual Change: Enhancing the Students' Understanding of Chemical Bonding Concepts

    Science.gov (United States)

    Eymur, Gülüzar; Geban, Ömer

    2017-01-01

    The main purpose of this study was to investigate the effects of cooperative learning based on conceptual change approach instruction on ninth-grade students' understanding in chemical bonding concepts compared to traditional instruction. Seventy-two ninth-grade students from two intact chemistry classes taught by the same teacher in a public high…

  3. Effect of Writing-to-Learn Strategy on Undergraduates' Conceptual Understanding of Electrostatics

    Science.gov (United States)

    Atasoy, Sengül

    2013-01-01

    The purpose of this study is to explore the effect of Writing-to-Learn (WTL) strategy on undergraduates' conceptual understanding of electrostatics. The sample of the study was 54 university students registered at elementary school mathematics education department. While the experimental group was asked to conduct WTL activities like explanatory…

  4. Effect of Conceptual Change Approach on Students' Understanding of Reaction Rate Concepts

    Science.gov (United States)

    Kingir, Sevgi; Geban, Omer

    2012-01-01

    The purpose of the present study was to investigate the effect of conceptual change text oriented instruction compared to traditional instruction on 10th grade students' understanding of reaction rate concepts. 45 students from two classes of the same teacher in a public high school participated in this study. Students in the experimental group…

  5. The Interaction of Procedural Skill, Conceptual Understanding and Working Memory in Early Mathematics Achievement

    Directory of Open Access Journals (Sweden)

    Camilla Gilmore

    2017-12-01

    Full Text Available Large individual differences in children’s mathematics achievement are observed from the start of schooling. Previous research has identified three cognitive skills that are independent predictors of mathematics achievement: procedural skill, conceptual understanding and working memory. However, most studies have only tested independent effects of these factors and failed to consider moderating effects. We explored the procedural skill, conceptual understanding and working memory capacity of 75 children aged 5 to 6 years as well as their overall mathematical achievement. We found that, not only were all three skills independently associated with mathematics achievement, but there was also a significant interaction between them. We found that levels of conceptual understanding and working memory moderated the relationship between procedural skill and mathematics achievement such that there was a greater benefit of good procedural skill when associated with good conceptual understanding and working memory. Cluster analysis also revealed that children with equivalent levels of overall mathematical achievement had differing strengths and weaknesses across these skills. This highlights the importance of considering children’s skill profile, rather than simply their overall achievement.

  6. Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves

    Science.gov (United States)

    Alex L. Shigo

    1984-01-01

    The purpose of this chapter is to describe a conceptual framework for understanding how trees grow and how they and other perennial plants defend themselves. The concept of compartmentalization has developed over many years, a synthesis of ideas from a number of investigators. It is derived from detailed studies of the gross morphology and cellular anatomy of the wood...

  7. Conceptual Understanding of Acids and Bases Concepts and Motivation to Learn Chemistry

    Science.gov (United States)

    Cetin-Dindar, Ayla; Geban, Omer

    2017-01-01

    The purpose of this study was to investigate the effect of 5E learning cycle model oriented instruction (LCMI) on 11th-grade students' conceptual understanding of acids and bases concepts and student motivation to learn chemistry. The study, which lasted for 7 weeks, involved two groups: An experimental group (LCMI) and a control group (the…

  8. Assessing the Conceptual Understanding about Heat and Thermodynamics at Undergraduate Level

    Science.gov (United States)

    Kulkarni, Vasudeo Digambar; Tambade, Popat Savaleram

    2013-01-01

    In this study, a Thermodynamic Concept Test (TCT) was designed to assess student's conceptual understanding heat and thermodynamics at undergraduate level. The different statistical tests such as item difficulty index, item discrimination index, point biserial coefficient were used for assessing TCT. For each item of the test these indices were…

  9. Understanding structural conservation through materials science:

    DEFF Research Database (Denmark)

    Fuster-López, Laura; Krarup Andersen, Cecil

    2014-01-01

    with tools to avoid future problems, it should be present in all conservation-restoration training programs to help promote students’ understanding of the degradation mechanisms in cultural materials (and their correlation with chemical and biological degradation) as well as the implications behind......Mechanical properties and the structure of materials are key elements in understanding how structural interventions in conservation treatments affect cultural heritage objects. In this context, engineering mechanics can help determine the strength and stability found in art objects as it can...... provide both explanation and prediction of failure in materials. It has therefore shown to be an effective method for developing useful solutions to conservation problems. Since materials science and mechanics can help conservators predict the long term consequences of their treatments and provide them...

  10. Understanding The Impact of Formative Assessment Strategies on First Year University Students’ Conceptual Understanding of Chemical Concepts

    OpenAIRE

    Mehmet Aydeniz; Aybuke Pabuccu

    2011-01-01

    This study investigated the effects of formative assessment strategies on students’ conceptual understanding in a freshmen college chemistry course in Turkey. Our sample consists of 96 students; 27 males, 69 females. The formative assessment strategies such as reflection on exams, and collective problem solving sessions were used throughout the course. Data were collected through pre and post-test methodology. The findings reveal that the formative assessment strategies used in this study led...

  11. Understanding space science under the northern lights

    Science.gov (United States)

    Koskinen, H.

    What is space science? The answers to this question can be very variable indeed. In fact, space research is a field where science, technology, and applications are so closely tied together that it is often difficult to recognize the central role of science. However, as paradoxical as it may sound, it appears that the less-educated public often appreciates the value of space science better than highly educated policy makers and bureaucrats who tend to evaluate the importance of space activities in terms of economic and societal benefits only. In a country like Finland located below the zone, where auroras are visible during the long dark winter nights, the space is perhaps closer to the public than in countries where the visible objects are the Moon, planets and stars somewhere far away. This positive fact has been very useful, for example, in popularization of such an abstract concept as space weather. In Finland it is possible to see space weather and this rises the curiosity about the processes behind this magnificent phenomenon. Of course, also in Finland the beautiful SOHO images of the Sun and the Hubble Space Telescope pictures of the remote universe attract the attention of the large public. We also have an excellent vehicle in increasing the public understanding in the society of Finnish amateur astronomers Ursa. It is an organization for anyone interested in practically everything from visual phenomena in the air to the remote galaxies and the Big Bang. Ursa publishes a high-quality monthly magazine in Finnish and runs local amateur clubs. Last year its 80th birthday exhibition was one of the best-visited public events in Helsinki. It clearly gave a strong evidence of wide public interest in space in general and in space science in particular. Only curious people can grasp the beauty and importance of the underlying science. Thus, we should focus our public space science education and outreach primarily on waking up the curiosity of the public instead of

  12. A Conceptual Understanding of Organizational Identity in the Social Media Environment

    OpenAIRE

    Jimmy Young

    2013-01-01

    Nonprofit organizations have increasingly adopted the use of social media over the last several years. This presents a myriad of challenges and opportunities in regards to organizational identity. This paper provides a conceptual understanding of identity as an entry point for nonprofit organizations to deliberate their own use of social media and the relative impact on organizational identity. A theoretical understanding of the formation of social identity situates the development of organiz...

  13. Understanding Science: Frameworks for using stories to facilitate systems thinking

    Science.gov (United States)

    ElShafie, S. J.; Bean, J. R.

    2017-12-01

    Studies indicate that using a narrative structure for teaching and learning helps audiences to process and recall new information. Stories also help audiences retain specific information, such as character names or plot points, in the context of a broader narrative. Stories can therefore facilitate high-context systems learning in addition to low-context declarative learning. Here we incorporate a framework for science storytelling, which we use in communication workshops, with the Understanding Science framework developed by the UC Museum of Paleontology (UCMP) to explore the application of storytelling to systems thinking. We translate portions of the Understanding Science flowchart into narrative terms. Placed side by side, the two charts illustrate the parallels between the scientific process and the story development process. They offer a roadmap for developing stories about scientific studies and concepts. We also created a series of worksheets for use with the flowcharts. These new tools can generate stories from any perspective, including a scientist conducting a study; a character that plays a role in a larger system (e.g., foraminifera or a carbon atom); an entire system that interacts with other systems (e.g., the carbon cycle). We will discuss exemplar stories about climate change from each of these perspectives, which we are developing for workshops using content and storyboard models from the new UCMP website Understanding Global Change. This conceptual framework and toolkit will help instructors to develop stories about scientific concepts for use in a classroom setting. It will also help students to analyze stories presented in class, and to create their own stories about new concepts. This approach facilitates student metacognition of the learning process, and can also be used as a form of evaluation. We are testing this flowchart and its use in systems teaching with focus groups, in preparation for use in teacher professional development workshops.

  14. Conceptual Metaphor and Embodied Cognition in Science Learning: Introduction to Special Issue

    Science.gov (United States)

    Amin, Tamer G.; Jeppsson, Fredrik; Haglund, Jesper

    2015-01-01

    This special issue of "International Journal of Science Education" is based on the theme "Conceptual Metaphor and Embodied Cognition in Science Learning." The idea for this issue grew out of a symposium organized on this topic at the conference of the European Science Education Research Association (ESERA) in September 2013.…

  15. An integrated science plan for the Lake Tahoe basin: conceptual framework and research strategies

    Science.gov (United States)

    Zachary P. Hymanson; Michael W. Collopy

    2010-01-01

    An integrated science plan was developed to identify and refine contemporary science information needs for the Lake Tahoe basin ecosystem. The main objectives were to describe a conceptual framework for an integrated science program, and to develop research strategies addressing key uncertainties and information gaps that challenge government agencies in the theme...

  16. Understanding Notional Machines through Traditional Teaching with Conceptual Contraposition and Program Memory Tracing

    Directory of Open Access Journals (Sweden)

    Jeisson Hidalgo-Céspedes

    2016-08-01

    Full Text Available A correct understanding about how computers run code is mandatory in order to effectively learn to program. Lectures have historically been used in programming courses to teach how computers execute code, and students are assessed through traditional evaluation methods, such as exams. Constructivism learning theory objects to students’ passiveness during lessons, and traditional quantitative methods for evaluating a complex cognitive process such as understanding. Constructivism proposes complimentary techniques, such as conceptual contraposition and colloquies. We enriched lectures of a “Programming II” (CS2 course combining conceptual contraposition with program memory tracing, then we evaluated students’ understanding of programming concepts through colloquies. Results revealed that these techniques applied to the lecture are insufficient to help students develop satisfactory mental models of the C++ notional machine, and colloquies behaved as the most comprehensive traditional evaluations conducted in the course.

  17. Can an egg-dropping race enhance students' conceptual understanding of air resistance?

    Science.gov (United States)

    Lee, Yeung Chung; Kwok, Ping Wai

    2009-03-01

    Children are familiar with situations in which air resistance plays an important role, such as parachuting. However, it is not known whether they have any understanding about the concept of air resistance, how air resistance affects falling objects, and the differential effect it has on different objects. The literature reveals that there are misconceptions even among undergraduate physics students about how air resistance is affected by the mass and size of falling objects. A study was carried out in Hong Kong to explore Grade 6 students' (aged 11-12) conceptions of air resistance with respect to falling objects of different size and mass, and whether the subjects showed any change in their conceptual understanding after participating in an egg-dropping race. The findings show that students had a wide range of conceptions, which could be characterized into different levels. Their conceptions seem rather robust, and more structured interventions are required to bring about changes in students' conceptual understanding of air resistance.

  18. Between understanding and appreciation. Current science communication in Denmark

    Directory of Open Access Journals (Sweden)

    Kristian Hvidtfelt Nielsen

    2005-12-01

    Full Text Available In this paper I use the concepts “understanding of science” and “appreciation of science” to analyze selected case studies of current science communication in Denmark. The Danish science communication system has many similarities with science communication in other countries: the increasing political and scientific interest in science communication, the co-existence of many different kinds of science communication, and the multiple uses of the concepts of understanding vs. appreciation of science. I stress the international aspects of science communication, the national politico-scientific context as well as more local contexts as equally important conditions for understanding current Danish science communication.

  19. Understanding children's science identity through classroom interactions

    Science.gov (United States)

    Kim, Mijung

    2018-01-01

    Research shows that various stereotypes about science and science learning, such as science being filled with hard and dry content, laboratory experiments, and male-dominated work environments, have resulted in feelings of distance from science in students' minds. This study explores children's experiences of science learning and science identity. It asks how children conceive of doing science like scientists and how they develop views of science beyond the stereotypes. This study employs positioning theory to examine how children and their teacher position themselves in science learning contexts and develop science identity through classroom interactions. Fifteen students in grades 4-6 science classrooms in Western Canada participated in this study. Classroom activities and interactions were videotaped, transcribed, and analysed to examine how the teacher and students position each other as scientists in the classroom. A descriptive explanatory case analysis showed how the teacher's positioning acted to develop students' science identity with responsibilities of knowledge seeking, perseverance, and excitement about science.

  20. Toward conceptualizations in nursing: harbingers from the sciences and humanities.

    Science.gov (United States)

    Aamodt, A M

    1992-01-01

    Conceptualizations of care and caring generated from ethnographic study of Tohono O'odham children, Norwegian-Americans, elderly clients in nursing clinics, preschoolers, children with cancer, and gender differences is outlined. Where research questions came from during life experiences of the author, a journey of nursing scholarship viewed from concepts of context development, transformation and care, and "Where do we go from here?" serve as the outline for a discussion of the generation of conceptualizations. A question for nursing research is proposed: What characteristics of care promote human responses for quality human experience? Suggestions for nursing research in the future emphasize the potential of human responses, variations in conceptualizations of care during the life cycles of human beings living in diverse cultural contexts, and changes in conceptualizations of care over time.

  1. Epistemological Predictors of Prospective Biology Teachers' Nature of Science Understandings

    Science.gov (United States)

    Köseoglu, Pinar; Köksal, Mustafa Serdar

    2015-01-01

    The purpose of this study was to investigate epistemological predictors of nature of science understandings of 281 prospective biology teachers surveyed using the Epistemological Beliefs Scale Regarding Science and the Nature of Science Scale. The findings on multiple linear regression showed that understandings about definition of science and…

  2. Implementation of Scientific Community Laboratories and Their Effect on Student Conceptual Learning, Attitudes, and Understanding of Uncertainty

    Science.gov (United States)

    Lark, Adam

    Scientific Community Laboratories, developed by The University of Maryland, have shown initial promise as laboratories meant to emulate the practice of doing physics. These laboratories have been re-created by incorporating their design elements with the University of Toledo course structure and resources. The laboratories have been titled the Scientific Learning Community (SLC) Laboratories. A comparative study between these SLC laboratories and the University of Toledo physics department's traditional laboratories was executed during the fall 2012 semester on first semester calculus-based physics students. Three tests were executed as pre-test and post-tests to capture the change in students' concept knowledge, attitudes, and understanding of uncertainty. The Force Concept Inventory (FCI) was used to evaluate students' conceptual changes through the semester and average normalized gains were compared between both traditional and SLC laboratories. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) was conducted to elucidate students' change in attitudes through the course of each laboratory. Finally, interviews regarding data analysis and uncertainty were transcribed and coded to track changes in the way students understand uncertainty and data analysis in experimental physics after their participation in both laboratory type. Students in the SLC laboratories showed a notable an increase conceptual knowledge and attitudes when compared to traditional laboratories. SLC students' understanding of uncertainty showed most improvement, diverging completely from students in the traditional laboratories, who declined throughout the semester.

  3. The effects of students' reasoning abilities on conceptual understandings and problem-solving skills in introductory mechanics

    International Nuclear Information System (INIS)

    Ates, S; Cataloglu, E

    2007-01-01

    The purpose of this study was to determine if there are relationships among freshmen/first year students' reasoning abilities, conceptual understandings and problem-solving skills in introductory mechanics. The sample consisted of 165 freshmen science education prospective teachers (female = 86, male = 79; age range 17-21) who were enrolled in an introductory physics course. Data collection was done during the fall semesters in two successive years. At the beginning of each semester, the force concept inventory (FCI) and the classroom test of scientific reasoning (CTSR) were administered to assess students' initial understanding of basic concepts in mechanics and reasoning levels. After completing the course, the FCI and the mechanics baseline test (MBT) were administered. The results indicated that there was a significant difference in problem-solving skill test mean scores, as measured by the MBT, among concrete, formal and postformal reasoners. There were no significant differences in conceptual understanding levels of pre- and post-test mean scores, as measured by FCI, among the groups. The Benferroni post hoc comparison test revealed which set of reasoning levels showed significant difference for the MBT scores. No statistical difference between formal and postformal reasoners' mean scores was observed, while the mean scores between concrete and formal reasoners and concrete and postformal reasoners were statistically significantly different

  4. Impact of Learning Model Based on Cognitive Conflict toward Student’s Conceptual Understanding

    Science.gov (United States)

    Mufit, F.; Festiyed, F.; Fauzan, A.; Lufri, L.

    2018-04-01

    The problems that often occur in the learning of physics is a matter of misconception and low understanding of the concept. Misconceptions do not only happen to students, but also happen to college students and teachers. The existing learning model has not had much impact on improving conceptual understanding and remedial efforts of student misconception. This study aims to see the impact of cognitive-based learning model in improving conceptual understanding and remediating student misconceptions. The research method used is Design / Develop Research. The product developed is a cognitive conflict-based learning model along with its components. This article reports on product design results, validity tests, and practicality test. The study resulted in the design of cognitive conflict-based learning model with 4 learning syntaxes, namely (1) preconception activation, (2) presentation of cognitive conflict, (3) discovery of concepts & equations, (4) Reflection. The results of validity tests by some experts on aspects of content, didactic, appearance or language, indicate very valid criteria. Product trial results also show a very practical product to use. Based on pretest and posttest results, cognitive conflict-based learning models have a good impact on improving conceptual understanding and remediating misconceptions, especially in high-ability students.

  5. Improving Students' Conceptual Understanding of the Greenhouse Effect Using Theory-Based Learning Materials that Promote Deep Learning

    Science.gov (United States)

    Reinfried, Sibylle; Aeschbacher, Urs; Rottermann, Benno

    2012-01-01

    Students' everyday ideas of the greenhouse effect are difficult to change. Environmental education faces the challenge of developing instructional settings that foster students' conceptual understanding concept of the greenhouse effect in order to understand global warming. To facilitate students' conceptual development with regard to the…

  6. Using Two-Tier Test to Identify Primary Students' Conceptual Understanding and Alternative Conceptions in Acid Base

    Science.gov (United States)

    Bayrak, Beyza Karadeniz

    2013-01-01

    The purpose of this study was to identify primary students' conceptual understanding and alternative conceptions in acid-base. For this reason, a 15 items two-tier multiple choice test administered 56 eighth grade students in spring semester 2009-2010. Data for this study were collected using a conceptual understanding scale prepared to include…

  7. Understanding How Science Works: The Nature of Science as The Foundation for Science Teaching and Learning

    Science.gov (United States)

    McComas, William F.

    2017-01-01

    The nature of science (NOS) is a phrase used to represent the rules of the game of science. Arguably, NOS is the most important content issue in science instruction because it helps students understand the way in which knowledge is generated and validated within the scientific enterprise. This article offers a proposal for the elements of NOS that…

  8. Probability as a conceptual hurdle to understanding one-dimensional quantum scattering and tunnelling

    International Nuclear Information System (INIS)

    Domert, Daniel; Linder, Cedric; Ingerman, Ake

    2005-01-01

    This paper draws on part of a larger project looking at university students' learning difficulties associated with quantum mechanics. Here an unexpected and interesting aspect was brought to the fore while students were discussing a computer simulation of one-dimensional quantum scattering and tunnelling. In these explanations the most dominant conceptual hurdle that emerged in the students' explanations was centred around the notion of probability. To explore this further, categories of description of the variation in the understanding of probability were constituted. The analysis reported is done in terms of the various facets of probability encountered in the simulation and characterizes dynamics of this conceptual hurdle to appropriate understanding of the scattering and tunnelling process. Pedagogical implications are discussed

  9. The Conceptualization and Development of the Practical Epistemology in Science Survey (PESS)

    Science.gov (United States)

    Villanueva, Mary Grace; Hand, Brian; Shelley, Mack; Therrien, William

    2017-08-01

    Various inquiry approaches have been promoted in science classrooms as a way for students to engage in, and have a deeper understanding of scientific discourse. However, there is a paucity of empirical evidence to suggest how children's actions and engagement in these approaches, or practical epistemologies (Sandoval, Science Education 89(4): 634-656, 2005), may contribute to the development of their personal epistemologies, or their views about the nature of knowledge and knowing and the nature of learning. This paper puts forth the conceptualization and development of the Practical Epistemology in Science Survey (PESS) instrument, a 26-item Likert-scale self-assessment which measures how students view their individual and social participation in the classroom scientific community. Data were collected from 4th-6th-grade students (n = 1019) in the USA and a psychometric evaluation of the reliability, validity, and dimensionality of the instrument was conducted. The Cronbach's alpha value indices for all subsets of items of the PESS suggest a strong reliability of the instrument (α ≥ .80). The development of the PESS may be useful in science education research to (a) detect changes to students' beliefs about knowledge and knowledge development; (b) identify dispositions and beliefs which may or may not be in line with the aims and values of various pedagogical approaches; (c) monitor the process of change, e.g., time it takes for students to change their approaches and beliefs with respect to teacher practice; and, (d) overall, to provide an understanding of how students' formal epistemologies are developed and informed by the affordances in science classrooms.

  10. Implementasi Model Pembelajaran Kooperatif Conceptual Understanding Procedures (Cups) Untuk Meningkatkan Hasil Belajar Siswa

    OpenAIRE

    Qadariyah, Laylatul; Zainuddin, Zainuddin; Hartini, Sri

    2015-01-01

    Something cause the low learning result of students is a models and methods less variation .Learning inovatian become interesting can improved the learning result of student conducted research purpose at describes the effectiveness implementation of conceptual understanding procedures (CUPs) cooperative learning in improving student learning result on the subject of light reflection. Specifically this study purposed to describe: (1) enforceability LPA, (2) social skills, (3) learning result, ...

  11. Codevelopment of conceptual understanding and critical attitude: toward a systemic analysis of the survival blanket

    Science.gov (United States)

    Viennot, Laurence; Décamp, Nicolas

    2016-01-01

    One key objective of physics teaching is the promotion of conceptual understanding. Additionally, the critical faculty is universally seen as a central quality to be developed in students. In recent years, however, teaching objectives have placed stronger emphasis on skills than on concepts, and there is a risk that conceptual structuring may be disregarded. The question therefore arises as to whether it is possible for students to develop a critical stance without a conceptual basis, leading in turn to the issue of possible links between the development of conceptual understanding and critical attitude. In an in-depth study to address these questions, the participants were seven prospective physics and chemistry teachers. The methodology included a ‘teaching interview’, designed to observe participants’ responses to limited explanations of a given phenomenon and their ensuing intellectual satisfaction or frustration. The explanatory task related to the physics of how a survival blanket works, requiring a full and appropriate system analysis of the blanket. The analysis identified five recurrent lines of reasoning and linked these to judgments of adequacy of explanation, based on metacognitive/affective (MCA) factors, intellectual (dis)satisfaction and critical stance. Recurrent themes and MCA factors were used to map the intellectual dynamics that emerged during the interview process. Participants’ critical attitude was observed to develop in strong interaction with their comprehension of the topic. The results suggest that most students need to reach a certain level of conceptual mastery before they can begin to question an oversimplified explanation, although one student’s replies show that a different intellectual dynamics is also possible. The paper ends with a discussion of the implications of these findings for future research and for decisions concerning teaching objectives and the design of learning environments.

  12. The Impact of Peer Instruction on College Students' Beliefs about Physics and Conceptual Understanding of Electricity and Magnetism

    Science.gov (United States)

    Gok, Tolga

    2012-01-01

    The purpose of this study is to assess students' conceptual learning of electricity and magnetism and examine how these conceptions, beliefs about physics, and quantitative problem-solving skills would change after peer instruction (PI). The Conceptual Survey of Electricity and Magnetism (CSEM), Colorado Learning Attitudes about Science Survey…

  13. Investigating the impact of visuohaptic simulations for the conceptual understanding of electric field for distributed charges

    Science.gov (United States)

    Shaikh, Uzma Abdul Sattar

    The present study assessed the benefits of a multisensory intervention on the conceptual understanding of electric field for distributed charges in engineering and technology undergraduate students. A novel visuohaptic intervention was proposed, which focused on exploring the forces around the different electric field configurations for distributed charges namely point, infinitely long line and uniformly charged ring. The before and after effects of the visuohaptic intervention are compared, wherein the intervention includes instructional scaffolding. Three single-group studies were conducted to investigate the effect among three different populations: (a) Undergraduate engineering students, (b) Undergraduate technology students and (c) Undergraduate engineering technology students from a different demographic setting. The findings from the three studies suggests that the haptic modality intervention provides beneficial effects by allowing students to improve their conceptual understanding of electric field for distributed charges, although students from groups (b) and (c) showed a statistically significant increase in the conceptual understanding. The findings also indicate a positive learning perception among all the three groups.

  14. The Effect of Brain Based Learning on Second Grade Junior Students’ Mathematics Conceptual Understanding on Polyhedron

    Directory of Open Access Journals (Sweden)

    I Made Suarsana

    2017-06-01

    Full Text Available The aim of this study is to examine the effect of Brain Based Learning on second grade junior high school students’ conceptual understanding on polyhedron. This study was conducted by using post-test only control group quasi-experimental design. The subjects of this study were 148 students that divided into three classes. Two classes were taken as sample by using cluster random sampling technique. One of the classes was randomly selected as an experimental group and the other as control group. There were 48 students in experimental group and 51 students in control group. The data were collected with post-test which contained mathematical conceptual understanding on fractions. The post-test consisted of 8 essay question types.  The normality and variance homogeny test result showed that the scores are normally distributed and have no difference in variance. The data were analyzed by using one tailed t-test with significance level of 5%. The result of data analysis revealed that the value of t-test = 6,7096 greater than t-table = 1,987, therefore; the null hypothesis is rejected. There is positive effect of of Brain Based Learning on second grade junior students’ conceptual understanding in polyhedron.

  15. Understanding childbirth practices as an organizational cultural phenomenon: a conceptual framework.

    Science.gov (United States)

    Behruzi, Roxana; Hatem, Marie; Goulet, Lise; Fraser, William; Misago, Chizuru

    2013-11-11

    Understanding the main values and beliefs that might promote humanized birth practices in the specialized hospitals requires articulating the theoretical knowledge of the social and cultural characteristics of the childbirth field and the relations between these and the institution. This paper aims to provide a conceptual framework allowing examination of childbirth practices through the lens of an organizational culture theory. A literature review performed to extrapolate the social and cultural factors contribute to birth practices and the factors likely overlap and mutually reinforce one another, instead of complying with the organizational culture of the birth place. The proposed conceptual framework in this paper examined childbirth patterns as an organizational cultural phenomenon in a highly specialized hospital, in Montreal, Canada. Allaire and Firsirotu's organizational culture theory served as a guide in the development of the framework. We discussed the application of our conceptual model in understanding the influences of organizational culture components in the humanization of birth practices in the highly specialized hospitals and explained how these components configure both the birth practice and women's choice in highly specialized hospitals. The proposed framework can be used as a tool for understanding the barriers and facilitating factors encountered birth practices in specialized hospitals.

  16. Scientists' understanding of public communication of science and technology

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt; Kjaer, Carsten Rahbæk; Dahlgaard, Jørgen

    Background Research into the field of science communication has tended to focus on public understanding of science or on the processes of science communication itself, e.g. by looking at science in the media. Few studies have explored how scientists understand science communication. At present...... and technical sciences see science communication. We wanted to map their general interest in using different media of science communication as well as their active participation in current science communication. Moreover, we wanted to find out what they think about future of science communication, and what...... science communication. Results Our respondents indicated interest in doing science communication through media aimed at a broader public. In particular, news media surfaced as the most attractive media of public communication. The respondents preferred to be in charge of science communication themselves...

  17. Representational Classroom Practices that Contribute to Students' Conceptual and Representational Understanding of Chemical Bonding

    Science.gov (United States)

    Hilton, Annette; Nichols, Kim

    2011-11-01

    Understanding bonding is fundamental to success in chemistry. A number of alternative conceptions related to chemical bonding have been reported in the literature. Research suggests that many alternative conceptions held by chemistry students result from previous teaching; if teachers are explicit in the use of representations and explain their content-specific forms and functions, this might be avoided. The development of an understanding of and ability to use multiple representations is crucial to students' understanding of chemical bonding. This paper draws on data from a larger study involving two Year 11 chemistry classes (n = 27, n = 22). It explores the contribution of explicit instruction about multiple representations to students' understanding and representation of chemical bonding. The instructional strategies were documented using audio-recordings and the teacher-researcher's reflection journal. Pre-test-post-test comparisons showed an improvement in conceptual understanding and representational competence. Analysis of the students' texts provided further evidence of the students' ability to use multiple representations to explain macroscopic phenomena on the molecular level. The findings suggest that explicit instruction about representational form and function contributes to the enhancement of representational competence and conceptual understanding of bonding in chemistry. However, the scaffolding strategies employed by the teacher play an important role in the learning process. This research has implications for professional development enhancing teachers' approaches to these aspects of instruction around chemical bonding.

  18. Understanding the transformation of climate futures. A conceptual framework illustrated with urban adaptation policy

    NARCIS (Netherlands)

    Boezeman, D.F.

    2016-01-01

    Projects in which science-based futures are produced indicating the relevant impacts of climatic changes are proliferating, in tandem with the increasing attention for climate change adaptation. Constructionist science studies have put forward the concept of ‘co-production’ to understand how

  19. A cross-cultural, multilevel study of inquiry-based instruction effects on conceptual understanding and motivation in physics

    Science.gov (United States)

    Negishi, Meiko

    Student achievement and motivation to learn physics is highly valued in many industrialized countries including the United States and Japan. Science education curricula in these countries emphasize the importance and encourage classroom teachers to use an inquiry approach. This dissertation investigated high school students' motivational orientations and their understanding of physics concepts in a context of inquiry-based instruction. The goals were to explore the patterns of instructional effects on motivation and learning in each country and to examine cultural differences and similarities. Participants consisted of 108 students (55 females, 53 males) and 9 physics teachers in the United States and 616 students (203 females and 413 males) and 11 physics teachers in Japan. Students were administered (a) Force Concept Inventory measuring physics conceptual understanding and (b) Attitudes about Science Questionnaire measuring student motivational orientations. Teachers were given a survey regarding their use of inquiry teaching practices and background information. Additionally, three teachers in each country were interviewed and observed in their classrooms. For the data analysis, two-level hierarchical linear modeling (HLM) methods were used to examine individual student differences (i.e., learning, motivation, and gender) within each classroom (i.e., inquiry-based teaching, teaching experience, and class size) in the U.S. and Japan, separately. Descriptive statistical analyses were also conducted. The results indicated that there was a cultural similarity in that current teaching practices had minimal influence on conceptual understanding as well as motivation of high school students between the U.S. and Japan. In contrast, cultural differences were observed in classroom structures and instructional approaches. Furthermore, this study revealed gender inequity in Japanese students' conceptual understanding and self-efficacy. Limitations of the study, as well as

  20. The effects of academic literacy instruction on engagement and conceptual understanding of biology of ninth-grade students

    Science.gov (United States)

    Larson, Susan C.

    Academic language, discourse, vocabulary, motivation, and comprehension of complex texts and concepts are keys to learning subject-area content. The need for a disciplinary literacy approach in high school classrooms accelerates as students become increasing disengaged in school and as content complexity increases. In the present quasi-experimental mixed-method study, a ninth-grade biology unit was designed with an emphasis on promoting academic literacy skills, discourse, meaningful constructivist learning, interest development, and positive learning experiences in order to learn science content. Quantitative and qualitative analyses on a variety of measures completed by 222 students in two high schools revealed that those who received academic literacy instruction in science class performed at significantly higher levels of conceptual understanding of biology content, academic language and vocabulary use, reasoned thought, engagement, and quality of learning experience than control-group students receiving traditionally-organized instruction. Academic literacy was embedded into biology instruction to engage students in meaning-making discourses of science to promote learning. Academic literacy activities were organized according the phases of interest development to trigger and sustain interest and goal-oriented engagement throughout the unit. Specific methods included the Generative Vocabulary Matrix (GVM), scenario-based writing, and involvement in a variety of strategically-placed discourse activities to sustain or "boost" engagement for learning. Traditional instruction for the control group included teacher lecture, whole-group discussion, a conceptual organizer, and textbook reading. Theoretical foundations include flow theory, sociocultural learning theory, and interest theory. Qualitative data were obtained from field notes and participants' journals. Quantitative survey data were collected and analyzed using the Experience Sampling Method (ESM) to

  1. Understanding general practice: a conceptual framework developed from case studies in the UK NHS.

    Science.gov (United States)

    Checkland, Kath

    2007-01-01

    General practice in the UK is undergoing a period of rapid and profound change. Traditionally, research into the effects of change on general practice has tended to regard GPs as individuals or as members of a professional group. To understand the impact of change, general practices should also be considered as organisations. To use the organisational studies literature to build a conceptual framework of general practice organisations, and to test and develop this empirically using case studies of change in practice. This study used the implementation of National Service Frameworks (NSFs) and the new General Medical Services (GMS) contract as incidents of change. In-depth, qualitative case studies. The design was iterative: each case study was followed by a review of the theoretical ideas. The final conceptual framework was the result of the dynamic interplay between theory and empirical evidence. Five general practices in England, selected using purposeful sampling. Semi-structured interviews with all clinical and managerial personnel in each practice, participant and nonparticipant observation, and examination of documents. A conceptual framework was developed that can be used to understand how and why practices respond to change. This framework enabled understanding of observed reactions to the introduction of NSFs and the new GMS contract. Important factors for generating responses to change included the story that the practice members told about their practice, beliefs about what counted as legitimate work, the role played by the manager, and previous experiences of change. Viewing general practices as small organisations has generated insights into factors that influence responses to change. Change tends to occur from the bottom up and is determined by beliefs about organisational reality. The conceptual framework suggests some questions that can be asked of practices to explain this internal reality.

  2. Science Teachers' Conceptual Growth within Vygotsky's Zone of Proximal Development.

    Science.gov (United States)

    Jones, M. Gail; Rua, Melissa J.; Carter, Glenda

    1998-01-01

    Examines how science teachers' (n=14) knowledge of science and science pedagogy changed after participation in a constructivist-based methods course. More-experienced teachers were paired with less-experienced teachers, and pre- and post-instructional concept maps, journals, portfolios, and transcripts revealed that, within the zone of proximal…

  3. A conceptual framework for understanding the association between school bullying victimization and substance misuse.

    Science.gov (United States)

    Hong, Jun Sung; Davis, Jordan P; Sterzing, Paul R; Yoon, Jina; Choi, Shinwoo; Smith, Douglas C

    2014-11-01

    This article reviews current research findings and presents a conceptual framework for better understanding the relationship between bullying victimization (hereafter referred to as victimization) and substance misuse (hereafter referred to as SM) among adolescents. Although victimization and SM may appear to be separate problems, research suggests an intriguing relationship between the 2. We present a brief, empirical overview of the direct association between victimization and adolescent SM, followed by a proposed conceptual framework that includes co-occurring risk factors for victimization and SM within family, peer, and school and community contexts. Next, we discuss potential mediators linking victimization and SM, such as internalizing problems, traumatic stress, low academic performance, and school truancy and absence. We then identify potential moderating influences of age, gender and sex, social supports, and school connectedness that could amplify or abate the association between victimization and SM. Finally, we discuss practice and policy implications. (c) 2014 APA, all rights reserved.

  4. Mathematics and science Teachers' Understanding and Practices of ...

    African Journals Online (AJOL)

    Amy Stambach

    It employed qualitative methods of data collection including in-depth interviews and ... Education, Science, Technology, Scientific Research, 2003; Rwanda Education .... Rwandan science teachers were not having common understanding of ...

  5. State strategies of governance in biomedical innovation: aligning conceptual approaches for understanding 'Rising Powers' in the global context

    Directory of Open Access Journals (Sweden)

    Faulkner Alex

    2011-02-01

    Full Text Available Abstract Background 'Innovation' has become a policy focus in its own right in many states as they compete to position themselves in the emerging knowledge economies. Innovation in biomedicine is a global enterprise in which 'Rising Power' states figure prominently, and which undoubtedly will re-shape health systems and health economies globally. Scientific and technological innovation processes and policies raise difficult issues in the domains of science/technology, civil society, and the economic and healthcare marketplace. The production of knowledge in these fields is complex, uncertain, inter-disciplinary and inter-institutional, and subject to a continuing political struggle for advantage. As part of this struggle, a wide variety of issues - regulation, intellectual property, ethics, scientific boundaries, healthcare market formation - are raised and policy agendas negotiated. Methods A range of social science disciplines and approaches have conceptualised such innovation processes. Against a background of concepts such as the competition state and the developmental state, and national innovation systems, we give an overview of a range of approaches that have potential for advancing understanding of governance of global life science and biomedical innovation, with special reference to the 'Rising Powers', in order to examine convergences and divergences between them. Conceptual approaches that we focus on include those drawn from political science/political economy, sociology of technology; Innovation Studies and Science & Technology Studies. The paper is part of a project supported by the UK ESRC's Rising Powers programme. Results We show convergences and complementarities between the approaches discussed, and argue that the role of the national state itself has become relatively neglected in much of the relevant theorising. Conclusions We conclude that an approach is required that enables innovation and governance to be seen as 'co

  6. State strategies of governance in biomedical innovation: aligning conceptual approaches for understanding 'Rising Powers' in the global context

    Science.gov (United States)

    2011-01-01

    Background 'Innovation' has become a policy focus in its own right in many states as they compete to position themselves in the emerging knowledge economies. Innovation in biomedicine is a global enterprise in which 'Rising Power' states figure prominently, and which undoubtedly will re-shape health systems and health economies globally. Scientific and technological innovation processes and policies raise difficult issues in the domains of science/technology, civil society, and the economic and healthcare marketplace. The production of knowledge in these fields is complex, uncertain, inter-disciplinary and inter-institutional, and subject to a continuing political struggle for advantage. As part of this struggle, a wide variety of issues - regulation, intellectual property, ethics, scientific boundaries, healthcare market formation - are raised and policy agendas negotiated. Methods A range of social science disciplines and approaches have conceptualised such innovation processes. Against a background of concepts such as the competition state and the developmental state, and national innovation systems, we give an overview of a range of approaches that have potential for advancing understanding of governance of global life science and biomedical innovation, with special reference to the 'Rising Powers', in order to examine convergences and divergences between them. Conceptual approaches that we focus on include those drawn from political science/political economy, sociology of technology; Innovation Studies and Science & Technology Studies. The paper is part of a project supported by the UK ESRC's Rising Powers programme. Results We show convergences and complementarities between the approaches discussed, and argue that the role of the national state itself has become relatively neglected in much of the relevant theorising. Conclusions We conclude that an approach is required that enables innovation and governance to be seen as 'co-producing' each other in a multi

  7. Evaluating College Students' Conceptual Knowledge of Modern Physics: Test of Understanding on Concepts of Modern Physics (TUCO-MP)

    Science.gov (United States)

    Akarsu, Bayram

    2011-01-01

    In present paper, we propose a new diagnostic test to measure students' conceptual knowledge of principles of modern physics topics. Over few decades since born of physics education research (PER), many diagnostic instruments that measure students' conceptual understanding of various topics in physics, the earliest tests developed in PER are Force…

  8. Using Memes and Memetic Processes to Explain Social and Conceptual Influences on Student Understanding about Complex Socio-Scientific Issues

    Science.gov (United States)

    Yoon, Susan

    2008-01-01

    This study investigated seventh grade learners' decision making about genetic engineering concepts and applications. A social network analyses supported by technology tracked changes in student understanding with a focus on social and conceptual influences. Results indicated that several social and conceptual mechanisms potentially affected how…

  9. The Effect of Cooperative Learning Approach Based on Conceptual Change Condition on Students' Understanding of Chemical Equilibrium Concepts

    Science.gov (United States)

    Bilgin, Ibrahim; Geban, Omer

    2006-01-01

    The purpose of this study is to investigate the effects of the cooperative learning approach based on conceptual change conditions over traditional instruction on 10th grade students' conceptual understanding and achievement of computational problems related to chemical equilibrium concepts. The subjects of this study consisted of 87 tenth grade…

  10. Integrating the social sciences to understand human-water dynamics

    Science.gov (United States)

    Carr, G.; Kuil, L., Jr.

    2017-12-01

    Many interesting and exciting socio-hydrological models have been developed in recent years. Such models often aim to capture the dynamic interplay between people and water for a variety of hydrological settings. As such, peoples' behaviours and decisions are brought into the models as drivers of and/or respondents to the hydrological system. To develop and run such models over a sufficiently long time duration to observe how the water-human system evolves the human component is often simplified according to one or two key behaviours, characteristics or decisions (e.g. a decision to move away from a drought or flood area; a decision to pump groundwater, or a decision to plant a less water demanding crop). To simplify the social component, socio-hydrological modellers often pull knowledge and understanding from existing social science theories. This requires them to negotiate complex territory, where social theories may be underdeveloped, contested, dynamically evolving, or case specific and difficult to generalise or upscale. A key question is therefore, how can this process be supported so that the resulting socio-hydrological models adequately describe the system and lead to meaningful understanding of how and why it behaves as it does? Collaborative interdisciplinary research teams that bring together social and natural scientists are likely to be critical. Joint development of the model framework requires specific attention to clarification to expose all underlying assumptions, constructive discussion and negotiation to reach agreement on the modelled system and its boundaries. Mutual benefits to social scientists can be highlighted, i.e. socio-hydrological work can provide insights for further exploring and testing social theories. Collaborative work will also help ensure underlying social theory is made explicit, and may identify ways to include and compare multiple theories. As socio-hydrology progresses towards supporting policy development, approaches that

  11. Understanding Engagement: Science Demonstrations and Emotional Energy

    Science.gov (United States)

    Milne, Catherine; Otieno, Tracey

    2007-01-01

    Although beloved of some chemists and physicists, science demonstrations have been criticized for stifling inquiry and assisting teachers to maintain a power differential between themselves and students in the classroom. This interpretive study reports the unexpected positive learning outcomes for urban science students in two chemistry classes…

  12. Understanding adolescent student perceptions of science education

    Science.gov (United States)

    Ebert, Ellen Kress

    This study used the Relevance of Science Education (ROSE) survey (Sjoberg & Schreiner, 2004) to examine topics of interest and perspectives of secondary science students in a large school district in the southwestern U.S. A situated learning perspective was used to frame the project. The research questions of this study focused on (a) perceptions students have about themselves and their science classroom and how these beliefs may influence their participation in the community of practice of science; (b) consideration of how a future science classroom where the curriculum is framed by the Next Generation Science Standards might foster students' beliefs and perceptions about science education and their legitimate peripheral participation in the community of practice of science; and (c) reflecting on their school science interests and perspectives, what can be inferred about students' identities as future scientists or STEM field professionals? Data were collected from 515 second year science students during a 4-week period in May of 2012 using a Web-based survey. Data were disaggregated by gender and ethnicity and analyzed descriptively and by statistical comparison between groups. Findings for Research Question 1 indicated that boys and girls showed statistically significant differences in scientific topics of interest. There were no statistical differences between ethnic groups although. For Research Question 2, it was determined that participants reported an increase in their interest when they deemed the context of the content to be personally relevant. Results for Research Question 3 showed that participants do not see themselves as youthful scientists or as becoming scientists. While participants value the importance of science in their lives and think all students should take science, they do not aspire to careers in science. Based on this study, a need for potential future work has been identified in three areas: (a) exploration of the perspectives and

  13. Scaffolding software: How does it influence student conceptual understanding and motivation?

    Science.gov (United States)

    Butler, Kyle A.

    The purpose of this study was to determine the influence of scaffolding software on student conceptual understanding and motivation. This study also provides insight on how students use the scaffolding features found in Artemis and the extent to which features show a relationship to student conceptual understanding and motivation. A Randomized Solomon Four Group Design was used in this study. As students worked through a project based unit over photosynthesis, the students performed information seeking activities that were based on their own inquiry. For this purpose, the students in the experimental group used an example of scaffolding software called Artemis, while the students in the control group used a search engine of their choice. To measure conceptual understanding, the researcher analyzed student generated concept maps on photosynthesis using three different methods (quantitative, qualitative, hierarchical). To measure motivation, the researcher used a survey that measured motivation on five different indicators: intrinsic goal orientation, extrinsic goal orientation, task value, control of learning beliefs, self-efficacy for learning and performance. Finally, the researcher looked at the relationship and influence of the scaffolding features on two student performance scores at the end of the unit. This created a total of ten dependent variables in relationship to the treatment. Overall, the students used the collaborative features 25% of the time, the maintenance features 0.84% of the time, the organizational features 16% of the time, the saving/viewing features 7% of the time and the searching features 51% of the time. There were significant correlations between the saving/viewing features hits and the students' task value (r = .499, p motivation.

  14. My Science Is Better than Your Science: Conceptual Change as a Goal in Teaching Science Majors Interested in Teaching Careers about Education

    Science.gov (United States)

    Utter, Brian C.; Paulson, Scott A.; Almarode, John T.; Daniel, David B.

    2018-01-01

    We argue, based on a multi-year collaboration to develop a pedagogy course for physics majors by experts in physics, education, and the science of learning, that the process of teaching science majors about education and the science of learning, and evidence-based teaching methods in particular, requires conceptual change analogous to that…

  15. Science as a general education: Conceptual science should constitute the compulsory core of multi-disciplinary undergraduate degrees.

    Science.gov (United States)

    Charlton, Bruce G

    2006-01-01

    It is plausible to assume that in the future science will form the compulsory core element both of school curricula and multi-disciplinary undergraduate degrees. But for this to happen entails a shift in the emphasis and methods of science teaching, away from the traditional concern with educating specialists and professionals. Traditional science teaching was essentially vocational, designed to provide precise and comprehensive scientific knowledge for practical application. By contrast, future science teaching will be a general education, hence primarily conceptual. Its aim should be to provide an education in flexible rationality. Vocational science teaching was focused on a single-discipline undergraduate degree, but a general education in abstract systematic thinking is best inculcated by studying several scientific disciplines. In this sense, 'science' is understood as mathematics and the natural sciences, but also the abstract and systematic aspects of disciplines such as economics, linguistics, music theory, history, sociology, political science and management science. Such a wide variety of science options in a multi-disciplinary degree will increase the possibility of student motivation and aptitude. Specialist vocational science education will progressively be shifted to post-graduate level, in Masters and Doctoral programs. A multi-disciplinary and conceptually-based science core curriculum should provide an appropriate preparation for dealing with the demands of modern societies; their complex and rapidly changing social systems; and the need for individual social and professional mobility. Training in rational conceptual thinking also has potential benefits to human health and happiness, since it allows people to over-ride inappropriate instincts, integrate conflicting desires and pursue long-term goals.

  16. Understanding HIV-related posttraumatic stress disorder in South Africa: a review and conceptual framework.

    Science.gov (United States)

    Young, Charles

    2011-06-01

    A number of epidemiological studies have attempted to measure the prevalence of HIV-related posttraumatic stress disorder (PTSD) in sub-Saharan Africa. A systematic review of the literature identified eight relevant studies that put current estimates of the prevalence of HIV-related PTSD between 4.2% and 40%. Even the lower estimates suggest that PTSD in response to the trauma of being diagnosed and living with HIV is a significant mental health burden. However, a conceptual framework to advance our understanding of the prevalence and phenomenology of HIV-related PTSD is lacking. This article argues that the Ehlers & Clark (2000) cognitive model of PTSD provides a useful conceptual framework for understanding HIV-related PTSD in South Africa. The model emphasises the role of trauma appraisals in the development and maintenance of PTSD, which can also be usefully applied to some of the other psychological disorders associated with HIV infection. The model appears to fit some of the important research findings, and it offers insights into the relationships between HIV-related PTSD and other psychological disorders, HIV stigma, the high prevalence of non-HIV traumatic events, occasional problems with the delivery of antiretroviral drugs in the South African public health service, the unpredictable course of HIV illness, and the quality of HIV testing and counselling. Implications for individual treatment strategies and broader public health interventions are briefly discussed.

  17. A conceptual framework to understand teachers’ Professional Dispositions and Orientation towards tablet technology in secondary schools

    Directory of Open Access Journals (Sweden)

    Suzanne Sackstein

    2017-10-01

    Full Text Available While recent technological innovations have resulted in calls to incorporate tablets into the classroom, schools have been criticised for not taking advantage of what the technology has to offer. Past research has shown that teachers do not automatically choose to adopt technology in the classroom. A number of concerns exist in relation to the research being conducted within this area. Firstly, the majority of research studies have not been based on sound conceptual frameworks. Secondly, for the most part, these research studies have tended to focus on the technology itself rather than the resulting changes in teaching and learning. Finally, much of the literature is premised on constructivist pedagogic practices which offer promissories of radical pedagogic change. An understanding of technology teachers’ orientations to the new technology, coupled with an understanding of the reasons behind teachers’ choices to adopt or not adopt technology has not yet been fully explored. From a review of the literature in relation to teachers’ Professional Dispositions, derived from the work of Bernstein on the pedagogic discourse, alongside Hooper and Rieber’s model on educational technology adoption a conceptual framework has been developed to will shed light on secondary school teachers’ differential adoption of tablet technology.

  18. The Effects of Conceptual Understanding Procedures (CUPs) Towards Critical Thinking Skills of Senior High School Students

    Science.gov (United States)

    Sukaesih, S.; Sutrisno

    2017-04-01

    The aim of the study was to analyse the effect of the application of Conceptual Understanding Procedures (CUPs) learning to the students’ critical thinking skills in the matter of categorisaed in SMA Negeri 1 Larangan. This study was quasi-experimental design using nonequivalent control group design. The population in this study was entire class X. The samples that were taken by convenience sampling were class X MIA 1 and X MIA 2. Primary data in the study was the student’s critical thinking skills, which was supported by student activity, the level of adherence to the CUPs learning model, student opinion and teacher opinion. N-gain test results showed that the students’ critical thinking skills of experimental class increased by 89.32%, while the control group increased by 57.14%. Activity grade of experimental class with an average value of 72.37 was better than that of the control class with an average of only 22.69 student and teacher opinions to the learning were excellegoodnt. Based on this study concluded that the model of Conceptual Understanding Procedures (CUPs) had an effect on the student’s critical thinking skills in the matter of protest in SMA Negeri 1 Larangan.

  19. A social ecological conceptual framework for understanding adolescent health literacy in the health education classroom.

    Science.gov (United States)

    Wharf Higgins, Joan; Begoray, Deborah; MacDonald, Marjorie

    2009-12-01

    With the rising concern over chronic health conditions and their prevention and management, health literacy is emerging as an important public health issue. As with the development of other forms of literacy, the ability for students to be able to access, understand, evaluate and communicate health information is a skill best developed during their years of public schooling. Health education curricula offer one approach to develop health literacy, yet little is known about its influence on neither students nor their experiences within an educational context. In this article, we describe our experience applying a social ecological model to investigating the implementation of a health education curriculum in four high schools in British Columbia, Canada. We used the model to guide a conceptual understanding of health literacy, develop research questions, select data collection strategies, and interpret the findings. Reflections and recommendations for using the model are offered.

  20. Figures of speech, signs of knowing: Towards a semiotic view of science conceptualization

    Science.gov (United States)

    Wizinowich, Janice Ingrid

    Models for science education, rather than paralleling the process of scientific discovery, have traditionally involved the dissemination of information through texts and controlled lab experiences. These have had limited effect in the development of science concepts. Therefore, the focus of this study was to investigate alternative avenues, such as the use of narrative, for science conceptualization. Despite the potential for narrative as an avenue for science conceptualization, for the most part studies involving literature have not explored this relationship. The purpose of this study was to investigate the process of science conceptualization, with a specific focus on narrative. This was done through a fifth grade classroom based study where learning experiences were created, focused on the concept of interdependence in relationship to water. These experiences included open-ended, hands-on science experiences, literature discussion groups, self-selected research projects and the creation of narrative pieces based on those research projects. Data sources included: (a) audio and videotaped literature discussion group sessions; (b) audio and videotaped study group interviews and curricular sessions; (c) individual interviews; (d) learning log entries and reflections; and (e) student narratives. Data analysis was conducted within a semiotic theoretical framework and involved the process of retroduction. Retroduction entails a kind of spiraling dialectic between theoretical considerations and data incidences, from which are generated possible explanations. These possible explanations or abductions, provide direction for further forays into the data. The process of retroduction lends itself to the creation of data analysis chapters that highlight theoretical issues in relationship to the data or "theoretical memos". Three theoretical memos emerged from this process. Theoretical memo one explores the role of experience in conceptualization; theoretical memo two focuses

  1. Quantum philosophy understanding and interpreting contemporary science

    CERN Document Server

    Omnès, Roland

    2002-01-01

    In this magisterial work, Roland Omnès takes us from the academies of ancient Greece to the laboratories of modern science as he seeks to do no less than rebuild the foundations of the philosophy of knowledge. One of the world's leading quantum physicists, Omnès reviews the history and recent development of mathematics, logic, and the physical sciences to show that current work in quantum theory offers new answers to questions that have puzzled philosophers for centuries: Is the world ultimately intelligible? Are all events caused? Do objects have definitive locations? Omnès addresses these p

  2. Development of a Student-Centered Instrument to Assess Middle School Students' Conceptual Understanding of Sound

    Science.gov (United States)

    Eshach, Haim

    2014-01-01

    This article describes the development and field test of the Sound Concept Inventory Instrument (SCII), designed to measure middle school students' concepts of sound. The instrument was designed based on known students' difficulties in understanding sound and the history of science related to sound and focuses on two main aspects of sound: sound…

  3. How Contextualized Learning Settings Enhance Meaningful Nature of Science Understanding

    Science.gov (United States)

    Bilican, K.; Cakiroglu, J.; Oztekin, C.

    2015-01-01

    Exploring different contexts to facilitate in-depth nature of science (NOS) views were seen as critical for better professional development of pre-service science teachers, which ultimately would assure better students' NOS understanding and achieve an ultimate goal of current science education reforms. This study aimed to reduce the lack of…

  4. Chemistry teachers’ understanding of science process skills in relation of science process skills assessment in chemistry learning

    Science.gov (United States)

    Hikmah, N.; Yamtinah, S.; Ashadi; Indriyanti, N. Y.

    2018-05-01

    A Science process skill (SPS) is a fundamental scientific method to achieve good knowledge. SPS can be categorized into two levels: basic and integrated. Learning SPS helps children to grow as individuals who can access knowledge and know how to acquire it. The primary outcomes of the scientific process in learning are the application of scientific processes, scientific reasoning, accurate knowledge, problem-solving, and understanding of the relationship between science, technology, society, and everyday life’s events. Teachers’ understanding of SPS is central to the application of SPS in a learning process. Following this point, this study aims to investigate the high school chemistry teachers’ understanding of SPS pertains to their assessment of SPS in chemistry learning. The understanding of SPS is measured from the conceptual and operational aspects of SPS. This research uses qualitative analysis method, and the sample consists of eight chemistry teachers selected by random sampling. A semi-structured interview procedure is used to collect the data. The result of the analysis shows that teachers’ conceptual and operational understanding of SPS is weak. It affects the accuracy and appropriateness of the teacher’s selection of SPS assessment in chemistry learning.

  5. Conceptual Integration of Chemical Equilibrium by Prospective Physical Sciences Teachers

    Science.gov (United States)

    Ganaras, Kostas; Dumon, Alain; Larcher, Claudine

    2008-01-01

    This article describes an empirical study concerning the mastering of the chemical equilibrium concept by prospective physical sciences teachers. The main objective was to check whether the concept of chemical equilibrium had become an integrating and unifying concept for them, that is to say an operational and functional knowledge to explain and…

  6. New infrastructures for knowledge production understanding e-science

    CERN Document Server

    Hine, Christine

    2006-01-01

    New Infrastructures for Knowledge Production: Understanding E-Science offers a distinctive understanding of new infrastructures for knowledge production based in science and technology studies. This field offers a unique potential to assess systematically the prospects for new modes of science enabled by information and communication technologies. The authors use varied methodological approaches, reviewing the origins of initiatives to develop e-science infrastructures, exploring the diversity of the various solutions and the scientific cultures which use them, and assessing the prospects for wholesale change in scientific structures and practices. New Infrastructures for Knowledge Production: Understanding E-Science contains practical advice for the design of appropriate technological solutions, and long range assessments of the prospects for change useful both to policy makers and those implementing institutional infrastructures. Readers interested in understanding contemporary science will gain a rich pict...

  7. Microbiome Data Science: Understanding Our Microbial Planet.

    Science.gov (United States)

    Kyrpides, Nikos C; Eloe-Fadrosh, Emiley A; Ivanova, Natalia N

    2016-06-01

    Microbiology is experiencing a revolution brought on by recent developments in sequencing technology. The unprecedented volume of microbiome data being generated poses significant challenges that are currently hindering progress in the field. Here, we outline the major bottlenecks and propose a vision to advance microbiome research as a data-driven science. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Analysing dutch Science cafés to better understand the science-society relationship

    NARCIS (Netherlands)

    Dijkstra, Anne M.

    2017-01-01

    Science cafés offer a place for information and discussion for all who are interested in science and its broader implications for society. In this paper, science cafés are explored as a means of informal science dialogue in order to gain more understanding of the science-society relationship.

  9. How Surgeons Conceptualize Talent: A Qualitative Study Using Sport Science as a Lens.

    Science.gov (United States)

    Jensen, Rune Dall; Christensen, Mette Krogh; LaDonna, Kori A; Seyer-Hansen, Mikkel; Cristancho, Sayra

    Debates prevail regarding the definition of surgical talent, and how individuals with the potential to become talented surgeons can be identified and developed. However, over the past 30 years, talent has been studied extensively in other domains. The objectives of this study is to explore notions of talent in surgery and sport in order to investigate if the field of surgical education can benefit from expanding its view on talented performances. Therefore, this study aims to use the sport literature as a lens when exploring how surgeons conceptualize and define talent. Semi-structured interviews were conducted with a sample of 11 consultant surgeons from multiple specialties. We used constructivist grounded theory principles to explore talent in surgery. Ongoing data analysis refined the theoretical framework and iteratively informed data collection. Themes were identified iteratively using constant comparison. The setting included 8 separate hospitals across Canada and Denmark. A total of 11 consultant surgeons from 6 different surgical subspecialties (urology, orthopedic surgery, colorectal surgery, general surgery, vascular surgery, head & neck surgery) were included. We identified three key elements for conceptualizing surgical talent: (1) Individual skills makes the surgical prospect "good", (2) a mixture of skills gives the surgical prospect the potential to become talented, and (3) becoming talented may rely on the fit between person and environment. We embarked on a study aimed at understanding talent in surgery. Talent is a difficult construct to agree on. Whether in medicine or sports, debates about talent will continue to persist, as we all perceive talent differently. While we heard different opinions, three key ideas summarize our participants' discussions regarding surgical talent. These findings resonate with the holistic ecological approach from sport science and hence highlight the limits of a reductionist approach while favoring the individual

  10. A conceptual framework to support exposure science research ...

    Science.gov (United States)

    While knowledge of exposure is fundamental to assessing and mitigating risks, exposure information has been costly and difficult to generate. Driven by major scientific advances in analytical methods, biomonitoring, computational tools, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition that allows it to be more agile, predictive, and data- and knowledge-driven. A necessary element of this evolved paradigm is an organizational and predictive framework for exposure science that furthers the application of systems-based approaches. To enable such systems-based approaches, we proposed the Aggregate Exposure Pathway (AEP) concept to organize data and information emerging from an invigorated and expanding field of exposure science. The AEP framework is a layered structure that describes the elements of an exposure pathway, as well as the relationship between those elements. The basic building blocks of an AEP adopt the naming conventions used for Adverse Outcome Pathways (AOPs): Key Events (KEs) to describe the measurable, obligate steps through the AEP; and Key Event Relationships (KERs) describe the linkages between KEs. Importantly, the AEP offers an intuitive approach to organize exposure information from sources to internal site of action, setting the stage for predicting stressor concentrations at an internal target site. These predicted concentrations can help inform the r

  11. A behavioral science framework for understanding kawaii

    OpenAIRE

    Nittono, Hiroshi

    2010-01-01

    Kawaii is a key concept that characterizes modern Japanese culture. It is often translated into English as “cute," but asubtle difference of nuance exists between the two words. Although many books and articles have been published onthis subject, these discussions are mostly limited to the fields of humanities and sociology. In this paper, I put forward aframework for research on kawaii from a behavioral science perspective. First, I provide an overview of kawaii,including a summary of its di...

  12. The Conceptual Complexity of Vocabulary in Elementary-Grades Core Science Program Textbooks

    Science.gov (United States)

    Fitzgerald, W. Jill; Elmore, Jeff; Kung, Melody; Stenner, A. Jackson

    2017-01-01

    The researchers explored the conceptual complexity of vocabulary in contemporary elementary-grades core science program textbooks to address two research questions: (1) Can a progression of concepts' complexity level be described across grades? (2) Was there gradual developmental growth of the most complex concepts' networks of associated concepts…

  13. Learning in Earth and Space Science: A Review of Conceptual Change Instructional Approaches

    Science.gov (United States)

    Mills, Reece; Tomas, Louisa; Lewthwaite, Brian

    2016-01-01

    In response to calls for research into effective instruction in the Earth and space sciences, and to identify directions for future research, this systematic review of the literature explores research into instructional approaches designed to facilitate conceptual change. In total, 52 studies were identified and analyzed. Analysis focused on the…

  14. Online Discussion as a Mechanism of Conceptual Change among Mathematics and Science Teachers

    Science.gov (United States)

    Luebeck, Jennifer L.; Bice, Lawrence R.

    2005-01-01

    This study examines the extent to which conceptual change is stimulated and achieved through online discussion in the context of an online graduate course. Transcripts of discussions among 15 graduate students studying assessment issues in mathematics and science education were analyzed using an interaction analysis model developed to assess…

  15. Conceptualization of an R&D Based Learning-to-Innovate Model for Science Education

    Science.gov (United States)

    Lai, Oiki Sylvia

    2013-01-01

    The purpose of this research was to conceptualize an R & D based learning-to-innovate (LTI) model. The problem to be addressed was the lack of a theoretical L TI model, which would inform science pedagogy. The absorptive capacity (ACAP) lens was adopted to untangle the R & D LTI phenomenon into four learning processes: problem-solving via…

  16. Science teachers understanding of inquiry-based science teaching ...

    African Journals Online (AJOL)

    owner

    This paper aims at finding out Rwandan lower secondary school science teachers' ... enterprise, which in the context of the present study has a focus on inquiry. .... methods was adopted and both quantitative and qualitative data collected.

  17. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems

    Science.gov (United States)

    Pöppl, Ronald; Keesstra, Saskia; Maroulis, Jerry

    2017-04-01

    Human-induced landscape change is difficult to predict due to the complexity inherent in both geomorphic and social systems as well as due to emerging coupling relationships between them. To better understand system complexity and system response to change, connectivity has become an important research paradigm within various disciplines including geomorphology, hydrology and ecology. With the proposed conceptual connectivity framework on geomorphic change in human-impacted fluvial systems a cautionary note is flagged regarding the need (i) to include and to systematically conceptualise the role of different types of human agency in altering connectivity relationships in geomorphic systems and (ii) to integrate notions of human-environment interactions to connectivity concepts in geomorphology to better explain causes and trajectories of landscape change. Underpinned by case study examples, the presented conceptual framework is able to explain how geomorphic response of fluvial systems to human disturbance is determined by system-specific boundary conditions (incl. system history, related legacy effects and lag times), vegetation dynamics and human-induced functional relationships (i.e. feedback mechanisms) between the different spatial dimensions of connectivity. It is further demonstrated how changes in social systems can trigger a process-response feedback loop between social and geomorphic systems that further governs the trajectory of landscape change in coupled human-geomorphic systems.

  18. The unified model of vegetarian identity: A conceptual framework for understanding plant-based food choices.

    Science.gov (United States)

    Rosenfeld, Daniel L; Burrow, Anthony L

    2017-05-01

    By departing from social norms regarding food behaviors, vegetarians acquire membership in a distinct social group and can develop a salient vegetarian identity. However, vegetarian identities are diverse, multidimensional, and unique to each individual. Much research has identified fundamental psychological aspects of vegetarianism, and an identity framework that unifies these findings into common constructs and conceptually defines variables is needed. Integrating psychological theories of identity with research on food choices and vegetarianism, this paper proposes a conceptual model for studying vegetarianism: The Unified Model of Vegetarian Identity (UMVI). The UMVI encompasses ten dimensions-organized into three levels (contextual, internalized, and externalized)-that capture the role of vegetarianism in an individual's self-concept. Contextual dimensions situate vegetarianism within contexts; internalized dimensions outline self-evaluations; and externalized dimensions describe enactments of identity through behavior. Together, these dimensions form a coherent vegetarian identity, characterizing one's thoughts, feelings, and behaviors regarding being vegetarian. By unifying dimensions that capture psychological constructs universally, the UMVI can prevent discrepancies in operationalization, capture the inherent diversity of vegetarian identities, and enable future research to generate greater insight into how people understand themselves and their food choices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Munazza's story: Understanding science teaching and conceptions of the nature of science in Pakistan through a life history study

    Science.gov (United States)

    Halai, Nelofer

    In this study I have described and tried to comprehend how a female science teacher understands her practice. Additionally, I have developed some understanding of her understanding of the nature of science. While teaching science, a teacher projects messages about the nature of science that can be captured by observations and interviews. Furthermore, the manner is which a teacher conceptualizes science for teaching, at least in part, depends on personal life experiences. Hence, I have used the life history method to understand Munazza's practice. Munazza is a young female science teacher working in a private, co-educational school for children from middle income families in Karachi, Pakistan. Her stories are central to the study, and I have represented them using a number of narrative devices. I have woven in my own stories too, to illustrate my perspective as a researcher. The data includes 13 life history interviews and many informal conversations with Munazza, observations of science teaching in classes seven and eight, and interviews with other science teachers and administrative staff of the school. Munazza's personal biography and experiences of school and undergraduate courses has influenced the way she teaches. It has also influenced the way she does not teach. She was not inspired by her science teachers, so she has tried not to teach the way she was taught science. Contextual factors, her conception of preparation for teaching as preparation for subject content and the tension that she faces in balancing care and control in her classroom are some factors that influence her teaching. Munazza believes that science is a stable, superior and value-free way of knowing. In trying to understand the natural world, observations come first, which give reliable information about the world leading inductively to a "theory". Hence, she relies a great deal on demonstrations in the class where students "see" for themselves and abstract the scientific concept from the

  20. Advancing Future Network Science through Content Understanding

    Science.gov (United States)

    2014-05-01

    BitTorrent, PostgreSQL, MySQL , and GRSecurity) and emerging technologies (HadoopDFS, Tokutera, Sector/Sphere, HBase, and other BigTable-like...result. • Multi-Source Network Pulse Analyzer and Correlator provides course of action planning by enhancing the understanding of the complex dynamics

  1. Gender differences in conceptual understanding of Newtonian mechanics: a UK cross-institution comparison

    International Nuclear Information System (INIS)

    Bates, Simon; Donnelly, Robyn; MacPhee, Cait; Sands, David; Birch, Marion; Walet, Niels R

    2013-01-01

    We present the results of a combined study from three UK universities where we investigate the existence and persistence of a performance gender gap in conceptual understanding of Newtonian mechanics. Using the Force Concept Inventory, we find that students at all three universities exhibit a statistically significant gender gap, with males outperforming females. This gap is narrowed but not eliminated after instruction, using a variety of instructional approaches. Furthermore, we find that before instruction the quartile with the lowest performance on the diagnostic instrument comprises a disproportionately high fraction (∼50%) of the total female cohort. The majority of these students remain in the lowest-performing quartile post-instruction. Analysis of responses to individual items shows that male students outperform female students on practically all items on the instrument. Comparing the performance of the same group of students on end-of-course examinations, we find no statistically significant gender gaps. (paper)

  2. The utility of resilience as a conceptual framework for understanding and measuring LGBTQ health.

    Science.gov (United States)

    Colpitts, Emily; Gahagan, Jacqueline

    2016-04-06

    Historically, lesbian, gay, bisexual, transgender and queer (LGBTQ) health research has focused heavily on the risks for poor health outcomes, obscuring the ways in which LGBTQ populations maintain and improve their health across the life course. In this paper we argue that informing culturally competent health policy and systems requires shifting the LGBTQ health research evidence base away from deficit-focused approaches toward strengths-based approaches to understanding and measuring LGBTQ health. We recently conducted a scoping review with the aim of exploring strengths-based approaches to LGBTQ health research. Our team found that the concept of resilience emerged as a key conceptual framework. This paper discusses a subset of our scoping review findings on the utility of resilience as a conceptual framework in understanding and measuring LGBTQ health. The findings of our scoping review suggest that the ways in which resilience is defined and measured in relation to LGBTQ populations remains contested. Given that LGBTQ populations have unique lived experiences of adversity and discrimination, and may also have unique factors that contribute to their resilience, the utility of heteronormative and cis-normative models of resilience is questionable. Our findings suggest that there is a need to consider further exploration and development of LGBTQ-specific models and measures of resilience that take into account structural, social, and individual determinants of health and incorporate an intersectional lens. While we fully acknowledge that the resilience of LGBTQ populations is central to advancing LGBTQ health, there remains much work to be done before the concept of resilience can be truly useful in measuring LGBTQ health.

  3. Writing-to-learn in undergraduate science education: a community-based, conceptually driven approach.

    Science.gov (United States)

    Reynolds, Julie A; Thaiss, Christopher; Katkin, Wendy; Thompson, Robert J

    2012-01-01

    Despite substantial evidence that writing can be an effective tool to promote student learning and engagement, writing-to-learn (WTL) practices are still not widely implemented in science, technology, engineering, and mathematics (STEM) disciplines, particularly at research universities. Two major deterrents to progress are the lack of a community of science faculty committed to undertaking and applying the necessary pedagogical research, and the absence of a conceptual framework to systematically guide study designs and integrate findings. To address these issues, we undertook an initiative, supported by the National Science Foundation and sponsored by the Reinvention Center, to build a community of WTL/STEM educators who would undertake a heuristic review of the literature and formulate a conceptual framework. In addition to generating a searchable database of empirically validated and promising WTL practices, our work lays the foundation for multi-university empirical studies of the effectiveness of WTL practices in advancing student learning and engagement.

  4. The Contribution of Conceptual Change Texts Accompanied by Concept Mapping to Eleventh-Grade Students Understanding of Cellular Respiration Concepts

    Science.gov (United States)

    Al khawaldeh, Salem A.; Al Olaimat, Ali M.

    2010-01-01

    The present study conducted to investigate the contribution of conceptual change texts, accompanied by concept mapping instruction to eleventh-grade students' understanding of cellular respiration concepts, and their retention of this understanding. Cellular respiration concepts test was developed as a result of examination of related literature…

  5. The Taskforce on Conceptual Foundations of Earth System Governance: Sustainability Science

    Directory of Open Access Journals (Sweden)

    Barry Ness

    2017-02-01

    Full Text Available We are pleased to introduce the second special issue from Challenges in Sustainability, this time as a part of the Taskforce on Conceptual Foundations of Earth System Governance, an initiative by the Earth System Governance Project (ESG (http://www.earthsystemgovernance.net/conceptual-foundations/. The ESG Project is a global research alliance. It is the largest social science research network in the field of governance and global environmental change. ESG is primarily a scientific effort but is also designed to assist policy responses to pressing problems of earth system transformation.

  6. The Problem of Understanding of Nature in Exact Science

    Directory of Open Access Journals (Sweden)

    Leo Näpinen

    2014-10-01

    Full Text Available In this short inquiry I would like to defend the statement that exact science deals with the explanation of models, but not with the understanding (comprehending of nature. By the word ‘nature’ I mean nature as physis (as a self-moving and self-developing living organism to which humans also belong, not nature as natura naturata (as a nonevolving creature created by someone or something. The Estonian philosopher of science Rein Vihalemm (2008 has shown with his conception of phi-science (φ-science that exact science is itself an idealized model or theoretical object derived from Galilean mathematical physics.

  7. The Effect of Conceptual Change Model in the Senior High School Students’ Understanding and Character in Learning Physics

    Directory of Open Access Journals (Sweden)

    Santyasa I Wayan

    2018-01-01

    Full Text Available Learning physics for senior high school (SMA students is often coloured by misconceptions that hinder students in achieving deep understanding. So a relevant learning model is needed. This study aims to examine the effect of conceptual change model (CCM compared with direct instruction model (DIM on the students’ conceptual understanding and character in the subject area of motion and force. This quasi-experimental research using a non-equivalence pre-test post-test control groups design. The population is 20 classes (738 students of grade X consisted of 8 classes (272 students of SMA 1 Amlapura, 8 classes (256 students of SMA 2 Amlapura, and 6 classes (210 students of SMA 1 Manggis in Karangasem regency in Bali. The random assignment technique is used to assign 6 classes (202 students, or 26.5% of the population. In each school there are set 2 classes each as a CCM group and DIM groups. The data of students’ conceptual understanding is collected by tests, while the characters by questionnaires. To analyse the data a one way MANCOVA statistics was used. The result of the analysis showed that there was a significant difference of effect between CCM group and DIM group on the students’ conceptual understanding and character. The effect of the CCM group is higher than the DIM group on the students’ conceptual understanding and character in learning subject area of motion and force.

  8. Evaluating role of interactive visualization tool in improving students' conceptual understanding of chemical equilibrium

    Science.gov (United States)

    Sampath Kumar, Bharath

    The purpose of this study is to examine the role of partnering visualization tool such as simulation towards development of student's concrete conceptual understanding of chemical equilibrium. Students find chemistry concepts abstract, especially at the microscopic level. Chemical equilibrium is one such topic. While research studies have explored effectiveness of low tech instructional strategies such as analogies, jigsaw, cooperative learning, and using modeling blocks, fewer studies have explored the use of visualization tool such as simulations in the context of dynamic chemical equilibrium. Research studies have identified key reasons behind misconceptions such as lack of systematic understanding of foundational chemistry concepts, failure to recognize the system is dynamic, solving numerical problems on chemical equilibrium in an algorithmic fashion, erroneous application Le Chatelier's principle (LCP) etc. Kress et al. (2001) suggested that external representation in the form of visualization is more than a tool for learning, because it enables learners to make meanings or express their ideas which cannot be readily done so through a verbal representation alone. Mixed method study design was used towards data collection. The qualitative portion of the study is aimed towards understanding the change in student's mental model before and after the intervention. A quantitative instrument was developed based on common areas of misconceptions identified by research studies. A pilot study was conducted prior to the actual study to obtain feedback from students on the quantitative instrument and the simulation. Participants for the pilot study were sampled from a single general chemistry class. Following the pilot study, the research study was conducted with a total of 27 students (N=15 in experimental group and N=12 in control group). Prior to participating in the study, students have completed their midterm test on the topic of chemical equilibrium. Qualitative

  9. Grade six students' understanding of the nature of science

    Science.gov (United States)

    Cochrane, Donald Brian

    The goal of scientific literacy requires that students develop an understanding of the nature of science to assist them in the reasoned acquisition of science concepts and in their future role as citizens in a participatory democracy. The purpose of this study was to investigate and describe the range of positions that grade six students hold with respect to the nature of science and to investigate whether gender or prior science education was related to students' views of the nature of science. Two grade six classes participated in this study. One class was from a school involved in a long-term elementary science curriculum project. The science curriculum at this school involved constructivist epistemology and pedagogy and a realist ontology. The curriculum stressed hands-on, open-ended activities and the development of science process skills. Students were frequently involved in creating and testing explanations for physical phenomena. The second class was from a matched school that had a traditional science program. Results of the study indicated that students hold a wider range of views of the nature of science than previously documented. Student positions ranged from having almost no understanding of the nature of science to those expressing positions regarding the nature of science that were more developed than previous studies had documented. Despite the range of views documented, all subjects held realist views of scientific knowledge. Contrary to the literature, some students were able to evaluate a scientific theory in light of empirical evidence that they had generated. Results also indicated that students from the project school displayed more advanced views of the nature of science than their matched peers. However, not all students benefited equally from their experiences. No gender differences were found with respect to students' understanding of the nature of science.

  10. The Role of Science and Discovery Centres in the Public Understanding of Science

    Science.gov (United States)

    Short, Daniel B.; Weis, Nicole

    2013-01-01

    The number of science and discovery centres has grown exponentially over the last two centuries. Science and discovery centres are one of the top five stimuli that influence a career choice in science. Their history, growth, impact and role in the public understanding of science are discussed. (Contains 2 tables, 7 figures, and 21 online…

  11. Understanding and overcoming negative impacts of tourism in city destinations: conceptual model and strategic framework

    Directory of Open Access Journals (Sweden)

    Albert Postma

    2017-09-01

    Full Text Available Purpose – The purpose of this paper is to clarify the mechanisms of conflict between residents and tourists and to propose a conceptual model to assess the impact of such conflicts on city tourism and to suggest a framework to develop strategies to deal with such conflicts and mitigate negative impacts. Design/methodology/approach – Based on desk research a conceptual model was developed which describes the drivers of conflicts between residents and visitors. Building blocks of the model are visitors and their attributes, residents and their attributes, conflict mechanisms and critical encounters between residents and visitors, and indicators of the quality and quantity of tourist facilities. Subsequently the model was used to analyse the situation in Hamburg. For this analysis concentration values were calculated based on supply data of hotels and AirBnB, app-data, and expert consultations. Findings – The study shows that in Hamburg there are two key mechanisms that stimulate conflicts: (1 the number of tourists in relation to the number of residents and its distribution in time and space; (2 the behaviour of visitors measured in the norms that they pose onto themselves and others (indecent behaviour of tourists. Research limitations/implications – The model that was developed is a conceptual model, not a model with which hypotheses can be tested statistically. Refinement of the model needs further study. Practical implications – Based on the outcomes of the study concrete strategies were proposed with which Hamburg could manage and control the balance of tourism. Originality/value – City tourism has been growing in the last decades, in some cases dramatically. As a consequence, conflicts between tourists, tourism suppliers and inhabitants can occur. The rise of the so-called sharing economy has recently added an additional facet to the discussion. The ability to assess and deal with such conflicts is of importance for the way city

  12. Secondary School Students' Understanding of Science and Their Socioscientific Reasoning

    Science.gov (United States)

    Karahan, Engin; Roehrig, Gillian

    2017-01-01

    Research in socioscientific issue (SSI)-based interventions is relatively new (Sadler in "Journal of Research in Science Teaching" 41:513-536, 2004; Zeidler et al. in "Journal of Research in Science Teaching" 46:74-101, 2009), and there is a need for understanding more about the effects of SSI-based learning environments…

  13. Supporting Staff to Develop a Shared Understanding of Science Assessment

    Science.gov (United States)

    Sampey, Carol

    2018-01-01

    Assessment is not something that stands alone and teachers need support to develop their understanding of both assessment practices and the subject being assessed. Teachers at Shaw Primary School were fortunate to take part in the Teacher Assessment in Primary Science (TAPS) project and, in this article, the outlines how science and assessment can…

  14. Conceptual understanding of climate change with a globally resolved energy balance model

    Energy Technology Data Exchange (ETDEWEB)

    Dommenget, Dietmar [Monash University, School of Mathematical Sciences, Melbourne, VIC (Australia); Floeter, Janine [Leibniz Institute for Marine Sciences, Kiel (Germany)

    2011-12-15

    The future climate change projections are essentially based on coupled general circulation model (CGCM) simulations, which give a distinct global warming pattern with arctic winter amplification, an equilibrium land-sea warming contrast and an inter-hemispheric warming gradient. While these simulations are the most important tool of the Intergovernmental Panel on Climate Change (IPCC) predictions, the conceptual understanding of these predicted structures of climate change and the causes of their uncertainties is very difficult to reach if only based on these highly complex CGCM simulations. In the study presented here we will introduce a very simple, globally resolved energy balance (GREB) model, which is capable of simulating the main characteristics of global warming. The model shall give a bridge between the strongly simplified energy balance models and the fully coupled 4-dimensional complex CGCMs. It provides a fast tool for the conceptual understanding and development of hypotheses for climate change studies, which shall build a basis or starting point for more detailed studies of observations and CGCM simulations. It is based on the surface energy balance by very simple representations of solar and thermal radiation, the atmospheric hydrological cycle, sensible turbulent heat flux, transport by the mean atmospheric circulation and heat exchange with the deeper ocean. Despite some limitations in the representations of the basic processes, the models climate sensitivity and the spatial structure of the warming pattern are within the uncertainties of the IPCC models simulations. It is capable of simulating aspects of the arctic winter amplification, the equilibrium land-sea warming contrast and the inter-hemispheric warming gradient with good agreement to the IPCC models in amplitude and structure. The results give some insight into the understanding of the land-sea contrast and the polar amplification. The GREB model suggests that the regional inhomogeneous

  15. Thinking about television science: How students understand the nature of science from different program genres

    Science.gov (United States)

    Dhingra, Koshi

    2003-02-01

    Student views on the nature of science are shaped by a variety of out-of-school forces and television-mediated science is a significant force. To attempt to achieve a science for all, we need to recognize and understand the diverse messages about science that students access and think about on a regular basis. In this work I examine how high school students think about science that is mediated by four different program genres on television: documentary, magazine-format programming, network news, and dramatic or fictional programming. The following categories of findings are discussed: the ethics and validity of science, final form science, science as portrayed by its practitioners, and school science and television science. Student perceptions of the nature of science depicted on the program sample used in this study ranged from seeing science as comprising tentative knowledge claims to seeing science as a fixed body of facts.

  16. Understanding ’Price’ and the Environment: Exploring Upper Secondary Students’ Conceptual Development

    Directory of Open Access Journals (Sweden)

    Caroline Ignell

    2017-03-01

    Full Text Available Purpose: To explore changes in upper secondary students´ conceptions of environmental issues in how prices are determined and how they should be determined. Design: The study uses an ’alternative frameworks’ conceptual change approach to examine change in the conceptions of fifteen business and economic students. Students were asked about the prices of familiar products and asked to explain prices for eco-friendly and eco-unfriendly products. A first interview was conducted in the second year of education and the second interview a year later when students were 18 years old and in the final year of schooling. Interviews were carried out out by a researcher independent from the schools and carried out in schools. Findings: Identifies the fragmentary nature of students´ every-day thinking in relation to productivity, consumer preference and negative externalities. Results show characteristics of partial conceptions, which are considered as students´ conceptions in a process of change towards a more scientific understanding of relationships between price and environmental impacts. Practical implications: The study clarifies conceptions, which students bring to the classroom and the directions that development in understanding may take. The study should help teachers to design effective strategies to support students’ learning.

  17. Understanding Conceptualizations of Pregnancy and Planning for Pregnancy Among Adolescent Girls and Young Women in Harare, Zimbabwe.

    Science.gov (United States)

    Tinago, Chiwoneso B; Ingram, Lucy Annang; Frongillo, Edward A; Blake, Christine E; Engelsmann, Barbara; Simmons, David

    2018-07-01

    Zimbabwe has one of the highest rates of maternal mortality, yet little is understood about adolescent girls' and young women's perspectives on pregnancy or planning for pregnancy. The research study took an emic approach to understand and describe how adolescent girls and young women (14-24 years) in Harare, Zimbabwe, conceptualize pregnancy and planning for pregnancy and how these conceptualizations inform pregnancy decisions. Semi-structured, in-depth, qualitative interviews were conducted with adolescent girls and young women ( N = 48) and data were analyzed thematically using NVivo 10. Pregnancy was conceptualized across nine themes: carrying a child and oneself, growing a family, motherhood, the best time for pregnancy, pregnancy decision makers, who is responsible for the pregnancy, pregnancy burden, pregnancy dangers, and increase in social status with pregnancy. Planning for pregnancy was conceptualized during the prepregnancy, pregnancy, and postpregnancy phases. Findings emphasize considering sociocultural views concerning pregnancy and including social networks in maternal health efforts.

  18. Transformation of conceptual basis of political science under cultural and historical context

    Directory of Open Access Journals (Sweden)

    O. S. Tokovenko

    2017-07-01

    Full Text Available The paper is submitted to a scientific discussion the possibility of considering the idea of political science, based on the criteria of intellectual integrity and disciplinary unity. In this context, generally accepted among professionals and political scientists idea that political science as a scientific discipline occurs in the early twentieth century and its conceptual framework is still in a state of development, and a long preceding period should be characterized as a period of political thought is being challenged. The main idea that is being proved is recognition the existence of such scientific discipline as political science requires recognition of the existence of specific inherent ideals of science, cognitive standards, rules, procedures, explanations, etc. They allow political thinkers from the ancient world as well as modern researchers to combine it into a single, unique, different from others in their methodological principles and heuristic potential Science. It is convinced that the existence of intellectual integrity and disciplinary unity in Political Science is possible due to the existence of the ideals of scholarship, which are closely related to the cultural and historical context in which Political Science is being developed. The possibility of applying such disciplinary and integrated approach is considered as an example of the impact that was made by changes of the Great French Revolution and its consequences on transformation of the conceptual framework of Political Science.  It is concluded that the consideration of the peculiarities of political thought development in the social and cultural contexts related to the events of the Great French Revolution and its consequences argues that political science is responsive to changing the social context, makes changes in categorical apparatus, introduces the new field of scientific inquiry, actualized subject field. These actions are due to the specific disciplinary unity

  19. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    Science.gov (United States)

    Li, Jing; Singh, Chandralekha

    2017-03-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper-pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  20. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    International Nuclear Information System (INIS)

    Li, Jing; Singh, Chandralekha

    2017-01-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper–pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  1. Utilizing the National Research Council's (NRC) Conceptual Framework for the Next Generation Science Standards (NGSS): A Self-Study in My Science, Engineering, and Mathematics Classroom

    Science.gov (United States)

    Corvo, Arthur Francis

    Given the reality that active and competitive participation in the 21 st century requires American students to deepen their scientific and mathematical knowledge base, the National Research Council (NRC) proposed a new conceptual framework for K--12 science education. The framework consists of an integration of what the NRC report refers to as the three dimensions: scientific and engineering practices, crosscutting concepts, and core ideas in four disciplinary areas (physical, life and earth/spaces sciences, and engineering/technology). The Next Generation Science Standards (NGSS ), which are derived from this new framework, were released in April 2013 and have implications on teacher learning and development in Science, Technology, Engineering, and Mathematics (STEM). Given the NGSS's recent introduction, there is little research on how teachers can prepare for its release. To meet this research need, I implemented a self-study aimed at examining my teaching practices and classroom outcomes through the lens of the NRC's conceptual framework and the NGSS. The self-study employed design-based research (DBR) methods to investigate what happened in my secondary classroom when I designed, enacted, and reflected on units of study for my science, engineering, and mathematics classes. I utilized various best practices including Learning for Use (LfU) and Understanding by Design (UbD) models for instructional design, talk moves as a tool for promoting discourse, and modeling instruction for these designed units of study. The DBR strategy was chosen to promote reflective cycles, which are consistent with and in support of the self-study framework. A multiple case, mixed-methods approach was used for data collection and analysis. The findings in the study are reported by study phase in terms of unit planning, unit enactment, and unit reflection. The findings have implications for science teaching, teacher professional development, and teacher education.

  2. Secondary School Students' Understanding of Science and Their Socioscientific Reasoning

    Science.gov (United States)

    Karahan, Engin; Roehrig, Gillian

    2017-08-01

    Research in socioscientific issue (SSI)-based interventions is relatively new (Sadler in Journal of Research in Science Teaching 41:513-536, 2004; Zeidler et al. in Journal of Research in Science Teaching 46:74-101, 2009), and there is a need for understanding more about the effects of SSI-based learning environments (Sadler in Journal of Research in Science Teaching 41:513-536, 2004). Lee and Witz (International Journal of Science Education 31:931-960, 2009) highlighted the need for detailed case studies that would focus on how students respond to teachers' practices of teaching SSI. This study presents case studies that investigated the development of secondary school students' science understanding and their socioscientific reasoning within SSI-based learning environments. A multiple case study with embedded units of analysis was implemented for this research because of the contextual differences for each case. The findings of the study revealed that students' understanding of science, including scientific method, social and cultural influences on science, and scientific bias, was strongly influenced by their experiences in SSI-based learning environments. Furthermore, multidimensional SSI-based science classes resulted in students having multiple reasoning modes, such as ethical and economic reasoning, compared to data-driven SSI-based science classes. In addition to portraying how participants presented complexity, perspectives, inquiry, and skepticism as aspects of socioscientific reasoning (Sadler et al. in Research in Science Education 37:371-391, 2007), this study proposes the inclusion of three additional aspects for the socioscientific reasoning theoretical construct: (1) identification of social domains affecting the SSI, (2) using cost and benefit analysis for evaluation of claims, and (3) understanding that SSIs and scientific studies around them are context-bound.

  3. Leveraging Conceptual Frameworks to Improve Students' Mental Organization of Astronomy Understanding

    Science.gov (United States)

    Slater, Timothy F.; Lee, K. M.

    2006-06-01

    Many different types of schematic diagrams are useful in helping students organize and internalize their developing understanding in introductory astronomy courses. These include Venn Diagrams, Flowcharts, Concept Maps, among others, which illustrate the relationships between astronomical objects and dynamic concepts. These conceptual framework diagrams have been incorporated into the NSF-funded ClassAction project. ClassAction is a collection of electronic materials designed to enhance the metacognitive skills of college and university introductory astronomy survey students by promoting interactive engagement and providing rapid feedback in a highly visual setting. The main effort is targeted at creating dynamic think-pair-share questions supported by simulations, animations, and visualizations to be projected in the lecture classroom. The infrastructure allows instructors to recast these questions into alternative forms based on their own pedagogical preferences and feedback from the class. The recourses can be easily selected from a FLASH computer database and are accompanied by outlines, graphics, and numerous simulations which the instructor can use to provide student feedback and, when necessary, remediation. ClassAction materials are publicly available online at URL: http://astro.unl.edu and is funded by NSF Grant #0404988.

  4. Conceptual Understanding and Representation Quality through Multi-representation Learning on Newton Law Content

    Directory of Open Access Journals (Sweden)

    Suci Furwati

    2017-08-01

    Full Text Available Abstract: Students who have good conceptual acquisition will be able to represent the concept by using multi representation. This study aims to determine the improvement of students' understanding of the concept of Newton's Law material, and the quality of representation used in solving problems on Newton's Law material. The results showed that the concept acquisition of students increased from the average of 35.32 to 78.97 with an effect size of 2.66 (strong and N-gain of 0.68 (medium. The quality of each type of student representation also increased from level 1 and level 2 up to level 3. Key Words: concept aquisition, represetation quality, multi representation learning, Newton’s Law Abstrak: Siswa yang memiliki penguasaan konsep yang baik akan mampu merepresentasikan konsep dengan menggunakan multi representasi. Penelitian ini bertujuan untuk mengetahui peningkatan pemahaman konsep siswa SMP pada materi Hukum Newton, dan kualitas representasi yang digunakan dalam menyelesaikan masalah pada materi Hukum Newton. Hasil penelitian menunjukkan bahwa penguasaan konsep siswa meningkat dari rata-rata 35,32 menjadi 78,97 dengan effect size sebesar 2,66 (kuat dan N-gain sebesar 0,68 (sedang. Kualitas tiap jenis representasi siswa juga mengalami peningkatan dari level 1 dan level 2 naik menjadi level 3. Kata kunci: hukum Newton, kualitas representasi, pemahaman konsep, pembelajaran multi representasi

  5. Understanding recall rates in screening mammography: A conceptual framework review of the literature

    International Nuclear Information System (INIS)

    Mohd Norsuddin, N.; Reed, W.; Mello-Thoms, C.; Lewis, S.J.

    2015-01-01

    Recall rates are one of the performance measures used to evaluate the effectiveness of mammography screening programs. There is conflicting evidence regarding the link between recall rates and cancer detection rates and a variety of differing recall rates exist between countries and readers. This variability in recall rates may have important clinical and economic implications such as unnecessary follow-up procedures, additional costs to the health care system and psychological effects for the women themselves associated with false-positive mammograms results. In order to reduce the impact of false positive recall rates in screening mammography, it is essential for all multidisciplinary health care providers, especially those in medical imaging, to fully understand the factors that may contribute and affect recall rates. The multifactorial nature of recall rates is explored in this paper through the construction of a conceptual map based on a review of the current literature. - Highlights: • Recall rates vary across countries and readers and for initial and subsequent screens. • Falsely recalling women has important clinical, cost and psycho-social implications. • Imaging technology, readers' expertise and patient presentation affect recall rates. • Higher recall rates do not translate into improved sensitivity at higher thresholds. • Multidisciplinary approaches to reduce recall rates may improve women experiences.

  6. Understanding the Dynamics of Socio-Hydrological Environment: a Conceptual Framework

    Science.gov (United States)

    Woyessa, Y.; Welderufael, W.; Edossa, D.

    2011-12-01

    Human actions affect ecological systems and the services they provide through various activities, such as land use, water use, pollution and climate change. Climate change is perhaps one of the most important sustainable development challenges that threaten to undo many of the development efforts being made to reach the targets set for the Millennium Development Goals. Understanding the change of ecosystems under different scenarios of climate and biophysical conditions could assist in bringing the issue of ecosystem services into decision making process. Similarly, the impacts of land use change on ecosystems and biodiversity have received considerable attention from ecologists and hydrologists alike. Land use change in a catchment can impact on water supply by altering hydrological processes, such as infiltration, groundwater recharge, base flow and direct runoff. In the past a variety of models were used for predicting land-use changes. Recently the focus has shifted away from using mathematically oriented models to agent-based modelling (ABM) approach to simulate land use scenarios. A conceptual framework is being developed which integrates climate change scenarios and the human dimension of land use decision into a hydrological model in order to assess its impacts on the socio-hydrological dynamics of a river basin. The following figures present the framework for the analysis and modelling of the socio-hydrological dynamics. Keywords: climate change, land use, river basin

  7. Developing Conceptual Understanding and Procedural Skill in Mathematics: An Iterative Process.

    Science.gov (United States)

    Rittle-Johnson, Bethany; Siegler, Robert S.; Alibali, Martha Wagner

    2001-01-01

    Proposes that conceptual and procedural knowledge develop in an iterative fashion and improved problem representation is one mechanism underlying the relations between them. Two experiments were conducted with 5th and 6th grade students learning about decimal fractions. Results indicate conceptual and procedural knowledge do develop, iteratively,…

  8. Understanding Nuisance Flooding Conceptualizations and Concerns of Stakeholders in the Northern U.S. Gulf Coast

    Science.gov (United States)

    DeLorme, D.; Collini, R.; Stephens, S. H.

    2017-12-01

    As sea level rises, nuisance flooding along coasts is increasing. There is a need to understand how the public views flooding events in order to tailor communications to different audiences appropriately and help improve community resilience. This interdisciplinary presentation is intended to foster greater awareness about present-day nuisance flooding, ongoing conversation about best practices for accurately and effectively communicating about this "cumulative hazard" and its risks, and consideration about possible preparation and mitigation options for community resilience. The presentation will begin by defining and explaining nuisance flooding according to scientific experts and the scholarly literature. Next, we will share several specific examples of how nuisance flooding is increasingly impacting certain areas in the Northern U.S. Gulf Coast to demonstrate the importance of raising attention to and better understanding of this phenomenon across a range of audiences. We will particularly focus on the complex interrelated social, economic, and ecological issues associated with this hazard. Then, we will compare and contrast conceptualizations of nuisance flooding (characteristics, causes, consequences) and associated concerns from the viewpoints and experiences of various stakeholders in the Northern U.S. Gulf Coast (e.g., natural resource managers, community planners, extension specialists). These data are synthesized from multiple research methods and engagement mechanisms (e.g., focus groups, workshop mapping exercises) implemented during the first year of a multi-year NOAA-sponsored interdisciplinary project on Dynamic Sea Level Rise Assessments of the Ability of Natural and Nature-based Features to Mitigate Surge and Nuisance Flooding. To conclude, we will provide future research recommendations along with references and resources about nuisance flooding.

  9. Science Communication for the Public Understanding of Nuclear Issues

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seongkyung [Myungji Univ., Yongin (Korea, Republic of)

    2006-04-15

    Uncertainty, stigma, risk perception, and value judgment represent characteristics of nuclear issues in the public arena. Nuclear issue, in the public arena, is a kind of risk rather than technology that we are willing to use for good purpose. There are uncertainty, stigma, risk perception, and value judgment as characteristics of nuclear. The notion of the public, here is of active, sensitive, and sensible citizens, with power and influence. The public understands nuclear issues less through direct experience or education than through the filter of mass media. Trust has been a key issue on public understanding of nuclear issues. Trust belongs to human. The public understanding process includes perception, interpretation, and evaluation. Therefore, science communication is needed for public understanding. Unfortunately, science communication is rarely performed well, nowadays, There are three important actors-the public, experts, and media. Effective science communication means finding comprehensible ways of presenting opaque and complex nuclear issues. It makes new and strong demands on experts. In order to meet that requirement, experts should fulfill their duty about developing nuclear technology for good purpose, understand the public before expecting the public to understand nuclear issues, accept the unique culture of the media process, take the responsibility for any consequence which nuclear technologies give rise to, communicate with an access route based on sensibility and rationality, have a flexible angle in the science communication process, get creative leadership for the communication process with deliberation and disagreement, make efficient use of various science technologies for science communication. We should try to proceed with patience, because science communication makes for a more credible society.

  10. Science Communication for the Public Understanding of Nuclear Issues

    International Nuclear Information System (INIS)

    Cho, Seongkyung

    2006-01-01

    Uncertainty, stigma, risk perception, and value judgment represent characteristics of nuclear issues in the public arena. Nuclear issue, in the public arena, is a kind of risk rather than technology that we are willing to use for good purpose. There are uncertainty, stigma, risk perception, and value judgment as characteristics of nuclear. The notion of the public, here is of active, sensitive, and sensible citizens, with power and influence. The public understands nuclear issues less through direct experience or education than through the filter of mass media. Trust has been a key issue on public understanding of nuclear issues. Trust belongs to human. The public understanding process includes perception, interpretation, and evaluation. Therefore, science communication is needed for public understanding. Unfortunately, science communication is rarely performed well, nowadays, There are three important actors-the public, experts, and media. Effective science communication means finding comprehensible ways of presenting opaque and complex nuclear issues. It makes new and strong demands on experts. In order to meet that requirement, experts should fulfill their duty about developing nuclear technology for good purpose, understand the public before expecting the public to understand nuclear issues, accept the unique culture of the media process, take the responsibility for any consequence which nuclear technologies give rise to, communicate with an access route based on sensibility and rationality, have a flexible angle in the science communication process, get creative leadership for the communication process with deliberation and disagreement, make efficient use of various science technologies for science communication. We should try to proceed with patience, because science communication makes for a more credible society

  11. History and Philosophy of Science as a Guide to Understanding Nature of Science

    Directory of Open Access Journals (Sweden)

    Mansoor Niaz

    2016-06-01

    Full Text Available Nature of science (NOS is considered to be a controversial topic by historians, philosophers of science and science educators. It is paradoxical that we all teach science and still have difficulties in understanding what science is and how it develops and progresses. A major obstacle in understanding NOS is that science is primarily ‘unnatural’, that is it cannot be learned by a simple observation of phenomena. In most parts of the world history and philosophy of science are ‘inside’ science content and as such can guide our understanding of NOS. However, some science educators consider the ‘historical turn’ as dated and hence neglect the historical approach and instead emphasize the model based naturalist view of science. The objective of this presentation is to show that the historical approach is very much a part of teaching science and actually complements naturalism. Understanding NOS generally requires two aspects of science: Domain general and domain specific. In the classroom this can be illustrated by discussing the atomic models developed in the early 20th century which constitute the domain specific aspect of NOS. This can then lead to an understanding of the tentative nature of science that is a domain general aspect of NOS. A review of the literature in science education reveals three views (among others of understanding NOS: a Consensus view: It attempts to include only those domain-general NOS aspects that are the least controversial (Lederman, Abd-El-Khalick; b Family resemblance view: Based on the ideas of Wittgenstein, this view promotes science as a cognitive system (Irzik, Nola; c Integrated view: this view postulates that both domain general and domain specific aspects of NOS are not dichotomous but rather need to be integrated and are essential if we want students to understandscience in the making’ (Niaz. The following framework helps to facilitate integration: i Elaboration of a theoretical framework

  12. Making the Invisible Visible: Enhancing Students' Conceptual Understanding by Introducing Representations of Abstract Objects in a Simulation

    Science.gov (United States)

    Olympiou, Georgios; Zacharias, Zacharia; deJong, Ton

    2013-01-01

    This study aimed to identify if complementing representations of concrete objects with representations of abstract objects improves students' conceptual understanding as they use a simulation to experiment in the domain of "Light and Color". Moreover, we investigated whether students' prior knowledge is a factor that must be considered in deciding…

  13. Making the invisible visible: Enhancing students' conceptual understanding by introducing representations of abstract objects in a simulation

    NARCIS (Netherlands)

    Olympiou, G.; Zacharias, Z.; de Jong, Anthonius J.M.

    2013-01-01

    This study aimed to identify if complementing representations of concrete objects with representations of abstract objects improves students’ conceptual understanding as they use a simulation to experiment in the domain of Light and Color. Moreover, we investigated whether students’ prior knowledge

  14. The Impact of Problem-Based Learning on Engineering Students' Beliefs about Physics and Conceptual Understanding of Energy and Momentum

    Science.gov (United States)

    Sahin, Mehmet

    2010-01-01

    The purpose of this paper is to investigate the impact of problem-based learning (PBL) on freshmen engineering students' beliefs about physics and physics learning (referred to as epistemological beliefs) and conceptual understanding of physics. The multiple-choice test of energy and momentum concepts and the Colorado learning attitudes about…

  15. Exploring Effects of High School Students' Mathematical Processing Skills and Conceptual Understanding of Chemical Concepts on Algorithmic Problem Solving

    Science.gov (United States)

    Gultepe, Nejla; Yalcin Celik, Ayse; Kilic, Ziya

    2013-01-01

    The purpose of the study was to examine the effects of students' conceptual understanding of chemical concepts and mathematical processing skills on algorithmic problem-solving skills. The sample (N = 554) included grades 9, 10, and 11 students in Turkey. Data were collected using the instrument "MPC Test" and with interviews. The MPC…

  16. The Effect of Using Virtual Laboratory on Grade 10 Students' Conceptual Understanding and Their Attitudes towards Physics

    Science.gov (United States)

    Faour, Malak Abou; Ayoubi, Zalpha

    2018-01-01

    This study investigated the effect of using (VL) on grade 10 students' conceptual understanding of the direct current electric circuit and their attitudes towards physics. The research used a quantitative experimental approach. The sample of the study was formed of 50 students of the tenth grade, aged 14 to 16 years old, of an official secondary…

  17. The Effects on Students' Conceptual Understanding of Electric Circuits of Introducing Virtual Manipulatives within a Physical Manipulatives-Oriented Curriculum

    Science.gov (United States)

    Zacharia, Zacharias C.; de Jong, Ton

    2014-01-01

    This study investigates whether Virtual Manipulatives (VM) within a Physical Manipulatives (PM)-oriented curriculum affect conceptual understanding of electric circuits and related experimentation processes. A pre-post comparison study randomly assigned 194 undergraduates in an introductory physics course to one of five conditions: three…

  18. Comparison of Two Different Techniques of Cooperative Learning Approach: Undergraduates' Conceptual Understanding in the Context of Hormone Biochemistry

    Science.gov (United States)

    Mutlu, Ayfer

    2018-01-01

    The purpose of the research was to compare the effects of two different techniques of the cooperative learning approach, namely Team-Game Tournament and Jigsaw, on undergraduates' conceptual understanding in a Hormone Biochemistry course. Undergraduates were randomly assigned to Group 1 (N = 23) and Group 2 (N = 29). Instructions were accomplished…

  19. The Effect of Brain Based Learning on Second Grade Junior Students' Mathematics Conceptual Understanding on Polyhedron

    Science.gov (United States)

    Suarsana, I. Made; Widiasih, Ni Putu Santhi; Suparta, I. Nengah

    2018-01-01

    The aim of this study is to examine the effect of Brain Based Learning on second grade junior high school students? conceptual understanding on polyhedron. This study was conducted by using post-test only control group quasi-experimental design. The subjects of this study were 148 students that divided into three classes. Two classes were taken as…

  20. The Effect of Recycling Education on High School Students' Conceptual Understanding about Ecology: A Study on Matter Cycle

    Science.gov (United States)

    Ugulu, Ilker; Yorek, Nurettin; Baslar, Suleyman

    2015-01-01

    The objective of this study is to analyze and determine whether a developed recycling education program would lead to a positive change in the conceptual understanding of ecological concepts associated with matter cycles by high school students. The research was conducted on 68 high school 10th grade students (47 female and 21 male students). The…

  1. The Effect of Process Oriented Guided Inquiry Learning (POGIL) on 11th Graders' Conceptual Understanding of Electrochemistry

    Science.gov (United States)

    Sen, Senol; Yilmaz, Ayhan; Geban, Ömer

    2016-01-01

    The purpose of this study was to investigate the effect of Process Oriented Guided Inquiry Learning (POGIL) method compared to traditional teaching method on 11th grade students' conceptual understanding of electrochemistry concepts. Participants were 115 students from a public school in Turkey. Nonequivalent control group design was used. Two…

  2. Conceptual understanding and groundwater quality of selected basin-fill aquifers in the Southwestern United States

    Science.gov (United States)

    Thiros, Susan A.; Bexfield, Laura M.; Anning, David W.; Huntington, Jena M.

    2010-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey has been conducting a regional analysis of water quality in the principal aquifer systems in the southwestern United States (hereinafter, “Southwest”) since 2005. Part of the NAWQA Program, the objective of the Southwest Principal Aquifers (SWPA) study is to develop a better understanding of water quality in basin-fill aquifers in the region by synthesizing information from case studies of 15 basins into a common set of important natural and human-related factors found to affect groundwater quality.The synthesis consists of three major components:1. Summary of current knowledge about the groundwater systems, and the status of, changes in, and influential factors affecting quality of groundwater in basin-fill aquifers in 15 basins previously studied by NAWQA (this report).2. Development of a conceptual model of the primary natural and human-related factors commonly affecting groundwater quality, thereby building a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to contaminants.3. Development of statistical models that relate the concentration or occurrence of specific chemical constituents in groundwater to natural and human-related factors linked to the susceptibility and vulnerability of basin-fill aquifers to contamination.Basin-fill aquifers occur in about 200,000 mi2 of the 410,000 mi2 SWPA study area and are the primary source of groundwater supply for cities and agricultural communities. Four of the principal aquifers or aquifer systems of the United States are included in the basin-fill aquifers of the study area: (1) the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; (2) the Rio Grande aquifer system in New Mexico and Colorado; (3) the California Coastal Basin aquifers; and (4) the Central Valley aquifer system in California. Because of the generally limited availability of surface-water supplies in

  3. Investigating and Promoting Trainee Science Teachers' Conceptual Change of the Nature of Science with Digital Dialogue Games `InterLoc'

    Science.gov (United States)

    Mansour, Nasser; Wegerif, Rupert; Skinner, Nigel; Postlethwaite, Keith; Hetherington, Lindsay

    2016-10-01

    The purpose of this study is to explore how an online-structured dialogue environment supported (OSDE) collaborative learning about the nature of science among a group of trainee science teachers in the UK. The software used (InterLoc) is a linear text-based tool, designed to support structured argumentation with openers and `dialogue moves'. A design-based research approach was used to investigate multiple sessions using InterLoc with 65 trainee science teachers. Five participants who showed differential conceptual change in terms of their Nature of Science (NOS) views were purposively selected and closely followed throughout the study by using key event recall interviews. Initially, the majority of participants held naïve views of NOS. Substantial and favourable changes in these views were evident as a result of the OSDE. An examination of the development of the five participants' NOS views indicated that the effectiveness of the InterLoc discussions was mediated by cultural, cognitive, and experiential factors. The findings suggest that InterLoc can be effective in promoting reflection and conceptual change.

  4. The Impact of Science Fiction Film on Student Understanding of Science

    Science.gov (United States)

    Barnett, Michael; Wagner, Heather; Gatling, Anne; Anderson, Janice; Houle, Meredith; Kafka, Alan

    2006-01-01

    Researchers who have investigated the public understanding of science have argued that fictional cinema and television has proven to be particularly effective at blurring the distinction between fact and fiction. The rationale for this study lies in the notion that to teach science effectively, educators need to understand how popular culture…

  5. The Impact of Science Fiction Film on Student Understanding of Science

    Science.gov (United States)

    Barnett, Michael; Wagner, Heather; Gatling, Anne; Anderson, Janice; Houle, Meredith; Kafka, Alan

    2006-04-01

    Researchers who have investigated the public understanding of science have argued that fictional cinema and television has proven to be particularly effective at blurring the distinction between fact and fiction. The rationale for this study lies in the notion that to teach science effectively, educators need to understand how popular culture influences their students' perception and understanding of science. Using naturalistic research methods in a diverse middle school we found that students who watched a popular science fiction film, The Core, had a number of misunderstandings of earth science concepts when compared to students who did not watch the movie. We found that a single viewing of a science fiction film can negatively impact student ideas regarding scientific phenomena. Specifically, we found that the film leveraged the scientific authority of the main character, coupled with scientifically correct explanations of some basic earth science, to create a series of plausible, albeit unscientific, ideas that made sense to students.

  6. The Use of Triadic Dialogue in the Science Classroom: a Teacher Negotiating Conceptual Learning with Teaching to the Test

    Science.gov (United States)

    Salloum, Sara; BouJaoude, Saouma

    2017-08-01

    The purpose of this research is to better understand the uses and potential of triadic dialogue (initiation-response-feedback) as a dominant discourse pattern in test-driven environments. We used a Bakhtinian dialogic perspective to analyze interactions among high-stakes tests and triadic dialogue. Specifically, the study investigated (a) the global influence of high-stakes tests on knowledge types and cognitive processes presented and elicited by the science teacher in triadic dialogue and (b) the teacher's meaning making of her discourse patterns. The classroom talk occurred in a classroom where the teacher tried to balance conceptual learning with helping low-income public school students pass the national tests. Videos and transcripts of 20 grade 8 and 9 physical science sessions were analyzed qualitatively. Teacher utterances were categorized in terms of science knowledge types and cognitive processes. Explicitness and directionality of shifts among different knowledge types were analyzed. It was found that shifts between factual/conceptual/procedural-algorithmic and procedural inquiry were mostly dialectical and implicit, and dominated the body of concept development lessons. These shifts called for medium-level cognitive processes. Shifts between the different knowledge types and procedural-testing were more explicit and occurred mostly at the end of lessons. Moreover, the science teacher's focus on success and high expectations, her explicitness in dealing with high-stakes tests, and the relaxed atmosphere she created built a constructive partnership with the students toward a common goal of cracking the test. We discuss findings from a Bakhtinian dialogic perspective and the potential of triadic dialogue for teachers negotiating multiple goals and commitments.

  7. Conceptual framework for behavioral and social science in HIV vaccine clinical research.

    Science.gov (United States)

    Lau, Chuen-Yen; Swann, Edith M; Singh, Sagri; Kafaar, Zuhayr; Meissner, Helen I; Stansbury, James P

    2011-10-13

    HIV vaccine clinical research occurs within a context where biomedical science and social issues are interlinked. Previous HIV vaccine research has considered behavioral and social issues, but often treated them as independent of clinical research processes. Systematic attention to the intersection of behavioral and social issues within a defined clinical research framework is needed to address gaps, such as those related to participation in trials, completion of trials, and the overall research experience. Rigorous attention to these issues at project inception can inform trial design and conduct by matching research approaches to the context in which trials are to be conducted. Conducting behavioral and social sciences research concurrent with vaccine clinical research is important because it can help identify potential barriers to trial implementation, as well as ultimate acceptance and dissemination of trial results. We therefore propose a conceptual framework for behavioral and social science in HIV vaccine clinical research and use examples from the behavioral and social science literature to demonstrate how the model can facilitate identification of significant areas meriting additional exploration. Standardized use of the conceptual framework could improve HIV vaccine clinical research efficiency and relevance. Published by Elsevier Ltd.

  8. Teaching secondary science constructing meaning and developing understanding

    CERN Document Server

    Ross, Keith; McKechnie, Janet

    2010-01-01

    Now fully updated in its third edition Teaching Secondary Science is a comprehensive guide to all aspects of science teaching, providing a wealth of information and ideas about different approaches. With guidance on how children understand scientific ideas and the implications this has on teaching, teachers are encouraged to construct their own meanings and become reflective in their practice. Relating science to government agendas, such as the National Strategies, Assessment for Learning and Every Child Matters, this new edition reflects and maps to changes in national standards. Ke

  9. Conceptual framework for understanding the bidirectional links between food insecurity and HIV/AIDS1234

    Science.gov (United States)

    Young, Sera L; Cohen, Craig R; Kushel, Margot B; Tsai, Alexander C; Tien, Phyllis C; Hatcher, Abigail M; Frongillo, Edward A; Bangsberg, David R

    2011-01-01

    Food insecurity, which affects >1 billion people worldwide, is inextricably linked to the HIV epidemic. We present a conceptual framework of the multiple pathways through which food insecurity and HIV/AIDS may be linked at the community, household, and individual levels. Whereas the mechanisms through which HIV/AIDS can cause food insecurity have been fairly well elucidated, the ways in which food insecurity can lead to HIV are less well understood. We argue that there are nutritional, mental health, and behavioral pathways through which food insecurity leads to HIV acquisition and disease progression. Specifically, food insecurity can lead to macronutrient and micronutrient deficiencies, which can affect both vertical and horizontal transmission of HIV, and can also contribute to immunologic decline and increased morbidity and mortality among those already infected. Food insecurity can have mental health consequences, such as depression and increased drug abuse, which, in turn, contribute to HIV transmission risk and incomplete HIV viral load suppression, increased probability of AIDS-defining illness, and AIDS-related mortality among HIV-infected individuals. As a result of the inability to procure food in socially or personally acceptable ways, food insecurity also contributes to risky sexual practices and enhanced HIV transmission, as well as to antiretroviral therapy nonadherence, treatment interruptions, and missed clinic visits, which are strong determinants of worse HIV health outcomes. More research on the relative importance of each of these pathways is warranted because effective interventions to reduce food insecurity and HIV depend on a rigorous understanding of these multifaceted relationships. PMID:22089434

  10. Does using active learning in thermodynamics lectures improve students’ conceptual understanding and learning experiences?

    International Nuclear Information System (INIS)

    Georgiou, H; Sharma, M D

    2015-01-01

    Encouraging ‘active learning’ in the large lecture theatre emerges as a credible recommendation for improving university courses, with reports often showing significant improvements in learning outcomes. However, the recommendations are based predominantly on studies undertaken in mechanics. We set out to examine those claims in the thermodynamics module of a large first year physics course with an established technique, called interactive lecture demonstrations (ILDs). The study took place at The University of Sydney, where four parallel streams of the thermodynamics module were divided into two streams that experienced the ILDs and two streams that did not. The programme was first implemented in 2011 to gain experience and refine logistical matters and repeated in 2012 with approximately 500 students. A validated survey, the thermal concepts survey, was used as pre-test and post-test to measure learning gains while surveys and interviews provided insights into what the ‘active learning’ meant from student experiences. We analysed lecture recordings to capture the time devoted to different activities in a lecture, including interactivity. The learning gains were in the ‘high gain’ range for the ILD streams and ‘medium gain’ for the other streams. The analysis of the lecture recordings showed that the ILD streams devoted significantly more time to interactivity while surveys and interviews showed that students in the ILD streams were thinking in deep ways. Our study shows that ILDs can make a difference in students’ conceptual understanding as well as their experiences, demonstrating the potential value-add that can be provided by investing in active learning to enhance lectures. (paper)

  11. Retention in STEM: Understanding the Effectiveness of Science Posse

    Science.gov (United States)

    Godsoe, Kimberly

    One of the major areas of debate in higher education is how to best support underrepresented racial minority students in their study of Science, Technology, Engineering, and Math. In 2008, Brandeis University began a new program in conjunction with the Posse Foundation for students interested in studying science at the college-level. The research used a mixed methods design. A detailed quantitative analysis was conducted to understand how being part of Science Posse impacted the probability of doing well in initial science classes, influenced perceptions of the difficulty of studying science, and predicted the probability of majoring in STEM at Brandeis. The qualitative data was drawn from 89 student interviews, including 38 Science Posse Scholars, 24 students from backgrounds similar to the Scholars, and 25 students from well-resourced families. The qualitative analysis demonstrated how students had been exposed to the sciences prior to enrollment, how they navigated the sciences at Brandeis, and how they demonstrated resilience when science becomes challenging. This research study had four key findings. The first was in the quantitative analysis which demonstrated that Science Posse Scholars experience strong feelings of doubt about their academic abilities; based on previous research, this should have resulted in their not declaring majors in STEM disciplines. Instead, Science Posse Scholars were more likely to earn a B+ or above in their entry level science courses and declare a major in a STEM discipline, even when factors such as math and verbal SAT scores were included in the analysis. The second finding was in the qualitative analysis, which demonstrated that the cohort model in which Science Posse Scholars participate was instrumental to their success. The third finding was that students who attended academically less rigorous high schools could succeed in the sciences at a highly selective research institution such as Brandeis without academic remediation

  12. Facilitating conceptual change in students’ understanding of concepts related to pressure

    Science.gov (United States)

    Ozkan, Gulbin; Sezgin Selcuk, Gamze

    2016-09-01

    The aim of this research was to explore the effects of three different types of methods of learning physics (conceptual change-based, real life context-based and traditional learning) on high school physics students in the 11th grade in terms of conceptual change they achieved in learning about the various topics (pressure exerted by solids, pressure in stagnant liquids and gases, buoyancy, Bernoulli’s principle). In this study, a pre-test/post-test quasi-experimental method with nonequivalent control group, involving a 3 (group) × 2 (time) factorial design was used. Study group 1 were given the conceptual change texts on the mentioned subjects, study group 2 were offered a teaching approach based on real life context-based learning, whereas the control group was taught in the traditional style. Data for the research were collected with the ‘pressure conceptual test’. As a result of research, the number of misconceptions had been reduced or shifted altogether in all three groups. After the instruction, it was seen that none of the students formed new misconceptions. It was found that the most positive change could be seen in the conceptual change text group followed by context-based and lastly traditional. The fact that none of the students formed new misconceptions is important, particularly since research such as the following shows that conceptual change is tenuous and inconsistent, taking time to shift in a sustained manner.

  13. Elementary pre-service teachers' conceptual understanding of dissolving: a Vygotskian concept development perspective

    Science.gov (United States)

    Harrell, Pamela; Subramaniam, Karthigeyan

    2015-09-01

    Background and purpose: The purpose of this study was to investigate and identify the nature and the interrelatedness of pre-service teachers' misconceptions and scientific concepts for explaining dissolving before, during, and after a 5E learning cycle lesson on dissolving, the intervention. Sample, design, and methods: Guided by Vygotsky's theory of concept development, the study focused specifically on the spontaneous, and spontaneous pseudo-concepts held by the 61 elementary pre-service teachers during a 15-week science methods course. Data included concept maps, interview transcripts, written artifacts, drawings, and narratives, and were thematically analyzed to classify concepts and interrelatedness. Results: Results of the study showed that spontaneous pseudo-concepts (1) dominated pre-service teachers' understandings about dissolving throughout the study, and (2) were simply associated with scientific concepts during and after the intervention. Conclusion: Collectively, the results indicated that the pre-service teachers' did not acquire a unified system of knowledge about dissolving that could be characterized as abstract, generalizable, and hierarchical. Implications include the need for (1) familiarity with pre-service teachers' prior knowledge about science content; (2) a variety of formative assessments to assess their misconceptions; (3) emphasizing the importance of dialectical method for concept development during instruction; and (4) skillful content instructors.

  14. A Coalition on the Public Understanding of Science

    Science.gov (United States)

    Allison, L.; Hehn, J.; Kass, J.; O'Grady, R.; Scotchmoor, J.; Stucky, R.

    2006-12-01

    For many of the problems facing contemporary societies, such as potential impacts of climate change, coastal degradation, reductions of fisheries stocks, volcanic and earthquake hazards in densely populated areas, quality and availability of water, and exploitation of hydrocarbon resources and development of alternative energy sources, formulation of wise public policy depends on evaluation of the state of geoscientific research in the relevant areas. In a democratic society, public discourse about and input to policy decisions on key issues affecting the public welfare requires a public that understands the scientific research process, values the contribution of science to society, and has a working knowledge of what science can and cannot yet say about specific issues. Arguably, that ideal falls short in contemporary American society. Disturbing trends in science education, low public scientific literacy, and increasing alarms about U.S. competitiveness have all been prominent national news topics in recent years. (1) A recent National Science Board report indicated that two-thirds of Americans do not understand what science is, how it is conducted, and what one can expect from it. (2) A recent Gallup poll reports widespread and increasingly prevalent belief in pseudoscience. (3) There is a growing public complacency about and disengagement from science at the very moment when the impact of science on public life is greater than ever. (4) The Business Roundtable of major U.S. companies notes that the scientific and technical building blocks of our economic leadership are eroding at a time when many other nations are gathering strength. In response, a Coalition on the Public Understanding of Science COPUS has been initiated. Essential to COPUS is the premise that public understanding of science and the scientific process and an awareness of the impacts of scientific advancements on our quality of life are necessary to increase student interest in science as a

  15. Understanding the Heterogeneous Nature of Science: A Comprehensive Notion of PCK for Scientific Literacy

    Science.gov (United States)

    Van Dijk, Esther M.

    2014-01-01

    This paper is concerned with the conceptualization of pedagogical content knowledge (PCK) for teaching about the nature of science. In contrast to the view that science teachers need to develop a specific "PCK for nature of science," an alternative, more comprehensive notion of PCK for science teaching is suggested. The point of…

  16. Thinking processes of Filipino teachers representation of schema of some biology topics: Its effects to the students conceptual understanding

    Science.gov (United States)

    Barquilla, Manuel B.

    2018-01-01

    This study is a qualitative-quantitative research, where the main concern is to investigate Content knowledge representation of Filipino Teachers in their schema (proposition, linear ordering and imagery) of some biology topics. The five biology topics includes: Photosynthesis, Cellular Respiration, human reproductive system, Mendelian genetics and NonMendelian genetics. The study focuses on the six (6) biology teachers and a total of 222 students in their respective classes. Of the Six (6) teachers, three (3) are under the Science curriculum and three (3) under regular curriculum in both public and private schools in Iligan city and Lanao del Norte, Philippines. The study utilizes interpretative case-study method, bracketing method, and concept analysis for qualitative part. For quantitative, it uses a nonparametric statistical tool, Kendall's Tau to determine congruence of students and teachers' concept maps and paired t-test for testing the significant differences of pre-and post-instruction concept maps to determine the effects of students' conceptual understanding before and after the teacher's representation of their schema that requires the teachers' thinking processes. The data were cross-validated with two or more techniques used in the study. The data collection entailed seven (7) months immersion: one (1) month for preliminary phase for the researcher to gain teachers' and students' confidence and the succeeding six (6) months for main observation and data collection. Results indicate that the teacher utilize six methods to construct meaning of concepts, three methods of representing classification, four methods to represent relationships, seven methods to represent transformation and three methods to represent causation in planning and implementing the lessons. They often modify definitions in the textbook and express these in lingua franca to be better understood by the students. Furthermore, the teachers' analogs given to student are sometimes far

  17. Agriculture vs. social sciences: subject classification and sociological conceptualization of rural tourism in Scopus and Web of Science

    Directory of Open Access Journals (Sweden)

    Marjan HOČEVAR

    2016-12-01

    Full Text Available Agriculture and consumptive function of countryside (rural areas are connected which should be reflected in scientific research. In order to test relationships, we selected the topic of rural tourism (also agritourism, agrotourism, agricultural tourism considering sociological conceptualization (social sciences, sociology and methodological approaches of information sciences (bibliometrics, scientometrics in describing fields of science or scientific disciplines. We ascertained scatter of information in citation databases (Web of Science, Scopus, Google Scholar. Functionalities were evaluated, affecting search precision and recall in information retrieval. We mapped documents to Scopus subject areas as well as Web of Science (WOS research areas and subject categories, and related publications (journals. Databases do not differ substantially in mapping this topic. Social sciences (including economics or business occupy by far the most important place. The strongest concentration was found in tourism-related journals (consistent with power laws. Agriculture-related publications are rare, accounting for some 10 % of documents. Interdisciplinarity seems to be weak. Results point to poor inclusion of emerging social topics in agricultural research whereby agriculture may lose out in possible venues of future research.

  18. Different understanding: science through the eyes of visual thinkers

    Energy Technology Data Exchange (ETDEWEB)

    Sesko, S.C.; Marchant, M.

    1997-09-11

    The objective of this emergent study was to follow the cognitive and creative processes demonstrated by five art student participants as they integrated a developing knowledge of big science, as practiced at the Department of Energy`s Lawrence Livermore National Laboratory, into a personal and idiosyncratic visual, graphical, or multimedia product. The non-scientist participants involved in this process attended design classes sponsored by the Laboratory at the Art Center College of Design in California. The learning experience itself, and how the students arrived at their product, were the focus of the class and the research. The study was emergent in that we found no applicable literature on the use of art to portray a cognitive understanding of science. This lack of literature led us to the foundation literature on creativity and to the corpus of literature on public understanding of science. We believe that this study contributes to the literature on science education, art education, cognitive change, and public understanding of science. 20 refs., 11 figs.

  19. Appropriating religion: understanding religion as an object of science

    Directory of Open Access Journals (Sweden)

    Donald Wiebe

    1999-01-01

    Full Text Available In this paper, the author focuses on the study of religion as a scientific project, for it is the scientific interest in religion which has constituted the grounds for admitting the study of religion into the curriculum of the modern Western university. Despite that academic legitimation, however, the study of religion in the setting of the modern research university is not held in high esteem relative to the other sciences. It if the scientific study of religion is to be legitimately ensconced in the modern research university, the notion of religion will have to be wholly appropriated by science; only then will we be able to establish a conceptual foundation from which to make valid knowledge claims about religion on a level commensurate with the pronouncements of the natural and social sciences. Indeed, to go one step further, given the hold on the concept of religion by those committed to the humanistic study of religion, we might need to talk here not of the appropriation but of expropriation of religion by science—that is, of wresting ownership of the concept from the humanists by using it solely as a taxonomic device to differentiate and explain a peculiar range of human behaviour demonstrated in religious practices.

  20. Future Science Teachers' Understandings of Diffusion and Osmosis Concepts

    Science.gov (United States)

    Tomazic, Iztok; Vidic, Tatjana

    2012-01-01

    The concepts of diffusion and osmosis cross the disciplinary boundaries of physics, chemistry and biology. They are important for understanding how biological systems function. Since future (pre-service) science teachers in Slovenia encounter both concepts at physics, chemistry and biology courses during their studies, we assessed the first-,…

  1. Conceptual aspects of multidisciplinarity and interdisciplinarity and research in information science

    Directory of Open Access Journals (Sweden)

    Lucinéia Maria Bicalho

    2011-10-01

    Full Text Available This article presents the conceptual evolution of the terms of multidisciplinarity and interdisciplinarity, as well as basic ideas that identify the transdisciplinary approach, from broad theoretical framework. The text is part of PhD research whose main objective was to analyze the scientific research being done in the context of information science which involved the participation of more than one discipline. For this, the concepts presented here were used. So contemporary authors from different fields were studied to compose the conceptual framework in which the analysis was based. The survey results allowed us to draw a complete profile of research in the area regarding the use of the mentioned approaches, concluding that different forms and levels of interactions are found in research in information science and multidisciplinarity is the most common. It concluded also, in relation to aspects presented here, that the concepts have changed and that brought about significant changes in their meanings. These changes lead to the necessity of doing a review and update, within the science of information on the implications of being an interdisciplinary area, according to the meaning acquired by the term nowadays.

  2. Promoting Children's Understanding And Interest In Science Through Informal Science Education

    Science.gov (United States)

    Bartley, Jessica E.; Mayhew, Laurel M.; Finkelstein, Noah D.

    2009-11-01

    We present results from the University of Colorado's Partnership for Informal Science Education in the Community (PISEC) in which university participants work in afterschool programs on inquiry-based activities with primary school children from populations typically under represented in science. This university-community partnership is designed to positively impact youth, university students, and the institutions that support them while improving children's attitudes towards and understanding of science. Children worked through circuit activities adapted from the Physics and Everyday Thinking (PET) curriculum and demonstrated increased understanding of content area as well as favorable beliefs about science.

  3. Science Teachers' Understanding and Practice of Inquiry-Based Instruction in Uganda

    Science.gov (United States)

    Ssempala, Fredrick

    High school students in Uganda perform poorly in science subjects despite the Ugandan government's efforts to train science teachers and build modern science laboratories in many public high schools. The poor performance of students in science subjects has been largely blamed on the inability by many science teachers to teach science through Inquiry-Based Instruction (IBI) to motivate the students to learn science. However, there have been no empirical studies done to establish the factors that influence science teachers' understanding and practice of IBI in Uganda. Most of the published research on IBI has been conducted in developed countries, where the prevailing contexts are very different from the contexts in developing countries such as Uganda. Additionally, few studies have explored how professional development (PD) training workshops on inquiry and nature of science (NOS) affect chemistry teachers' understanding and practice of IBI. My purpose in this multi-case exploratory qualitative study was to explore the effect of a PD workshop on inquiry and NOS on chemistry teachers' understanding and practice of IBI in Kampala city public schools in Uganda. I also explored the relationship between chemistry teachers' NOS understanding and the nature of IBI implemented in their classrooms and the internal and external factors that influence teachers' understanding and practice of IBI. I used a purposive sampling procedure to identify two schools of similar standards from which I selected eight willing chemistry teachers (four from each school) to participate in the study. Half of the teachers (those from School A) attended the PD workshop on inquiry and NOS for six days, while the control group (those from School B) did not. I collected qualitative data through semi-structured interviews, classroom observation, and document analysis. I analyzed these data by structural, conceptual and theoretical coding approach. I established that all the participating chemistry

  4. The Effect of Constructivist Learning Using Scientific Approach on Mathematical Power and Conceptual Understanding of Students Grade IV

    Science.gov (United States)

    Kusmaryono, Imam; Suyitno, Hardi

    2016-02-01

    This study used a model of Concurrent Embedded with the aim of: (1) determine the difference between the conceptual understanding and mathematical power of students grade fourth who take the constructivist learning using scientific approach and direct learning, (2) determine the interaction between learning approaches and initial competence on the mathematical power and conceptual of understanding, and (3) describe the mathematical power of students grade fourth. This research was conducted in the fourth grade elementary school early 2015. Data initial competence and mathematical power obtained through tests, and analyzed using statistical tests multivariate and univariate. Statistical analysis of the results showed that: (1) There are differences in the concept of understanding and mathematical power among the students who follow the scientifically-based constructivist learning than students who take the Direct Learning in terms of students initial competency (F = 5.550; p = 0.007 problem solving and contributes tremendous increase students' math skills. Researcher suggested that the learning of mathematics in schools using scientifically- based constructivist approach to improve the mathematical power of students and conceptual understanding.

  5. The effect of problem posing and problem solving with realistic mathematics education approach to the conceptual understanding and adaptive reasoning

    Science.gov (United States)

    Mahendra, Rengga; Slamet, Isnandar; Budiyono

    2017-12-01

    One of the difficulties of students in learning mathematics is on the subject of geometry that requires students to understand abstract things. The aim of this research is to determine the effect of learning model Problem Posing and Problem Solving with Realistic Mathematics Education Approach to conceptual understanding and students' adaptive reasoning in learning mathematics. This research uses a kind of quasi experimental research. The population of this research is all seventh grade students of Junior High School 1 Jaten, Indonesia. The sample was taken using stratified cluster random sampling technique. The test of the research hypothesis was analyzed by using t-test. The results of this study indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students' conceptual understanding significantly in mathematics learning. In addition tu, the results also showed that the model of Problem Solving learning with Realistic Mathematics Education Approach can improve students' adaptive reasoning significantly in learning mathematics. Therefore, the model of Problem Posing and Problem Solving learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on the subject of geometry so as to improve conceptual understanding and students' adaptive reasoning. Furthermore, the impact can improve student achievement.

  6. The effect of directive tutor guidance on students' conceptual understanding of statistics in problem-based learning.

    Science.gov (United States)

    Budé, Luc; van de Wiel, Margaretha W J; Imbos, Tjaart; Berger, Martijn P F

    2011-06-01

    Education is aimed at students reaching conceptual understanding of the subject matter, because this leads to better performance and application of knowledge. Conceptual understanding depends on coherent and error-free knowledge structures. The construction of such knowledge structures can only be accomplished through active learning and when new knowledge can be integrated into prior knowledge. The intervention in this study was directed at both the activation of students as well as the integration of knowledge. Undergraduate university students from an introductory statistics course, in an authentic problem-based learning (PBL) environment, were randomly assigned to conditions and measurement time points. In the PBL tutorial meetings, half of the tutors guided the discussions of the students in a traditional way. The other half guided the discussions more actively by asking directive and activating questions. To gauge conceptual understanding, the students answered open-ended questions asking them to explain and relate important statistical concepts. Results of the quantitative analysis show that providing directive tutor guidance improved understanding. Qualitative data of students' misconceptions seem to support this finding. Long-term retention of the subject matter seemed to be inadequate. ©2010 The British Psychological Society.

  7. Effectiveness of Science-Technology-Society (STS) Instruction on Student Understanding of the Nature of Science and Attitudes toward Science

    Science.gov (United States)

    Akcay, Behiye; Akcay, Hakan

    2015-01-01

    The study reports on an investigation about the impact of science-technology-society (STS) instruction on middle school student understanding of the nature of science (NOS) and attitudes toward science compared to students taught by the same teacher using traditional textbook-oriented instruction. Eight lead teachers used STS instruction an…

  8. Threshold concepts as barriers to understanding climate science

    Science.gov (United States)

    Walton, P.

    2013-12-01

    Whilst the scientific case for current climate change is compelling, the consequences of climate change have largely failed to permeate through to individuals. This lack of public awareness of the science and the potential impacts could be considered a key obstacle to action. The possible reasons for such limited success centre on the issue that climate change is a complex subject, and that a wide ranging academic, political and social research literature on the science and wider implications of climate change has failed to communicate the key issues in an accessible way. These failures to adequately communicate both the science and the social science of climate change at a number of levels results in ';communication gaps' that act as fundamental barriers to both understanding and engagement with the issue. Meyer and Land (2003) suggest that learners can find certain ideas and concepts within a discipline difficult to understand and these act as a barrier to deeper understanding of a subject. To move beyond these threshold concepts, they suggest that the expert needs to support the learner through a range of learning experiences that allows the development of learning strategies particular to the individual. Meyer and Land's research into these threshold concepts has been situated within Economics, but has been suggested to be more widely applicable though there has been no attempt to either define or evaluate threshold concepts to climate change science. By identifying whether common threshold concepts exist specifically in climate science for cohorts of either formal or informal learners, scientists will be better able to support the public in understanding these concepts by changing how the knowledge is communicated to help overcome these barriers to learning. This paper reports on the findings of a study that examined the role of threshold concepts as barriers to understanding climate science in a UK University and considers its implications for wider

  9. Conceptual Demand of Practical Work in Science Curricula. A Methodological Approach

    Science.gov (United States)

    Ferreira, Sílvia; Morais, Ana M.

    2014-02-01

    This article addresses the issue of the level of complexity of practical work in science curricula and is focused on the discipline of Biology and Geology at high school. The level of complexity is seen in terms of the emphasis on and types of practical work and, most importantly, in terms of its level of conceptual demand as given by the complexity of scientific knowledge, the degree of inter-relation between knowledges, and the complexity of cognitive skills. The study also analyzes recontextualizing processes that may occur within the official recontextualizing field. The study is psychologically and sociologically grounded, particularly on Bernstein's theory of pedagogic discourse. It uses a mixed methodology. The results show that practical work is poorly represented in the curriculum, particularly in the case of laboratory work. The level of conceptual demand of practical work varies according to the text under analysis, between the two subjects Biology and Geology, and, within each of them, between general and specific guidelines. Aspects studied are not clearly explicated to curriculum receivers (teachers and textbooks authors). The meaning of these findings is discussed in the article. In methodological terms, the study explores assumptions used in the analysis of the level of conceptual demand and presents innovative instruments constructed for developing this analysis.

  10. A guide to understanding social science research for natural scientists.

    Science.gov (United States)

    Moon, Katie; Blackman, Deborah

    2014-10-01

    Natural scientists are increasingly interested in social research because they recognize that conservation problems are commonly social problems. Interpreting social research, however, requires at least a basic understanding of the philosophical principles and theoretical assumptions of the discipline, which are embedded in the design of social research. Natural scientists who engage in social science but are unfamiliar with these principles and assumptions can misinterpret their results. We developed a guide to assist natural scientists in understanding the philosophical basis of social science to support the meaningful interpretation of social research outcomes. The 3 fundamental elements of research are ontology, what exists in the human world that researchers can acquire knowledge about; epistemology, how knowledge is created; and philosophical perspective, the philosophical orientation of the researcher that guides her or his action. Many elements of the guide also apply to the natural sciences. Natural scientists can use the guide to assist them in interpreting social science research to determine how the ontological position of the researcher can influence the nature of the research; how the epistemological position can be used to support the legitimacy of different types of knowledge; and how philosophical perspective can shape the researcher's choice of methods and affect interpretation, communication, and application of results. The use of this guide can also support and promote the effective integration of the natural and social sciences to generate more insightful and relevant conservation research outcomes. © 2014 Society for Conservation Biology.

  11. Investigating Relationships among Pre-Service Science Teachers' Conceptual Knowledge of Electric Current, Motivational Beliefs and Self-Regulation

    Science.gov (United States)

    Inaltun, Hüseyin; Ates, Salih

    2015-01-01

    The purpose of this study is to examine relationships among pre-service science teachers' conceptual knowledge of electric current, motivational beliefs, and self-regulation. One hundred and twenty-seven students (female = 107, male = 20) enrolled in the science education program of a public university in Ankara participated the study. A concept…

  12. Metaconceptually-Enhanced Simulation-Based Inquiry: Effects on Eighth Grade Students' Conceptual Change and Science Epistemic Beliefs

    Science.gov (United States)

    Huang, Kun; Ge, Xun; Eseryel, Deniz

    2017-01-01

    This study investigated the effects of metaconceptually-enhanced, simulation-based inquiry learning on eighth grade students' conceptual change in science and their development of science epistemic beliefs. Two experimental groups studied the topics of motion and force using the same computer simulations but with different simulation guides: one…

  13. Researching Collective Bargaining Agreements: Building Conceptual Understanding in an Era of Declining Union Power

    Science.gov (United States)

    Osborne-Lampkin, La'Tara; Cohen-Vogel, Lora; Feng, Li; Wilson, Jerry J.

    2018-01-01

    Here, we examine over two decades of empirical literature to explore the ways scholars have been working to reveal the changing set of policy and political conditions in which teachers unions are operating. In this context, we identify the conceptual models educational researchers have used to frame their research and the applications of these…

  14. Investigating Alignment between Elementary Mathematics Teacher Education and Graduates' Teaching of Mathematics for Conceptual Understanding

    Science.gov (United States)

    Jansen, Amanda; Berk, Dawn; Meikle, Erin

    2017-01-01

    In this article, Amanda Jansen, Dawn Berk, and Erin Meikle investigate the impact of mathematics teacher education on teaching practices. In their study they interviewed six first-year teachers who graduated from the same elementary teacher education program and who were oriented toward teaching mathematics conceptually. They observed each teacher…

  15. A Lakatosian Conceptual Change Teaching Strategy Based on Student Ability to Build Models with Varying Degrees of Conceptual Understanding of Chemical Equilibrium

    Science.gov (United States)

    Niaz, M.

    The main objective of this study is to construct a Lakatosian teaching strategy that can facilitate conceptual change in students'' understanding of chemical equilibrium. The strategy is based on the premise that cognitive conflicts must have been engendered by the students themselves in trying to cope with different problem solving strategies. Results obtained (based on Venezuelan freshman students) show that the performance of the experimental group of students was generally better (especially on the immediate post tests) than that of the control group. It is concluded that a conceptual change teaching strategy must take into consideration the following aspects: a) core beliefs of the students in the topic (cf. ''hard core'', Lakatos 1970); b) exploration of the relationship between core beliefs and student alternative conceptions (misconceptions); c) cognitive complexity of the core belief can be broken down into a series of related and probing questions; d) students resist changes in their core beliefs by postulating ''auxiliary hypotheses'' in order to resolve their contradictions; e) students'' responses based on their alternative conceptions must be considered not as wrong, but rather as models, perhaps in the same sense as used by scientists to break the complexity of a problem; and f) students'' misconceptions be considered as alternative conceptions (theories) that compete with the present scientific theories and at times recapitulate theories scientists held in the past.

  16. Building a Science Software Institute: Synthesizing the Lessons Learned from the ISEES and WSSI Software Institute Conceptualization Efforts

    Science.gov (United States)

    Idaszak, R.; Lenhardt, W. C.; Jones, M. B.; Ahalt, S.; Schildhauer, M.; Hampton, S. E.

    2014-12-01

    The NSF, in an effort to support the creation of sustainable science software, funded 16 science software institute conceptualization efforts. The goal of these conceptualization efforts is to explore approaches to creating the institutional, sociological, and physical infrastructures to support sustainable science software. This paper will present the lessons learned from two of these conceptualization efforts, the Institute for Sustainable Earth and Environmental Software (ISEES - http://isees.nceas.ucsb.edu) and the Water Science Software Institute (WSSI - http://waters2i2.org). ISEES is a multi-partner effort led by National Center for Ecological Analysis and Synthesis (NCEAS). WSSI, also a multi-partner effort, is led by the Renaissance Computing Institute (RENCI). The two conceptualization efforts have been collaborating due to the complementarity of their approaches and given the potential synergies of their science focus. ISEES and WSSI have engaged in a number of activities to address the challenges of science software such as workshops, hackathons, and coding efforts. More recently, the two institutes have also collaborated on joint activities including training, proposals, and papers. In addition to presenting lessons learned, this paper will synthesize across the two efforts to project a unified vision for a science software institute.

  17. The Implementation of Problem-Based Learning to Increase Students’ Conceptual Understanding According to a Christian Perspective

    Directory of Open Access Journals (Sweden)

    Hans David Lasut

    2016-01-01

    Full Text Available In the world of education, it is important that the teacher considers knowledge that students gain in school that can be applied in various situations in a student’s life either during the course of their formal education or when facing real-life problems. The inability to apply knowledge is termed as a lack of conceptual understanding. The researcher hypothesized that Problem Based Learning (PBL will overcome this problem. The aim of this research is to determine whether the implementation of PBL can increase student’s conceptual understanding and to discover effective ways to implement PBL in order to increase the student’s conceptual understanding. This research is Classroom Action Research and is two-cycle research where the researcher used  written tests, questionnaires,  interviews of teachers and students, teacher’s observation forms, and journal reflections as instruments to measure the student’s conceptual understanding and the implementation of PBL based on a Christian perspective. Based on the analysis and discussion, it can be concluded that the implementation of problem-based learning can increase the student’s conceptual understanding according to a Christian perspective. BAHASA INDONESIA ABSTRAK: Dalam dunia pendidikan, sangatlah penting bagi seorang guru untuk memperhatikan bahwa pengetahuan yang sudah siswa pelajari di sekolah dapat diaplikasikan dalam berbagai situasi baik saat siswa di sekolah maupun ketika mereka diperhadapkan dengan masalah dalam kehidupan. Ketidakmampuan siswa untuk mengaplikasikan pengetahuan yang sudah didapatkan dapat disebut sebagai kurangnya penguasaan konsep. Peneliti memutuskan untuk menggunakan Metoda Pembelajaran Berbasis Masalah (MPBM untuk mengatasi masalah ini. Tujuan dari penelitian ini adalah untuk menemukan apakah penerapan MPBM dapat meningkatkan penguasaan konsep siswa dan langkah-langkah efektif untuk menerapkan MPBM dengan maksud untuk meningkatkan penguasaan konsep siswa

  18. Understanding Global Change: A New Conceptual Framework To Guide Teaching About Planetary Systems And Both The Causes And Effects Of Changes In Those Systems

    Science.gov (United States)

    Levine, J.; Bean, J. R.

    2016-12-01

    Goals of the Next Generation Science Standards include understanding climate change and learning about ways to moderate the causes and mitigate the consequences of planetary-scale anthropogenic activities that interact synergistically to affect ecosystems and societies. The sheer number and scale of both causes and effects of global change can be daunting for teachers, and the lack of a clear conceptual framework for presenting this material usually leads educators (and textbooks) to present these phenomenon as a disjointed "laundry list." But an alternative approach is in the works. The Understanding Global Change web resource, currently under development at the UC Berkeley Museum of Paleontology, will provide educators with a conceptual framework, graphic models, lessons, and assessment templates for teaching NGSS-aligned, interdisciplinary, global change curricula. The core of this resource is an original informational graphic that presents and relates Earth's global systems, human and non-human factors that produce changes in those systems, and the effects of those changes that scientists can measure.

  19. How we understand mathematics conceptual integration in the language of mathematical description

    CERN Document Server

    Woźny, Jacek

    2018-01-01

    This volume examines mathematics as a product of the human mind and analyzes the language of "pure mathematics" from various advanced-level sources. Through analysis of the foundational texts of mathematics, it is demonstrated that math is a complex literary creation, containing objects, actors, actions, projection, prediction, planning, explanation, evaluation, roles, image schemas, metonymy, conceptual blending, and, of course, (natural) language. The book follows the narrative of mathematics in a typical order of presentation for a standard university-level algebra course, beginning with analysis of set theory and mappings and continuing along a path of increasing complexity. At each stage, primary concepts, axioms, definitions, and proofs will be examined in an effort to unfold the tell-tale traces of the basic human cognitive patterns of story and conceptual blending. This book will be of interest to mathematicians, teachers of mathematics, cognitive scientists, cognitive linguists, and anyone interested...

  20. Development of the Exam of GeoloGy Standards, EGGS, to Measure Students' Conceptual Understanding of Geology Concepts

    Science.gov (United States)

    Guffey, S. K.; Slater, T. F.; Slater, S. J.

    2017-12-01

    Discipline-based geoscience education researchers have considerable need for criterion-referenced, easy-to-administer and easy-to-score, conceptual diagnostic surveys for undergraduates taking introductory science survey courses in order for faculty to better be able to monitor the learning impacts of various interactive teaching approaches. To support ongoing discipline-based science education research to improve teaching and learning across the geosciences, this study establishes the reliability and validity of a 28-item, multiple-choice, pre- and post- Exam of GeoloGy Standards, hereafter simply called EGGS. The content knowledge EGGS addresses is based on 11 consensus concepts derived from a systematic, thematic analysis of the overlapping ideas presented in national science education reform documents including the Next Generation Science Standards, the AAAS Benchmarks for Science Literacy, the Earth Science Literacy Principles, and the NRC National Science Education Standards. Using community agreed upon best-practices for creating, field-testing, and iteratively revising modern multiple-choice test items using classical item analysis techniques, EGGS emphasizes natural student language over technical scientific vocabulary, leverages illustrations over students' reading ability, specifically targets students' misconceptions identified in the scholarly literature, and covers the range of topics most geology educators expect general education students to know at the end of their formal science learning experiences. The current version of EGGS is judged to be valid and reliable with college-level, introductory science survey students based on both standard quantitative and qualitative measures, including extensive clinical interviews with targeted students and systematic expert review.

  1. An updated conceptual model of Delta Smelt biology: Our evolving understanding of an estuarine fish

    Science.gov (United States)

    Baxter, Randy; Brown, Larry R.; Castillo, Gonzalo; Conrad, Louise; Culberson, Steven D.; Dekar, Matthew P.; Dekar, Melissa; Feyrer, Frederick; Hunt, Thaddeus; Jones, Kristopher; Kirsch, Joseph; Mueller-Solger, Anke; Nobriga, Matthew; Slater, Steven B.; Sommer, Ted; Souza, Kelly; Erickson, Gregg; Fong, Stephanie; Gehrts, Karen; Grimaldo, Lenny; Herbold, Bruce

    2015-01-01

    The main purpose of this report is to provide an up-to-date assessment and conceptual model of factors affecting Delta Smelt (Hypomesus transpacificus) throughout its primarily annual life cycle and to demonstrate how this conceptual model can be used for scientific and management purposes. The Delta Smelt is a small estuarine fish that only occurs in the San Francisco Estuary. Once abundant, it is now rare and has been protected under the federal and California Endangered Species Acts since 1993. The Delta Smelt listing was related to a step decline in the early 1980s; however, population abundance decreased even further with the onset of the “pelagic organism decline” (POD) around 2002. A substantial, albeit short-lived, increase in abundance of all life stages in 2011 showed that the Delta Smelt population can still rebound when conditions are favorable for spawning, growth, and survival. In this report, we update previous conceptual models for Delta Smelt to reflect new data and information since the release of the last synthesis report about the POD by the Interagency Ecological Program for the San Francisco Estuary (IEP) in 2010. Specific objectives include:

  2. The Development of a Conceptual Framework for New K-12 Science Education Standards (Invited)

    Science.gov (United States)

    Keller, T.

    2010-12-01

    The National Academy of Sciences has created a committee of 18 National Academy of Science and Engineering members, academic scientists, cognitive and learning scientists, and educators, educational policymakers and researchers to develop a framework to guide new K-12 science education standards. The committee began its work in January, 2010, released a draft of the framework in July, 2010, and intends to have the final framework in the first quarter of 2011. The committee was helped in early phases of the work by consultant design teams. The framework is designed to help realize a vision for science and engineering education in which all students actively engage in science and engineering practices in order to deepen their understanding of core ideas in science over multiple years of school. These three dimensions - core disciplinary ideas, science and engineering practices, and cross-cutting elements - must blend together to build an exciting, relevant, and forward looking science education. The framework will be used as a base for development of next generation K-12 science education standards.

  3. The role of conceptual knowledge in understanding synaesthesia: Evaluating contemporary findings from a ‘hub-and-spoke’ perspective

    Directory of Open Access Journals (Sweden)

    Rocco eChiou

    2014-02-01

    Full Text Available Synaesthesia is a phenomenon in which stimulation in one sensory modality triggers involuntary experiences typically not associated with that stimulation. Inducing stimuli (inducers and synaesthetic experiences (concurrents may occur within the same modality (e.g., seeing colours while reading achromatic text or span across different modalities (e.g., tasting flavours while listening to music. Although there has been considerable progress over the last decade in understanding the cognitive and neural mechanisms of synaesthesia, the focus of current neurocognitive models of synaesthesia does not encompass many crucial psychophysical characteristics documented in behavioural research. Prominent theories of the neurophysiological basis of synaesthesia construe it as a perceptual phenomenon and hence focus primarily on the modality-specific brain regions for perception. Many behavioural studies, however, suggest an essential role for conceptual-level information in synaesthesia. For example, there is evidence that synaesthetic experience arises subsequent to identification of an inducing stimulus, differs substantially from real perceptual events, can be akin to perceptual memory, and is susceptible to lexical/semantic contexts. These data suggest that neural mechanisms lying beyond the realm of the perceptual cortex (especially the visual system, such as regions subserving conceptual knowledge, may play pivotal roles in the neural architecture of synaesthesia. Here we discuss the significance of non-perceptual mechanisms that call for a re-evaluation of the emphasis on synaesthesia as a perceptual phenomenon. We also review recent studies which hint that some aspects of synaesthesia resemble our general conceptual knowledge for object attributes, at both psychophysical and neural level. We then present a conceptual-mediation model of synaesthesia in which the inducer and concurrent are linked within a conceptual-level representation. This

  4. Conceptual and procedural knowledge community college students use when solving a complex science problem

    Science.gov (United States)

    Steen-Eibensteiner, Janice Lee

    2006-07-01

    A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as

  5. Understandings of Nature of Science and Multiple Perspective Evaluation of Science News by Non-science Majors

    Science.gov (United States)

    Leung, Jessica Shuk Ching; Wong, Alice Siu Ling; Yung, Benny Hin Wai

    2015-10-01

    Understandings of nature of science (NOS) are a core component of scientific literacy, and a scientifically literate populace is expected to be able to critically evaluate science in the media. While evidence has remained inconclusive on whether better NOS understandings will lead to critical evaluation of science in the media, this study aimed at examining the correlation therein. Thirty-eight non-science majors, enrolled in a science course for non-specialists held in a local community college, evaluated three health news articles by rating the extent to which they agreed with the reported claims and providing as many justifications as possible. The majority of the participants were able to evaluate and justify their viewpoint from multiple perspectives. Students' evaluation was compared with their NOS conceptions, including the social and cultural embedded NOS, the tentative NOS, the peer review process and the community of practice. Results indicated that participants' understanding of the tentative NOS was significantly correlated with multiple perspective evaluation of science news reports of socioscientific nature (r = 0.434, p media of socioscientific nature. However, the null result for other target NOS aspects in this study suggested a lack of evidence to assume that understanding the social dimensions of science would have significant influence on the evaluation of science in the media. Future research on identifying the reasons for why and why not NOS understandings are applied in the evaluation will move this field forward.

  6. Improving Conceptual Understanding and Representation Skills through Excel-Based Modeling

    Science.gov (United States)

    Malone, Kathy L.; Schunn, Christian D.; Schuchardt, Anita M.

    2018-01-01

    The National Research Council framework for science education and the Next Generation Science Standards have developed a need for additional research and development of curricula that is both technologically model-based and includes engineering practices. This is especially the case for biology education. This paper describes a quasi-experimental…

  7. The Effect of Cooperative Learning with DSLM on Conceptual Understanding and Scientific Reasoning among Form Four Physics Students with Different Motivation Levels

    Directory of Open Access Journals (Sweden)

    M.S. Hamzah

    2010-11-01

    Full Text Available The purpose of this study was to investigate the effect of Cooperative Learning with a Dual Situated Learning Model (CLDSLM and a Dual Situated Learning Model (DSLM on (a conceptual understanding (CU and (b scientific reasoning (SR among Form Four students. The study further investigated the effect of the CLDSLM and DSLM methods on performance in conceptual understanding and scientific reasoning among students with different motivation levels. A quasi-experimental method with the 3 x 2 Factorial Design was applied in the study. The sample consisted of 240 stu¬dents in six (form four classes selected from three different schools, i.e. two classes from each school, with students randomly selected and assigned to the treatment groups. The results showed that students in the CLDSLM group outperformed their counterparts in the DSLM group—who, in turn, significantly outperformed other students in the traditional instructional method (T group in scientific reasoning and conceptual understanding. Also, high-motivation (HM students in the CLDSLM group significantly outperformed their counterparts in the T groups in conceptual understanding and scientific reasoning. Furthermore, HM students in the CLDSLM group significantly outperformed their counterparts in the DSLM group in scientific reasoning but did not significantly outperform their counterparts on conceptual understanding. Also, the DSLM instructional method has significant positive effects on highly motivated students’ (a conceptual understanding and (b scientific reason¬ing. The results also showed that LM students in the CLDSLM group significantly outperformed their counterparts in the DSLM group and (T method group in scientific reasoning and conceptual understanding. However, the low-motivation students taught via the DSLM instructional method significantly performed higher than the low-motivation students taught via the T method in scientific reasoning. Nevertheless, they did not

  8. Improving conceptual understanding by inductive teaching: an example of its success

    DEFF Research Database (Denmark)

    Nauta, Maarten

    We are teaching a PhD/MSc course on quantitative microbiological risk assessment with up to 20 students with a varying (international) background and two teachers. We have experienced a challenge in explaining one of the key concepts in the theory. It requires that the students adopt a way...... choose to try the use of an inductive instead of a deductive approach, based on Kolb’s learning cycle (experience, reflection, conceptualization, practice). The performance of the students after application of the inductive approach was compared with the performance with the old approach....

  9. Guidance for Science Data Centers through Understanding Metrics

    Science.gov (United States)

    Moses, J. F.

    2006-12-01

    NASA has built a multi-year set of transaction and user satisfaction information about the evolving, broad collection of earth science products from a diverse set of users of the Earth Observing System Data and Information System (EOSDIS). The transaction and satisfaction trends provide corroborative information to support perception and intuition, and can often be the basis for understanding the results of cross-cutting initiatives and for management decisions about future strategies. The information is available through two fundamental complementary methods, product and user transaction data collected regularly from the major science data centers, and user satisfaction information collected through the American Customer Satisfaction Index survey. The combination provides the fundamental data needed to understand utilization trends in the research community. This paper will update trends based on 2006 metrics from the NASA earth science data centers and results from the 2006 EOSDIS ACSI survey. Principle concepts are explored that lead to sound guidance for data center managers and strategists over the next year.

  10. Translating Neuroscience, Psychology and Education: An Abstracted Conceptual Framework for the Learning Sciences

    Science.gov (United States)

    Donoghue, Gregory M.; Horvath, Jared C.

    2016-01-01

    Educators strive to understand and apply knowledge gained through scientific endeavours. Yet, within the various sciences of learning, particularly within educational neuroscience, there have been instances of seemingly contradictory or incompatible research findings and theories. We argue that this situation arises through confusion between…

  11. Understanding How Domestic Violence Support Services Promote Survivor Well-being: A Conceptual Model.

    Science.gov (United States)

    Sullivan, Cris M

    2018-01-01

    Domestic violence (DV) victim service programs have been increasingly expected by legislators and funders to demonstrate that they are making a significant difference in the lives of those using their services. Alongside this expectation, they are being asked to describe the Theory of Change guiding how they believe their practices lead to positive results for survivors and their children. Having a widely accepted conceptual model is not just potentially useful to funders and policy makers as they help shape policy and practice -- it can also help programs continually reflect upon and improve their work. This paper describes the iterative and collaborative process undertaken to generate a conceptual model describing how DV victim services are expected to improve survivors' lives. The Social and Emotional Well-Being Framework guiding the model is an ideal structure to use to describe the goals and practices of DV programs because this framework: (1) accurately represents DV programs' goal of helping survivors and their children thrive; and (2) recognizes the importance of community, social, and societal context in influencing individuals' social and emotional well-being. The model was designed to guide practice and to generate new questions for research and evaluation that address individual, community, and systems factors that promote or hinder survivor safety and well-being.

  12. Conceptualizing neurodevelopmental disorders through a mechanistic understanding of fragile X syndrome and Williams syndrome.

    Science.gov (United States)

    Fung, Lawrence K; Quintin, Eve-Marie; Haas, Brian W; Reiss, Allan L

    2012-04-01

    The overarching goal of this review is to compare and contrast the cognitive-behavioral features of fragile X syndrome (FraX) and Williams syndrome and to review the putative neural and molecular underpinnings of these features. Information is presented in a framework that provides guiding principles for conceptualizing gene-brain-behavior associations in neurodevelopmental disorders. Abnormalities, in particular cognitive-behavioral domains with similarities in underlying neurodevelopmental correlates, occur in both FraX and Williams syndrome including aberrant frontostriatal pathways leading to executive function deficits, and magnocellular/dorsal visual stream, superior parietal lobe, inferior parietal lobe, and postcentral gyrus abnormalities contributing to deficits in visuospatial function. Compelling cognitive-behavioral and neurodevelopmental contrasts also exist in these two disorders, for example, aberrant amygdala and fusiform cortex structure and function occurring in the context of contrasting social behavioral phenotypes, and temporal cortical and cerebellar abnormalities potentially underlying differences in language function. Abnormal dendritic development is a shared neurodevelopmental morphologic feature between FraX and Williams syndrome. Commonalities in molecular machinery and processes across FraX and Williams syndrome occur as well - microRNAs involved in translational regulation of major synaptic proteins; scaffolding proteins in excitatory synapses; and proteins involved in axonal development. Although the genetic variations leading to FraX and Williams syndrome are different, important similarities and contrasts in the phenotype, neurocircuitry, molecular machinery, and cellular processes in these two disorders allow for a unique approach to conceptualizing gene-brain-behavior links occurring in neurodevelopmental disorders.

  13. Understanding Materials Science History · Properties · Applications

    CERN Document Server

    Hummel, Rolf E

    2005-01-01

    This introduction to materials science both for students of engineering and physics and for the interested general public examines not only the physical and engineering properties of virtually all kinds of materials, but also their history, uses, development, and some of the implications of resource depletion and recycling. It covers all topics on materials from an entirely novel perspective: the role materials have played throughout history in the development of humankind and technologies. Specifically, it shows the connection between the technical and the cultural, economic, ecological, and societal aspects of materials science. It aims to whet the appetite of its readers and inspire them to further explore the properties and applications of metals, alloys, ceramics, plastics, and electronic materials by presenting easily understandable explanations and entertaining historical facts. It is also intended to raise the reader’s awareness of their obligations to society as practicing engineers and scientists....

  14. The science and art of simulation I exploring, understanding, knowing

    CERN Document Server

    Kaminski, Andreas; Gehring, Petra

    2017-01-01

    The new book series “The Science and Art of Simulation” (SAS) addresses computer simulations as a scientific activity and engineering artistry (in the sense of a technē). The first volume is devoted to three topics: 1. The Art of Exploring Computer Simulations Philosophy began devoting attention to computer simulations at a relatively early stage. Since then, the unquestioned point of view has been that computer simulation is a new scientific method; the philosophy of simulation is therefore part of the philosophy of science. The first section of this volume discusses this implicit, unchallenged assumption by addressing, from different perspectives, the question of how to explore (and how not to explore) research on computer simulations. Scientists discuss what is still lacking or considered problematic, while philosophers draft new directions for research, and both examine the art of exploring computer simulations. 2. The Art of Understanding Computer Simulations The results of computer simulations are ...

  15. [Empowerment in prevention and health promotion--a critical conceptual evaluation of basic understanding, dimensions and assessment problems].

    Science.gov (United States)

    Kliche, T; Kröger, G

    2008-12-01

    Empowerment is an important concept in health care, but despite its prevalence it seems to be more of a buzz word. Thus, a conceptual review on empowerment in prevention and health promotion was carried out. 62 German and international theoretical contributions, reviews and studies were incorporated, covering the fields of prevention, care and therapy, rehabilitation, health-care research, nursing and work-related stress. The analysis revealed eight main dimensions of empowerment: (1) shared decision-making, (2) self-efficacy, (3) social support and social capital, (4) skills and competences, (5) health care utilisation, (6) goal setting and attainment, (7) reflexive thought and (8) innovation. Their empirical assessment can be carried out on a micro-, meso-, or macro-level. Three distinct basic conceptual notions emerged from the analysis, each applying its own specific research questions and measurement instruments: clinical, organizational-professional and political understanding of "empowerment". Therefore, these three specific conceptual notions should each be developed and tested separately, in particular in reviews, and empirical studies should embrace all eight subdimensions.

  16. Science for Alaska: Public Understanding of University Research Priorities

    Science.gov (United States)

    Campbell, D.

    2015-12-01

    Science for Alaska: Public Understanding of Science D. L. Campbell11University of Alaska Fairbanks, USA Around 200 people brave 40-below-zero temperatures to listen to university researchers and scientists give lectures about their work at an event called the Science for Alaska Lecture Series, hosted by the University of Alaska Fairbanks Geophysical Institute. It is held once a week, for six weeks during the coldest part of a Fairbanks, Alaska, winter. The topics range from space physics to remote sensing. The lectures last for 45 minutes with 15 minutes for audience questions and answers. It has been popular for about 20 years and is one of many public outreach efforts of the institute. The scientists are careful in their preparations for presentations and GI's Public Relations staff chooses the speakers based on topic, diversity and public interest. The staff also considers the speaker's ability to speak to a general audience, based on style, clarity and experience. I conducted a qualitative research project to find out about the people who attended the event, why they attend and what they do with the information they hear about. The participants were volunteers who attended the event and either stayed after the lectures for an interview or signed up to be contacted later. I used used an interview technique with open-ended questions, recorded and transcribed the interview. I identified themes in the interviews, using narrative analysis. Preliminary data show that the lecture series is a form of entertainment for people who are highly educated and work in demanding and stressful jobs. They come with family and friends. Sometimes it's a date with a significant other. Others want to expose their children to science. The findings are in keeping with the current literature that suggests that public events meant to increase public understanding of science instead draws like-minded people. The findings are different from Campbell's hypothesis that attendance was based

  17. Earth Science Week 2009, "Understanding Climate", Highlights and News Clippings

    Energy Technology Data Exchange (ETDEWEB)

    Robeck, Edward C. [American Geological Inst., Alexandria, VA (United States)

    2010-01-05

    The American Geological Institute (AGI) proposes to expand its influential Earth Science Week Program in 2009, with the support of the U.S. Department of Energy, to disseminate DOE's key messages, information, and resources on climate education and to include new program components. These components, ranging from online resources to live events and professional networks, would significantly increase the reach and impact of AGI's already successful geoscience education and public awareness effort in the United States and abroad in 2009, when the campaign's theme will be "Understanding Climate."

  18. Food, health, and complexity: towards a conceptual understanding to guide collaborative public health action

    Directory of Open Access Journals (Sweden)

    Shannon E. Majowicz

    2016-06-01

    Full Text Available Abstract Background What we eat simultaneously impacts our exposure to pathogens, allergens, and contaminants, our nutritional status and body composition, our risks for and the progression of chronic diseases, and other outcomes. Furthermore, what we eat is influenced by a complex web of drivers, including culture, politics, economics, and our built and natural environments. To date, public health initiatives aimed at improving food-related population health outcomes have primarily been developed within ‘practice silos’, and the potential for complex interactions among such initiatives is not well understood. Therefore, our objective was to develop a conceptual model depicting how infectious foodborne illness, food insecurity, dietary contaminants, obesity, and food allergy can be linked via shared drivers, to illustrate potential complex interactions and support future collaboration across public health practice silos. Methods We developed the conceptual model by first conducting a systematic literature search to identify review articles containing schematics that depicted relationships between drivers and the issues of interest. Next, we synthesized drivers into a common model using a modified thematic synthesis approach that combined an inductive thematic analysis and mapping to synthesize findings. Results The literature search yielded 83 relevant references containing 101 schematics. The conceptual model contained 49 shared drivers and 227 interconnections. Each of the five issues was connected to all others. Obesity and food insecurity shared the most drivers (n = 28. Obesity shared several drivers with food allergy (n = 11, infectious foodborne illness (n = 7, and dietary contamination (n = 6. Food insecurity shared several drivers with infectious foodborne illness (n = 9 and dietary contamination (n = 9. Infectious foodborne illness shared drivers with dietary contamination (n = 8. Fewer drivers were

  19. Developing a magnetism conceptual survey and assessing gender differences in student understanding of magnetism

    Science.gov (United States)

    Li, Jing; Singh, Chandralekha

    2012-02-01

    We discuss the development of a research-based conceptual multiple-choice survey of magnetism. We also discuss the use of the survey to investigate gender differences in students' difficulties with concepts related to magnetism. We find that while there was no gender difference on the pre-test. However, female students performed significantly worse than male students when the survey was given as a post-test in traditionally taught calculus-based introductory physics courses with similar results in both the regular and honors versions of the course. In the algebra-based courses, the performance of female and male students has no statistical difference on the pre-test or the post-test.

  20. Knowledge Production on Science and Technology: a Conceptual Approach; Produccion de Conocimiento Cientifico y Tecnologico: una Aproximacion Conceptual

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, I

    2013-02-01

    One traditional reflection on philosophy of science is the analysis of knowledge production. This is also a relevant aim for contemporary social studies of science. This work review the main contributions routed in this academic field regarding present production of knowledge -Weinberg (1961, 1972), Funtowicz and Ravetz (1993), Gibbons et al. (1994), Jasanoff (1995), Ziman (1998) and Echeverria (2003). A specific attention to the consequences of its features for the public management of science and technology and it relation with society will be attended. (Author) 31 refs.

  1. An exploration of middle school science teachers' understandings and teaching practice of science as inquiry

    Science.gov (United States)

    Castle, Margaret Ann

    understanding of science increases (Akkus, Gunel & Hand, 2007; Gibson, 2002; Liu, Lee & Linn, 2010). As a result, it is important to explore middle school science teachers' definition of science as inquiry because of its importance in how their understandings are reflected in their practice. Researchers must witness, first- hand, what is taking place in middle school science classrooms with respect to the teaching of scientific inquiry before recommendations for improvements can be made. We must also allow opportunities for middle school science teachers to broach, examine, explore, interpret and report implementation strategies when practicing the elements of scientific inquiry as a science content area. It then stands to reason that more research needs to be done to: (1) assess teachers' knowledge related to reform-based teaching, (2) investigate teachers' views about the goals and purposes of inquiry, and (3) investigate the processes by which teachers carry out SI and motivation for undertaking such a complex and difficult to manage form of instruction. The purpose of this study was to examine middle school science teachers' understandings and skills related to scientific inquiry; how those understandings and skills were translated into classroom practice, and the role the school district played in the development of such understandings and skills.

  2. An Insight towards Conceptual Understanding: Looking into the Molecular Structures of Compounds

    Science.gov (United States)

    Uyulgan, Melis Arzu; Akkuzu, Nalan

    2016-01-01

    The subject of molecular structures is one of the most important and complex subject in chemistry which a majority of the undergraduate students have difficulties to understand its concepts and characteristics correctly. To comprehend the molecular structures and their characteristics the students need to understand related subjects such as Lewis…

  3. Teaching science for conceptual change: Toward a proposed taxonomy of diagnostic teaching strategies to gauge students' personal science conceptions

    Science.gov (United States)

    Shope, Richard Edwin, III

    Science instruction aims to ensure that students properly construct scientific knowledge so that each individual may play a role as a science literate citizen or as part of the science workforce (National Research Council, 1996, 2000). Students enter the classroom with a wide range of personal conceptions regarding science phenomena, often at variance with prevailing scientific views (Duschl, Hamilton, & Grandy, 1992; Hewson, 1992). The extensive misconceptions research literature emphasizes the importance of diagnosing students' initial understandings in order to gauge the accuracy and depth of what each student knows prior to instruction and then to use that information to adapt the teaching to address student needs. (Ausubel, 1968; Carey, 2000; Driver et al., 1985; Karplus & Thier, 1967; Mintzes, Wandersee, & Novak, 1998; Osborne & Freyberg, 1985; Project 2061, 1993; Strike & Posner, 1982, 1992; Vygotsky, 1934/1987). To gain such insight, teachers diagnose not only the content of the students' personal conceptions but also the thinking processes that produced them (Strike and Posner, 1992). Indeed, when teachers design opportunities for students to express their understanding, there is strong evidence that such diagnostic assessment also enhances science teaching and learning (Black & William, 1998). The functional knowledge of effective science teaching practice resides in the professional practitioners at the front lines---the science teachers in the classroom. Nevertheless, how teachers actually engage in the practice of diagnosis is not well documented. To help fill this gap, the researcher conducted a study of 16 sixth grade science classrooms in four Los Angeles area middle schools. Diagnostic teaching strategies were observed in action and then followed up by interviews with each teacher. Results showed that teachers use strategies that vary by the complexity of active student involvement, including pretests, strategic questions, interactive discussion

  4. Understanding current causes of women's underrepresentation in science.

    Science.gov (United States)

    Ceci, Stephen J; Williams, Wendy M

    2011-02-22

    Explanations for women's underrepresentation in math-intensive fields of science often focus on sex discrimination in grant and manuscript reviewing, interviewing, and hiring. Claims that women scientists suffer discrimination in these arenas rest on a set of studies undergirding policies and programs aimed at remediation. More recent and robust empiricism, however, fails to support assertions of discrimination in these domains. To better understand women's underrepresentation in math-intensive fields and its causes, we reprise claims of discrimination and their evidentiary bases. Based on a review of the past 20 y of data, we suggest that some of these claims are no longer valid and, if uncritically accepted as current causes of women's lack of progress, can delay or prevent understanding of contemporary determinants of women's underrepresentation. We conclude that differential gendered outcomes in the real world result from differences in resources attributable to choices, whether free or constrained, and that such choices could be influenced and better informed through education if resources were so directed. Thus, the ongoing focus on sex discrimination in reviewing, interviewing, and hiring represents costly, misplaced effort: Society is engaged in the present in solving problems of the past, rather than in addressing meaningful limitations deterring women's participation in science, technology, engineering, and mathematics careers today. Addressing today's causes of underrepresentation requires focusing on education and policy changes that will make institutions responsive to differing biological realities of the sexes. Finally, we suggest potential avenues of intervention to increase gender fairness that accord with current, as opposed to historical, findings.

  5. The Role of Cognitive, Metacognitive, and Motivational Variables in Conceptual Change: Preservice Early Childhood Teachers' Conceptual Understanding of the Cause of Lunar Phases

    Science.gov (United States)

    Sackes, Mesut

    2010-01-01

    This study seeks to explore and describe the role of cognitive, metacognitive, and motivational variables in conceptual change. More specifically, the purposes of the study were (1) to investigate the predictive ability of a learning model that was developed based on the intentional conceptual change perspective in predicting change in conceptual…

  6. Hurricanes Katrina and Rita and the Department of Veterans Affairs: a conceptual model for understanding the evacuation of nursing homes.

    Science.gov (United States)

    Dobalian, Aram; Claver, Maria; Fickel, Jacqueline J

    2010-01-01

    Hurricanes Katrina and Rita exposed significant flaws in US preparedness for catastrophic events and the nation's capacity to respond to them. These flaws were especially evident in the affected disaster areas' nursing homes, which house a particularly vulnerable population of frail older adults. Although evacuation of a healthcare facility is a key preparedness activity, there is limited research on factors that lead to effective evacuation. Our review of the literature on evacuation is focused on developing a conceptual framework to study future evacuations rather than as a comprehensive assessment of prior work. This paper summarizes what is known thus far about disaster response activities of nursing homes following natural and human-caused disasters, describes a conceptual model to guide future inquiry regarding this topic, and suggests future areas of research to further understand the decision-making process of nursing home facilitators regarding evacuating nursing home residents. To demonstrate the utility of the conceptual model and to provide guidance about effective practices and procedures, this paper focuses on the responses of Veterans Health Administration (VHA) nursing homes to the 2 hurricanes. Quarantelli's conceptual framework, as modified by Perry and Mushkatel, is useful in guiding the development of central hypotheses related to the decision-making that occurred in VA nursing homes and other healthcare facilities following Hurricanes Katrina and Rita. However, we define evacuation somewhat differently to account for the fact that evacuation may, in some instances, be permanent. Thus, we propose modifying this framework to improve its applicability beyond preventive evacuation. We need to better understand how disaster plans can be adapted to meet the needs of frail elders and other residents in nursing homes. Moreover, we must address identified gaps in the scientific literature with respect to health outcomes by tracking outcomes over time

  7. Explaining Newton's Laws of Motion: Using Student Reasoning through Representations to Develop Conceptual Understanding

    Science.gov (United States)

    Waldrip, Bruce; Prain, Vaughan; Sellings, Peter

    2013-01-01

    The development of students' reasoning and argumentation skills in school science is currently attracting strong research interest. In this paper we report on a study where we aimed to investigate student learning on the topic of motion when students, guided by their teacher, responded to a sequence of representational challenges in which their…

  8. Disciplinary Literacies and Learning to Read for Understanding: A Conceptual Framework for Disciplinary Literacy

    Science.gov (United States)

    Goldman, Susan R.; Britt, M. Anne; Brown, Willard; Cribb, Gayle; George, MariAnne; Greenleaf, Cynthia; Lee, Carol D.; Shanahan, Cynthia

    2016-01-01

    This article presents a framework and methodology for designing learning goals targeted at what students need to know and be able to do in order to attain high levels of literacy and achievement in three disciplinary areas--literature, science, and history. For each discipline, a team of researchers, teachers, and specialists in that discipline…

  9. Exploring the Influence of the Mass Media on Primary Students' Conceptual Understanding of Genetics

    Science.gov (United States)

    Donovan, Jenny; Venville, Grady

    2012-01-01

    The new Australian Curriculum ignites debate about science content appropriate for primary school children. Abstract genetics concepts such as genes and DNA are still being avoided in primary school, yet research has shown that, by age 10, many students have heard of DNA and/or genes. Scientific concepts appear in the mass media, but primary…

  10. Understanding Children's Science Identity through Classroom Interactions

    Science.gov (United States)

    Kim, Mijung

    2018-01-01

    Research shows that various stereotypes about science and science learning, such as science being filled with hard and dry content, laboratory experiments, and male-dominated work environments, have resulted in feelings of distance from science in students' minds. This study explores children's experiences of science learning and science identity.…

  11. A shared-world conceptual model for integrating space station life sciences telescience operations

    Science.gov (United States)

    Johnson, Vicki; Bosley, John

    1988-01-01

    Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center.

  12. Using Science Skills to Understand Ecophysiology and Manage Resources

    Science.gov (United States)

    Bubenheim, David

    2015-01-01

    Presentation will be for a general audience and focus on plant science and ecosystem science in NASA. Examples from the projects involving the presenter will be used to illustrate. Specifically, the California Sacramento-San Joaquin River Delta project. This collaboration supports the goals of the Delta Plan in developing science-based, adaptive-management strategies. The mission is to improve reliability of water supply and restore a healthy Delta ecosystem while enhancing agriculture and recreation. NASA can contribute gap-filling science understanding of overall functions in the Delta ecosystem and assess and help develop management plans for specific issues. Airborne and satellite remote-sensing, ecosystem modeling, and biological studies provide underlying data needed by Delta stakeholders to assess and address water, ecosystem restoration, and environmental and economic impacts of potential actions in the Delta. The California Sacramento-San Joaquin River Delta, the hub for California's water supply, supports important ecosystem services for fisheries, supplies drinking water for millions, and distributes water from Northern California to agriculture and urban communities to the south; millions of people and businesses depend on Delta water. Decades of competing demands for Delta resources and year-to-year variability in precipitation has resulted in diminished overall health of the Delta. Declines in fish populations, threatened ecosystems, endangered species, invasive plants and animals, cuts in agricultural exports, and increased water conservation is the result. NASA and the USDA, building on previous collaborations, aide local Delta stakeholders in assessing and developing an invasive weed management approach. Aquatic, terrestrial, and riparian invasive weeds threaten aquatic and terrestrial ecosystem restoration efforts. Aquatic weeds are currently detrimental economically, environmentally, and sociologically in the Delta. They negatively impact the

  13. The impact of problem solving strategy with online feedback on students’ conceptual understanding

    Science.gov (United States)

    Pratiwi, H. Y.; Winarko, W.; Ayu, H. D.

    2018-04-01

    The study aimed to determine the impact of the implementation of problem solving strategy with online feedback towards the students’ concept understanding. This study used quasi experimental design with post-test only control design. The participants were all Physics Education students of Kanjuruhan University year 2015. Then, they were divided into two different groups; 30 students belong to experiment class and the remaining 30 students belong to class of control. The students’ concept understanding was measured by the concept understanding test on multiple integral lesson. The result of the concept understanding test was analyzed by prerequisite test and stated to be normal and homogenic distributed, then the hypothesis was examined by T-test. The result of the study shows that there is difference in the concept understanding between experiment class and control class. Next, the result also shows that the students’ concept understanding which was taught using problem solving strategy with online feedback was higher than those using conventional learning; with average score of 72,10 for experiment class and 52,27 for control class.

  14. Examining Preservice Science Teacher Understanding of Nature of Science: Discriminating Variables on the Aspects of Nature of Science

    Science.gov (United States)

    Jones, William I.

    This study examined the understanding of nature of science among participants in their final year of a 4-year undergraduate teacher education program at a Midwest liberal arts university. The Logic Model Process was used as an integrative framework to focus the collection, organization, analysis, and interpretation of the data for the purpose of (1) describing participant understanding of NOS and (2) to identify participant characteristics and teacher education program features related to those understandings. The Views of Nature of Science Questionnaire form C (VNOS-C) was used to survey participant understanding of 7 target aspects of Nature of Science (NOS). A rubric was developed from a review of the literature to categorize and score participant understanding of the target aspects of NOS. Participants' high school and college transcripts, planning guides for their respective teacher education program majors, and science content and science teaching methods course syllabi were examined to identify and categorize participant characteristics and teacher education program features. The R software (R Project for Statistical Computing, 2010) was used to conduct an exploratory analysis to determine correlations of the antecedent and transaction predictor variables with participants' scores on the 7 target aspects of NOS. Fourteen participant characteristics and teacher education program features were moderately and significantly ( p Middle Childhood with a science concentration program major or in the Adolescent/Young Adult Science Education program major were more likely to have an informed understanding on each of the 7 target aspects of NOS. Analyses of the planning guides and the course syllabi in each teacher education program major revealed differences between the program majors that may account for the results.

  15. Young people and health: towards a new conceptual framework for understanding empowerment.

    Science.gov (United States)

    Spencer, Grace

    2014-01-01

    In recent times, empowerment has become the focus of much work with young people amidst increasing concerns about their health. Empowerment is often offered as a 'solution' to such concerns, with the uncritical assumption being made that empowerment unproblematically results in positive health outcomes. While much of the health promotion literature advocates 'empowerment', it often does so without offering a clear conceptualisation of the word itself or indeed addressing the thorny theoretical tensions surrounding the concept's root word of power. In light of this omission, this article offers a more theoretically informed conceptualisation of empowerment and considers the relationship to young people's health. This article outlines a more dynamic and generative conceptualisation of empowerment than hitherto articulated in the literature, informed by Lukes' multidimensional perspective of power. Drawing on findings from an ethnographic study on empowerment and young people's health, this article develops six conceptually distinct forms of empowerment (impositional, dispositional, concessional, oppositional, normative and transformative). Data were collected from 55 young men and women aged 15-16 years through group discussions, individual interviews and observational work in a school and surrounding community settings in England. Crucially, these six new forms of empowerment capture and synthesise individual, structural and ideological elements of power that differentially, and sometimes inconsistently, shape the possibilities for young people's empowerment. Of significance is the way in which these different forms of empowerment intersect to (re)produce relations of power and may offer different possibilities for health promotion.

  16. Three Dimensional Response Spectrum Soil Structure Modeling Versus Conceptual Understanding To Illustrate Seismic Response Of Structures

    International Nuclear Information System (INIS)

    Touqan, Abdul Razzaq

    2008-01-01

    Present methods of analysis and mathematical modeling contain so many assumptions that separate them from reality and thus represent a defect in design which makes it difficult to analyze reasons of failure. Three dimensional (3D) modeling is so superior to 1D or 2D modeling, static analysis deviates from the true nature of earthquake load which is ''a dynamic punch'', and conflicting assumptions exist between structural engineers (who assume flexible structures on rigid block foundations) and geotechnical engineers (who assume flexible foundations supporting rigid structures). Thus a 3D dynamic soil-structure interaction is a step that removes many of the assumptions and thus clears reality to a greater extent. However such a model cannot be analytically analyzed. We need to anatomize and analogize it. The paper will represent a conceptual (analogical) 1D model for soil structure interaction and clarifies it by comparing its outcome with 3D dynamic soil-structure finite element analysis of two structures. The aim is to focus on how to calculate the period of the structure and to investigate effect of variation of stiffness on soil-structure interaction

  17. INTERPERSONAL COMMUNICATION AND INTERSUBJECTIVE COMMUNICATION. SOME THEORETICAL AND CONCEPTUAL KEYS FOR ITS UNDERSTANDING

    Directory of Open Access Journals (Sweden)

    Marta Rizo Garcia

    2014-09-01

    Full Text Available In spite of the proliferation of digital communication forms, is urgent for communication research to strengthen the works around the interpersonal dimension of communicative processes. To do so, communication field needs to extend the boarding spectrum of interpersonal communication, an object that has been relegated to a secondary plane by the predominance of mass media research. This work is based on the need to distinguish intersubjective communication from interpersonal communication, two terms that are often conceived as synonymous. Even though both share the same empirical referents, their theoretical foundations are different. This essay presents three theoretical perspectives to define intersubjective communication –symbolic interactionism, phenomenological sociology and the Theory of Communicative Action– that share an interest beyond the situations of face to face interaction in which all subjects are daily immersed. A documentary and interpretive methodology is used in this work, because it's an argumentative essay that tries to outline some theoretical and conceptual guidelines to think –and make complex– interpersonal and intersubjective communication. It is relevant the approach of both communication types from different fields aside the strictly communicational; for that reason, in this essay are emphasized contributions made from other areas such as philosophy and social psychology.

  18. Improving Conceptual Understanding and Representation Skills Through Excel-Based Modeling

    Science.gov (United States)

    Malone, Kathy L.; Schunn, Christian D.; Schuchardt, Anita M.

    2018-02-01

    The National Research Council framework for science education and the Next Generation Science Standards have developed a need for additional research and development of curricula that is both technologically model-based and includes engineering practices. This is especially the case for biology education. This paper describes a quasi-experimental design study to test the effectiveness of a model-based curriculum focused on the concepts of natural selection and population ecology that makes use of Excel modeling tools (Modeling Instruction in Biology with Excel, MBI-E). The curriculum revolves around the bio-engineering practice of controlling an invasive species. The study takes place in the Midwest within ten high schools teaching a regular-level introductory biology class. A post-test was designed that targeted a number of common misconceptions in both concept areas as well as representational usage. The results of a post-test demonstrate that the MBI-E students significantly outperformed the traditional classes in both natural selection and population ecology concepts, thus overcoming a number of misconceptions. In addition, implementing students made use of more multiple representations as well as demonstrating greater fascination for science.

  19. Learner Characteristics and Understanding Nature of Science. Is There an Association?

    Science.gov (United States)

    Çetinkaya-Aydın, Gamze; Çakıroğlu, Jale

    2017-11-01

    The purpose of this study was to investigate the possible associations between preservice science teachers' understanding of nature of science and their learner characteristics; understanding of nature of scientific inquiry, science teaching self-efficacy beliefs, metacognitive awareness level, and faith/worldview schemas. The sample of the current study was 60 3rd-year preservice science teachers enrolled in the Nature of Science and History of Science course. Using a descriptive and associational case study design, data were collected by means of different qualitative and quantitative questionnaires. Analysis of the data revealed that preservice science teachers' understanding of nature of science and nature of scientific inquiry were highly associated. Similarly, science teaching self-efficacy beliefs, metacognitive awareness levels, and faith/worldviews of the preservice science teachers were found to be significantly associated with their understanding of nature of science. Thus, it can be concluded that there might be other factors interfering with the learning processes of nature of science.

  20. Between understanding and appreciation. Current science communication in Denmark (Danish original version

    Directory of Open Access Journals (Sweden)

    Kristian Hvidtfelt Nielsen

    2005-12-01

    Full Text Available In this paper I use the concepts “understanding of science” and “appreciation of science” to analyze selected case studies of current science communication in Denmark. The Danish science communication system has many similarities with science communication in other countries: the increasing political and scientific interest in science communication, the co-existence of many different kinds of science communication, and the multiple uses of the concepts of understanding vs. appreciation of science. I stress the international aspects of science communication, the national politico-scientific context as well as more local contexts as equally important conditions for understanding current Danish science communication.

  1. Scientific literacy: Role of natural history studies in constructing understanding of the nature of science

    Science.gov (United States)

    Lutz, Martha Victoria Rosett

    2002-01-01

    Scientific literacy is a central goal of science education. One purpose of this investigation was to reevaluate the definition of 'scientific literacy.' Another purpose was to develop and implement new curriculum involving natural history experiments with insects, with the goal of allowing students opportunities to construct an understanding of the nature of science, a crucial aspect of scientific literacy. This investigation was a qualitative case study. Methods of data collection included direct observations, analysis of sketches and written products created by students and class-room teachers, and analysis of audio tapes. Major findings include: (1) Scientific literacy is generally defined by lists of factual information which students are expected to master. When asked to evaluate their knowledge of selected items on a list published in a science education reform curriculum guide, 15 practicing scientists reported lack of familiarity or comprehension with many items, with the exception of items within their areas of specialization. (2) Genuine natural history experiments using insects can be incorporated into the existing school schedule and need not require any increase in the budget for science materials. (3) Students as young as first through third grade can learn the manual techniques and conceptual skills necessary for designing and conducting original natural history experiments, including manipulating the insects, making accurate sketches, developing test able hypotheses, recording data, and drawing conclusions from their data. Students were generally enthusiastic both about working with live insects and also conducting genuine science experiments. (4) Girls appear both positive and engaged with natural history activities and may be more likely than boys to follow through on designing, conducting, and reporting on independent experiments. The results imply that a valid definition of scientific literacy should be based on the ability to acquire scientific

  2. Teaching science for public understanding: Developing decision-making abilities

    Science.gov (United States)

    Siegel, Marcelle A.

    significant gains (p = .06) according to the Rasch analysis. A measure of students' understanding of coherent argumentation was correlated with higher decision posttest scores. Over time, both classes significantly regarded science as being more relevant to everyday life. Students' attitudes about ability showed insignificant changes.

  3. When the Fractional Cookie Begins to Crumble: Conceptual Understanding of Fractions in the Fifth Grade

    Science.gov (United States)

    Eichhorn, Melinda S.

    2018-01-01

    When teachers conduct a universal screening in mathematics, they identify students who are struggling with mathematical content and adjust their instruction. In this mixed-methods study in Kolkata, India, teachers piloted a screening tool at the beginning of the academic year in 5th grade to determine students' (n = 171) understanding of…

  4. Exploring Middle School Students' Understanding of Three Conceptual Models in Genetics

    Science.gov (United States)

    Freidenreich, Hava Bresler; Duncan, Ravit Golan; Shea, Nicole

    2011-01-01

    Genetics is the cornerstone of modern biology and a critical aspect of scientific literacy. Research has shown, however, that many high school graduates lack fundamental understandings in genetics necessary to make informed decisions about issues and emerging technologies in this domain, such as genetic screening, genetically modified foods, etc.…

  5. Understanding Anti-Semitism and Its Impact: A New Framework for Conceptualizing Jewish Identity

    Science.gov (United States)

    Macdonald-Dennis, Christopher

    2006-01-01

    While a great deal of research has been done on identity development around awareness of racism and heterosexism, little has been conducted on understanding how Jews come to make sense of the impact of anti-Semitism (anti-Jewish oppression) on their lives. This article, based on my qualitative dissertation (MacDonald-Dennis, 2005) that explores…

  6. Modelling and Simulating Electronics Knowledge: Conceptual Understanding and Learning through Active Agency

    Science.gov (United States)

    Twissell, Adrian

    2018-01-01

    Abstract electronics concepts are difficult to develop because the phenomena of interest cannot be readily observed. Visualisation skills support learning about electronics and can be applied at different levels of representation and understanding (observable, symbolic and abstract). Providing learners with opportunities to make transitions…

  7. Representational Classroom Practices that Contribute to Students' Conceptual and Representational Understanding of Chemical Bonding

    Science.gov (United States)

    Hilton, Annette; Nichols, Kim

    2011-01-01

    Understanding bonding is fundamental to success in chemistry. A number of alternative conceptions related to chemical bonding have been reported in the literature. Research suggests that many alternative conceptions held by chemistry students result from previous teaching; if teachers are explicit in the use of representations and explain their…

  8. Keeping conceptual boundaries distinct between decision making and learning is necessary to understand social influence.

    Science.gov (United States)

    Le Mens, Gaël

    2014-02-01

    Bentley et al. make the deliberate choice to blur the distinction between learning and decision making. This obscures the social influence mechanisms that operate in the various empirical settings that their map aims to categorize. Useful policy prescriptions, however, require an accurate understanding of the social influence mechanisms that underlie the dynamics of popularity.

  9. The politics of transition governance in Dutch agriculture: conceptual understanding and implications for transition management

    NARCIS (Netherlands)

    Grin, J.

    2012-01-01

    There has been scholarly criticism that transition theory has hitherto largely neglected the politics involved in transition governance. This article offers an analytical framework for understanding powering and legitimisation in a way that does not a priori assume that such politics is bound to

  10. Argumentation Practices in Classroom: Pre-Service Teachers' Conceptual Understanding of Chemical Equilibrium

    Science.gov (United States)

    Kaya, Ebru

    2013-01-01

    This study examines the impact of argumentation practices on pre-service teachers' understanding of chemical equilibrium. The sample consisted of 100 pre-service teachers in two classes of a public university. One of these classes was assigned as experimental and the other as control group, randomly. In the experimental group, the subject of…

  11. Understanding Science and Technology Interactions Through Ocean Science Exploration: A Summer Course for Science Teachers

    Science.gov (United States)

    Baldauf, J.; Denton, J.

    2003-12-01

    In order to replenish the national supply of science and mathematics educators, the National Science Foundation has supported the formation of the Center for Applications of Information Technology in the Teaching and Learning of Science (ITS) at Texas A&M University. The center staff and affiliated faculty work to change in fundamental ways the culture and relationships among scientists, educational researchers, and teachers. ITS is a partnership among the colleges of education, science, geosciences, agriculture and life science at Texas A&M University. Participants (teachers and graduate students) investigate how science is done and how science is taught and learned; how that learning is assessed, and how scholarly networks among all engaged in this work can be encouraged. While the center can offer graduate degrees most students apply as non-degree seekers. ITS participants are schooled on classroom technology applications, experience working on project teams, and access very current research work being conducted by scientists. ITS offers a certificate program consisting of two summer sessions over two years that results in 12 hours of graduate credit that can be applied to a degree. Interdisciplinary project teams spend three intense weeks connecting current research to classroom practices. During the past summer with the beginning of the two-year sequence, a course was implemented that introduced secondary teachers to Ocean Drilling Program (ODP) contributions to major earth science themes, using core and logging data, engineering (technology) tools and processes. Information Technology classroom applications were enhanced through hands-on laboratory exercises, web resources and online databases. The course was structured around the following objectives. 1. Distinguish the purpose and goals of the Ocean Drilling Program from the Integrated Ocean Drilling Program and describe the comparable science themes (ocean circulation, marine sedimentation, climate history

  12. Understanding the Influence of Learners' Forethought on Their Use of Science Study Strategies in Postsecondary Science Learning

    Science.gov (United States)

    Dunn, Karee E.; Lo, Wen-Juo

    2015-01-01

    Understanding self-regulation in science learning is important for theorists and practitioners alike. However, very little has been done to explore and understand students' self-regulatory processes in postsecondary science courses. In this study, the influence of science efficacy, learning value, and goal orientation on the perceived use of…

  13. Battling the Passions: The Birth of a Conceptual Understanding of Suspicion for Child Abuse and Neglect

    Directory of Open Access Journals (Sweden)

    Rochelle Einboden

    2011-04-01

    Full Text Available Legal obligations for reporting child abuse and neglect have positioned suspicion as a trigger for nursing responses. Suspicion dwells between emotion and thought, and is fraught with uncertainty. Given the importance of suspicion to initiating child protection, suspicion requires critical examination. Spinoza’s ideas of the imagination, and his distinctive inclusion of emotions in understanding human knowledge, provide a framework to explore the human experience of suspicion. These theoretical dimensions of suspicion are illustrated using a recent newspaper article of a missing child in Sydney, Australia. This process reveals the ontological vulnerability of the human mind to construct knowledge that is heavily influenced by our emotionality, our close social connections and our social values. Attending to these vulnerabilities generates new possibilities for understanding and using human suspicions of child abuse and neglect more effectively and creatively in nursing practice.

  14. The utility of resilience as a conceptual framework for understanding and measuring LGBTQ health

    OpenAIRE

    Colpitts, Emily; Gahagan, Jacqueline

    2016-01-01

    Background Historically, lesbian, gay, bisexual, transgender and queer (LGBTQ) health research has focused heavily on the risks for poor health outcomes, obscuring the ways in which LGBTQ populations maintain and improve their health across the life course. In this paper we argue that informing culturally competent health policy and systems requires shifting the LGBTQ health research evidence base away from deficit-focused approaches toward strengths-based approaches to understanding and meas...

  15. The Swedish drug problem: Conceptual understanding and problem handling, 1839–2011

    Directory of Open Access Journals (Sweden)

    Edman Johan

    2014-12-01

    Full Text Available AIM - To analyse the Swedish drug question by examining dominant concepts used to portray the problem in the years 1839-2011. Theoretically, we understand these concepts as ideological tools that shape the political initiatives and administrative efforts to deal with the problem. The study is based on two kinds of source material: articles in medical journals from the years 1839-1964 and public reports on vagrancy, the alcohol problem, mental health and the drug problem from the years 1882-2011.

  16. ASSESSING CONCEPTUAL UNDERSTANDING IN MATHEMATICS: Using Derivative Function to Solve Connected Problems

    Directory of Open Access Journals (Sweden)

    Nevin ORHUN

    2013-07-01

    Full Text Available Open and distance education plays an important role in the actualization of cultural goals as well as in societal developments. This is an independent teaching and learning method for mathematics which forms the dynamic of scientific thinking. Distance education is an important alternative to traditional teaching applications. These contributions brought by technology enable students to participate actively in having access to information and questioning it. Such an application increases students’ motivation and teaches how mathematics can be used in daily life. Derivative is a mathematical concept which can be used in many areas of daily life. The aim of this study is to enable the concept of derivatives to be understood well by using the derivative function in the solution of various problems. It also aims at interpreting difficulties theoretically in the solution of problems and determining mistakes in terms of teaching methods. In this study, how various aspects of derivatives are understood is emphasized. These aspects concern the explanation of concepts and process, and also their application to certain concepts in physics. Students’ depth of understanding of derivatives was analyzed based on two aspects of understanding; theoretical analysis and contextual application. Follow-up interviews were conducted with five students. The results show that the students preferred to apply an algebraic symbolic aspect instead of using logical meanings of function and its derivative. In addition, in relation to how the graph of the derivative function affects the aspect of function, it was determined that the students displayed low performance.

  17. Toward a better understanding of the future of the solo medical practitioner in health care industry: a conceptual review.

    Science.gov (United States)

    Erdem, S A; Lacombe, B

    1998-01-01

    Even a brief conceptual review of the current developments in the health care industry indicates that the future of independent medical practitioners is rather challenging. It may be necessary for these parties to pursue proactive and aggressive marketing strategies to be able to compete with the managed care organizations. Accordingly, this paper outlines some of the current trends in health care marketing as they relate to the ongoing changes to which solo medical practitioners need to respond. It is hoped that the review of the issues raised in this paper can provide an initial basis for a better understanding of some of the challenges to come up with more comprehensive and effective strategy decisions.

  18. Using a Conceptual-Change Approach to Help Preservice Science Teachers Reorganize Their Knowledge Structures for Constructivist Teaching

    Science.gov (United States)

    Dhindsa, H. S.; Anderson, O. R.

    2004-02-01

    This study, based on constructivist learning theory, examined how effectively preservice chemistry teachers (N = 43) can be educated to think flexibly and to reorganize their thinking in a way that may complement diverse ways students approach the subject domain. The teacher's cognitive structure was assessed prior to and after a conceptual change intervention using flow-map narrative analyses. There was a significant change in the organization of the preservice teacher's narrative after the conceptual change intervention, including greater networking of ideas and more thematic development of the content. Hence, a conceptual change approach may be a useful way to educate teachers to be more responsive to student individual differences when planning and delivering science lessons.

  19. Tobacco counter-advertising: a review of the literature and a conceptual model for understanding effects.

    Science.gov (United States)

    Agostinelli, Gina; Grube, Joel W

    2003-01-01

    The tobacco counter-advertising literature is reviewed as it relates to basic process questions concerning what makes counter-advertisements effective. Limitations in addressing (a) counter-advertisement content and the psychological mediators targeted, (b) counter-advertisement style and the affective reactions targeted, (c) prior smoking experience, and (d) other audience factors are enumerated. A theoretical model based on alcohol advertising research is presented to address those limitations. The model addresses the practical research question of predicting when tobacco counter-advertising will work by examining the independent influence of each of these enumerated factors, as well as how these factors operate in concert, qualifying each other. The model also addresses the process question of explaining how counter-advertising works by identifying affective and cognitive processes as mediators. By understanding the processes that underlie the qualified findings, one can better advise the designers of tobacco counter-advertisements how to be more effective.

  20. Science to support the understanding of Ohio's water resources

    Science.gov (United States)

    Shaffer, Kimberly; Kula, Stephanie; Bambach, Phil; Runkle, Donna

    2012-01-01

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. The distribution of rainfall can cause floods and droughts, which affects streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie and has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all the rural population obtain drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policymakers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is reliable, impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2012) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  1. Teachers' Beliefs about the Role of Interaction in Teaching Newtonian Mechanics and Its Influence on Students' Conceptual Understanding of Newton's Third Law

    Science.gov (United States)

    Jauhiainen, Johanna; Koponen, Ismo T.; Lavonen, Jari

    2006-01-01

    Students' conceptual understanding of Newton's third law has been the subject of numerous studies. These studies have often pointed out the importance of addressing the concept of interaction in teaching Newtonian mechanics. In this study, teachers were interviewed in order to examine how they understand interaction and use it in their…

  2. Approaching a Conceptual Understanding of Enzyme Kinetics and Inhibition: Development of an Active Learning Inquiry Activity for Prehealth and Nonscience Majors

    Science.gov (United States)

    House, Chloe; Meades, Glen; Linenberger, Kimberly J.

    2016-01-01

    Presented is a guided inquiry activity designed to be conducted with prenursing students using an analogous system to help develop a conceptual understanding of factors impacting enzyme kinetics and the various types of enzyme inhibition. Pre- and postconceptual understanding evaluations and effectiveness of implementation surveys were given to…

  3. Understanding science teacher enhancement programs: Essential components and a model

    Science.gov (United States)

    Spiegel, Samuel Albert

    perspectives influence and are examined across three settings, program, individual, and school. An over-arching theme, namely the content focus of the program, such as the teaching and learning of science illuminate both the perspectives and the settings. While the model was developed to understand and evaluate a specific program, it is hypothesized that it can be a powerful tool for designing and implementing a variety of programs.

  4. Activity theory and genre ecology: Conceptual tools for understanding technical communication

    Directory of Open Access Journals (Sweden)

    Winberg, Christine

    2005-12-01

    Full Text Available This paper reports on a year-long project in an architectural technology department, which studied students’ oral language development in plenary discussions in a first year History and Appreciation of Architecture course. Data was obtained by videotaping classroom activities, and by interviewing the lecturer and students who were participants in the course. The data was analysed, using categories suggested by Activity Theory. The category of ‘rules’ was selected from the activity system for further analysis, using a Genre Ecology approach. The findings of the study show how technical communication is managed within a classroom based activity system comprising lecturer and students, and graphic and verbal texts, in a context of learning. Learning, teaching, and expert discourses of the architectural review genre interact and are negotiated by participants. Through participation in plenary discussion, students from diverse backgrounds contribute to one another’s experience of architectural design, and by valuing and responding to students’ contributions, the lecturer facilitates students’ understanding of the ‘rules’ of architectural communication, and enables students to access an expanded repertoire of the genre of architectural review.

  5. From monocausality to systems thinking: a complementary and alternative conceptual approach for better understanding the development and prevention of sports injury.

    Science.gov (United States)

    Hulme, Adam; Finch, Caroline F

    The science of sports injury control, including both its cause and prevention, has largely been informed by a biomedical and mechanistic model of health. Traditional scientific practice in sports injury research has routinely involved collapsing the broader socioecological landscape down in order to analyse individual-level determinants of injury - whether biomechanical and/or behavioural. This approach has made key gains for sports injury prevention research and should be further encouraged and allowed to evolve naturally. However, the public health, Applied Human Factors and Ergonomics, and injury epidemiological literature more broadly, has accepted the value of a socioecological paradigm for better understanding disease and injury processes, and sports injury research will fall further behind unless it does the same. A complementary and alternative conceptual approach towards injury control known as systems thinking that builds on socioecological science, both methodologically and analytically, is readily available and fast developing in other research areas. This review outlines the historical progression of causal concepts in the field of epidemiology over the course of the modern scientific era. From here, causal concepts in injury epidemiology, and models of aetiology as found in the context of sports injury research are presented. The paper finishes by proposing a new research agenda that considers the potential for a systems thinking approach to further enhance sports injury aetiological understanding. A complementary systems paradigm, however, will require that sports injury epidemiologists bring their knowledge and skillsets forwards in an attempt to use, adapt, and even refine existing systems-based approaches. Alongside the natural development of conventional scientific methodologies and analyses in sports injury research, progressing forwards to a systems paradigm is now required.

  6. The value of science with all thy getting, get understanding

    CERN Multimedia

    2002-01-01

    Editorial that discusses the idea that although it is the applications of science which are most visible to people, the intrinsic value of science for its own sake, should not be forgotten (1/2 page).

  7. A Conceptual Framework for Responsive Global Engagement in Communication Sciences and Disorders

    Science.gov (United States)

    Hyter, Yvette D.

    2014-01-01

    The field of speech-language pathology needs a conceptual framework to guide the provision of services in a globalized world. Proposed in this article is a conceptual framework designed to facilitate responsive global engagement for professionals such as speech-language pathologists, who are increasingly serving diverse populations around the…

  8. Conceptualizations of Mental Health Across Europe: Comparing Psychology with Science and Engineering Students

    NARCIS (Netherlands)

    Lamers, S.M.A.; Gül, P.; Kovács, B.E.; Kroeze, R.; Müller, A.M.K.; Stojadinović, I.; Stüker, D.L.; Vigani, A.

    2014-01-01

    There is a lack of consensus on the conceptualization of mental health, with models emphasizing negative aspects, positive aspects, or both. The models are mainly theory-based and may not fit in with the population’s opinions. The aim of this ongoing study is to investigate the conceptualizations of

  9. The Effectiveness of Brain-Based Teaching Approach in Dealing with the Problems of Students' Conceptual Understanding and Learning Motivation towards Physics

    Science.gov (United States)

    Saleh, Salmiza

    2012-01-01

    Teachers of science-based education in Malaysian secondary schools, especially those in the field of physics, often find their students facing huge difficulties in dealing with conceptual ideas in physics, resulting thus in a lack of interest towards the subject. The aim of this study was to assess the effectiveness of the Brain-Based Teaching…

  10. Understanding the Science-Learning Environment: A Genetically Sensitive Approach

    Science.gov (United States)

    Haworth, Claire M. A.; Davis, Oliver S. P.; Hanscombe, Ken B.; Kovas, Yulia; Dale, Philip S.; Plomin, Robert

    2013-01-01

    Previous studies have shown that environmental influences on school science performance increase in importance from primary to secondary school. Here we assess for the first time the relationship between the science-learning environment and science performance using a genetically sensitive approach to investigate the aetiology of this link. 3000…

  11. The Influence of Argumentation on Understanding Nature of Science

    Science.gov (United States)

    Boran, Gül Hanim; Bag, Hüseyin

    2016-01-01

    The aim in conducting this study is to explore the effects of argumentation on pre-service science teachers' views of the nature of science. This study used a qualitative case study and conducted with 20 pre-service science teachers. Data sources include an open-ended questionnaire and audio-taped interviews. According to pretest and posttest…

  12. THE EFFECTIVENESS OF E-LAB TO IMPROVE GENERIC SCIENCE SKILLS AND UNDERSTANDING THE CONCEPT OF PHYSICS

    Directory of Open Access Journals (Sweden)

    J. Siswanto

    2016-01-01

    Full Text Available The aimed of this sudy are: (1 investigate the effectiveness of E-Lab to improve generic science skills and understanding the concepts oh physics; and (2 investigate the effect of generic science skills towards understanding the concept of students after learning by using the E-Lab. The method used in this study is a pre-experimental design with one group pretest-posttest. Subjects were students of Physics Education in University PGRI Semarang with methode random sampling. The results showed that: (1 learning to use E-Lab effective to increase generic science skills of students; and (2 Generic science skills give positive effect on student conceptual understanding on the material of the photoelectric effect, compton effect, and electron diffraction. Tujuan penelitian ini yaitu: (1 menyelidiki efektifitas E-Lab untuk meningkatkan keterampilan generik sains dan pemahaman konsep mahasiswa; dan (2  menyelidiki pengaruh keterampilan generik sains terhadap pemahaman konsep mahasiswa setelah dilakukan pembelajaran dengan menggunakan E-Lab. Metode penelitian yang digunakan dalam penelitian ini adalah pre-experimental dengan desain one group pretest-posttest. Subjek penelitian adalah mahasiswa Program Studi Pendidikan  Fisika  Universitas PGRI Semarang, dengan metode pengambilan sampel penelitian secara random. Hasil penelitian menunjukkan bahwa bahwa: (1 pembelajaran menggunakan E-Lab efektif untuk meningkatkan keterampilan generik sains mahasiswa; dan  (2 Keterampilan generik sains berpengaruh positif terhadap pemahaman konsep mahasiswa pada materi efek fotolistrik, efek compton, dan difraksi elektron. 

  13. A Thai pre-service teacher's understanding of nature of science in biology teaching

    Science.gov (United States)

    Srisawat, Akkarawat; Aiemsum-ang, Napapan; Yuenyong, Chokchai

    2018-01-01

    This study was conducted on the effect of understanding and instruction of the nature of science of Ms. Wanida, a pre-service student under science education program in biology, Faculty of Education, Khon Kaen University. Wanida was a teaching practicum student majoring in biology at Khon Kaen University Demonstration School (Modindaeng). She was teaching biology for 38 Grade 10 students. Methodology regarded interpretive paradigm. The study aimed to examine 1) Wanida's understanding of the nature of science, 2) Wanida's instruction of the nature of science, 3 students' understanding of the nature of science from Wanida's instruction, and 4) the effects of Wanida's understanding and instruction of the nature of science on students' understanding of the nature of science from Wanida's instruction. Tools of interpretation included teaching observation, a semi-structured interview, open-ended questionnaire, and an observation record form for the instruction of the nature of science. The data obtained was interpreted, encoded, and classified, using the descriptive statistics. The findings indicated that Wanida held good understanding of the nature of science. She could apply the deficient nature of science approach mostly, followed by the implicit nature of science approach. Unfortunately, she could not show her teaching as explicit nature of science. However, her students' the understanding of the nature of science was good.

  14. The Qualities Needed for a Successful Collaboration: A Contribution to the Conceptual Understanding of Collaboration for Efficient Public Transport

    Directory of Open Access Journals (Sweden)

    Robert Hrelja

    2016-06-01

    Full Text Available The creation of an efficient public transport system requires collaborations between formal independent organizations. This paper examines collaborations between public and private organizations and passengers, with the aim of contributing to the conceptual understanding of collaborations on public transport. The study begins by describing previous research on collaboration in the public transport area and in other research fields analytically relevant for public transport. Accordingly, collaboration is defined as an attempt to overcome problems with collective action and to transform a situation in which the various organizations operate independently into a situation where they act in concert to achieve shared objectives. The collaboration process involves the establishment of joint rules and structures that govern the relationship and behavior of the organizations. According to this definition, collaboration is a more sophisticated form of collective action than is indicated by terms such as “co-operation” or “coordination”. Fully-functioning collaboration can be described as a form of “co-action”, as opposed to “individual action”. In co-action, formal independent organizations together reap the benefits of working together and achieve more than if they had acted alone. Co-action can be regarded as a gradual trust-building process that requires qualities such as mutual confidence, an understanding of other organizations’ motivations, and joint problem formulation.

  15. Comparison of two different techniques of cooperative learning approach: Undergraduates' conceptual understanding in the context of hormone biochemistry.

    Science.gov (United States)

    Mutlu, Ayfer

    2018-03-01

    The purpose of the research was to compare the effects of two different techniques of the cooperative learning approach, namely Team-Game Tournament and Jigsaw, on undergraduates' conceptual understanding in a Hormone Biochemistry course. Undergraduates were randomly assigned to Group 1 (N = 23) and Group 2 (N = 29). Instructions were accomplished using Team-Game Tournament in Group 1 and Jigsaw in Group 2. Before the instructions, all groups were informed about cooperative learning and techniques, their responsibilities in the learning process and accessing of resources. Instructions were conducted under the guidance of the researcher for nine weeks and the Hormone Concept Test developed by the researcher was used before and after the instructions for data collection. According to the results, while both techniques improved students' understanding, Jigsaw was more effective than Team-Game Tournament. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(2):114-120, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  16. Learner Characteristics and Understanding Nature of Science: Is There an Association?

    Science.gov (United States)

    Çetinkaya-Aydin, Gamze; Çakiroglu, Jale

    2017-01-01

    The purpose of this study was to investigate the possible associations between preservice science teachers' understanding of nature of science and their learner characteristics; understanding of nature of scientific inquiry, science teaching self-efficacy beliefs, metacognitive awareness level, and faith/worldview schemas. The sample of the…

  17. Teaching strategies and conceptual change in a professional development program for science teachers of K--8

    Science.gov (United States)

    Shen, Ji

    This case study investigates two consecutive science courses for teachers of K-8 in a professional development program at Washington University. It aims (1) to trace the processes of the teachers' conceptual change; (2) to analyze the teaching strategies by course instructors; and (3) to try to establish possible links between the two. To achieve this goal, I build a modeling theory to account for the observations. The main body of the study consists of four sub-cases. The first two cases instantiate the elements of the modeling theory. The opening case of balance shows that learning tools and task structures shape the learning outcome, and discusses cycles of modeling. The case also delineates the strategy that the instructors employed---moving from concrete experience to abstract explanation. The second case of buoyancy demonstrates that the modeling theory is able to explain the origins and forming mechanism of the alternative conceptions held by the teachers. It also shows that the teaching strategies of using alternative conceptions, applying analogies and following a logical sequence helped the teachers build new models. The last two cases demonstrate the ways of improving the competence of modelers. The third case of physical models emphasizes the metacognition of the learner who builds models. It illustrates that teachers' level of self-awareness in learning is increased when the models are physical. It shows that the creativity of modeling is rooted in agency, curiosity, communicability, and confidence, and that a chain of transformation among models is the key of systematizing and forming knowledge. The last case of frames of reference tries to answer the question "what is the justification of models if there are alternatives?" The teachers employed different forms of justification which relied heavily on common sense, authority, relativism, and pragmatism, all of which are not rational. While discussing both the positive and negative traits of these

  18. The case of Carla: Dilemmas of helping all students to understand science

    Science.gov (United States)

    Kurth, Lori A.; Anderson, Charles W.; Palincsar, Annemarie S.

    2002-05-01

    This paper tells the story of four sixth-grade students, of mixed race and social class, who worked together in a small group. All four students were intrigued as they experimented with colored solutions of different densities. They all wanted to share ideas about the techniques they had used, the observations they had made, and the patterns they had seen. They all wanted to understand why the colored solutions acted as they did. In spite of these common interests, they often failed to achieve intersubjective communication about the colored solutions or about the process of planning and making a poster to report their findings. We explain these failures using the sociolinguistic concepts of polysemy, privileging, and holding the floor. In particular, Carla (an African American girl) was unable to hold the floor within the group, so her opportunities for science learning were diminished. The four students were not overtly prejudiced in their speech or actions. Yet the expectations they brought with them about how and when people should talk, how work should be done, and what standards of quality they should aspire to led them to reconstruct among themselves some of the most troubling inequities of our society as a whole. This story is about important connections. In particular it is about how the actions of children are connected to the histories of their families, and how the privileging of ideas is connected to that of people, and how the practice of science is connected to that of discrimination. Science education reformers may underestimate the difficulty of separating conceptual conflict about ideas from interpersonal conflict about privilege and status.

  19. Understanding groundwater - students' pre-conceptions and conceptual change by means of a theory-guided multimedia learning program

    Science.gov (United States)

    Unterbruner, Ulrike; Hilberg, Sylke; Schiffl, Iris

    2016-06-01

    Education on the subject of groundwater is crucial for sustainability. Nevertheless, international studies with students across different age groups have shown that the basic hydrogeological concept of groundwater defined as water within porous and permeable rocks is not an established everyday notion. Drawing from international research, a multimedia learning program Zwischen Regenwolke und Wasserhahn (between the rain cloud and the tap) was developed, which incorporates specific insights from the fields of conceptual change research, multimedia research, and the model of educational reconstruction. The effectiveness of the learning program was ascertained by means of two studies with Austrian seventh grade pupils as well as teacher-training students from the fields of biology and geography in order to ascertain the effectiveness of the learning program. Using a quasi-experimental research design, the participants' conceptions and knowledge of groundwater were determined in a pre- and post-test. The pupils and students greatly benefitted from working through the learning software independently. Their knowledge of groundwater increased significantly compared to the control group and there was a highly significant increase in the number of scientifically correct notions of groundwater. The acceptance of the program was also generally very high. The results indicate that theory-guided multimedia learning programs can play an important role in the transfer of research results to classroom settings, especially in science education.

  20. Understanding groundwater - students' pre-conceptions and conceptual change by a theory-guided multimedia learning program

    Science.gov (United States)

    Unterbruner, U.; Hilberg, S.; Schiffl, I.

    2015-11-01

    Groundwater is a crucial topic in education for sustainable development. Nevertheless, international studies with students of different ages have shown that the basic hydrogeological concept of groundwater defined as water within porous and permeable rocks is not an established everyday notion. Building upon international research a multimedia learning program ("Between the raincloud and the tap") was developed. Insights from the fields of conceptual change research, multimedia research, and the Model of Educational Reconstruction were specifically implemented. Two studies were conducted with Austrian pupils (7th grade) and teacher training students from the fields of biology and geography in order to ascertain the effectiveness of the learning program. Using a quasi-experimental research design, the participants' conceptions and knowledge regarding groundwater were determined in a pre- and post-test. The pupils and students greatly profited from independently working through the learning software. Their knowledge of groundwater increased significantly compared to the control group and there was a highly significant increase in the number of scientifically correct notions of groundwater. The acceptance of the program was also generally very high. The results speak for the fact that theory-guided multimedia learning programs can play an important role in the transfer of research results into the classroom, particularly in science education.

  1. Changing our minds: a commentary on `Conceptual change: a discussion of theoretical, methodological and practical challenges for science education'

    Science.gov (United States)

    Mercer, Neil

    2008-07-01

    This paper begins with a consideration of some important themes dealt with in the paper by Treagust and Duit. These include the relationship between research on conceptual change and educational practice, the significance of emotion and identity in the process of conceptual change, and role of cognitive conflict in motivating change. I then argue that the authors implicitly assert the importance of spoken dialogue as a motor for conceptual change, but do not give it the proper, explicit recognition that it deserves. I first use their own data of transcribed talk to make this point, and then go on to elaborate my case by drawing on other research. Talk amongst students and teacher-student talk are both considered. My conclusion is that while more empirical research is needed to understand how dialogue is involved in conceptual change, available evidence shows very clearly that the role of talk and social interaction is so significant that it cannot be ignored. It is therefore necessary for theoretical accounts to deal with both social (i.e. communicative) and cognitive aspects of conceptual change.

  2. Drama-Based Science Teaching and Its Effect on Students' Understanding of Scientific Concepts and Their Attitudes towards Science Learning

    Science.gov (United States)

    Abed, Osama H.

    2016-01-01

    This study investigated the effect of drama-based science teaching on students' understanding of scientific concepts and their attitudes towards science learning. The study also aimed to examine if there is an interaction between students' achievement level in science and drama-based instruction. The sample consisted of (87) of 7th grade students…

  3. Understanding enabling capacities for managing the 'wicked problem' of nonpoint source water pollution in catchments: a conceptual framework.

    Science.gov (United States)

    Patterson, James J; Smith, Carl; Bellamy, Jennifer

    2013-10-15

    Nonpoint source (NPS) water pollution in catchments is a 'wicked' problem that threatens water quality, water security, ecosystem health and biodiversity, and thus the provision of ecosystem services that support human livelihoods and wellbeing from local to global scales. However, it is a difficult problem to manage because water catchments are linked human and natural systems that are complex, dynamic, multi-actor, and multi-scalar in nature. This in turn raises questions about understanding and influencing change across multiple levels of planning, decision-making and action. A key challenge in practice is enabling implementation of local management action, which can be influenced by a range of factors across multiple levels. This paper reviews and synthesises important 'enabling' capacities that can influence implementation of local management action, and develops a conceptual framework for understanding and analysing these in practice. Important enabling capacities identified include: history and contingency; institutional arrangements; collaboration; engagement; vision and strategy; knowledge building and brokerage; resourcing; entrepreneurship and leadership; and reflection and adaptation. Furthermore, local action is embedded within multi-scalar contexts and therefore, is highly contextual. The findings highlight the need for: (1) a systemic and integrative perspective for understanding and influencing change for managing the wicked problem of NPS water pollution; and (2) 'enabling' social and institutional arenas that support emergent and adaptive management structures, processes and innovations for addressing NPS water pollution in practice. These findings also have wider relevance to other 'wicked' natural resource management issues facing similar implementation challenges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Do Elementary Science Methods Textbooks Promote Understanding of Shadows?

    Directory of Open Access Journals (Sweden)

    Lloyd H. Barrow

    2016-02-01

    Full Text Available Elementary science methods textbooks can be an important resource for future elementary teachers of science. Since shadows are a common topic in elementary school and Next Generation Science Standards (NGSS Lead States, 2013. A series of ten shadows concepts were formed into a learning progression by Wizman and Fortus (2007. For this research, ten science methods textbook were read and analyzed about how each of the shadow concepts were addressed. These methods textbooks focused on a limited number of shadow concepts. Consequently, as a future reference, they are very limited in addressing all ten shadow concepts.

  5. Adults' decision-making about the electronic waste issue: The role of the nature of science conceptualizations and moral concerns in socio-scientific decision-making

    Science.gov (United States)

    Yu, Yuqing

    Socio-scientific issues have become increasingly important in Science-Technology-Society (STS) education as a means to make science learning more relevant to students' lives. This study used the e-waste issue as a context to investigate two aspects of socio-scientific decision-making: (1) the relationship between the nature of science (NOS) conceptualizations and decision-making; and (2) moral concerns involved in the process of decision-making. This study contributes to the field of socio-scientific issue research and STS education in the following ways. First, it is the first study that performed meta-analysis to seek the relationship between the NOS understanding and decision-making. This study concludes that valuable NOS conceptualizations that are highly related to the socio-scientific issue under investigation, rather than general NOS understanding, exert statistically significant influences on decision-making. Second, this study empirically examined the Multiple Responses Model (MRM), which enables the transfer of qualitative NOS responses into quantitative data, and hence, inferential statistics. The current study justifies the significance of unidimensionality to the application of the MRM. It addresses the limitations associated with the MRM and provides implications for future use of the MRM in other contexts. Finally, the study explores the role of moral concerns in socio-scientific decision-making. Eight participants engaged in interviews that were designed to elicit their reactions and feelings regarding the issue of exporting e-waste to poor countries. Qualitative analyses demonstrated that moral considerations were significant influences on decision-making. In addition, participants' action responses revealed that they were motivated to take action to help the environment. The study has implications for socio-scientific issue studies in other contexts and for teacher education programs that use socio-scientific issues to advance teachers' reasoning

  6. Teaching for Conceptual Change in Elementary and Secondary Science Methods Courses.

    Science.gov (United States)

    Marion, Robin; Hewson, Peter W.; Tabachnick, B. Robert; Blomker, Kathryn B.

    1999-01-01

    Describes and analyzes two science methods courses at the elementary and secondary levels for how they addressed four ideas: (1) how students learn science; (2) how teachers teach science to students; (3) how prospective science teachers learn about the first two ideas; and (4) how methods instructors teach prospective science teachers about the…

  7. Idea and Action: Action Research and the Development of Conceptual Change Teaching of Science.

    Science.gov (United States)

    Tabachnick, B. Robert; Zeichner, Kenneth M.

    1999-01-01

    Describes and analyzes an action-research seminar for prospective elementary and secondary teachers in terms of how it facilitated prospective teachers' learning to teach for conceptual change. Contains 37 references. (Author/WRM)

  8. Changes in Pre-service Science Teachers' Understandings After Being Involved in Explicit Nature of Science and Socioscientific Argumentation Processes

    Science.gov (United States)

    Kutluca, A. Y.; Aydın, A.

    2017-08-01

    The study explored the changes in pre-service science teachers' understanding of the nature of science and their opinions about the nature of science, science teaching and argumentation after their participation in explicit nature of science (NOS) and socioscientific argumentation processes. The participants were 56 third-grade pre-service science teachers studying in a state university in Turkey. The treatment group comprised 27 participants, and there were 29 participants in the comparison group. The comparison group participants were involved in a student-centred science-teaching process, and the participants of the treatment group were involved in explicit NOS and socioscientific argumentation processes. In the study, which lasted a total of 11 weeks, a NOS-as-argumentation questionnaire was administered to all the participants to determine their understanding of NOS at the beginning and end of the data collection process, and six random participants of the treatment group participated in semi-structured interview questions in order to further understand their views regarding NOS, science teaching and argumentation. Qualitative and quantitative data analysis revealed that the explicit NOS and socioscientific argumentation processes had a significant effect on pre-service science teachers' NOS understandings. Furthermore, NOS, argumentation and science teaching views of the participants in the treatment group showed a positive change. The results of this study are discussed in light of the related literature, and suggestions are made within the context of contribution to science-teaching literature, improvement of education quality and education of pre-service teachers.

  9. A Study of General Education Astronomy Students' Understandings of Cosmology. Part I. Development and Validation of Four Conceptual Cosmology Surveys

    Science.gov (United States)

    Wallace, Colin S.; Prather, Edward E.; Duncan, Douglas K.

    2011-01-01

    This is the first in a series of five articles describing a national study of general education astronomy students' conceptual and reasoning difficulties with cosmology. In this paper, we describe the process by which we designed four new surveys to assess general education astronomy students' conceptual cosmology knowledge. These surveys focused…

  10. Investigation of a reflective pedagogy to encourage pre-service physics teachers to explore argumentation as an aid to conceptual understanding

    Science.gov (United States)

    Lancaster, Greg; Cooper, Rebecca

    2016-05-01

    An emerging focus of recent science education research advocates the benefits of using argumentation as an approach in which teachers can better engage students in a more authentic experience of the epistemic work of scientists (Bricker and Bell, 2008). Logical argument and critical thinking are considered essential skills for an effective and successful undertaking of scientific inquiry and analysis. Early research suggests the practise of encouraging students to engage in scientific discourse in the classroom (Kuhn, 2010) can provide rich experiences for students and teachers to hone their cognitive abilities. This paper explores the use of critical `discussion problems' purposefully designed for pre-service physics teachers to investigate their own alternative conceptual understandings of key physics ideas. It also discusses how these problems are then used to generate classroom discourse which focuses on the importance of developing effective pedagogical content knowledge (See Shulman, 1986 for a detailed explanation of pedagogical content knowledge) rather than just mastery of scientific content and its mathematical applications. Further, the paper will detail a preliminary study in which pre-service physics teachers were introduced to a number of discussion problems via an online learning environment and asked to first consider the problem and post a solution in isolation from their peers. A considerable challenge was persuading the pre-service teachers to resist the common practice of "Googling the answer" via the internet before posting their solution attempt. Although most students initially appeared to believe that posting "the correct" answer was the main task objective, the vast majority eventually came to realise that discussing the range of unresearched solutions was much more beneficial for their conceptual understanding and professional practice. Over time, this approach generally encouraged students to post original ideas and to be less influenced

  11. Investigation of a reflective pedagogy to encourage pre-service physics teachers to explore argumentation as an aid to conceptual understanding

    International Nuclear Information System (INIS)

    Lancaster, G.; Cooper, R.

    2015-01-01

    An emerging focus of recent science education research advocates the benefits of using argumentation as an approach in which teachers can better engage students in a more authentic experience of the epistemic work of scientists (Bricker and Bell, 2008). Logical argument and critical thinking are considered essential skills for an effective and successful undertaking of scientific inquiry and analysis. Early research suggests the practise of encouraging students to engage in scientific discourse in the classroom (Kuhn, 2010) can provide rich experiences for students and teachers to hone their cognitive abilities. This paper explores the use of critical ‘discussion problems’ purposefully designed for pre-service physics teachers to investigate their own alternative conceptual understandings of key physics ideas. It also discusses how these problems are then used to generate classroom discourse which focuses on the importance of developing effective pedagogical content knowledge (See Shulman, 1986 for a detailed explanation of pedagogical content knowledge) rather than just mastery of scientific content and its mathematical applications. Further, the paper will detail a preliminary study in which pre-service physics teachers were introduced to a number of discussion problems via an online learning environment and asked to first consider the problem and post a solution in isolation from their peers. A considerable challenge was persuading the pre-service teachers to resist the common practice of “Googling the answer” via the internet before posting their solution attempt. Although most students initially appeared to believe that posting “the correct” answer was the main task objective, the vast majority eventually came to realise that discussing the range of un researched solutions was much more beneficial for their conceptual understanding and professional practice. Over time, this approach generally encouraged students to post original ideas and to be

  12. Conceptualization of an R&D Based Learning-to-Innovate Model for Science Education

    Science.gov (United States)

    Lai, Oiki Sylvia

    The purpose of this research was to conceptualize an R & D based learning-to-innovate (LTI) model. The problem to be addressed was the lack of a theoretical L TI model, which would inform science pedagogy. The absorptive capacity (ACAP) lens was adopted to untangle the R & D LTI phenomenon into four learning processes: problem-solving via knowledge acquisition, incremental improvement via knowledge participation, scientific discovery via knowledge creation, and product design via knowledge productivity. The four knowledge factors were the latent factors and each factor had seven manifest elements as measured variables. The key objectives of the non experimental quantitative survey were to measure the relative importance of the identified elements and to explore the underlining structure of the variables. A questionnaire had been prepared, and was administered to more than 155 R & D professionals from four sectors - business, academic, government, and nonprofit. The results showed that every identified element was important to the R & D professionals, in terms of improving the related type of innovation. The most important elements were highlighted to serve as building blocks for elaboration. In search for patterns of the data matrix, exploratory factor analysis (EF A) was performed. Principal component analysis was the first phase of EF A to extract factors; while maximum likelihood estimation (MLE) was used to estimate the model. EF A yielded the finding of two aspects in each kind of knowledge. Logical names were assigned to represent the nature of the subsets: problem and knowledge under knowledge acquisition, planning and participation under knowledge participation, exploration and discovery under knowledge creation, and construction and invention under knowledge productivity. These two constructs, within each kind of knowledge, added structure to the vague R & D based LTI model. The research questions and hypotheses testing were addressed using correlation

  13. Mathematical Model of the Public Understanding of Space Science

    Science.gov (United States)

    Prisniakov, V.; Prisniakova, L.

    The success in deployment of the space programs now in many respects depends on comprehension by the citizens of necessity of programs, from "space" erudition of country. Purposefulness and efficiency of the "space" teaching and educational activity depend on knowledge of relationships between separate variables of such process. The empirical methods of ``space'' well-information of the taxpayers should be supplemented by theoretical models permitting to demonstrate a ways of control by these processes. Authors on the basis of their experience of educational activity during 50- years of among the students of space-rocket profession obtain an equation of ``space" state of the society determining a degree of its knowledge about Space, about achievements in its development, about indispensable lines of investigations, rates of informatization of the population. It is supposed, that the change of the space information consists of two parts: (1) - from going of the information about practical achievements, about development special knowledge requiring of independent financing, and (2) from intensity of dissemination of the ``free" information of a general educational line going to the population through mass-media, book, in family, in educational institutions, as a part of obligatory knowledge of any man, etc. In proposed model the level space well-information of the population depends on intensity of dissemination in the society of the space information, and also from a volume of financing of space-rocket technology, from a part of population of the employment in the space-rocket programs, from a factor of education of the population in adherence to space problems, from welfare and mentality of the people, from a rate of unemployment and material inequality. Obtained in the report on these principles the equation of a space state of the society corresponds to catastrophe such as cusp, the analysis has shown which one ways of control of the public understanding of space

  14. Development of a Conceptual Framework for Understanding Shared Decision making Among African-American LGBT Patients and their Clinicians.

    Science.gov (United States)

    Peek, Monica E; Lopez, Fanny Y; Williams, H Sharif; Xu, Lucy J; McNulty, Moira C; Acree, M Ellen; Schneider, John A

    2016-06-01

    conceptual model for understanding SDM in African-American LGBT persons, wherein multiple systems of social stratification (e.g., race, gender, sexual orientation) influence patient and provider perceptions, behaviors, and shared decision making. Few studies exist that explore SDM among African-American LGBT persons, and no interventions were identified in our systematic review. Thus, we are unable to draw conclusions about the effect size of SDM among this population on health outcomes. Qualitative work suggests that race, sexual orientation and gender work collectively to enhance perceptions of discrimination and decrease SDM among African-American LGBT persons. More research is needed to obtain a comprehensive understanding of shared decision making and subsequent health outcomes among African-Americans along the entire spectrum of gender and sexual orientation.

  15. A Conceptual Model of Future Volcanism at Medicine Lake Volcano, California - With an Emphasis on Understanding Local Volcanic Hazards

    Science.gov (United States)

    Molisee, D. D.; Germa, A.; Charbonnier, S. J.; Connor, C.

    2017-12-01

    Medicine Lake Volcano (MLV) is most voluminous of all the Cascade Volcanoes ( 600 km3), and has the highest eruption frequency after Mount St. Helens. Detailed mapping by USGS colleagues has shown that during the last 500,000 years MLV erupted >200 lava flows ranging from basalt to rhyolite, produced at least one ash-flow tuff, one caldera forming event, and at least 17 scoria cones. Underlying these units are 23 additional volcanic units that are considered to be pre-MLV in age. Despite the very high likelihood of future eruptions, fewer than 60 of 250 mapped volcanic units (MLV and pre-MLV) have been dated reliably. A robust set of eruptive ages is key to understanding the history of the MLV system and to forecasting the future behavior of the volcano. The goals of this study are to 1) obtain additional radiometric ages from stratigraphically strategic units; 2) recalculate recurrence rate of eruptions based on an augmented set of radiometric dates; and 3) use lava flow, PDC, ash fall-out, and lahar computational simulation models to assess the potential effects of discrete volcanic hazards locally and regionally. We identify undated target units (units in key stratigraphic positions to provide maximum chronological insight) and obtain field samples for radiometric dating (40Ar/39Ar and K/Ar) and petrology. Stratigraphic and radiometric data are then used together in the Volcano Event Age Model (VEAM) to identify changes in the rate and type of volcanic eruptions through time, with statistical uncertainty. These newly obtained datasets will be added to published data to build a conceptual model of volcanic hazards at MLV. Alternative conceptual models, for example, may be that the rate of MLV lava flow eruptions are nonstationary in time and/or space and/or volume. We explore the consequences of these alternative models on forecasting future eruptions. As different styles of activity have different impacts, we estimate these potential effects using simulation

  16. Conceptual Understanding of the Russian-Caucasian Relations in the XVI–XIX centuries in the Official Imperial Historiography

    Directory of Open Access Journals (Sweden)

    Hadzhi-Murat A. Sabanchiev

    2017-03-01

    Full Text Available The domestic Caucasus Studies contains various, often conflicting concepts and approaches, claiming to be the most complete and objective coverage of issues of Russian-Caucasian historical interaction. Though in different studies, the same category is filled with a variety of semantic content that creates a discursive field requiring thorough scientific research. The article analyzes the research works of official direction of pre-revolutionary historiography devoted to the problem of relations between Russia and the North Caucasus in the XVI–XIX centuries. The disciplinary matrix of historical science of J. Ryuzen is used as an instrument of historiographical analysis in this research. This theoretical construct allowed to typologize and to conceptualize the pre-revolutionary studies, to formulate criteria for selection of the conservative direction in the study of the Russian-Caucasian relations. The authors of the article relate the works of M.M. Shcherbatov, N.K. Karamzin, P.P. Zubov, R.А. Fadeev, A.P. Berge, N.F. Dubrovin, V.A. Potto, D.N. Dubenskiy, I. Ivanin, S.S. Esadze et al to the research works of the official direction of the pre-revolutionary historical thought. The cognitive interest of this group of researchers is caused by the search for the most effective ways of conquest and managing the North Caucasian peoples. Caucasus war was examined by the researchers-conservatives as the process of strengthening the position of the Russian Empire in the North Caucasus region justified from a historical and geopolitical point of view. The official approach supposed the civilizational motivation for the particular military conquest of the North Caucasus societies, deprived of citizenship and social order. The authors conclude that the research works of the conservative direction of imperial historiography solve important problems of legitimation of the Russian policy in the North Caucasus.

  17. Young Adults' Financial Socialization Processes as Influences of Conceptualization and Understanding of Financial Well-Being and Choice in Relationship Commitment

    Science.gov (United States)

    Rea, Jennifer K.

    2017-01-01

    The two studies presented in this dissertation provide an understanding of young adults' perspective financial socialization processes and how the experiences influence a conceptualization of financial well-being and their choice of romantic relationship status (Study 1: N = 31, Study 2: N = 549). Study 1 has adapted Gudmunson and Danes' (2011)…

  18. Grade 12 Students' Conceptual Understanding and Mental Models of Galvanic Cells before and after Learning by Using Small-Scale Experiments in Conjunction with a Model Kit

    Science.gov (United States)

    Supasorn, Saksri

    2015-01-01

    This study aimed to develop the small-scale experiments involving electrochemistry and the galvanic cell model kit featuring the sub-microscopic level. The small-scale experiments in conjunction with the model kit were implemented based on the 5E inquiry learning approach to enhance students' conceptual understanding of electrochemistry. The…

  19. Comparison of Pre-Service Physics Teachers' Conceptual Understanding of Dynamics in Model-Based Scientific Inquiry and Scientific Inquiry Environments

    Science.gov (United States)

    Arslan Buyruk, Arzu; Ogan Bekiroglu, Feral

    2018-01-01

    The focus of this study was to evaluate the impact of model-based inquiry on pre-service physics teachers' conceptual understanding of dynamics. Theoretical framework of this research was based on models-of-data theory. True-experimental design using quantitative and qualitative research methods was carried out for this research. Participants of…

  20. On Being in the Wrong Place: The Role of Children's Conceptual Understanding and Ballgame Experience When Judging a Football Player's Offside Position

    Science.gov (United States)

    Lange-Küttner, Christiane; Bosco, Giorgia

    2016-01-01

    We investigated the role of children's conceptual understanding and ballgame experience when judging whether a football player is in an offside position, or not. In the offside position, a player takes advantage of being behind the defence line of the opposing team and just waits for the ball to arrive in order to score a goal. We explained the…

  1. A Science-Based Understanding of Cermet Processing

    Energy Technology Data Exchange (ETDEWEB)

    Cesarano, III, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roach, Robert Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kilgo, Alice C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Susan, Donald Francis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Ornum, David J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stuecker, John N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shollenberger, Kimberly A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report is a summary of the work completed in FY01 for science-based characterization of the processes used to fabricate 1) cermet vias in source feedthrus using slurry and paste-filling techniques and 2) cermet powder for dry pressing. Common defects found in cermet vias were characterized based on the ability of subsequent processing techniques (isopressing and firing) to remove the defects. Non-aqueous spray drying and mist granulation techniques were explored as alternative methods of creating CND50, the powder commonly used for dry pressed parts. Compaction and flow characteristics of these techniques were analyzed and compared to standard dry-ball-milled CND50. Due to processing changes, changes in microstructure can occur. A microstructure characterization technique was developed to numerically describe cermet microstructure. Machining and electrical properties of dry pressed parts were also analyzed and related to microstructure using this analytical technique.3 Executive SummaryThis report outlines accomplishments in the science-based understanding of cermet processing up to fiscal year 2002 for Sandia National Laboratories. The three main areas of work are centered on 1) increasing production yields of slurry-filled cermets, 2) evaluating the viability of high-solids-loading pastes for the same cermet components, and 3) optimizing cermet powder used in pressing processes (CND50). An additional development that was created as a result of the effort to fully understand the impacts of alternative processing techniques is the use of analytical methods to relate microstructure to physical properties. Recommendations are suggested at the end of this report. Summaries of these four efforts are as follows:1.Increase Production Yields of Slurry-Filled Cermet Vias Finalized slurry filling criteria were determined based on three designs of experiments where the following factors were analyzed: vacuum time, solids loading, pressure drop across the filter paper

  2. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  3. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    International Nuclear Information System (INIS)

    Abeyratne, S.; Accardi, A.; Ahmed, S.; Barber, D.; Bisognano, J.; Bogacz, A.; Castilla, A.; Chevtsov, P.; Corneliussen, S.; Deconinck, W.; Degtiarenko, P.; Delayen, J.; Derbenev, Ya.; DeSilva, S.; Douglas, D.; Dudnikov, V.; Ent, R.; Erdelyi, B.; Evtushenko, P.; Fujii, Yu; Filatov, Yury; Gaskell, D.; Geng, R.; Guzey, V.; Horn, T.; Hutton, A.; Hyde, C.; Johnson, R.; Kim, Y.; Klein, F.; Kondratenko, A.; Kondratenko, M.; Krafft, G.; Li, R.; Lin, F.; Manikonda, S.; Marhauser, F.; McKeown, R.; Morozov, V.; Dadel-Turonski, P.; Nissen, E.; Ostroumov, P.; Pivi, M.; Pilat, F.; Poelker, M.; Prokudin, A.; Rimmer, R.; Satogata, T.; Sayed, H.; Spata, M.; Sullivan, M.; Tennant, C.; Terzic, B.; Tiefenback, M.; Wang, H.; Wang, S.; Weiss, C.; Yunn, B.; Zhang, Y.

    2012-01-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  4. Psychology, education and history: the paths offered by social studies of science to analyze the mobilization of conceptual and practice devices

    Directory of Open Access Journals (Sweden)

    Joan Sebastian Soto Triana

    2015-07-01

    Full Text Available This paper provides a reflection about the way in which the analysis of the history of psychology in Colombia has been constituted. It contributes a conceptual development to the classical tradition of viewing history as a reference to moments and “heroic” characters, neglecting analytical possibilities around various narratives that enable a broad understanding of the movements of psychology as a space for social appropriation of knowledge, sociotechnical network building and practices of translation of interests. Through a brief exposition of the case of psychology and education at the Gimnasio Moderno School of Bogota in the early twentieth century, the way in which Social Studies of Science provide important tools in terms of their epistemology and methodology for monitoring concepts, practices, adaptations and staging of European developmental psychology in an educational institution where childhood is a “mandatory step” in narratives about modernization is presented.

  5. Science Understanding through Playground Physics: Organized Recess Teaching (SUPPORT)

    Science.gov (United States)

    Kincaid, Russell

    2010-03-01

    From 1995-2007, U.S. science students in grade four scored higher than the scaled TIMSS average, but their scores did not improve over this time. Moreover, in the area of physical science, the U.S. scored significantly lower than several Asian countries, as well as Russia, England, and Latvia (TIMSS). Methods to enhance student achievement in science are still being sought. An approach to utilizing playground equipment as a teaching tool for a variety of physics concepts was developed as a physical science teaching method. This program established an appropriate set of experiments, coordinated the effort with local school districts, and implemented a brief pilot study to test the teaching methodology. The program assigned undergraduate middle school science education majors to teach small groups of fourth grade students. The experimental group used the newly developed ``Playground Physics'' methodology while the control group used traditional approaches. Follow up activities will include an expansion of the duration and the scope of the program.

  6. Conceptualizing the Science-Practice Interface: Lessons from a Collaborative Network on the Front-Line of Climate Change

    Directory of Open Access Journals (Sweden)

    Nathan P. Kettle

    2017-06-01

    Full Text Available The gap between science and practice is widely recognized as a major concern in the production and application of decision-relevant science. This research analyzed the roles and network connections of scientists, service providers, and decision makers engaged in climate science and adaptation practice in Alaska, where rapid climate change is already apparent. Our findings identify key actors as well as significant differences in the level of bonding ties between network members who perceive similarity in their social identities, bridging ties between network members across different social groups, and control of information across roles—all of which inform recommendations for adaptive capacity and the co-production of usable knowledge. We also find that some individuals engage in multiple roles in the network suggesting that conceptualizing science policy interactions with the traditional categories of science producers and consumers oversimplifies how experts engage with climate science, services, and decision making. Our research reinforces the notion that the development and application of knowledge is a networked phenomenon and highlights the importance of centralized individuals capable of playing multiple roles in their networks for effective translation of knowledge into action.

  7. Understanding student participation and choice in science and technology education

    CERN Document Server

    Dillon, Justin; Ryder, Jim

    2015-01-01

    Drawing on data generated by the EU’s Interests and Recruitment in Science (IRIS) project, this volume examines the issue of young people’s participation in science, technology, engineering and mathematics education. With an especial focus on female participation, the chapters offer analysis deploying varied theoretical frameworks, including sociology, social psychology and gender studies. The material also includes reviews of relevant research in science education and summaries of empirical data concerning student choices in STEM disciplines in five European countries. Featuring both quantitative and qualitative analyses, the book makes a substantial contribution to the developing theoretical agenda in STEM education. It augments available empirical data and identifies strategies in policy-making that could lead to improved participation—and gender balance—in STEM disciplines. The majority of the chapter authors are IRIS project members, with additional chapters written by specially invited contribu...

  8. Understanding the Role of Academic Language on Conceptual Understanding in an Introductory Materials Science and Engineering Course

    Science.gov (United States)

    Kelly, Jacquelyn

    2012-01-01

    Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to…

  9. A Unifying Conceptual Model of Entrepreneurial Management - A Discussion and Elaboration of Stevenson's Understanding of Entrepreneurial Management

    DEFF Research Database (Denmark)

    Senderovitz, Martin

    This article offers a systematic analysis and synthesis of the area of entrepreneurial management. Through a presentation of two main perspectives on entrepreneurial management and a newly developed unifying conceptual entrepreneurial management model, the paper discusses a number of theoretical...

  10. Conceptual understanding of electrical circuits in secondary vocational engineering education: combining traditional instruction with inquiry learning in a virtual lab

    NARCIS (Netherlands)

    Kolloffel, Bas Jan; de Jong, Anthonius J.M.

    2013-01-01

    Background: Traditionally, engineering curricula about electrical circuits use textbook instruction and hands-on lessons, which are effective approaches for teaching terms and definitions, the procedural use of formulas, and how to build circuits. Nonetheless, students often lack conceptual

  11. Understanding the Gender Gap in Science and Engineering: Evidence from the Chilean College Admissions Tests

    Science.gov (United States)

    Gándara, Fernanda; Silva, Monica

    2016-01-01

    This study seeks to develop a better understanding of the underrepresentation of women in science and engineering by analyzing the gender gaps (a) in the interest in pursuing a science degree and (b) on science achievement. We use national-level college admissions data to examine gender differences and to explore the association between these…

  12. Doing the Project and Learning the Content: Designing Project-Based Science Curricula for Meaningful Understanding

    Science.gov (United States)

    Kanter, David E.

    2010-01-01

    Project-based science curricula can improve students' usable or meaningful understanding of the science content underlying a project. However, such curricula designed around "performances" wherein students design or make something do not always do this. We researched ways to design performance project-based science curricula (pPBSc) to better…

  13. Simulation-Based Performance Assessment: An Innovative Approach to Exploring Understanding of Physical Science Concepts

    Science.gov (United States)

    Gale, Jessica; Wind, Stefanie; Koval, Jayma; Dagosta, Joseph; Ryan, Mike; Usselman, Marion

    2016-01-01

    This paper illustrates the use of simulation-based performance assessment (PA) methodology in a recent study of eighth-grade students' understanding of physical science concepts. A set of four simulation-based PA tasks were iteratively developed to assess student understanding of an array of physical science concepts, including net force,…

  14. First-Year University Science and Engineering Students' Understanding of Plagiarism

    Science.gov (United States)

    Yeo, Shelley

    2007-01-01

    This paper is a case study of first-year science and engineering students' understandings of plagiarism. Students were surveyed for their views on scenarios illustrating instances of plagiarism in the context of the academic work and assessment of science and engineering students. The aim was to explore their understandings of plagiarism and their…

  15. Conceptual Play and Science Inquiry: Using the 5E Instructional Model

    Science.gov (United States)

    Desouza, Josephine M. Shireen

    2017-01-01

    Play has been synonymous with early childhood education and is an important aspect of child development. Researchers have characterized and defined play from different perspectives. If play is an integral part of the early years what is its relationship to learning? This paper describes the development of conceptual play by using the pedagogy of…

  16. In praise of science: curiosity, understanding, and progress

    NARCIS (Netherlands)

    Bais, S.

    2010-01-01

    In this engaging, lyrical book, physicist Sander Bais shows how science can liberate us from our cultural straitjacket of prejudice and intolerance. We're living in a time in which technology is taken for granted, yet belief in such standard scientific facts as evolution is actually decreasing. How

  17. In praise of science: curiosity, understanding, and progress

    NARCIS (Netherlands)

    Bais, S.

    2009-01-01

    In this book, author and physicist Sander Bais shows how science can liberate us from our cultural straitjacket of prejudice and intolerance. We're living in a time in which technology is taken for granted, yet belief in such standard scientific facts as evolution is actually decreasing. How is it

  18. Understanding Educational Change through the Lens of Complexity Science

    Science.gov (United States)

    Girtz, Suzann

    2009-01-01

    The purpose of this study was to investigate four attractor states in schools through the perceptions of formal leaders that engaged in and reflected upon school reform regarding the Millennial generation. The term attractor was used as a metaphor for a habitual pattern, gleaned from complexity science which informs of new ways in which to…

  19. Understanding Economic and Management Sciences Teachers' Conceptions of Sustainable Development

    Science.gov (United States)

    America, Carina

    2014-01-01

    Sustainable development has become a key part of the global educational discourse. Education for sustainable development (ESD) specifically is pronounced as an imperative for different curricula and regarded as being critical for teacher education. This article is based on research that was conducted on economic and management sciences (EMS)…

  20. Dilemmas in Examining Understanding of Nature of Science in Vietnam

    Science.gov (United States)

    Hatherley-Greene, Peter

    2017-01-01

    The two authors, Thi Phuong Thao-Do and Chokchai Yuenyong, explored the Nature of Science as it is understood in Vietnam, a fast-developing "ancient" and modern country which continues to be shaped by uniquely Asian social norms and values. Upon reviewing their paper, I observed strong parallels to the country, the United Arab Emirates,…

  1. Dilemmas in examining understanding of nature of science in Vietnam

    Science.gov (United States)

    Thao-Do, Thi Phuong; Yuenyong, Chokchai

    2017-06-01

    Scholars proved nature of science (NOS) has made certain contributions to science teaching and learning. Nonetheless, what, how and how much NOS should be integrated in the science curriculum of each country cannot be a benchmark, due to the influence of culture and society. Before employing NOS in a new context, it should be carefully studied. In assessing views of NOS in Vietnam, a developing country with Eastern culture where the NOS is not consider a compulsory learning outcome, there are several issues that researchers and educators should notice to develop an appropriate instrument that can clearly exhibit a NOS view of Vietnamese. They may include: time for the survey; length, content, type, and terms of the questionnaire; Vietnamese epistemology and philosophy; and some other Vietnamese social and cultural aspects. The most important reason for these considerations is that a Vietnamese view of NOS and NOS assessment possibly differs from the Western ideas due to the social and cultural impact. As a result, a Western assessment tool may become less effective in an Eastern context. The suggestions and implications in this study were derived from a prolonged investigation on Vietnamese science teacher educators and student teachers of School of Education, at Can Tho University, a State University in Mekong Delta region, Vietnam.

  2. Data, instruments, and theory a dialectical approach to understanding science

    CERN Document Server

    Ackermann, Robert John

    1985-01-01

    Robert John Ackermann deals decisively with the problem of relativism that has plagued post-empiricist philosophy of science. Recognizing that theory and data are mediated by data domains (bordered data sets produced by scientific instruments), he argues that the use of instruments breaks the dependency of observation on theory and thus creates a reasoned basis for scientific objectivity.

  3. Understanding the Science behind EPA’s Pesticide Decisions

    Science.gov (United States)

    Science is key to EPA’s decision-making. EPA scientists review these data to determine whether to register a pesticide product or use and any need for specific restrictions. EPA maintains a transparent, public process in assessing potential human health ri

  4. Conceptualizing Student Affect for Science and Technology at the Middle School Level: Development and Implementation of a Measure of Affect in Science and Technology (MAST)

    Science.gov (United States)

    Romine, William L.; Sadler, Troy D.; Wulff, Eric P.

    2017-01-01

    We describe the development of the Measure of Affect in Science and Technology (MAST), and study its usefulness for measuring science affect in middle school students via both classical and Rasch measurement perspectives. We then proceed to utilize the measurement structure of the MAST to understand how middle school students at varying levels of…

  5. Mathematics and science teachers' understanding and practices of ...

    African Journals Online (AJOL)

    Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives ... school level understand and implement learner-centered pedagogy. ... prove that teachers' knowledge and skills as regard learner-centred pedagogical ...

  6. Learning by doing? Prospective elementary teachers' developing understandings of scientific inquiry and science teaching and learning

    Science.gov (United States)

    Haefner, Leigh Ann; Zembal-Saul, Carla

    This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.

  7. Science as Interests but Not for Career: Understanding High School Students' Engagement in Science in Abu Dhabi

    Science.gov (United States)

    Yang, Guang; Badri, Masood; Al-Mazroui, Karima; Al-Rashedi, Asma; Nai, Peng

    2017-01-01

    Understanding high school students' engagement in science is important for the Emirate of Abu Dhabi. Drawing on data from the ROSE Survey conducted in Abu Dhabi schools in 2013, this paper used a multi-dimensional framework to explore associations between high school students' engagement in science and a range of student psychosocial and…

  8. Appropriating religion: understanding religion as an object of science

    OpenAIRE

    Donald Wiebe

    1999-01-01

    In this paper, the author focuses on the study of religion as a scientific project, for it is the scientific interest in religion which has constituted the grounds for admitting the study of religion into the curriculum of the modern Western university. Despite that academic legitimation, however, the study of religion in the setting of the modern research university is not held in high esteem relative to the other sciences. It if the scientific study of religion is to be legitimately ensconc...

  9. Science Fiction as a Prism for Understanding Geopolitics

    Science.gov (United States)

    2015-04-01

    Graduation Requirements for the Degree of MASTER OF OPERATIONAL ARTS AND SCIENCES Advisor: Dr. William L. Dulaney Maxwell Air Force Base, Alabama...Leadford is from a financially strapped background, socialist in his political views, and of an emotional, romantic temperament, especially towards the...By the mid-1980s, Baen’s books were featuring a distinctive type of cover art , which although arguably gaudy and “tacky,” was nonetheless

  10. Climate Science - getting the world to understand, and to care

    Science.gov (United States)

    Jasmin, T.; Ackerman, S. A.; Whittaker, T. M.

    2012-12-01

    Effectively teaching and conveying climate science has become one of Earth Science's greatest challenges. Existing barriers are many and varied, from political, ideological, and religious, to purely economic. Additionally, studies show the general public at present has a surprising number of basic misconceptions regarding the Earth system, and Earth-Sun relationships. Addressing these misconceptions is the first hurdle to overcome for properly teaching climate science. This talk will discuss ways to address the various barriers. Strategies are being employed to arm teachers with new tools leveraging the move to online, interactive learning. Content can be tailored particular audiences. For any individual, learning will be most effective if there is an understood significance, the information is presented clearly and at an appropriate education level, and when possible some personal relevance can be inferred. People need a reason to care. Examples and approaches for several common education scenarios will be given. A simple "Climate Change 101" outline will be given, a blueprint that could be used to educate most of the general public. Freely available online resources to address Earth System misconceptions will be referenced. Finally, a case will be made that a dramatic improvement in climate literacy worldwide may be the only viable means to successfully tackling global warming.

  11. Conceptual change through the use of student-generated analogies of photosynthesis and respiration by college non-science majors

    Science.gov (United States)

    Hill, Gary D.

    Two of the most important and difficult concepts in biology are photosynthesis and respiration. A pilot study was performed using student volunteers from introductory biology classes to assess student alternative frameworks regarding photosynthesis and respiration. The results of the pilot study were used to construct the Instrument for the Assessment of Respiration and Photosynthesis (IFARP). This was an 11-item, three-tier multiple choice instrument designed to conveniently assess the common misconceptions students have about these concepts upon entering a biology course. The first tier of each item of the IFARP contained a multiple choice question about photosynthesis or respiration. The second tier had a multiple choice question regarding the reason for the choice in the first tier. The third tier asked the students to indicate how confident they were in their responses, on a scale from 1 (not very confident) to 5 (very confident). The IFARP was administered as a pretest and posttest to a group of science non-majors in an introductory biology course. No significant changes were observed in student performance as measured by the IFARP between the pretest and posttest administrations. The students did, however, demonstrate a statistical increase in mean confidence levels regarding their knowledge of photosynthesis and respiration. Even though their comprehension and understanding regarding photosynthesis and respiration had not increased, the confidence they had in their responses about these two concepts had increased. The IFARP was also administered to a group of nursing student volunteers in an introductory microbiology course. This group of students also participated in the use of student-generated analogies as a learning strategy to alter conceptual frameworks. One test group of students provided analogies to photosynthesis and respiration, while the other test group provided analogies to two other concepts. No significant changes were observed in the

  12. Investigating the Relationship between Instructors' Use of Active-Learning Strategies and Students' Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments.

    Science.gov (United States)

    Cleveland, Lacy M; Olimpo, Jeffrey T; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students' conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected quantitative data to compare participants' conceptual understanding, attitudes, and motivation in the biological sciences across two contexts that employed different active-learning strategies and that were facilitated by unique instructors. Students participated in either graphic organizer/worksheet activities or clicker-based case studies. After controlling for demographic and presemester affective differences, we found that students in both active-learning environments displayed similar and significant learning gains. In terms of attitudinal and motivational data, significant differences were observed for two attitudinal measures. Specifically, those students who had participated in graphic organizer/worksheet activities demonstrated more expert-like attitudes related to their enjoyment of biology and ability to make real-world connections. However, all motivational and most attitudinal data were not significantly different between the students in the two learning environments. These data reinforce the notion that active learning is associated with conceptual change and suggests that more research is needed to examine the differential effects of varying active-learning strategies on students' attitudes and motivation in the domain. © 2017 L. M. Cleveland et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Conceptualizing Student Affect for Science and Technology at the Middle School Level: Development and Implementation of a Measure of Affect in Science and Technology (MAST)

    Science.gov (United States)

    Romine, William L.; Sadler, Troy D.; Wulff, Eric P.

    2017-10-01

    We describe the development of the Measure of Affect in Science and Technology (MAST), and study its usefulness for measuring science affect in middle school students via both classical and Rasch measurement perspectives. We then proceed to utilize the measurement structure of the MAST to understand how middle school students at varying levels of affect express their interest and attitudes toward science and technology and gender differences in how students express their affect. We found that affect in science and technology comprises a main dimension, science interest, and four peripheral dimensions: interest in careers in science and technology, attitudes toward science, and interest in attending science class. Of these, careers in science and technology carry the highest affective demand. While males showed higher levels of personal and situational interest in science, a greater interest in careers in science and technology was the biggest contributor to males' higher affect toward science and technology. We argue that whether the MAST is used as a measure of a single construct or multiple subconstructs depends upon specific research or evaluation goals; however, both uses of the MAST yield measures which produce valid inferences for student affect.

  14. U.S. Geological Survey core science systems strategy: characterizing, synthesizing, and understanding the critical zone through a modular science framework

    Science.gov (United States)

    Bristol, R. Sky; Euliss, Ned H.; Booth, Nathaniel L.; Burkardt, Nina; Diffendorfer, Jay E.; Gesch, Dean B.; McCallum, Brian E.; Miller, David M.; Morman, Suzette A.; Poore, Barbara S.; Signell, Richard P.; Viger, Roland J.

    2013-01-01

    Core Science Systems is a new mission of the U.S. Geological Survey (USGS) that resulted from the 2007 Science Strategy, "Facing Tomorrow's Challenges: U.S. Geological Survey Science in the Decade 2007-2017." This report describes the Core Science Systems vision and outlines a strategy to facilitate integrated characterization and understanding of the complex Earth system. The vision and suggested actions are bold and far-reaching, describing a conceptual model and framework to enhance the ability of the USGS to bring its core strengths to bear on pressing societal problems through data integration and scientific synthesis across the breadth of science. The context of this report is inspired by a direction set forth in the 2007 Science Strategy. Specifically, ecosystem-based approaches provide the underpinnings for essentially all science themes that define the USGS. Every point on Earth falls within a specific ecosystem where data, other information assets, and the expertise of USGS and its many partners can be employed to quantitatively understand how that ecosystem functions and how it responds to natural and anthropogenic disturbances. Every benefit society obtains from the planet-food, water, raw materials to build infrastructure, homes and automobiles, fuel to heat homes and cities, and many others, are derived from or affect ecosystems. The vision for Core Science Systems builds on core strengths of the USGS in characterizing and understanding complex Earth and biological systems through research, modeling, mapping, and the production of high quality data on the Nation's natural resource infrastructure. Together, these research activities provide a foundation for ecosystem-based approaches through geologic mapping, topographic mapping, and biodiversity mapping. The vision describes a framework founded on these core mapping strengths that makes it easier for USGS scientists to discover critical information, share and publish results, and identify potential

  15. Image understanding systems based on the unifying representation of perceptual and conceptual information and the solution of mid-level and high-level vision problems

    Science.gov (United States)

    Kuvychko, Igor

    2001-10-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, that is an interpretation of visual information in terms of such knowledge models. A computer vision system based on such principles requires unifying representation of perceptual and conceptual information. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/networks models is found. That means a very important shift of paradigm in our knowledge about brain from neural networks to the cortical software. Starting from the primary visual areas, brain analyzes an image as a graph-type spatial structure. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. The spatial combination of different neighbor features cannot be described as a statistical/integral characteristic of the analyzed region, but uniquely characterizes such region itself. Spatial logic and topology naturally present in such structures. Mid-level vision processes like clustering, perceptual grouping, multilevel hierarchical compression, separation of figure from ground, etc. are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena like shape from shading, occlusion, etc. are results of such analysis. Such approach gives opportunity not only to explain frequently unexplainable results of the cognitive science, but also to create intelligent computer vision systems that simulate perceptional processes in both what and where visual pathways. Such systems can open new horizons for robotic and computer vision industries.

  16. Understanding Science Teaching Effectiveness: Examining How Science-Specific and Generic Instructional Practices Relate to Student Achievement in Secondary Science Classrooms

    Science.gov (United States)

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-01-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student…

  17. Understanding Teaching or Teaching for Understanding: Alternative Frameworks for Science Classrooms.

    Science.gov (United States)

    Wildy, Helen; Wallace, John

    1995-01-01

    Describes the findings of a study that involved exploring the classroom practices of an experienced physics teacher to enable researchers to reexamine assumptions about good teaching. Asserts that a broader view of good science teaching is needed than that proposed by the constructivist literature. (ZWH)

  18. Understanding the Changing Planet: Strategic Directions for the Geographical Sciences

    Science.gov (United States)

    National Academies Press, 2010

    2010-01-01

    From the oceans to continental heartlands, human activities have altered the physical characteristics of Earth's surface. With Earth's population projected to peak at 8 to 12 billion people by 2050 and the additional stress of climate change, it is more important than ever to understand how and where these changes are happening. Innovation in the…

  19. Dilemmas in examining understanding of nature of science in Vietnam

    Science.gov (United States)

    Hatherley-Greene, Peter

    2017-06-01

    The two authors, Thi Phuong Thao-Do and Chokchai Yuenyong, explored the Nature of Science as it is understood in Vietnam, a fast-developing `ancient' and modern country which continues to be shaped by uniquely Asian social norms and values. Upon reviewing their paper, I observed strong parallels to the country, the United Arab Emirates, where I have lived and worked for 20 years. In this forum piece, I described several areas of similarity and one striking area of difference between the two societies.

  20. (Mis)understanding Science: The Problem with Scientific Breakthroughs.

    Science.gov (United States)

    Evans, James P

    2016-09-01

    On Saturday morning, February 28, 1953, the mystery of heredity appeared secure. Humans hadn't the faintest idea of how genetic information was transmitted-how the uncanny resemblance between mother and daughter, grandfather and grandson was conveyed across generations. Yet, by that Saturday afternoon, two individuals, James Watson and Francis Crick, had glimpsed the solution to these mysteries. The story of Watson and Crick's great triumph has been told and retold and has rightly entered the pantheon of scientific legend. But Watson and Crick's breakthrough was just that: a rupture and dramatic discontinuity in human knowledge that solved a deep mystery, the likes of which occurs, perhaps, a couple of times each century. And that's the problem. The story is just so good and so irresistible that it has misled generations of scientists about what to expect regarding a life in science. And more damaging, the resulting breakthrough mentality misleads the public, the media, and society's decision-makers about how science really works, all to the detriment of scientific progress and our society's well-being. © 2016 The Hastings Center.

  1. Assessing Students' Understandings of Biological Models and Their Use in Science to Evaluate a Theoretical Framework

    Science.gov (United States)

    Grünkorn, Juliane; Upmeier zu Belzen, Annette; Krüger, Dirk

    2014-01-01

    Research in the field of students' understandings of models and their use in science describes different frameworks concerning these understandings. Currently, there is no conjoint framework that combines these structures and so far, no investigation has focused on whether it reflects students' understandings sufficiently (empirical evaluation).…

  2. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    Science.gov (United States)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  3. Music-therapy analyzed through conceptual mapping

    Science.gov (United States)

    Martinez, Rodolfo; de la Fuente, Rebeca

    2002-11-01

    Conceptual maps have been employed lately as a learning tool, as a modern study technique, and as a new way to understand intelligence, which allows for the development of a strong theoretical reference, in order to prove the research hypothesis. This paper presents a music-therapy analysis based on this tool to produce a conceptual mapping network, which ranges from magic through the rigor of the hard sciences.

  4. Conceptual and Procedural Knowledge Community College Students Use when Solving Science Problems

    Science.gov (United States)

    Eibensteiner, Janice L.

    2012-01-01

    Successful science students have mastered their field of study by being able to apply their learned knowledge and problem solving skills on tests. Problem solving skills must be used to figure out the answer to many classes of questions. What this study is trying to determine is how students solve complex science problems in an academic setting in…

  5. Facilitating Conceptual Change through Modeling in the Middle School Science Classroom

    Science.gov (United States)

    Carrejo, David J.; Reinhartz, Judy

    2014-01-01

    Engaging students in both hands-on and minds-on experiences is needed for education that is relevant and complete. Many middle school students enter science classrooms with pre-conceived ideas about their world. Some of these ideas are misconceptions that hinder students from developing accepted concepts in science, such as those related to…

  6. Developing a framework for critical science agency through case study in a conceptual physics context

    Science.gov (United States)

    Basu, Sreyashi Jhumki; Calabrese Barton, Angela; Clairmont, Neil; Locke, Donya

    2009-06-01

    In this manuscript we examine how two students develop and express agency in and through high school physics. We tell the stories of two youth from a low-income, urban community to elucidate the important components of critical science agency in a physics context, and to situate a set of claims about how youth develop and express this concept. This research is part of a larger multiyear study of democratic practice in middle- and high-school science. We present three claims: (a) that critical science agency is intimately related to the leveraging and development of identity, (b) that critical science agency involves the strategic deployment of resources , and (c) that developing critical science agency is an iterative and generative process. Two university researchers have co-written this paper with the two students whose experiences serve as the cases under investigation, to provide both an "emic" perspective and student-focused voices that complement and challenge the researchers' voices.

  7. Touristic destination ambassadors, case analysis and conceptualization. How to better understand and use brand ambassadors in cognitive, affective and experiential approaches

    OpenAIRE

    de Diesbach, Pablo Brice

    2012-01-01

    The purpose – We propose to capitalize on recent research on tourism marketing, destination choice, but also and mainly on conceptual reflexions and research on emotional and symbolical brand relationship . We try to understand how destinations could communicate, using destination ambassadors; in order to better attract travellers. Methodology – this is a theoretical article presenting key concepts and their relevance to tourism marketing. We present the key concepts and analyse cases or real...

  8. The Effect of Concept Cartoon-Embedded Worksheets on Grade 9 Students' Conceptual Understanding of Newton's Laws of Motion

    Science.gov (United States)

    Atasoy, Sengül; Ergin, Serap

    2017-01-01

    Background: A substantial review study of concept cartoons reports that few studies have indicated their functions. For this reason, the present study illuminates the extent to which concept cartoon-embedded worksheets (through constructivist context) accomplish these functions in conceptual learning. Purpose: The purpose of the study is to…

  9. Sociology and the public understanding of science: from rationalization to rhetoric.

    Science.gov (United States)

    Locke, S

    2001-03-01

    This paper contributes to the reappraisal of sociological theories of modernity inspired by the sociology of scientific knowledge (SSK). As much as these theories rely on received ideas about the nature of science that SSK has called into doubt, so do they rely on ideas about the public understanding of science. Public understanding of science has been assumed to conform to the monolithic logic and perception of science associated with rationalization, leading to an impoverished view of the cognitive outlook of the modern individual. Rationalization has become the basis for the construction of theoretical critique of science divorced from any clear reference to public understanding, with the result that theory has encountered considerable problems in accounting for public scepticism towards science. However, rather than question rationalization, the more typical strategy has been to propose radical changes in the modernization process, such as postmodernism and the risk society. Against this, an alternative view of public understanding is advanced drawn from SSK and rhetorical psychology. The existence of the sociological critique of science, and SSK in particular, suggests that the meaning of science in modernity is not monolithic but multiple, arising out of a central dilemma over the universal form of knowledge-claims and their necessarily particular, human and social grounding. This dilemma plays out not only in intellectual discourses about science, but also in the public's understanding of science. This argument is used to call for further sociological research into public understanding and to encourage sociologists to recognize the central importance of the topic to a proper understanding of modernity.

  10. Understanding Student Participation and Choice in Science and Technology Education

    DEFF Research Database (Denmark)

    Ryder, Jim; Ulriksen, Lars; Bøe, Maria Vetleseter

    2015-01-01

    Many of the chapters in this volume provide reviews of the existing research literature. In this chapter we focus on what the research studies presented in this book have contributed to our understanding of students’ educational choices. The nature of these contributions is varied. Many findings...... corroborate existing research insights, or explore existing perspectives in new educational contexts or across distinct geographical and cultural settings. In some cases our work challenges prevalent accounts of students’ educational choices. This chapter has five themes: theoretical perspectives; choice...

  11. "What's Positive about Positive Rights?" Students' Everyday Understandings and the Challenges of Teaching Political Science

    Science.gov (United States)

    Ekström, Linda; Lundholm, Cecilia

    2018-01-01

    A review of research into teaching and learning in political science education concludes that this literature emphasizes student outcomes and "show and tell" descriptions of pedagogical interventions (Craig 2014). The present study instead aims to open the "black box" of conceptual learning in political science, illustrating…

  12. Understanding of Leaf Development—the Science of Complexity

    Directory of Open Access Journals (Sweden)

    Robert Malinowski

    2013-06-01

    Full Text Available The leaf is the major organ involved in light perception and conversion of solar energy into organic carbon. In order to adapt to different natural habitats, plants have developed a variety of leaf forms, ranging from simple to compound, with various forms of dissection. Due to the enormous cellular complexity of leaves, understanding the mechanisms regulating development of these organs is difficult. In recent years there has been a dramatic increase in the use of technically advanced imaging techniques and computational modeling in studies of leaf development. Additionally, molecular tools for manipulation of morphogenesis were successfully used for in planta verification of developmental models. Results of these interdisciplinary studies show that global growth patterns influencing final leaf form are generated by cooperative action of genetic, biochemical, and biomechanical inputs. This review summarizes recent progress in integrative studies on leaf development and illustrates how intrinsic features of leaves (including their cellular complexity influence the choice of experimental approach.

  13. A Multilevel Conceptual Framework to Understand the Role of Food Insecurity on Antiretroviral Therapy Adherence in Low-Resource Settings: From Theory to Practice

    Science.gov (United States)

    Masa, Rainier; Chowa, Gina

    2018-01-01

    The objective of this study was to describe a multilevel conceptual framework to understand the role of food insecurity on antiretroviral therapy adherence. The authors illustrated an example of how they used the multilevel framework to develop an intervention for poor people living with HIV in a rural and low-resource community. The framework incorporates intra-personal, interpersonal, and structural-level theories of understanding and changing health behaviors. The framework recognizes the role of personal, social, and environmental factors on cognition and behavior, with particular attention to ways in which treatment adherence is enabled or prevented by structural conditions, such as food insecurity. PMID:28368779

  14. Understanding the Influence of Learners' Forethought on Their Use of Science Study Strategies in Postsecondary Science Learning

    Science.gov (United States)

    Dunn, Karee E.; Lo, Wen-Juo

    2015-11-01

    Understanding self-regulation in science learning is important for theorists and practitioners alike. However, very little has been done to explore and understand students' self-regulatory processes in postsecondary science courses. In this study, the influence of science efficacy, learning value, and goal orientation on the perceived use of science study strategies was explored using structural equation modeling. In addition, the study served to validate the first two stages of Zimmerman's cyclical model of self-regulation and to address the common methodological weakness in self-regulation research in which data are all collected at one point after the learning cycle is complete. Thus, data were collected across the learning cycle rather than asking students to reflect upon each construct after the learning cycle was complete. The findings supported the hypothesized model in which it was predicted that self-efficacy would significantly and positively influence students' perceived science strategy use, and the influence of students' valuation of science learning on science study strategies would be mediated by their learning goal orientation. The findings of the study are discussed and implications for undergraduate science instructors are proposed.

  15. The relationship between nature of science understandings and science self-efficacy beliefs of sixth grade students

    Science.gov (United States)

    Parker, Elisabeth Allyn

    Bandura (1986) posited that self-efficacy beliefs help determine what individuals do with the knowledge and skills they have and are critical determinants of how well skill and knowledge are acquired. Research has correlated self-efficacy beliefs with academic success and subject interest (Pajares, Britner, & Valiante, 2000). Similar studies report a decreasing interest by students in school science beginning in middle school claiming that they don't enjoy science because the classes are boring and irrelevant to their lives (Basu & Barton, 2007). The hypothesis put forth by researchers is that students need to observe models of how science is done, the nature of science (NOS), so that they connect with the human enterprise of science and thereby raise their self-efficacy (Britner, 2008). This study examined NOS understandings and science self-efficacy of students enrolled in a sixth grade earth science class taught with explicit NOS instruction. The research questions that guided this study were (a) how do students' self-efficacy beliefs change as compared with changes in their nature of science understandings?; and (b) how do changes in students' science self-efficacy beliefs vary with gender and ethnicity segregation? A mixed method design was employed following an embedded experimental model (Creswell & Plano Clark, 2007). As the treatment, five NOS aspects were first taught by the teachers using nonintegrated activities followed by integrated instructional approach (Khishfe, 2008). Students' views of NOS using the Views on Nature of Science (VNOS) (Lederman, Abd-El-Khalick, & Schwartz, 2002) along with their self-efficacy beliefs using three Likert-type science self-efficacy scales (Britner, 2002) were gathered. Changes in NOS understandings were determined by categorizing student responses and then comparing pre- and post-instructional understandings. To determine changes in participants' self-efficacy beliefs as measured by the three subscales, a multivariate

  16. Workshop on Friction: Understanding and Addressing Students' Difficulties in Learning Science through a Hermeneutical Perspective

    Science.gov (United States)

    Ha, Sangwoo; Lee, Gyoungho; Kalman, Calvin S.

    2013-01-01

    Hermeneutics is useful in science and science education by emphasizing the process of understanding. The purpose of this study was to construct a workshop based upon hermeneutical principles and to interpret students' learning in the workshop through a hermeneutical perspective. When considering the history of Newtonian mechanics, it could be…

  17. Developing Turkish Preservice Preschool Teachers' Attitudes and Understanding about Teaching Science through Play

    Science.gov (United States)

    Bulunuz, Mizrap

    2012-01-01

    This research studied the development of preservice teachers' understandings and attitudes about teaching science through playful experiences. Subjects were 94 senior preservice teachers in two sections of a science methods class on teaching preschool children. Data sources were semi-structured interviews and open-ended questionnaire at the…

  18. A Study to Understand the Role of Visual Arts in the Teaching and Learning of Science

    Science.gov (United States)

    Dhanapal, Saroja; Kanapathy, Ravi; Mastan, Jamilah

    2014-01-01

    This research was carried out to understand the role of visual arts in the teaching and learning of science among Grade 3 teachers and students. A mixture of qualitative and quantitative research design was used to discover the different perceptions of both teachers and students on the role of visual arts in science. The data for the research was…

  19. Impacts of Contextual and Explicit Instruction on Preservice Elementary Teachers' Understandings of the Nature of Science

    Science.gov (United States)

    Bell, Randy L.; Matkins, Juanita Jo; Gansneder, Bruce M.

    2011-01-01

    This mixed-methods investigation compared the relative impacts of instructional approach and context of nature of science instruction on preservice elementary teachers' understandings. The sample consisted of 75 preservice teachers enrolled in four sections of an elementary science methods course. Independent variables included instructional…

  20. Descriptive Understandings of the Nature of Science: Examining the Consensual and Family Resemblance Approaches

    Science.gov (United States)

    do Nascimento Rocha, Maristela; Gurgel, Ivã

    2017-01-01

    This paper performs a critical analysis of the consensual and family resemblance approaches to the nature of science. Despite the debate that surrounds them, between a pragmatic consensus and a more comprehensive understanding, both approaches have in common the goal of helping students to "internalize" knowledge about science in a…

  1. Enhancing Laos Students' Understanding of Nature of Science in Physics Learning about Atom for Peace

    Science.gov (United States)

    Sengdala, Phoxay; Yuenyong, Chokchai

    2014-01-01

    This paper aimed to study of Grade 12 students' understanding of nature of science in learning about atom for peace through science technology and society (STS) approach. Participants were 51 Grade 12 who study in Thongphong high school Vientiane Capital City Lao PDR, 1st semester of 2012 academic year. This research regarded interpretive…

  2. Prospective Elementary Teachers' Understanding of the Nature of Science and Perceptions of the Classroom Learning Environment

    Science.gov (United States)

    Martin-Dunlop, Catherine S.

    2013-01-01

    This study investigated prospective elementary teachers' understandings of the nature of science and explored associations with their guided-inquiry science learning environment. Over 500 female students completed the Nature of Scientific Knowledge Survey (NSKS), although only four scales were analyzed-Creative, Testable, Amoral, and Unified. The…

  3. Understanding Korean Transnational Girls in High School Science Classes: Beyond the Model Minority Stereotype

    Science.gov (United States)

    Ryu, Minjung

    2015-01-01

    This study examines six Korean transnational girls enrolled in two advanced placement (AP) biology classes to understand their experiences in science classrooms at the intersection of race, language, and gender. Confronting the model minority stereotype for Asian students, which is particularly salient in science, technology, engineering, and…

  4. Driven by Beliefs: Understanding Challenges Physical Science Teachers Face When Integrating Engineering and Physics

    Science.gov (United States)

    Dare, Emily A.; Ellis, Joshua A.; Roehrig, Gillian H.

    2014-01-01

    It is difficult to ignore the increased use of technological innovations in today's world, which has led to various calls for the integration of engineering into K-12 science standards. The need to understand how engineering is currently being brought to science classrooms is apparent and necessary in order to address these calls for integration.…

  5. Developing an Understanding of Higher Education Science and Engineering Learning Communities

    Science.gov (United States)

    Coll, Richard K.; Eames, Chris

    2008-01-01

    This article sets the scene for this special issue of "Research in Science & Technological Education", dedicated to understanding higher education science and engineering learning communities. We examine what the literature has to say about the nature of, and factors influencing, higher education learning communities. A discussion of…

  6. Turkish Primary Science Teacher Candidates' Understandings of Global Warming and Ozone Layer Depletion

    Science.gov (United States)

    Yalcin, Fatma Aggul; Yalcin, Mehmet

    2017-01-01

    The purpose of the study was to explore Turkish primary science teacher candidates' understanding of global warming and ozone layer depletion. In the study, as the research approach the survey method was used. The sample consisted of one hundred eighty nine third grade science teacher candidates. Data was collected using the tool developed by the…

  7. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    Science.gov (United States)

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  8. The formality of learning science in everyday life: A conceptual literature review

    Directory of Open Access Journals (Sweden)

    Niels Bonderup Dohn

    2010-09-01

    Full Text Available The terms non-formal and informal are attributed to learning in everyday life by many authors, often linked to their interests in particular learning practices. However, many authors use the terms without any clear definition, or employ conflicting definitions and boundaries. An analysis of relevant literature revealed two fundamentally different interpretations of informal learning. The one describes formality of education at the organizational level, while the second describes formality of learning at the psychological level. This article presents a conceptual reconciling of these two perspectives. Based on a literature review, the educational modes of education are defined as discrete entities (formal, non-formal, and informal education, whereas formality at the psychological level is defined in terms of attributes of formality and informality along a continuum (formal ↔ informal learning. Relations to other  well-established frameworks within the field of informal learning are discussed.

  9. Understanding cities as social-ecological systems

    CSIR Research Space (South Africa)

    Du Plessis, C

    2008-09-01

    Full Text Available This paper builds on earlier ecological approaches to urban development, as well as more recent thinking in the fields of sustainability science, resilience thinking and complexity theory, to propose a conceptual framework for understanding cities...

  10. Lost in translation: Discourses, boundaries and legitimacy in the public understanding of science in the UK

    Science.gov (United States)

    Lock, Simon Jay

    2008-07-01

    This thesis documents the historical development of debates around the public understanding of science in the UK from 1985 until 2005. Testimonies from key actors involved in the evolution of the recent public understanding of science arena, and an examination of documentary evidence, have been used to map out how this issue was problematised by scientists in the mid-1980s, and how it has developed into a contested field of activity, political interest and academic research. I propose that this historical period can be broadly understood in four phases each characterised by a dominant discourse of the public understanding of science. I examine how, within each phase, the various groups involved have engaged in boundary work: rhetorically constructing, and mobilising, ideas of 'science', 'the public', and the perceived 'problem' in the relationship between the two, in the pursuit of defining and legitimating themselves and these definitions of the relationship between science and public. Phase I is characterised as a rhetorical re-framing of earlier 'problems' of the public understanding of science by scientists and scientific institutions in the context of the 1980s. Phase II is dominated by the boundary work between scientists and social scientists as they contended for legitimacy and authority over competing discourses of public understanding of science and the institutionalisation of PUS activity and research. Phase III is characterised by a variety of discursive formulations of the 'problem' of PUS following the House of Lords report (2000) and a subsequent change in the rhetoric of public understanding of science to one of public engagement. Phase IV is dominated by the language of 'upstream engagement' and identifies the political interest in managing science's relationship with the public and the social scientific responses to this.

  11. A surfeit of science: The "CSI effect" and the media appropriation of the public understanding of science.

    Science.gov (United States)

    Cole, Simon A

    2015-02-01

    Over the past decade, popular media has promulgated claims that the television program CSI and its spinoffs and imitators have had a pernicious effect on the public understanding of forensic science, the so-called "CSI effect." This paper analyzes those media claims by documenting the ways in which the media claims that CSI "distorts" an imagined "reality." It shows that the media appropriated the analytic stance usually adopted by science advocates, portraying the CSI effect as a social problem in science communication. This appropriation was idiosyncratic in that it posited, as a social problem, a "surfeit" of knowledge and positive imagery about science, rather than the more familiar "deficits." In addition, the media simultaneously appropriated both "traditional" and "critical" PUS discourses. Despite this apparent contradiction, the paper concludes that, in both discourses, the media and its expert informants insist upon their hegemony over "the public" to articulate the "reality" of forensic science. © The Author(s) 2013.

  12. An Examination of Understandings of Prospective Teachers about Science and Science History

    Science.gov (United States)

    Yildiz, Cemalettin

    2018-01-01

    The purpose of this study was to reveal beliefs of prospective teachers about "science" and "science history." The qualitative research approach was employed in the study. The study group consisted of 150 prospective teachers. A form developed by the researcher was used for data collection. The form consisted of open-ended…

  13. Understanding the Views of the Nature of Science of Undergraduate Science, Technology, Engineering, and Mathematics Students

    Science.gov (United States)

    Hypolite, Karen L.

    2012-01-01

    Much of the nature of science research has been focused on high school students. High school students are primarily the target of such research to aid and to guide them in making informed decisions about possible career choices in the sciences (Bell, Blair, Crawford, & Lederman, 2002). Moreover, during review of the literature, little to no…

  14. Understanding the Language Demands on Science Students from an Integrated Science and Language Perspective

    Science.gov (United States)

    Seah, Lay Hoon; Clarke, David John; Hart, Christina Eugene

    2014-01-01

    This case study of a science lesson, on the topic thermal expansion, examines the language demands on students from an integrated science and language perspective. The data were generated during a sequence of 9 lessons on the topic of "States of Matter" in a Grade 7 classroom (12-13 years old students). We identify the language demands…

  15. Investigating Changes in Student Attitudes and Understanding of Science through Participation in Citizen Science Projects in College Coursework

    Science.gov (United States)

    Cardamone, Carolin; Cobb, Bethany E.

    2018-01-01

    Over the last decade, web-based “citizen science” projects such as the Zooniverse have allowed volunteers and professional scientists to work together for the advancement of science. While much attention has been paid to the benefits to science from these new projects, less attention has been paid to their impact on the participants and, in particular, to the projects’ potential to impact students who might engage in these projects through coursework. We report on a study engaging students in introductory astronomy classes at the George Washington University and Wheelock College in an assignment in which each student individually contributed to a “physics” or “space” citizen science project of their choice, and groups of students worked together to understand and articulate the scientific purpose of a citizen science project to which they all contributed. Over the course of approximately four weeks, the students kept logs of their individual contributions to the project, and recorded a brief reflection on each of their visits (noting, for example, interesting or confusing things they might encounter along the way). The project culminated with each group delivering a creative presentation that demonstrated their understanding of both the science goals of the project and the value of their own contributions to the project. In this talk, we report on the experience of the students with the project and on an assessment of the students’ attitudes toward science and knowledge of the process of science completed before the introduction of the assignment and again at its conclusion.

  16. How to create a methodology of conceptual visualization based on experiential cognitive science and diagrammatology

    DEFF Research Database (Denmark)

    Toft, Birthe

    2013-01-01

    Based on the insights of experiential cognitive science and of diagrammatology as defined by Charles S. Peirce and Frederik Stjernfelt, this article analyses the iconic links connecting visualizations of Stjernfelt diagrams with human perception and action and starts to lay the theoretical...

  17. Conceptual Integration of Hybridization by Algerian Students Intending to Teach Physical Sciences

    Science.gov (United States)

    Salah, Hazzi; Dumon, Alain

    2011-01-01

    This work aims to assess the difficulties encountered by students of the Ecole Normale Superieure of Kouba (Algeria) intending to teach physical science in the integration of the hybridization of atomic orbitals. It is a concept that they should use in describing the formation of molecular orbitals ([sigma] and [pi]) in organic chemistry and gaps…

  18. General System Theory: Toward a Conceptual Framework for Science and Technology Education for All.

    Science.gov (United States)

    Chen, David; Stroup, Walter

    1993-01-01

    Suggests using general system theory as a unifying theoretical framework for science and technology education for all. Five reasons are articulated: the multidisciplinary nature of systems theory, the ability to engage complexity, the capacity to describe system dynamics, the ability to represent the relationship between microlevel and…

  19. Informatics Science and Technology for Development in Latin America: Towards a Conceptual Framework for Comparative Analysis.

    Science.gov (United States)

    Hogeboom, Richard L.

    The information-based technologies and the accompanying managerial sciences have come to symbolize the ideology of progress and operate as a material instrumentality in social governance systems. Developing countries have incorporated the technologies, but have lacked a developed knowledge or service sector; the linkage of…

  20. Conceptual issues of research methodology for the behavioural, life and social sciences

    NARCIS (Netherlands)

    Mellenbergh, G.J.; Adèr, H.J.; Baird, D.; Berger, M.P.F.; Cornell, J.E.; Hagenaars, J.A.P.; Molenaar, P.C.M.

    2003-01-01

    Research methodology (RM) must be clearly separated from substantive fields, such as medicine, psychology, education, sociology and economics, and, on the other side, from the philosophy of science and statistics. RM starts from substantive research problems and uses statistical knowledge, but it