WorldWideScience

Sample records for science concepts introduced

  1. Introducing Science to undergraduate students

    Directory of Open Access Journals (Sweden)

    P. Avila Jr

    2006-07-01

    Full Text Available The knowledge of scientific method provides stimulus and development of critical thinking and logical analysis of information besides the training of continuous formulation of hypothesis to be applied in formal scientific issues as well as in everyday facts. The scientific education, useful for all people, is indispensable for the experimental science students. Aiming at the possibility to offer a systematic learning of the scientific principles, we developed a undergraduate course designed to approximate the students to the procedures of scientific production and publication. The course was developed in a 40 hours, containing two modules: I. Introducing Scientific Articles (papers and II. Writing Research Project. The first module deals with: (1 the difference between scientific knowledge and common sense; (2 scientific methodology; (3 scientific publishing categories; (4 logical principles; (5 deduction and induction approach and (6 paper analysis. The second module includes (1 selection of problem to be solved by experimental procedures; (2 bibliography revision; (3 support agencies; (4 project writing and presentation and (5 critical analysis of experimental results. The course used a Collaborative Learning strategy with each topic being developed through activities performed by the students. Qualitative and quantitative (through Likert questionnaires evaluation were carried out in each step of the course, the results showing great appreciation by the students. This is also the opinion of the staff responsible for the planning and development of the course, which is now in its second and improved version.

  2. Using "Monopoly" to Introduce Concepts of Race and Ethnic Relations

    Science.gov (United States)

    Waren, Warren

    2011-01-01

    In this paper I suggest a technique which uses the familiar Parker Brother's game "Monopoly" to introduce core concepts of race and ethnic relations. I offer anecdotes from my classes where an abbreviated version of the game is used as an analog to highlight the sociological concepts of direct institutional discrimination, the legacy of…

  3. Introducing geometry concept based on history of Islamic geometry

    Science.gov (United States)

    Maarif, S.; Wahyudin; Raditya, A.; Perbowo, K. S.

    2018-01-01

    Geometry is one of the areas of mathematics interesting to discuss. Geometry also has a long history in mathematical developments. Therefore, it is important integrated historical development of geometry in the classroom to increase’ knowledge of how mathematicians earlier finding and constructing a geometric concept. Introduction geometrical concept can be started by introducing the Muslim mathematician who invented these concepts so that students can understand in detail how a concept of geometry can be found. However, the history of mathematics development, especially history of Islamic geometry today is less popular in the world of education in Indonesia. There are several concepts discovered by Muslim mathematicians that should be appreciated by the students in learning geometry. Great ideas of mathematicians Muslim can be used as study materials to supplement religious character values taught by Muslim mathematicians. Additionally, by integrating the history of geometry in teaching geometry are expected to improve motivation and geometrical understanding concept.

  4. Methods for Introducing Inorganic Polymer Concepts throughout the Undergraduate Curriculum

    Science.gov (United States)

    de Lill, Daniel T.; Carraher, Charles E., Jr.

    2017-01-01

    Inorganic polymers can be introduced in a variety of undergraduate courses to discuss concepts related to polymer chemistry. Inorganic polymers such as silicates and polysiloxanes are simple materials that can be incorporated into an introductory or descriptive inorganic course. Polymers based on inorganic carbon, including diamond and graphite,…

  5. Geographies of American Popular Music: Introducing Students to Basic Geographic Concepts

    Science.gov (United States)

    McClain, Stephen S.

    2010-01-01

    Popular music can be used to study many subjects and issues related to the social sciences. "Geographies of American Popular Music" was a workshop that not only examined the history and development of select genres of American music, it also introduced students to basic geographic concepts such as the culture hearth and spatial diffusion. Through…

  6. Introducing a Generic Concept for an Online IT-Benchmarking System

    OpenAIRE

    Ziaie, Pujan;Ziller, Markus;Wollersheim, Jan;Krcmar, Helmut

    2014-01-01

    While IT benchmarking has grown considerably in the last few years, conventional benchmarking tools have not been able to adequately respond to the rapid changes in technology and paradigm shifts in IT-related domains. This paper aims to review benchmarking methods and leverage design science methodology to present design elements for a novel software solution in the field of IT benchmarking. The solution, which introduces a concept for generic (service-independent) indicators is based on and...

  7. Moon 101: Introducing Students to Lunar Science and Exploration

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2011-12-01

    , students are asked a series of questions which help reinforce the lunar science concepts they should take away from the readings. Students then use their new knowledge of the Moon in the final section of Moon 101 where they are asked to characterize the geology of the region surrounding the Apollo 11 landing site. To do this, they conduct a survey of available lunar data, examining imagery from lunar missions as recent as the Lunar Reconnaissance Orbiter and as old as the Ranger missions of the 1960s. This allows students to explore the available datasets and identify the advantages and disadvantages of each. Pre/post test questions have also been developed to assess changes in student understanding of the formation and evolution of the Moon, and lunar exploration. Moon 101 is a framework for introducing students to lunar science, and can be followed up with student-driven research. Moon 101 can be easily modified to suit the needs of the students and the instructor. Because lunar science is an evolving field of study, the use of resources such as the PSRD allows Moon 101 to be flexible and to change as the lunar community re-discovers our celestial neighbor.

  8. Science Club--A Concept

    Science.gov (United States)

    Wegner, Claas; Issak, Nicole; Tesch, Katharina; Zehne, Carolin

    2016-01-01

    The following article presents a concept of a science club which was developed by two master's students as a part of their thesis and which has been developed and improved ever since. The extra-curricular concept emphasises pupils' individuality through focusing on problem based leaning, station learning, and mixed age groups. Having joined the…

  9. Identifying and Overcoming Threshold Concepts and Conceptions: Introducing a Conception-Focused Curriculum to Course Design

    Science.gov (United States)

    Burch, Gerald F.; Burch, Jana J.; Bradley, Thomas P.; Heller, Nathan A.

    2015-01-01

    Educators have been challenged to identify threshold concepts and develop transformed students. This stands in stark contrast to many curriculum design and delivery models that currently view students as repositories of knowledge. In this article, we argue that educators can reach both goals, identify stumbling blocks and transforming students,…

  10. Introducing the History of Science at the French Middle School

    Science.gov (United States)

    Fauque, Danielle M. E.

    2009-01-01

    In scientific teaching, especially in physics and chemistry, some historical aspects have been introduced at the secondary level in France, since 1993. Particularly, in 2007, the syllabuses of 11'-15' years old level ("college") propose precise activities in history of science and technology. Detailed guidance has been distributed in…

  11. Standard 'Principle guides of radioprotection': introduced concepts and future forecasting

    International Nuclear Information System (INIS)

    Dagnino, R.

    1989-01-01

    The main topics introduced by the new CNEN standard NE 3.01 - Basic Directrix of Radioprotection directly associated to the field work in industrial radiography are presented. It's showed a practical example which evidences the need of information exchange among the industrial security, radiological safety and quality control staffs for the continuity of works in this area. (author)

  12. Introducing "One Health" as an Overlooked Concept in Iran

    Directory of Open Access Journals (Sweden)

    Hamid Sharifi

    2014-02-01

    Full Text Available ‘One Health’ is the “collaborative effort of multiple disciplines —working locally, nationally, and globally—to attain optimal health for people, animals and our environment” (1. The concept of ‘One Health’ is not as new as it may seem at the first glance, as its pioneer supporters used to live in the 19th century. Looking back in history, Louis Pasteur and Robert Koch’s achievements are good examples of practicing ‘One Health’ (2. More recently in 1940s, efforts of Dr. Steele and his peers around the globe in developing the first ‘Veterinary Public Health’ program made rapid advances in the control and prevention of zoonotic diseases, both in the United States and globally (2. The interaction of humankind, environment, and animals has led to a dynamic through which the health of these groups is interrelated.

  13. A Crafts-Oriented Approach to Computing in High School: Introducing Computational Concepts, Practices, and Perspectives with Electronic Textiles

    Science.gov (United States)

    Kafai, Yasmin B.; Lee, Eunkyoung; Searle, Kristin; Fields, Deborah; Kaplan, Eliot; Lui, Debora

    2014-01-01

    In this article, we examine the use of electronic textiles (e-textiles) for introducing key computational concepts and practices while broadening perceptions about computing. The starting point of our work was the design and implementation of a curriculum module using the LilyPad Arduino in a pre-AP high school computer science class. To…

  14. INTRODUCING SCIENCE BY DISTANCE EDUCATION TO UNDERGRADUATE STUDENTS

    Directory of Open Access Journals (Sweden)

    P. Avila Jr.

    2007-05-01

    Full Text Available Exponential growing of scientific and technological knowledge of nowadayssociety demands new abilities and competences of theirs citizens. In the otherhand, the development of Information and Communication Technologies (ICTsand the low cost of equipments provide a new teaching strategy, namely distanceeducation, through intranet or internet. The familiarity with of scientific methodstimulates autonomy in obtaining information, critical thinking and logical analysisof data. These are useful abilities for science students as well as for commoncitizens. Aiming the development of such abilities a distance course wasdeveloped in 45 hours, using mainly forum and chat in the Claroline platform withtechnical support of the Centro Nacional de Supercomputação da UFRGS. All thestudents attending the course were from Fundação Faculdade Federal deCiências Médicas de Porto Alegre. In this course the following topics wereexplored: (1 scientific knowledge x common sense, (2 different conceptions ofscience, (3 scientific method, (4 different categories of science publications, (5principles of Logic, (6 deduction x induction (7 paper analysis simulation.Scientific project writing was taught/learned through the following items: (1 choiceof a problem, (2 bibliography revision, (3 agencies for funding, (4 projectpresentation by videoconference and (5 analysis of results.The course was evaluated by Likert-type questionnaire and the results fromstudents and teachers indicate a very successful outcome.

  15. Offering a Forensic Science Camp to Introduce and Engage High School Students in Interdisciplinary Science Topics

    Science.gov (United States)

    Ahrenkiel, Linda; Worm-Leonhard, Martin

    2014-01-01

    In this article, we present details of a one-week interdisciplinary science camp for high school students in Denmark, "Criminal Camp". We describe the use of forensic science and simulated crimes as a common foundation for teaching the theory and practice of concepts in chemistry, physics, and medicine or biology. The main goal of the…

  16. Offering a Forensic Science Camp To Introduce and Engage High School Students in Interdisciplinary Science Topics

    DEFF Research Database (Denmark)

    Ahrenkiel, Linda; Worm-Leonhard, Martin

    2014-01-01

    In this article, we present details of a one-week interdisciplinary science camp for high school students in Denmark, “Criminal Camp”. We describe the use of forensic science and simulated crimes as a common foundation for teaching the theory and practice of concepts in chemistry, physics...... of the subjects taught and scientific literacy in general....

  17. Computer Science Concept Inventories: Past and Future

    Science.gov (United States)

    Taylor, C.; Zingaro, D.; Porter, L.; Webb, K. C.; Lee, C. B.; Clancy, M.

    2014-01-01

    Concept Inventories (CIs) are assessments designed to measure student learning of core concepts. CIs have become well known for their major impact on pedagogical techniques in other sciences, especially physics. Presently, there are no widely used, validated CIs for computer science. However, considerable groundwork has been performed in the form…

  18. Using the Tower of Hanoi Puzzle to Infuse Your Mathematics Classroom with Computer Science Concepts

    Science.gov (United States)

    Marzocchi, Alison S.

    2016-01-01

    This article suggests that logic puzzles, such as the well-known Tower of Hanoi puzzle, can be used to introduce computer science concepts to mathematics students of all ages. Mathematics teachers introduce their students to computer science concepts that are enacted spontaneously and subconsciously throughout the solution to the Tower of Hanoi…

  19. Politicizing science: conceptions of politics in science and technology studies.

    Science.gov (United States)

    Brown, Mark B

    2015-02-01

    This essay examines five ideal-typical conceptions of politics in science and technology studies. Rather than evaluating these conceptions with reference to a single standard, the essay shows how different conceptions of politics serve distinct purposes: normative critique, two approaches to empirical description, and two views of democracy. I discuss each conception of politics with respect to how well it fulfills its apparent primary purpose, as well as its implications for the purpose of studying a key issue in contemporary democratic societies: the politicization of science. In this respect, the essay goes beyond classifying different conceptions of politics and also recommends the fifth conception as especially conducive to understanding and shaping the processes whereby science becomes a site or object of political activity. The essay also employs several analytical distinctions to help clarify the differences among conceptions of politics: between science as 'political' (adjective) and science as a site of 'politics' (noun), between spatial-conceptions and activity-conceptions of politics, between latent conflicts and actual conflicts, and between politics and power. The essay also makes the methodological argument that the politics of science and technology is best studied with concepts and methods that facilitate dialogue between actors and analysts. The main goal, however, is not to defend a particular view of politics, but to promote conversation on the conceptions of politics that animate research in social studies of science and technology.

  20. Storyboards and Science: Introducing the Planetary Data Storyboard

    Science.gov (United States)

    King, T. A.; Del Villar, A.; Alkhawaja, A.; Grayzeck, E. J.; Galica, C.; Odess, J.; Erickson, K. J.

    2015-12-01

    Every discovery has a story and storytelling is an ancient form of education. The stories of scientific discovery are often very formal and technical and not always very accessible. As in the past, today most scientific storytelling is done as in-person presentations in the form of slide shows or movies that unfold according to the design of its author. Things have changed. Using today's technologies telling stories can be a rich multi-media experience with a blending of text, animations, movies and infographics. Also, with presentations on the web the presentation can provide links to more details and the audience (reader) can jump to the linked information. Even so, the most common form of today's storytelling is as a narrative that starts with a page, a link to a single movie or a slide-show. We introduce a new promising form of scientific storytelling, the storyboard. With a storyboard a story is presented as a set of panels that contain representative images of an event and may have associated notes or instructions. The panels are arranged in a timeline that allow the audience to experience the discovery in the same way it occurred. A panel can also link to a more detailed source such as a publication, the data that was collected or items derived from the research (like movies or animations). Scientific storyboards can make science discovery more accessible to people by presenting events in an easy to follow layout. Scientific storyboards can also help to teach the scientific method, by following the experiences of a researcher as they investigate a phenomenon or try to understand a new set of observations. We illustrate the unique features of scientific storyboards with the Planetary Data Storyboard using data archived by the Planetary Data System.

  1. Science from the Pond up: Using Measurement to Introduce Inquiry

    Science.gov (United States)

    Demir, Abdulkadir; Schmidt, Frank; Abell, Sandra K.

    2010-01-01

    The authors engaged nonscience majors enrolled in an integrated science course with a prototype activity designed to change their mindset from cookbook to inquiry science. This article describes the activity, the Warm Little Pond, which helped students develop essential understanding of basic statistics, significant figures, and the idea that…

  2. Basic concepts in social sciences I

    NARCIS (Netherlands)

    Hoede, C.

    2000-01-01

    In this paper the results are given of an investigation into concepts from Economics, Organization Theory, Political Science, Psychology and Sociology. The goal of this investigation was to find out whether there is a set of concepts that may be considered to be basic to all these five social

  3. Using Concept Maps in Political Science

    Science.gov (United States)

    Chamberlain, Robert P.

    2015-01-01

    Concept mapping is a pedagogical technique that was developed in the 1970s and is being used in K-12 and postsecondary education. Although it has shown excellent results in other fields, it is still rare in political science. In this research note, I discuss the implementation and testing of concept mapping in my Advanced Introduction to…

  4. Preservice Science Teachers' Beliefs about Astronomy Concepts

    Science.gov (United States)

    Ozkan, Gulbin; Akcay, Hakan

    2016-01-01

    The purpose of this study was to investigate preservice science teachers' conceptual understanding of astronomy concepts. Qualitative research methods were used. The sample consists of 118 preservice science teachers (40 freshmen, 31 sophomores, and 47 juniors). The data were collected with Astronomy Conceptual Questionnaire (ACQ) that includes 13…

  5. Can urologists introduce the concept of “oligometastasis” for metastatic bladder cancer after total cystectomy?

    OpenAIRE

    Ogihara, Koichiro; Kikuchi, Eiji; Watanabe, Keitaro; Kufukihara, Ryohei; Yanai, Yoshinori; Takamatsu, Kimiharu; Matsumoto, Kazuhiro; Hara, Satoshi; Oyama, Masafumi; Monma, Tetsuo; Masuda, Takeshi; Hasegawa, Shintaro; Oya, Mototsugu

    2017-01-01

    We investigated whether the concept of oligometastasis may be introduced to the clinical management of metastatic bladder cancer patients. Our study population comprised 128 patients diagnosed with metastatic bladder cancer after total cystectomy at our 6 institutions between 2004 and 2014. We extracted independent predictors for identifying a favorable. Occurrence that fulfilled all 4 criteria which were independently associated with cancer-specific death was defined as oligometastasis: a so...

  6. Concepts of matter in science education

    CERN Document Server

    Sevian, Hannah

    2013-01-01

    Bringing together a wide collection of ideas, reviews, analyses and new research on particulate and structural concepts of matter, Concepts of Matter in Science Education informs practice from pre-school through graduate school learning and teaching and aims to inspire progress in science education. The expert contributors offer a range of reviews and critical analyses of related literature and in-depth analysis of specific issues, as well as new research. Among the themes covered are learning progressions for teaching a particle model of matter, the mental models of both students and teachers of the particulate nature of matter, educational technology, chemical reactions and chemical phenomena, chemical structure and bonding, quantum chemistry and the history and philosophy of science relating to the particulate nature of matter. The book will benefit a wide audience including classroom practitioners and student teachers at every educational level, teacher educators and researchers in science education.

  7. Mathematical modelling in engineering: A proposal to introduce linear algebra concepts

    Directory of Open Access Journals (Sweden)

    Andrea Dorila Cárcamo

    2016-03-01

    Full Text Available The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasize the development of mathematical abilities primarily associated with modelling and interpreting, which aren´t limited only to calculus abilities. Considering this, an instructional design was elaborated based on mathematic modelling and emerging heuristic models for the construction of specific linear algebra concepts:  span and spanning set. This was applied to first year engineering students. Results suggest that this type of instructional design contributes to the construction of these mathematical concepts and can also favour first year engineering students understanding of key linear algebra concepts and potentiate the development of higher order skills.

  8. Study about the integrated treatment of chemical and radioactive effluents, introducing the zero release concept

    International Nuclear Information System (INIS)

    Mierzwa, Jose Carlos

    1996-01-01

    An Integrated System to the treatment of Chemical and Radioactive Effluents to the Centro Experimental Aramar is proposed and evaluated, introducing the Effluent Zero Release concept, where factors related to the environmental regulation in vigor in the country, as well as the availability of hydrological resources in the place where CEA have been implanted, are considered. Through a literature analysis of the main effluents treatment techniques available nowadays and after a case of study selection, take into account two industrial installations that will be implanted at CEA, it was defined an arrangement to compose the Integrated System to the Treatment of Chemicals and Radioactive Effluents, focusing the Zero Release concept consolidation. A defined arrangement uses a combination among three treatment processes, it means chemical precipitation, reverse osmosis and evaporation, that were experimentally evaluated. The proposed arrangement was evaluated using synthetic effluents, that were prepared based on data from literature and conception documents of the installation considered in this work. Three kinds of effluents were simulated, one arising from a nuclear reactor laundry, one arising from the water refrigeration system and demineralized water production to the nuclear reactor and the other one arising from a nuclear material production laboratory. Each effluent were individually submitted to the selected treatment processes, to get the best operational conditions for each treatment process. The results got during the laboratory assays show that the proposed Integrated System to the Treatment of Chemicals and Radioactive Effluents is feasible, consolidating the Effluent Zero Release concept, which is the proposition of this work. (author)

  9. Introducing Students to the Application of Statistics and Investigative Methods in Political Science

    Science.gov (United States)

    Wells, Dominic D.; Nemire, Nathan A.

    2017-01-01

    This exercise introduces students to the application of statistics and its investigative methods in political science. It helps students gain a better understanding and a greater appreciation of statistics through a real world application.

  10. Introducing a New Elementary GLOBE Book on Climate: Supporting Educators and Students in their Understanding of the Concepts Underlying Climate and Climate Change

    Science.gov (United States)

    Stanitski, D.; Hatheway, B.; Gardiner, L. S.; Taylor, J.; Chambers, L. H.

    2016-12-01

    Much of the focus on climate literacy in K-12 occurs in middle and high school, where teachers and students can dig into the science in some depth. It is important, however, to introduce this topic at an early age, building on a child's natural curiosity about the world around them - but without overwhelming them with frightening climate change impacts. In some U.S. school systems, a recent focus on standardized testing has crowded out science instruction in order to bring up literacy scores. To give teachers a resource to maintain some science instruction under these conditions, a series of Elementary GLOBE books have been developed. These fictional stories describe sound science and engineering practices that are essential for students to learn the process of science while expanding literacy skills, strongly encouraged in the Next Generation Science Standards (NGSS). The main concepts developed in a new Elementary GLOBE book on climate, titled "What in the World Is Happening to Our Climate?", will be introduced in this presentation. This book complements six other Earth System Science modules within the Elementary GLOBE curriculum and is freely available on the GLOBE website (www.globe.gov/elementaryglobe). The book discusses the concept that climate is changing in different ways and places around the world, and what happens to the climate in one place affects other locations across the globe. Supporting ideas clarify the difference between weather and climate, introduce climate science concepts, reveal the impacts of sea level rise, and help students understand that, while humans are contributing to climate change, they can also participate in solutions that address this challenge. Accompanying teacher's notes and companion classroom activities will be described to help elementary school teachers understand how to approach the subject of climate change with their students.

  11. The Use of Force Sensors and a Computer System to Introduce the Concept of Inertia at a School

    Science.gov (United States)

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2014-01-01

    A classical experiment used to introduce the concept of body inertia, breaking of a thread below and above a hanging weight, is described mathematically and presented in a new way, using force sensors and a computer system.

  12. Remote sensing science - new concepts and applications

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.; Cooke, B.J.; Henderson, B.G.; Love, S.P.; Zardecki, A.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The science and technology of satellite remote sensing is an emerging interdisciplinary field that is growing rapidly with many global and regional applications requiring quantitative sensing of earth`s surface features as well as its atmosphere from space. It is possible today to resolve structures on the earth`s surface as small as one meter from space. If this high spatial resolution is coupled with high spectral resolution, instant object identification can also be achieved. To interpret these spectral signatures correctly, it is necessary to perform a computational correction on the satellite imagery that removes the distorting effects of the atmosphere. This project studied such new concepts and applied innovative new approaches in remote sensing science.

  13. Academic Self-Concept: Modeling and Measuring for Science

    Science.gov (United States)

    Hardy, Graham

    2014-01-01

    In this study, the author developed a model to describe academic self-concept (ASC) in science and validated an instrument for its measurement. Unlike previous models of science ASC, which envisage science as a homogenous single global construct, this model took a multidimensional view by conceiving science self-concept as possessing distinctive…

  14. Chemistry Science Investigation: Dognapping Workshop, an Outreach Program Designed to Introduce Students to Science through a Hands-On Mystery

    Science.gov (United States)

    Boyle, Timothy J.; Sears, Jeremiah M.; Hernandez-Sanchez, Bernadette A.; Casillas, Maddison R.; Nguyen, Thao H.

    2017-01-01

    The Chemistry Science Investigation: Dognapping Workshop was designed to (i) target and inspire fourth grade students to view themselves as "Junior Scientists" before their career decisions are solidified; (ii) enable hands-on experience in fundamental scientific concepts; (iii) increase public interaction with science, technology,…

  15. THE EFFECT OF CONCEPT MAPPING ON CONCEPT LEARNING IN SCIENCE

    OpenAIRE

    岡, 直樹; 今永, 久美子

    2012-01-01

    An experiment was conducted to investigate the effects of concept map completion tasks on concept learning in the primary schoolchildren. The participants were to insert some of the suitable concepts (concept group) or link labeles (link label group) or both of them (concept/link label group) into the blanks to make up the map wholly. It was revealed that the results of the concept group and the concept/link label group were better than the link label group. These results were discussed in te...

  16. Can urologists introduce the concept of "oligometastasis" for metastatic bladder cancer after total cystectomy?

    Science.gov (United States)

    Ogihara, Koichiro; Kikuchi, Eiji; Watanabe, Keitaro; Kufukihara, Ryohei; Yanai, Yoshinori; Takamatsu, Kimiharu; Matsumoto, Kazuhiro; Hara, Satoshi; Oyama, Masafumi; Monma, Tetsuo; Masuda, Takeshi; Hasegawa, Shintaro; Oya, Mototsugu

    2017-12-19

    We investigated whether the concept of oligometastasis may be introduced to the clinical management of metastatic bladder cancer patients. Our study population comprised 128 patients diagnosed with metastatic bladder cancer after total cystectomy at our 6 institutions between 2004 and 2014. We extracted independent predictors for identifying a favorable. Occurrence that fulfilled all 4 criteria which were independently associated with cancer-specific death was defined as oligometastasis: a solitary metastatic organ; number of metastatic lesions of 3 or less; the largest diameter of metastatic foci of 5cm or less; and no liver metastasis. We evaluated differences in clinical outcomes between patients with oligometastasis (oligometastasis group) and those without oligometastasis (non-oligometastasis group). Overall, there were 43 patients in the oligometastasis group. The 2-year cancer-specific survival rate in the oligometastasis group was 53.3%, which was significantly higher than that in the non-oligometastasis group (16.1%, poligometastasis (poligometastasis group. The 2-year cancer-specific survival rate in the oligometastasis group was 55.0%, which was significantly higher than that in the non-oligometastasis group (22.0%, p=0.005). Non-oligometastasis (p=0.009) was the only independent risk factor for cancer-specific death. We presented that urothelial carcinoma with oligometastasis had a favorable prognosis and responded to systemic chemotherapy. Oligometastasis may be treated as a separate entity in the field of metastatic urothelial carcinoma.

  17. Can urologists introduce the concept of “oligometastasis” for metastatic bladder cancer after total cystectomy?

    Science.gov (United States)

    Ogihara, Koichiro; Kikuchi, Eiji; Watanabe, Keitaro; Kufukihara, Ryohei; Yanai, Yoshinori; Takamatsu, Kimiharu; Matsumoto, Kazuhiro; Hara, Satoshi; Oyama, Masafumi; Monma, Tetsuo; Masuda, Takeshi; Hasegawa, Shintaro; Oya, Mototsugu

    2017-01-01

    We investigated whether the concept of oligometastasis may be introduced to the clinical management of metastatic bladder cancer patients. Our study population comprised 128 patients diagnosed with metastatic bladder cancer after total cystectomy at our 6 institutions between 2004 and 2014. We extracted independent predictors for identifying a favorable. Occurrence that fulfilled all 4 criteria which were independently associated with cancer-specific death was defined as oligometastasis: a solitary metastatic organ; number of metastatic lesions of 3 or less; the largest diameter of metastatic foci of 5cm or less; and no liver metastasis. We evaluated differences in clinical outcomes between patients with oligometastasis (oligometastasis group) and those without oligometastasis (non-oligometastasis group). Overall, there were 43 patients in the oligometastasis group. The 2-year cancer-specific survival rate in the oligometastasis group was 53.3%, which was significantly higher than that in the non-oligometastasis group (16.1%, poligometastasis (poligometastasis group. The 2-year cancer-specific survival rate in the oligometastasis group was 55.0%, which was significantly higher than that in the non-oligometastasis group (22.0%, p=0.005). Non-oligometastasis (p=0.009) was the only independent risk factor for cancer-specific death. We presented that urothelial carcinoma with oligometastasis had a favorable prognosis and responded to systemic chemotherapy. Oligometastasis may be treated as a separate entity in the field of metastatic urothelial carcinoma. PMID:29340094

  18. Public Park Spaces as a Platform to Promote Healthy Living: Introducing a HealthPark Concept.

    Science.gov (United States)

    Arena, Ross; Bond, Samantha; O'Neill, Robert; Laddu, Deepika R; Hills, Andrew P; Lavie, Carl J; McNeil, Amy

    The concept of Healthy Living (HL) as a primary medical intervention continues to gain traction, and rightfully so. Being physically active, consuming a nutritious diet, not smoking and maintaining an appropriate body weight constitute the HL polypill, the foundation of HL medicine (HLM). Daily use of the HL polypill, working toward optimal dosages, portends profound health benefits, substantially reducing the risk of chronic disease [i.e., cardiovascular disease (CVD), pulmonary disease, metabolic syndromes, certain cancers, etc.] and associated adverse health consequences. To be effective and proactive, our healthcare system must rethink where its primary intervention, HLM, is delivered. Waiting for individuals to come to the traditional outpatient setting is an ineffective approach as poor lifestyle habits are typically well established by the time care is initiated. Ideally, HLM should be delivered where individuals live, work and go to school, promoting immersion in a culture of health and wellness. To this end, there is a growing interest in the use of public parks as a platform to promote the adoption of HL behaviors. The current perspectives paper provides a brief literature review on the use of public parks for HL interventions and introduces a new HealthPark model being developed in Chicago. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Salvador Dalí's paintings to introduce Quantum Mechanics concepts in High School

    Directory of Open Access Journals (Sweden)

    Rúbia de Fátima Antunes Martins Fernandes

    2017-08-01

    Full Text Available A few papers have presented results of teaching Quantum Mechanics in High School. As a high abstraction level is demanded, it is necessary to reconsider theoretical assumptions, approaches and methodologies, in order to reduce difficulties in its insertion. This paper presents the achievements of a research, which is a didactic proposal for High School comprising discussions about Quantum Mechanics, involving elements that relate Physics and some paintings of Salvador Dalí. Embracing the relations between Physics and Art allows us to approach and express the relations between scientific education and culture with alternative ways to enrich the knowledge meaning, also aiming to provide students with a broader view about the scientific knowledge construction in an intelligent dialogue with the world.  To do so, the proposal presents an operative methodology, approaching science as a historical and social knowledge to teach quantum mechanics, and it aims to make the student able to hypothesize, conceptualize, situate scientific explanations in time, in short, operate according to the provided tools. Working with the ways in which Physics, introduced as a cultural component, influences the interpretations of macro and microscopic phenomena and contributes to the understanding of Modern Physics, part of twentieth-century Physics. Therefore, adding cultural elements to Physics world seems to be increasingly necessary, as it seems to resignify it by rehumanizing its knowledge. In addition, using the historical context seems to give us a greater extensiveness to knowledge, since it also starts being part of a broader culture, beyond its scientific meaning.

  20. Evaluation of Students' Energy Conception in Environmental Science

    Science.gov (United States)

    Park, Mihwa; Johnson, Joseph A.

    2016-01-01

    While significant research has been conducted on students' conceptions of energy, alternative conceptions of energy have not been actively explored in the area of environmental science. The purpose of this study is to examine students' alternative conceptions in the environmental science discipline through the analysis of responses of first year…

  1. Hospital food service: a comparative analysis of systems and introducing the 'Steamplicity' concept.

    Science.gov (United States)

    Edwards, J S A; Hartwell, H J

    2006-12-01

    Patient meals are an integral part of treatment hence the provision and consumption of a balanced diet, essential to aid recovery. A number of food service systems are used to provide meals and the Steamplicity concept has recently been introduced. This seeks, through the application of a static, extended choice menu, revised patient ordering procedures, new cooking processes and individual patient food heated/cooked at ward level, to address some of the current hospital food service concerns. The aim of this small-scale study, therefore, was to compare a cook-chill food service operation against Steamplicity. Specifically, the goals were to measure food intake and wastage at ward level; 'stakeholders' (i.e. patients, staff, etc.) satisfaction with both systems; and patients' acceptability of the food provided. The study used both quantitative (self-completed patient questionnaires, n = 52) and qualitative methods (semi-structured interviews, n = 16) with appropriate stakeholders including medical and food service staff, patients and their visitors. Patients preferred the Steamplicity system overall and in particular in terms of food choice, ordering, delivery and food quality. Wastage was considerably less with the Steamplicity system, although care must be taken to ensure that poor operating procedures do not negate this advantage. When the total weight of food consumed in the ward at each meal is divided by the number of main courses served, at lunch, the mean intake with the cook-chill system was 202 g whilst that for the Steamplicity system was 282 g and for the evening meal, 226 g compared with 310 g. The results of this small study suggest that Steamplicity is more acceptable to patients and encourages the consumption of larger portions. Further evaluation of the Steamplicity system is warranted.

  2. Introducing an Undergraduate Degree of Cosmetic Science and Formulation Design within a College of Pharmacy

    Directory of Open Access Journals (Sweden)

    Gabriella Baki

    2017-01-01

    Full Text Available As a unique and versatile undergraduate degree program, a Bachelor of Science in Pharmaceutical Sciences (BSPS is offered by a number of colleges/schools of pharmacy. These provide a bachelor's degree concentrated in pharmaceutical sciences, and can be a non-Doctor of Pharmacy option, possibly before progressing to graduate degree studies. Recently implemented at the University of Toledo College of Pharmacy and Pharmaceutical Sciences (UTCPPS, one such BSPS major is Cosmetic Science and Formulation Design. This new undergraduate major was created to serve the needs of the cosmetic and personal care industry, with a great need identified for well-trained new professionals with basic knowledge in the sciences and business. This Cosmetic Science and Formulation Design major was added to four other BSPS majors at UTCPPS. Introduced in 2013, this major is the only functioning undergraduate degree in Cosmetic Science and Formulation Design in the United States. Preliminary job placement data provides promising evidence that this undergraduate major has helped graduates launch a career in the cosmetic and personal care, or pharmaceutical industries. Based on our experience from the past three years, we believe that this cosmetic science major has been worth its resource investment. We hope others designing new undergraduate pharmaceutical sciences programs might integrate advice from this experience into their impending programs.   Type: Idea Paper

  3. Argumentation-Teaching as a Method to Introduce Indigenous Knowledge into Science Classrooms: Opportunities and Challenges

    Science.gov (United States)

    Hewson, Mariana G.; Ogunniyi, Meshach B.

    2011-01-01

    An innovative school science curriculum in South Africa requires the inclusion of African societal/cultural knowledge, such as indigenous knowledge (IK). The main project involves introducing argumentation to accomplish this requirement. We used a focus group plus critical incident technique to ascertain nine teachers' understandings of…

  4. THE CONCEPT OF SENCE IN THE WORLD, METAPHYSICS AND SCIENCE

    Directory of Open Access Journals (Sweden)

    Michal Sicinski

    2007-01-01

    Full Text Available The notion of objective sense is commonly used in various contexts, and is also frequently misused. It has been often criticised in the context of natural sciences during the last 200 years - the period of positivistically oriented science. In the ancient Greek philosophy the problem of Nature possessing its own sense was stressed, and from the problem the first germs of science started in the Ionic and Pythagorean schools. Contrary to that, Aristotelean approach initiated the positivist tradition which banned from science the question of Nature as possessing an internal sense, and the scholastics introduced a concept of Nature's sense being not intrinsic but granted to it by the divine action. The mathematisation of physics caused that the the divine action started to be interpreted as "mathematical", and in consequence, the sense of Nature was seen as expressed by mathematics. Later on, this mathematically expressed sense of Nature, as seen in physical theories, started to be perceived as independent from God and having not much to as supernatural: inside the mathematical science there was no place for any anthropomorphic Creators.Recently, however when in the newest physics the mathematical structures have already been perceived not only as a language but also as a kind of ultimate reality, a place for quasi-religious feeling of mystery hidden in these structures has been welcome. It means that within the field of modern physical theories there is no place for the traditional religious concepts, but there is a place for a kind of mystics of objective mathematics in the Pythagorean style, related to the modern "new spirituality" mysticism.The situation is completely different in the area of less mathematised branches like biology. The tensions between science and religion are strong there, and the alternative is as follows: traditional religiousness versus traditional atheism, but not a neutral science separated from religion versus a non

  5. "Partners in Science": A Model Cooperative Program Introducing High School Teachers and Students to Leading-Edge Pharmaceutical Science

    Science.gov (United States)

    Woska, Joseph R., Jr.; Collins, Danielle M.; Canney, Brian J.; Arcario, Erin L.; Reilly, Patricia L.

    2005-01-01

    "Partners in Science" is a cooperative program between Boehringer Ingelheim Pharmaceuticals, Inc. and area high schools in the community surrounding our Connecticut campus. It is a two-phase program that introduces high school students and teachers to the world of drug discovery and leading-edge pharmaceutical research. Phase 1 involves…

  6. On performing concepts during science lectures

    Science.gov (United States)

    Pozzer-Ardenghi, Lilian; Roth, Wolff-Michael

    2007-01-01

    When lecturing, teachers make use of both verbal and nonverbal communication. What is called teaching, therefore, involves not only the words and sentences a teacher utters and writes on the board during a lesson, but also all the hands/arms gestures, body movements, and facial expressions a teacher performs in the classroom. All of these communicative modalities constitute resources that are made available to students for making sense of and learning from lectures. Yet in the literature on teaching science, these other means of communication are little investigated and understood - and, correspondingly, they are undertheorized. The purpose of this position paper is to argue for a different view of concepts in lectures: they are performed simultaneously drawing on and producing multiple resources that are different expressions of the same holistic meaning unit. To support our point, we provide examples from a database of 26 lectures in a 12th-grade biology class, where the human body was the main topic of study. We analyze how different types of resources - including verbal and nonverbal discourse and various material artifacts - interact during lectures. We provide evidence for the unified production of these various sense-making resources during teaching to constitute a meaning unit, and we emphasize particularly the use of gestures and body orientations inside this meaning unit. We suggest that proper analyses of meaning units need to take into account not only language and diagrams but also a lecturer's pointing and depicting gestures, body positions, and the relationships between these different modalities. Scientific knowledge (conceptions) exists in the concurrent display of all sense-making resources, which we, following Vygotsky, understand as forming a unit (identity) of nonidentical entities.

  7. FNL Scientists Introduce Concept That Could Help the Immune System Respond to Vaccines | FNLCR Staging

    Science.gov (United States)

    Scientists have discovered an efficient and straightforward model to manipulate RNA nanoparticles, a new concept that could help trigger desirable activation of the immune system with vaccines and therapies. A multi-institutional team of researchers

  8. Weight, Mass, and Gravity: Threshold Concepts in Learning Science

    Science.gov (United States)

    Bar, Varda; Brosh, Yaffa; Sneider, Cary

    2016-01-01

    Threshold concepts are essential ideas about the natural world that present either a barrier or a gateway to a deep understanding of science. Weight, mass, and gravity are threshold concepts that underpin students' abilities to understand important ideas in all fields of science, embodied in the performance expectations in the Next Generation…

  9. Science, Technology and Innovation: Concepts, Theory and Policy

    OpenAIRE

    Zehra Taşkın; Güleda Doğan

    2016-01-01

    This study is a review of the book entitled “Science, Technology and Innovation: Concepts, Theory and Policy”. In the converging world, the book is an important contribution not only for the field of economy, but also information science which includes information-economy concepts.

  10. Introducing the Concept of Spirit Injury in Education-to-Work Transitions

    Science.gov (United States)

    Persaud, Renu Sharma

    2009-01-01

    This paper introduces the topic of spiritual injury and the possible influences and relationships it might share with education-to-work transitions of young adults. Students of both dominant and minority cultural backgrounds were interviewed to gain a detailed understanding of how perceptions of transitions came about. Further, I sought to…

  11. Academic Self-Concept: Modeling and Measuring for Science

    Science.gov (United States)

    Hardy, Graham

    2014-08-01

    In this study, the author developed a model to describe academic self-concept (ASC) in science and validated an instrument for its measurement. Unlike previous models of science ASC, which envisage science as a homogenous single global construct, this model took a multidimensional view by conceiving science self-concept as possessing distinctive facets including conceptual and procedural elements. In the first part of the study, data were collected from 1,483 students attending eight secondary schools in England, through the use of a newly devised Secondary Self-Concept Science Instrument, and structural equation modeling was employed to test and validate a model. In the second part of the study, the data were analysed within the new self-concept framework to examine learners' ASC profiles across the domains of science, with particular attention paid to age- and gender-related differences. The study found that the proposed science self-concept model exhibited robust measures of fit and construct validity, which were shown to be invariant across gender and age subgroups. The self-concept profiles were heterogeneous in nature with the component relating to self-concept in physics, being surprisingly positive in comparison to other aspects of science. This outcome is in stark contrast to data reported elsewhere and raises important issues about the nature of young learners' self-conceptions about science. The paper concludes with an analysis of the potential utility of the self-concept measurement instrument as a pedagogical device for science educators and learners of science.

  12. Early Science Education: Exploring Familiar Contexts To Improve the Understanding of Some Basic Scientific Concepts.

    Science.gov (United States)

    Martins, Isabel P.; Veiga, Luisa

    2001-01-01

    Argues that science education is a fundamental tool for global education and that it must be introduced in early years as a first step to a scientific culture for all. Describes testing validity of a didactic strategy for developing the learning of concepts, which was based upon an experimental work approach using everyday life contexts. (Author)

  13. Introducing the Concept of Synthesis in the Software Architecture Design Process

    NARCIS (Netherlands)

    Tekinerdogan, B.; Aksit, Mehmet

    2006-01-01

    Synthesis is a widely applied problem-solving approach of mature engineering disciplines including the sub-processes of technical problem analysis, identification and composition of solution domain concepts, and alternative-space analysis. Current software development processes do not adopt an

  14. Science Literacy: Concepts, Contexts, and Consequences

    Science.gov (United States)

    Snow, Catherine E., Ed.; Dibner, Kenne A., Ed.

    2016-01-01

    Science is a way of knowing about the world. At once a process, a product, and an institution, science enables people to both engage in the construction of new knowledge as well as use information to achieve desired ends. Access to science--whether using knowledge or creating it--necessitates some level of familiarity with the enterprise and…

  15. Redesigning Introductory Science Courses to Teach Sustainability: Introducing the L(SC)2 Paradigm

    Science.gov (United States)

    Myers, J. D.; Campbell-Stone, E.; Massey, G.

    2008-12-01

    Modern societies consume vast quantities of Earth resources at unsustainable levels; at the same time, resource extraction, processing, production, use and disposal have resulted in environmental damage severe enough to threaten the life-support systems of our planet. These threats are produced by multiple, integrative and cumulative environmental stresses, i.e. syndromes, which result from human physical, ecological and social interactions with the environment in specific geographic places. In recent decades, recognition of this growing threat has lead to the concept of sustainability. The science needed to provide the knowledge and know-how for a successful sustainability transition differs markedly from the science that built our modern world. Sustainability science must balanced basic and applied research, promote integrative research focused on specific problems and devise a means of merging fundamental, general scientific principles with understanding of specific places. At the same time, it must use a variety of knowledge areas, i.e. biological systems, Earth systems, technological systems and social systems, to devise solutions to the many complex and difficult problems humankind faces. Clearly, sustainability science is far removed from the discipline-based science taught in most U.S. colleges. Many introductory science courses focus on content, lack context and do not integrate scientific disciplines. To prepare the citizens who will confront future sustainability issues as well as the scientists needed to devise future sustainability strategies, educators and scientists must redesign the typical college science course. A new course paradigm, Literacies and Scientific Content in Social Context (L(SC)2), is ideally suited to teach sustainability science. It offers an alternative approach to liberal science education by redefining and expanding the concept of the interdisciplinary course and merging it with the integrated science course. In addition to

  16. Pre-Service Physics Teachers' Conceptions of Nature of Science

    Science.gov (United States)

    Buaraphan, Khajornsak

    2011-01-01

    Understanding of NOS (nature of science) appears as a prerequisite of a scientifically literate person. Promoting adequate understanding of NOS in pre-service physics teachers is, therefore, an important task of science educators. Before doing that, science educators must have information concerning their pre-service teachers' conceptions of NOS.…

  17. Teachers' and Students' Conceptions of Good Science Teaching

    Science.gov (United States)

    Yung, Benny Hin Wai; Zhu, Yan; Wong, Siu Ling; Cheng, Man Wai; Lo, Fei Yin

    2013-01-01

    Capitalizing on the comments made by teachers on videos of exemplary science teaching, a video-based survey instrument on the topic of "Density" was developed and used to investigate the conceptions of good science teaching held by 110 teachers and 4,024 year 7 students in Hong Kong. Six dimensions of good science teaching are identified…

  18. Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts

    Science.gov (United States)

    Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep

    2016-01-01

    The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…

  19. Stacking up against Alternative Conceptions: Using Uno Cards to Introduce Discourse and Argumentation

    Science.gov (United States)

    Dunac, Patricia S.; Demi, Kadir

    2013-01-01

    We engaged secondary science students in a teacher and student constructed Uno card game (UCG) to change their conceptual understanding of the various energy transformations. The paper outlines how we incorporated Toulmin's argumentation pattern (Toulmin 1958 "The Uses of Argument"(Cambridge: Cambridge University Press)) in the UCG,…

  20. Text mining in livestock animal science: introducing the potential of text mining to animal sciences.

    Science.gov (United States)

    Sahadevan, S; Hofmann-Apitius, M; Schellander, K; Tesfaye, D; Fluck, J; Friedrich, C M

    2012-10-01

    In biological research, establishing the prior art by searching and collecting information already present in the domain has equal importance as the experiments done. To obtain a complete overview about the relevant knowledge, researchers mainly rely on 2 major information sources: i) various biological databases and ii) scientific publications in the field. The major difference between the 2 information sources is that information from databases is available, typically well structured and condensed. The information content in scientific literature is vastly unstructured; that is, dispersed among the many different sections of scientific text. The traditional method of information extraction from scientific literature occurs by generating a list of relevant publications in the field of interest and manually scanning these texts for relevant information, which is very time consuming. It is more than likely that in using this "classical" approach the researcher misses some relevant information mentioned in the literature or has to go through biological databases to extract further information. Text mining and named entity recognition methods have already been used in human genomics and related fields as a solution to this problem. These methods can process and extract information from large volumes of scientific text. Text mining is defined as the automatic extraction of previously unknown and potentially useful information from text. Named entity recognition (NER) is defined as the method of identifying named entities (names of real world objects; for example, gene/protein names, drugs, enzymes) in text. In animal sciences, text mining and related methods have been briefly used in murine genomics and associated fields, leaving behind other fields of animal sciences, such as livestock genomics. The aim of this work was to develop an information retrieval platform in the livestock domain focusing on livestock publications and the recognition of relevant data from

  1. The self-concept of chiropractic students as science students

    Science.gov (United States)

    Shields, Robert F.

    2005-01-01

    Abstract Purpose To determine the self-concepts of chiropractic students as science students and if any personal variable affect their self-concepts. Participants Students in their first trimester and eighth trimester at the Los Angeles College of Chiropractic during the 1993 academic year (n=158). Methods Peterson-Yaakobi Q-Sort, National Assessment of Educational Progress, two-tailed T-test, one way analysis of variance and Spearman-rho correlation. Results The majority of students have positive self- concepts as science students and although there was a difference between the 2 trimesters, it was not significant. As a group they generally had less exposure to science compared to undergraduates from a selected science program. Variables of socio-economic status, undergraduate major, and highest completed level of education did not statistically affect their self-concept. Conclusion Chiropractic students had the self-concept that enables them to subscribe to the philosophical foundations of science and better engage in basic sciences and, later, science-based clinical research. Knowledge of this self- concept can be used in the development of a more rigorous basic science curricula and clinical research programs at chiropractic colleges with the ultimate goal of providing a more firm scientifically based foundation for the profession. PMID:19674649

  2. Investigating the Relationship between Teachers' Nature of Science Conceptions and Their Practice of Inquiry Science

    Science.gov (United States)

    Atar, Hakan Yavuz; Gallard, Alejandro

    2011-01-01

    In addition to recommending inquiry as the primary approach to teaching science, developers of recent reform efforts in science education have also strongly suggested that teachers develop a sound understanding of the nature of science. Most studies on teachers' NOS conceptions and inquiry beliefs investigated these concepts of teachers' NOS…

  3. Minority Preservice Teachers' Conceptions of Teaching Science: Sources of Science Teaching Strategies

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2013-01-01

    This study explores five minority preservice teachers' conceptions of teaching science and identifies the sources of their strategies for helping students learn science. Perspectives from the literature on conceptions of teaching science and on the role constructs used to describe and distinguish minority preservice teachers from their mainstream…

  4. Information science and its core concepts

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2013-01-01

    One often encounters disagreements in information science (IS) (or library and information science, LIS), even disagreements about what might seem rather trivial questions. Such disagreements range from the designation of the field to questions such as whether IS is an academic discipline or not...... terminological hygiene” may account for some of the disagreements, but basically the problem is seen as a lack of sufficient strong centripetal tendencies keeping the field together....

  5. Development of a Course-Based Undergraduate Research Experience to Introduce Drug-Receptor Concepts

    Directory of Open Access Journals (Sweden)

    Hollie I. Swanson

    2016-01-01

    Full Text Available Course-based research experiences (CUREs are currently of high interest due to their potential for engaging undergraduate students in authentic research and maintaining their interest in science, technology, engineering, and mathematics (STEM majors. As part of a campus-wide initiative called STEMCats , which is a living learning program offered to freshman STEM majors at the University of Kentucky funded by a grant from Howard Hughes Medical Institute, we have developed a CURE for freshmen interested in pursuing health care careers. Our course, entitled “Drug–Drug Interactions in Breast Cancer,” utilized a semester-long, in-class authentic research project and instructor-led discussions to engage students in a full spectrum of research activities, ranging from developing hypotheses and experimental design to generating original data, collaboratively interpreting results and presenting a poster at a campus-wide symposium. Student's feedback indicated a positive impact on scientific understanding and skills, enhanced teamwork and communication skills, as well as high student engagement, motivation, and STEM belonging. STEM belonging is defined as the extent to which a student may view the STEM fields as places where they belong. The results obtained from this pilot study, while preliminary, will be useful for guiding design revisions and generating appropriate objective evaluations of future pharmacological-based CUREs.

  6. Using a dynamic, introductory-level volcanoes class as a means to introduce non-science majors to the geosciences

    Science.gov (United States)

    Cook, G. W.

    2012-12-01

    At the University of California, San Diego, I teach a quarter-long, introductory Earth Science class titled "Volcanoes," which is, in essence, a functional class in volcanology designed specifically for non-majors. This large-format (enrollment ~ 85), lecture-based class provides students from an assortment of backgrounds an opportunity to acquire much-needed (and sometimes dreaded) area credits in science, while also serving as an introduction to the Earth Science major at UCSD (offered through Scripps Institution of Oceanography). The overall goal of the course is to provide students with a stimulating and exciting general science option that, using an inherently interesting topic, introduces them to the fundamentals of geoscience. A secondary goal is to promote general science and geoscience literacy among the general population of UCSD. Student evaluations of this course unequivocally indicate a high degree of learning and interest in the material. The majority of students in the class (>80%) are non-science majors and very few students (degree-seeking students. In addition, only a handful of students have typically had any form of geology class beyond high school level Earth Science. Consequently, there are challenges associated with teaching the class. Perhaps most significantly, students have very little background—background that is necessary for understanding the processes involved in volcanic eruptions. Second, many non-science students have built-in anxieties with respect to math and science, anxieties that must be considered when designing curriculum and syllabi. It is essential to provide the right balance of technical information while remaining in touch with the audience. My approach to the class involves a dynamic lecture format that incorporates a wide array of multimedia, analogue demonstrations of volcanic processes, and small-group discussions of topics and concepts. In addition to teaching about volcanoes—a fascinating subject in and of

  7. Future Science Teachers' Understandings of Diffusion and Osmosis Concepts

    Science.gov (United States)

    Tomazic, Iztok; Vidic, Tatjana

    2012-01-01

    The concepts of diffusion and osmosis cross the disciplinary boundaries of physics, chemistry and biology. They are important for understanding how biological systems function. Since future (pre-service) science teachers in Slovenia encounter both concepts at physics, chemistry and biology courses during their studies, we assessed the first-,…

  8. Key Concept Mathematics and Management Science Models

    Science.gov (United States)

    Macbeth, Thomas G.; Dery, George C.

    1973-01-01

    The presentation of topics in calculus and matrix algebra to second semester freshmen along with a treatment of exponential and power functions would permit them to cope with a significant portion of the mathematical concepts that comprise the essence of several disciplines in a business school curriculum. (Author)

  9. Non-Determinism: An Abstract Concept in Computer Science Studies

    Science.gov (United States)

    Armoni, Michal; Gal-Ezer, Judith

    2007-01-01

    Non-determinism is one of the most important, yet abstract, recurring concepts of Computer Science. It plays an important role in Computer Science areas such as formal language theory, computability theory, distributed computing, and operating systems. We conducted a series of studies on the perception of non-determinism. In the current research,…

  10. The Nature of Science in Science Curricula: Methods and Concepts of Analysis

    Science.gov (United States)

    Ferreira, Sílvia; Morais, Ana M.

    2013-01-01

    The article shows methods and concepts of analysis of the nature of science in science curricula through an exemplary study made in Portugal. The study analyses the extent to which the message transmitted by the Natural Science curriculum for Portuguese middle school considers the nature of science. It is epistemologically and sociologically…

  11. Using performance tasks employing IOM patient safety competencies to introduce quality improvement processes in medical laboratory science education.

    Science.gov (United States)

    Golemboski, Karen; Otto, Catherine N; Morris, Susan

    2013-01-01

    In order to contribute to improved healthcare quality through patient-centered care, laboratory professionals at all levels of practice must be able to recognize the connection between non-analytical factors and laboratory analysis, in the context of patient outcomes and quality improvement. These practices require qualities such as critical thinking (CT), teamwork skills, and familiarity with the quality improvement process, which will be essential for the development of evidence-based laboratory science practice. Performance tasks (PT) are an educational strategy which can be used to teach and assess CT and teamwork, while introducing Medical Laboratory Science (MLS) students at both baccalaureate and advanced-practice levels to the concepts of quality improvement processes and patient outcomes research. PT presents students with complex, realistic scenarios which require the incorporation of subject-specific knowledge with competencies such as effective team communication, patient-centered care, and successful use of information technology. A PT with assessment rubric was designed for use in a baccalaureate-level MLS program to teach and assess CT and teamwork competency. The results indicated that, even when students were able to integrate subject-specific knowledge in creative ways, their understanding of teamwork and quality improvement was limited. This indicates the need to intentionally teach skills such as collaboration and quality system design. PT represent one of many strategies that may be used in MLS education to develop essential professional competencies, encourage expert practice, and facilitate quality improvement.

  12. Improving the teaching of children with severe speech-language difficulties by introducing an Authoring Concept Mapping Kit

    DEFF Research Database (Denmark)

    Kicken, Ria; Ernes, Elise; Hoogenberg-Engbers, Ilja

    2016-01-01

    The paper reports on case studies in which an Authoring Concept Mapping Kit was incorporated as a didactic tool in the teaching of children with severe speech-language difficulties. The Kit was introduced to replace methods such as topic webs, or complement others such as conversation exchange......’ practice has been transformed and improved. The children’s perspective on the topic comes through in the teachers’ opinions. Concept mapping turned out to enhance meaning negotiation, active inquiry and collaboration during teaching interactive learning language. Teachers reported that it had great impact...... on children’s language development, vocabulary and spontaneous speech, while it had minimal impact on the way activities were performed in everyday classes....

  13. Concept of hegemony in contemporary geopolitical science

    Directory of Open Access Journals (Sweden)

    M. A. Shepyelyev

    2017-07-01

    Full Text Available The article discusses the main conceptual approaches to understanding the nature and patterns of functioning and development of hegemony in international relations. Analysed the contribution to the development of research hegemony in international relations, which has made the school world-system analysis. According to its founder F. Braudel, the hegemony of the world is a manifestation of inequality, the latter reveals the structural realities that are approved very slowly, very slowly disappear. The concept of a follower of Fernand Braudel, Emmanuel Wallerstein, according to which the hegemony reflects the ability of a particular state to make one part of the international system to its customers, and the second - to drive into a defensive position. The development of the «modern world-system» is defined by Wallerstein changes hegemony. Wallerstein argues that the State has the ability to create a stable geopolitical system of unequal social division of powers, which are part of the normal functioning of the capitalist world-economy. It is also noted that the pattern of ups and downs of world leaders - hegemony - are considered in the research of many scientists, including George Modelski. He develops a theory about hundred-year cycle of global leadership, using the term «selection» to describe the process of competition and the adoption of this role. Among the concepts of hegemony also highlighted the Charles Krauthammer’s conception of monopolarity, on which the present geopolitical structure of the world after the «cold war» - one pole of world power , consisting of the United States as the top of the industrial West. Analyzed the  Piter Taylor’s conception of global hegemony, which distinguishes the competitive and non-competitive era, successive, and the Nail Ferguson’s conception of imperialism. The paper shows that the problem of hegemony in the 70-th years passed from the purely theoretical plane into practical politics

  14. Introducing the CTA concept

    Czech Academy of Sciences Publication Activity Database

    Acharya, B.S.; Actis, M.; Aghajani, T.; Chudoba, Jiří; Ebr, Jan; Hrabovský, Miroslav; Mandát, Dušan; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr

    2013-01-01

    Roč. 43, SI (2013), s. 3-18 ISSN 0927-6505 R&D Projects: GA MŠk(CZ) 7AMB12AR013; GA MŠk LE13012 Institutional support: RVO:68378271 Keywords : TeV gamma-ray astronomy * air showers * Cherenkov telescopes Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.450, year: 2013 http://ac.els-cdn.com/S0927650513000169/1-s2.0-S0927650513000169-main.pdf?_tid=8de598aa-5113-11e3-942f-00000aab0f02&acdnat=1384863197_19119f28d7223184

  15. Amplification of the concept of erroneous meaning in psychodynamic science and in the consulting room.

    Science.gov (United States)

    Brookes, Crittenden E

    2007-01-01

    Previous papers dealt with the concept of psyche as that dynamic field which underlies the subjective experience of mind. A new paradigm, psychodynamic science, was suggested for dealing with subjective data. The venue of the psychotherapeutic consulting room is now brought directly into science, expanding the definition of psychotherapy to include both humanistic and scientific elements. Certain concepts were introduced to amplify this new scientific model, including psyche as hypothetical construct, the concept of meaning as replacement for operational validation in scientific investigation, the synonymity of meaning and insight, and the concept of synchronicity, together with the meaning-connected affect of numinosity. The presence of unhealthy anxiety as the conservative ego attempts to preserve its integrity requires a deeper look at the concept of meaning. This leads to a distinction between meaning and erroneous meaning. The main body of this paper amplifies that distinction, and introduces the concept of intolerance of ambiguity in the understanding of erroneous meanings and their connection with human neurosis.

  16. Threshold concepts as barriers to understanding climate science

    Science.gov (United States)

    Walton, P.

    2013-12-01

    Whilst the scientific case for current climate change is compelling, the consequences of climate change have largely failed to permeate through to individuals. This lack of public awareness of the science and the potential impacts could be considered a key obstacle to action. The possible reasons for such limited success centre on the issue that climate change is a complex subject, and that a wide ranging academic, political and social research literature on the science and wider implications of climate change has failed to communicate the key issues in an accessible way. These failures to adequately communicate both the science and the social science of climate change at a number of levels results in ';communication gaps' that act as fundamental barriers to both understanding and engagement with the issue. Meyer and Land (2003) suggest that learners can find certain ideas and concepts within a discipline difficult to understand and these act as a barrier to deeper understanding of a subject. To move beyond these threshold concepts, they suggest that the expert needs to support the learner through a range of learning experiences that allows the development of learning strategies particular to the individual. Meyer and Land's research into these threshold concepts has been situated within Economics, but has been suggested to be more widely applicable though there has been no attempt to either define or evaluate threshold concepts to climate change science. By identifying whether common threshold concepts exist specifically in climate science for cohorts of either formal or informal learners, scientists will be better able to support the public in understanding these concepts by changing how the knowledge is communicated to help overcome these barriers to learning. This paper reports on the findings of a study that examined the role of threshold concepts as barriers to understanding climate science in a UK University and considers its implications for wider

  17. Partners in Science: A Model Cooperative Program Introducing High School Teachers and Students to Leading-Edge Pharmaceutical Science

    Science.gov (United States)

    Woska, Joseph R., Jr.; Collins, Danielle M.; Canney, Brian J.; Arcario, Erin L.; Reilly, Patricia L.

    2005-12-01

    Partners in Science is a cooperative program between Boehringer Ingelheim Pharmaceuticals, Inc. and area high schools in the community surrounding our Connecticut campus. It is a two-phase program that introduces high school students and teachers to the world of drug discovery and leading-edge pharmaceutical research. Phase 1 involves a series of lectures, tours, and demonstrations given by scientists within our research and development division (R&D). Phase 2 involves the selection of a small group of participants to intern for the summer in a research laboratory, working side by side with a scientist within R&D. In this manuscript, the specific aims, goals, and development of the Partners in Science program are described, as well as the syllabus/agenda, the logistics surrounding the operation of the program, and our shared personal experiences with students and teachers who have participated. Some of the pitfalls/problems associated with the program will be presented, and finally, the future direction of the program including areas of improvement and expansion are described.

  18. Computing as Empirical Science – Evolution of a Concept

    Directory of Open Access Journals (Sweden)

    Polak Paweł

    2016-12-01

    Full Text Available This article presents the evolution of philosophical and methodological considerations concerning empiricism in computer/computing science. In this study, we trace the most important current events in the history of reflection on computing. The forerunners of Artificial Intelligence H.A. Simon and A. Newell in their paper Computer Science As Empirical Inquiry (1975 started these considerations. Later the concept of empirical computer science was developed by S.S. Shapiro, P. Wegner, A.H. Eden and P.J. Denning. They showed various empirical aspects of computing. This led to a view of the science of computing (or science of information processing - the science of general scope. Some interesting contemporary ways towards a generalized perspective on computations were also shown (e.g. natural computing.

  19. Applied data-centric social sciences concepts, data, computation, and theory

    CERN Document Server

    Sato, Aki-Hiro

    2014-01-01

    Applied data-centric social sciences aim to develop both methodology and practical applications of various fields of social sciences and businesses with rich data. Specifically, in the social sciences, a vast amount of data on human activities may be useful for understanding collective human nature. In this book, the author introduces several mathematical techniques for handling a huge volume of data and analysing collective human behaviour. The book is constructed from data-oriented investigation, with mathematical methods and expressions used for dealing with data for several specific problems. The fundamental philosophy underlying the book is that both mathematical and physical concepts are determined by the purposes of data analysis. This philosophy is shown throughout exemplar studies of several fields in socio-economic systems. From a data-centric point of view, the author proposes a concept that may change people’s minds and cause them to start thinking from the basis of data. Several goals underlie ...

  20. Science teacher’s idea about environmental concepts in science learning as the first step of science teacher training

    Science.gov (United States)

    Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.

    2018-05-01

    To refresh natural environmental concepts in science, science teacher have to attend a teacher training. In teacher training, all participant can have a good sharing and discussion with other science teacher. This study is the first step of science teacher training program held by education foundation in Bandung and attended by 20 science teacher from 18 Junior High School. The major aim of this study is gathering science teacher’s idea of environmental concepts. The core of questions used in this study are basic competencies linked with environmental concepts, environmental concepts that difficult to explain, the action to overcome difficulties and references in teaching environmental concepts. There are four major findings in this study. First finding, most environmental concepts are taught in 7th grade. Second finding, most difficult environmental concepts are found in 7th grade. Third finding, there are five actions to overcome difficulties. Fourth finding, science teacher use at least four references in mastering environmental concepts. After all, teacher training can be a solution to reduce difficulties in teaching environmental concepts.

  1. Suggestion of Design Evaluation Plan based on Star Life Cycle to introduce the Information Minimalism Concept of KOREA Nuclear Plant

    Science.gov (United States)

    Jang, Gwi-sook; Lee, Seung-min; Park, Gee-yong

    2018-01-01

    The design of Korea Nuclear Power Plant (NPP) main control rooms (MCR) has been changed to be fully digitalized. Five or six display devices are assigned to each operator in NPP MCR to provide the information of safety parameter and plant status, and various control functions by connecting computerized control devices. Under this circumstance, the distributed displays can induce a dispersion of the operators' attention and increase the workload while conducting monitoring and control tasks efficiently. In addition, to support human operators to reduce their workload and increase the performance, the concepts of the ecological interface design (EID) and the operator-centered design were applied to the design HMI display. However these designs are applied to a limited set of screens and did not differ largely from the traditional HMI design in that the layout of the information is somewhere similar to P&IDs. In this paper, we propose a design evaluation plan based on star life cycle to introduce the information minimalism concept for designing an HMI display.

  2. Introducing a New Concept Inventory on Climate Change to Support Undergraduate Instruction, Teacher Education, Education Research, and Project Evaluation (Invited)

    Science.gov (United States)

    Morrow, C. A.; Monsaas, J.; Katzenberger, J.; Afolabi, C. Y.

    2013-12-01

    The Concept Inventory on Climate Change (CICC) is a new research-based, multiple-choice 'test' that provides a powerful new assessment tool for undergraduate instructors, teacher educators, education researchers, and project evaluators. This presentation will describe the features and the development process of the (CICC). This includes insights about how the development team (co-authors) integrated and augmented their multi-disciplinary expertise. The CICC has been developed in the context of a popular introductory undergraduate weather and climate course at a southeastern research university (N~400-500 per semester). The CICC is not a test for a grade, but is intended to be a useful measure of how well a given teaching and learning experience has succeeded in improving understanding about climate change and related climate concepts. The science content addressed by the CICC is rooted in the national consensus document, 'Climate Literacy: The Essential Principles of Climate Science'. The CICC has been designed to support undergraduate instruction, and may be valuable in comparable contexts that teach about climate change. CICC results can help to inform decisions about the effectiveness of teaching strategies by 1) flagging conceptual issues (PRE-instruction); and 2) detecting conceptual change (POST-instruction). Specific CICC items and their answer choices are informed by the research literature on common misunderstandings about climate and climate change. Each CICC item is rated on a 3-tier scale of the cognitive sophistication the item is calling for, and there is a balance among all three tiers across the full instrument. The CICC development process has involved data-driven changes to successive versions. Data sources have included item statistics from the administration of progressively evolved versions of the CICC in the weather and climate course, group interviews with students, and expert review by climate scientists, educators, and project evaluators

  3. Learning of science concepts within a traditional socio-cultural ...

    African Journals Online (AJOL)

    The learning of science concepts within a traditional socio-cultural environment were investigated by looking at: 1) the nature of \\"cognitive border crossing\\" exhibited by the students from the traditional to the scientific worldview, and 2) whether or not three learning theories / hypotheses: border crossing, collaterality, and ...

  4. Students’ Conception on Heat and Temperature toward Science Process Skill

    Science.gov (United States)

    Ratnasari, D.; Sukarmin, S.; Suparmi, S.; Aminah, N. S.

    2017-09-01

    This research is aimed to analyze the effect of students’ conception toward science process skill. This is a descriptive research with subjects of the research were 10th-grade students in Surakarta from high, medium and low categorized school. The sample selection uses purposive sampling technique based on physics score in national examination four latest years. Data in this research collecting from essay test, two-tier multiple choice test, and interview. Two-tier multiple choice test consists of 30 question that contains an indicator of science process skill. Based on the result of the research and analysis, it shows that students’ conception of heat and temperature affect science process skill of students. The students’ conception that still contains the wrong concept can emerge misconception. For the future research, it is suggested to improve students’ conceptual understanding and students’ science process skill with appropriate learning method and assessment instrument because heat and temperature is one of physics material that closely related with students’ daily life.

  5. Students' Self-Concept and Their Achievement in Basic Science ...

    African Journals Online (AJOL)

    The study investigated the relationship between students self-concept andtheir academic performance in Basic Science. It further examines genderdifference in students performance. The study adopted ex-post factorresearch design and made use of 300 students all from Public Schools. Theadapted Version of ...

  6. Investigating Undergraduate Science Students’ Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. PMID:26163563

  7. What conceptions of science communication are espoused by science research funding bodies?

    Science.gov (United States)

    Palmer, Sarah E; Schibeci, Renato A

    2014-07-01

    We examine the conceptions of science communication, especially in relation to "public engagement with science" (PES), evident in the literature and websites of science research funding bodies in Europe, North America, South America, Asia and Oceania, and Africa. The analysis uses a fourfold classification of science communication to situate these conceptions: professional, deficit, consultative and deliberative. We find that all bodies engage in professional communication (within the research community); however, engagement with the broader community is variable. Deficit (information dissemination) models still prevail but there is evidence of movement towards more deliberative, participatory models.

  8. The concept verification testing of materials science payloads

    Science.gov (United States)

    Griner, C. S.; Johnston, M. H.; Whitaker, A.

    1976-01-01

    The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.

  9. Reducing the drop-out rate of a technical oriented course by introducing Problem Based Learning – a first concept

    Directory of Open Access Journals (Sweden)

    Christian Kaufmann

    2011-04-01

    Full Text Available At the University of Applied Sciences (UAS Technikum Wien one of the most difficult courses in the Bachelor degree program of Computer Science is “Database Systems and Database Design”. Together with “Advanced Computer Programming”, this course accounts for the high drop-out rate in the degree program. For this reason, this course was chosen for a redesign, in line with the research project QUADRO (Measures to increase quality of teaching and to reduce drop-out rates promoted by the City of Vienna – MA 27 (EU strategy and promote economic development. As the authors have already gained experience in Problem Based Learning (PBL, they saw an opportunity to improve students’ database knowledge by changing the teaching method to Problem Based Learning (PBL. The proposed paper first explains the current situation, identifies its drawbacks and difficulties. In a second step, it describes the new method, shows the students’ feedback after the first semester and the resulting changes in the concept.

  10. Understanding of Earth and Space Science Concepts: Strategies for Concept-Building in Elementary Teacher Preparation

    Science.gov (United States)

    Bulunuz, Nermin; Jarrett, Olga S.

    2009-01-01

    This research is concerned with preservice teacher understanding of six earth and space science concepts that are often taught in elementary school: the reason for seasons, phases of the moon, why the wind blows, the rock cycle, soil formation, and earthquakes. Specifically, this study examines the effect of readings, hands-on learning stations,…

  11. Introducing History (and Philosophy) of Science in the Classroom: A Field Research Experience in Italy

    Science.gov (United States)

    Dibattista, Liborio; Morgese, Francesca

    2013-01-01

    For quite some time, many EU and Italian Ministry of Education official documents have warmly suggested the introduction of the history and the philosophy of science in the teaching of science disciplines at school. Accordingly, there is a shared agreement between pedagogists and science historians about the efficacy of this approach towards an…

  12. Introducing Taiwanese Undergraduate Students to the Nature of Science through Nobel Prize Stories

    Science.gov (United States)

    Eshach, Haim; Hwang, Fu-Kwun; Wu, Hsin-Kai; Hsu, Ying-Shao

    2013-01-01

    Although there is a broad agreement among scientists and science educators that students should not only learn science, but also acquire some sense of its nature, it has been reported that undergraduate students possess an inadequate grasp of the nature of science (NOS). The study presented here examined the potential and effectiveness of Nobel…

  13. How do the high school biology textbooks introduce the nature of science?

    Science.gov (United States)

    Lee, Young H.

    2007-05-01

    Although helping students to achieve an adequate understanding of the nature of science has been a consistent goal for science education for over half a century, current research reveals that the majority of students and teachers have naive views of the nature of science (Abd-El-khalick & Akerson, 2004; Bianchini & Colburn, 2000). This problem could be attributed not only to the complex nature of science, but also to the way the nature of science is presented to students during instruction. Thus, research must be conducted to examine how the science is taught, especially in science textbooks, which are a major instructional resource for teaching science. The aim of this study was to conduct a content analysis of the first chapter of four high school biology textbooks, which typically discusses "What is science?" and "What is biology?" This research used a content analysis technique to analyze the four high school biology textbooks, using a conceptual framework that has been used often for science textbook analysis. This conceptual framework consists of four themes of the nature of science: (a) science as a body of knowledge, (b) science as a way of thinking, (c) science as a way of investigating, and (d) the interaction of science, technology, and society. For this study, the four-theme-framework was modified to incorporate descriptors from national-level documents, such as Science for All Americans (AAAS, 1990) Benchmarks for Science Literacy (AAAS, 1993) and the National Science Education Standards (NRC, 1996), as well as science education research reports. A scoring procedure was used that resulted in good to excellent intercoder agreement with Cohen's kappa (k) ranging from .63 to .96. The findings show that the patterns of presentation of the four themes of the nature of science in the four high school biology textbooks are similar across the different locations of data, text, figures, and assessments. On the other hand, the pattern of presentation of the four

  14. Toward using games to teach fundamental computer science concepts

    Science.gov (United States)

    Edgington, Jeffrey Michael

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.

  15. Science-based occupations and the science curriculum: Concepts of evidence

    Science.gov (United States)

    Aikenhead, Glen S.

    2005-03-01

    What science-related knowledge is actually used by nurses in their day-to-day clinical reasoning when attending patients? The study investigated the knowledge-in-use of six acute-care nurses in a hospital surgical unit. It was found that the nurses mainly drew upon their professional knowledge of nursing and upon their procedural understanding that included a common core of concepts of evidence (concepts implicitly applied to the evaluation of data and the evaluation of evidence - the focus of this research). This core included validity triangulation, normalcy range, accuracy, and a general predilection for direct sensual access to a phenomenon over indirect machine-managed access. A cluster of emotion-related concepts of evidence (e.g. cultural sensitivity) was also discovered. These results add to a compendium of concepts of evidence published in the literature. Only a small proportion of nurses (one of the six nurses in the study) used canonical science content in their clinical reasoning, a result consistent with other research. This study also confirms earlier research on employees in science-rich workplaces in general, and on professional development programs for nurses specifically: canonical science content found in a typical science curriculum (e.g. high school physics) does not appear relevant to many nurses' knowledge-in-use. These findings support a curriculum policy that gives emphasis to students learning how to learn science content as required by an authentic everyday or workplace context, and to students learning concepts of evidence.

  16. From the Rainbow Crow To Polar Bears: Introducing Science Concepts through Children's Literature.

    Science.gov (United States)

    Burns, John Eric

    1997-01-01

    Describes an activity that integrates chemistry, physics, and a Native American legend to help students imitate the thought processes of scientists who have observed chemical decomposition and the refraction of light. Includes a laboratory experiment for sugar decomposition. (DKM)

  17. Mars Science Laboratory Using Laser Instrument, Artist's Concept

    Science.gov (United States)

    2007-01-01

    This artist's conception of NASA's Mars Science Laboratory portrays use of the rover's ChemCam instrument to identify the chemical composition of a rock sample on the surface of Mars. ChemCam is innovative for planetary exploration in using a technique referred to as laser breakdown spectroscopy to determine the chemical composition of samples from distances of up to about 8 meters (25 feet) away. ChemCam is led by a team at the Los Alamos National Laboratory and the Centre d'Etude Spatiale des Rayonnements in Toulouse, France. Mars Science Laboratory, a mobile robot for investigating Mars' past or present ability to sustain microbial life, is in development at NASA's Jet Propulsion Laboratory for a launch opportunity in 2009. The mission is managed by JPL, a division of the California Institute of Technology, Pasadena, Calif., for the NASA Science Mission Directorate, Washington.

  18. Introducing Taiwanese undergraduate students to the nature of science through Nobel Prize stories

    Directory of Open Access Journals (Sweden)

    Haim Eshach

    2013-04-01

    Full Text Available Although there is a broad agreement among scientists and science educators that students should not only learn science, but also acquire some sense of its nature, it has been reported that undergraduate students possess an inadequate grasp of the nature of science (NOS. The study presented here examined the potential and effectiveness of Nobel Prize stories as a vehicle for teaching NOS. For this purpose, a 36-hour course, “Albert Einstein’s Nobel Prize and the Nature of Science,” was developed and conducted in Taiwan Normal University. Ten undergraduate physics students participated in the course. Analysis of the Views of Nature of Science questionnaires completed by the students before and after the course, as well as the students’ own presentations of Nobel Prize stories (with an emphasis on how NOS characteristics are reflected in the story, showed that the students who participated in the course enriched their views concerning all aspects of NOS. The paper concludes with some suggestions for applying the novel idea of using Nobel Prize stories in physics classrooms.

  19. Elucidating elementary science teachers' conceptions of the nature of science: A view to beliefs about both science and teaching

    Science.gov (United States)

    Keske, Kristina Palmer

    The purpose of this interpretive case study was to elucidate the conceptions of the nature of science held by seven elementary science teachers. The constructivist paradigm provided the philosophical and methodological foundation for the study. Interviews were employed to collect data from the participants about their formal and informal experiences with science. In addition, the participants contributed their perspectives on four aspects of the nature of science: what is science; who is a scientist; what are the methods of science; and how is scientific knowledge constructed. Data analysis not only revealed these teachers' views of science, but also provided insights into how they viewed science teaching. Four themes emerged from the data. The first theme developed around the participants' portrayals of the content of science, with participant views falling on a continuum of limited to universal application of science as procedure. The second theme dealt with the participants' views of the absolute nature of scientific knowledge. Participants' perceptions of the tentative nature of science teaching provided the basis for the third theme concerning the need for absolutes in practice. The fourth theme drew parallels between participants' views of science and science teaching, with two participants demonstrating a consistency in beliefs about knowledge construction across contexts. This study revealed both personal and contextual factors which impacted how the participants saw science and science teaching. Many of the participants' memories of formal science revolved around the memorization of content and were viewed negatively. All the participants had limited formal training in science. Of the seven participants, only two had chosen to be science teachers at the beginning of their careers. The participants' limited formal experiences with science provided little time for exploration into historical, philosophical, and sociological studies of science, a necessary

  20. Introducing Group Theory through Music

    Science.gov (United States)

    Johnson, Craig M.

    2009-01-01

    The central ideas of postcalculus mathematics courses offered in college are difficult to introduce in middle and secondary schools, especially through the engineering and sciences examples traditionally used in algebra, geometry, and trigonometry textbooks. However, certain concepts in music theory can be used to expose students to interesting…

  1. Information in Our World: Conceptions of Information and Problems of Method in Information Science

    Science.gov (United States)

    Ma, Lai

    2012-01-01

    Many concepts of information have been proposed and discussed in library and information science. These concepts of information can be broadly categorized as empirical and situational information. Unlike nomenclatures in many sciences, however, the concept of information in library and information science does not bear a generally accepted…

  2. Crowd science and engineering: concept and research framework

    Directory of Open Access Journals (Sweden)

    Yueting Chai

    2017-03-01

    Full Text Available Purpose – The synthetic application and interaction of/between the internet, Internet of Things, cloud computing, big data, Industry 4.0 and other new patterns and new technologies shall breed future Web-based industrial operation system and social operation management patterns, manifesting as a crowd cyber eco-system composed of multiple interconnected intelligent agents (enterprises, individuals and governmental agencies and its dynamic behaviors. This paper aims to explore the basic principles and laws of such a system and its behavior. Design/methodology/approach – The authors propose the concepts of crowd science and engineering (CSE and expound its main content, thus forming a research framework of theories and methodologies of crowd science. Findings – CSE is expected to substantially promote the formation and development of crowd science and thus lay a foundation for the advancement of Web-based industrial operation system and social operation management patterns. Originality/value – This paper is the first one to propose the concepts of CSE, which lights the beacon for the future research in this area.

  3. Toward a Social Ontology for Science Education: Introducing Deleuze and Guattari's Assemblages

    Science.gov (United States)

    Bazzul, Jesse; Kayumova, Shakhnoza

    2016-01-01

    This essay's main objective is to develop a theoretical, ontological basis for critical, social justice-oriented science education. Using Deleuze and Guattari's notion of assemblages, rhizomes, and arborescent structures, this article challenges authoritarian institutional practices, as well as the subject of these practices, and offers a way for…

  4. An Experience of Science Theatre to Introduce Earth Interior and Natural Hazards to Children

    Science.gov (United States)

    Musacchio, Gemma; Lanza, Tiziana; D'Addezio, Giuliana

    2015-01-01

    The present paper describes an experience of science theatre addressed to children of primary and secondary school, with the main purpose of making them acquainted with a topic, the interior of the Earth, largely underestimated in compulsory school curricula worldwide. A not less important task was to encourage a positive attitude towards natural…

  5. Using Harry Potter to Introduce Students to DNA Fingerprinting & Forensic Science

    Science.gov (United States)

    Palmer, Laura K.

    2010-01-01

    This lesson uses characters from the Harry Potter series of novels as a "hook" to stimulate students' interest in introductory forensic science. Students are guided through RFLP (restriction fragment length polymorphism) analysis using inexpensive materials and asked to interpret data from a mock crime scene. Importantly, the lesson provides an…

  6. Science Camps for Introducing Nature of Scientific Inquiry Through Student Inquiries in Nature: Two Applications with Retention Study

    Science.gov (United States)

    Leblebicioglu, G.; Abik, N. M.; Capkinoglu, E.; Metin, D.; Dogan, E. Eroglu; Cetin, P. S.; Schwartz, R.

    2017-08-01

    Scientific inquiry is widely accepted as a method of science teaching. Understanding its characteristics, called Nature of Scientific Inquiry (NOSI), is also necessary for a whole conception of scientific inquiry. In this study NOSI aspects were taught explicitly through student inquiries in nature in two summer science camps. Students conducted four inquiries through their questions about surrounding soil, water, plants, and animals under the guidance of university science educators. At the end of each investigation, students presented their inquiry. NOSI aspects were made explicit by one of the science educators in the context of the investigations. Effectiveness of the science camp program and its retention were determined by applying Views of Scientific Inquiry (VOSI-S) (Schwartz et al. 2008) questionnaire as pre-, post-, and retention test after two months. The patterns in the data were similar. The science camp program was effective in developing three of six NOSI aspects which were questions guide scientific research, multiple methods of research, and difference between data and evidence. Students' learning of these aspects was retained. Discussion about these and the other three aspects is included in the paper. Implications of differences between school and out-of-school science experiences are also discussed.

  7. Brazilian science teachers conceptions about the world situation

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Vital dos Santos Abib

    2000-09-01

    Full Text Available Recognizing the urgent need of a scientific education thet would provide for citizen participation in decision making regarding problems that affect our survival, this paper reports teachers perceptions about problems that affect the future of human kind and life in our planet. Taking as reference recent studies which approach this issue globally, we analyse science teachers conceptions concerning the present world situation. Results show a fragmentary character and an insufficient conscientization of the extent and serioussness of the problems. This finding points at the need of formative actions that would provide teachers with a more adequate perspection of those problems and of possible solutions.

  8. The Use of History and Philosophy of Science as a Core for a Socioconstructivist Teaching Approach of the Concept of Energy in Primary Education

    Science.gov (United States)

    Rizaki, Aikaterini; Kokkotas, Panagiotis

    2013-01-01

    The present study should be thought as a socioconstructivist teaching approach (a teaching model) for the concept of energy in primary education. It contains important and crucial aspects of the History and Philosophy of Natural Sciences, introduces the concept of energy using the macroscopic framework of thermodynamics, takes into consideration…

  9. The comparative effect of individually-generated vs. collaboratively-generated computer-based concept mapping on science concept learning

    Science.gov (United States)

    Kwon, So Young

    Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However

  10. Conceptions of Teaching Science Held by Novice Teachers in an Alternative Certification Program

    Science.gov (United States)

    Koballa, Thomas R.; Glynn, Shawn M.; Upson, Leslie

    2005-01-01

    Case studies to investigate the conceptions of teaching science held by three novice teachers participating in an alternative secondary science teacher certification program were conducted, along with the relationships between their conceptions of science teaching and their science teaching practice. Data used to build the cases included the…

  11. Conceptions, Self-Regulation, and Strategies of Learning Science among Chinese High School Students

    Science.gov (United States)

    Li, Mang; Zheng, Chunping; Liang, Jyh-Chong; Zhang, Yun; Tsai, Chin-Chung

    2018-01-01

    This study explored the structural relationships among secondary school students' conceptions, self-regulation, and strategies of learning science in mainland China. Three questionnaires, namely conceptions of learning science (COLS), self-regulation of learning science (SROLS), and strategies of learning science (SLS) were developed for…

  12. The Conceptions of Learning Science by Laboratory among University Science-Major Students: Qualitative and Quantitative Analyses

    Science.gov (United States)

    Chiu, Yu-Li; Lin, Tzung-Jin; Tsai, Chin-Chung

    2016-01-01

    Background: The sophistication of students' conceptions of science learning has been found to be positively related to their approaches to and outcomes for science learning. Little research has been conducted to particularly investigate students' conceptions of science learning by laboratory. Purpose: The purpose of this research, consisting of…

  13. Correlation of Students' Brain Types to Their Conceptions of Learning Science and Approaches to Learning Science

    Science.gov (United States)

    Park, Jiyeon; Jeon, Dongryul

    2015-01-01

    The systemizing and empathizing brain type represent two contrasted students' characteristics. The present study investigated differences in the conceptions and approaches to learning science between the systemizing and empathizing brain type students. The instruments are questionnaires on the systematizing and empathizing, questionnaires on the…

  14. The Social Science Teacher. 1972. Collected Conference Papers: Social Science Concepts Classroom Methods.

    Science.gov (United States)

    Noble, Pat, Ed.; And Others

    Papers in this publication are collected from a conference on social science concepts and classroom methods which focused on the theories of Jerome Bruner. The first article, entitled "Jerome Bruner," outlines four of Bruner's themes--structure, readiness, intuition, and interest--which relate to cognitive learning. Three…

  15. Introducing new diagnostics into STI control programmes: the importance of programme science.

    Science.gov (United States)

    Peeling, Rosanna W; Mabey, David; Ballard, Ronald C

    2013-03-01

    Many innovative diagnostic technologies will become commercially available over the next 5-10 years. These tests can potentially transform the diagnosis of sexually transmitted infections but their introduction into control programmes can be hampered by health system constraints, and political, cultural, socioeconomic and behavioural factors. We used the introduction of syphilis rapid tests to illustrate the importance of programme science to address the gap between accruing evidence of acceptable test performance and the complexity of programme design, implementation and evaluation of test deployment to address public health needs and improve patient-important outcomes.

  16. Explorers of the Universe: Metacognitive Tools for Learning Science Concepts

    Science.gov (United States)

    Alvarez, Marino C.

    1998-01-01

    Much of school learning consists of rote memorization of facts with little emphasis on meaningful interpretations. Knowledge construction is reduced to factual knowledge production with little regard for critical thinking, problem solving, or clarifying misconceptions. An important role of a middle and secondary teacher when teaching science is to aid students' ability to reflect upon what they know about a given topic and make available strategies that will enhance their understanding of text and science experiments. Developing metacognition, the ability to monitor one's own knowledge about a topic of study and to activate appropriate strategies, enhances students' learning when faced with reading, writing and problem solving situations. Two instructional strategies that can involve students in developing metacognitive awareness are hierarchical concept mapping, and Vee diagrams. Concept maps enable students to organize their ideas and reveal visually these ideas to others. A Vee diagram is a structured visual means of relating the methodological aspects of an activity to its underlying conceptual aspect in ways that aid learners in meaningful understanding of scientific investigations.

  17. Philosophical conceptions of the self: implications for cognitive science.

    Science.gov (United States)

    Gallagher

    2000-01-01

    Several recently developed philosophical approaches to the self promise to enhance the exchange of ideas between the philosophy of the mind and the other cognitive sciences. This review examines two important concepts of self: the 'minimal self', a self devoid of temporal extension, and the 'narrative self', which involves personal identity and continuity across time. The notion of a minimal self is first clarified by drawing a distinction between the sense of self-agency and the sense of self-ownership for actions. This distinction is then explored within the neurological domain with specific reference to schizophrenia, in which the sense of self-agency may be disrupted. The convergence between the philosophical debate and empirical study is extended in a discussion of more primitive aspects of self and how these relate to neonatal experience and robotics. The second concept of self, the narrative self, is discussed in the light of Gazzaniga's left-hemisphere 'interpreter' and episodic memory. Extensions of the idea of a narrative self that are consistent with neurological models are then considered. The review illustrates how the philosophical approach can inform cognitive science and suggests that a two-way collaboration may lead to a more fully developed account of the self.

  18. FNL Scientists Introduce Concept That Could Help the Immune System Respond to Vaccines | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Scientists have discovered an efficient and straightforward model to manipulate RNA nanoparticles, a new concept that could help trigger desirable activation of the immune system with vaccines and therapies. A multi-institutional team of researchers

  19. A campaign to end animal testing: introducing the PETA International Science Consortium Ltd.

    Science.gov (United States)

    Stoddart, Gilly; Brown, Jeffrey

    2014-12-01

    The successful development and validation of non-animal techniques, or the analysis of existing data to satisfy regulatory requirements, provide no guarantee that this information will be used in place of animal experiments. In order to advocate for the replacement of animal-based testing requirements, the PETA International Science Consortium Ltd (PISC) liaises with industry, regulatory and research agencies to establish and promote clear paths to validation and regulatory use of non-animal techniques. PISC and its members use an approach that identifies, promotes and verifies the implementation of good scientific practices in place of testing on animals. Examples of how PISC and its members have applied this approach to minimise the use of animals for the Registration, Evaluation, Authorisation and Restriction of Chemicals regulation in the EU and testing of cosmetics on animals in India, are described. 2014 FRAME.

  20. The effect of an outdoor setting on the transfer of earth science concepts

    Science.gov (United States)

    Simmons, Jerry Marvin

    The ability of students to transfer concepts learned in school to future learning and employment settings is critical to their academic and career success. Concept transfer can best be studied by defining it as a process rather than an isolated event. Preparation for future learning (PFL) is a process definition of transfer which recognizes the student's ability to draw from past experiences, make assumptions, and generate potential questions and strategies for problem resolution. The purpose of this study was to use the PFL definition of concept transfer to examine whether a knowledge-rich outdoor setting better prepares students for future learning of science concepts than the classroom setting alone does. The research hypothesis was that sixth-grade students experiencing a geology-rich outdoor setting would be better prepared to learn advanced earth science concepts than students experiencing classroom learning only. A quasi-experimental research design was used for this study on two non-equivalent, self-contained sixth-grade rural public school classes. After a pretest was given on prior geology knowledge, the outdoor treatment group was taken on a geology-rich field excursion which introduced them to the concepts of mineral formation and mining. The indoor treatment group received exposure to the same concepts in the classroom setting via color slides and identification of mineral specimens. Subsequently, both groups received direct instruction on advanced concepts about mineral formation and mining. They were then given a posttest, which presented the students with a problem-solving scenario and questions related to concepts covered in the direct instruction. A t-test done on pretest data revealed that the indoor treatment group had previously learned classroom geology material significantly better than the outdoor treatment group had. Therefore an analysis of covariance was performed on posttest data which showed that the outdoor treatment group was better

  1. Introducing a Web API for Dataset Submission into a NASA Earth Science Data Center

    Science.gov (United States)

    Moroni, D. F.; Quach, N.; Francis-Curley, W.

    2016-12-01

    As the landscape of data becomes increasingly more diverse in the domain of Earth Science, the challenges of managing and preserving data become more onerous and complex, particularly for data centers on fixed budgets and limited staff. Many solutions already exist to ease the cost burden for the downstream component of the data lifecycle, yet most archive centers are still racing to keep up with the influx of new data that still needs to find a quasi-permanent resting place. For instance, having well-defined metadata that is consistent across the entire data landscape provides for well-managed and preserved datasets throughout the latter end of the data lifecycle. Translators between different metadata dialects are already in operational use, and facilitate keeping older datasets relevant in today's world of rapidly evolving metadata standards. However, very little is done to address the first phase of the lifecycle, which deals with the entry of both data and the corresponding metadata into a system that is traditionally opaque and closed off to external data producers, thus resulting in a significant bottleneck to the dataset submission process. The ATRAC system was the NOAA NCEI's answer to this previously obfuscated barrier to scientists wishing to find a home for their climate data records, providing a web-based entry point to submit timely and accurate metadata and information about a very specific dataset. A couple of NASA's Distributed Active Archive Centers (DAACs) have implemented their own versions of a web-based dataset and metadata submission form including the ASDC and the ORNL DAAC. The Physical Oceanography DAAC is the most recent in the list of NASA-operated DAACs who have begun to offer their own web-based dataset and metadata submission services to data producers. What makes the PO.DAAC dataset and metadata submission service stand out from these pre-existing services is the option of utilizing both a web browser GUI and a RESTful API to

  2. Introducing Chemical Reactions Concepts in K-6 through a Hands-On Food Spherification and Spaghetti-Fication Experiment

    Science.gov (United States)

    Gupta, Anju; Hill, Nicole; Valenzuela, Patricia; Johnson, Eric

    2017-01-01

    Recruiting students in STEM majors to fill the gap in STEM workforce is a continued challenge, which can be addressed by introducing scientific principles through hand-on activities to the students at an early stage. This paper presents the design, implementation and assessment of a chemistry-related workshop for sixth grade students that were…

  3. An Integrated Approach to Introducing Biofuels, Flash Point, and Vapor Pressure Concepts into an Introductory College Chemistry Lab

    Science.gov (United States)

    Hoffman, Adam R.; Britton, Stephanie L.; Cadwell, Katie D.; Walz, Kenneth A.

    2011-01-01

    Students explore the fundamental chemical concepts of vapor pressure and flash point in a real-world technical context, while gaining insight into the contemporary societal issue of biofuels. Lab activities were developed using a closed-cup instrument to measure the flash point of various biodiesel samples. Pre- and post-tests revealed that the…

  4. Concept-Cartoons as a Tool to Evoke and Analyze Pupils Judgments in Social Science Education

    Directory of Open Access Journals (Sweden)

    Felix Fenske

    2011-10-01

    Full Text Available The following contribution makes an effort to place the concept-cartoon-method into the context of social science education. Concept-cartoons (CCs enable teachers to use the everyday life experiences and individual thoughts of the pupils as a positive enrichment tool within the learning processes. In this context, CCs are very suitable to function as a method to gain information about both the existing mental conceptions and the individual political judgment strategies. Through this, it is possible to put everyday life concepts and scientific knowledge in a constructive relationship, which finally enhances new learning objectives. First the article highlights the relevance of pupils’ and teachers` concepts for judgment processes. On this basis the method of CCs is introduced and evaluated.Der folgende Artikel beschäftigt sich mit den Möglichkeiten des methodischen Einsatzes von Concept-Cartoons im Rahmen sozialwissenschaftlichen Unterrichts. Als Instrumentarium zur Diagnose von Schülervorstellungen und individuellen Urteilsstrategien, bieten Comic-Cartoons den Lehrkräften die Möglichkeit, den Unterricht entlang dieser lernrelevanten Perspektiven zu gestalten. Durch die konstruktive Verknüpfung von Alltagskonzepten und Fachkonzepten können auf diese Weise neue Chancen für nachhaltige Lehr- und Lernprozesse erschlossen werden. Innerhalb dieses Beitrags wird zunächst die Bedeutung von Schülervorstellungen und vorfachlichen Urteilsstrategien für wirksamen sozialwissenschaftlichen Unterricht geklärt. Im Anschluss erfolgt eine Einführung in die Methode „Concept-Cartoons“. Abschließend werden exemplarisch drei von den Autoren gestaltete Cartoons vorgestellt.

  5. Modern Social Science Concepts, Proportionate Reciprocity, Modesty, and Democracy

    Directory of Open Access Journals (Sweden)

    Gerasimos T. SOLDATOS

    2014-06-01

    Full Text Available Proportionate Reciprocity, Modesty, and Democracy, are the key concepts in Aristotle’s economics of exchange. The following correspondence of these concepts with modern social science may be contemplated: (a Ideally, reciprocal justice in bilateral bargaining to minimize expenditure given utility levels results in Pareto-efficient, envy-free, equitable outcomes. (b Practically, bargaining under the threat or actual recontracting may act as a surrogate of reciprocal justice, leading to an N-person contract topology. (c But, recontracting is subject to practical limitations too, in which case near-reciprocal justice/general equilibrium outcomes may be fostered if, as a surrogate of recontracting, modesty in interaction is exhibited in an evolutionarily-stable-strategy fashion. (d That is, incomplete recontracting amounts to asymmetric agent-type information, which in turn lays the ground for injustices; the same lack of information prevents rectificatory justice from being efficient and hence, modesty can be efficient only if it operates as a social norm and hence, only in a modest polity, which can be no other than democracy.

  6. Seeding science success: Relations of secondary students' science self-concepts and motivation with aspirations and achievement

    Science.gov (United States)

    Chandrasena, Wanasinghe Durayalage

    This research comprises three inter-related synergistic studies. Study 1 aims to develop a psychometrically sound tool to measure secondary students' science self-concepts, motivation, and aspirations in biology, chemistry, earth and environmental methodology to explicate students' and teachers' views, practices, and personal experiences, to identify the barriers to undertaking science for secondary students and to provide rich insights into the relations of secondary students' science self-concepts and motivation with their aspirations and achievement. Study 3 will detect additional issues that may not necessarily be identifiable from the quantitative findings of Study 2. The psychometric properties of the newly developed instrument demonstrated that students' science self-concepts were domain specific, while science motivation and science aspirations were not. Students' self-concepts in general science, chemistry, and physics were stronger for males than females. Students' self-concepts in general science and biology became stronger for students in higher years of secondary schooling. Students' science motivation did not vary across gender and year levels. Though students' science aspirations did not vary across gender, they became stronger with age. In general, students' science self-concepts and science motivation were positively related to science aspirations and science achievement. Specifically, students' year level, biology self-concept, and physics self concept predicted their science and career aspirations. Biology self-concept predicted teacher ratings of students' achievement, and students' general science self-concepts predicted their achievement according to students' ratings. Students' year level and intrinsic motivation in science were predictors of their science aspirations, and intrinsic motivation was a greater significant predictor of students' achievement, according to student ratings. Based upon students' and teachers' perceptions, the

  7. Comparison of Science-Technology-Society Approach and Textbook Oriented Instruction on Students' Abilities to Apply Science Concepts

    Science.gov (United States)

    Kapici, Hasan Ozgur; Akcay, Hakan; Yager, Robert E.

    2017-01-01

    It is important for students to learn concepts and using them for solving problems and further learning. Within this respect, the purpose of this study is to investigate students' abilities to apply science concepts that they have learned from Science-Technology-Society based approach or textbook oriented instruction. Current study is based on…

  8. Concept Mapping as a Tool to Develop and Measure Students' Understanding in Science

    Science.gov (United States)

    Tan, Sema; Erdimez, Omer; Zimmerman, Robert

    2017-01-01

    Concept maps measured a student's understanding of the complexity of concepts, and interrelationships. Novak and Gowin (1984) claimed that the continuous use of concept maps increased the complexity and interconnectedness of students' understanding of relationships between concepts in a particular science domain. This study has two purposes; the…

  9. 492 Study Habit, Self-Concept and Science Achievement of Public ...

    African Journals Online (AJOL)

    Nekky Umera

    student study habit and self-concept combined together and singularly predicted science ... Study skills are fundamental to academic success. A student who ... Motivation to engage or not in a task is significantly determined by self- concept or ...

  10. Measuring social science concepts in pharmacy education research: From definition to item analysis of self-report instruments.

    Science.gov (United States)

    Cor, M Ken

    Interpreting results from quantitative research can be difficult when measures of concepts are constructed poorly, something that can limit measurement validity. Social science steps for defining concepts, guidelines for limiting construct-irrelevant variance when writing self-report questions, and techniques for conducting basic item analysis are reviewed to inform the design of instruments to measure social science concepts in pharmacy education research. Based on a review of the literature, four main recommendations emerge: These include: (1) employ a systematic process of conceptualization to derive nominal definitions; (2) write exact and detailed operational definitions for each concept, (3) when creating self-report questionnaires, write statements and select scales to avoid introducing construct-irrelevant variance (CIV); and (4) use basic item analysis results to inform instrument revision. Employing recommendations that emerge from this review will strengthen arguments to support measurement validity which in turn will support the defensibility of study finding interpretations. An example from pharmacy education research is used to contextualize the concepts introduced. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The translational science training program at NIH: Introducing early career researchers to the science and operation of translation of basic research to medical interventions.

    Science.gov (United States)

    Gilliland, C Taylor; Sittampalam, G Sitta; Wang, Philip Y; Ryan, Philip E

    2017-01-02

    Translational science is an emerging field that holds great promise to accelerate the development of novel medical interventions. As the field grows, so does the demand for highly trained biomedical scientists to fill the positions that are being created. Many graduate and postdoctorate training programs do not provide their trainees with sufficient education to take advantage of this growing employment sector. To help better prepare the trainees at the National Institutes of Health for possible careers in translation, we have created the Translational Science Training Program (TSTP). The TSTP is an intensive 2- to 3-day training program that introduces NIH postdoctoral trainees and graduate students to the science and operation of turning basic research discoveries into a medical therapeutic, device or diagnostic, and also exposes them to the variety of career options in translational science. Through a combination of classroom teaching from practicing experts in the various disciplines of translation and small group interactions with pre-clinical development teams, participants in the TSTP gain knowledge that will aid them in obtaining a career in translational science and building a network to make the transition to the field. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):13-24, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  12. Supramolecular Pharmaceutical Sciences: A Novel Concept Combining Pharmaceutical Sciences and Supramolecular Chemistry with a Focus on Cyclodextrin-Based Supermolecules.

    Science.gov (United States)

    Higashi, Taishi; Iohara, Daisuke; Motoyama, Keiichi; Arima, Hidetoshi

    2018-01-01

    Supramolecular chemistry is an extremely useful and important domain for understanding pharmaceutical sciences because various physiological reactions and drug activities are based on supramolecular chemistry. However, it is not a major domain in the pharmaceutical field. In this review, we propose a new concept in pharmaceutical sciences termed "supramolecular pharmaceutical sciences," which combines pharmaceutical sciences and supramolecular chemistry. This concept could be useful for developing new ideas, methods, hypotheses, strategies, materials, and mechanisms in pharmaceutical sciences. Herein, we focus on cyclodextrin (CyD)-based supermolecules, because CyDs have been used not only as pharmaceutical excipients or active pharmaceutical ingredients but also as components of supermolecules.

  13. Drama-Based Science Teaching and Its Effect on Students' Understanding of Scientific Concepts and Their Attitudes towards Science Learning

    Science.gov (United States)

    Abed, Osama H.

    2016-01-01

    This study investigated the effect of drama-based science teaching on students' understanding of scientific concepts and their attitudes towards science learning. The study also aimed to examine if there is an interaction between students' achievement level in science and drama-based instruction. The sample consisted of (87) of 7th grade students…

  14. Promoting Creative Thinking and Expression of Science Concepts among Elementary Teacher Candidates through Science Content Movie Creation and Showcasing

    Science.gov (United States)

    Hechter, Richard P.; Guy, Mark

    2010-01-01

    This article reports the phases of design and use of video editing technology as a medium for creatively expressing science content knowledge in an elementary science methods course. Teacher candidates communicated their understanding of standards-based core science concepts through the creation of original digital movies. The movies were assigned…

  15. Development and Validation of the Life Sciences Assessment: A Measure of Preschool Children's Conceptions of Basic Life Sciences

    Science.gov (United States)

    Maherally, Uzma Nooreen

    2014-01-01

    The purpose of this study was to develop and validate a science assessment tool termed the Life Sciences Assessment (LSA) in order to assess preschool children's conceptions of basic life sciences. The hypothesis was that the four sub-constructs, each of which can be measured through a series of questions on the LSA, will make a significant…

  16. Planetary Science Education - Workshop Concepts for Classrooms and Internships

    Science.gov (United States)

    Musiol, S.; Rosenberg, H.; Rohwer, G.; Balthasar, H.; van Gasselt, S.

    2014-12-01

    the Martian surface and presented their results in the end. Extensive handouts and high-quality print material supplemented face-to-face exercises. For the future we plan to expand our workshop concepts, to give students the possibility of conducting a week-long internship with our Planetary Sciences research group.

  17. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum

    Science.gov (United States)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.

    2017-12-01

    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  18. Dr Phil Mjwara Director General, Department of Science and Technology (DST) Ministry of Science and Technology Republic of South Africa visit the Alice experiment introduce by Prof. Jurgen Schukraft, spokeperson for Alice.

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    Dr Phil Mjwara Director General, Department of Science and Technology (DST) Ministry of Science and Technology Republic of South Africa visit the Alice experiment introduce by Prof. Jurgen Schukraft, spokeperson for Alice.

  19. Simulation-Based Performance Assessment: An Innovative Approach to Exploring Understanding of Physical Science Concepts

    Science.gov (United States)

    Gale, Jessica; Wind, Stefanie; Koval, Jayma; Dagosta, Joseph; Ryan, Mike; Usselman, Marion

    2016-01-01

    This paper illustrates the use of simulation-based performance assessment (PA) methodology in a recent study of eighth-grade students' understanding of physical science concepts. A set of four simulation-based PA tasks were iteratively developed to assess student understanding of an array of physical science concepts, including net force,…

  20. A Comparison of Key Concepts in Data Analytics and Data Science

    Science.gov (United States)

    McMaster, Kirby; Rague, Brian; Wolthuis, Stuart L.; Sambasivam, Samuel

    2018-01-01

    This research study provides an examination of the relatively new fields of Data Analytics and Data Science. We compare word rates in Data Analytics and Data Science documents to determine which concepts are mentioned most often. The most frequent concept in both fields is "data." The word rate for "data" is more than twice the…

  1. What Are the Roles that Children's Drawings Play in Inquiry of Science Concepts?

    Science.gov (United States)

    Chang, Ni

    2012-01-01

    This study was designed to identify the roles that drawing played in the process of children's acquisition of science concepts. Seventy pre-service teachers through four semesters from a Midwest University in the USA developed lesson plans on science concepts and then taught them to 70 young children ages 4-7, respectively. This experience was…

  2. Relationships between Prospective Elementary Teachers' Classroom Practice and Their Conceptions of Biology and of Teaching Science.

    Science.gov (United States)

    Meyer, Helen; Tabachnick, B. Robert; Hewson, Peter W.; Lemberger, John; Park, Hyun-Ju

    1999-01-01

    Discusses three prospective elementary teachers' conceptions of teaching science and selected portions of their knowledge base in life science. Explores how these teachers' conceptions, along with their teaching actions, developed during the course of a teacher-education program. Contains 21 references. (Author/WRM)

  3. Investigating the Interrelationships among Conceptions of, Approaches to, and Self-Efficacy in Learning Science

    Science.gov (United States)

    Zheng, Lanqin; Dong, Yan; Huang, Ronghuai; Chang, Chun-Yen; Bhagat, Kaushal Kumar

    2018-01-01

    The purpose of this study was to examine the relations between primary school students' conceptions of, approaches to, and self-efficacy in learning science in Mainland China. A total of 1049 primary school students from Mainland China participated in this study. Three instruments were adapted to measure students' conceptions of learning science,…

  4. Science Shops - a concept for community based learning

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Hende, Merete

    2001-01-01

    Experience from science shops show that besides assisting citizen groups, science shops can also contribute to the development of university curricula and research. The paper is based on an investigation of the impact of science shops on university curricula and research through a questionnaire...... sent out to science shops and through follow-up interviews with employees from nine different university based science shops. These science shops had in the questionnaire indicated that the science shop in one way or the other has had impact on university curricula and/or research. This paper focuses...... on the impact on university curricula. The case studies have been supplemented with articles and reports. The analysis has focused on the kind of impact, which the science shops have reported, and has tried to relate the impact to the local history of the science shop. One direct impact on the curricula...

  5. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What…

  6. SKILL OF TEACHER CANDIDATES IN INTEGRATING THE CONCEPT OF SCIENCE WITH LOCAL WISDOM

    Directory of Open Access Journals (Sweden)

    Parmin -

    2015-11-01

    Full Text Available Learning science is not limited to reviewing the concepts, but strengthens the identity of a nation that has a diversity of cultures. Science learning objectives that have been set in Indonesia, including the student is able to apply the science wisely, to maintain and preserve the cultural survival. The study aims to measure students' ability to relate concepts of science with local knowledge to use mind maps compiled individually. The results showed that 85% of teacher candidates are able to determine the relationship of science and local knowledge correctly. The ability to link the two domains, through the literature review, observation and interviews.

  7. Undergraduate Students' Earth Science Learning: Relationships among Conceptions, Approaches, and Learning Self-Efficacy in Taiwan

    Science.gov (United States)

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-01-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to…

  8. Investigating inquiry beliefs and nature of science (NOS) conceptions of science teachers as revealed through online learning

    Science.gov (United States)

    Atar, Hakan Yavuz

    teachers NOS conceptions. Developing desired understanding of nature of science conceptions and having an adequate experience with inquiry learning is especially important for science teachers because science education literature suggests that the development of teachers' nature of science conceptions is influenced by their experiences with inquiry science (Akerson et. al. 2000) and implementation of science lessons reflect teachers' NOS conceptions (Abd-EL-Khalick & Boujaoude, 1997; Matson & Parsons, 1998; Rosenthal, 1993; Trowbridge, Bybee & Powell, 2000; Turner & Sullenger, 1999). Furthermore, the impediments to successful integration of inquiry based science instruction from teachers' perspective are particularly important, as they are the implementers of inquiry based science education reform. The purpose of this study is to understand the relationship between the teachers' NOS conceptions and their inquiry beliefs and practices in their classrooms and how this relationship impedes or contributes to the implementation of inquiry based science education reform efforts. The participants of this study were in-service teachers who were accepted into the online Masters Program in science education program at a southern university. Three online courses offered in the summer semester of 2005 constituted the research setting of this study: (1) Special Problems in the Teaching of Secondary School Science: Nature of Science & Science Teaching, (2) Curriculum in Science Education, and (3) Colloquium. Multiple data sources were used for data triangulation (Miles & Huberman, 1984; Yin, 1994) in order to understand the relationship between participants' NOS views and their conceptions and beliefs about inquiry-based science teaching. The study revealed that the relationship between the teachers' NOS conceptions and their inquiry beliefs and practices is far from being simple and linear. Data suggests that the teachers' sophistication of NOS conceptions influence their perception of

  9. [Conception of the history of science in the interpretation of Bogdan Suchodolski].

    Science.gov (United States)

    Lietz, Natalia

    2011-01-01

    In the article is presented the conception of the history of science in the interpretation of Bogdan Suchodolski. Having described the conception of the history of science created by George Sarton (1884-1956), whose thought was influenced by positivistic philosophy of August Comte, the idea of the history of science of Johan Nordstr6m (1891-1967), who was inspired by the system of Wilhelm Dilthey, and the materialistic conception of the history of science, which was represented, among others, by John Desmond Bernal (1901-1971), the author is making an attempt at revealing to what extent Bogdan Suchodolski was inspired by the above-mentioned visions of the history of science. Having defined the history of science as the history of scientific activity of people and their consciousness formed by the activity, Bogdan Suchodolski applied in the field of his own conception of the history of science the ideas that were put forward by German thinkers and philosophers, and were connected with a way of understanding culture as the constant development of national awareness, which can be exemplified with different dimensions of culture. Undoubtedly, identifying the history of Polish science with constitutive element of the history of national culture and paying attention to the conceptions tending not only to explaining, but also understanding phenomena, B. Suchodolski was influenced by Alfred Vierkandt's and Wilhelm Dilthey's thought. The present article includes several reflections on the conception of the history of science, which was created by B. Suchodolski. Among others, we can find here detailed information on how B. Suchodolski understood: the history of science, its subject, aim and methodology; its status in modern social consciousness and as the history of truth; relations between history of science and theory of science and scientific policy, history of science and the problem of unity and diversity of scientific thinking, history of science and ideas, history of

  10. KEY CONCEPTS OF AGROECOLOGY SCIENCE. A SYSTEMATIC REVIEW

    Directory of Open Access Journals (Sweden)

    Luis Fernando Gómez-Echeverri

    2016-08-01

    Full Text Available A systematic review was conducted with the objective of determining the key concepts that are currently used in theoretical work in agroecology. They were obtained from titles and keywords of theoretical articles and books that included the term agroecology in the title. Fifteen terms with occurrences higher than three were obtained. They show that agroecology revolves around the concept of integral sustainability, and that there is agreement on neither its object of study nor goal. As a result, most key concepts concern the object of study or the goal of agroecology. Other key concepts are food sovereignty, agriculture, ecofeminism, climate change, family farming, and social movements.

  11. Introducing Enabling Computational Tools to the Climate Sciences: Multi-Resolution Climate Modeling with Adaptive Cubed-Sphere Grids

    Energy Technology Data Exchange (ETDEWEB)

    Jablonowski, Christiane [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-07-14

    The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively with advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project

  12. Systems in Science: Modeling Using Three Artificial Intelligence Concepts.

    Science.gov (United States)

    Sunal, Cynthia Szymanski; Karr, Charles L.; Smith, Coralee; Sunal, Dennis W.

    2003-01-01

    Describes an interdisciplinary course focusing on modeling scientific systems. Investigates elementary education majors' applications of three artificial intelligence concepts used in modeling scientific systems before and after the course. Reveals a great increase in understanding of concepts presented but inconsistent application. (Author/KHR)

  13. Predicting Turkish Preservice Elementary Teachers' Orientations to Teaching Science with Epistemological Beliefs, Learning Conceptions, and Learning Approaches in Science

    Science.gov (United States)

    Sahin, Elif Adibelli; Deniz, Hasan; Topçu, Mustafa Sami

    2016-01-01

    The present study investigated to what extent Turkish preservice elementary teachers' orientations to teaching science could be explained by their epistemological beliefs, conceptions of learning, and approaches to learning science. The sample included 157 Turkish preservice elementary teachers. The four instruments used in the study were School…

  14. The Relationship between Science Achievement and Self-Concept among Gifted Students from the Third International Earth Science Olympiad

    Science.gov (United States)

    Chang, Chun-Yen; Lin, Pei-Ling

    2017-01-01

    This study investigated the relationship between gifted students' academic self-concept (ASC) and academic achievement (AC) in earth science with internationally representative high-school students from the third International Earth Science Olympiad (IESO) held in Taiwan in 2009. The results of regression analysis indicated that IESO students' ASC…

  15. Changing Preservice Science Teachers' Views of Nature of Science: Why Some Conceptions May Be More Easily Altered than Others

    Science.gov (United States)

    Mesci, Gunkut; Schwartz, Renee' S.

    2017-01-01

    The purpose of this study was to assess preservice teachers' views of Nature of Science (NOS), identify aspects that were challenging for conceptual change, and explore reasons why. This study particularly focused on why and how some concepts of NOS may be more easily altered than others. Fourteen preservice science teachers enrolled in a NOS and…

  16. Informatics with Systems Science and Cybernetics--Concepts and Definitions.

    Science.gov (United States)

    Samuelson, Kjell

    This dictionary defines information science, computer science, systems theory, and cybernetic terms in English and provides the Swedish translation of each term. An index of Swedish terms refers the user to the page where the English equivalent and definition appear. Most of the 38 references listed are in English. (RAA)

  17. Implementing Concepts of Pharmaceutical Engineering into High School Science Classrooms

    Science.gov (United States)

    Kimmel, Howard; Hirsch, Linda S.; Simon, Laurent; Burr-Alexander, Levelle; Dave, Rajesh

    2009-01-01

    The Research Experience for Teachers was designed to help high school science teachers develop skills and knowledge in research, science and engineering with a focus on the area of pharmaceutical particulate and composite systems. The experience included time for the development of instructional modules for classroom teaching. Results of the…

  18. Exploring teacher's perceptions of concept mapping as a teaching strategy in science: An action research approach

    Science.gov (United States)

    Marks Krpan, Catherine Anne

    In order to promote science literacy in the classroom, students need opportunities in which they can personalize their understanding of the concepts they are learning. Current literature supports the use of concept maps in enabling students to make personal connections in their learning of science. Because they involve creating explicit connections between concepts, concept maps can assist students in developing metacognitive strategies and assist educators in identifying misconceptions in students' thinking. The literature also notes that concept maps can improve student achievement and recall. Much of the current literature focuses primarily on concept mapping at the secondary and university levels, with limited focus on the elementary panel. The research rarely considers teachers' thoughts and ideas about the concept mapping process. In order to effectively explore concept mapping from the perspective of elementary teachers, I felt that an action research approach would be appropriate. Action research enabled educators to debate issues about concept mapping and test out ideas in their classrooms. It also afforded the participants opportunities to explore their own thinking, reflect on their personal journeys as educators and play an active role in their professional development. In an effort to explore concept mapping from the perspective of elementary educators, an action research group of 5 educators and myself was established and met regularly from September 1999 until June 2000. All of the educators taught in the Toronto area. These teachers were interested in exploring how concept mapping could be used as a learning tool in their science classrooms. In summary, this study explores the journey of five educators and myself as we engaged in collaborative action research. This study sets out to: (1) Explore how educators believe concept mapping can facilitate teaching and student learning in the science classroom. (2) Explore how educators implement concept

  19. An Overview of the Jupiter Europa Orbiter Concept's Europa Science Phase Orbit Design

    Science.gov (United States)

    Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.

    2009-01-01

    Jupiter Europa Orbiter (JEO), the proposed NASA element of the proposed joint NASA-ESA Europa Jupiter System Mission (EJSM), could launch in February 2020 and conceivably arrive at Jupiter in December of 2025. The concept is to perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper provides an overview of the JEO concept and describes the Europa Science phase orbit design and the related science priorities, model pay-load and operations scenarios needed to conduct the Europa Science phase. This overview is for planning and discussion purposes only.

  20. United States Science Policy: from Conceptions to Practice

    Directory of Open Access Journals (Sweden)

    V I Konnov

    2012-06-01

    Full Text Available The authors analyze the organizational structure of the U.S. scientific community, examining the V. Bush report Science: the Endless Frontier (1945 as its conceptual basis, which remains the cornerstone of the American science policy. The authors point out decentralization as the key trait of this structure, which reveals itself in the absence of a unitary centre with a mission to formulate and implement science policy and high level of dissemination of self-government practices supported by a wide range of government agencies. This configuration determines the special position, occupied by the universities as universal research establishments possessing flexibility in cooperation with state agencies and private sector.

  1. Data-Intensive Science meets Inquiry-Driven Pedagogy: Interactive Big Data Exploration, Threshold Concepts, and Liminality

    Science.gov (United States)

    Ramachandran, Rahul; Word, Andrea; Nair, Udasysankar

    2014-01-01

    Threshold concepts in any discipline are the core concepts an individual must understand in order to master a discipline. By their very nature, these concepts are troublesome, irreversible, integrative, bounded, discursive, and reconstitutive. Although grasping threshold concepts can be extremely challenging for each learner as s/he moves through stages of cognitive development relative to a given discipline, the learner's grasp of these concepts determines the extent to which s/he is prepared to work competently and creatively within the field itself. The movement of individuals from a state of ignorance of these core concepts to one of mastery occurs not along a linear path but in iterative cycles of knowledge creation and adjustment in liminal spaces - conceptual spaces through which learners move from the vaguest awareness of concepts to mastery, accompanied by understanding of their relevance, connectivity, and usefulness relative to questions and constructs in a given discipline. For example, challenges in the teaching and learning of atmospheric science can be traced to threshold concepts in fluid dynamics. In particular, Dynamic Meteorology is one of the most challenging courses for graduate students and undergraduates majoring in Atmospheric Science. Dynamic Meteorology introduces threshold concepts - those that prove troublesome for the majority of students but that are essential, associated with fundamental relationships between forces and motion in the atmosphere and requiring the application of basic classical statics, dynamics, and thermodynamic principles to the three dimensionally varying atmospheric structure. With the explosive growth of data available in atmospheric science, driven largely by satellite Earth observations and high-resolution numerical simulations, paradigms such as that of dataintensive science have emerged. These paradigm shifts are based on the growing realization that current infrastructure, tools and processes will not allow

  2. Conceptions of Good Science in Our Data-Rich World.

    Science.gov (United States)

    Elliott, Kevin C; Cheruvelil, Kendra S; Montgomery, Georgina M; Soranno, Patricia A

    2016-10-01

    Scientists have been debating for centuries the nature of proper scientific methods. Currently, criticisms being thrown at data-intensive science are reinvigorating these debates. However, many of these criticisms represent long-standing conflicts over the role of hypothesis testing in science and not just a dispute about the amount of data used. Here, we show that an iterative account of scientific methods developed by historians and philosophers of science can help make sense of data-intensive scientific practices and suggest more effective ways to evaluate this research. We use case studies of Darwin's research on evolution by natural selection and modern-day research on macrosystems ecology to illustrate this account of scientific methods and the innovative approaches to scientific evaluation that it encourages. We point out recent changes in the spheres of science funding, publishing, and education that reflect this richer account of scientific practice, and we propose additional reforms.

  3. Beyond cyborg metapathography in Michael Chorost’s Rebuilt to World Wide Mind: Introducing “morphos” as a rhetorical concept in cyborgography

    Directory of Open Access Journals (Sweden)

    Kevin A. Thayer

    2013-08-01

    Full Text Available This essay introduces the rhetorical concept of “morphos”, a dimension of ethos, in the context of cyborg self-transformation and cyborg storytelling. Focusing on the cyborg storytelling of Michael Chorost, a cochlear implant user and futurist, this essay applies "morphos" to develop an argument about the changing capabilities and changing stories of living cyborg authors. Using rhetorical concepts to illuminate his self-transformation and narrative constructions, this essay analyzes Chorost’s two books: Rebuilt: How Becoming Part Computer Made Me More Human; and, World Wide Mind: The Coming Integration of Humanity, Machines, and the Internet. Chorost’s first book, Rebuilt, is an autobiographical account of his journey from deafness to cochlear implant hearing and his quest for community. He completes his journey of self-transformation using Haraway’s Cyborg Manifesto and Caidin’s Cyborg as narrative tools. Rebuilt can be defined as a cyborg metapathography, identifying rhetorical features of Chorost’s cyborg storytelling. Chorost’s second book, World Wide Mind, is both autobiographical and theoretical. This rhetorical shift in the context of his changing physical, perceptual, and cognitive capabilities, and his changing ethos, is significant because it opens the way for a new hybrid language combining the spoken/written and digital code.

  4. The concept of behavioural needs in contemporary fur science

    DEFF Research Database (Denmark)

    Kornum, A.L.; Röcklinsberg, H.; Gjerris, Mickey

    2017-01-01

    show that mink place high value on swimming water, whereas other studies indicate the opposite, which has led scientists to question whether this preference constitutes a genuine behavioural need. In this paper, we take a methodological turn and discuss whether the oft-used concept of behavioural needs......This paper discusses the ethical implications of applying the concept of behavioural needs to captive animals. This is done on the basis of analysing the scientific literature on farmed mink and their possible need for swimming. In the wild, American mink (Mustela vison) are semi-aquatic predators...

  5. Proof of concept : Temperature sensing waders for environmental sciences

    NARCIS (Netherlands)

    Hut, R.W.; Tyler, S.; Van Emmerik, T.H.M.

    2015-01-01

    A prototype temperature sensing pair of waders is introduced and tested. The water temperature at the stream-bed is interesting both for scientist studying the hyporheic zone as well as for, e.g., fishers spotting good fishing locations. A temperature sensor incorporated in waders worn by members of

  6. Proof of concept : Temperature-sensing waders for environmental sciences

    NARCIS (Netherlands)

    Hut, R.W.; Tyler, S.; Van Emmerik, T.H.M.

    2016-01-01

    A prototype temperature-sensing pair of waders is introduced and tested. The water temperature at the streambed is interesting both for scientists studying the hyporheic zone and for, e.g., fishers spotting good fishing locations. A temperature sensor incorporated into waders worn by members of the

  7. Influence of Particle Theory Conceptions on Pre-Service Science Teachers' Understanding of Osmosis and Diffusion

    Science.gov (United States)

    AlHarbi, Nawaf N. S.; Treagust, David F.; Chandrasegaran, A. L.; Won, Mihye

    2015-01-01

    This study investigated the understanding of diffusion, osmosis and particle theory of matter concepts among 192 pre-service science teachers in Saudi Arabia using a 17-item two-tier multiple-choice diagnostic test. The data analysis showed that the pre-service teachers' understanding of osmosis and diffusion concepts was mildly correlated with…

  8. A concept for performance management for Federal science programs

    Science.gov (United States)

    Whalen, Kevin G.

    2017-11-06

    The demonstration of clear linkages between planning, funding, outcomes, and performance management has created unique challenges for U.S. Federal science programs. An approach is presented here that characterizes science program strategic objectives by one of five “activity types”: (1) knowledge discovery, (2) knowledge development and delivery, (3) science support, (4) inventory and monitoring, and (5) knowledge synthesis and assessment. The activity types relate to performance measurement tools for tracking outcomes of research funded under the objective. The result is a multi-time scale, integrated performance measure that tracks individual performance metrics synthetically while also measuring progress toward long-term outcomes. Tracking performance on individual metrics provides explicit linkages to root causes of potentially suboptimal performance and captures both internal and external program drivers, such as customer relations and science support for managers. Functionally connecting strategic planning objectives with performance measurement tools is a practical approach for publicly funded science agencies that links planning, outcomes, and performance management—an enterprise that has created unique challenges for public-sector research and development programs.

  9. Evolution of the Concept of "Human Capital" in Economic Science

    Science.gov (United States)

    Perepelkin, Vyacheslav A.; Perepelkina, Elena V.; Morozova, Elena S.

    2016-01-01

    The relevance of the researched problem is determined by transformation of the human capital into the key economic resource of development of the postindustrial society. The purpose of the article is to disclose the content of evolution of the human capital as a scientific concept and phenomenon of the economic life. The leading approach to the…

  10. The effect of a pretest in an interactive, multimodal pretraining system for learning science concepts

    NARCIS (Netherlands)

    Bos, Floor/Floris; Terlouw, C.; Pilot, Albert

    2009-01-01

    In line with the cognitive theory of multimedia learning by Moreno and Mayer (2007), an interactive, multimodal learning environment was designed for the pretraining of science concepts in the joint area of physics, chemistry, biology, applied mathematics, and computer sciences. In the experimental

  11. Investigation of Preservice Science Teachers' Comprehension of the Star, Sun, Comet and Constellation Concepts

    Science.gov (United States)

    Cevik, Ebru Ezberci; Kurnaz, Mehmet Altan

    2017-01-01

    The purpose of this study is to reveal preservice science teachers' perceptions related to the sun, star, comet and constellation concepts. The research was carried out by 56 preservice science teachers (4th grade) at Kastamonu University taking astronomy course in 2014-2015 academic year. For data collection open-ended questions that required…

  12. Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES-3)

    Science.gov (United States)

    Dulikravich, George S. (Editor)

    1991-01-01

    Papers from the Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES) are presented. The papers discuss current research in the general field of inverse, semi-inverse, and direct design and optimization in engineering sciences. The rapid growth of this relatively new field is due to the availability of faster and larger computing machines.

  13. The Pre-Service Science Teachers' Mental Models for Concept of Atoms and Learning Difficulties

    Science.gov (United States)

    Kiray, Seyit Ahmet

    2016-01-01

    The purpose of this study is to reveal the pre-service science teachers' difficulties about the concept of atoms. The data was collected from two different sources: The Draw an Atom Test (DAAT) and face-to-face interviews. Draw an atom test (DAAT) were administered to the 142 science teacher candidates. To elaborate the results, the researcher…

  14. Connecting Knowledge Domains : An Approach to Concept Learning in Primary Science and Technology Education

    NARCIS (Netherlands)

    Koski, M.

    2014-01-01

    In order to understand our dependency on technology and the possible loss of control that comes with it, it is necessary for people to understand the nature of technology as well as its roots in science. Learning basic science and technology concepts should be a part of primary education since it

  15. Proportional Reasoning Ability and Concepts of Scale: Surface Area to Volume Relationships in Science

    Science.gov (United States)

    Taylor, Amy; Jones, Gail

    2009-01-01

    The "National Science Education Standards" emphasise teaching unifying concepts and processes such as basic functions of living organisms, the living environment, and scale. Scale influences science processes and phenomena across the domains. One of the big ideas of scale is that of surface area to volume. This study explored whether or not there…

  16. Exploring Students' Conceptions of Science Learning via Drawing: A Cross-Sectional Analysis

    Science.gov (United States)

    Hsieh, Wen-Min; Tsai, Chin-Chung

    2017-01-01

    This cross-sectional study explored students' conceptions of science learning via drawing analysis. A total of 906 Taiwanese students in 4th, 6th, 8th, 10th, and 12th grade were asked to use drawing to illustrate how they conceptualise science learning. Students' drawings were analysed using a coding checklist to determine the presence or absence…

  17. Parental influences on students' self-concept, task value beliefs, and achievement in science.

    Science.gov (United States)

    Senler, Burcu; Sungur, Semra

    2009-05-01

    The aim of this study was twofold: firstly, to investigate the grade level (elementary and middle school) and gender effect on students' motivation in science (perceived academic science self-concept and task value) and perceived family involvement, and secondly to examine the relationship among family environment variables (fathers' educational level, mothers' educational level, and perceived family involvement), motivation, gender and science achievement in elementary and middle schools. Multivariate Analysis of Variance (MANOVA) showed that elementary school students have more positive science self-concept and task value beliefs compared to middle school students. Moreover, elementary school students appeared to perceive more family involvement in their schooling. Path analyses also suggested that family involvement was directly linked to elementary school students' task value and achievement. Also, in elementary school level, significant relationships were found among father educational level, science self-concept, task value and science achievement. On the other hand, in middle school level, family involvement, father educational level, and mother educational level were positively related to students' task value which is directly linked to students' science achievement. Moreover, mother educational level contributed to science achievement through its effect on self-concept.

  18. Science concept learning by English as second language junior secondary students

    Science.gov (United States)

    Lai, Pui-Kwong; Lucas, Keith B.; Burke, Ed V.

    1995-03-01

    Recent Chinese migrant students from Taiwan studying science in two Australian secondary schools were found to explain the meanings of selected science concept labels in English by translating from Chinese. The research strategy involved interviewing the students concerning their recognition and comprehension of the science concept labels firstly in Chinese and then in English. Mean recognition and comprehension scores were higher in Chinese than in English, with indications that Chinese language and science knowledge learnt in Chinese deteriorated with increasing time of residence in Australia. Rudimentary signs of the students being able to switch between Chinese and English knowledge bases in science were also found. Implications for teaching science to ESL students and suggestions for further research are discussed.

  19. Understanding Economic and Management Sciences Teachers' Conceptions of Sustainable Development

    Science.gov (United States)

    America, Carina

    2014-01-01

    Sustainable development has become a key part of the global educational discourse. Education for sustainable development (ESD) specifically is pronounced as an imperative for different curricula and regarded as being critical for teacher education. This article is based on research that was conducted on economic and management sciences (EMS)…

  20. Program on Public Conceptions of Science, Newsletter 10.

    Science.gov (United States)

    Blanpied, William A., Ed.; Shelanski, Vivien, Ed.

    This newsletter is divided into six sections: an introduction; general news items and communications from readers; news items and communications more specifically in the ethical and human values areas; an annotated, selective checklist of imaginative literature concerning the relationship between science, technology and human values; and a general…

  1. Stories, Proverbs, and Anecdotes as Scaffolds for Learning Science Concepts

    Science.gov (United States)

    Mutonyi, Harriet

    2016-01-01

    Few research studies in science education have looked at how stories, proverbs, and anecdotes can be used as scaffolds for learning. Stories, proverbs, and anecdotes are cultural tools used in indigenous communities to teach children about their environment. The study draws on Bruner's work and the theory of border crossing to argue that stories,…

  2. Key Concepts of Environmental Sustainability in Family and Consumer Sciences

    Science.gov (United States)

    Thompson, Nancy E.; Harden, Amy J.; Clauss, Barbara; Fox, Wanda S.; Wild, Peggy

    2012-01-01

    It is the vision of the American Association of Family & Consumer Sciences to be "recognized as the driving force in bringing people together to improve the lives of individuals, families, and communities" (AAFCS, 2010). Because of this focus on individuals and families and its well-established presence in American schools, family and consumer…

  3. University Student Conceptions of Learning Science through Writing

    Science.gov (United States)

    Ellis, Robert A.; Taylor, Charlotte E.; Drury, Helen

    2006-01-01

    First-year undergraduate science students experienced a writing program as an important part of their assessment in a biology subject. The writing program was designed to help them develop both their scientific understanding as well as their written scientific expression. Open-ended questionnaires investigating the quality of the experience of…

  4. Science Fiction in the Political Science Classroom: A Comment

    Science.gov (United States)

    Landers, Clifford E.

    1977-01-01

    Science fiction can be used for introducing and analyzing political concepts at the undergraduate level for either a specialized theory-oriented course such as Political Science Fiction or an Introduction to Political Science course. (Author/RM)

  5. State of the science of maternal-infant bonding: a principle-based concept analysis.

    Science.gov (United States)

    Bicking Kinsey, Cara; Hupcey, Judith E

    2013-12-01

    to provide a principle-based analysis of the concept of maternal-infant bonding. principle-based method of concept analysis for which the data set included 44 articles published in the last decade from Pubmed, CINAHL, and PyschINFO/PsychARTICLES. literature inclusion criteria were English language, articles published in the last decade, peer-reviewed journal articles and commentary on published work, and human populations. after a brief review of the history of maternal-infant bonding, a principle-based concept analysis was completed to examine the state of the science with regard to this concept. The concept was critically examined according to the clarity of definition (epistemological principle), applicability of the concept (pragmatic principle), consistency in use and meaning (linguistic principle), and differentiation of the concept from related concepts (logical principle). Analysis of the concept revealed: (1) Maternal-infant bonding describes maternal feelings and emotions towards her infant. Evidence that the concept encompasses behavioural or biological components was limited. (2) The concept is clearly operationalised in the affective domain. (3) Maternal-infant bonding is linguistically confused with attachment, although the boundaries between the concepts are clearly delineated. despite widespread use of the concept, maternal-infant bonding is at times superficially developed and subject to confusion with related concepts. Concept clarification is warranted. A theoretical definition of the concept of maternal-infant bonding was developed to aid in the clarification, but more research is necessary to further clarify and advance the concept. nurse midwives and other practitioners should use the theoretical definition of maternal-infant bonding as a preliminary guide to identification and understanding of the concept in clinical practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Introducing particle physics a graphic guide

    CERN Document Server

    AUTHOR|(CDS)2071677

    2013-01-01

    What really happens at the most fundamental levels of nature? Introducing Particle Physics explores the very frontiers of our knowledge, even showing how particle physicists are now using theory and experiment to probe our very concept of what is real. From the earliest history of the atomic theory through to supersymmetry, micro-black holes, dark matter, the Higgs boson, and the possibly mythical graviton, practising physicist and CERN contributor Tom Whyntie gives us a mind-expanding tour of cutting-edge science. Featuring brilliant illustrations from Oliver Pugh, Introducing Particle Physics is a unique tour through the most astonishing and challenging science being undertaken today.

  7. Science with SALT: the road from concept to reality

    Science.gov (United States)

    Buckley, David A. H.

    2015-08-01

    The Southern African Large Telescope (SALT) was a relatively cheap (~$20M) 10m class telescope, modelled on the innovative HET design, for which the construction phase was completed in late 2005. However it took another 6 years or so before the commissioning was really completed and the telescope entered full science operations. This talk will discuss the design and construction of SALT, its First Generation instruments and the operational model for the telescope. A number of technical challenges, some unforeseeable at the time, had to be overcome, which are described in this talk. Some science highlights will be presented, covering a range of topics and focussing on studies related to some of the more unique or rare capabilities of SALT, like time resolved studies. Finally, I look to the future and the prospects of new instruments and capabilities.

  8. An Added Layer of Support: Introducing a Heterarchical Peer Mentoring Intervention to a Preservice Science Teacher Education Cohort

    Science.gov (United States)

    Neesemann, Lisa Ann

    2017-01-01

    In an effort to support preservice science teachers during their concurrent student teaching experiences and masters coursework, I created and implemented a Peer Mentoring Intervention to add an additional layer of support to those most traditionally curated. In this intervention, preservice secondary science teachers were paired into…

  9. Concept maps and the meaningful learning of science

    Directory of Open Access Journals (Sweden)

    José Antonio C. S. Valadares

    2013-03-01

    Full Text Available The foundations of the Meaningful Learning Theory (MLT were laid by David Ausubel. The MLT was highly valued by the contributions of Joseph Novak and D. B. Gowin. Unlike other learning theories, the MLT has an operational component, since there are some instruments based on it and with the meaningful learning facilitation as aim. These tools were designated graphic organizers by John Trowbridge and James Wandersee (2000, pp. 100-129. One of them is the concept map created by Novak to extract meanings from an amalgam of information, having currently many applications. The other one is the Vee diagram or knowledge Vee, also called epistemological Vee or heuristic Vee. It was created by Gowin, and is an excellent organizer, for example to unpack and make transparent the unclear information from an information source. Both instruments help us in processing and becoming conceptually transparent the information, to facilitate the cognitive process of new meanings construction. In this work, after a brief introduction, it will be developed the epistemological and psychological grounds of MLT, followed by a reference to constructivist learning environments facilitators of the meaningful learning, the characterization of concept maps and exemplification of its use in various applications that have proved to be very effective from the standpoint of meaningful learning.

  10. Examining student conceptions of the nature of science from two project-based classrooms

    Science.gov (United States)

    Moss, David M.

    The purpose of this research was to develop descriptive accounts of precollege students' conceptions of the nature of science from two project-based classrooms, and track those conceptions over the course of an academic year. A model of the nature of science was developed and served as the criterion by which students' beliefs were evaluated. The model distinguishes between two major categories of science, the nature of the scientific enterprise and the nature of scientific knowledge. Five students were selected from each class and interviewed individually for 30-45 minutes each, six times over the year. Data from semi-structured, formal interviewing consisted of audio-recorded interviews which were transcribed verbatim. All passages were coded using codes which corresponded to the premises of the model of the nature of science. Passages in the transcripts were interpreted to develop a summary of the students' conceptions over the year. Qualitative methodologies, especially formal interviewing in conjunction with participant observation, were effective for uncovering students' conceptions of the nature of science, adding to the knowledge base in this field. The research design of the current study was a significant factor in explaining the inconsistencies seen between findings from this study and the literature. This study finds that participants at both classroom sites held fully formed conceptions of the nature of science for approximately 40 percent of the premises across the model. For two-thirds of the elements which comprise the premises, participants held full understandings. Participants held more complete understandings of the nature of scientific knowledge than the nature of the scientific enterprise. Most participants had difficulty distinguishing between science and non-science and held poor understandings of the role of questions in science. Students' beliefs generally remained unchanged over the year. When their conceptions did evolve, project

  11. Uexküllian Umwelt as science and as ideology: the light and the dark side of a concept.

    Science.gov (United States)

    Stella, Marco; Kleisner, Karel

    2010-06-01

    The concept of Umwelt, in particular the interpretation originally developed by Jakob von Uexküll, played an important role in the development of biological thought of the first half of the twentieth century. The theory of Umwelt (Umweltlehre) was one of the most original ideas that appeared in German biology at that time. It was the first attempt to introduce subjectivity into a science about organisms; it laid down the foundations of behavioural research and inspired the development of ethology. However, the theory of Umwelt has also been used to support more sinister activities and even some dangerous ideologies. The concept of Umwelt is of interest not only to historians: within some intellectual circles, it is still broadly used today. Our aim was to analyse the notion's historic development within the context of biological thought of the first half of the 20th century. In particular, we focus (1) on how the concept was adopted and adapted for various, often widely diverging purposes; (2) on interactions between the Umweltlehre and other contemporary worldviews. We argue that in order to understand the developments that occurred in twentieth century biology, one needs to properly appreciate the role which Umweltlehre played in these. Even more importantly, the Umweltlehre is a worldview that influenced not only science but also politics and social affairs. In this respect it functioned rather like a number of other scientific and ideological frameworks of that time, such as Synthetic Darwinism.

  12. Grade Level Differences in High School Students' Conceptions of and Motives for Learning Science

    Science.gov (United States)

    Wang, Ya-Ling; Tsai, Chin-Chung

    2017-08-01

    Students' conceptions of learning science and their relations with motive for learning may vary as the education level increases. This study aimed to compare the quantitative patterns in students' conceptions of learning science (COLS) and motives for learning science (MLS) across grade levels by adopting two survey instruments. A total of 768 high school students were surveyed in Taiwan, including 204 eighth graders, 262 tenth graders, and 302 12th graders. In the current research, memorizing, testing, and calculating and practicing were categorized as reproductive conceptions of learning science, while increase of knowledge, applying, understanding and seeing-in-a-new-way were regarded as constructivist conceptions. The results of multivariate analyses of variance (MANOVA) revealed that conceptions of learning science are more constructivist as education level increases. Both tenth graders and 12th graders endorsed understanding, seeing-in-a-new-way, and the constructivist COLS composite more strongly than the eighth graders did. In addition, the results of multigroup structural equation modeling (SEM) analysis indicated that the positive relations between testing and reproductive COLS were stronger as the grade level increased, while the negative relations between reproductive COLS and deep motive were tighter with the increase in grade level.

  13. Scientists' conceptions of scientific inquiry: Revealing a private side of science

    Science.gov (United States)

    Reiff, Rebecca R.

    Science educators, philosophers, and pre-service teachers have contributed to conceptualizing inquiry but missing from the inquiry forum is an in-depth research study concerning science faculty conceptions of scientific inquiry. The science education literature has tended to focus on certain aspects of doing, teaching, and understanding scientific inquiry without linking these concepts. As a result, conceptions of scientific inquiry have been disjointed and are seemingly unrelated. Furthermore, confusion surrounding the meaning of inquiry has been identified as a reason teachers are not using inquiry in instruction (Welch et al., 1981). Part of the confusion surrounding scientific inquiry is it has been defined differently depending on the context (Colburn, 2000; Lederman, 1998; Shymansky & Yore, 1980; Wilson & Koran, 1976). This lack of a common conception of scientific inquiry is the reason for the timely nature of this research. The result of scientific journeys is not to arrive at a stopping point or the final destination, but to refuel with questions to drive the pursuit of knowledge. A three-member research team conducted Interviews with science faculty members using a semi-structured interview protocol designed to probe the subject's conceptions of scientific inquiry. The participants represented a total of 52 science faculty members from nine science departments (anthropology, biology, chemistry, geology, geography, school of health, physical education and recreation (HPER), medical sciences, physics, and school of environmental science) at a large mid-western research university. The method of analysis used by the team was grounded theory (Strauss & Corbin, 1990; Glaser & Strauss, 1967), in which case the frequency of concepts, patterns, and themes were coded to categorize scientists' conceptions of scientific inquiry. The results from this study address the following components: understanding and doing scientific inquiry, attributes of scientists engaged

  14. Life Science Research Facility materials management requirements and concepts

    Science.gov (United States)

    Johnson, Catherine C.

    1986-01-01

    The Advanced Programs Office at NASA Ames Research Center has defined hypothetical experiments for a 90-day mission on Space Station to allow analysis of the materials necessary to conduct the experiments and to assess the impact on waste processing of recyclable materials and storage requirements of samples to be returned to earth for analysis as well as of nonrecyclable materials. The materials include the specimens themselves, the food, water, and gases necessary to maintain them, the expendables necessary to conduct the experiments, and the metabolic products of the specimens. This study defines the volumes, flow rates, and states of these materials. Process concepts for materials handling will include a cage cleaner, trash compactor, biological stabilizer, and various recycling devices.

  15. Results and Implications of a 12-Year Longitudinal Study of Science Concept Learning

    Science.gov (United States)

    Novak, Joseph D.

    2005-03-01

    This paper describes the methods and outcomes of a 12-year longitudinal study into the effects of an early intervention program, while reflecting back on changes that have occurred in approaches to research, learning and instruction since the preliminary inception stages of the study in the mid 1960s. We began the study to challenge the prevailing consensus at the time that primary school children were either preoperational or concrete operational in their cognitive development and they could not learn abstract concepts. Our early research, based on Ausubelian theory, suggested otherwise. The paper describes the development and implementation of a Grade 1-2 audio tutorial science instructional sequence, and the subsequent tracing over 12 years, of the children's conceptual understandings in science compared to a matched control group. During the study the concept map was developed as a new tool to trace children's conceptual development. We found that students in the instruction group far outperformed their non-instructed counterparts, and this difference increased as they progressed through middle and high school. The data clearly support the earlier introduction of science instruction on basic science concepts, such as the particulate nature of matter, energy and energy transformations. The data suggest that national curriculum standards for science grossly underestimate the learning capabilities of primary-grade children. The study has helped to lay a foundation for guided instruction using computers and concept mapping that may help both teachers and students become more proficient in understanding science.

  16. Introducing Science Concepts to Primary Students through Read-Alouds: Interactions and Multiple Texts Make the Difference

    Science.gov (United States)

    Heisey, Natalie; Kucan, Linda

    2010-01-01

    First- and second-grade students in two intact multiage classrooms were engaged in three read-aloud sessions with thematically related trade books, each portraying a scientist involved in authentic investigation. One group engaged in discussion of text ideas during reading, whereas the other group engaged in discussion only at the conclusion of…

  17. Munazza's story: Understanding science teaching and conceptions of the nature of science in Pakistan through a life history study

    Science.gov (United States)

    Halai, Nelofer

    In this study I have described and tried to comprehend how a female science teacher understands her practice. Additionally, I have developed some understanding of her understanding of the nature of science. While teaching science, a teacher projects messages about the nature of science that can be captured by observations and interviews. Furthermore, the manner is which a teacher conceptualizes science for teaching, at least in part, depends on personal life experiences. Hence, I have used the life history method to understand Munazza's practice. Munazza is a young female science teacher working in a private, co-educational school for children from middle income families in Karachi, Pakistan. Her stories are central to the study, and I have represented them using a number of narrative devices. I have woven in my own stories too, to illustrate my perspective as a researcher. The data includes 13 life history interviews and many informal conversations with Munazza, observations of science teaching in classes seven and eight, and interviews with other science teachers and administrative staff of the school. Munazza's personal biography and experiences of school and undergraduate courses has influenced the way she teaches. It has also influenced the way she does not teach. She was not inspired by her science teachers, so she has tried not to teach the way she was taught science. Contextual factors, her conception of preparation for teaching as preparation for subject content and the tension that she faces in balancing care and control in her classroom are some factors that influence her teaching. Munazza believes that science is a stable, superior and value-free way of knowing. In trying to understand the natural world, observations come first, which give reliable information about the world leading inductively to a "theory". Hence, she relies a great deal on demonstrations in the class where students "see" for themselves and abstract the scientific concept from the

  18. Concept Analysis and the Advance of Nursing Knowledge: State of the Science.

    Science.gov (United States)

    Rodgers, Beth L; Jacelon, Cynthia S; Knafl, Kathleen A

    2018-04-24

    Despite an overwhelming increase in the number of concept analyses published since the early 1970s, there are significant limitations to the impact of this work in promoting progress in nursing science. We conducted an extensive review of concept analyses published between 1972 and 2017 to identify patterns in analysis and followed this with exploration of an exemplar related to the concept of normalization to demonstrate the capabilities of analysis for promoting concept development and progress. Scoping review of peer-reviewed literature published in the Cumulative Index to Nursing and Allied Health Literature (CINAHL) in which the terms "concept analysis," "concept clarification," and "concept derivation" appeared in any part of the reference. The original search returned 3,489 articles. This initial pool was refined to a final sample of 958 articles published in 223 journals and addressing 604 concepts. A review of citations of the original analysis of the concept of normalization resulted in 75 articles selected for closer examination of the process of concept development. Review showed a clear pattern of repetition of analysis of the same concept, growth in number of published analyses, preponderance of first authors with master's degrees, and 43 distinct descriptions of methods. Review of the 75 citations to the normalization analysis identified multiple ways concept analysis can inform subsequent research and theory development. Conceptual work needs to move beyond the level of "concept analysis" involving clear linkage to the resolution of problems in the discipline. Conceptual work is an important component of progress in the knowledge base of a discipline, and more effective use of concept development activities are needed to maximize the potential of this important work. It is important to the discipline that we facilitate progress in nursing science on a theoretical and conceptual level as a part of cohesive and systematic development of the discipline

  19. Students' conceptions of evidence during a university introductory forensic science course

    Science.gov (United States)

    Yeshion, Theodore Elliot

    Students' Conceptions of Science, Scientific Evidence, and Forensic Evidence during a University Introductory Forensic Science Course This study was designed to examine and understand what conceptions undergraduate students taking an introductory forensic science course had about scientific evidence. Because the relationships between the nature of science, the nature of evidence, and the nature of forensic evidence are not well understood in the science education literature, this study sought to understand how these concepts interact and affect students' understanding of scientific evidence. Four participants were purposefully selected for this study from among 89 students enrolled in two sections of an introductory forensic science course taught during the fall 2005 semester. Of the 89 students, 84 were criminal justice majors with minimal science background and five were chemistry majors with academic backgrounds in the natural and physical sciences. All 89 students completed a biographical data sheet and a pre-instruction Likert scale survey consisting of twenty questions relating to the nature of scientific evidence. An evaluation of these two documents resulted in a purposeful selection of four varied student participants, each of whom was interviewed three times throughout the semester about the nature of science, the nature of evidence, and the nature of forensic evidence. The same survey was administered to the participants again at the end of the semester-long course. This study examined students' assumptions, prior knowledge, their understanding of scientific inference, scientific theory, and methodology. Examination of the data found few differences with regard to how the criminal justice majors and the chemistry majors responded to interview questions about forensic evidence. There were qualitative differences, however, when the same participants answered interview questions relating to traditional scientific evidence. Furthermore, suggestions are

  20. Relationship of sex, achievement, and science self-concept to the science career preferences of black students

    Science.gov (United States)

    Jacobowitz, Tina

    Science career preferences of junior high school-aged students, while not stable predictors of ultimate career choice, do serve to direct and maintain individuals along the paths to careers in science. In this study, factors relevant to science career preferences of black eighth grade students were investigated. This issue is of particular import to blacks since they are severely underrepresented in the scientific fields. The sample consisted of 113 males and 148 females in an inner city junior high school. The Science Career Preference Scale, the Peabody Picture Vocabulary Test, and the Self-Concept of Ability Scale (Form B-Science) were administered. Mathematics and science grades were obtained from class rating sheets. Treatment of the data involved multiple regression analysis according to a hierarchical model. Results showed that of all the independent variables, sex was the strongest predictor of science career preferences, accounting for 25% of the criterion variance. The findings suggest that early adolescent science career preferences are related more to interests that are consonant with sex-role considerations than realistic assessment of mathematics or science achievement.

  1. Central Computer Science Concepts to Research-Based Teacher Training in Computer Science: An Experimental Study

    Science.gov (United States)

    Zendler, Andreas; Klaudt, Dieter

    2012-01-01

    The significance of computer science for economics and society is undisputed. In particular, computer science is acknowledged to play a key role in schools (e.g., by opening multiple career paths). The provision of effective computer science education in schools is dependent on teachers who are able to properly represent the discipline and whose…

  2. Engagement as a Threshold Concept for Science Education and Science Communication

    Science.gov (United States)

    McKinnon, Merryn; Vos, Judith

    2015-01-01

    Science communication and science education have the same overarching aim--to engage their audiences in science--and both disciplines face similar challenges in achieving this aim. Knowing how to effectively engage their "audiences" is fundamental to the success of both. Both disciplines have well-developed research fields identifying…

  3. The ASSURE Summer REU Program: Introducing research to first-generation and underserved undergraduates through space sciences and engineering projects

    Science.gov (United States)

    Barron, Darcy; Peticolas, Laura; Multiverse Team at UC Berkeley's Space Sciences Lab

    2018-01-01

    The Advancing Space Science through Undergraduate Research Experience (ASSURE) summer REU program is an NSF-funded REU site at the Space Sciences Lab at UC Berkeley that first started in summer 2014. The program recruits students from all STEM majors, targeting underserved students including community college students and first-generation college students. The students have little or no research experience and a wide variety of academic backgrounds, but have a shared passion for space sciences and astronomy. We will describe our program's structure and the components we have found successful in preparing and supporting both the students and their research advisors for their summer research projects. This includes an intensive first week of introductory lectures and tutorials at the start of the program, preparing students for working in an academic research environment. The program also employs a multi-tiered mentoring system, with layers of support for the undergraduate student cohort, as well as graduate student and postdoctoral research advisors.

  4. BOOK REVIEW: Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools

    Science.gov (United States)

    Franz, S.

    2004-10-01

    Since the discovery of the renormalization group theory in statistical physics, the realm of applications of the concepts of scale invariance and criticality has pervaded several fields of natural and social sciences. This is the leitmotiv of Didier Sornette's book, who in Critical Phenomena in Natural Sciences reviews three decades of developments and applications of the concepts of criticality, scale invariance and power law behaviour from statistical physics, to earthquake prediction, ruptures, plate tectonics, modelling biological and economic systems and so on. This strongly interdisciplinary book addresses students and researchers in disciplines where concepts of criticality and scale invariance are appropriate: mainly geology from which most of the examples are taken, but also engineering, biology, medicine, economics, etc. A good preparation in quantitative science is assumed but the presentation of statistical physics principles, tools and models is self-contained, so that little background in this field is needed. The book is written in a simple informal style encouraging intuitive comprehension rather than stressing formal derivations. Together with the discussion of the main conceptual results of the discipline, great effort is devoted to providing applied scientists with the tools of data analysis and modelling necessary to analyse, understand, make predictions and simulate systems undergoing complex collective behaviour. The book starts from a purely descriptive approach, explaining basic probabilistic and geometrical tools to characterize power law behaviour and scale invariant sets. Probability theory is introduced by a detailed discussion of interpretative issues warning the reader on the use and misuse of probabilistic concepts when the emphasis is on prediction of low probability rare---and often catastrophic---events. Then, concepts that have proved useful in risk evaluation, extreme value statistics, large limit theorems for sums of independent

  5. Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools

    International Nuclear Information System (INIS)

    Franz, S

    2004-01-01

    Since the discovery of the renormalization group theory in statistical physics, the realm of applications of the concepts of scale invariance and criticality has pervaded several fields of natural and social sciences. This is the leitmotiv of Didier Sornette's book, who in Critical Phenomena in Natural Sciences reviews three decades of developments and applications of the concepts of criticality, scale invariance and power law behaviour from statistical physics, to earthquake prediction, ruptures, plate tectonics, modelling biological and economic systems and so on. This strongly interdisciplinary book addresses students and researchers in disciplines where concepts of criticality and scale invariance are appropriate: mainly geology from which most of the examples are taken, but also engineering, biology, medicine, economics, etc. A good preparation in quantitative science is assumed but the presentation of statistical physics principles, tools and models is self-contained, so that little background in this field is needed. The book is written in a simple informal style encouraging intuitive comprehension rather than stressing formal derivations. Together with the discussion of the main conceptual results of the discipline, great effort is devoted to providing applied scientists with the tools of data analysis and modelling necessary to analyse, understand, make predictions and simulate systems undergoing complex collective behaviour. The book starts from a purely descriptive approach, explaining basic probabilistic and geometrical tools to characterize power law behaviour and scale invariant sets. Probability theory is introduced by a detailed discussion of interpretative issues warning the reader on the use and misuse of probabilistic concepts when the emphasis is on prediction of low probability rare - and often catastrophic - events. Then, concepts that have proved useful in risk evaluation, extreme value statistics, large limit theorems for sums of independent

  6. Between activism and science: Grassroots concepts for sustainability coined by Environmental Justice Organizations

    NARCIS (Netherlands)

    Martínez-Alier, J.; Anguelovski, I.; Bond, P.; DelBene, D.; F. Demaria (Federico); J. Gerber (Julien-François); Greyl, L.; Hass, W.; Healy, H.; Marín-Burgos, V.; Ojo, G.U.; Porto, M.; Rijnhout, L.; Rodríguez-Labajos, B.; Spangenberg, J.; Temper, L.; Warlenius, R.; I. Yánez (Ivonne)

    2014-01-01

    textabstractAbstract In their own battles and strategy meetings since the early 1980s, EJOs (environmental justice organizations) and their networks have introduced several concepts to political ecology that have also been taken up by academics and policy makers. In this paper, we explain the

  7. Knowledge representation and communication with concept maps in teacher training of science and technology

    Directory of Open Access Journals (Sweden)

    Pontes Pedrajas, Alfonso

    2012-01-01

    Full Text Available This paper shows the development of an educational innovation that we have made in the context of initial teacher training for secondary education of science and technology. In this educational experience computing resources and concept maps are used to develop teaching skills related to knowledge representation, oral communication, teamwork and practical use of ICT in the classroom. Initial results indicate that future teachers value positively the use of concept maps and computer resources as useful tools for teacher training.

  8. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Richard Burnite [General Atomics; McLean, Harry M. [Lawrence Livermore National Laboratory; Theobald, Wolfgang [Laboratory for Laser Energetics; Akli, Kramer U. [The Ohio State University; Beg, Farhat N. [University of California, San Diego; Sentoku, Yasuhiko [University of Nevada, Reno; Schumacher, Douglass W. [The Ohio State University; Wei, Mingsheng [General Atomics

    2013-09-04

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends critically on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density

  9. The concept of competence and its relevance for science, technology, and mathematics education

    DEFF Research Database (Denmark)

    Ropohl, Mathias; Nielsen, Jan Alexis; Olley, Christopher

    2018-01-01

    . In contrast to earlier ed-ucational goals that focused more on basic skills and knowledge expectations, competences are more functionally oriented. They involve the ability to solve complex problems in a particular context, e.g. in vocational or everyday situations. In science, technology, and mathematics...... education, the concept of competence is closely linked to the concept of literacy. Apart from these rather cognitive and af-fective perspectives influenced by the need to assess students’ achievement of de-sired learning goals in relation to their interest and motivation, the perspectives of the concept...

  10. Nanotechnology and the public: Effectively communicating nanoscale science and engineering concepts

    International Nuclear Information System (INIS)

    Castellini, O. M.; Walejko, G. K.; Holladay, C. E.; Theim, T. J.; Zenner, G. M.; Crone, W. C.

    2007-01-01

    Researchers are faced with challenges when addressing the public on concepts and applications associated with nanotechnology. The goal of our work was to understand the public's knowledge of nanotechnology in order to identify appropriate starting points for dialog. Survey results showed that people lack true understanding of concepts associated with atoms and the size of the nanoscale regime. Such gaps in understanding lead to a disappointing lack of communication between researchers and the public concerning fundamental concepts in nanoscale science and engineering. Strategies are offered on how scientists should present their research when engaging the public on nanotechnology topics

  11. Introducing wood anatomical and dendrochronological aspects of herbaceous plants: applications of the Xylem Database to vegetation science

    Czech Academy of Sciences Publication Activity Database

    Büntgen, Ulf; Psomas, A.; Schweingruber, F. H.

    2014-01-01

    Roč. 25, č. 4 (2014), s. 967-977 ISSN 1100-9233 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : dendrochronology * dicotyledon * environmental change * functional traits * herbs * life form * non-forest vegetation * secondary growth * shrub * vegetation cover * wood anatomy * Xylem formation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.709, year: 2014

  12. New concepts of science and medicine in science and technology studies and their relevance to science education

    Directory of Open Access Journals (Sweden)

    Hsiu-Yun Wang

    2012-02-01

    Full Text Available Science education often adopts a narrow view of science that assumes the lay public is ignorant, which seemingly justifies a science education limited to a promotional narrative of progress in the form of scientific knowledge void of meaningful social context. We propose that to prepare students as future concerned citizens of a technoscientific society, science education should be informed by science, technology, and society (STS perspectives. An STS-informed science education, in our view, will include the following curricular elements: science controversy education, gender issues, historical perspective, and a move away from a Eurocentric view by looking into the distinctive patterns of other regional (in this case of Taiwan, East Asian approaches to science, technology, and medicine. This article outlines the significance of some major STS studies as a means of illustrating the ways in which STS perspectives can, if incorporated into science education, enhance our understanding of science and technology and their relationships with society.

  13. Teaching science for conceptual change: Toward a proposed taxonomy of diagnostic teaching strategies to gauge students' personal science conceptions

    Science.gov (United States)

    Shope, Richard Edwin, III

    Science instruction aims to ensure that students properly construct scientific knowledge so that each individual may play a role as a science literate citizen or as part of the science workforce (National Research Council, 1996, 2000). Students enter the classroom with a wide range of personal conceptions regarding science phenomena, often at variance with prevailing scientific views (Duschl, Hamilton, & Grandy, 1992; Hewson, 1992). The extensive misconceptions research literature emphasizes the importance of diagnosing students' initial understandings in order to gauge the accuracy and depth of what each student knows prior to instruction and then to use that information to adapt the teaching to address student needs. (Ausubel, 1968; Carey, 2000; Driver et al., 1985; Karplus & Thier, 1967; Mintzes, Wandersee, & Novak, 1998; Osborne & Freyberg, 1985; Project 2061, 1993; Strike & Posner, 1982, 1992; Vygotsky, 1934/1987). To gain such insight, teachers diagnose not only the content of the students' personal conceptions but also the thinking processes that produced them (Strike and Posner, 1992). Indeed, when teachers design opportunities for students to express their understanding, there is strong evidence that such diagnostic assessment also enhances science teaching and learning (Black & William, 1998). The functional knowledge of effective science teaching practice resides in the professional practitioners at the front lines---the science teachers in the classroom. Nevertheless, how teachers actually engage in the practice of diagnosis is not well documented. To help fill this gap, the researcher conducted a study of 16 sixth grade science classrooms in four Los Angeles area middle schools. Diagnostic teaching strategies were observed in action and then followed up by interviews with each teacher. Results showed that teachers use strategies that vary by the complexity of active student involvement, including pretests, strategic questions, interactive discussion

  14. Introducing Hands-on, Experiential Learning Experiences in an Urban Environmental Science Program at a Minority Serving Institution

    Science.gov (United States)

    Duzgoren-Aydin, N. S.; Freile, D.

    2013-12-01

    STEM education at New Jersey City University increasingly focuses on experiential, student-centered learning. The Department of Geoscience/Geography plays a significant role in developing and implementing a new Urban Environmental Science Program. The program aims at graduating highly skilled, demographically diverse students (14 % African-American and 18% Hispanic) to be employed in high-growth Earth and Environmental Science career paths, both at a technical (e.g. B.S.) as well as an educational (K-12 grade) (e.g. B.A) level. The core program, including the Earth and Environmental Science curricula is guided by partners (e.g. USDA-NRCS). The program is highly interdisciplinary and 'hands-on', focusing upon the high-tech practical skills and knowledge demanded of science professionals in the 21st century. The focus of the curriculum is on improving environmental quality in northern NJ, centering upon our urban community in Jersey City and Hudson County. Our Department is moving towards a more earth system science approach to learning. Most of our courses (e.g., Earth Surface Processes, Sedimentology/Stratigraphy, Earth Materials, Essential Methods, Historical Geology) have hands-on laboratory and/or field components. Although some of our other courses do not have formal laboratory components, research modules of many such courses (Geochemistry, Urban Environmental Issues and Policy and Environmental Geology) involve strong field or laboratory studies. The department has a wide range of analytical and laboratory capacities including a portable XRF, bench-top XRD and ICP-MS. In spring 2013, Dr. Duzgoren-Aydin was awarded $277K in Higher Education Equipment Leasing Fund monies from the University in order to establish an Environmental Teaching and Research Laboratory. The addition of these funds will make it possible for the department to increase its instrumentation capacity by adding a mercury analyzer, Ion Chromatography and C-N-S analyzer, as well as updating

  15. Conceptions of the Nature of Science--Are They General or Context Specific?

    Science.gov (United States)

    Urhahne, Detlef; Kremer, Kerstin; Mayer, Juergen

    2011-01-01

    The study investigates the relationship between general and context-specific conceptions of the nature of science (NOS). The categorization scheme by Osborne et al. (J Res Sci Teach 40:692-720, "2003") served as the theoretical framework of the study. In the category "nature of scientific knowledge", the certainty, development, simplicity,…

  16. Students' Conceptions of the Nature of Science: Perspectives from Canadian and Korean Middle School Students

    Science.gov (United States)

    Park, Hyeran; Nielsen, Wendy; Woodruff, Earl

    2014-01-01

    This study examined and compared students' understanding of nature of science (NOS) with 521 Grade 8 Canadian and Korean students using a mixed methods approach. The concepts of NOS were measured using a survey that had both quantitative and qualitative elements. Descriptive statistics and one-way multivariate analysis of variances examined the…

  17. Study Habit, Self-Concept and Science Achievement of Public and ...

    African Journals Online (AJOL)

    This study compared study habit, self-concept and science achievement of students in public and private junior secondary schools in Ogun State, Nigeria. Twelve secondary schools were randomly selected from Egba and Ijebu divisions of the state. A sample of three hundred and sixty (360) students participated in the ...

  18. The Role of Drawing in Young Children's Construction of Science Concepts

    Science.gov (United States)

    Chang, Ni

    2012-01-01

    It has been observed that many young children like making marks on paper and that they enjoy the activity. It is also known that children's drawings are vehicles for expression and communication. Therefore, it would be logical and reasonable for teachers to incorporate children's drawings into building science concepts. To demonstrate how drawings…

  19. Spatial Foundations of Science Education: The Illustrative Case of Instruction on Introductory Geological Concepts

    Science.gov (United States)

    Liben, Lynn S.; Kastens, Kim A.; Christensen, Adam E.

    2011-01-01

    To study the role of spatial concepts in science learning, 125 college students with high, medium, or low scores on a horizontality (water-level) spatial task were given information about geological strike and dip using existing educational materials. Participants mapped an outcrop's strike and dip, a rod's orientation, pointed to a distant…

  20. Social Situation of Development: Parents Perspectives on Infants-Toddlers' Concept Formation in Science

    Science.gov (United States)

    Sikder, Shukla

    2015-01-01

    The social situation of development (SSD) specific to each age determines regularly the whole picture of the child's life. Therefore, we need to learn about the whole context surrounding children relevant to their development. The focus of the study is to understand parent's views on infant-toddler's science concept formation in the family…

  1. Using "Slowmation" to Enable Preservice Primary Teachers to Create Multimodal Representations of Science Concepts

    Science.gov (United States)

    Hoban, Garry; Nielsen, Wendy

    2012-01-01

    Research has identified the value of students constructing their own representations of science concepts using modes such as writing, diagrams, 2-D and 3-D models, images or speech to communicate meaning. "Slowmation" (abbreviated from "Slow Animation") is a simplified way for students, such as preservice teachers, to make a narrated animation…

  2. Analyzing the Use of Concept Maps in Computer Science: A Systematic Mapping Study

    Science.gov (United States)

    dos Santos, Vinicius; de Souza, Érica F.; Felizardo, Katia R; Vijaykumar, Nandamudi L.

    2017-01-01

    Context: concept Maps (CMs) enable the creation of a schematic representation of a domain knowledge. For this reason, CMs have been applied in different research areas, including Computer Science. Objective: the objective of this paper is to present the results of a systematic mapping study conducted to collect and evaluate existing research on…

  3. An Empirical Study of Relationships between Student Self-Concept and Science Achievement in Hong Kong

    Science.gov (United States)

    Wang, Jianjun; Oliver, Steve; Garcia, Augustine

    2004-01-01

    Positive self-concept and good understanding of science are important indicators of scientific literacy endorsed by professional organizations. The existing research literature suggests that these two indicators are reciprocally related and mutually reinforcing. Generalization of the reciprocal model demands empirical studies in different…

  4. Determining Science Student Teachers' Cognitive Structure on the Concept of "Food Chain"

    Science.gov (United States)

    Çinar, Derya

    2015-01-01

    The current study aims to determine science student teachers' cognitive structure on the concept of food chain. Qualitative research method was applied in this study. Fallacies detected in the pre-service teachers' conceptual structures are believed to result in students' developing misconceptions in their future classes and will adversely affect…

  5. The Effects of Computer-Aided Concept Cartoons and Outdoor Science Activities on Light Pollution

    Science.gov (United States)

    Aydin, Güliz

    2015-01-01

    The purpose of this study is to create an awareness of light pollution on seventh grade students via computer aided concept cartoon applications and outdoor science activities and to help them develop solutions; and to determine student opinions on the practices carried out. The study was carried out at a middle school in Mugla province of Aegean…

  6. The life of concepts: Georges Canguilhem and the history of science.

    Science.gov (United States)

    Schmidgen, Henning

    2014-01-01

    Twelve years after his famous Essay on Some Problems Concerning the Normal and the Pathological (1943), the philosopher Georges Canguilhem (1904-1995) published a book-length study on the history of a single biological concept. Within France, his Formation of the Reflex Concept in the Seventeenth and Eighteenth Centuries (1955) contributed significantly to defining the "French style" of writing on the history of science. Outside of France, the book passed largely unnoticed. This paper re-reads Canguilhem's study of the reflex concept with respect to its historiographical and epistemological implications. Canguilhem defines concepts as complex and dynamic entities combining terms, definitions, and phenomena. As a consequence, the historiography of science becomes a rather complex task. It has to take into account textual and contextual aspects that develop independently of individual authors. In addition, Canguilhem stresses the connection between conceptual activities and other functions of organic individuals in their respective environments. As a result, biological concepts become tied to a biology of conceptual thinking, analogical reasoning, and technological practice. The paper argues that this seemingly circular structure is a major feature in Canguilhem's philosophical approach to the history of the biological sciences.

  7. Introducing Mudbox

    CERN Document Server

    Kermanikian, Ara

    2010-01-01

    One of the first books on Autodesk's new Mudbox 3D modeling and sculpting tool!. Autodesk's Mudbox was used to create photorealistic creatures for The Dark Knight , The Mist , and others films. Now you can join the crowd interested in learning this exciting new digital modeling and sculpting tool with this complete guide. Get up to speed on all of Mudbox's features and functions, learn how sculpt and paint, and master the art of using effective workflows to make it all go easier.: Introduces Autodesk's Mudbox, an exciting 3D modeling and sculpting tool that enables you to create photorealistic

  8. Understanding environmental contributions to autism: Causal concepts and the state of science.

    Science.gov (United States)

    Hertz-Picciotto, Irva; Schmidt, Rebecca J; Krakowiak, Paula

    2018-04-01

    The complexity of neurodevelopment, the rapidity of early neurogenesis, and over 100 years of research identifying environmental influences on neurodevelopment serve as backdrop to understanding factors that influence risk and severity of autism spectrum disorder (ASD). This Keynote Lecture, delivered at the May 2016 annual meeting of the International Society for Autism Research, describes concepts of causation, outlines the trajectory of research on nongenetic factors beginning in the 1960s, and briefly reviews the current state of this science. Causal concepts are introduced, including root causes; pitfalls in interpreting time trends as clues to etiologic factors; susceptible time windows for exposure; and implications of a multi-factorial model of ASD. An historical background presents early research into the origins of ASD. The epidemiologic literature from the last fifteen years is briefly but critically reviewed for potential roles of, for example, air pollution, pesticides, plastics, prenatal vitamins, lifestyle and family factors, and maternal obstetric and metabolic conditions during her pregnancy. Three examples from the case-control CHildhood Autism Risks from Genes and the Environment Study are probed to illustrate methodological approaches to central challenges in observational studies: capturing environmental exposure; causal inference when a randomized controlled clinical trial is either unethical or infeasible; and the integration of genetic, epigenetic, and environmental influences on development. We conclude with reflections on future directions, including exposomics, new technologies, the microbiome, gene-by-environment interaction in the era of -omics, and epigenetics as the interface of those two. As the environment is malleable, this research advances the goal of a productive and fulfilling life for all children, teen-agers and adults. Autism Res 2018, 11: 554-586. © 2018 International Society for Autism Research, Wiley Periodicals, Inc

  9. An Added Layer of Support: Introducing a Heterarchical Peer Mentoring Intervention to a Preservice Science Teacher Education Cohort

    Science.gov (United States)

    Neesemann, Lisa Ann

    In an effort to support preservice science teachers during their concurrent student teaching experiences and masters coursework, I created and implemented a Peer Mentoring Intervention to add an additional layer of support to those most traditionally curated. In this intervention, preservice secondary science teachers were paired into heterarchical (as contrasted with hierarchical) mentoring groups, instructed in norms of collaboration and given class time to work as dyads offering support and feedback to one another. During the three-semester span of the intervention data was collected in many forms, such as prompted journal entries, course assignments and semi-structured interviews. Qualitative findings are reported and the case study of one dyad is also presented. Findings included concerns and solutions regarding relating to the assigned peer, developing academic and organizational skills, navigating and learning to appreciate different layers of support, a deeper level of reflection, varying levels of commitment to social justice, and realized self-efficacy. Next steps include refining and implementing the program with a new cohort of students as well as following the participants as they move forward in their teaching careers as well as rethinking the role of mentorship to realize equality among members and challenge the traditionally established hierarchies in mentor relationships.

  10. The Science Operations Concept for the ExoMars 2016 Trace Gas Orbiter

    Science.gov (United States)

    Frew, D.

    2014-04-01

    The ExoMars 2016 Science Operations Centre (SOC) based at the European Space Astronomy Centre is responsible for coordinating the science planning activities for the Trace Gas Orbiter. Science planning will involve all members of the ExoMars 2016 science ground segment (SGS), namely the SOC at ESAC, the Russian SOC at IKI, the orbiter instrument teams and the science management of the 2016 mission represented by the science working team (SWT) that is chaired by the project scientist. The science operations concept for the mission builds on the legacy inherited from previous ESA planetary missions, in particular from Mars Express for the core plan validation aspects and from the Smart-1 lunar mission for the opportunity analysis and longterm planning approach. Further concept drivers have been derived from the ExoMars 2016 mission profile in the areas of orbit predictability, instrument design and the usage of TGO as a relay for surface assets including the ExoMars 2018 rover. This paper will give an over view of the entire uplink planning process as it is conducted over 3 distinct planning cycles. The Long Term Plan (LTP) establishes the baseline science plan and demonstrates the operational feasibility of meeting the mission science goals formulated by the science working team (SWT) at science management level. The LTP has a planning horizon of 6 months. Each month of the baseline science plan is refined with the instrument teams within the Medium Term Plan (MTP) to converge on a frozen attitude request and resource envelopes for all of the observations in the plan. During the Short Term Planning cycle the SOC will iterate with the teams to finalise the commanding for all of the observations in the plan for the coming week. The description of the uplink planning process will focus on two key areas that are common to all of the planning cycles mentioned above: • Science Plan Abstraction: Interacting with the science plan at the appropriate level of abstraction to

  11. The effects of three concept mapping strategies on seventh-grade students' science achievement at an urban middle school

    Science.gov (United States)

    Dosanjh, Navdeep Kaur

    2011-12-01

    There is great concern over students' poor science achievement in the United States. Due to the lack of science achievement, students are not pursing science related careers resulting in an increase in outsourcing to other countries. Learning strategies such as concept mapping may ameliorate this situation by providing students with tools that encourage meaningful learning. The purpose of this quasi-experimental study was to measure the effects of three concept mapping learning strategies (concept identifying, proposition identifying, student generated) on urban middle school students' understanding of the circulatory system. Three intact classes of seventh-grade students were assigned to one of the three concept mapping strategies. The students were given a pretest on the circulatory system then learned and used their respective concept mapping strategies while learning about the circulatory system. At the conclusion of the study, students' science achievement was measured by performance on an achievement test and rubric scores of their respective concept identifying, proposition identifying, and student generated concept maps. The results of the study suggest that all three of the concept mapping strategies are effective in increasing students' science achievement. Additionally, the moderate significant correlations between the posttest and concept map scores of the current study established that concept maps are a useful measure of student knowledge. Lastly, the results of the current study also suggest that the concept identifying mapping strategy may be a useful scaffold in instructing students how to develop student generated concept maps.

  12. The Synthetic Aperture Radar Science Data Processing Foundry Concept for Earth Science

    Science.gov (United States)

    Rosen, P. A.; Hua, H.; Norton, C. D.; Little, M. M.

    2015-12-01

    Since 2008, NASA's Earth Science Technology Office and the Advanced Information Systems Technology Program have invested in two technology evolutions to meet the needs of the community of scientists exploiting the rapidly growing database of international synthetic aperture radar (SAR) data. JPL, working with the science community, has developed the InSAR Scientific Computing Environment (ISCE), a next-generation interferometric SAR processing system that is designed to be flexible and extensible. ISCE currently supports many international space borne data sets but has been primarily focused on geodetic science and applications. A second evolutionary path, the Advanced Rapid Imaging and Analysis (ARIA) science data system, uses ISCE as its core science data processing engine and produces automated science and response products, quality assessments and metadata. The success of this two-front effort has been demonstrated in NASA's ability to respond to recent events with useful disaster support. JPL has enabled high-volume and low latency data production by the re-use of the hybrid cloud computing science data system (HySDS) that runs ARIA, leveraging on-premise cloud computing assets that are able to burst onto the Amazon Web Services (AWS) services as needed. Beyond geodetic applications, needs have emerged to process large volumes of time-series SAR data collected for estimation of biomass and its change, in such campaigns as the upcoming AfriSAR field campaign. ESTO is funding JPL to extend the ISCE-ARIA model to a "SAR Science Data Processing Foundry" to on-ramp new data sources and to produce new science data products to meet the needs of science teams and, in general, science community members. An extension of the ISCE-ARIA model to support on-demand processing will permit PIs to leverage this Foundry to produce data products from accepted data sources when they need them. This paper will describe each of the elements of the SAR SDP Foundry and describe their

  13. Analysis Science Process Skills Content in Chemistry Textbooks Grade XI at Solubility and Solubility Product Concept

    Directory of Open Access Journals (Sweden)

    Bayu Antrakusuma

    2017-12-01

    Full Text Available The aim of this research was to determine the analysis of science process skills in textbooks of chemistry grade XI in SMA N 1 Teras, Boyolali. This research used the descriptive method. The instruments were developed based on 10 indicators of science process skills (observing, classifying, finding a conclusion, predicting, raising the question, hypothesizing, planning an experiment, manipulating materials, and equipment, Applying, and communicating. We analyzed 3 different chemistry textbooks that often used by teachers in teaching. The material analyzed in the book was solubility and solubility product concept in terms of concept explanation and student activity. The results of this research showed different science process skill criteria in 3 different chemistry textbooks. Book A appeared 50% of all aspects of science process skills, in Book B appeared 80% of all aspects of science process skills, and in Book C there was 40% of all aspects of the science process skills. The most common indicator in all books was observing (33.3%, followed by prediction (19.05%, classifying (11.90%, Applying (11.90% , planning experiments (9.52%, manipulating materials and equipment (7.14%, finding conclusion (4.76%, communicating (2.38%. Asking the question and hypothesizing did not appear in textbooks.

  14. Conceptions of the Nature of Science Held by Undergraduate Pre-Service Biology Teachers in South-West Nigeria

    Science.gov (United States)

    Adedoyin, A. O.; Bello, G.

    2017-01-01

    This study investigated the conceptions of the nature of science held by pre-service undergraduate biology teachers in South-West, Nigeria. Specifically, the study examined the influence of their gender on their conceptions of the nature of science. The study was a descriptive research of the survey method. The population for the study comprised…

  15. Making Learning Last: Teachers' Long-Term Retention of Improved Nature of Science Conceptions and Instructional Rationales

    Science.gov (United States)

    Mulvey, Bridget K.; Bell, Randy L.

    2017-01-01

    Despite successful attempts to improve learners' nature of science (NOS) conceptions through explicit, reflective approaches, retention of improved conceptions is rarely addressed in research. The issue of context for NOS instruction has implications for this retention. Whether to contextualise has been the question occupying science educators'…

  16. The Effects of Hands-On Learning Stations on Building American Elementary Teachers' Understanding about Earth and Space Science Concepts

    Science.gov (United States)

    Bulunuz, Nermin; Jarrett, Olga S.

    2010-01-01

    Research on conceptual change indicates that not only children, but also teachers have incomplete understanding or misconceptions on science concepts. This mixed methods study was concerned with in-service teachers' understanding of four earth and space science concepts taught in elementary school: reason for seasons, phases of the moon, rock…

  17. The Impact of a Summer Institute on Inservice Early Childhood Teachers' Knowledge of Earth and Space Science Concepts

    Science.gov (United States)

    Sackes, Mesut; Trundle, Kathy Cabe; Krissek, Lawrence A.

    2011-01-01

    This study investigated inservice PreK to Grade two teachers' knowledge of some earth and space science concepts before and after a short-term teacher institute. A one-group pre-test-post-test design was used in the current study. Earth science concepts targeted during the professional development included properties of rocks and soils, and the…

  18. Introducing Business English

    NARCIS (Netherlands)

    Nickerson, C.; Planken, B.C.

    2015-01-01

    Introducing Business English provides a comprehensive overview of this topic, situating the concepts of Business English and English for Specific Business Purposes within the wider field of English for Special Purposes. This book draws on contemporary teaching and research contexts to demonstrate

  19. Conceptual Blending Monitoring Students' Use of Metaphorical Concepts to Further the Learning of Science

    Science.gov (United States)

    Fredriksson, Alexandra; Pelger, Susanne

    2018-03-01

    The aim of this study is to explore how tertiary science students' use of metaphors in their popular science article writing may influence their understanding of subject matter. For this purpose, six popular articles written by students in physics or geology were analysed by means of a close textual analysis and a metaphor analysis. In addition, semi-structured interviews were conducted with the students. The articles showed variation regarding the occurrence of active (non-conventional) metaphors, and metaphorical concepts, i.e. metaphors relating to a common theme. In addition, the interviews indicated that students using active metaphors and metaphorical concepts reflected more actively upon their use of metaphors. These students also discussed the possible relationship between subject understanding and creation of metaphors in terms of conceptual blending. The study suggests that students' process of creating metaphorical concepts could be described and visualised through integrated networks of conceptual blending. Altogether, the study argues for using conceptual blending as a tool for monitoring and encouraging the use of adequate metaphorical concepts, thereby facilitating students' opportunities of understanding and influencing the learning of science.

  20. New concepts of science and medicine in science and technology studies and their relevance to science education.

    Science.gov (United States)

    Wang, Hsiu-Yun; Stocker, Joel F; Fu, Daiwie

    2012-02-01

    Science education often adopts a narrow view of science that assumes the lay public is ignorant, which seemingly justifies a science education limited to a promotional narrative of progress in the form of scientific knowledge void of meaningful social context. We propose that to prepare students as future concerned citizens of a technoscientific society, science education should be informed by science, technology, and society (STS) perspectives. An STS-informed science education, in our view, will include the following curricular elements: science controversy education, gender issues, historical perspective, and a move away from a Eurocentric view by looking into the distinctive patterns of other regional (in this case of Taiwan, East Asian) approaches to science, technology, and medicine. This article outlines the significance of some major STS studies as a means of illustrating the ways in which STS perspectives can, if incorporated into science education, enhance our understanding of science and technology and their relationships with society. Copyright © 2011. Published by Elsevier B.V.

  1. Introducing ISENDe

    International Nuclear Information System (INIS)

    Massard, T.

    2013-01-01

    The High Institute for Nuclear Defense Studies (ISENDe) was created in 2010 as part of the French CEA Defense and Security Directorate. The goal of ISENDe is to give to CEA/DAM staff a complete view on nuclear weapons science and deterrence issues. Some courses also can be attended by Nuclear Forces personnel, diplomats, defense personals... ISENDe is also involved in training courses organized by other Defense Organizations. The FSAN Defense Course is a high level management training course for the managers of the French deterrent operational teams. This training course takes place every year. It aims at giving a common vision and understanding on the status of the French deterrent research and development strategy. It creates a strong network among actors of the topic. Each class has around 12 participants. The program alternates plenary lectures, working group sessions, visits, and invited speakers. ISENDe is also the organizer of a Non Proliferation Course which is dedicated to collaborations of French government agencies involved in the proliferation control issues in their professional activities. The course has a two week session with conferences in all the related topics, followed by a series of visit of specific industrial or research sites and international organizations. The paper is followed by the slides of the presentation. (A.C.)

  2. An analysis of the concept of teaching in elementary school science education

    Science.gov (United States)

    Seatter, Carol Eunice Scarff

    The problem for this thesis arises directly from several years of observation of science classrooms in British Columbia. The troubling phenomenon seen within numerous classrooms, taught by teachers claiming to be constructivist teachers, involved teachers fostering the idea that children can think about science in terms of their own ideas, that is, that children can think about science in common-sense terms. In the many cases I have observed, teachers justify this practice on the grounds of constructivist theory. However, this kind of "constructivist teaching" does not, in my opinion, lead to scientific reasoning. My argument begins with the premise that the development of scientific reasoning in children is necessary for science education. I will argue that the currently popular "constructivist" movement has significant potential to fail in producing scientific reasoning in children, as did its predecessor, the "discovery learning" movement of the 1960s. The incommensurable differences between scientific and common-sense reasoning are presented and discussed. This thesis examines constructivist theory in terms of its potential to hinder the development of scientific reasoning in children. Two features of the constructivist writings are examined: those which pertain to the nature of science, and those relating to the concept of teaching. A chapter on the logic of scientific inquiry is central to the thesis, as it describes and explains the concepts, forms of explanation and truth criteria unique to the discipline of science. The epistemological foundations of science education are discussed in terms of the realist/instrumentalist debate. The thesis argues in favor of a sophisticated realist view of knowledge, such as those offered by Hacking and Matthews who take into account Hanson's "theory-laden" observation without falling prey to a naive realist view. Reasoning in science is compared with children's common-sense reasoning in an attempt to further understand

  3. Adolescents' Motivation to Select an Academic Science-Related Career: The Role of School Factors, Individual Interest, and Science Self-Concept

    Science.gov (United States)

    Taskinen, Päivi H.; Schütte, Kerstin; Prenzel, Manfred

    2013-01-01

    Many researchers consider a lacking interest in science and the students' belief that science is too demanding as major reasons why young people do not strive for science-related careers. In this article, we first delineated a theoretical framework to investigate the importance of interest, self-concept, and school factors regarding students'…

  4. Activities in KURRI. Aim to realize the concept of 'Kumatori science park'

    International Nuclear Information System (INIS)

    Shiroya, S.

    2007-01-01

    In Kyoto University Research Reactor Institute (KURRI), activities for the dissemination of knowledge on radiation and atomic energy are considered to be important to realize the future plan based on the conception of Kumatori science park', which will open to the world with roots in the neighboring area. Activities include technical tours of facilities in KURRI, science experiments for kids, lectures on fruits of research for public, courses of reactor physics experiments for the graduate and under-graduate students majoring nuclear engineering, and so on. (author)

  5. Using the History of Research on Sickle Cell Anemia to Affect Preservice Teachers' Conceptions of the Nature of Science.

    Science.gov (United States)

    Howe, Eric M.

    This paper examines how using a series of lessons developed from the history of research on sickle cell anemia affects preservice teacher conceptions of the nature of science (NOS). The importance of a pedagogy that has students do science through an integral use of the history of science is effective at enriching students' NOS views is presented.…

  6. A Comprehensive Course Introducing Environmental Science : Case Study of “Introduction to Environmental Science” as a Common Course in the Graduate School of Environmental Science

    OpenAIRE

    山中, 康裕; 三井, 翔太

    2017-01-01

    The course “Introduction to Environmental Science” was designed and held during the academic year 2015-2016 for new masterʼs course students at the Graduate School of Environmental Science, Hokkaido University. The course was designed in accord with societal needs such as consensus building for environmental conservation and associated scientific evidence, bringing together a large number of students from various disciplines. The course was composed of six modules in which multipl...

  7. Students' Conceptions of the Nature of Science: Perspectives from Canadian and Korean Middle School Students

    Science.gov (United States)

    Park, Hyeran; Nielsen, Wendy; Woodruff, Earl

    2014-05-01

    This study examined and compared students' understanding of nature of science (NOS) with 521 Grade 8 Canadian and Korean students using a mixed methods approach. The concepts of NOS were measured using a survey that had both quantitative and qualitative elements. Descriptive statistics and one-way multivariate analysis of variances examined the quantitative data while a conceptually clustered matrix classified the open-ended responses. The country effect could explain 3-12 % of the variances of subjectivity, empirical testability and diverse methods, but it was not significant for the concepts of tentativeness and socio-cultural embeddedness of science. The open-ended responses showed that students believed scientific theories change due to errors or discoveries. Students regarded empirical evidence as undeniable and objective although they acknowledged experiments depend on theories or scientists' knowledge. The open responses revealed that national situations and curriculum content affected their views. For our future democratic citizens to gain scientific literacy, science curricula should include currently acknowledged NOS concepts and should be situated within societal and cultural perspectives.

  8. Introducing the concept of critical Fo in batch heat processing Introduzindo o conceito de Fo crítico no processamento térmico em batelada

    Directory of Open Access Journals (Sweden)

    Homero Ferracini Gumerato

    2009-12-01

    Full Text Available The determination of the sterilization value for low acid foods in retorts includes a critical evaluation of the factory's facilities and utilities, validation of the heat processing equipment (by heat distribution assays, and finally heat penetration assays with the product. The intensity of the heat process applied to the food can be expressed by the Fo value (sterilization value, in minutes, at a reference temperature of 121.1 °C, and a thermal index, z, of 10 °C, for Clostridium botulinum spores. For safety reasons, the lowest value for Fo is frequently adopted, being obtained in heat penetration assays as indicative of the minimum process intensity applied. This lowest Fo value should always be higher than the minimum Fo recommended for the food in question. However, the use of the Fo value for the coldest can fail to statistically explain all the practical occurrences in food heat treatment processes. Thus, as a result of intense experimental work, we aimed to develop a new focus to determine the lowest Fo value, which we renamed the critical Fo. The critical Fo is based on a statistical model for the interpretation of the results of heat penetration assays in packages, and it depends not only on the Fo values found at the coldest point of the package and the coldest point of the equipment, but also on the size of the batch of packages processed in the retort, the total processing time in the retort, and the time between CIPs of the retort. In the present study, we tried to explore the results of physical measurements used in the validation of food heat processes. Three examples of calculations were prepared to illustrate the methodology developed and to introduce the concept of critical Fo for the processing of canned food.A determinação do valor de esterilização de alimentos de baixa acidez em autoclaves compreende uma minuciosa avaliação das instalações e utilidades da fábrica, uma validação do equipamento de processo t

  9. Using Mung Beans as a Simple, Informative Means to Evaluate the Phytotoxicity of Engineered Nanomaterials and Introduce the Concept of Nanophytotoxicity to Undergraduate Students

    Science.gov (United States)

    Ross, Shailise S.; Owen, Matthew J.; Pedersen, Brian P.; Liu, Gang-yu; Miller, William J. W.

    2016-01-01

    This work presents a lecture and lab series that focuses on teaching the concept of nanophytotoxicity to undergraduate students in a relatively simple experiment. In this experiment, students evaluated the phytotoxicity of engineered nanomaterials (ENMs) using mung beans (i.e., "Vigna radiata") and industrially relevant, commercially…

  10. Origins Space Telescope: Science Case and Design Reference Mission for Concept 1

    Science.gov (United States)

    Meixner, Margaret; Cooray, Asantha; Pope, Alexandra; Armus, Lee; Vieira, Joaquin Daniel; Milam, Stefanie N.; Melnick, Gary; Leisawitz, David; Staguhn, Johannes G.; Bergin, Edwin; Origins Space Telescope Science and Technology Definition Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. The science case for OST covers four themes: Tracing the Signature of Life and the Ingredients of Habitable Worlds; Charting the Rise of Metals, Dust and the First Galaxies, Unraveling the Co-evolution of Black Holes and Galaxies and Understanding Our Solar System in the Context of Planetary System Formation. Using a set of proposed observing programs from the community, we estimate a design reference mission for OST mission concept 1. The mission will complete significant programs in these four themes and have time for other programs from the community. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.edu.

  11. Validating concepts of mental disorder: precedents from the history of science.

    Science.gov (United States)

    Miller, Robert

    2014-10-01

    A fundamental issue in any branch of the natural sciences is validating the basic concepts for use in that branch. In psychiatry, this issue has not yet been resolved, and indeed, the proper nature of the problem has scarcely been recognised. As a result, psychiatry (or at least those parts of the discipline which aspire to scientific status) still cannot claim to be a part of scientific medicine, or to be incorporated within the common language of the natural sciences. While this creates difficulties within the discipline, and its standing in relation to other branches of medicine, it makes it an exciting place for "frontiersmen" (and women). This is one of the key growing points in the natural science tradition. In this essay, which moves from the early history of that tradition to today's debates in scientific psychiatry, I give my views about how these fundamental issues can move towards resolution.

  12. Goethe's Conception of "Experiment as Mediator" and Implications for Practical Work in School Science

    Science.gov (United States)

    Park, Wonyong; Song, Jinwoong

    2018-03-01

    There has been growing criticism over the aims, methods, and contents of practical work in school science, particularly concerning their tendency to oversimplify the scientific practice with focus on the hypothesis-testing function of experiments. In this article, we offer a reading of Johann Wolfgang von Goethe's scientific writings—particularly his works on color as an exquisite articulation of his ideas about experimentation—through the lens of practical school science. While avoiding the hasty conclusions made from isolated experiments and observations, Goethe sought in his experiments the interconnection among diverse natural phenomena and rejected the dualistic epistemology about the relation of humans and nature. Based on a close examination of his color theory and its underlying epistemology, we suggest three potential contributions that Goethe's conception of scientific experimentation can make to practical work in school science.

  13. Science and Reconnaissance from the Europa Clipper Mission Concept: Exploring Europa's Habitability

    Science.gov (United States)

    Pappalardo, Robert; Senske, David; Prockter, Louise; Paczkowski, Brian; Vance, Steve; Goldstein, Barry; Magner, Thomas; Cooke, Brian

    2015-04-01

    Europa is recognized by the Planetary Science De-cadal Survey as a prime candidate to search for a pre-sent-day habitable environment in our solar system. As such, NASA has pursued a series of studies, facilitated by a Europa Science Definition Team (SDT), to define a strategy to best advance our scientific understanding of this icy world with the science goal: Explore Europa to investigate its habitability. (In June of 2014, the SDT completed its task of identifying the overarching science objectives and investigations.) Working in concert with a technical team, a set of mission archi-tectures were evaluated to determine the best way to achieve the SDT defined science objectives. The fa-vored architecture would consist of a spacecraft in Ju-piter orbit making many close flybys of Europa, con-centrating on remote sensing to explore the moon. In-novative mission design would use gravitational per-turbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of Europa's sur-face, with nominally 45 close flybys, typically at alti-tudes from 25 to 100 km. This concept has become known as the Europa Clipper. The Europa SDT recommended three science ob-jectives for the Europa Clipper: Ice Shell and Ocean: Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; Composition: Understand the habitability of Europa's ocean through composition and chemistry; and Geology: Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. The Europa SDT also considered implications of the Hubble Space Telescope detection of possible plumes at Europa. To feed forward to potential subsequent future ex-ploration that could be enabled by a lander, it was deemed that the Europa Clipper mission concept should provide the

  14. Influence of subject matter discipline and science content knowledge on National Board Certified science teachers' conceptions, enactment, and goals for inquiry

    Science.gov (United States)

    Breslyn, Wayne Gene

    The present study investigated differences in the continuing development of National Board Certified Science Teachers' (NBCSTs) conceptions of inquiry across the disciplines of biology, chemistry, earth science, and physics. The central research question of the study was, "How does a NBCST's science discipline (biology, chemistry, earth science, or physics) influence their conceptions, enactment, and goals for inquiry-based teaching and learning?" A mixed methods approach was used that included an analysis of the National Board portfolio entry, Active Scientific Inquiry, for participants (n=48) achieving certification in the 2007 cohort. The portfolio entry provided detailed documentation of teachers' goals and enactment of an inquiry lesson taught in their classroom. Based on the results from portfolio analysis, participant interviews were conducted with science teachers (n=12) from the 2008 NBCST cohort who represented the science disciplines of biology, chemistry, earth science, and physics. The interviews provided a broader range of contexts to explore teachers' conceptions, enactment, and goals of inquiry. Other factors studied were disciplinary differences in NBCSTs' views of the nature of science, the relation between their science content knowledge and use of inquiry, and changes in their conceptions of inquiry as result of the NB certification process. Findings, based on a situated cognitive framework, suggested that differences exist between biology, chemistry, and earth science teachers' conceptions, enactment, and goals for inquiry. Further, individuals teaching in more than one discipline often held different conceptions of inquiry depending on the discipline in which they were teaching. Implications for the research community include being aware of disciplinary differences in studies on inquiry and exercising caution in generalizing findings across disciplines. In addition, teachers who teach in more than one discipline can highlight the contextual

  15. The Concept of Ideology in Analysis of Fundamental Questions in Science Education

    Science.gov (United States)

    Säther, Jostein

    The use of the concept of `ideology' in interpretation of science education curricula, textbooks and various practises is reviewed, and examples are given by referring to Norwegian curricula and textbooks. The term is proposed to be used in a broad sense about any kind of action-oriented theory based on a system of ideas, or any attempt to approach politics in the light of a system of ideas. Politics in this context is about shaping of education, and is related to forces (i.e., hypothetical impacts of idea systems) which may legitimise, change, or criticise social practices. The focus is (although not in every case) on the hidden, unconscious and critical aspects. The notion ideological aspects is proposed to be related to metaphysical-ontological, epistemological and axiological claims and connotations. Examples of educational issues concerning e.g., aims, compartmentalisation, integration, and fundamentally different ideas about truth, learning and man are mentioned. Searching for a single and unifying concept for the discussing of all of science education's fundamental questions seems however in vain. Therefore a wide range of concepts seems necessary to deepen our understanding of ``the fundamental questions''.

  16. Preservice Science Teachers’ Levels of Associating The Concept of Gas Pressure with Everyday Life

    Directory of Open Access Journals (Sweden)

    Aybüke Pabuçcu

    2016-10-01

    Full Text Available Through this research, it was aimed to investigate how pre-service science teachers’ use their knowledge about the concept of gas pressure in explaining some examples from everyday life. The research was carried out with 33 freshmen pre-service science teachers. The data in the research were collected through five formative assessment probes. The students were asked to work in small groups to complete the questions. Groups’ discussions were recorded. Groups’ written responses were classified in five different categories: sound understanding, partial understanding, specific misconception, no understanding, and no response. Data under these categories were given as percentages in a table. The sum of students’ responses in sound understanding and partial understanding are in the range of 37.5% and 62.5%. Results revealed that students had difficulty in understanding the gases concepts and associating these concepts with everyday life events. Moreover, many misconceptions and misuse of the ideal gas equation were determined in the students’ explanations.

  17. Basic Definitions and Concepts of Systems Approach, Mathematical Modeling and Information Technologies in Sports Science

    Directory of Open Access Journals (Sweden)

    А. Лопатьєв

    2017-09-01

    Full Text Available The objective is to systematize and adapt the basic definitions and concepts of the systems approach, mathematical modeling and information technologies to sports science. Materials and methods. The research has studied the availability of appropriate terms in shooting sports, which would meet the requirements of modern sports science. It has examined the compliance of the shooting sports training program for children and youth sports schools, the Olympic reserve specialized children and youth schools, schools of higher sports skills, and sports educational institutions with the modern requirements and principles. Research results. The paper suggests the basic definitions adapted to the requirements of technical sports and sports science. The research has thoroughly analyzed the shooting sports training program for children and youth sports schools, the Olympic reserve specialized children and youth schools, schools of higher sports skills, and sports educational institutions. The paper offers options to improve the training program in accordance with the modern tendencies of training athletes.  Conclusions. The research suggests to systematize and adapt the basic definitions and concepts of the systems approach, mathematical modeling and information technologies using the example of technical sports.

  18. [Dialogy of Laughter: a new concept introducing joy for health promotion based on dialogue, laughter, joy and the art of the clown].

    Science.gov (United States)

    Matraca, Marcus Vinicius Campos; Wimmer, Gert; Araújo-Jorge, Tania Cremonini de

    2011-10-01

    The Dialogy of Laughter - a concept based upon the praxis of general health education performed with joy - is presented and discussed. Health is seen as a resource for life rather than a goal in life and promotion of health is a positive reaction leading to a broader, integrated and complex perception linking the environment, education, people, quality and style of life. Laughter can then be incorporated as a tool in health promotion as defended here. Considerations on dialogue, laughter, joy and the clown giving rise to the Dialogy of Laughter concept are presented. Dialogue, namely an exchange between two or more persons for the comprehension and transfer of ideas, is a methodology for joint thinking to produce new ideas and to share meaning, which is the essence of communication. Laughter is a universal phenomenon linked to aspects of culture, philosophy, history and health. It is dialogic, since through humor the comedy and the wit contained in each laugh, which is a communication code inherent to human nature, are revealed. Joy as a strategy for health promotion is highlighted and the art of the clown, using this art as an educational tool that can be integrated as a social technology, are adopted.

  19. Metaphoric Perceptions of the Students of the Sports Sciences Faculty Regarding the Concept of Fair-Play

    Science.gov (United States)

    Çaglayan, Hakan Salim; Gül, Özgür

    2017-01-01

    The objective of this study is to reveal the perceptions of the students of the sports sciences faculty regarding the concept of "Fair-Play" by means of metaphors. 275 students [male[subscript (n = 173)], female [subscript (n = 102)

  20. Introducing the concept of a new pre-referral treatment for severely ill febrile children at community level: a sociological approach in Guinea-Bissau.

    Science.gov (United States)

    Vermeersch, Audrey; Libaud-Moal, Anaëlle; Rodrigues, Amabelia; White, Nicholas J; Olliaro, Piero; Gomes, Melba; Ashley, Elizabeth A; Millet, Pascal

    2014-02-06

    Innovative strategies are needed to tackle childhood mortality in the rural tropics. Artesunate suppositories were developed to bring emergency treatment closer to severely ill children with malaria in rural areas where injectable treatment is not possible for several hours. Adding an antibacterial rectal drug would extend this strategy to treat non-malarial febrile illness as well. The objective of these studies was to assess acceptability of such a new pre-referral strategy by healthcare providers and likely uptake by the population. Two qualitative studies were conducted between May and July 2009. Study 1 investigated the acceptability of introducing a combined antimalarial-antibacterial suppository by interviewing 27 representatives of the three administrative levels (central government, regional, local) of the health sector; Study 2 investigated treatment-seeking behaviour and acceptability of this intervention at community level by interviewing 74 mothers in 2 villages. Up to 92% of health representatives were in favour of introducing a new pre-referral strategy to tackle both malaria and non-malaria related severe illnesses in Guinea-Bissau, provided it was endorsed by international health authorities. The main obstacles to implementation were the very limited human and financial resources. In the two villages surveyed, 44% of the mothers associated severe illness with fever only, or fever plus one additional symptom. Mothers' judgement of severity and ensuing decisions were not specific for serious illness, indicating that initial training to recognize signs of severe disease and treatment availability for non-severe, fever-associated symptoms will be required to prevent overuse of a new intervention designed as a pre-referral treatment for severely ill children. Level C health centres were the first resort in both villages (50% and 87% of respondents respectively). This information is encouraging for the implementation of a pre-referral treatment.

  1. The Cognitive Science of Learning: Concepts and Strategies for the Educator and Learner.

    Science.gov (United States)

    Weidman, Joseph; Baker, Keith

    2015-12-01

    Education is the fundamental process used to develop and maintain the professional skills of physicians. Medical students, residents, and fellows are expected to learn considerable amounts of information as they progress toward board certification. Established practitioners must continue to learn in an effort to remain up-to-date in their clinical realm. Those responsible for educating these populations endeavor to teach in a manner that is effective, efficient, and durable. The study of learning and performance is a subdivision of the field of cognitive science that focuses on how people interpret and process information and how they eventually develop mastery. A deeper understanding of how individuals learn can empower both educators and learners to be more effective in their endeavors. In this article, we review a number of concepts found in the literature on learning and performance. We address both the theoretical principles and the practical applications of each concept. Cognitive load theory, constructivism, and analogical transfer are concepts particularly beneficial to educators. An understanding of goal orientation, metacognition, retrieval, spaced learning, and deliberate practice will primarily benefit the learner. When these concepts are understood and incorporated into education and study, the effectiveness of learning is significantly improved.

  2. Critical Phenomena in Natural Sciences Chaos, Fractals, Selforganization and Disorder: Concepts and Tools

    CERN Document Server

    Sornette, Didier

    2006-01-01

    Concepts, methods and techniques of statistical physics in the study of correlated, as well as uncorrelated, phenomena are being applied ever increasingly in the natural sciences, biology and economics in an attempt to understand and model the large variability and risks of phenomena. This is the first textbook written by a well-known expert that provides a modern up-to-date introduction for workers outside statistical physics. The emphasis of the book is on a clear understanding of concepts and methods, while it also provides the tools that can be of immediate use in applications. Although this book evolved out of a course for graduate students, it will be of great interest to researchers and engineers, as well as to post-docs in geophysics and meteorology.

  3. Distributing learning over time: the spacing effect in children's acquisition and generalization of science concepts.

    Science.gov (United States)

    Vlach, Haley A; Sandhofer, Catherine M

    2012-01-01

    The spacing effect describes the robust finding that long-term learning is promoted when learning events are spaced out in time rather than presented in immediate succession. Studies of the spacing effect have focused on memory processes rather than for other types of learning, such as the acquisition and generalization of new concepts. In this study, early elementary school children (5- to 7-year-olds; N = 36) were presented with science lessons on 1 of 3 schedules: massed, clumped, and spaced. The results revealed that spacing lessons out in time resulted in higher generalization performance for both simple and complex concepts. Spaced learning schedules promote several types of learning, strengthening the implications of the spacing effect for educational practices and curriculum. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  4. Framing the ecosystem concept through a longitudinal study of developments in science and policy.

    Science.gov (United States)

    Aggestam, Filip

    2015-08-01

    This paper examines how scientific literature and policy documents frame the ecosystem concept and how these frames have shaped scientific dialogue and policy making over time. This was achieved by developing a frame typology, as a basis for organizing relevant value expressions, to assess how different frames have altered perspectives of the ecosystem concept. The frame typology and analysis is based on a semi-grounded and longitudinal document analysis of scientific literature and policy documents using the ecosystem concept. Despite changing discourses and public priorities (e.g., cultural constructs of biodiversity) both science and policy documents are characterized by stable value systems that have not changed substantially since the 1930s. These value systems were defined based on ethical principles that delineate 6 core frames: humans first, dual systems, eco-science, eco-holism, animals first, and multicentrism. Specific crises (e.g., climate change) and cross-disciplinary uptake and re-uptake of, for example, the ecosystem services concept, have brought new perspectives to the forefront of public discourse. These developments triggered changes in the core frames that, rather than being value based, are based on how the ecosystem is conceptualized under fixed value systems and over time. Fourteen subframes were developed to reflect these longitudinal changes. There are as such clear framing effects in both scientific literature and in policy. Ecosystem research is for instance often characterized by unstated value judgments even though the scientific community does not make these explicit. In contrast, policy documents are characterized by clear value expressions but are principally management driven and human centered. © 2015 Society for Conservation Biology.

  5. Integrating international relations and environmental science course concepts through an interactive world politics simulation

    Science.gov (United States)

    Straub, K. H.; Kesgin, B.

    2012-12-01

    During the fall 2012 semester, students in two introductory courses at Susquehanna University - EENV:101 Environmental Science and POLI:131 World Affairs - will participate together in an online international relations simulation called Statecraft (www.statecraftsim.com). In this strategy game, students are divided into teams representing independent countries, and choose their government type (democracy, constitutional monarchy, communist totalitarian, or military dictatorship) and two country attributes (industrial, green, militaristic, pacifist, or scientific), which determine a set of rules by which that country must abide. Countries interact over issues such as resource distribution, war, pollution, immigration, and global climate change, and must also keep domestic political unrest to a minimum in order to succeed in the game. This simulation has typically been run in political science courses, as the goal is to allow students to experience the balancing act necessary to maintain control of global and domestic issues in a dynamic, diverse world. This semester, environmental science students will be integrated into the simulation, both as environmental advisers to each country and as independent actors representing groups such as Greenpeace, ExxonMobil, and UNEP. The goal in integrating the two courses in the simulation is for the students in each course to gain both 1) content knowledge of certain fundamental material in the other course, and 2) a more thorough, applied understanding of the integrated nature of the two subjects. Students will gain an appreciation for the multiple tradeoffs that decision-makers must face in the real world (economy, resources, pollution, health, defense, etc.). Environmental science students will link these concepts to the traditional course material through a "systems thinking" approach to sustainability. Political science students will face the challenges of global climate change and gain an understanding of the nature of

  6. On the relevance of Gibson's affordance concept for geographical information science (GISc).

    Science.gov (United States)

    Jonietz, David; Timpf, Sabine

    2015-09-01

    J. J. Gibson's concept of affordances has provided a theoretical basis for various studies in geographical information science (GISc). This paper sets out to explain its popularity from a GISc perspective. Based on a short review of previous work, it will be argued that its main contributions to GISc are twofold, including an action-centered view of spatial entities and the notion of agent-environment mutuality. Using the practical example of pedestrian behavior simulation, new potentials for using and extending affordances are discussed.

  7. Do Science and Technology Teachers and Pre-Service Primary Teachers Have Different Thoughts about Concept Maps in Science and Technology Lessons?

    Science.gov (United States)

    Karakuyu, Yunus

    2011-01-01

    The purpose of this study is to determine the thoughts of primary science and technology teachers, primary class teachers, pre-service primary class teachers and pre-service primary science and technology teachers' about concept maps. This scale applied the use of basic and random method on the chosen 125 4th and 5th grade primary class teachers…

  8. The Relationships among Scientific Epistemic Beliefs, Conceptions of Learning Science, and Motivation of Learning Science: A Study of Taiwan High School Students

    Science.gov (United States)

    Ho, Hsin-Ning Jessie; Liang, Jyh-Chong

    2015-01-01

    This study explores the relationships among Taiwanese high school students' scientific epistemic beliefs (SEBs), conceptions of learning science (COLS), and motivation of learning science. The questionnaire responses from 470 high school students in Taiwan were gathered for analysis to explain these relationships. The structural equation modeling…

  9. Projective goals - concepts and pragmatic aspects based on the terminology and methodology of safety science

    International Nuclear Information System (INIS)

    Compes, P.C.

    1991-01-01

    Protective goals set the line of orientation of tasks and activities in the field of accident prevention. They have to be based on safety-science methods in order to develop from the conceptual idea to the practically feasible solution, while using the scientific methods to take into account the facts and the capabilities of a situation and, proceeding from them, finding an efficient and rational, optimal pragmatic approach by way of various strategies or tactics. In this process, the activities of defining, informing, thinking and developing need the proper terminology. Safety is absence of danger, protection is limitation of danger and prevention of damage. So it is protection what is needed with danger being given, and risks have to be minimized. Riskology is a novel method of safety science, combining risk analysis and risk control into a systematic concept which is practice-oriented. Applying this to the field of nuclear engineering, the hitherto achieved should receive new impulses. (orig.) [de

  10. Use of Technology-Assisted Techniques of Mind Mapping and Concept Mapping in Science Education: A Constructivist Study

    Science.gov (United States)

    Balim, Ali Günay

    2013-01-01

    The study aims to investigate the effects of using mind maps and concept maps on students' learning of concepts in science courses. A total of 51 students participated in this study which used a quasi-experimental research design with pre-test/post-test control groups. The constructivist-inspired study was carried out in the sixth-grade science…

  11. Seeking Missing Pieces in Science Concept Assessments: Reevaluating the Brief Electricity and Magnetism Assessment through Rasch Analysis

    Science.gov (United States)

    Ding, Lin

    2014-01-01

    Discipline-based science concept assessments are powerful tools to measure learners' disciplinary core ideas. Among many such assessments, the Brief Electricity and Magnetism Assessment (BEMA) has been broadly used to gauge student conceptions of key electricity and magnetism (E&M) topics in college-level introductory physics courses.…

  12. Exploring Europa's Habitability: Science achieved from the Europa Orbiter and Clipper Mission Concepts

    Science.gov (United States)

    Senske, D. A.; Prockter, L. M.; Pappalardo, R. T.; Patterson, G. W.; Vance, S.

    2012-12-01

    Europa is a prime candidate in the search for present-day habitable environments in our solar system. Europa is unique among the large icy satellites because it probably has a saltwater ocean today beneath an ice shell that is geodynamically active. The combination of irradiation of its surface and tidal heating of its interior could make Europa a rich source of chemical energy for life. Perhaps most importantly, Europa's ocean is believed to be in direct contact with its rocky mantle, where conditions could be similar to those on Earth's biologically rich sea floor. Hydrothermal zones on Earth's seafloor are known to be rich with life, powered by energy and nutrients that result from reactions between the seawater and the warm rocky ocean floor. Life as we know it depends on three principal "ingredients": 1) a sustained liquid water environment; 2) essential chemical elements that are critical for building life; and 3) a source of energy that could be utilized by life. Europa's habitability requires understanding whether it possesses these three ingredients. NASA has enlisted a study team to consider Europa mission options feasible over the next decade, compatible with NASA's projected planetary science budget and addressing Planetary Decadal Survey priorities. Two Europa mission concepts (Orbiter and multiple flyby—call the "Clipper") are undergoing continued study with the goal to "Explore Europa to investigate its habitability." Each mission would address this goal in complementary ways, with high science value of its own. The Orbiter and Clipper architectures lend themselves to specific types of scientific measurements. The Orbiter concept is tailored to the unique geophysical science that requires being in orbit at Europa. This includes confirming the existence of an ocean and characterizing that ocean through geophysical measurements of Europa's gravitational tides and magnetic induction response. It also includes mapping of the global morphology and

  13. The Impact of Video Case Content on Preservice Elementary Teachers' Decision-Making and Conceptions of Effective Science Teaching

    Science.gov (United States)

    Olson, Joanne K.; Bruxvoort, Crystal N.; Vande Haar, Andrea J.

    2016-01-01

    Little is known about how the content of a video case influences what preservice teachers learn about science teaching. This study was designed to determine the impact of two different video cases on preservice elementary teachers' conceptions of multiple aspects of effective science teaching, with one video selected to focus attention on the role…

  14. Perceptions of Pre-Service Social Sciences Teachers Regarding the Concept of "Geography" by Mind Mapping Technique

    Science.gov (United States)

    Ozturk Demirbas, Cagri

    2013-01-01

    The objective of this study is to present the perceptions of preservice social sciences teachers regarding the concept of geography. In the study, the study group consists of 46 preservice social sciences teachers, who receive education at Ahi Evran University. The data were collected in December, 2010. Mind maps were used as data collection tools…

  15. From Words to Concepts: Focusing on Word Knowledge When Teaching for Conceptual Understanding within an Inquiry-Based Science Setting

    Science.gov (United States)

    Haug, Berit S.; Ødegaard, Marianne

    2014-01-01

    This qualitative video study explores how two elementary school teachers taught for conceptual understanding throughout different phases of science inquiry. The teachers implemented teaching materials with a focus on learning science key concepts through the development of word knowledge. A framework for word knowledge was applied to examine the…

  16. Introducing the Concept of the Minimally Important Difference to Determine a Clinically Relevant Change on Patient-Reported Outcome Measures in Patients with Intermittent Claudication

    International Nuclear Information System (INIS)

    Conijn, Anne P.; Jonkers, Wilma; Rouwet, Ellen V.; Vahl, Anco C.; Reekers, Jim A.; Koelemay, Mark J. W.

    2015-01-01

    PurposeThe minimally important difference (MID) represents the smallest change in score on patient-reported outcome measures that is relevant to patients. The aim of this study was to introduce the MID for the Vascular Quality of Life Questionnaire (VascuQol) and the walking impairment questionnaire (WIQ) for patients with intermittent claudication (IC).MethodsIn this multicenter study, we recruited 294 patients with IC between July and October 2012. Patients completed the VascuQol, with scores ranging from 1 to 7 (worst to best), and the WIQ, with scores ranging from 0 to 1 (worst to best) at first visit and after 4 months follow-up. In addition, patients answered an anchor-question rating their health status compared to baseline, as being improved, unchanged, or deteriorated. The MID for improvement and deterioration was calculated by an anchor-based approach, and determined with the upper and lower limits of the 95 % confidence interval of the mean change of the group who had not changed according to the anchor-question.ResultsFor the MID analyses of the VascuQol and WIQ, 163 and 134 patients were included, respectively. The MID values for the VascuQol (mean baseline score 4.25) were 0.87 for improvement and 0.23 for deterioration. For the WIQ (mean baseline score 0.39), we found MID values of 0.11 and −0.03 for improvement and deterioration, respectively.ConclusionIn this study, we calculated the MID for the VascuQol and the WIQ. Applying these MID facilitates better interpretation of treatment outcomes and can help to set treatment goals for individual care

  17. Introducing the Concept of the Minimally Important Difference to Determine a Clinically Relevant Change on Patient-Reported Outcome Measures in Patients with Intermittent Claudication

    Energy Technology Data Exchange (ETDEWEB)

    Conijn, Anne P., E-mail: a.p.conijn@amc.nl [Academic Medical Center, Departments of Vascular Surgery and Interventional Radiology (Netherlands); Jonkers, Wilma, E-mail: wilma.jonkers@achmea.nl [Achmea Insurances, Division of Health Care (Netherlands); Rouwet, Ellen V., E-mail: e.rouwet@erasmusmc.nl [Erasmus Medical Center, Department of Vascular Surgery (Netherlands); Vahl, Anco C., E-mail: a.c.vahl@olvg.nl [Onze Lieve Vrouwe Gasthuis, Department of Vascular Surgery (Netherlands); Reekers, Jim A., E-mail: j.a.reekers@amc.nl [Academic Medical Center, Department of Radiology (Netherlands); Koelemay, Mark J. W., E-mail: m.j.koelemaij@amc.nl [Academic Medical Center, Department of vascular surgery (Netherlands)

    2015-10-15

    PurposeThe minimally important difference (MID) represents the smallest change in score on patient-reported outcome measures that is relevant to patients. The aim of this study was to introduce the MID for the Vascular Quality of Life Questionnaire (VascuQol) and the walking impairment questionnaire (WIQ) for patients with intermittent claudication (IC).MethodsIn this multicenter study, we recruited 294 patients with IC between July and October 2012. Patients completed the VascuQol, with scores ranging from 1 to 7 (worst to best), and the WIQ, with scores ranging from 0 to 1 (worst to best) at first visit and after 4 months follow-up. In addition, patients answered an anchor-question rating their health status compared to baseline, as being improved, unchanged, or deteriorated. The MID for improvement and deterioration was calculated by an anchor-based approach, and determined with the upper and lower limits of the 95 % confidence interval of the mean change of the group who had not changed according to the anchor-question.ResultsFor the MID analyses of the VascuQol and WIQ, 163 and 134 patients were included, respectively. The MID values for the VascuQol (mean baseline score 4.25) were 0.87 for improvement and 0.23 for deterioration. For the WIQ (mean baseline score 0.39), we found MID values of 0.11 and −0.03 for improvement and deterioration, respectively.ConclusionIn this study, we calculated the MID for the VascuQol and the WIQ. Applying these MID facilitates better interpretation of treatment outcomes and can help to set treatment goals for individual care.

  18. Evaluation of Life Sciences Glovebox (LSG) and Multi-Purpose Crew Restraint Concepts

    Science.gov (United States)

    Whitmore, Mihriban

    2005-01-01

    Within the scope of the Multi-purpose Crew Restraints for Long Duration Spaceflights project, funded by Code U, it was proposed to conduct a series of evaluations on the ground and on the KC-135 to investigate the human factors issues concerning confined/unique workstations, such as the design of crew restraints. The usability of multiple crew restraints was evaluated for use with the Life Sciences Glovebox (LSG) and for performing general purpose tasks. The purpose of the KC-135 microgravity evaluation was to: (1) to investigate the usability and effectiveness of the concepts developed, (2) to gather recommendations for further development of the concepts, and (3) to verify the validity of the existing requirements. Some designs had already been tested during a March KC-135 evaluation, and testing revealed the need for modifications/enhancements. This flight was designed to test the new iterations, as well as some new concepts. This flight also involved higher fidelity tasks in the LSG, and the addition of load cells on the gloveports.

  19. Teaching Map Concepts in Social Science Education; an Evaluation with Undergraduate Students

    Science.gov (United States)

    Bugdayci, Ilkay; Zahit Selvi, H.

    2017-12-01

    One of the most important aim of the geography and social science courses is to gain the ability of reading, analysing and understanding maps. There are a lot of themes related with maps and map concepts in social studies education. Geographical location is one of the most important theme. Geographical location is specified by geographical coordinates called latitude and longitude. The geographical coordinate system is the primary spatial reference system of the earth. It is always used in cartography, in geography, in basic location calculations such as navigation and surveying. It’s important to support teacher candidates, to teach maps and related concepts. Cartographers also have important missions and responsibilities in this context. The purpose of this study is to evaluate the knowledge of undergraduate students, about the geographical location. For this purpose, a research has been carried out on questions and activities related to geographical location and related concepts. The details and results of the research conducted by the students in the study are explained.

  20. Influence of Precollege Experience on Self-Concept among Community College Students in Science, Mathematics, and Engineering

    Science.gov (United States)

    Starobin, Soko S.; Laanan, Frankie Santos

    Female and minority students have historically been underrepresented in the field of science, mathematics, and engineering at colleges and universities. Although a plethora of research has focused on students enrolled in 4-year colleges or universities, limited research addresses the factors that influence gender differences in community college students in science, mathematics, and engineering. Using a target population of 1,599 aspirants in science, mathematics, and engineering majors in public community colleges, this study investigates the determinants of self-concept by examining a hypothetical structural model. The findings suggest that background characteristics, high school academic performance, and attitude toward science have unique contributions to the development of self-concept among female community college students. The results add to the literature by providing new theoretical constructs and the variables that predict students' self-concept.

  1. The influence of role-specific self-concept and sex-role identity on career choices in science

    Science.gov (United States)

    Baker, Dale R.

    Despite much effort on the part of educators the number of females who choose science careers remains low. This research focuses on two factors which may be influencing females in their choice of careers. These factors are role-specific self-concept in science and self perception in terms of stereotypical masculine and feminine characteristics. In addition logical ability and mathematics and science courses were also examined as factors in career choice. Females preferring science related careers and females preferring nontraditional careers such as police, military and trades were found to have a positive role-specific self-concept and a masculine perception of themselves. Females preferring traditional careers such as teacher or hairdresser had a poor role-specific self-concept and a more feminine perception of themselves. Males as a group were found to have a more positive role-specific self-concept than females. Logical ability was also related to a science career preference for both males and females. Males expected to take more higher level math courses than females, while females preferring science careers expected to take the most higher level science courses.

  2. Designing problem-based curricula: The role of concept mapping in scaffolding learning for the health sciences

    Directory of Open Access Journals (Sweden)

    Susan M. Bridges

    2015-03-01

    Full Text Available While the utility of concept mapping has been widely reported in primary and secondary educational contexts, its application in the health sciences in higher education has been less frequently noted. Two case studies of the application of concept mapping in undergraduate and postgraduate health sciences are detailed in this paper. The case in undergraduate dental education examines the role of concept mapping in supporting problem-based learning and explores how explicit induction into the principles and practices of CM has add-on benefits to learning in an inquiry-based curriculum. The case in postgraduate medical education describes the utility of concept mapping in an online inquiry-based module design. Specific attention is given to applications of CMapTools™ software to support the implementation of Novakian concept mapping in both inquiry-based curricular contexts.

  3. A systematic review of concept mapping-based formative assessment processes in primary and secondary science education

    DEFF Research Database (Denmark)

    Hartmeyer, Rikke; Stevenson, Matt P.; Bentsen, Peter

    2017-01-01

    assessment: firstly, concept mapping should be constructed in teaching, preferably on repeated occasions. Secondly, concept mapping should be carried out individually if personal understanding is to be elicited; however, collaborative concept mapping might foster discussions valuable for developing students......’ understanding and for activating them as instructional resources and owners of their own learning. Thirdly, low-directed mapping seems most suitable for formative assessment. Fourthly, technology-based or peer assessments are useful strategies likely to reduce the load of interpretation for the educator......In this paper, we present and discuss the results of a systematic review of concept mapping-based interventions in primary and secondary science education. We identified the following recommendations for science educators on how to successfully apply concept mapping as a method for formative...

  4. Research insights and insides:"Science-in-Fiction" as a contribution to the Third Culture Concepts.

    Science.gov (United States)

    Erren, Thomas C; Falaturi, Puran

    2009-05-01

    Here we suggest to encourage more "Science-In-Fiction" [SIF], a genre which has been explored by Carl Djerassi since the late 1980s with the intent to convey science in writing beyond traditional publication categories and "to smuggle scientific facts into the consciousness of a scientifically illiterate public". In our view, SIF can serve 3 purposes: (a) inform the public at large about scientific findings, ethics and procedures; (b) infuse lay readers with interest in scientific endeavours; (c) enable the general population to better evaluate and judge scientific conduct, results and implications. While it would be desirable to have more scientists write about their own (like Watson and Maguejo) and others' discoveries (like Voltaire and Perutz), this expectation is not realistic. Indeed, some scientists may not want to share and write about their experiences and others simply should not. As one recipe for informing the lay public and instigating interest in research insights and insides, science-in-fiction such as Dr. Djerassi's novels could be written and read. This may contribute to the The Third Culture Concepts envisaged by Snow in the 1960s and elaborated by Brockman in 1995.

  5. Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise

    Science.gov (United States)

    Meredith, Barry D.

    2000-01-01

    Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.

  6. Seeding Science Success: Psychometric Properties of Secondary Science Questionnaire on Students' Self-Concept, Motivation, and Aspirations

    Science.gov (United States)

    Chandrasena, Wanasinghe; Craven, Rhonda G.; Tracey, Danielle; Dillon, Anthony

    2014-01-01

    Every sphere of life has been revolutionised by science. Thus, science understanding is an increasingly precious resource throughout the world. Despite the widely recognised need for better science education, the percentage of school students studying science is particularly low, and the numbers of students pursuing science continue to decline…

  7. Semio-Linguistic Creative Actualization of the Concept “Information About the Future” in the Science Fiction Discourse

    Directory of Open Access Journals (Sweden)

    Andrey Vladimirovich Olyanich

    2015-11-01

    Full Text Available The article deals with the cognitive category of "semio-linguistic creativity", that serves as a tool for implification of the concept "Information about the future" in the science fiction discourse. The correlation between the categories of future and information is studied in semio-linguistic aspect; the conceptual core, internal and external zones of the concept "Information about the future" are explored in connection with the concepts "Future", "Myths" and "Expectations" that are viewed as belonging to the science fiction discourse. The following issues are considered: coordination between axiological and imaginative spheres of the concept "Information about the future"; the mechanism of transforming information from present and past into the future by means of literary imagination, which is aimed at constructing the imaginary hyper-reality with the use of concepts that belong to contemporary reality; it is stated that such activity lays the basis for multiple forecasts. After the analysis of the novels by Vasily Golovachev, a famous Russian science fiction writer, the authors present their interpretation of the process of science-fiction discourse unfolding that involves groups of signs from the following semio-linguistic clusters (The Man as a species; Food; Space, Earth, their semantic content is directly related to the needs of the future. The proposed algorithm of analysis may be applied to studying other semio-linguistic clusters: "Habitat," "Communications", "Social Environment", "Transport", "Technology", that may explicate the concept "Information about the future".

  8. Yoruba Ethnoastronomy - "Orisha/Vodun" or How People's Conceptions of the Sky Constructed Science

    Science.gov (United States)

    Sègla, Dafon Aimé

    For the Yoruba, the Sky is the domain of the Supreme God. They believe that "Olorun" or "Olodumaré" owns the Sky and communicates through secondary, intermediary deities sent to Earth by the Supreme God. These deities are "Orisha" but are also named by the Fon in the Republic of Benin as Vodun. Nowadays, Orisha, more widely known as Vodun, is regarded as satanic, magical, and demonic. Using basic archaeology of cosmological concepts, this false picture can be rejected and replaced by a logical and realistic one based on scientific evidence whereby Orisha/Vodun is conceived as a variant of several existing world views, a "science of the local". Given that Western skepticism concerning African cultures' knowledge arises mainly from misleading comparisons, there is a need for a reconciliation between non-Western and Western world views.

  9. The development and validation of a two-tiered multiple-choice instrument to identify alternative conceptions in earth science

    Science.gov (United States)

    Mangione, Katherine Anna

    This study was to determine reliability and validity for a two-tiered, multiple- choice instrument designed to identify alternative conceptions in earth science. Additionally, this study sought to identify alternative conceptions in earth science held by preservice teachers, to investigate relationships between self-reported confidence scores and understanding of earth science concepts, and to describe relationships between content knowledge and alternative conceptions and planning instruction in the science classroom. Eighty-seven preservice teachers enrolled in the MAT program participated in this study. Sixty-eight participants were female, twelve were male, and seven chose not to answer. Forty-seven participants were in the elementary certification program, five were in the middle school certification program, and twenty-nine were pursuing secondary certification. Results indicate that the two-tiered, multiple-choice format can be a reliable and valid method for identifying alternative conceptions. Preservice teachers in all certification areas who participated in this study may possess common alternative conceptions previously identified in the literature. Alternative conceptions included: all rivers flow north to south, the shadow of the Earth covers the Moon causing lunar phases, the Sun is always directly overhead at noon, weather can be predicted by animal coverings, and seasons are caused by the Earth's proximity to the Sun. Statistical analyses indicated differences, however not all of them significant, among all subgroups according to gender and certification area. Generally males outperformed females and preservice teachers pursuing middle school certification had higher scores on the questionnaire followed by those obtaining secondary certification. Elementary preservice teachers scored the lowest. Additionally, self-reported scores of confidence in one's answers and understanding of the earth science concept in question were analyzed. There was a

  10. Introduction: contexts and concepts of adaptability and plasticity in 20th-century plant science.

    Science.gov (United States)

    Baranski, Marci; Peirson, B R Erick

    2015-04-01

    Nowhere is the problem of understanding the complex linkages between organisms and their environments more apparent than in the science of plants. Today, efforts by scientists to predict and manage the biological consequences of shifting global and regional climates depend on understanding how organisms respond morphologically, physiologically, and behaviorally to changes in their environments. Investigating organismal "adaptability" (or "plasticity") is rarely straightforward, prompting controversy and discourse among and between ecologists and agricultural scientists. Concepts like agro-climatic adaptation, phenotypic plasticity, and genotype-environment interaction (GxE) are key to those debates, and their complex histories have imbued them with assumptions and meanings that are consequential but often opaque. This special section explores the diverse ways in which organismal adaptability has been conceptualized and investigated in the second half of the 20th century, and the multifarious political, economic, environmental, and intellectual contexts in which those conceptions have emerged and evolved. The papers in this section bring together perspectives from the histories of agriculture, population ecology, evolutionary theory, and plant physiology, cutting across Asian, North American, and British contexts. As a whole, this section highlights not only the diversity of meanings of "adaptability" and "plasticity," but also the complex linkages between those meanings, the scientific practices and technologies in which they are embedded, and the ends toward which those practices and technologies are employed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The effects of collaborative concept mapping on the achievement, science self-efficacy and attitude toward science of female eighth-grade students

    Science.gov (United States)

    Ledger, Antoinette Frances

    This study sought to examine whether collaborative concept mapping would affect the achievement, science self-efficacy and attitude toward science of female eighth grade science students. The research questions are: (1) Will the use of collaborative concept mapping affect the achievement of female students in science? (2) Will the use of collaborative concept mapping affect the science self-efficacy of female students? (3) Will the use of collaborative concept mapping affect the attitudes of females toward science? The study was quasi-experimental and utilized a pretest-posttest design for both experimental and control groups. Eighth grade female and male students from three schools in a large northeastern school district participated in this study. The achievement test consisted of 10 multiple choice and two open-response questions and used questions from state-wide and national assessments as well as teacher-constructed items. A 29 item Likert type instrument (McMillan, 1992) was administered to measure science self-efficacy and attitude toward science. The study was of 12 weeks duration. During the study, experimental group students were asked to perform collaborative concept map construction in single sex dyads using specific terms designated by the classroom teacher and the researcher. During classroom visitations, student perceptions of collaborative concept mapping were collected and were used to provide insight into the results of the quantitative data analysis. Data from the pre and posttest instruments were analyzed for both experimental and control groups using t-tests. Additionally, the three teachers were interviewed and their perceptions of the study were also used to gain insight into the results of the study. The analysis of data showed that experimental group females showed significantly higher gains in achievement than control group females. An additional analysis of data showed experimental group males showed significantly greater gains in

  12. Integrated learning of mathematics, science and technology concepts through LEGO/Logo projects

    Science.gov (United States)

    Wu, Lina

    This dissertation examined integrated learning in the domains of mathematics, science and technology based on Piaget's constructivism, Papert's constructionism, and project-based approach to education. Ten fifth grade students were involved in a two-month long after school program where they designed and built their own computer-controlled LEGO/Logo projects that required the use of gears, ratios and motion concepts. The design of this study centered on three notions of integrated learning: (1) integration in terms of what educational materials/settings provide, (2) integration in terms of students' use of those materials, and (3) integration in the psychological sense. In terms of the first notion, the results generally showed that the LEGO/Logo environment supported the integrated learning of math, science and technology concepts. Regarding the second notion, the students all completed impressive projects of their own design. They successfully combined gears, motors, and LEGO parts together to create motion and writing control commands to manipulate the motion. But contrary to my initial expectations, their successful designs did not require numerical reasoning about ratios in designing effective gear systems. When they did reason about gear relationships, they worked with "qualitative" ratios, e.g., "a larger driver gear with a smaller driven gear increases the speed." In terms of the third notion of integrated learning, there was evidence in all four case study students of the psychological processes involved in linking mathematical, scientific, and/or technological concepts together to achieve new conceptual units. The students not only made connections between ideas and experiences, but also recognized decisive patterns and relationships in their project work. The students with stronger overall project performances showed more evidence of synthesis than the students with relatively weaker performances did. The findings support the conclusion that all three

  13. Evolutionary public health: introducing the concept.

    Science.gov (United States)

    Wells, Jonathan C K; Nesse, Randolph M; Sear, Rebecca; Johnstone, Rufus A; Stearns, Stephen C

    2017-07-29

    The emerging discipline of evolutionary medicine is breaking new ground in understanding why people become ill. However, the value of evolutionary analyses of human physiology and behaviour is only beginning to be recognised in the field of public health. Core principles come from life history theory, which analyses the allocation of finite amounts of energy between four competing functions-maintenance, growth, reproduction, and defence. A central tenet of evolutionary theory is that organisms are selected to allocate energy and time to maximise reproductive success, rather than health or longevity. Ecological interactions that influence mortality risk, nutrient availability, and pathogen burden shape energy allocation strategies throughout the life course, thereby affecting diverse health outcomes. Public health interventions could improve their own effectiveness by incorporating an evolutionary perspective. In particular, evolutionary approaches offer new opportunities to address the complex challenges of global health, in which populations are differentially exposed to the metabolic consequences of poverty, high fertility, infectious diseases, and rapid changes in nutrition and lifestyle. The effect of specific interventions is predicted to depend on broader factors shaping life expectancy. Among the important tools in this approach are mathematical models, which can explore probable benefits and limitations of interventions in silico, before their implementation in human populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Introducing Machine Learning Concepts with WEKA.

    Science.gov (United States)

    Smith, Tony C; Frank, Eibe

    2016-01-01

    This chapter presents an introduction to data mining with machine learning. It gives an overview of various types of machine learning, along with some examples. It explains how to download, install, and run the WEKA data mining toolkit on a simple data set, then proceeds to explain how one might approach a bioinformatics problem. Finally, it includes a brief summary of machine learning algorithms for other types of data mining problems, and provides suggestions about where to find additional information.

  15. The Sharjah Center for Astronomy and Space Sciences (SCASS 2015): Concept and Resources

    Science.gov (United States)

    Naimiy, Hamid M. K. Al

    2015-08-01

    The Sharjah Center for Astronomy and Space Sciences (SCASS) was launched this year 2015 at the University of Sharjah in the UAE. The center will serve to enrich research in the fields of astronomy and space sciences, promote these fields at all educational levels, and encourage community involvement in these sciences. SCASS consists of:The Planetarium: Contains a semi-circle display screen (18 meters in diameter) installed at an angle of 10° which displays high-definition images using an advanced digital display system consisting of seven (7) high-performance light-display channels. The Planetarium Theatre offers a 200-seat capacity with seats placed at highly calculated angles. The Planetarium also contains an enormous star display (Star Ball - 10 million stars) located in the heart of the celestial dome theatre.The Sharjah Astronomy Observatory: A small optical observatory consisting of a reflector telescope 45 centimeters in diameter to observe the galaxies, stars and planets. Connected to it is a refractor telescope of 20 centimeters in diameter to observe the sun and moon with highly developed astronomical devices, including a digital camera (CCD) and a high-resolution Echelle Spectrograph with auto-giving and remote calibration ports.Astronomy, space and physics educational displays for various age groups include:An advanced space display that allows for viewing the universe during four (4) different time periods as seen by:1) The naked eye; 2) Galileo; 3) Spectrographic technology; and 4) The space technology of today.A space technology display that includes space discoveries since the launching of the first satellite in 1940s until now.The Design Concept for the Center (450,000 sq. meters) was originated by HH Sheikh Sultan bin Mohammed Al Qasimi, Ruler of Sharjah, and depicts the dome as representing the sun in the middle of the center surrounded by planetary bodies in orbit to form the solar system as seen in the sky.

  16. A conceptual change analysis of nature of science conceptions: The deep roots and entangled vines of a conceptual ecology

    Science.gov (United States)

    Johnston, Adam Thomas

    This research used theories of conceptual change to analyze learners' understandings of the nature of science (NOS). Ideas regarding the NOS have been advocated as vital aspects of science literacy, yet learners at many levels (students and teachers) have difficulty in understanding these aspects in the way that science literacy reforms advocate. Although previous research has shown the inadequacies in learners' NOS understandings and have documented ways by which to improve some of these understandings, little has been done to show how these ideas develop and why learners' preexisting conceptions of NOS are so resistant to conceptual change. The premise of this study, then, was to describe the nature of NOS conceptions and of the conceptual change process itself by deeply analyzing the conceptions of individual learners. Toward this end, 4 individuals enrolled in a physical science course designed for preservice elementary teachers were selected to participate in a qualitative research study. These individuals answered questionnaires, surveys, direct interview questions, and a variety of interview probes (e.g., critical incidents, responses to readings/videos, reflections on coursework, card sorting tasks, etc.) which were administered throughout the duration of a semester. By utilizing these in-depth, qualitative probes, learners' conceptions were not only assessed but also described in great detail, revealing the source of their conceptions as well as identifying many instances in which a learner's directly stated conception was contradictory to that which was reflected by more indirect probes. As a result of this research, implications regarding NOS conceptions and their development have been described. In addition, various descriptions of conceptual change have been further refined and informed. Especially notable, the influence of a learner's conceptual ecology and its extrarational influences on conceptual change have been highlighted. It is argued that

  17. The Sociology and Social Science of ‘Evil’: Is the Conception of Pedophilia ‘Evil’?

    OpenAIRE

    Javaid, A

    2015-01-01

    This paper approaches 'evil' from sociological and social science perspectives, using them to increase our insight into the concept of 'evil' since they have long neglected direct analyses of 'evil'. For example, sociology has focused on questions of the good, treating its other as an absence or a residual category. Durkheim suggested to avoid using common sense categorisations, without exploring their social construction as social fact. Therefore, because 'evil' is a common sense conception,...

  18. `Models of' versus `Models for'. Toward an Agent-Based Conception of Modeling in the Science Classroom

    Science.gov (United States)

    Gouvea, Julia; Passmore, Cynthia

    2017-03-01

    The inclusion of the practice of "developing and using models" in the Framework for K-12 Science Education and in the Next Generation Science Standards provides an opportunity for educators to examine the role this practice plays in science and how it can be leveraged in a science classroom. Drawing on conceptions of models in the philosophy of science, we bring forward an agent-based account of models and discuss the implications of this view for enacting modeling in science classrooms. Models, according to this account, can only be understood with respect to the aims and intentions of a cognitive agent (models for), not solely in terms of how they represent phenomena in the world (models of). We present this contrast as a heuristic— models of versus models for—that can be used to help educators notice and interpret how models are positioned in standards, curriculum, and classrooms.

  19. Two-year study relating adolescents' self-concept and gender role perceptions to achievement and attitudes toward science

    Science.gov (United States)

    Handley, Herbert M.; Morse, Linda W.

    To assess the developmental relationship of perceptions of self-concept and gender role identification with adolescents' attitudes and achievement in science, a two-year longitudinal study was conducted. A battery of instruments assessing 16 dimensions of self-concept/gender role identifications was employed to predict students' achievement and attitudes toward science. Specific behaviors studied included self-concept in school and science and mathematics, attitudes toward appropriate gender roles in science activities and careers, and self-perceptions of masculine and feminine traits. One hundred and fifty-five adolescents, enrolled, respectively, in the seventh and eighth grades, participated in the study. Through Fisher z transformations of correlation coefficients, differences in relationships between these two sets of variables were studied for males and females during the two years. Results indicated that students' self-concepts/gender role perceptions were related to both achievement and attitudes toward science, but more related to attitudes than achievement. These relationships became more pronounced for students as they matured from seventh to eighth graders.

  20. Analysis of chemical concepts as the basic of virtual laboratory development and process science skills in solubility and solubility product subject

    Science.gov (United States)

    Syafrina, R.; Rohman, I.; Yuliani, G.

    2018-05-01

    This study aims to analyze the concept characteristics of solubility and solubility products that will serve as the basis for the development of virtual laboratory and students' science process skills. Characteristics of the analyzed concepts include concept definitions, concept attributes, and types of concepts. The concept analysis method uses concept analysis according to Herron. The results of the concept analysis show that there are twelve chemical concepts that become the prerequisite concept before studying the solubility and solubility and five core concepts that students must understand in the solubility and Solubility product. As many as 58.3% of the definitions of the concepts contained in high school textbooks support students' science process skills, the rest of the definition of the concept is memorized. Concept attributes that meet three levels of chemical representation and can be poured into a virtual laboratory have a percentage of 66.6%. Type of concept, 83.3% is a concept based on principle; and 16.6% concepts that state the process. Meanwhile, the science process skills that can be developed based on concept analysis are the ability to observe, calculate, measure, predict, interpret, hypothesize, apply, classify, and inference.

  1. Examining the Big-Fish-Little-Pond Effect on Students' Self-Concept of Learning Science in Taiwan Based on the TIMSS Databases

    Science.gov (United States)

    Liou, Pey-Yan

    2014-08-01

    The purpose of this study is to examine the relationship between student self-concept and achievement in science in Taiwan based on the big-fish-little-pond effect (BFLPE) model using the Trends in International Mathematics and Science Study (TIMSS) 2003 and 2007 databases. Hierarchical linear modeling was used to examine the effects of the student-level and school-level science achievement on student self-concept of learning science. The results indicated that student science achievement was positively associated with individual self-concept of learning science in both TIMSS 2003 and 2007. On the contrary, while school-average science achievement was negatively related to student self-concept in TIMSS 2003, it had no statistically significant relationship with student self-concept in TIMSS 2007. The findings of this study shed light on possible explanations for the existence of BFLPE and also lead to an international discussion on the generalization of BFLPE.

  2. Student-generated illustrations and written narratives of biological science concepts: The effect on community college life science students' achievement in and attitudes toward science

    Science.gov (United States)

    Harvey, Robert Christopher

    The purpose of this study was to determine the effects of two conceptually based instructional strategies on science achievement and attitudes of community college biological science students. The sample consisted of 277 students enrolled in General Biology 1, Microbiology, and Human Anatomy and Physiology 1. Control students were comprised of intact classes from the 2005 Spring semester; treatment students from the 2005 Fall semester were randomly assigned to one of two groups within each course: written narrative (WN) and illustration (IL). WN students prepared in-class written narratives related to cell theory and metabolism, which were taught in all three courses. IL students prepared in-class illustrations of the same concepts. Control students received traditional lecture/lab during the entire class period and neither wrote in-class descriptions nor prepared in-class illustrations of the targeted concepts. All groups were equivalent on age, gender, ethnicity, GPA, and number of college credits earned and were blinded to the study. All interventions occurred in class and no group received more attention or time to complete assignments. A multivariate analysis of covariance (MANCOVA) via multiple regression was the primary statistical strategy used to test the study's hypotheses. The model was valid and statistically significant. Independent follow-up univariate analyses relative to each dependent measure found that no research factor had a significant effect on attitude, but that course-teacher, group membership, and student academic characteristics had a significant effect (p < .05) on achievement: (1) Biology students scored significantly lower in achievement than A&P students; (2) Microbiology students scored significantly higher in achievement than Biology students; (3) Written Narrative students scored significantly higher in achievement than Control students; and (4) GPA had a significant effect on achievement. In addition, given p < .08: (1

  3. The Implications for Science Education of Heidegger's Philosophy of Science

    Science.gov (United States)

    Shaw, Robert

    2013-01-01

    Science teaching always engages a philosophy of science. This article introduces a modern philosophy of science and indicates its implications for science education. The hermeneutic philosophy of science is the tradition of Kant, Heidegger, and Heelan. Essential to this tradition are two concepts of truth, truth as correspondence and truth as…

  4. Optical Science: Deploying Technical Concepts and Engaging Participation through Digital Storytelling

    Science.gov (United States)

    Thomas, R. G.; Berry, K.; Arrigo, J.; Hooper, R. P.

    2013-12-01

    Technical 'hands-on' training workshops are designed to bring together scientists, technicians, and program managers from universities, government agencies, and the private sector to discuss methods used and advances made in instrumentation and data analysis. Through classroom lectures and discussions combined with a field-day component, hands-on workshop participants get a 'full life cycle' perspective from instrumentation concepts and deployment to data analysis. Using film to document this process is becoming increasingly more popular, allowing scientists to add a story-telling component to their research. With the availability of high-quality and low priced professional video equipment and editing software, scientists are becoming digital storytellers. The science video developed from the 'hands-on' workshop, Optical Water Quality Sensors for Nutrients: Concepts, Deployment, and Analysis, encapsulates the objectives of technical training workshops for participants. Through the use of still photography, video, interviews, and sound, the short video, An Introduction to CUAHSI's Hands-on Workshops, produced by a co-instructor of the workshop acts as a multi-purpose tool. The 10-minute piece provides an overview of workshop field day activities and works to bridge the gap between classroom learning, instrumentation application and data analysis. CUAHSI 'hands-on' technical workshops have been collaboratively executed with faculty from several universities and with the U.S. Geological Survey. The video developed was designed to attract new participants to these professional development workshops, to stimulate a connection with the environment, to act as a workshop legacy resource, and also serve as a guide for prospective hands-on workshop organizers. The effective use of film and short videos in marketing scientific programs, such as technical trainings, allows scientists to visually demonstrate the technologies currently being employed and to provide a more

  5. Realist Ontology and Natural Processes: A Semantic Tool to Analyze the Presentation of the Osmosis Concept in Science Texts

    Science.gov (United States)

    Spinelli Barria, Michele; Morales, Cecilia; Merino, Cristian; Quiroz, Waldo

    2016-01-01

    In this work, we developed an ontological tool, based on the scientific realism of Mario Bunge, for the analysis of the presentation of natural processes in science textbooks. This tool was applied to analyze the presentation of the concept of osmosis in 16 chemistry and biology books at different educational levels. The results showed that more…

  6. Tannery and Duhem on the concept of a system in the history of philosophy and history of science

    DEFF Research Database (Denmark)

    Catana, Leo

    2011-01-01

    historical disciplines, creating the impression that they were mutually independent. Modern commentators have tended to take these declarations at face value. This article argues that Tannery and Duhem, some of the first historians of science, transferred historiographical concepts from history of philosophy...

  7. A Comparative Study of the Professional and Curricular Conceptions of the Secondary Education Science Teacher in Spain

    Science.gov (United States)

    del Pozo, Martin R.; Martinez-Aznar, M.; Rodrigo, M.; Varela, P.

    2004-01-01

    This article presents a comparison between the professional and curricular conceptions of two samples of secondary education science teachers in Spain, who differed in their years of teaching experience and in whether or not they had participated in a long-duration scientific-pedagogical refresher course. Using the data from their responses to a…

  8. An Examination of the Documentary Film "Einstein and Eddington" in Terms of Nature of Science Themes, Philosophical Movements, and Concepts

    Science.gov (United States)

    Kapucu, Munise Seçkin

    2016-01-01

    This study aims to examine nature of science themes, philosophical movements, and overall concepts covered in the documentary film, "Einstein and Eddington". A qualitative research method was used. In this study, the documentary film "Einstein and Eddington," the viewing time of which is 1 hour and 28 minutes, was used as the…

  9. The Effect of Three Levels of Inquiry on the Improvement of Science Concept Understanding of Elementary School Teacher Candidates

    Science.gov (United States)

    Artayasa, I. Putu; Susilo, Herawati; Lestari, Umie; Indriwati, Sri Endah

    2018-01-01

    This research aims to compare the effect of the implementation of three levels of inquiry: level 2 (structured inquiry), level 3 (guided inquiry), and level 4 (open inquiry) toward science concept understanding of elementary school teacher candidates. This is a quasi experiment research with pre-test post-test nonequivalent control group design.…

  10. Assessing Student Knowledge of Chemistry and Climate Science Concepts Associated with Climate Change: Resources to Inform Teaching and Learning

    Science.gov (United States)

    Versprille, Ashley; Zabih, Adam; Holme, Thomas A.; McKenzie, Lallie; Mahaffy, Peter; Martin, Brian; Towns, Marcy

    2017-01-01

    Climate change is one of the most critical problems facing citizens today. Chemistry faculty are presented with the problem of making general chemistry content simultaneously relevant and interesting. Using climate science to teach chemistry allows faculty to help students learn chemistry content in a rich context. Concepts related to…

  11. Minnesota 4-H Science of Agriculture Challenge: Infusing Agricultural Science and Engineering Concepts into 4-H Youth Development

    Science.gov (United States)

    Rice, Joshua E.; Rugg, Bradley; Davis, Sharon

    2016-01-01

    Youth involved in 4-H projects have been engaged in science-related endeavors for years. Since 2006, 4-H has invested considerable resources in the advancement of science learning. The new Minnesota 4-H Science of Agriculture Challenge program challenges 4-H youth to work together to identify agriculture-related issues in their communities and to…

  12. Effects of different forms of physiology instruction on the development of students' conceptions of and approaches to science learning.

    Science.gov (United States)

    Lin, Yi-Hui; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-03-01

    The purpose of this study was to investigate students' conceptions of and approaches to learning science in two different forms: internet-assisted instruction and traditional (face-to-face only) instruction. The participants who took part in the study were 79 college students enrolled in a physiology class in north Taiwan. In all, 46 of the participants were from one class and 33 were from another class. Using a quasi-experimental research approach, the class of 46 students was assigned to be the "internet-assisted instruction group," whereas the class of 33 students was assigned to be the "traditional instruction group." The treatment consisted of a series of online inquiry activities. To explore the effects of different forms of instruction on students' conceptions of and approaches to learning science, two questionnaires were administered before and after the instruction: the Conceptions of Learning Science Questionnaire and the Approaches to Learning Science Questionnaire. Analysis of covariance results revealed that the students in the internet-assisted instruction group showed less agreement than the traditional instruction group in the less advanced conceptions of learning science (such as learning as memorizing and testing). In addition, the internet-assisted instruction group displayed significantly more agreement than the traditional instruction group in more sophisticated conceptions (such as learning as seeing in a new way). Moreover, the internet-assisted instruction group expressed more orientation toward the approaches of deep motive and deep strategy than the traditional instruction group. However, the students in the internet-assisted instruction group also showed more surface motive than the traditional instruction group did.

  13. Introducing Engineering Design to a Science Teaching Methods Course through Educational Robotics and Exploring Changes in Views of Preservice Elementary Teachers

    Science.gov (United States)

    Kaya, Erdogan; Newley, Anna; Deniz, Hasan; Yesilyurt, Ezgi; Newley, Patrick

    2017-01-01

    Engineering has become an important subject in the Next Generation Science Standards (NGSS), which have raised engineering design to the same level as scientific inquiry when teaching science disciplines at all levels. Therefore, preservice elementary teachers (PSTs) need to know how to integrate the engineering design process (EDP) into their…

  14. Effect of science teaching on the young child's concept of piagetian physical causality: Animism and dynamism

    Science.gov (United States)

    Wolfinger, Donna M.

    The purpose of this research was to determine whether the young child's understanding of physical causality is affected by school science instruction. Sixty-four subjects, four and one-half through seven years of age, received 300 min of instruction designed to affect the subject's conception of causality as reflected in animism and dynamism. Instruction took place for 30 min per day on ten successive school days. Pretesting was done to allow a stratified random sample to be based on vocabulary level and developmental stage as well as on age and gender. Post-testing consisted of testing of developmental level and level within the causal relations of animism and dynamism. Significant differences (1.05 level) were found between the experimental and control groups for animism. Within the experimental group, males differed significantly (1.001 level) from females. The elimination of animism appeared to have occurred. For dynamism, significant differences (0.05 level) were found only between concrete operational subjects in the experimental and control groups, indicating a concrete level of operations was necessary if dynamism was to be affected. However, a review of interview protocols indicated that subjects classified as nonanimistic had learned to apply a definition rather than to think in a nonanimistic manner.

  15. Innovative learning model for improving students’ argumentation skill and concept understanding on science

    Science.gov (United States)

    Nafsiati Astuti, Rini

    2018-04-01

    Argumentation skill is the ability to compose and maintain arguments consisting of claims, supports for evidence, and strengthened-reasons. Argumentation is an important skill student needs to face the challenges of globalization in the 21st century. It is not an ability that can be developed by itself along with the physical development of human, but it must be developed under nerve like process, giving stimulus so as to require a person to be able to argue. Therefore, teachers should develop students’ skill of arguing in science learning in the classroom. The purpose of this study is to obtain an innovative learning model that are valid in terms of content and construct in improving the skills of argumentation and concept understanding of junior high school students. The assessment of content validity and construct validity was done through Focus Group Discussion (FGD), using the content and construct validation sheet, book model, learning video, and a set of learning aids for one meeting. Assessment results from 3 (three) experts showed that the learning model developed in the category was valid. The validity itself shows that the developed learning model has met the content requirement, the student needs, state of the art, strong theoretical and empirical foundation and construct validity, which has a connection of syntax stages and components of learning model so that it can be applied in the classroom activities

  16. A study of elementary teachers' conceptions of nature of science and their beliefs about the developmental appropriateness and importance of nature of science throughout a professional development program

    Science.gov (United States)

    Adibelli, Elif

    This qualitative study aimed to explore the changes in elementary science teachers' conceptions of nature of science (NOS) and their beliefs about the developmental appropriateness and importance of NOS after participating in an academic, year-long professional development program (PDP) as well as the factors facilitating these changes. The PDP consisted of two phases. In the first phase, the participants received NOS training designed with an explicit-reflective instructional approach. In the second phase, the participants implemented several NOS training activities in their classrooms. Four elementary science teachers who volunteered and completed all components of the PDP (i.e., the NOS training and the NOS teaching) comprised the participants of the present study. A multiple-embedded case study design was employed to explore the changes in the elementary science teachers' conceptions of NOS and their beliefs about the developmental appropriateness and importance of NOS. The study data were collected from multiple sources. The primary data sources included (a) Views of Nature of Science Elementary School Version 2 (VNOS-D2) questionnaire (Lederman & Khishfe, 2002), (b) Ideas about Science for Early Elementary (K-4) Students questionnaire (Sweeney, 2010), and (c) follow-up semi-structured interviews. The secondary data sources included videotaping of meetings with teachers, reflective field notes, and artifacts produced by teachers and their students. Data were analyzed using Yin's (1994, 2003) analytic tactics of pattern matching, explanation building, and cross-case synthesis. The findings of the study revealed that the elementary science teachers showed gradual, but substantial changes in their conceptions, and beliefs about the developmental appropriateness and importance of the NOS aspects over the course of participation in the PDP. Moreover, the participants identified nine components in the PDP that facilitated these changes in their conceptions, and

  17. An Exercise to Introduce Power

    Science.gov (United States)

    Seier, Edith; Liu, Yali

    2013-01-01

    In introductory statistics courses, the concept of power is usually presented in the context of testing hypotheses about the population mean. We instead propose an exercise that uses a binomial probability table to introduce the idea of power in the context of testing a population proportion. (Contains 2 tables, and 2 figures.)

  18. How Role Play Addresses the Difficulties Students Perceive when Writing Reflectively about the Concepts They are Learning in Science

    Science.gov (United States)

    Millar, Susan

    A fundamental problem which confronts Science teachers is the difficulty many students experience in the construction, understanding and remembering of concepts. This is more likely to occur when teachers adhere to a Transmission model of teaching and learning, and fail to provide students with opportunities to construct their own learning. Social construction, followed by individual reflective writing, enables students to construct their own understanding of concepts and effectively promotes deep learning. This method of constructing knowledge in the classroom is often overlooked by teachers as they either have no knowledge of it, or do not know how to appropriate it for successful teaching in Science. This study identifies the difficulties which students often experience when writing reflectively and offers solutions which are likely to reduce these difficulties. These solutions, and the use of reflective writing itself, challenge the ideology of the Sydney Genre School, which forms the basis of the attempt to deal with literacy in the NSW Science Syllabus. The findings of this investigation support the concept of literacy as the ability to use oral and written language, reading and listening to construct meaning. The investigation demonstrates how structured discussion, role play and reflective writing can be used to this end. While the Sydney Genre School methodology focuses on the structure of genre as a prerequisite for understanding concepts in Science, the findings of this study demonstrate that students can use their own words to discuss and write reflectively as they construct scientific concepts for themselves. Social construction and reflective writing can contribute to the construction of concepts and the development of metacognition in Science. However, students often experience difficulties when writing reflectively about scientific concepts they are learning. In this investigation, students identified these difficulties as an inability to understand

  19. Analyzing Science Activities in Force and Motion Concepts: A Design of an Immersion Unit

    Science.gov (United States)

    Ayar, Mehmet C.; Aydeniz, Mehmet; Yalvac, Bugrahan

    2015-01-01

    In this paper, we analyze the science activities offered at 7th grade in the Turkish science and technology curriculum along with addressing the curriculum's original intent. We refer to several science education researchers' ideas, including Chinn & Malhotra's (Science Education, 86:175--218, 2002) theoretical framework and Edelson's (1998)…

  20. Second-career science teachers' classroom conceptions of science and engineering practices examined through the lens of their professional histories

    Science.gov (United States)

    Antink-Meyer, Allison; Brown, Ryan A.

    2017-07-01

    Science standards in the U.S. have shifted to emphasise science and engineering process skills (i.e. specific practices within inquiry) to a greater extent than previous standards' emphases on broad representations of inquiry. This study examined the alignment between second-career science teachers' personal histories with the latter and examined the extent to which they viewed that history as a factor in their teaching. Four, second-career science teachers with professional backgrounds in engineering, environmental, industrial, and research and development careers participated. Through the examination of participants' methodological and contextual histories in science and engineering, little evidence of conflict with teaching was found. They generally exemplified the agency and motivation of a second-career teacher-scientist that has been found elsewhere [Gilbert, A. (2011). There and back again: Exploring teacher attrition and mobility with two transitioning science teachers. Journal of Science Teacher Education, 22(5), 393-415; Grier, J. M., & Johnston, C. C. (2009). An inquiry into the development of teacher identities in STEM career changers. Journal of Science Teacher Education, 20(1), 57-75]. The methodological and pedagogical perspectives of participants are explored and a discussion of the implications of findings for science teacher education are presented.

  1. The concepts of nanotechnology as a part of physics education in high school and in interactive science museum

    Science.gov (United States)

    Kolářová, Lucie; Rálišová, Ema

    2017-01-01

    The advancements in nanotechnology especially in medicine and in developing new materials offer interesting possibilities for our society. It is not only scientists and engineers who need a better understanding of these new technologies but it is also important to prepare the young people and the general public on impact of nanotechnology on their life. Knowledge from this field likewise provides the opportunities to engage and motivate high school students for the study of science. Although, the concepts of nanoscience and nanotechnology are not a part of Czech high school physics curriculum they can be successfully integrated into regular curriculum in appropriate places. Because it is an interdisciplinary field, it also provides an opportunity for the interdisciplinary connections of physics, chemistry and biology. Many concepts for understanding the nanoworld can be shown by the simple activities and experiments and it is not a problem to demonstrate these experiments in each classroom. This paper presents the proposal for integration of the concepts of nanoscience and nanotechnologies into the high school physics curriculum, and the involvement of some of these concepts into the instructional program for middle and high school students which was realized in interactive science museum Fort Science in Olomouc. As a part of the program there was a quantitative questionnaire and its goal was to determine the effectiveness of the program and how students are satisfied with it.

  2. The Research as Natural Sciences Teaching Strategy: Pedagogical Conceptions of Secondary Education Teachers at Instituto Pedagógico Nacional

    Directory of Open Access Journals (Sweden)

    Dayana Milena Bejarano Muñoz

    2017-01-01

    Full Text Available This text is a look to the research as a transformation and generation axis of knowledge among middle school students, based on the analysis of teachers’ pedagogical conceptions at Instituto Pedagógico Nacional around natural sciences research and teaching. A qualitative methodology from the interpretive approach was implemented, which allowed, from case study, to establish pedagogical conceptions of secondary education teachers in natural sciences about research. In addition, pedagogical elements are proposed about inclusion of school research in secondary education as natural sciences teaching strategy, which contributes to the construction and transformation of educational experiences. As a conclusion, teachers’ trend of conceptions was towards positivism, which is part of disciplinary and quantitative researches, looking at science from the application of scientific method. Even though, pedagogical interpretive and critical-social current begins to be included, by socializing quantitative findings obtained generating social changes from the intervention with the community. Likewise, teachers recognize the academic, social, interpersonal and working benefits obtained in a research process, such as generating and deepening of knowledge, monitoring of methodical processes in search of information and data collection, interpretation and reasoning about phenomena, and critical development from their daily lives, all leading students to be actors of transformation processes from their own interest.

  3. The concept of a 'microstructural fingerprint' for the characterization of samples in nuclear forensic science

    International Nuclear Information System (INIS)

    Ray, I.L.F.; Schubert, A.; Wallenius, M.

    2002-01-01

    In the examination of unknown specimens of nuclear materials the primary parameter of importance is the 'Isotopic Fingerprint' of the sample, mainly the ratios of the different isotopes of U and Pu which are present. In some cases, however, where no clear isotopic signature is found, or where there is a mixture of materials present, the isotopic fingerprint alone is not sufficient for a unique identification to be made. In this paper the concept of a 'Microstructural Fingerprint' of a sample is proposed and developed, which is complementary to the 'Isotopic Fingerprint' for the characterisation of materials which are under investigation in the field of nuclear forensic science. The proposal combines the techniques of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Analysis (EDX), to define the microstructure of a suspect sample, a combination of techniques which has not been used before in nuclear forensic science. The microstructural information is particularly important in the case of powder samples, for the following reasons: 1) An essential prerequisite to an isotopic analysis, for example by Thermal Ionisation Mass Spectrometry (TIMS), is the information whether a powder sample consists of a single component, or is a mixture of several distinct components. If the material is multicomponent it must be separated and the individual components analysed separately. 2) Powder samples mainly represent precursor stages in the nuclear fuel cycle, and the microstructural analysis gives information on the production process and conditions (for example, the grain size in PuO 2 platelets produced by the calcination of oxalate precipitate, and the size and thickness distributions of the platelets themselves). 3) Powder samples can be mixed with other compounds with the deliberate intention of confusing the chemical or isotopic analysis of suspect materials. However the microstructural fingerprint of a component cannot

  4. Opportunities to Learn in School and at Home: How can they predict students' understanding of basic science concepts and principles?

    Science.gov (United States)

    Wang, Su; Liu, Xiufeng; Zhao, Yandong

    2012-09-01

    As the breadth and depth of economic reforms increase in China, growing attention is being paid to equalities in opportunities to learn science by students of various backgrounds. In early 2009, the Chinese Ministry of Education and Ministry of Science and Technology jointly sponsored a national survey of urban eighth-grade students' science literacy along with their family and school backgrounds. The present study focused on students' understanding of basic science concepts and principles (BSCP), a subset of science literacy. The sample analyzed included 3,031 students from 109 randomly selected classes/schools. Correlation analysis, one-way analysis of variance, and two-level linear regression were conducted. The results showed that having a refrigerator, internet, more books, parents purchasing books and magazines related to school work, higher father's education level, and parents' higher expectation of the education level of their child significantly predicted higher BSCP scores; having siblings at home, owning an apartment, and frequently contacting teachers about the child significantly predicted lower BSCP scores. At the school level, the results showed that being in the first-tier or key schools, having school libraries, science popularization galleries, computer labs, adequate equipment for teaching, special budget for teacher training, special budget for science equipment, and mutual trust between teachers and students significantly predicated higher BSCP scores; and having science and technology rooms, offering science and technology interest clubs, special budget for science curriculum development, and special budget for science social practice activities significantly predicted lower BSCP scores. The implications of the above findings are discussed.

  5. Student understanding development in chemistry concepts through constructivist-informed laboratory and science camp process in secondary school

    Science.gov (United States)

    Pathommapas, Nookorn

    2018-01-01

    Science Camp for Chemistry Concepts was the project which designed to provide local students with opportunities to apply chemistry concepts and thereby developing their 21st century skills. The three study purposes were 1) to construct and develop chemistry stations for encouraging students' understandings in chemistry concepts based on constructivist-informed laboratory, 2) to compare students' understandings in chemistry concepts before and after using chemistry learning stations, and 3) to study students' satisfactions of using their 21st century skills in science camp activities. The research samples were 67 students who attended the 1-day science camp. They were levels 10 to 11 students in SumsaoPittayakarn School, UdonThani Province, Thailand. Four constructivist-informed laboratory stations of chemistry concepts were designed for each group. Each station consisted of a chemistry scenario, a question, answers in tier 1 and supporting reasons in tier 2, and 4 sets of experimental instruments. Four to five-member subgroups of four student groups parallel participated in laboratory station for an hour in each station. Student activities in each station concluded of individual pretest, group prediction, experimental design, testing out and collection data, interpreting the results, group conclusion, and individual post-test. Data collection was done by station mentors using two-tier multiple choice questions, students' written work and interviews. Data triangulation was used for interpreting and confirming students' understandings of chemistry concepts which divided into five levels, Sound Understanding (SU), Partial Understanding (PU), Specific Misconception (SM), No Understanding (NU) and No Response (NR), before and after collaborating at each station. The study results found the following: 1) four constructivist-laboratory stations were successfully designed and used to investigate student' understandings in chemistry concepts via collaborative workshop of

  6. Exploring the Relationship between Secondary Science Teachers' Subject Matter Knowledge and Knowledge of Student Conceptions While Teaching Evolution by Natural Selection

    Science.gov (United States)

    Lucero, Margaret M.; Petrosino, Anthony J.; Delgado, Cesar

    2017-01-01

    The fundamental scientific concept of evolution occurring by natural selection is home to many deeply held alternative conceptions and considered difficult to teach. Science teachers' subject matter knowledge (SMK) and the pedagogical content knowledge (PCK) component of knowledge of students' conceptions (KOSC) can be valuable resources for…

  7. A framework for employing femtosatellites in planetary science missions, including a proposed mission concept for Titan

    Science.gov (United States)

    Perez, Tracie Renea Conn

    Over the past 15 years, there has been a growing interest in femtosatellites, a class of tiny satellites having mass less than 100 grams. Research groups from Peru, Spain, England, Canada, and the United States have proposed femtosat designs and novel mission concepts for them. In fact, Peru made history in 2013 by releasing the first - and still only - femtosat tracked from LEO. However, femtosatellite applications in interplanetary missions have yet to be explored in detail. An interesting operations concept would be for a space probe to release numerous femtosatellites into orbit around a planetary object of interest, thereby augmenting the overall data collection capability of the mission. A planetary probe releasing hundreds of femtosats could complete an in-situ, simultaneous 3D mapping of a physical property of interest, achieving scientific investigations not possible for one probe operating alone. To study the technical challenges associated with such a mission, a conceptual mission design is proposed where femtosats are deployed from a host satellite orbiting Titan. The conceptual mission objective is presented: to study Titan's dynamic atmosphere. Then, the design challenges are addressed in turn. First, any science payload measurements that the femtosats provide are only useful if their corresponding locations can be determined. Specifically, what's required is a method of position determination for femtosatellites operating beyond Medium Earth Orbit and therefore beyond the help of GPS. A technique is presented which applies Kalman filter techniques to Doppler shift measurements, allowing for orbit determination of the femtosats. Several case studies are presented demonstrating the usefulness of this approach. Second, due to the inherit power and computational limitations in a femtosatellite design, establishing a radio link between each chipsat and the mothersat will be difficult. To provide a mathematical gain, a particular form of forward error

  8. Final Project Report "Advanced Concept Exploration For Fast Ignition Science Program"

    Energy Technology Data Exchange (ETDEWEB)

    STEPHENS, Richard B.; McLEAN, Harry M.; THEOBALD, Wolfgang; AKLI, Kramer; BEG, Farhat N.; SENTOKU, Yasuiko; SCHUMACHER, Douglas; WEI, Mingsheng S.

    2014-01-31

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using the laser (or heavy ion beam or Z pinch) drive pulse (10’s of ns) to create a dense fuel and a second, much shorter (~10 ps) high intensity pulse to ignite a small region of it. There are two major physics issues concerning this concept; controlling the laser-induced generation of large electron currents and their propagation through high density plasmas. This project has addressed these two significant scientific issues in Relativistic High Energy Density (RHED) physics. Learning to control relativistic laser matter interaction (and the limits and potential thereof) will enable a wide range of applications. While these physics issues are of specific interest to inertial fusion energy science, they are also important for a wide range of other HED phenomena, including high energy ion beam generation, isochoric heating of materials, and the development of high brightness x-ray sources. Generating, controlling, and understanding the extreme conditions needed to advance this science has proved to be challenging: Our studies have pushed the boundaries of physics understanding and are at the very limits of experimental, diagnostic, and simulation capabilities in high energy density laboratory physics (HEDLP). Our research strategy has been based on pursuing the fundamental physics underlying the Fast Ignition (FI) concept. We have performed comprehensive study of electron generation and transport in fast-ignition targets with experiments, theory, and numerical modeling. A major issue is that the electrons produced in these experiments cannot be measured directly—only effects due to their transport. We focused mainly on x-ray continuum photons from bremsstrahlung

  9. Interdisciplinary Approaches at Institutions of Higher Education: Teaching Information Systems Concepts to Students of Non-Computer Science Programs

    Directory of Open Access Journals (Sweden)

    Roland Schwald

    2011-07-01

    Full Text Available The aim of this paper is to present a curriculum development concept for teaching information systems content to students enrolled in non-computer science programs by presenting examples from the Business Administration programs at Albstadt-Sigmaringen University, a state university located in Southern Germany. The main focus of this paper therefore is to describe this curriculum development concept. Since this concept involves two disciplines, i.e. business administration and computer science, the author argues that it is necessary to define the roles of one discipline for the other and gives an example on how this could be done. The paper acknowledges that the starting point for the development of a curriculum such as one for a business administration program will be the requirements of the potential employers of the graduates. The paper continues to recommend the assignment of categorized skills and qualifications, such as knowledge, social, methodological, and decision making skills to the different parts of the curricula in question for the development of such a curriculum concept. After the mapping of skills and courses the paper describes how specific information systems can be used in courses, especially those with a specific focus on methodological skills. Two examples from Albstadt-Sigma-ringen University are being given. At the end of the paper the author explains the implications and limitations of such a concept, especially for programs that build on each other, as is the case for some Bachelor and Master programs. The paper concludes that though some elements of this concept are transferable, it is still necessary that every institution of higher education has to take into consideration its own situation to develop curricula concepts. It provides recommendations what issues every institution should solve for itself.

  10. 191 Students' Self-Concept and Their Achievement in Basic Science ...

    African Journals Online (AJOL)

    User

    2011-07-21

    Jul 21, 2011 ... Achievement Test in Basic showed Science (SATBS) were employed as .... Higher Studies; Teacher-Students opinion and found out that students .... Factors and Pupils Leaning Outcome in Bended Primary Science Project,.

  11. Applying design thinking concepts to rejuvenate the discipline of operations research/ management science

    CSIR Research Space (South Africa)

    Viljoen, NM

    2009-10-01

    Full Text Available problems, thereby bridging the gap between Management Science and Management Consulting. Instead of flogging the proponents of the Management Science domain for losing touch with reality through their “mathematical masturbation" (Ackoff [1]), Corbett...

  12. The Relationship between Preservice Science Teachers' Attitude toward Astronomy and Their Understanding of Basic Astronomy Concepts

    Science.gov (United States)

    Bektasli, Behzat

    2016-01-01

    Turkish preservice science teachers have been taking a two-credit astronomy class during the last semester of their undergraduate program since 2010. The current study aims to investigate the relationship between preservice science teachers' astronomy misconceptions and their attitudes toward astronomy. Preservice science teachers were given an…

  13. Introducing the new EDMS

    CERN Multimedia

    The EDMS Team

    2014-01-01

    We are very pleased to announce the arrival of a brand new EDMS: EDMS 6. The CERN Engineering and Equipment Data Management Service just got better than ever! EDMS is the de facto interface for all engineering related data and more. Currently there are more than 1.2 million documents and nearly 2 million files stored in EDMS.   What’s new? The first thing you will notice is the look and feel of EDMS 6; the new design not only makes it more modern but also more intuitive, so that the system is easier to use, regardless of your experience with EDMS. Whilst we have kept the key concepts, we have introduced more functionality and improved navigation within the interface, allowing for better performance to help you in your daily work. We have also added a personal slant to EDMS 6 so that you can now customise your list of favourite objects. Modifying data in EDMS is much simpler, allowing you to view all object data in a single window.  More functionality will be added in the ...

  14. Mathematics and Science Teachers Professional Development with Local Businesses to Introduce Middle and High School Students to Opportunities in STEM Careers

    Science.gov (United States)

    Miles, Rhea; Slagter van Tryon, Patricia J.; Mensah, Felicia Moore

    2015-01-01

    TechMath is a professional development program that forms collaborations among businesses, colleges, and schools for the purpose of promoting Science, Technology, Engineering, and Mathematics (STEM) careers. TechMath has provided strategies for creating highquality professional development by bringing together teachers, students, and business…

  15. Projects for the implementation of science technology society approach in basic concept of natural science course as application of optical and electrical instruments’ material

    Science.gov (United States)

    Satria, E.

    2018-03-01

    Preservice teachers in primary education should be well equipped to meet the challenges of teaching primary science effectively in 21century. The purpose of this research was to describe the projects for the implementation of Science-Technology-Society (STS) approach in Basic Concept of Natural Science course as application of optical and electrical instruments’ material by the preservice teachers in Elementary Schools Teacher Education Program. One of the reasons is the lack of preservice teachers’ ability in making projects for application of STS approach and optical and electrical instruments’ material in Basic Concept of Natural Science course. This research applied descriptive method. The instrument of the research was the researcher himself. The data were gathered through observation and documentation. Based on the results of the research, it was figured out that preservice teachers, in groups, were creatively and successful to make the projects of optical and electrical instruments assigned such as projector and doorbell. It was suggested that the construction of the instruments should be better (fixed and strong structure) and more attractive for both instruments, and used strong light source, high quality images, and it could use speaker box for projector, power battery, and heat sink for electrical instruments.

  16. Improving learning with science and social studies text using computer-based concept maps for students with disabilities.

    Science.gov (United States)

    Ciullo, Stephen; Falcomata, Terry S; Pfannenstiel, Kathleen; Billingsley, Glenna

    2015-01-01

    Concept maps have been used to help students with learning disabilities (LD) improve literacy skills and content learning, predominantly in secondary school. However, despite increased access to classroom technology, no previous studies have examined the efficacy of computer-based concept maps to improve learning from informational text for students with LD in elementary school. In this study, we used a concurrent delayed multiple probe design to evaluate the interactive use of computer-based concept maps on content acquisition with science and social studies texts for Hispanic students with LD in Grades 4 and 5. Findings from this study suggest that students improved content knowledge during intervention relative to a traditional instruction baseline condition. Learning outcomes and social validity information are considered to inform recommendations for future research and the feasibility of classroom implementation. © The Author(s) 2014.

  17. Introducing International Geneva

    CERN Multimedia

    2015-01-01

    Geneva is variously known as the city of peace, the world’s smallest metropolis and a place where great ideas have taken form. It has been the home to philosophers such as Rousseau and Voltaire. It was the centre of the Calvinist reformation and birthplace of the Red Cross.   I hardly need to tell you that it is also a city of great international collaboration in science. Little wonder, then, that over the years, Geneva has developed into the world’s capital of internationalism in the broadest sense of the word. Yet while we all know of the existence of modern day International Geneva, how many of us really know what it does? Here at CERN, we’re about to find out. Next week sees the first in a series of talks at the Laboratory from the heads of some of the institutions that make up International Geneva. On Friday, 20 February, it will be my pleasure to introduce you to Michael Møller, Acting Director-General of the United Nations Office at Geneva (UNO...

  18. Technology in the curriculum: A vehicle for the development of children's understanding of science concepts through problem solving

    Science.gov (United States)

    Jane, Beverley; Smith, Leanne

    1992-12-01

    This research was carried out over a period of ten months with children in Grades 2 and 3 (aged 7 and 8) who were participating in a sequence of technology activities. Since the introduction into Victorian primary schools of The Technology Studies Framework P-10 (Crawford, 1988), more teachers are including technology studies in their classrooms and by so doing may assist children's understanding of science concepts. Children are being exposed to science phenomena related to the technology activities and Technology Studies may be a way of providing children with science experiences. ‘Technology Studies’ in this context refers to children carrying out practical problem solving tasks which can be completed without any particular scientific knowledge. Participation in the technology activities may encourage children to become actively involved, thereby facilitating an exploration of the related science concepts. The project identified the importance of challenge in relation to the children's involvement in the technology activities and the conference paper (available from the first author) discusses particular topics in terms of the balance between cognitive/metacognitive and affective influences (Baird et al., 1990)

  19. THE EFFECTIVENESS OF E-LAB TO IMPROVE GENERIC SCIENCE SKILLS AND UNDERSTANDING THE CONCEPT OF PHYSICS

    Directory of Open Access Journals (Sweden)

    J. Siswanto

    2016-01-01

    Full Text Available The aimed of this sudy are: (1 investigate the effectiveness of E-Lab to improve generic science skills and understanding the concepts oh physics; and (2 investigate the effect of generic science skills towards understanding the concept of students after learning by using the E-Lab. The method used in this study is a pre-experimental design with one group pretest-posttest. Subjects were students of Physics Education in University PGRI Semarang with methode random sampling. The results showed that: (1 learning to use E-Lab effective to increase generic science skills of students; and (2 Generic science skills give positive effect on student conceptual understanding on the material of the photoelectric effect, compton effect, and electron diffraction. Tujuan penelitian ini yaitu: (1 menyelidiki efektifitas E-Lab untuk meningkatkan keterampilan generik sains dan pemahaman konsep mahasiswa; dan (2  menyelidiki pengaruh keterampilan generik sains terhadap pemahaman konsep mahasiswa setelah dilakukan pembelajaran dengan menggunakan E-Lab. Metode penelitian yang digunakan dalam penelitian ini adalah pre-experimental dengan desain one group pretest-posttest. Subjek penelitian adalah mahasiswa Program Studi Pendidikan  Fisika  Universitas PGRI Semarang, dengan metode pengambilan sampel penelitian secara random. Hasil penelitian menunjukkan bahwa bahwa: (1 pembelajaran menggunakan E-Lab efektif untuk meningkatkan keterampilan generik sains mahasiswa; dan  (2 Keterampilan generik sains berpengaruh positif terhadap pemahaman konsep mahasiswa pada materi efek fotolistrik, efek compton, dan difraksi elektron. 

  20. Concept mapping as a promising method to bring practice into science

    NARCIS (Netherlands)

    van Bon, M.J.H.; van de Goor, L.A.M.; Holsappel, J.C.; Kuunders, T.J.M.; Jacobs-van der Bruggen, M.A.M.; te Brake, J.H.M.; van Oers, J.A.M.

    2014-01-01

    Objective Concept mapping is a method for developing a conceptual framework of a complex topic for use as a guide to evaluation or planning. In concept mapping, thoughts and ideas are represented in the form of a picture or map, the content of which is determined by a group of stakeholders. This

  1. A Comparison of Exemplary Biology, Chemistry, Earth Science, and Physics Teachers' Conceptions and Enactment of Inquiry

    Science.gov (United States)

    Breslyn, Wayne; McGinnis, J. Randy

    2012-01-01

    Teachers' use of inquiry has been studied largely without regard for the disciplines in which teachers practice. As a result, there is no theoretical understanding of the possible role of discipline in shaping teachers' conceptions and enactment of inquiry. In this mixed-methods study, conceptions and enactment of inquiry for 60 National Board…

  2. New and innovative exhibition concepts at science centres using communication technologies

    DEFF Research Database (Denmark)

    Quistgaard, Nana; Kahr-Højland, Anne

    2010-01-01

    Will new communication technologies mean the death of science centres, as Bradburne predicted 12 years ago-or are they alive and kicking? And if science centres do survive, what role could they possibly play in today's society? What mechanisms underlie the development of science centres...... direction, e.g., regarding the emphasised importance of facilitating scientific literacy and critical reflection. We argue that new communication technologies hold potential to accommodate new trends and that science centres have shown to be enterprising in their use of such technologies, e.g., mobile...

  3. Strategic Approaches to Trading Science Objectives Against Measurements and Mission Design: Mission Architecture and Concept Maturation at the Jet Propulsion Laboratory

    Science.gov (United States)

    Case, K. E.; Nash, A. E., III

    2017-12-01

    Earth Science missions are increasingly challenged to improve our state of the art through more sophisticated hypotheses and inclusion of advanced technologies. However, science return needs to be constrained to the cost environment. Selectable mission concepts are the result of an overlapping Venn diagram of compelling science, feasible engineering solutions, and programmatic acceptable costs, regardless of whether the science investigation is Earth Venture or Decadal class. Since the last Earth Science and Applications Decadal Survey released in 2007, many new advanced technologies have emerged, in instrument, SmallSat flight systems, and launch service capabilities, enabling new mission architectures. These mission architectures may result in new thinking about how we achieve and collect science measurements, e.g., how to improve time-series measurements. We will describe how the JPL Formulation Office is structured to integrate methods, tools, and subject matter experts to span the mission concept development lifecycle, and assist Principal Investigators in maturing their mission ideas into realizable concepts.

  4. Survey of stress, anxiety, depression and self-concept of students of Fasa University of medical sciences, 2010

    Directory of Open Access Journals (Sweden)

    Majid Najafi Kalyani

    2013-09-01

    Full Text Available Background & Objectives: Studying periods in university is very important for students. Because of the problems, this period is usually accompanied with mental status changes of students. The aim of this study was the assessment of psychological variables (stress, anxiety and depression and self-concept of students. Materials & Methods: In this cross-sectional study, all the students studying at Fasa University of Medical Sciences in the academic year 89-88 were selected through census sampling method. The DASS-21 was used to assess stress, anxiety and depression of students and in order to evaluate the status of their self-concept; the Carl Rogers questionnaire was used. Data analysis was performed with SPSS software using descriptive and inferential statistics (t test, ANOVA, Chi square and Pearson correlation. Results: The results of this study showed that 76% of students had stress, 56.4% anxiety and 53.1% depression, and 69/3% had weak or negative self-concepts. There was a statistically significant correlation between high stress, anxiety and depression with negative self-concept (P<0.001.Conclusion: High stress, anxiety and depression and also a significant correlation between increased stress, anxiety and depression with negative and weak self-concept of students were found. It is necessary to devote more careful attention to mental health issues of students and have appropriate interventions.

  5. Views of nature of science questionnaire: Toward valid and meaningful assessment of learners' conceptions of nature of science

    Science.gov (United States)

    Lederman, Norm G.; Abd-El-Khalick, Fouad; Bell, Randy L.; Schwartz, Renée S.

    2002-08-01

    Helping students develop informed views of nature of science (NOS) has been and continues to be a central goal for kindergarten through Grade 12 (K-12) science education. Since the early 1960s, major efforts have been undertaken to enhance K-12 students and science teachers' NOS views. However, the crucial component of assessing learners' NOS views remains an issue in research on NOS. This article aims to (a) trace the development of a new open-ended instrument, the Views of Nature of Science Questionnaire (VNOS), which in conjunction with individual interviews aims to provide meaningful assessments of learners' NOS views; (b) outline the NOS framework that underlies the development of the VNOS; (c) present evidence regarding the validity of the VNOS; (d) elucidate the use of the VNOS and associated interviews, and the range of NOS aspects that it aims to assess; and (e) discuss the usefulness of rich descriptive NOS profiles that the VNOS provides in research related to teaching and learning about NOS. The VNOS comes in response to some calls within the science education community to go back to developing standardized forced-choice paper and pencil NOS assessment instruments designed for mass administrations to large samples. We believe that these calls ignore much of what was learned from research on teaching and learning about NOS over the past 30 years. The present state of this line of research necessitates a focus on individual classroom interventions aimed at enhancing learners' NOS views, rather than on mass assessments aimed at describing or evaluating students' beliefs.

  6. Describing the concept of infinite among art, literature, philosophy and science: a pedagogical-didactic overview

    Directory of Open Access Journals (Sweden)

    Paolo Di Sia

    2014-09-01

    Full Text Available In this work an interesting overview concerning the human attempts in the description of the concept of infinite is presented. This peculiar concept represents a cardinal point in the history of human culture, because man, with different modalities, has always compared with it. Historically the main followed streams were two: the rational and the irrational approaches. In the first approach we find disciplines such as philosophy, mathematics and physics; the second is the domain of literature, arts and religion. Some activities for developing ideas about the intuitive concept of the infinity at the level of compulsory education will be also given.

  7. Communicating Science Concepts through Art: 21st-Century Skills in Practice

    Science.gov (United States)

    Buczynski, Sandy; Ireland, Kathleen; Reed, Sherri; Lacanienta, Evelyn

    2012-01-01

    There is a dynamic synergy between the visual arts and the natural sciences. For example, science relies heavily on individuals with visual-art skills to render detailed illustrations, depicting everything from atoms to zebras. Likewise, artists apply analytic, linear, and logical thinking to compose and scale their work of art. These parallel…

  8. New and innovative exhibition concepts at science centres using communication technologies

    DEFF Research Database (Denmark)

    Quistgaard, Nana; Kahr-Højland, Anne

    2010-01-01

    ? These are the questions driving this article. As a point of departure, we point to an outspoken plea for change at science centres, a movement away from showing the wonders of science toward a context intended to engage visitors in debate regarding STS-issues1. On the societal level, tendencies seem to point in the same...... phones....

  9. Science Fiction Movies as a Tool for Revealing Students' Knowledge and Alternative Conceptions

    Science.gov (United States)

    Ongel-Erdal, Sevinc; Sonmez, Duygu; Day, Rob

    2004-01-01

    According to renowned physicist Stephen Hawking, "science fiction is useful both for stimulating the imagination and for diffusing fear of the future." Indeed, several studies suggest that using science fiction movies as a teaching aid can improve both motivation and achievement. However, if a movie's plot crosses the line between good…

  10. C. S. Peirce's Complementary and Transdisciplinary Conception of Science and Religion

    DEFF Research Database (Denmark)

    Brier, Søren

    2012-01-01

    C. S. Peirce was very mathematical, logical and empirical in the foundations of his thinking and he saw no principal limits to the knowledge obtainable by science. But the transdisciplinary view he developed differs substantially from the unity science of logical positivism in that he worked...

  11. Girls' and Boys' Academic Self-Concept in Science in Single-Sex and Coeducational Classes

    Science.gov (United States)

    Simpson, Amber; Che, S. Megan; Bridges, William C., Jr.

    2016-01-01

    Recently, single-sex classes within public coeducational schools have proliferated across the USA; yet, we still know little about whether and how single-sex science classes influence adolescents' attitude and affect toward science. This exploratory study expands upon our current understanding by investigating the extent in which female and male…

  12. Seeking missing pieces in science concept assessments: Reevaluating the Brief Electricity and Magnetism Assessment through Rasch analysis

    Science.gov (United States)

    Ding, Lin

    2014-02-01

    Discipline-based science concept assessments are powerful tools to measure learners' disciplinary core ideas. Among many such assessments, the Brief Electricity and Magnetism Assessment (BEMA) has been broadly used to gauge student conceptions of key electricity and magnetism (E&M) topics in college-level introductory physics courses. Differing from typical concept inventories that focus only on one topic of a subject area, BEMA covers a broad range of topics in the electromagnetism domain. In spite of this fact, prior studies exclusively used a single aggregate score to represent individual students' overall understanding of E&M without explicating the construct of this assessment. Additionally, BEMA has been used to compare traditional physics courses with a reformed course entitled Matter and Interactions (M&I). While prior findings were in favor of M&I, no empirical evidence was sought to rule out possible differential functioning of BEMA that may have inadvertently advantaged M&I students. In this study, we used Rasch analysis to seek two missing pieces regarding the construct and differential functioning of BEMA. Results suggest that although BEMA items generally can function together to measure the same construct of application and analysis of E&M concepts, several items may need further revision. Additionally, items that demonstrate differential functioning for the two courses are detected. Issues such as item contextual features and student familiarity with question settings may underlie these findings. This study highlights often overlooked threats in science concept assessments and provides an exemplar for using evidence-based reasoning to make valid inferences and arguments.

  13. Seeking missing pieces in science concept assessments: Reevaluating the Brief Electricity and Magnetism Assessment through Rasch analysis

    Directory of Open Access Journals (Sweden)

    Lin Ding

    2014-02-01

    Full Text Available Discipline-based science concept assessments are powerful tools to measure learners’ disciplinary core ideas. Among many such assessments, the Brief Electricity and Magnetism Assessment (BEMA has been broadly used to gauge student conceptions of key electricity and magnetism (E&M topics in college-level introductory physics courses. Differing from typical concept inventories that focus only on one topic of a subject area, BEMA covers a broad range of topics in the electromagnetism domain. In spite of this fact, prior studies exclusively used a single aggregate score to represent individual students’ overall understanding of E&M without explicating the construct of this assessment. Additionally, BEMA has been used to compare traditional physics courses with a reformed course entitled Matter and Interactions (M&I. While prior findings were in favor of M&I, no empirical evidence was sought to rule out possible differential functioning of BEMA that may have inadvertently advantaged M&I students. In this study, we used Rasch analysis to seek two missing pieces regarding the construct and differential functioning of BEMA. Results suggest that although BEMA items generally can function together to measure the same construct of application and analysis of E&M concepts, several items may need further revision. Additionally, items that demonstrate differential functioning for the two courses are detected. Issues such as item contextual features and student familiarity with question settings may underlie these findings. This study highlights often overlooked threats in science concept assessments and provides an exemplar for using evidence-based reasoning to make valid inferences and arguments.

  14. GN and C Subsystem Concept for Safe Precision Landing of the Proposed Lunar MARE Robotic Science Mission

    Science.gov (United States)

    Carson, John M., III; Johnson, Andrew E.; Anderson, F. Scott; Condon, Gerald L.; Nguyen, Louis H.; Olansen, Jon B.; Devolites, Jennifer L.; Harris, William J.; Hines, Glenn D.; Lee, David E.; hide

    2016-01-01

    The Lunar MARE (Moon Age and Regolith Explorer) Discovery Mission concept targets delivery of a science payload to the lunar surface for sample collection and dating. The mission science is within a 100-meter radius region of smooth lunar maria terrain near Aristarchus crater. The location has several small, sharp craters and rocks that present landing hazards to the spacecraft. For successful delivery of the science payload to the surface, the vehicle Guidance, Navigation and Control (GN&C) subsystem requires safe and precise landing capability, so design infuses the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) and a gimbaled, throttleable LOX/LCH4 main engine. The ALHAT system implemented for Lunar MARE is a specialization of prototype technologies in work within NASA for the past two decades, including a passive optical Terrain Relative Navigation (TRN) sensor, a Navigation Doppler Lidar (NDL) velocity and range sensor, and a Lidar-based Hazard Detection (HD) sensor. The landing descent profile is from a retrograde orbit over lighted terrain with landing near lunar dawn. The GN&C subsystem with ALHAT capabilities will deliver the science payload to the lunar surface within a 20-meter landing ellipse of the target location and at a site having greater than 99% safety probability, which minimizes risk to safe landing and delivery of the MARE science payload to the intended terrain region.

  15. The Astronomy and Space Science Concept Inventory: Assessment Instruments Aligned with the K-12 National Science Standards

    Science.gov (United States)

    Sadler, Philip M.

    2011-01-01

    We report on the development of an item test bank and associated instruments based on those K-12 national standards which involve astronomy and space science. Utilizing hundreds of studies in the science education research literature on student misconceptions, we have constructed 211 unique items that measure the degree to which students abandon such ideas for accepted scientific views. Piloted nationally with 7599 students and their 88 teachers spanning grades 5-12, the items reveal a range of interesting results, particularly student difficulties in mastering the NRC Standards and AAAS Benchmarks. Teachers generally perform well on items covering the standards of the grade level at which they teach, exhibiting few misconceptions of their own. Teachers dramatically overestimate their students’ performance, perhaps because they are unaware of their students’ misconceptions. Examples are given showing how the developed instruments can be used to assess the effectiveness of instruction and to evaluate the impact of professional development activities for teachers.

  16. Science literacy and meaningful learning: status of public high school students from Rio de Janeiro face to molecular biology concepts

    Directory of Open Access Journals (Sweden)

    Daniel Alves Escodino

    2013-12-01

    Full Text Available In this work we aimed to determine the level of Molecular Biology (MB science literacy of students from two Brazilian public schools which do not consider the rogerian theory for class planning and from another institution, Cap UERJ, which favours this theory. We applied semiclosed questionnaires specific to the different groups of science literacy levels. Besides, we have asked them to perform conceptual maps with MB concepts in order to observe if they have experienced meaningful learning. Finally, we prepared MB classes for students of the three schools, considering their conceptual maps and tried to evaluate, through a second map execution, if the use of alternative didactics material, which consider meaningful learning process, would have any effect over the appropriation of new concepts. We observed that most students are placed at Functional literacy level. Nonetheless, several students from CAp were also settled at the higher Conceptual and Procedural levels. We found that most students have not experienced meaningful learning and that the employment of didactic material and implementation of proposals which consider the cognitive structure of the students had a significant effect on the appropriation of several concepts.

  17. Conceptions of the Nature of Science and Technology: a Study with Children and Youths in a Non-Formal Science and Technology Education Setting

    Science.gov (United States)

    Rocha Fernandes, Geraldo W.; Rodrigues, António M.; Ferreira, Carlos Alberto

    2017-05-01

    This study investigated some of the aspects that characterise the understanding of the Nature of Science (NOS) and Nature of Technology (NOT) of 20 children and youths from different countries who perform scientific and technological activities in a non-formal teaching and learning setting. Data were collected using a questionnaire and semistructured interviews. A categorical instrument was developed to analyse the participants' conceptions of the following subjects: (1) the role of the scientist, (2) NOS and (3) NOT. The results suggest that the participants had naïve conceptions of NOS that are marked by empirical and technical-instrumental views. They characterised NOT primarily as an instrumental apparatus, an application of knowledge and something important that is part of their lives. They exhibited a stereotypical understanding of the role of the scientist (development of methods, demonstration of facts, relationship with technological devices, etc.).

  18. The concept of landscape education at school level with respect to the directions of the science of landscape

    Science.gov (United States)

    Szczęsna, Joanna

    2010-01-01

    School education is both a starting point for the development of various scientific disciplines (school educates future researchers) and the result of science. The landscape research is conducted within many scientific disciplines and has a long tradition. Lanscape education, which is the result of a scientific dimension, is implemented in primary school under the nature subject. Primary school education is the only level at which the geographical contents are carried out on landscape. The landscape is of interest to many disciplines: geography, architecture, social sciences and the arts. In recent years, there were many studies which contained an overview of the main strands of the science of landscape, presented the differences in the meaning of the concept and objectives of individual research disciplines. These studies have become the ground for the characterization of the concept of landscape education implemented in Polish school and its evaluation in terms of scientific achievements. A review of educational purposes, the basic content of education and achievements of students, demonstrate the influence of multiple scientific disciplines in school landscape education. The most significant share of the course content are achievements of geography disciplines, particularly: physical geography, environmental protection and landscape ecology. Other scientific fields: literature, art, psychology, sociology, and architecture do not have any impact on the school landscape education or their impact remains marginal.

  19. Data-Intensive Science Meets Inquiry-Driven Pedagogy: Interactive Big Data Exploration, Threshold Concepts, and Liminality

    Science.gov (United States)

    Ramachandran, R.; Nair, U. S.; Word, A.

    2014-12-01

    Threshold concepts in any discipline are the core concepts an individual must understand in order to master a discipline. By their very nature, these concepts are troublesome, irreversible, integrative, bounded, discursive, and reconstitutive. Although grasping threshold concepts can be extremely challenging for each learner as s/he moves through stages of cognitive development relative to a given discipline, the learner's grasp of these concepts determines the extent to which s/he is prepared to work competently and creatively within the field itself. The movement of individuals from a state of ignorance of these core concepts to one of mastery occurs not along a linear path but in iterative cycles of knowledge creation and adjustment in liminal spaces - conceptual spaces through which learners move from the vaguest awareness of concepts to mastery, accompanied by understanding of their relevance, connectivity, and usefulness relative to questions and constructs in a given discipline. With the explosive growth of data available in atmospheric science, driven largely by satellite Earth observations and high-resolution numerical simulations, paradigms such as that of data-intensive science have emerged. These paradigm shifts are based on the growing realization that current infrastructure, tools and processes will not allow us to analyze and fully utilize the complex and voluminous data that is being gathered. In this emerging paradigm, the scientific discovery process is driven by knowledge extracted from large volumes of data. In this presentation, we contend that this paradigm naturally lends to inquiry-driven pedagogy where knowledge is discovered through inductive engagement with large volumes of data rather than reached through traditional, deductive, hypothesis-driven analyses. In particular, data-intensive techniques married with an inductive methodology allow for exploration on a scale that is not possible in the traditional classroom with its typical

  20. Pedagogical practices in Youth and Adult Education: concepts and practices of Sciences teachers

    OpenAIRE

    Karen Martins Limberger; Valderez Marina do Rosário Lima; Renata Medina Silva

    2014-01-01

    The present work aimed to analyze how the pedagogical practices of Sciences teachers in Youth and Adults Education (YAE) are developed. The study had a qualitative approach and employed semi-structured recorded interviews for data survey, which was later evaluated through the Discursive Textual Analysis. It was verified that YAE Sciences teachers’ planning is based on regular education textbooks and focuses on conceptual contents. Teachers use different teaching strategies, such as movies pic...

  1. Artificial intelligence applications concepts for the remote sensing and earth science community

    Science.gov (United States)

    Campbell, W. J.; Roelofs, L. H.

    1984-01-01

    The following potential applications of AI to the study of earth science are described: (1) intelligent data management systems; (2) intelligent processing and understanding of spatial data; and (3) automated systems which perform tasks that currently require large amounts of time by scientists and engineers to complete. An example is provided of how an intelligent information system might operate to support an earth science project.

  2. Moving Beyond Concepts: Getting Urban High School Students Engaged in Science through Cognitive Processes

    Science.gov (United States)

    Singh, Renu

    In order to maintain its global position, the United States needs to increase the number of students opting for science careers. Science teachers face a formidable challenge. Students are not choosing science because they do not think coursework is interesting or applies to their lives. These problems often compound for adolescents in urban areas. This action research investigated an innovation aimed at engaging a group of adolescents in the science learning process through cognitive processes and conceptual understanding. It was hoped that this combination would increase students' engagement in the classroom and proficiency in science. The study was conducted with 28 juniors and sophomores in an Environmental Science class in an urban high school with a student body of 97% minority students and 86% students receiving free and reduced lunch. The study used a mixed-methods design. Instruments included a pre- and post-test, Thinking Maps, transcripts of student discourse, and a two-part Engagement Observation Instrument. Data analysis included basic descriptives and a grounded theory approach. Findings show students became engaged in activities when cognitive processes were taught prior to content. Furthermore it was discovered that Thinking Maps were perceived to be an easy tool to use to organize students' thinking and processing. Finally there was a significant increase in student achievement. From these findings implications for future practice and research are offered.

  3. Concept Maps for Improved Science Reasoning and Writing: Complexity Isn’t Everything

    Science.gov (United States)

    Dowd, Jason E.; Duncan, Tanya; Reynolds, Julie A.

    2015-01-01

    A pervasive notion in the literature is that complex concept maps reflect greater knowledge and/or more expert-like thinking than less complex concept maps. We show that concept maps used to structure scientific writing and clarify scientific reasoning do not adhere to this notion. In an undergraduate course for thesis writers, students use concept maps instead of traditional outlines to define the boundaries and scope of their research and to construct an argument for the significance of their research. Students generate maps at the beginning of the semester, revise after peer review, and revise once more at the end of the semester. Although some students revised their maps to make them more complex, a significant proportion of students simplified their maps. We found no correlation between increased complexity and improved scientific reasoning and writing skills, suggesting that sometimes students simplify their understanding as they develop more expert-like thinking. These results suggest that concept maps, when used as an intervention, can meet the varying needs of a diverse population of student writers. PMID:26538388

  4. Inquiry Science Learning and Teaching: a Comparison Between the Conceptions and Attitudes of Pre-service Elementary Teachers in Hong Kong and the United States

    Science.gov (United States)

    Lee, Yeung Chung; Lee, Carole Kwan-Ping; Lam, Irene Chung-Man; Kwok, Ping Wai; So, Winnie Wing-Mui

    2018-01-01

    International studies of science education, such as the Trends in Mathematics and Science Study (TIMSS), have revealed considerable national disparities in students' achievements in science education. The results have prompted many nations to compare their science education systems and practices to those of others, to gain insights for improvement. Teacher training and professional development are key educational components that have not attracted as much attention as they deserve in international comparative studies. This study compares the conceptions and attitudes of pre-service elementary teachers (PSETs) in Hong Kong and the United States with respect to inquiry science learning and teaching at the beginning of the semester before the start of the science methods course. PSETs' conceptions and attitudes in the two countries were compared by means of a questionnaire with both Likert-type and open-ended questions. Quantitative data were analyzed using exploratory factor analysis and inferential statistics, while qualitative data were analyzed through the systematic categorization of PSETs' responses into broad themes and subthemes to reflect patterns in their conceptions of and attitudes toward inquiry science learning and teaching. The results revealed a complex interplay between PSETs' conceptions of and attitudes toward inquiry science learning and teaching. The results shed light on the effects of sociocultural contexts and have important implications for the design of science methods courses.

  5. On the importance of a rich embodiment in the grounding of concepts: perspectives from embodied cognitive science and computational linguistics.

    Science.gov (United States)

    Thill, Serge; Padó, Sebastian; Ziemke, Tom

    2014-07-01

    The recent trend in cognitive robotics experiments on language learning, symbol grounding, and related issues necessarily entails a reduction of sensorimotor aspects from those provided by a human body to those that can be realized in machines, limiting robotic models of symbol grounding in this respect. Here, we argue that there is a need for modeling work in this domain to explicitly take into account the richer human embodiment even for concrete concepts that prima facie relate merely to simple actions, and illustrate this using distributional methods from computational linguistics which allow us to investigate grounding of concepts based on their actual usage. We also argue that these techniques have applications in theories and models of grounding, particularly in machine implementations thereof. Similarly, considering the grounding of concepts in human terms may be of benefit to future work in computational linguistics, in particular in going beyond "grounding" concepts in the textual modality alone. Overall, we highlight the overall potential for a mutually beneficial relationship between the two fields. Copyright © 2014 Cognitive Science Society, Inc.

  6. New Concepts of Quality Assurance in Analytical Chemistry: Will They Influence the Way We Conduct Science in General?

    DEFF Research Database (Denmark)

    Andersen, Jens; Glasdam, Sidsel-Marie; Larsen, Daniel Bo

    2016-01-01

    , but in contemporary science two approaches to the implementation of statistics in decision making are used: 1. Short-term precision and 2. long-term precision. Both approaches are valid and both are described using the same methods of statistics. However, they lead to completely different conclusions and decisions....... Despite good intentions and new concepts, as well as practices and procedures for quality assurance, it is shown by these two examples that these efforts may be inadequate or mislead scientists into making major mistakes in the decision-making process. A set of equations is supplied, which are based......According to the guide Vocabulary in Metrology (VIM3) (JCGM, 2008), the definition of the concepts of trueness and accuracy has been revised, which has an important impact on analytical chemistry. Additionally, Eurachem/CITAC has published a new edition of the guide to Quantifying Uncertainty...

  7. The influence of an inquiry professional development program on secondary science teachers' conceptions and use of inquiry teaching

    Science.gov (United States)

    Lotter, Christine

    2005-11-01

    This research investigated nine secondary science teachers' conceptions and use of inquiry teaching throughout a year-long professional development program. The professional development program consisted of a two-week summer inquiry institute and research experience in university scientists' laboratories, as well as three academic year workshops. Teachers' conceptions of inquiry teaching were established through both qualitative interviews and a quantitative instrument given before and after the summer institute and again at the end of the academic year. Videotapes of all nine teachers presenting inquiry lessons in their own classrooms were evaluated using an observation protocol that measured the teachers' degree of reform teaching. Three of the teachers were chosen for an in-depth case study of their classroom teaching practices. Data collected from each of the case study teachers included videotapes from classroom observations, responses to an inquiry survey, and transcripts from two additional qualitative interviews. Students' responses to their teachers' use of inquiry teaching were also investigated in the case study classrooms. Through their participation in the professional development experience, the teachers gained a deeper understanding of how to implement inquiry practices in their classrooms. The teachers gained confidence and practice with inquiry methods through developing and presenting their institute-developed inquiry lessons, through observing other teachers' lessons, and participating as students in the workshop inquiry activities. Data analysis revealed that the teachers' knowledge of inquiry was necessary but not sufficient for their implementation of inquiry teaching practices. The teachers' conceptions of science, their students, effective teaching practices, and the purpose of education were found to have a direct effect on the type and amount of inquiry instruction performed in the high school classrooms. The research findings suggest that

  8. Timing Sunsets with Smartphones: Proof of Concept for a Citizen Science Project that Quantifies the Atmosphere and Supports Astronomical Observations

    Science.gov (United States)

    Wilson, Teresa; Kantamneni, A.; Bartlett, J. L.; Nemiroff, R. J.

    2014-01-01

    Current models that predict the times of sunrise and sunset are only accurate, typically, to a few minutes. Variations in atmospheric refraction contribute to the differences between computed and observed times. At high latitudes, slight changes in refraction can cause the Sun to remain continuously above the horizon instead of appearing to set. A substantial collection of observations would help constrain atmospheric models, which should, in turn, complement astronomical observations through improved understanding of air stability, refraction, and transparency. We report on a small project recording data from a few smartphones as a proof of concept for a possible larger scale citizen science effort.

  9. Systematically reviewing the potential of concept mapping technologies to promote self-regulated learning in primary and secondary science education

    DEFF Research Database (Denmark)

    Stevenson, Matt P.; Hartmeyer, Rikke; Bentsen, Peter

    2017-01-01

    We systematically searched five databases to assess the potential of concept mapping-based technologies to promote self-regulated learning in science education. Our search uncovered 17 relevant studies that investigated seven different types of learning technologies. We performed a narrative....... Computer software was particularly useful for developing cognitive strategies through ease of use. Teaching agents were particularly useful for developing metacognitive strategies by coupling visualisation of knowledge patterns with performance monitoring, aided by a teaching metaphor. Finally, mobile...... devices and teaching agents were most effective in enhancing motivation. Effects on knowledge gains remain unclear due to small sample sizes....

  10. An Application of the Cosmologic Concepts and Astronomical Symbols in the Ancient Medical Science and Astrology Systems

    Science.gov (United States)

    Pikichyan, H. V.

    2015-07-01

    Employing the cosmologic concepts and astronomical symbols, the features of the ancient subjective approach of the achievement or perception of the knowledge and its systematic delivery ways are presented. In particular, the ancient systems of the natural medical science and the art of astrology are discussed, whereas the relations of the five cosmological elements, three dynamical agents, nine luminaries and twelve zodiac signs are applied. It is pointed out some misunderstandings encountered in the contemporary interpretation on the evaluation of ancient systems of the knowledge.

  11. Concepts of modern science: the textbook for undergraduate academic / under total. ed. by S.A. Lebedev. 4th ed. M.: Publisher Yurayt, 2015. 374 pp.

    Directory of Open Access Journals (Sweden)

    Nikolai I. Gubanov

    2015-11-01

    Full Text Available The article review the 4th edition of the well-proven in teaching in local high schools textbook concepts of modern education. The book is written by a group of philosophers and natural scientists of Moscow State University named after M.V. Lomonosov. Lead Author and editor of a textbook made by well-known Russian specialist in the history and philosophy of science Lebedev S.A. Textbook prepared in accordance with the relevant requirements of the Federal state educational standard of higher education. Revealed the following topics: the unity of science and the humanities, the physical picture of the world in its development, the concept of space, time and determinism, the main content of synergy, the concept of modern chemistry, biology, ecology, geography, geology, systematic approach. The content of the textbook is based on an analysis of the dynamics and the current state of natural science and its methodological and philosophical problems. The authors relied on the evaluation and interpretation of the concepts of modern science outstanding foreign and domestic scientists. In the presentation of all the above concepts in the textbook of modern science permeates thought complex, contradictory and historically volatile nature of natural science, the close relationship between the natural sciences to the needs, demands and potential of spiritual and material culture of his time.

  12. Teaching and learning grade 7 science concepts by elaborate analogies: Mainstream and East and South Asian ESL students' experiences

    Science.gov (United States)

    Kim, Judy Joo-Hyun

    This study explored the effectiveness of an instructional tool, elaborate analogy, in teaching the particle theory to both Grade 7 mainstream and East or South Asian ESL students. Ten Grade 7 science classes from five different schools in a large school district in the Greater Toronto area participated. Each of the ten classes were designated as either Group X or Y. Using a quasi-experimental counterbalanced design, Group X students were taught one science unit using the elaborate analogies, while Group Y students were taught by their teachers' usual methods of teaching. The instructional methods used for Group X and Y were interchanged for the subsequent science unit. Quantitative data were collected from 95 students (50 mainstream and 45 ESL) by means of a posttest and a follow-up test for each of the units. When the differences between mainstream and East or South Asian ESL students were analyzed, the results indicate that both groups scored higher on the posttests when they were instructed with elaborate analogies, and that the difference between the two groups was not significant. That is, the ESL students, as well as the mainstream students, benefited academically when they were instructed with the elaborate analogies. The students obtained higher inferential scores on the posttest when their teacher connected the features of less familiar and more abstract scientific concepts to the features of the familiar and easy-to-visualize concept of school dances. However, after two months, the students were unable to recall inferential content knowledge. This is perhaps due to the lack of opportunity for the students to represent and test their initial mental models. Rather than merely employing elaborate analogies, perhaps, science teachers can supplement the use of elaborate analogies with explicit guidance in helping students to represent and test the coherence of their mental models.

  13. Bricolage, métissage, hybridity, heterogeneity, diaspora: concepts for thinking science education in the 21st century

    Science.gov (United States)

    Roth, Wolff-Michael

    2008-12-01

    The ongoing globalization leads to an increasing scattering of cultural groups into other cultural groups where they the latter continue to be affiliated with one another thereby forming diasporic identities. Diasporic identities emerge from a process of cultural bricolage that leads to cultural métissage and therefore hybridity and heterogeneity. To escape the hegemonies that arise from the ontology of the same—which, as I show, undergirds much of educational thought—I ground the notion of diaspora in the ontology of difference. Difference and heterogeneity are the norm, not something less than sameness and purity. This ontology allows framing bricolage, métissage, hybridity, and heterogeneity as positive concepts for theorizing the experiences of learning science and identity not only as a consequence of cross-national migrations—Mexicans in the US, Asians and Europeans in Canada, Africans in Europe—but also the experience of native speakers who, in science classrooms, find themselves (temporarily) at home away from home. My exemplary analyses show how the very fact of cultural and linguistic differences within themselves gives rise to the possibility of symbolic violence in science classrooms even to those whose ethos is or is closest to the one at the heart of science.

  14. The Critical Concepts. Final Version: English Language Arts, Mathematics, and Science

    Science.gov (United States)

    Simms, Julia A.

    2016-01-01

    Research indicates that most standards documents articulate far more content than can be taught in the time available to K-12 teachers. In response, analysts at Marzano Research sought to identify, as objectively as possible, a focused set of critical concepts for each K-12 grade level in the content areas of English language arts (ELA),…

  15. Employing Inquiry-Based Computer Simulations and Embedded Scientist Videos To Teach Challenging Climate Change and Nature of Science Concepts

    Science.gov (United States)

    Cohen, E.

    2013-12-01

    . The students in the video group had marked improvement compared to the non-video group on questions regarding modeling as a tool for representing objects and processes of science modeling aspects as evident by multiple data sources. The findings from the dissertation have potential impacts on improving Nature of Science (NOS) concepts around modeling by efficiently embedding short authentic scientific videos that can be easily used by many educators. Compared to published assessments by the American Association for the Advancement of Science (AAAS), due to the curriculum interventions both groups scored higher than the average United States middle school student on many NOS and climate content constructs.

  16. Life Sciences Research Facility automation requirements and concepts for the Space Station

    Science.gov (United States)

    Rasmussen, Daryl N.

    1986-01-01

    An evaluation is made of the methods and preliminary results of a study on prospects for the automation of the NASA Space Station's Life Sciences Research Facility. In order to remain within current Space Station resource allocations, approximately 85 percent of planned life science experiment tasks must be automated; these tasks encompass specimen care and feeding, cage and instrument cleaning, data acquisition and control, sample analysis, waste management, instrument calibration, materials inventory and management, and janitorial work. Task automation will free crews for specimen manipulation, tissue sampling, data interpretation and communication with ground controllers, and experiment management.

  17. Examining the Big-Fish-Little-Pond Effect on Students' Self-Concept of Learning Science in Taiwan Based on the TIMSS Databases

    Science.gov (United States)

    Liou, Pey-Yan

    2014-01-01

    The purpose of this study is to examine the relationship between student self-concept and achievement in science in Taiwan based on the big-fish-little-pond effect (BFLPE) model using the Trends in International Mathematics and Science Study (TIMSS) 2003 and 2007 databases. Hierarchical linear modeling was used to examine the effects of the…

  18. Introducing Simulation via the Theory of Records

    Science.gov (United States)

    Johnson, Arvid C.

    2011-01-01

    While spreadsheet simulation can be a useful method by which to help students to understand some of the more advanced concepts in an introductory statistics course, introducing the simulation methodology at the same time as these concepts can result in student cognitive overload. This article describes a spreadsheet model that has been…

  19. Science vs. Sports: Motivation and Self-Concepts of Participants in Different School Competitions

    Science.gov (United States)

    Höffler, Tim Niclas; Bonin, Victoria; Parchmann, Ilka

    2017-01-01

    Competitions are discussed as a measure to foster students' interest, especially for highly gifted and talented students. In the current study, participants of a cognitive school competition in science were compared to non-participants of the same age group (14-15) who either did not participate in any competition or who participated in a…

  20. Urban Elementary Students' Conceptions of Learning Goals for Agricultural Science and Technology

    Science.gov (United States)

    Trexler, Cary J.; Hess, Alexander J.; Hayes, Kathryn N.

    2013-01-01

    Nationally, both science and agricultural education professional organizations have identified agriculture as a fundamental technology to be studied by students, with the goal of achieving an understanding of the agri-food system necessary for democratic participation. Benchmarks representing the content that K-12 children need to understand about…

  1. Communicating Science Concepts to Individuals with Visual Impairments Using Short Learning Modules

    Science.gov (United States)

    Stender, Anthony S.; Newell, Ryan; Villarreal, Eduardo; Swearer, Dayne F.; Bianco, Elisabeth; Ringe, Emilie

    2016-01-01

    Of the 6.7 million individuals in the United States who are visually impaired, 63% are unemployed, and 59% have not attained an education beyond a high school diploma. Providing a basic science education to children and adults with visual disabilities can be challenging because most scientific learning relies on visual demonstrations. Creating…

  2. Intuition and Insight: Two Concepts That Illuminate the Tacit in Science Education

    Science.gov (United States)

    Brock, Richard

    2015-01-01

    Tacit knowledge, that is knowledge not expressible in words, may play a role in learning science, yet it is difficult to study directly. Intuition and insight, two processes that link the tacit and the explicit, are proposed as a route to investigating tacit knowledge. Intuitions are defined as tacit hunches or feelings that influence thought with…

  3. An Evaluation of Multimodal Interactions with Technology while Learning Science Concepts

    Science.gov (United States)

    Anastopoulou, Stamatina; Sharples, Mike; Baber, Chris

    2011-01-01

    This paper explores the value of employing multiple modalities to facilitate science learning with technology. In particular, it is argued that when multiple modalities are employed, learners construct strong relations between physical movement and visual representations of motion. Body interactions with visual representations, enabled by…

  4. Experiencing Wireless Sensor Network Concepts in an Undergraduate Computer Science Curriculum

    NARCIS (Netherlands)

    Zwartjes, G.J.; van de Voort, M.; Dil, B.J.; Havinga, Paul J.M.

    2009-01-01

    Incorporating Embedded Systems courses in a general and broad Computer Science undergraduate curriculum can be a challenging task. The lack of experience with relevant tools and programming languages tends to limit the amount material that can be included in courses on this area. This, combined with

  5. Academic Studies, Science, and Democracy: Conceptions of Subject Matter from Harris to Thorndike

    Science.gov (United States)

    Watras, Joseph

    2009-01-01

    When Ellen Condliffe Lagemann described what she called the troubling history of education research, she claimed that, in the early years of the twentieth century, Edward Lee Thorndike's narrow model of science replaced John Dewey's more open ideas. According to Lagemann, sexism was an important reason for Thorndike's triumph. In describing the…

  6. Cosmogenic nuclides principles, concepts and applications in the earth surface sciences

    CERN Document Server

    Dunai, Tibor J

    2010-01-01

    This is the first book to provide a comprehensive and state-of-the-art introduction to the novel and fast-evolving topic of in-situ produced cosmogenic nuclides. It presents an accessible introduction to the theoretical foundations, with explanations of relevant concepts starting at a basic level and building in sophistication. It incorporates, and draws on, methodological discussions and advances achieved within the international CRONUS (Cosmic-Ray Produced Nuclide Systematics) networks. Practical aspects such as sampling, analytical methods and data-interpretation are discussed in detail and an essential sampling checklist is provided. The full range of cosmogenic isotopes is covered and a wide spectrum of in-situ applications are described and illustrated with specific and generic examples of exposure dating, burial dating, erosion and uplift rates and process model verification. Graduate students and experienced practitioners will find this book a vital source of information on the background concepts and...

  7. Pedagogically aware academics’ conceptions of change agency in the fields of science and technology

    OpenAIRE

    Clavert, Maria; Löfström, Erika; Nevgi, Anne

    2015-01-01

    Pedagogical transformations in universities are typically explored as ‘top down’ attempts or in the context of training programs targeted towards educating more pedagogically aware individuals. In this study, promoting pedagogical development is explored on a community level as change agency: acting as a broker between the discipline-specific and pedagogical communities of practice in order to establish mutually shared new concepts and practices of teaching and learning. Thirteen pedagogicall...

  8. Assessment of primary school students’ level of understanding the concepts of 2nd grade life sciences course based on different variables

    Directory of Open Access Journals (Sweden)

    Altıntaş Gülşen

    2016-01-01

    Full Text Available The course of Life Sciences is one of the pivot courses taught in the first three years of primary school. Ensuring children get to know their environment and gain correct information related to their problems by making them investigate their natural and socio-cultural environment as well as providing them with necessary information, skills and behaviors for environmental adaptation are among the main purposes of Life Sciences course. The concepts to be instilled in students in line with these purposes are important. Since concepts are mostly intellectual and non-physical, they can only exist tangibly through examples. This study aims to assess Primary School Students’ Level of Understanding the Concepts of 2nd Grade Life Sciences Course Based on Different Variables. 17 concepts included in the 2nd Grade Life Sciences course within the subject of School Excitement were addressed within the study, and students were requested to define and exemplify these concepts. A total of 102 students from five different primary schools of upper-middle and lower socioeconomic classes located in Manisa and Istanbul were included in the study in line with the intentional maximum diversity sample selection. The answers given by students for each concept were categorized and analyzed in terms of liking or disliking home, school, technology and the course of Life Sciences.

  9. Game Design to Introduce Pets

    Directory of Open Access Journals (Sweden)

    Wahyu Febriyanto

    2017-02-01

    Full Text Available Introduction of animals from an early age can make children to love animals, especially pets. Children are the easiest group to receive stimulation, such as for example the stimulation of introducing children to the pet. Various media are used by parents to introduce pet. For examplle, by the media of books, multimedia, etc. One of the interesting media to introduce pet is with game. Of these problems then need to know how to make concept and design game to introduced pets for children age 3-6 years. In this paper, author formulate how to make pet game design include game genre, user interface design, image model selection, game characters, and game engine. The expected design of this game can be formulation of learning through proper game as a learning tool children. Game design derived from this writing by using model 2-dimensional images are funny and interesting coloring. And combines several game genres into one, or use the mini games that children do not get bored quickly. Design of GUI (Graphical User Interface is made as simple as possible so that children easily understand in playing this game, but also must use an interesting image

  10. Introducing positive psychology to SLA

    Directory of Open Access Journals (Sweden)

    Sarah Mercer

    2014-01-01

    Full Text Available Positive psychology is a rapidly expanding subfield in psychology that has important implications for the field of second language acquisition (SLA. This paper introduces positive psychology to the study of language by describing its key tenets. The potential contributions of positive psychology are contextualized with reference to prior work, including the humanistic movement in language teaching, models of motivation, the concept of an affective filter, studies of the good language learner, and the concepts related to the self. There are reasons for both encouragement and caution as studies inspired by positive psychology are undertaken. Papers in this special issue of SSLLT cover a range of quantitative and qualitative methods with implications for theory, research, and teaching practice. The special issue serves as a springboard for future research in SLA under the umbrella of positive psychology.

  11. Introduced species as evolutionary traps

    Science.gov (United States)

    Schlaepfer, Martin A.; Sherman, P.W.; Blossey, B.; Runge, M.C.

    2005-01-01

    Invasive species can alter environments in such a way that normal behavioural decision-making rules of native species are no longer adaptive. The evolutionary trap concept provides a useful framework for predicting and managing the impact of harmful invasive species. We discuss how native species can respond to changes in their selective regime via evolution or learning. We also propose novel management strategies to promote the long-term co-existence of native and introduced species in cases where the eradication of the latter is either economically or biologically unrealistic.

  12. Introduced Terrestrial Species Richness

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data represent predicted current distributions of all introduced mammals, birds, reptiles, amphibians and butterflies in the Middle-Atlantic region. These data...

  13. Academic and Nonacademic Validating Agents on Latinas Mathematics and Science Self Concept A Quantitative Study Utilizing the High School Longitudinal Study of 2009

    Science.gov (United States)

    Garza, Jennifer M.

    The purpose of this study is to inform and further the discussion of academic (i.e. teachers and school counselors) and non-academic (i.e. parents, family, friends, etc.) validating agents on Latina students' mathematics and science self-concepts. This study found a relationship between Latina students' interactions with academic and non-academic validating agents and their math and science self-concept at the K-12 level. Through the review of the literature the researcher addresses identifiable factors and strategies that inform the field of education in the areas of validation theory, family characteristics, and access to STEM fields for Latina students. The researcher used an established instrument designed, administered, and validated through the National Center for Education Statistics (NCES). For purposes of this study, a categorical subset of participants who self-identified as being a Latina student was used. As a result, the total subset number in this study was N=1,882. To determine if academic and non-academic validating agents had an observable statistically significant relationship with Latina students' math and science self-concept, a series of one-way ANOVAs were calculated to compare differences in students' math and science self-concept based on academic and non-academic validating agents for the weighted sample of Latinas for the HLS:09 survey. A path analysis was also employed to assess the factors involved in Latina students' math and science self-concepts. The findings are consistent with previous research involving the influence that academic and non-academic validating agents have on the math and science self-concept of Latina students. The results indicated that students who had teachers that believed in the students, regardless of family background, social economic status or home environment influences had higher math and science self concepts than those who did not. Similarly, it was found that students who had counselors that set high

  14. The use of Museum Based Science Centres to Expose Primary School Students in Developing Countries to Abstract and Complex Concepts of Nanoscience and Nanotechnology

    Science.gov (United States)

    Saidi, Trust; Sigauke, Esther

    2017-10-01

    Nanotechnology is an emerging technology, and it is regarded as the basis for the next industrial revolution. In developing countries, nanotechnology promises to solve everyday challenges, such as the provision of potable water, reliable energy sources and effective medication. However, there are several challenges in the exploitation of nanotechnology. One of the notable challenges is the lack of adequate knowledge about how materials behave at the nanoscale. As nanotechnology is relatively new, the current generation of scientists have not had the opportunity to learn the fundamentals of the technology at an early stage. Young students who are at the primary school level may follow the same trajectory if they are not exposed to the technology. There is a need to lay a strong foundation by introducing nanoscience and nanotechnology to students at the primary school level. It is during the early stages of child development that students master basic concepts for life long learning. Nevertheless, many primary school children, particularly those in developing countries are missing the chance of learning about nanoscience and nanotechnology because it is regarded as being abstract and complex. In this paper, we argue that despite the complexity of nanoscience and nanotechnology, science centres can be used as one of the platforms for exposing young students to the discipline. We use a case study of a museum-based science centre as an example to illustrate that young students can be exposed to nanoscience and nanotechnology using tactile and hands-on experience. The early engagement of primary school children with nanoscience and nanotechnology is important in raising the next generation of scientists who are firmly grounded in the discipline.

  15. Effects of multisensory resources on the achievement and science attitudes of seventh-grade suburban students taught science concepts on and above grade level

    Science.gov (United States)

    Roberts, Patrice Helen

    -preference effect. Furthermore, the students indicated significantly more positive attitudes when instructed with a multisensory approach on either grade-level or above-grade level science content (p < 0.0001). The findings supported using a multisensory approach when teaching science concepts that are new to and difficult for students (Martini, 1986).

  16. ESSReS-PEP, an international and interdisciplinary postgraduate education concept on Earth and Environmental Sciences

    Science.gov (United States)

    Grosfeld, Klaus; Lohmann, Gerrit; Ladstätter-Weißenmayer, Annette; Burrows, John

    2013-04-01

    Promoting young researchers is a major priority of the German Helmholtz Association. Since more than five years graduate and postgraduate education in the field of Earth System and Environmental Science has been established in Bremen and Bremerhaven, north-western Germany. Using the network and collaboration of experts and specialists on observational and paleoclimate data as well as on statistical data analysis and climate modelling from two Universities and the Helmholtz research institute on Polar and Marine Research, master and PhD students are trained to understand, decipher and cope with the challenges of recent climate change on an highly interdisciplinary and inter-institutional level. The existing research infrastructure at the Alfred Wegener Institute in Bremerhaven (AWI), University of Bremen, and Jacobs University Bremen offers a unique research environment to study past, present and future changes of the climate system, with special focus on high latitudinal processes. It covers all kind of disciplines, climate science, geosciences and biosciences, and provides a consistent framework for education and qualification of a new generation of expertly trained, internationally competitive master and PhD students. On postgraduate level, the Postgraduate Programme Environmental Physics (PEP) at the University of Bremen (www.pep.uni-bremen.de) educates the participants on the complex relationship between atmosphere, hydrosphere (ocean), cryosphere (ice region) and solid earth (land). Here, the learning of experimental methods in environmental physics at the most advanced level, numerical data analysis using supercomputers, and data interpretation via sophisticated methods prepare students for a scientific career. Within cooperation with the Ocean University of China (OUC) students are participating one year in the PEP programme during their master studies since 2006, to get finally a double degree of both universities. At the Alfred Wegener Institute for Polar

  17. How new concepts become universal scientific approaches: insights from citation network analysis of agent-based complex systems science.

    Science.gov (United States)

    Vincenot, Christian E

    2018-03-14

    Progress in understanding and managing complex systems comprised of decision-making agents, such as cells, organisms, ecosystems or societies, is-like many scientific endeavours-limited by disciplinary boundaries. These boundaries, however, are moving and can actively be made porous or even disappear. To study this process, I advanced an original bibliometric approach based on network analysis to track and understand the development of the model-based science of agent-based complex systems (ACS). I analysed research citations between the two communities devoted to ACS research, namely agent-based (ABM) and individual-based modelling (IBM). Both terms refer to the same approach, yet the former is preferred in engineering and social sciences, while the latter prevails in natural sciences. This situation provided a unique case study for grasping how a new concept evolves distinctly across scientific domains and how to foster convergence into a universal scientific approach. The present analysis based on novel hetero-citation metrics revealed the historical development of ABM and IBM, confirmed their past disjointedness, and detected their progressive merger. The separation between these synonymous disciplines had silently opposed the free flow of knowledge among ACS practitioners and thereby hindered the transfer of methodological advances and the emergence of general systems theories. A surprisingly small number of key publications sparked the ongoing fusion between ABM and IBM research. Beside reviews raising awareness of broad-spectrum issues, generic protocols for model formulation and boundary-transcending inference strategies were critical means of science integration. Accessible broad-spectrum software similarly contributed to this change. From the modelling viewpoint, the discovery of the unification of ABM and IBM demonstrates that a wide variety of systems substantiate the premise of ACS research that microscale behaviours of agents and system-level dynamics

  18. Actual concept of "probiotics": is it more functional to science or business?

    Science.gov (United States)

    Caselli, Michele; Cassol, Francesca; Calò, Girolamo; Holton, John; Zuliani, Giovanni; Gasbarrini, Antonio

    2013-03-14

    It is our contention that the concept of a probiotic as a living bacterium providing unspecified health benefits is inhibiting the development and establishment of an evidence base for the growing field of pharmacobiotics. We believe this is due in part to the current regulatory framework, lack of a clear definition of a probiotic, the ease with which currently defined probiotics can be positioned in the market place, and the enormous profits earned for minimum investment in research. To avoid this, we believe the following two actions are mandatory: international guidelines by a forum of stakeholders made available to scientists and clinicians, patient organizations, and governments; public research funds made available to the scientific community for performing independent rigorous studies both at the preclinical and clinical levels.

  19. Control theory in physics and other fields of science concepts, tools and applications

    CERN Document Server

    Schulz, Michael

    2006-01-01

    This book covers systematically and in a simple language the mathematical and physical foundations of controlling deterministic and stochastic evolutionary processes in systems with a high degree of complexity. Strong emphasis is placed on concepts, methods and techniques for modelling, assessment and the solution or estimation of control problems in an attempt to understand the large variability of these problems in several branches of physics, chemistry and biology as well as in technology and economics. The main focus of the book is on a clear physical and mathematical understanding of the dynamics and kinetics behind several kinds of control problems and their relation to self-organizing principles in complex systems. The book is a modern introduction and a helpful tool for researchers, engineers as well as post-docs and graduate students interested in an application oriented control theory and related topics.

  20. The THESEUS space mission concept: science case, design and expected performances

    DEFF Research Database (Denmark)

    Amati, L.; O’Brien, P.; Götz, D.

    2018-01-01

    THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X...... with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing the main open issues in cosmology such as, e.g., star formation rate and metallicity evolution of the inter-stellar and intra-galactic medium up to redshift 10, signatures of Pop III stars, sources and physics...... detected in the late ’20s/early ’30s by next generation facilities like aLIGO/ aVirgo, eLISA, KAGRA, and Einstein Telescope. THESEUS will also provide powerful synergies with the next generation of multi-wavelength observatories (e.g., LSST, ELT, SKA, CTA, ATHENA)....

  1. Integrating multimedia instructional design principles with complex physiological concepts in reproductive science

    Science.gov (United States)

    Oki, Angela Christine

    2011-12-01

    This dissertation examines the effect of digital multimedia presentations as a method to teach complex concepts in reproductive physiology. The digital presentations developed for this research consisted of two-dimensional (2-D) and three-dimensional (3-D) animations, scriptmessaging and narration. The topics were "Mammalian Ovarian Follicular Dynamics", "The Physiology of the Menstrual Cycle", and "The Physiology of Parturition". In all four experiments, participants were randomly assigned to treatment groups and learning was measured with multiple-choice tests. Experiment 1 determined if type of animation impacted learning about the physiology of the menstrual cycle. The treatments were: 3-D and 2-D animation (n = 110), 2-D animation only (n = 109) and no animation (n = 108). All three presentations were 14 minutes. No treatment effects were found (p > 0.05), indicating that student performance was not influenced by animation type. In experiment 2, the influence of added narrative explanations about the physiology of parturition was determined. The delivery time for the two treatments was 14 minutes (n = 164) and 24 minutes (n = 157), respectively. There were no differences between treatment groups (p > 0.05), indicating that concise explanations were as effective as elaborate explanations. Experiment 3 determined the influence of a digital presentation on knowledge retention of follicular dynamics over the course of a semester. Treatments were: a digital presentation (n = 23) or a classroom lecture captured on video (n = 23). Students completed three tests during the semester. Students in the multimedia group outperformed students in the video lecture group on all three tests (p read a booklet (n = 57) or viewed a multimedia presentation (n = 65) about parturition. Content was identical in each group. Patients in the multimedia group outperformed patients in the booklet group (p < 0.05). This set of four experiments indicates that digital multimedia

  2. Introducing ZBrush 4

    CERN Document Server

    Keller, Eric

    2011-01-01

    Introducing ZBrush 4 launches readers head-on into fulfilling their artistic potential for sculpting realistic creature, cartoon, and hard surface models in ZBrush. ZBrush's innovative technology and interface can be intimidating to both digital-art beginners as well as veterans who are used to a more conventional modeling environment. This book dispels myths about the difficulty of ZBrush with a thorough tour and exploration of the program's interface. Engaging projects also allow the reader to become comfortable with digital sculpting in with a relaxed and fun book atmosphere. Introducing ZB

  3. Conditions for a Possible Dialogue between Theology and Science from the Perspective of the Concept of Frontier

    Directory of Open Access Journals (Sweden)

    Saplacan Calin

    2014-11-01

    Full Text Available Is there a way without conquests and wars to be found in the relationship of theology and science? This relation is analyzed from the perspective of the concept of frontier in order to establish the conditions for a possible dialogue. Paradoxically, the frontier unites and divides at the same time. On the one hand, the frontier marks the differences, on the other hand it appears as a crossing, a passageway. The frontier is an in-between, a huge space in which the two sides are called together to explain each other, and in order to create a passage between the two sides. The methodological framework of analysis is the approach of analytical theology to distinctions in language and significance. As a frame of reference, the possibility conditions for a philosophical dialogue between phenomenology and analytical philosophy have been considered.

  4. Introducing Visual C# 2010

    CERN Document Server

    Freeman, Adam

    2010-01-01

    If you're new to C# programming, this book is the ideal way to get started. Respected author Adam Freeman guides you through the C# language by carefully building up your knowledge from fundamental concepts to advanced features. The book gradually builds up your knowledge, using the concepts you have already grasped to support those that come next. You will explore all the core areas of the C# language and the .NET Framework on which it runs. Particular attention is paid to the creation of Web and Windows applications and data access - danger zones where novice programmers often go awry in the

  5. Science case and requirements for the MOSAIC concept for a multi-object spectrograph for the European extremely large telescope

    International Nuclear Information System (INIS)

    Evans, C.J.; Puech, M.; Bonifacio, P.; Hammer, F.; Jagourel, P.; Caffau, E.; Disseau, K.; Flores, H.; Huertas-Company, M.; Mei, S.; Aussel, H.

    2014-01-01

    Over the past 18 months we have revisited the science requirements for a multi-object spectrograph (MOS) for the European Extremely Large Telescope (E-ELT). These efforts span the full range of E-ELT science and include input from a broad cross-section of astronomers across the ESO partner countries. In this contribution we summarise the key cases relating to studies of high-redshift galaxies, galaxy evolution, and stellar populations, with a more expansive presentation of a new case relating to detection of exoplanets in stellar clusters. A general requirement is the need for two observational modes to best exploit the large (=40 arcmin 2 ) patrol field of the E-ELT. The first mode ('high multiplex') requires integrated-light (or coarsely resolved) optical/near-IR spectroscopy of ≥100 objects simultaneously. The second ('high definition'), enabled by wide-field adaptive optics, requires spatially-resolved, near-IR of ≥10 objects/sub-fields. Within the context of the conceptual study for an ELT-MOS called MOSAIC, we summarise the top level requirements from each case and introduce the next steps in the design process. (authors)

  6. Design Science Research

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Venable, John; Baskerville, Richard L.

    2017-01-01

    This workshop is an applied tutorial, aimed at novice and experienced researchers who wish to learn more about Design Science Research (DSR) and/or to develop and progress their own DSR work. During the workshop, attendees will be introduced to various DSR concepts and current trends, to create...

  7. Measurement Science and Training.

    Science.gov (United States)

    Bunderson, C. Victor

    The need for training and retraining is a central element in current discussions about the economy of the United States. This paper is designed to introduce training practitioners to some new concepts about how measurement science can provide a new framework for assessing progress and can add new discipline to the development, implementation, and…

  8. STEMing the tide: using ingroup experts to inoculate women's self-concept in science, technology, engineering, and mathematics (STEM).

    Science.gov (United States)

    Stout, Jane G; Dasgupta, Nilanjana; Hunsinger, Matthew; McManus, Melissa A

    2011-02-01

    Three studies tested a stereotype inoculation model, which proposed that contact with same-sex experts (advanced peers, professionals, professors) in academic environments involving science, technology, engineering, and mathematics (STEM) enhances women's self-concept in STEM, attitudes toward STEM, and motivation to pursue STEM careers. Two cross-sectional controlled experiments and 1 longitudinal naturalistic study in a calculus class revealed that exposure to female STEM experts promoted positive implicit attitudes and stronger implicit identification with STEM (Studies 1-3), greater self-efficacy in STEM (Study 3), and more effort on STEM tests (Study 1). Studies 2 and 3 suggested that the benefit of seeing same-sex experts is driven by greater subjective identification and connectedness with these individuals, which in turn predicts enhanced self-efficacy, domain identification, and commitment to pursue STEM careers. Importantly, women's own self-concept benefited from contact with female experts even though negative stereotypes about their gender and STEM remained active. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  9. [The current conception of the unconscious - empirical results of neurobiology, cognitive sciences, social psychology and emotion research].

    Science.gov (United States)

    Schüssler, Gerhard

    2002-01-01

    The influence of the unconscious on psychosomatic medicine and psychotherapy: a comprehensive concept of unconscious processes based on empirical evidence. The theory of the Unconscious constitutes the basis of psychoanalysis and of psychodynamic therapy. The traditional description of the Unconscious as given by Freud is of historical significance and not only gained widespread acceptance but also attracted much criticism. The most important findings of neurobiology, the cognitive sciences, social psychology and emotion research in relation to the Unconscious are compared with this traditional definition. Empirical observations on defence mechanisms are of particular interest in this context. A comprehensive concept of unconscious processes is revealed: the fundamental process of brain function is unconscious. Parts of the symbolic-declarative and emotional-procedural processing by the brain are permanently unconscious. Other parts of these processing procedures are conscious or can be brought to the conscious or alternatively, can also be excluded from the conscious. Unconscious processes exert decisive influence on experience and behaviour; for this reason, every form of psychotherapy should take into account such unconscious processes.

  10. Introducing 'beauty and health'

    NARCIS (Netherlands)

    Edmonds, A.; van der Geest, S.

    2009-01-01

    The authors discuss the concepts ‘beauty’ and ‘health’ and their ambiguous relationship. The quest for beauty is perceived both as an enhancement of health and well-being and as a health risk. The article is an introduction to a collection of six anthropological essays on beauty and health.

  11. The Renaissance Concept of Space: Notes on the Interaction between Arts and Sciences in History

    Directory of Open Access Journals (Sweden)

    Rein Undusk

    2015-10-01

    Full Text Available “Renaissance concept of space” harbors surely some definite bonuses for anybody embarking on a study of the inventive role that philosophy has had, in its happiest moments of life, for human cognition. First, the new suppositions related to physical space emerge in the Renaissance as derivative from the theological-philosophical assumptions of the era: what Renaissance space is can be enunciated quite convincingly on the basis of the intellectual collisions that the era was allotted to deal with. Thus, as a re-generator of classical culture, the Renaissance had to a degree dug up the finite substructure of ancient thinking; however, as an inheritor of the Middle Ages, it had been requested to square finitism with transcendency. Second, much of what we can today fit under Renaissance space is in fact delivered to us in the artistic form of painting, which means that, in addition to the challenge set by philosophy to the spatial knowledge of the era, there was postulated as well a mediatory agency of art in the realization and conveyance of this new knowledge. Thus we can suppose that the solution offered by Renaissance art to the problem of space on its fictional plane comprised the germ of some modern knowledge about space in reality.

  12. Current and emerging basic science concepts in bone biology: implications in craniofacial surgery.

    Science.gov (United States)

    Oppenheimer, Adam J; Mesa, John; Buchman, Steven R

    2012-01-01

    Ongoing research in bone biology has brought cutting-edge technologies into everyday use in craniofacial surgery. Nonetheless, when osseous defects of the craniomaxillofacial skeleton are encountered, autogenous bone grafting remains the criterion standard for reconstruction. Accordingly, the core principles of bone graft physiology continue to be of paramount importance. Bone grafts, however, are not a panacea; donor site morbidity and operative risk are among the limitations of autologous bone graft harvest. Bone graft survival is impaired when irradiation, contamination, and impaired vascularity are encountered. Although the dura can induce calvarial ossification in children younger than 2 years, the repair of critical-size defects in the pediatric population may be hindered by inadequate bone graft donor volume. The novel and emerging field of bone tissue engineering holds great promise as a limitless source of autogenous bone. Three core constituents of bone tissue engineering have been established: scaffolds, signals, and cells. Blood supply is the sine qua non of these components, which are used both individually and concertedly in regenerative craniofacial surgery. The discerning craniofacial surgeon must determine the proper use for these bone graft alternatives, while understanding their concomitant risks. This article presents a review of contemporary and emerging concepts in bone biology and their implications in craniofacial surgery. Current practices, areas of controversy, and near-term future applications are emphasized.

  13. Interactive Online Modules and Videos for Learning Geological Concepts at the University of Toronto Department of Earth Sciences

    Science.gov (United States)

    Veglio, E.; Graves, L. W.; Bank, C. G.

    2014-12-01

    We designed various computer-based applications and videos as educational resources for undergraduate courses at the University of Toronto in the Earth Science Department. These resources were developed in effort to enhance students' self-learning of key concepts as identified by educators at the department. The interactive learning modules and videos were created using the programs MATLAB and Adobe Creative Suite 5 (Photoshop and Premiere) and range from optical mineralogy (extinction and Becke line), petrology (equilibrium melting in 2-phase systems), crystallography (crystal systems), geophysics (gravity anomaly), and geologic history (evolution of Canada). These resources will be made available for students on internal course websites as well as through the University of Toronto Earth Science's website (www.es.utoronto.ca) where appropriate; the video platform YouTube.com may be used to reach a wide audience and promote the material. Usage of the material will be monitored and feedback will be collected over the next academic year in order to gage the use of these interactive learning tools and to assess if these computer-based applications and videos foster student engagement and active learning, and thus offer an enriched learning experience.

  14. Changes over nature concepts attitudinal nature of science and technology in primary school students after didactic intervention

    Directory of Open Access Journals (Sweden)

    Ricardo Pereira Sepini

    2014-06-01

    Full Text Available This investigation involved quality teaching of issues the Nature of Science and Technology (NS&T related to the validation of knowledge and how it works in today's world. The goal was to show the possibility to teach and assess issues and innovative ways of understanding the NS&T from a didactic intervention performed in the classroom with the help of a Teaching Learning Sequence (TLS. The study design was a experimental intervention, which gathers pretest - didactic intervention - posttest steps, with an experimental group and a control group. Research subjects were students of High-School in a city located in the southern state of Minas Gerais. Among the results there is a significant improvement from pretest to posttest in the experimental group, and a modest improvement in the control group. The contributions of this research also includes the TLS itself and the assessment instruments, and its functionality that makes them transferable to teaching science. We conclude that through the activity designed, conducted and evaluated in the classroom students achieved an improvement in attitudinal conceptions of NS&T

  15. Transforming "Ecosystem" from a Scientific Concept into a Teachable Topic: Philosophy and History of Ecology Informs Science Textbook Analysis

    Science.gov (United States)

    Schizas, Dimitrios; Papatheodorou, Efimia; Stamou, George

    2017-04-01

    This study conducts a textbook analysis in the frame of the following working hypothesis: The transformation of scientific knowledge into school knowledge is expected to reproduce the problems encountered with the scientific knowledge itself or generate additional problems, which may both induce misconceptions in textbook users. Specifically, we describe four epistemological problems associated with how the concept of "ecosystem" is elaborated within ecological science and we examine how each problem is reproduced in the biology textbook utilized by Greek students in the 12th grade and the resulting teacher and student misunderstandings that may occur. Our research demonstrates that the authors of the textbook address these problems by appealing simultaneously to holistic and reductionist ideas. This results in a meaningless and confused depiction of "ecosystem" and may provoke many serious misconceptions on the part of textbook users, for example, that an ecosystem is a system that can be applied to every set of interrelated ecological objects irrespective of the organizational level to which these entities belong or how these entities are related to each other. The implications of these phenomena for science education research are discussed from a perspective that stresses the role of background assumptions in the understanding of declarative knowledge.

  16. Operation of micro and molecular machines: a new concept with its origins in interface science.

    Science.gov (United States)

    Ariga, Katsuhiko; Ishihara, Shinsuke; Izawa, Hironori; Xia, Hong; Hill, Jonathan P

    2011-03-21

    A landmark accomplishment of nanotechnology would be successful fabrication of ultrasmall machines that can work like tweezers, motors, or even computing devices. Now we must consider how operation of micro- and molecular machines might be implemented for a wide range of applications. If these machines function only under limited conditions and/or require specialized apparatus then they are useless for practical applications. Therefore, it is important to carefully consider the access of functionality of the molecular or nanoscale systems by conventional stimuli at the macroscopic level. In this perspective, we will outline the position of micro- and molecular machines in current science and technology. Most of these machines are operated by light irradiation, application of electrical or magnetic fields, chemical reactions, and thermal fluctuations, which cannot always be applied in remote machine operation. We also propose strategies for molecular machine operation using the most conventional of stimuli, that of macroscopic mechanical force, achieved through mechanical operation of molecular machines located at an air-water interface. The crucial roles of the characteristics of an interfacial environment, i.e. connection between macroscopic dimension and nanoscopic function, and contact of media with different dielectric natures, are also described.

  17. Introducing English grammar

    CERN Document Server

    Borjars, Kersti

    2013-01-01

    Answering key questions such as 'Why study grammar?' and 'What is standard English?', Introducing English Grammar guides readers through the practical analysis of the syntax of English sentences. With all special terms carefully explained as they are introduced, the book is written for readers with no previous experience of grammatical analysis. It is ideal for all those beginning their study of linguistics, English language or speech pathology, as well as students with primarily literary interests who need to cover the basics of linguistic analysis. The approach taken is in line with current research in grammar, a particular advantage for students who may go on to study syntax in more depth. All the examples and exercises use real language taken from newspaper articles, non-standard dialects and include excerpts from studies of patients with language difficulties. Students are encouraged to think about the terminology as a tool kit for studying language and to test what can and cannot be described using thes...

  18. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    Science.gov (United States)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  19. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  20. Teaching Data Science

    OpenAIRE

    Brunner, Robert J.; Kim, Edward J.

    2016-01-01

    We describe an introductory data science course, entitled Introduction to Data Science, offered at the University of Illinois at Urbana-Champaign. The course introduced general programming concepts by using the Python programming language with an emphasis on data preparation, processing, and presentation. The course had no prerequisites, and students were not expected to have any programming experience. This introductory course was designed to cover a wide range of topics, from the nature of ...

  1. A concepção de ciência de Popper e o ensino de ciências Popper's conception of science and the teaching of sciences

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Rufatto

    2009-01-01

    Full Text Available Procurou-se identificar as consequências mais importantes da concepção de ciência de Popper, que deu origem a um rico debate na Filosofia das Ciências, para o Ensino de Ciências. O acompanhamento deste debate permite perceber a riqueza do processo científico, reconhecendo as contribuições daqueles que debateram com Popper; bem como a importância dos aspectos da ciência que Popper valorizou e procurou preservar. As críticas e os debates em torno das abordagens de mudança conceitual contribuíram para a percepção da riqueza e complexidade desse processo. Quando considerados os objetivos institucionais das escolas e as expectativas sociais em torno da compreensão adequada e da procura de superação dos paradigmas vigentes a manutenção de certos aspectos, inerentes ao processo de mudança conceitual, pode se mostrar relevante. Neste sentido, a obra de Popper pode oferecer importante apoio para valorizar aspectos racionais que poderiam presidir o processo de aprender Ciências.This work aimed at identifying the most important consequences of Popper's conception of science education, which started a fertile debate in the Philosophy of Science. By following this debate, it is possible to notice the richness of the cientific process, recognizing the contributions brought by those who debated with Popper, and the importance of aspects of science that Popper valued and attempted to preserve. The criticism and the debate over the approaches towards conceptual change contributed to the perception of the wide extent and complexity of this process. However, the maintenance of certain aspects, inherent in the process of conceptual change, may be relevant when the institutional objectives of the schools and the social expectations over the appropriate understanding and over the attempt to overcome current paradigms are considered. In this way, Popper's work may offer important support to valuing rational aspects that could inform the process

  2. PARRISE, Promoting Attainment of Responsible Research and Innovation in Science Education, FP7 : Rethinking science, rethinking education

    NARCIS (Netherlands)

    Knippels, M.C.P.J.; van Dam, F.W.

    The PARRISE (Promoting Attainment of Responsible Research & Innovation in Science Education) project aims at introducing the concept of Responsible Research and Innovation in primary and secondary education. It does so by combining inquiry-based learning and citizenship education with

  3. Exploring Corn-Ethanol As A Complex Problem To Teach Sustainability Concepts Across The Science-Business-Liberal Arts Curriculum

    Science.gov (United States)

    Oches, E. A.; Szymanski, D. W.; Snyder, B.; Gulati, G. J.; Davis, P. T.

    2012-12-01

    The highly interdisciplinary nature of sustainability presents pedagogic challenges when sustainability concepts are incorporated into traditional disciplinary courses. At Bentley University, where over 90 percent of students major in business disciplines, we have created a multidisciplinary course module centered on corn ethanol that explores a complex social, environmental, and economic problem and develops basic data analysis and analytical thinking skills in several courses spanning the natural, physical, and social sciences within the business curriculum. Through an NSF-CCLI grant, Bentley faculty from several disciplines participated in a summer workshop to define learning objectives, create course modules, and develop an assessment plan to enhance interdisciplinary sustainability teaching. The core instructional outcome was a data-rich exercise for all participating courses in which students plot and analyze multiple parameters of corn planted and harvested for various purposes including food (human), feed (animal), ethanol production, and commodities exchanged for the years 1960 to present. Students then evaluate patterns and trends in the data and hypothesize relationships among the plotted data and environmental, social, and economic drivers, responses, and unintended consequences. After the central data analysis activity, students explore corn ethanol production as it relates to core disciplinary concepts in their individual classes. For example, students in Environmental Chemistry produce ethanol using corn and sugar as feedstocks and compare the efficiency of each process, while learning about enzymes, fermentation, distillation, and other chemical principles. Principles of Geology students examine the effects of agricultural runoff on surface water quality associated with extracting greater agricultural yield from mid-continent croplands. The American Government course examines the role of political institutions, the political process, and various

  4. Using a Concept Inventory to Assess the Reasoning Component of Citizen-Level Science Literacy: Results from a 17,000-Student Study.

    Science.gov (United States)

    Nuhfer, Edward B; Cogan, Christopher B; Kloock, Carl; Wood, Gregory G; Goodman, Anya; Delgado, Natalie Zayas; Wheeler, Christopher W

    2016-03-01

    After articulating 12 concepts for the reasoning component of citizen-level science literacy and restating these as assessable student learning outcomes (SLOs), we developed a valid and reliable assessment instrument for addressing the outcomes with a brief 25-item science literacy concept inventory (SLCI). In this paper, we report the results that we obtained from assessing the citizen-level science literacy of 17,382 undergraduate students, 149 graduate students, and 181 professors. We address only findings at or above the 99.9% confidence level. We found that general education (GE) science courses do not significantly advance understanding of science as a way of knowing. However, the understanding of science's way of knowing does increase through academic ranks, indicating that the extended overall academic experience better accounts for increasing such thinking capacity than do science courses alone. Higher mean institutional SLCI scores correlate closely with increased institutional selectivity, as measured by the institutions' higher mean SAT and ACT scores. Socioeconomic factors of a) first-generation student, b) English as a native language, and c) interest in commitment to a science major are unequally distributed across ethnic groups. These factors proved powerful in accounting for the variations in SLCI scores across ethnicities and genders.

  5. Science Song Project: Integration of Science, Technology and Music to Learn Science and Process Skills

    Directory of Open Access Journals (Sweden)

    Jiyoon Yoon

    2017-07-01

    Full Text Available It has been critical to find a way for teachers to motivate their young children to learn science and improve science achievement. Since music has been used as a tool for educating young students, this study introduces the science song project to teacher candidates that contains science facts, concepts, laws and theories, and combines them with music for motivating their young children to learn science and improve science achievement. The purpose of the study is to determine the effect of the science song project on teacher candidates’ understanding of science processing skills and their attitudes toward science. The participants were 45 science teacher candidates who were enrolled in an EC-6 (Early Childhood through Grade 6 program in the teacher certification program at a racially diverse Texas public research university. To collect data, this study used two instruments: pre-and post-self efficacy tests before and after the science teacher candidates experienced the science song project and final reflective essay at the end of the semester. The results show that while developing their songs, the participating teacher candidates experienced a process for science practice, understood science concepts and facts, and positively improved attitudes toward science. This study suggests that the science song project is a science instruction offering rich experiences of process-based learning and positive attitudes toward science.

  6. A Study of the Relationship Between Nurses’ Professional Self-Concept and Professional Ethics in Hospitals Affiliated to Jahrom University of Medical Sciences, Iran

    Science.gov (United States)

    Parandavar, Nehleh; Rahmanian, Afifeh; Jahromi, Zohreh Badiyepeymaie

    2016-01-01

    Background: Commitment to ethics usually results in nurses’ better professional performance and advancement. Professional self-concept of nurses refers to their information and beliefs about their roles, values, and behaviors. The objective of this study is to analyze the relationship between nurses’ professional self-concept and professional ethics in hospitals affiliated to Jahrom University of Medical Sciences. Methods: This cross sectional-analytical study was conducted in 2014. The 270 participants were practicing nurses and head-nurses at the teaching hospitals of Peimanieh and Motahari in Jahrom University of Medical Science. Sampling was based on sencus method. Data was collected using Cowin's Nurses’ self-concept questionnaire (NSCQ) and the researcher-made questionnaire of professional ethics. Results: The average of the sample's professional self-concept score was 6.48±0.03 out of 8. The average of the sample's commitment to professional ethics score was 4.08±0.08 out of 5. Based on Pearson's correlation test, there is a significant relationship between professional ethics and professional self-concept (P=0.01, r=0.16). Conclusion: In view of the correlation between professional self-concept and professional ethics, it is recommended that nurses’ self-concept, which can boost their commitment to ethics, be given more consideration. PMID:26573035

  7. A Study of the Relationship Between Nurses' Professional Self-Concept and Professional Ethics in Hospitals Affiliated to Jahrom University of Medical Sciences, Iran.

    Science.gov (United States)

    Parandavar, Nehleh; Rahmanian, Afifeh; Badiyepeymaie Jahromi, Zohreh

    2015-07-31

    Commitment to ethics usually results in nurses' better professional performance and advancement. Professional self-concept of nurses refers to their information and beliefs about their roles, values, and behaviors. The objective of this study is to analyze the relationship between nurses' professional self-concept and professional ethics in hospitals affiliated to Jahrom University of Medical Sciences. This cross sectional-analytical study was conducted in 2014. The 270 participants were practicing nurses and head-nurses at the teaching hospitals of Peimanieh and Motahari in Jahrom University of Medical Science. Sampling was based on sencus method. Data was collected using Cowin's Nurses' self-concept questionnaire (NSCQ) and the researcher-made questionnaire of professional ethics. The average of the sample's professional self-concept score was 6.48±0.03 out of 8. The average of the sample's commitment to professional ethics score was 4.08±0.08 out of 5. Based on Pearson's correlation test, there is a significant relationship between professional ethics and professional self-concept (P=0.01, r=0.16). In view of the correlation between professional self-concept and professional ethics, it is recommended that nurses' self-concept, which can boost their commitment to ethics, be given more consideration.

  8. Introducing citizen inquiry

    OpenAIRE

    Herodotou, Christothea; Sharples, Mike; Scanlon, Eileen

    2017-01-01

    The term ‘citizen inquiry’ was coined to describe ways that members of the public can learn by initiating or joining shared inquiry-led scientific investigations (Sharples et al., 2013). It merges learning through scientific investigation with mass collaborative participation exemplified in citizen science activities, altering the relationship most people have with research from being passive recipients to becoming actively engaged, and the relationship between scholarship and public understa...

  9. Introducing Program Evaluation Models

    Directory of Open Access Journals (Sweden)

    Raluca GÂRBOAN

    2008-02-01

    Full Text Available Programs and project evaluation models can be extremely useful in project planning and management. The aim is to set the right questions as soon as possible in order to see in time and deal with the unwanted program effects, as well as to encourage the positive elements of the project impact. In short, different evaluation models are used in order to minimize losses and maximize the benefits of the interventions upon small or large social groups. This article introduces some of the most recently used evaluation models.

  10. Geodatabase model for global geologic mapping: concept and implementation in planetary sciences

    Science.gov (United States)

    Nass, Andrea

    2017-04-01

    One aim of the NASA Dawn mission is to generate global geologic maps of the asteroid Vesta and the dwarf planet Ceres. To accomplish this, the Dawn Science Team followed the technical recommendations for cartographic basemap production. The geological mapping campaign of Vesta was completed and published, but mapping of the dwarf planet Ceres is still ongoing. The tiling schema for the geological mapping is the same for both planetary bodies and for Ceres it is divided into two parts: four overview quadrangles (Survey Orbit, 415 m/pixel) and 15 more detailed quadrangles (High Altitude Mapping HAMO, 140 m/pixel). The first global geologic map was based on survey images (415 m/pixel). The combine 4 Survey quadrangles completed by HAMO data served as basis for generating a more detailed view of the geologic history and also for defining the chronostratigraphy and time scale of the dwarf planet. The most detailed view can be expected within the 15 mapping quadrangles based on HAMO resolution and completed by the Low Altitude Mapping (LAMO) data with 35 m/pixel. For the interpretative mapping process of each quadrangle one responsible mapper was assigned. Unifying the geological mapping of each quadrangle and bringing this together to regional and global valid statements is already a very time intensive task. However, another challenge that has to be accomplished is to consider how the 15 individual mappers can generate one homogenous GIS-based project (w.r.t. geometrical and visual character) thus produce a geologically-consistent final map. Our approach this challenge was already discussed for mapping of Vesta. To accommodate the map requirements regarding rules for data storage and database management, the computer-based GIS environment used for the interpretative mapping process must be designed in a way that it can be adjusted to the unique features of the individual investigation areas. Within this contribution the template will be presented that uses standards

  11. Using a Concept Inventory to Assess the Reasoning Component of Citizen-Level Science Literacy: Results from a 17,000-Student Study†

    Science.gov (United States)

    Nuhfer, Edward B.; Cogan, Christopher B.; Kloock, Carl; Wood, Gregory G.; Goodman, Anya; Delgado, Natalie Zayas; Wheeler, Christopher W.

    2016-01-01

    After articulating 12 concepts for the reasoning component of citizen-level science literacy and restating these as assessable student learning outcomes (SLOs), we developed a valid and reliable assessment instrument for addressing the outcomes with a brief 25-item science literacy concept inventory (SLCI). In this paper, we report the results that we obtained from assessing the citizen-level science literacy of 17,382 undergraduate students, 149 graduate students, and 181 professors. We address only findings at or above the 99.9% confidence level. We found that general education (GE) science courses do not significantly advance understanding of science as a way of knowing. However, the understanding of science’s way of knowing does increase through academic ranks, indicating that the extended overall academic experience better accounts for increasing such thinking capacity than do science courses alone. Higher mean institutional SLCI scores correlate closely with increased institutional selectivity, as measured by the institutions’ higher mean SAT and ACT scores. Socioeconomic factors of a) first-generation student, b) English as a native language, and c) interest in commitment to a science major are unequally distributed across ethnic groups. These factors proved powerful in accounting for the variations in SLCI scores across ethnicities and genders. PMID:27047612

  12. Using a Concept Inventory to Assess the Reasoning Component of Citizen-Level Science Literacy: Results from a 17,000-Student Study

    Directory of Open Access Journals (Sweden)

    Edward B. Nuhfer

    2015-12-01

    Full Text Available After articulating 12 concepts for the reasoning component of citizen-level science literacy and restating these as assessable student learning outcomes (SLOs, we developed a valid and reliable assessment instrument for addressing the outcomes with a brief 25-item science literacy concept inventory (SLCI. In this paper, we report the results that we obtained from assessing the citizen-level science literacy of 17,382 undergraduate students, 149 graduate students, and 181 professors. We address only findings at or above the 99.9% confidence level. We found that general education (GE science courses do not significantly advance understanding of science as a way of knowing. However, the understanding of science’s way of knowing does increase through academic ranks, indicating that the extended overall academic experience better accounts for increasing such thinking capacity than do science courses alone. Higher mean institutional SLCI scores correlate closely with increased institutional selectivity, as measured by the institutions’ higher mean SAT and ACT scores. Socioeconomic factors of a first-generation student, b English as a native language, and c interest in commitment to a science major are unequally distributed across ethnic groups. These factors proved powerful in accounting for the variations in SLCI scores across ethnicities and genders.

  13. Kindergarten Students' Levels of Understanding Some Science Concepts and Scientific Inquiry Processes According to Demographic Variables (The Sampling of Kilis Province in Turkey)

    Science.gov (United States)

    Ilhan, Nail; Tosun, Cemal

    2016-01-01

    The purpose of this study is to identify the kindergarten students' levels of understanding some science concepts (LUSSC) and scientific inquiry processes (SIP) and compare their LUSSC and SIP in terms of some demographic variables. Also, another purpose of this study is to identify the predictive power of those demographic variables over the…

  14. The Effect of Using Jigsaw Strategy in Teaching Science on the Acquisition of Scientific Concepts among the Fourth Graders of Bani Kinana Directorate of Education

    Science.gov (United States)

    Hamadneh, Qaseem Mohammad Salim

    2017-01-01

    The study aimed to identify the effect of using Jigsaw strategy in teaching science on the acquisition of scientific concepts among the fourth graders of Bani Kinana Directorate of Education compared to the traditional way. The study sample consisted of 70 male and female students, divided into two groups: experimental and control where the…

  15. Academic and Nonacademic Validating Agents on Latinas' Mathematics and Science Self Concept: A Quantitative Study Utilizing the High School Longitudinal Study of 2009

    Science.gov (United States)

    Garza, Jennifer M.

    2017-01-01

    The purpose of this study is to inform and further the discussion of academic (i.e., teachers and school counselors) and non-academic (i.e., parents, family, friends, etc.) validating agents on Latina students' mathematics and science self-concepts. This study found a relationship between Latina students' interactions with academic and…

  16. Research and Teaching: An Investigation of the Evolution of High School and Undergraduate Student Researchers' Understanding of Key Science Ethics Concepts

    Science.gov (United States)

    Mabrouk, Patricia Ann

    2013-01-01

    High school and undergraduate research students were surveyed over the 10-week period of their summer research programs to investigate their understanding of key concepts in science ethics and whether their understanding changed over the course of their summer research experiences. Most of the students appeared to understand the issues relevant to…

  17. Introducing the hypothome

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Zambach, Sine; Suravajhala, Prashanth

    2014-01-01

    of doing so is the risk of devaluing the definition of interactomes. By adding proteins that have only been predicted, an interactome can no longer be classified as experimentally verified and the integrity of the interactome will be endured. Therefore, we propose the term 'hypothome' (collection......An interactome is defined as a network of protein-protein interactions built from experimentally verified interactions. Basic science as well as application-based research of potential new drugs can be promoted by including proteins that are only predicted into interactomes. The disadvantage...

  18. Is normal science good science?

    Directory of Open Access Journals (Sweden)

    Adrianna Kępińska

    2015-09-01

    Full Text Available “Normal science” is a concept introduced by Thomas Kuhn in The Structure of Scientific Revolutions (1962. In Kuhn’s view, normal science means “puzzle solving”, solving problems within the paradigm—framework most successful in solving current major scientific problems—rather than producing major novelties. This paper examines Kuhnian and Popperian accounts of normal science and their criticisms to assess if normal science is good. The advantage of normal science according to Kuhn was “psychological”: subjective satisfaction from successful “puzzle solving”. Popper argues for an “intellectual” science, one that consistently refutes conjectures (hypotheses and offers new ideas rather than focus on personal advantages. His account is criticized as too impersonal and idealistic. Feyerabend’s perspective seems more balanced; he argues for a community that would introduce new ideas, defend old ones, and enable scientists to develop in line with their subjective preferences. The paper concludes that normal science has no one clear-cut set of criteria encompassing its meaning and enabling clear assessment.

  19. Student-Centered Reliability, Concurrent Validity and Instructional Sensitivity in Scoring of Students' Concept Maps in a University Science Laboratory

    Science.gov (United States)

    Kaya, Osman Nafiz; Kilic, Ziya

    2004-01-01

    Student-centered approach of scoring the concept maps consisted of three elements namely symbol system, individual portfolio and scoring scheme. We scored student-constructed concept maps based on 5 concept map criteria: validity of concepts, adequacy of propositions, significance of cross-links, relevancy of examples, and interconnectedness. With…

  20. How to introduce the magnetic dipole moment

    International Nuclear Information System (INIS)

    Bezerra, M; Kort-Kamp, W J M; Cougo-Pinto, M V; Farina, C

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the magnetic field at distant points, identifying the magnetic dipole moment of the distribution. We also present a simple but general demonstration of the torque exerted by a uniform magnetic field on a current loop of general form, not necessarily planar. For pedagogical reasons we start by reviewing briefly the concept of the electric dipole moment. (paper)

  1. Mexico introduces pentavalent vaccine.

    Science.gov (United States)

    1999-08-01

    Combination vaccines have been introduced in Mexico. The national immunization program has incorporated the measles-mumps-rubella (MMR) vaccines in 1998, and the pentavalent vaccine in 1999. The two categories of antigen composition in combination vaccines are: 1) multiple different antigenic types of a single pathogen, such as the 23 valent pneumococcal polysaccharide vaccine, and 2) antigens from different pathogens causing different diseases, such as the DPT and MMR vaccines. Pentavalent vaccines are included in the second category. The vaccine protects against diphtheria, tetanus, pertussis, hepatitis B, and other diseases produced by Haemophilus influenzae type b (Hib). Combined diphtheria, tetanus, pertussis, hepatitis B, and Haemophilus influenza type b (DTP-HB/Hib) vaccine has been distributed to 87% of Mexican children under 1 year of age. Over 800,000 doses of pentavalent vaccine have been administered.

  2. Traitements didactiques preventifs d'un type de conceptions erronees en sciences physiques chez des eleves du secondaire

    Science.gov (United States)

    Blondin, Andre

    Dans un contexte constructiviste, les connaissances anterieures d'un individu sont essentielles a la construction de nouvelles connaissances. Quelle qu'en soit la source (certaines de ces connaissances ont ete elaborees en classe, d'autres ont ete elaborees par interaction personnelle de l'individu avec son environnement physique et social), ces connaissances, une fois acquises, constituent les matieres premieres de l'elaboration des nouvelles conceptions de cet individu. Generalement, cette influence est consideree comme positive. Cependant, dans un milieu scolaire ou l'apprentissage de certaines conceptions enchassees dans un programme d'etudes et enterinees par l'ensemble d'une communaute est obligatoire, certaines connaissances anterieures peuvent entraver la construction des conceptions exigees par la communaute. La litterature abonde de tels exemples. Cependant, certaines connaissances anterieures, en soi tout a fait conformes a l'Heritage, peuvent aussi, parce qu'utilisees de facon non pertinente, entraver la construction d'une conception exigee par la communaute. Ici, la litterature nous donne peu d'exemples de ce type, mais nous en fournirons quelques-uns dans le cadre theorique, et ce sera un d'entre eux qui servira de base a nos propos. En effet, une grande proportion d'eleves inscrits a un cours de sciences physiques de la quatrieme secondaire, en reponse a un probleme deja solutionne durant l'annee et redonne lors d'un examen sommatif, "Pourquoi la Lune nous montre-t-elle toujours la meme face?", attribue principalement la cause de ce phenomene a la rotation de la Terre sur son axe. En tant que responsable de l'enseignement de ce programme d'etudes, plusieurs questions nous sont venues a l'esprit, entre autres, comment, dans un contexte constructiviste, est-il possible de reduire chez un eleve, l'impact de cette connaissance anterieure dans l'elaboration de la solution et ainsi prevenir la construction d'une conception erronee? Nous avons teste nos

  3. 3. THE NATIONAL ACADEMIC UNCONSCIOUS IN QUESTION. HISTORY OF CONCEPTS, HISTORICAL SEMANTICS, CRITICAL SOCIOLOGY OF LEXICAL USAGE WITHIN THE SOCIAL SCIENCES

    Directory of Open Access Journals (Sweden)

    Olivier Christin

    2013-08-01

    Full Text Available A few years ago, together with Franz Schultheis, of the University of Saint-Gallen and coordinator of the social sciences network ESSE, we chose to study the international circulation of the categories and concepts that are in use in European social sciences. With the publication of the Dictionnaire des concepts  nomades (“Dictionary of nomadic concepts”, that includes only a small number of quite lengthy entries, what we tried to propose were not ready-made solutions, or vademecums for the comparative academic, but a series of questions, or rather the means to ask crucial questions for anyone who practises history, political science, history of economic ideas, or comparative sociology. We did so with two considerations in mind: one political, and the other academic, both of which I will evoke in turn in this paper.

  4. The concept and science process skills analysis in bomb calorimeter experiment as a foundation for the development of virtual laboratory of bomb calorimeter

    Science.gov (United States)

    Kurniati, D. R.; Rohman, I.

    2018-05-01

    This study aims to analyze the concepts and science process skills in bomb calorimeter experiment as a basis for developing the virtual laboratory of bomb calorimeter. This study employed research and development method (R&D) to gain the answer to the proposed problems. This paper discussed the concepts and process skills analysis. The essential concepts and process skills associated with bomb calorimeter are analyze by optimizing the bomb calorimeter experiment. The concepts analysis found seven fundamental concepts to be concerned in developing the virtual laboratory that are internal energy, burning heat, perfect combustion, incomplete combustion, calorimeter constant, bomb calorimeter, and Black principle. Since the concept of bomb calorimeter, perfect and incomplete combustion created to figure out the real situation and contain controllable variables, in virtual the concepts displayed in the form of simulation. Meanwhile, the last four concepts presented in the form of animation because no variable found to be controlled. The process skills analysis detect four notable skills to be developed that are ability to observe, design experiment, interpretation, and communication skills.

  5. Utilizing a scale model solar system project to visualize important planetary science concepts and develop technology and spatial reasoning skills

    Science.gov (United States)

    Kortenkamp, Stephen J.; Brock, Laci

    2016-10-01

    Scale model solar systems have been used for centuries to help educate young students and the public about the vastness of space and the relative sizes of objects. We have adapted the classic scale model solar system activity into a student-driven project for an undergraduate general education astronomy course at the University of Arizona. Students are challenged to construct and use their three dimensional models to demonstrate an understanding of numerous concepts in planetary science, including: 1) planetary obliquities, eccentricities, inclinations; 2) phases and eclipses; 3) planetary transits; 4) asteroid sizes, numbers, and distributions; 5) giant planet satellite and ring systems; 6) the Pluto system and Kuiper belt; 7) the extent of space travel by humans and robotic spacecraft; 8) the diversity of extrasolar planetary systems. Secondary objectives of the project allow students to develop better spatial reasoning skills and gain familiarity with technology such as Excel formulas, smart-phone photography, and audio/video editing.During our presentation we will distribute a formal description of the project and discuss our expectations of the students as well as present selected highlights from preliminary submissions.

  6. APPROACH TO THE ORGANIZATIONAL CULTURE CONCEPT

    Directory of Open Access Journals (Sweden)

    CLAUDIA MARÍA GARCÍA ÁLVAREZ

    2006-01-01

    Full Text Available In order to make evident the instrumental nature of the concept of culture applied to organization, thisessay develops a comprehension of the concept of organizational culture. This effort is important becausethe concept of organization itself implies a construction of a social order from meanings becominghegemonic in the framework of a particular context. Organizational Psychology, even with its neutralitypretension, is not innocent about the instrumental role that social sciences have had in the organizationalarena; however this essay introduces alternatives from critical approaches that allow ways of comprehensionand why not, intervention from perspectives explicitly political.

  7. 'That's What Scientists Have To Do': Preservice Elementary Teachers' Conceptions of the Nature of Science during a Moon Investigation.

    Science.gov (United States)

    Abell, Sandra; Martini, Mariana; George, Melissa

    2001-01-01

    Describes a science methods course for elementary education majors in which students investigated the phases of the moon. Concludes that students did not make direct connections between their science learning activities and the nature of science. Provides a set of recommendations related to the nature of science and moon study. (Contains 27…

  8. Piloting a Geoscience Literacy Exam for Assessing Students' Understanding of Earth, Climate, Atmospheric and Ocean Science Concepts

    Science.gov (United States)

    Steer, D. N.; Iverson, E. A.; Manduca, C. A.

    2013-12-01

    This research seeks to develop valid and reliable questions that faculty can use to assess geoscience literacy across the curriculum. We are particularly interested on effects of curricula developed to teach Earth, Climate, Atmospheric, and Ocean Science concepts in the context of societal issues across the disciplines. This effort is part of the InTeGrate project designed to create a population of college graduates who are poised to use geoscience knowledge in developing solutions to current and future environmental and resource challenges. Details concerning the project are found at http://serc.carleton.edu/integrate/index.html. The Geoscience Literacy Exam (GLE) under development presently includes 90 questions. Each big idea from each literacy document can be probed using one or more of three independent questions: 1) a single answer, multiple choice question aimed at basic understanding or application of key concepts, 2) a multiple correct answer, multiple choice question targeting the analyzing to analysis levels and 3) a short essay question that tests analysis or evaluation cognitive levels. We anticipate multiple-choice scores and the detail and sophistication of essay responses will increase as students engage with the curriculum. As part of the field testing of InTeGrate curricula, faculty collected student responses from classes that involved over 700 students. These responses included eight pre- and post-test multiple-choice questions that covered various concepts across the four literacies. Discrimination indices calculated from the data suggest that the eight tested questions provide a valid measure of literacy within the scope of the concepts covered. Student normalized gains across an academic term with limited InTeGrate exposure (typically two or fewer weeks of InTeGrate curriculum out of 14 weeks) were found to average 16% gain. A small set of control data (250 students in classes from one institution where no InTeGrate curricula were used) was

  9. Introducing "Frontiers in Zoology"

    Science.gov (United States)

    Heinze, Jürgen; Tautz, Diethard

    2004-09-29

    As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem.The new journal Frontiers in Zoology is the first Open Access journal focussing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost.

  10. 資優生科學自我概念與科學成就之縱貫研究 Longitudinal Study of Gifted Students’Science Self-Concept and Science Achievement

    Directory of Open Access Journals (Sweden)

    侯雅齡 Ya-Ling Hou

    2013-06-01

    Full Text Available 本研究目的主要在探討資優生學業自我概念與學業成就的發展,以及兩者之間的關係,研究對象為高雄市16 所國中381 名資優生,由八年級至九年級每半年蒐集一次資料,採固定樣本四波次的追蹤調查。在資料分析部分,使用了多變量潛在成長模式及交互延宕模式,來瞭解資優生科學自我概念與科學成就之間的關係。結果發現,資優生科學自我概念的發展呈現非線性的下降,科學成就的發展呈現線性成長;科學自我概念與科學成就之間有顯著的中度正相關,但是科學自我概念的發展與科學成就的發展並無顯著關聯;從交互延宕模式中,資優生科學自我概念與科學成就的因果關係,呈現科學自我概念顯著影響科學成就的自我彰顯(self-enhancement)關係;在性別的差異部分,男生與女生在科學成就表現與發展情形,皆無明顯差異,但是在科學自我概念上,資優女生顯著低於資優男生。最後本研究亦根據研究結果提出在教育實務與未來繼續研究的建議。 This study investigated the development of the science self-concept and science achievement of 381 gifted adolescent students in 16 junior high schools in Kaohsiung who were enrolled in classes ranging from Grade eight, first semester, to Grade nine, second semester, through repeated assessments. Structural equation modeling with latent growth curve models and a cross-lagged panel model were used to analyze the four waves of gifted students’ data. The results of this study showed that the gifted students experience an increase in science achievement during the junior high school period. Furthermore, students were shown to have a declining science self-concept in middle years, followed by an increase that began in and continued beyond Grade nine, second semester. A positive relationship was found between the students’ science self-concept

  11. Introducing Technology Education at the Elementary Level

    Science.gov (United States)

    McKnight, Sean

    2012-01-01

    Many school districts are seeing a need to introduce technology education to students at the elementary level. Pennsylvania's Penn Manor School District is one of them. Pennsylvania has updated science and technology standards for grades 3-8, and after several conversations the author had with elementary principals and the assistant superintendent…

  12. Second-Career Science Teachers' Classroom Conceptions of Science and Engineering Practices Examined through the Lens of Their Professional Histories

    Science.gov (United States)

    Antink-Meyer, Allison; Brown, Ryan A.

    2017-01-01

    Science standards in the U.S. have shifted to emphasise science and engineering process skills (i.e. specific practices within inquiry) to a greater extent than previous standards' emphases on broad representations of inquiry. This study examined the alignment between second-career science teachers' personal histories with the latter and examined…

  13. Concept theory

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2009-01-01

      Concept theory is an extremely broad, interdisciplinary and complex field of research related to many deep fields with very long historical traditions without much consensus. However, information science and knowledge organization cannot avoid relating to theories of concepts. Knowledge...... organizing systems (e.g. classification systems, thesauri and ontologies) should be understood as systems basically organizing concepts and their semantic relations. The same is the case with information retrieval systems. Different theories of concepts have different implications for how to construe......, evaluate and use such systems. Based on "a post-Kuhnian view" of paradigms this paper put forward arguments that the best understanding and classification of theories of concepts is to view and classify them in accordance with epistemological theories (empiricism, rationalism, historicism and pragmatism...

  14. “ Metabolic Ride” - One Concept Evaluation Tool For Metabolic Biochemistry Teaching For Graduate Students In Biological Sciences And Related Areas.

    Directory of Open Access Journals (Sweden)

    H. H. Gaeta et al.

    2017-07-01

    Full Text Available Biochemistry subject in general has a high degree of difficulty and complexity. Therefore, application of playful and creative games as teaching methodology has spread in various disciplines of life sciences. "METABOLIC RIDE" board game is a conceptual and perceptual evaluation tool for metabolic biochemistry teaching, aiming to review concepts transmitted in classroom, promoting a competitive challenge to students without denying tools that are at their disposal, stimulating their skills. OBJECTIVES. Correlate metabolic routes importance and their interconnections to establish that metabolic pathways are interconnected, such as a railway map. MATERIAL AND METHODS. This game was developed based on a board game Ticket to Ride. Players purchase enzyme cards, which must be used to claim metabolic routes. The goal is to complete the route previously drawn to earn points and the player who builds the longest continuous route will also earn bonus points. In each turn, players can: buy more card, claim a route or pick up additional destination tickets. The game should be played in groups of 5 to 6 students in 6 to 8 groups. Previously there will be theoretical classes. The activity was designed to last 4 hours. Use of didatic books and internet by players are encouraged. RESULTS. This game proved to be an excellent tool for student’s complementary evaluation, which stimulated teamwork and competitiveness within classroom, which allowed to analyze student’s perception regarding metabolic subjects. On the other hand, for teacher and students participating in compulsory traineeship program this game demonstrated to students new ways to approach complex subjects in biochemistry using creativity. CONCLUSION: Overall, students had a good impression of “Metabolic Ride” game since it helped to secure and administer metabolism subject in a competitive and team work way.

  15. Process-Based Development of Competence Models to Computer Science Education

    Science.gov (United States)

    Zendler, Andreas; Seitz, Cornelia; Klaudt, Dieter

    2016-01-01

    A process model ("cpm.4.CSE") is introduced that allows the development of competence models in computer science education related to curricular requirements. It includes eight subprocesses: (a) determine competence concept, (b) determine competence areas, (c) identify computer science concepts, (d) assign competence dimensions to…

  16. The science conceptions of chemical textbooks addressed to the high school, in treatment of chemical kinetics during the period from 1929 to 2004

    Directory of Open Access Journals (Sweden)

    Maria Eunice Ribeiro Marcondes

    2009-12-01

    Full Text Available This text is a part of the work that was developed based on the chemical kinetic theme and the target was how the scientific knowledge in this subject was used for high school textbooks, identifying the possible ideas about science related to these books. For that, based on the research developed by Níaz (1994 that used categories to represent the philosophical perspectives: the empirical/inductive and the rationalist, verifying which and how the concepts of science was inserted in the 20 Brazilians textbooks, edited in the period from 1929 to 2004.

  17. Environmental consciousness and education relationship: Determination of how environment-based concepts are placed in Turkish science curricula

    Energy Technology Data Exchange (ETDEWEB)

    Oezmen, H. [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Primary Education; Karamustafaoglu, O. [Amasya Univ. (Turkey). Dept. of Primary Education

    2006-12-15

    generations. During the last decades the trend for environmental protection has expanded in various areas including education. Paraskevopoulos et.al. (1998) state that (a) if people are aware of the need for and the ways of protecting the environment they will act to preserve it, (b) schools should assume responsibility for educating about environmental protection and (c) environmental education can be effective as a part of a school curriculum. Increased concern about the environment has paralleled the development of environmental education in the world. With this regard, both developed and developing countries have taken this reality into consideration in designing curricula for all schools. Some arrangements have also been made in science education curricula in Turkey as a developing country in last decades. Of the various subjects taught in secondary schools, science is often perceived as one that can make a significant contribution to environmental education (Ko and Lee, 2003). Therefore, our primarily aim in this study is to determine how the Turkish science curricula contain environmental concepts after some of the attempts on environmental issues in the world were presented. There have been steady developments of national and international declarations relevant to environmental issues. The first attempt in this regard was the Stockholm Declaration recognized the interdependency between humanity and the environment. The most important results emerged from the declaration were to provide fundamental right to freedom, equality and adequate conditions of life in an environment and to improve the environment for present and future generations (UNESCO, 1972). In addition, this declaration stated the need of environmental education from grade school to adulthood. After this first attempt, a number of similar assemblies were made. In these meetings, some decisions were taken for environmental issues in local and global scale. These meetings are given in Table 1

  18. Concept - or no concept

    DEFF Research Database (Denmark)

    Thorsteinsson, Uffe

    1999-01-01

    Discussion about concept in industrial companies. A method for mapping of managerial concept in specific area is shown......Discussion about concept in industrial companies. A method for mapping of managerial concept in specific area is shown...

  19. Concepts and methods in neuromodulation and functional electrical stimulation: an introduction.

    Science.gov (United States)

    Holsheimer, J

    1998-04-01

    This article introduces two clinical fields in which stimulation is applied to the nervous system: neuromodulation and functional electrical stimulation. The concepts underlying these fields and their main clinical applications, as well as the methods and techniques used in each field, are described. Concepts and techniques common in one field that might be beneficial to the other are discussed. 1998 Blackwell Science, Inc.

  20. Concept, Design and Implementation of a climate game within the framework of a climate exhibition in the German Museum for Science and Techniques

    Science.gov (United States)

    Weber, M.; Hasselmann, K.

    2002-12-01

    In November 2002 a special exhibition on climate issues opened in the German Museum for Science and Techniques ('Deutsches Museum') in Munich. Within this exposition we present an interactive area where visitors should control future climate policy virtually by adopting the role of either the government, a CEO (Chief Executive Officer) of a global company or a typical private household of an industrialized country. All actors endeavor to maintain a sustainable climate in the future (global goal) and in addition pursue their own individual welfare goal. Task of the exhibition visitor is to combine the personal interests of the actor he is adopting with the global goal. The individual goal of government is to stay popular. This is derived from economic production Government also tries to avoid conflicts due to inter-regional inequalities. The CEO seeks to maximize total profits (business earnings) summed over all business sectors (shareholder values). The goal of households is to maximize wages and interest earnings. The evolution of the economic system is governed by the decisions of the actors. Government sets economic side conditions in terms of carbon taxes, subsidies for R&D or market infusion support for climate-friendly technologies, and transfers or subsidizes the transfer of development aid to less advanced regions. The CEO's decisions are: how much to invest in a number of alternative investment options and in which region. Households influences the economy by their purchasing and savings decisions. The model considers four regions, three real actors (mentioned above) and two different goods (climate-adverse and a climate-friendly). We introduce four different kinds of energy (coal, oil/gas, nuclear, renewable). Due to the existence of several goods and trade between regions we need to establish the concept of money and price. This includes a World Bank to handle money flows. At different points in time the actors are motivated to cooperate with other

  1. Analysis of the conceptions and expectations of students in the courses of pedagogy, administration and human resources about the discipline of science, technology and society

    Science.gov (United States)

    de Souza, Alexandre; de Oliveira Neves, Jobert; Ferreira, Orlando Rodrigues; Lúcia Costa Amaral, Carmem; Delourdes Maciel, Maria; Voelzke, Marcos Rincon; Nascimento, Rômulo Pereira

    2012-10-01

    Provided for the education curricula since 1960, the focus on Science, Technology and Society (STS) has been poorly implemented even until today. Set as a goal to be achieved at all levels of education by 2014, in Brazil it is necessary to undertake specific actions in pursuit of putting into practice what has been stalled over the years in Education. As a result of joint efforts of teachers and students of the Masters in Teaching Science and Mathematics at the Universidade Cruzeiro do Sul comes the challenge of providing a specific discipline dealing with the concepts of STS, offered as a optional special, initially for students of Pedagogy and later, due to the interest of some students, for the course of Administration and Human Resources of this institution. The survey of previous conceptions of students enrolled in the Special Discipline Elective Science, Technology and Society (CTS DOP) on the triad of STS showed a great ignorance on the same theme. The reports reveal conceptions of students who approach the linear model of development. As to the generated expectations in terms of discipline, there stand out the desires of expansion of knowledge for possible applications in personal and professional life. This research aims to evaluate the current course, while identifying ways to improve and strengthen the STS movement in education.

  2. The Learning of Science Basic Concept by Using Scientifiq Inquiry to Improve Student’s Thinking, Working, and Scientific Attitude Abilities

    Directory of Open Access Journals (Sweden)

    Wachidatul Linda Yuhanna

    2016-03-01

    Full Text Available This research was a classroom action research which was conducted intwo cycles, each cycle consists of planning, implementing, observing, and reflecting. The data used was quantitative data on student observation sheet instruments. The Results of the study which were obtained from the first cycle showed about the students’ thinking skills and scientific works. They were categorized as excellent 18.18%, good 22.73%, enough 52.27%, and sufficiently less 6.82%. As for the scientific attitude with a very active category of 11.36%, 43.18% and less active 45.45%. It has not reached indicators of success, so it was necessary to cycle II. Cycle II demonstrated the excellent category 38.63%, 36.36% good, good enough18.18% and less 6.81%. While the scientific attitude in the cycle II was an active attitude 29.54%, active 54.54%, inactive 15.91%. These results show an increase from the cycle I to cycle II. The conclusion of this study were: 1 learning the basic concepts of science with scientific inquiry in students can be conducible applied.2 Learning the basic concepts of science with scientific inquiry can improve thinking ability and scientific work and students’ scientific attitude. 3 Learning the basic concepts of science with scientific inquiry be able to explore and develop student creativity in designing simple experiments which can be applied in primary schools.

  3. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    Science.gov (United States)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  4. Skill Development in Science and Technology Education for Sustainable Development in Nigeria

    Science.gov (United States)

    Modebelu, M. N.; Ugwuanyi, S. A.

    2014-01-01

    This paper reviews skill development in science and technology education, which is of crucial importance for sustainable development in Nigeria. The relevant concepts are introduced and robust argumentation is made with respect to the context of Nigeria.

  5. Human Inspired Self-developmental Model of Neural Network (HIM): Introducing Content/Form Computing

    Science.gov (United States)

    Krajíček, Jiří

    This paper presents cross-disciplinary research between medical/psychological evidence on human abilities and informatics needs to update current models in computer science to support alternative methods for computation and communication. In [10] we have already proposed hypothesis introducing concept of human information model (HIM) as cooperative system. Here we continue on HIM design in detail. In our design, first we introduce Content/Form computing system which is new principle of present methods in evolutionary computing (genetic algorithms, genetic programming). Then we apply this system on HIM (type of artificial neural network) model as basic network self-developmental paradigm. Main inspiration of our natural/human design comes from well known concept of artificial neural networks, medical/psychological evidence and Sheldrake theory of "Nature as Alive" [22].

  6. Introducing the Adherence Strategy Engineering Framework (ASEF)

    DEFF Research Database (Denmark)

    Wagner, Stefan Rahr; Toftegaard, Thomas Skjødeberg; Bertelsen, Olav W.

    2013-01-01

    . Methods: Key concepts related to self-care and adherence were defined, discussed, and implemented as part of the ASEF framework. ASEF was applied to seven self-care case studies, and the perceived usefulness and feasibility of ASEF was evaluated in a questionnaire study by the case study participants...... resulting in reduced data quality and suboptimal treatment. Objectives: The aim of this paper is to introduce the Adherence Strategy Engineering Framework (ASEF) as a method for developing novel technology-based adherence strategies to assess and improve patient adherence levels in the unsupervised setting....... Finally, we reviewed the individual case studies usage of ASEF. Results: A range of central self-care concepts were defined and the ASEF methodological framework was introduced. ASEF was successfully used in seven case studies with a total of 25 participants. Of these, 16 provided answers...

  7. A Small Mission Concept to the Sun-Earth Lagrangian L5 Point for Innovative Solar, Heliospheric and Space Weather Science

    Science.gov (United States)

    Lavraud, B.; Liu, Y.; Segura, K.; He, J.; Qin, G.; Temmer, M.; Vial, J.-C.; Xiong, M.; Davies, J. A.; Rouillard, A. P.; hide

    2016-01-01

    We present a concept for a small mission to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science. The proposed INvestigation of Solar-Terrestrial Activity aNd Transients (INSTANT) mission is designed to identify how solar coronal magnetic fields drive eruptions, mass transport and particle acceleration that impact the Earth and the heliosphere. INSTANT is the first mission designed to (1) obtain measurements of coronal magnetic fields from space and (2) determine coronal mass ejection (CME) kinematics with unparalleled accuracy. Thanks to innovative instrumentation at a vantage point that provides the most suitable perspective view of the Sun-Earth system, INSTANT would uniquely track the whole chain of fundamental processes driving space weather at Earth. We present the science requirements, payload and mission profile that fulfill ambitious science objectives within small mission programmatic boundary conditions.

  8. Use of the Concept of "Bildung" in the International Science Education Literature, Its Potential, and Implications for Teaching and Learning

    Science.gov (United States)

    Sjöström, Jesper; Frerichs, Nadja; Zuin, Vânia G.; Eilks, Ingo

    2017-01-01

    "Bildung" is a complex educational concept that emerged in Germany in the mid eighteenth century. Especially in Germany and Scandinavia conceptions of "Bildung" became the general philosophical framework to guide both formal and informal education. "Bildung" concerns the whole range of education from setting…

  9. Teaching Future Teachers Basic Astronomy Concepts--Seasonal Changes--at a Time of Reform in Science Education

    Science.gov (United States)

    Trumper, Ricardo

    2006-01-01

    Bearing in mind students' misconceptions about basic concepts in astronomy, the present study conducted a series of constructivist activities aimed at changing future elementary and junior high school teachers' conceptions about the cause of seasonal changes, and several characteristics of the Sun-Earth-Moon relative movements like Moon phases,…

  10. Middle School Science and Mathematics Teachers' Conceptions of the Nature of Science: A One-Year Study on the Effects of Explicit and Reflective Online Instruction

    Science.gov (United States)

    Wong, Sissy S.; Firestone, Jonah B.; Ronduen, Lionnel G.; Bang, EunJin

    2016-01-01

    Science, Technology, Engineering, and Mathematics (STEM) education has become one of the main priorities in the United States. Science education communities and researchers advocate for integration of STEM disciplines throughout the teaching curriculum. This requires teacher knowledge in STEM disciplines, as well as competence in scientific…

  11. Nanostructured energy devices equilibrium concepts and kinetics

    CERN Document Server

    Bisquert, Juan

    2014-01-01

    Due to the pressing needs of society, low cost materials for energy devices have experienced an outstanding development in recent times. In this highly multidisciplinary area, chemistry, material science, physics, and electrochemistry meet to develop new materials and devices that perform required energy conversion and storage processes with high efficiency, adequate capabilities for required applications, and low production cost. Nanostructured Energy Devices: Equilibrium Concepts and Kinetics introduces the main physicochemical principles that govern the operation of energy devices. It inclu

  12. The Concept Mastery in the Perspective of Gender of Junior High School Students on Eclipse Theme in Multiple Intelligences-based of Integrated Earth and Space Science Learning

    Science.gov (United States)

    Liliawati, W.; Utama, J. A.; Mursydah, L. S.

    2017-03-01

    The purpose of this study is to identify gender-based concept mastery differences of junior high school students after the implementation of multiple intelligences-based integrated earth and space science learning. Pretest-posttest group design was employed to two different classes at one of junior high school on eclipse theme in Tasikmalaya West Java: one class for boys (14 students) and one class of girls (18 students). The two-class received same treatment. The instrument of concepts mastery used in this study was open-ended eight essay questions. Reliability test result of this instrument was 0.9 (category: high) while for validity test results were high and very high category. We used instruments of multiple intelligences identification and learning activity observation sheet for our analysis. The results showed that normalized N-gain of concept mastery for boys and girls were improved, respectively 0.39 and 0.65. Concept mastery for both classes differs significantly. The dominant multiple intelligences for boys were in kinesthetic while girls dominated in the rest of multiple intelligences. Therefor we concluded that the concept mastery was influenced by gender and student’s multiple intelligences. Based on this finding we suggested to considering the factor of gender and students’ multiple intelligences given in the learning activity.

  13. Teaching Basic Probability in Undergraduate Statistics or Management Science Courses

    Science.gov (United States)

    Naidu, Jaideep T.; Sanford, John F.

    2017-01-01

    Standard textbooks in core Statistics and Management Science classes present various examples to introduce basic probability concepts to undergraduate business students. These include tossing of a coin, throwing a die, and examples of that nature. While these are good examples to introduce basic probability, we use improvised versions of Russian…

  14. The influence of authentic scientific research experiences on teachers' conceptions of the nature of science (NOS) and their NOS teaching practices

    Science.gov (United States)

    Moriarty, Meghan A.

    This study explored the influence of teachers' authentic scientific research experiences (ASREs) on teachers' conceptions of the nature of science (NOS) and teachers' NOS instruction. Twelve high school biology teachers participated in this study. Six of the participants had authentic scientific research experience (ASRE) and six had not participated in authentic scientific research. Data included background surveys, modified Views of the Nature of Science (VNOS) questionnaires, interviews, and teaching observations. Data was coded based on the eight NOS understandings outlined in 2013 in the Next Generation Science Standards (NGSS). Evidence from this study indicates participating in authentic scientific research as a member of a scientific community has dual benefits of enabling high school science teachers with informed understandings of the NOS and positioning them to teach with the NOS. However, these benefits do not always result from an ASRE. If the nature of the ASRE is limited, then it may limit teachers' NOS understandings and their NOS teaching practices. The results of this study suggest that participation in ASREs may be one way to improve teachers' NOS understandings and teaching practices if the experiences themselves offer a comprehensive view of the NOS. Because ASREs and other science learning experiences do not always offer such experiences, pre-service teacher education and professional development opportunities may engage science teachers in two ways: (1) becoming part of a scientific community may enable them to teach with NOS and (2) being reflective about what being a scientist means may improve teachers' NOS understandings and better position them to teach about NOS.. Keywords: nature of science, authentic scientific research experiences, Next Generation Science Standards, teaching about NOS, teaching with NOS.

  15. Nuclear science summer school for high scholl students

    International Nuclear Information System (INIS)

    Foster, D.E.; Stone, C.A.

    1997-01-01

    We have developed a two-week summer lecture and laboratory course that introduces hihg school students to concepts in nuclear science. The program has operated at the San Jose State University Nuclear Science Facility for two years. Experienced high school science teachers run the summer scholl, assisted by other science teachers. Students consider the program to be effective. Its popularity is shown by numerous requests for reservations and the necessity to offer multiple sections in 1997. (author)

  16. Analysis of Spatial Concepts, Spatial Skills and Spatial Representations in New York State Regents Earth Science Examinations

    Science.gov (United States)

    Kastens, Kim A.; Pistolesi, Linda; Passow, Michael J.

    2014-01-01

    Research has shown that spatial thinking is important in science in general, and in Earth Science in particular, and that performance on spatially demanding tasks can be fostered through instruction. Because spatial thinking is rarely taught explicitly in the U.S. education system, improving spatial thinking may be "low-hanging fruit" as…

  17. Using the Communication in Science Inquiry Project Professional Development Model to Facilitate Learning Middle School Genetics Concepts

    Science.gov (United States)

    Baker, Dale R.; Lewis, Elizabeth B.; Uysal, Sibel; Purzer, Senay; Lang, Michael; Baker, Perry

    2011-01-01

    This study describes the effect of embedding content in the Communication in Inquiry Science Project professional development model for science and language arts teachers. The model uses four components of successful professional development (content focus, active learning, extended duration, participation by teams of teachers from the same school…

  18. Students Teach Sex Education: Introducing Alternative Conceptions of Sexuality

    Science.gov (United States)

    Buck, Alison; Parrotta, Kylie

    2014-01-01

    In this paper, we describe an exercise that challenges hetero-normative and sexist notions of sexuality, allowing students to envision alternative models. Research shows how active learning eases student anxiety over challenging or threatening material. After reading Jessica Fields' "Risky Lessons" and Waskul, Vannini, and Weisen's…

  19. Introducing New Concepts of Geography in the Social Studies Curriculum.

    Science.gov (United States)

    Ball, John M.

    Ways in which geographic education lags behind recent developments in the field, as well as conceptual and practical suggestions for bringing it up to date are discussed in this document. Unlike traditional geography, which rested on variations of environmental determinism, a basic interest in man and his spatial reference underlies the concepts…

  20. Introducing Big Data Concepts in an Introductory Technology Course

    Science.gov (United States)

    Frydenberg, Mark

    2015-01-01

    From their presence on social media sites to in-house application data files, the amount of data that companies, governments, individuals, and sensors generate is overwhelming. The growth of Big Data in both consumer and enterprise activities has caused educators to consider options for including Big Data in the Information Systems curriculum.…

  1. [The diversity of science in Carnap's, Lewin's and Fleck's philosophy. The development of a pluralistic scientific concept].

    Science.gov (United States)

    Köchy, Kristian

    2010-03-01

    In the 1920s and 1930s three different but simultaneous approaches of philosophy of science can be distinguished: the logical approach of the physicist Rudolf Carnap, the logico-historical approach of the psychologist Kurt Lewin and the socio-historical approach of the medical scientist Ludwik Fleck. While the philosophies of Lewin and Fleck can be characterized as contextual appraisals which account for the interactions between particular sciences and their historical, socio-cultural or intellectual environments, Carnap's philosohy is narrowed to an internal methodology centered on scientific propositions and ogical structures in general. In addition to these differences in aim and practice of methodological analysis the estimation of the real disunity and diversity of the special branches of science differs. Instead of Carnap's ideal of a unified science from the new pluralistic point of view the evaluation of the empirical multiplicity of particular sciences obtains philosophical acceptance.

  2. The social construction of competence: Conceptions of science and expertise among proponents of the low-carbohydrate high-fat diet in Finland.

    Science.gov (United States)

    Jauho, Mikko

    2016-04-01

    The article looks at conceptions of science and expertise among lay proponents of the low-carbohydrate high-fat diet in Finland. The research data consist of comments on a webpage related to a debate on the health dangers of animal fats screened in Finnish national television in autumn 2010. The article shows that contrary to the prevailing image advocated by the national nutritional establishment, which is based on the deficit model of public understanding of science, the low-carbohydrate high-fat proponents are neither ignorant about scientific facts nor anti-science. Rather, they express nuanced viewpoints about the nature of science, the place of individual experience in nutritional recommendations and the reliability of experts. Inspired by discussions on the social construction of ignorance, the article argues that the low-carbohydrate high-fat proponents are engaged in what it callsthe social construction of competencewhen they present their position as grounded in science and stylize themselves as lay experts. © The Author(s) 2014.

  3. Teaching and investigating the use of Concept Maps as educational resource facilitator of meaningful learning for natural sciences in elementary education.

    Directory of Open Access Journals (Sweden)

    Felipa Pacífico Ribeiro de Assis Silveira

    2014-12-01

    Full Text Available The study tried to answer questions pertinent to the use of concept maps (CM as a teaching resource facilitator of meaningful learning of scientific concepts of Natural Sciences, in the classroom of elementary school. To answer the questions and insert the MC in the classroom every day, we adopted the interdependence between the process of learning, teaching and investigation. To ensure a triadic relationship, outline an intervention / investigation with theoretical and methodological support in quantitative and qualitative approach. The teaching and learning were secured from a teaching strategy, able to share and negotiate concepts relevant to the field of education, enabling students move beyond their existing knowledge, ensuring the data of research about the effects of MC in learning of the groups investigated. The MC was defined as a teaching resource potential for this level of education and principles of the Theory of Meaningful Learning that supports it. It was evident the recursive procedural character inherent in meaningful learning as using the MC as a teaching resource in the construction of scientific knowledge of Natural Sciences, the occurrence of learning of the groups using the MC and its validation in the presence of students of final grades of elementary school.

  4. Science and Cooking: Motivating the Study of Freshman Physics

    Science.gov (United States)

    Weitz, David

    2011-03-01

    This talk will describe a course offered to Harvard undergraduates as a general education science course, meant to intrduce freshman-level science for non-science majors. The course was a collaboration between world-class chefs and science professors. The chefs introduced concepts of cooking and the professors used these to motivate scientific concepts. The lectures were designed to provide a coherent introduction to freshman physics, primarily through soft matter science. The lectures were supplemented by a lab experiments, designed by a team of very talented graduate students and post docs, that supplemented the science taught in lecture. The course was very successful in motivating non-science students to learn, and even enjoy, basic science concepts. This course depended on contributions from Michael Brenner, Otger Campas, Amy Rowat and a team of talented graduate student teaching fellows.

  5. Teachers' conceptions of the nature of science: Analyzing the impact of a teacher enhancement program in changing attitudes and perceptions of science and scientific research

    Science.gov (United States)

    Govett, Aimee Lee

    The purpose of this study was to determine the efficacy of a residential science research experience in changing participants' attitudes and understanding of the nature of science and their view of themselves as science researchers. Data from interviews, journal writings, classroom observations and two pre-post instruments were used in the evaluation plan. As participants of this study, 16 inservice teachers (K--16) attended a two-week residential institute at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. The format of the institute featured a scientific research experience designed to arm its participants with the skills needed to model their classroom teaching after scientific research. The program included lessons on the fundamentals of radio astronomy, science talks and interactions with practicing scientists, in-depth tours of the NRAO facilities, and pedagogical instruction for implementing research in the classroom. The WVU College of Education staff and the NRAO staff stressed the importance of the nature of the research experience offered to these teachers. In the Education Sessions the WVU science education staff guided participants through the steps required to turn their experience around, in order to develop student research projects for their classrooms. The results from the Research Self Assessment instrument show significant gains for all participants in being more comfortable doing research. For the Nature of Science and Science Teaching instrument there were only three items that showed significant gains for all participants both in understanding the nature of science and in their views on implementing the Green Bank constructivist learning philosophy. The women, especially the elementary teacher group, showed the greatest change in their understanding of the nature of science as reflected in the interviews as well as in their personal journals. The seven men, who were all in the secondary field, made no significant

  6. Introducing the TAPS Pyramid Model

    Science.gov (United States)

    Earle, Sarah

    2015-01-01

    The Teacher Assessment in Primary Science (TAPS) project is a three-year project based at Bath Spa University and funded by the Primary Science Teaching Trust (PSTT). It aims to develop support for a valid, reliable and manageable system of science assessment that will have a positive impact on children's learning. In this article, the author…

  7. Science Self-Concept and Valuing Science: A Cross-Cultural Analysis of Their Relation among Students from Western and East Asian Countries

    Science.gov (United States)

    Schütte, Kerstin

    2015-01-01

    Devaluing an academic domain is a potential means of alleviating the psychological discomfort that results from the inconsistency of a low domain-specific self-concept of ability and great value attached to the domain. Such motivated devaluation of a domain is expected to be stronger in cultural contexts that promote a relatively greater focus on…

  8. Science and mathematics teachers’ core teaching conceptions and their implications for engaging in cross-curricular innovations

    Directory of Open Access Journals (Sweden)

    Hanne Møller Andersen

    2010-04-01

    Full Text Available Previous studies have found core teaching conceptions (CTCs to influence teachers’ actions, i.e. how they engage with new teaching practices (e.g. Lotter, Harwood, & Bonner, 2007. This study explores typical CTCs and their subject specific nature in a sample of teachers from physics, biology, and mathematics in Danish upper secondary school. Teachers’ CTCs were investigated through their essay responses to a set of open core questions, administered through a web-platform. Results demonstrate that teachers’ CTCs come in subject specific flavours, encompassing their purpose for teaching the subject, their conceptions of teaching and learning, and their conceptions of interdisciplinary teaching. It is argued that such differences shape teachers’ engagement with new cross-curricular innovations in the Danish context. Assessing and addressing typical and personal CTCs are found to be crucial to a successful implementation of current reform-initiatives, for teacher training, and for self-regulated professional development among teachers.

  9. BRICS. Promises of an elusive concept

    Directory of Open Access Journals (Sweden)

    Pio Garcia

    2014-06-01

    Full Text Available This paper looks for new innovative concepts and theories to improve in development’s planning knowledge, it ‘s sustained in the lecture and analysis of new innovative development fields papers to make order and interrelate them for building a new structural base to stand a contemporary economic and social development science that be able to introduce and embody spatial and regional analysis, it tries to point out the strategic place played today by world cities, the migration flows and science and technology in the development and integration of countries, particularly in the Asia Pacific region.

  10. Introducing evidence-based dentistry to dental students using histology.

    Science.gov (United States)

    Lallier, Thomas E

    2014-03-01

    The expansion of evidence-based dentistry (EBD) is essential to the continued growth and development of the dental profession. Expanding EBD requires increased emphasis on critical thinking skills during dental education, as noted in the American Dental Education Association's Competencies for the New General Dentist. In order to achieve this goal, educational exercises must be introduced to increase the use of critical thinking skills early in the dental curriculum, with continued reinforcement as students progress through subsequent years. Described in this article is one approach to increasing student exposure to critical thinking during the early basic science curriculum-specifically, within the confines of a traditional histology course. A method of utilizing the medical and dental research literature to reinforce and enliven the concepts taught in histology is described, along with an approach for using peer-to-peer presentations to demonstrate the tools needed to critically evaluate research studies and their presentation in published articles. This approach, which could be applied to any basic science course, will result in a stronger foundation on which students can build their EBD and critical thinking skills.

  11. The relationship of attitudes toward science, cognitive style, and self-concept to achievement in chemistry at the secondary school level

    Science.gov (United States)

    Kirk, Gerald Richard

    There is currently a crisis in science education in the United States. This statement is based on the National Science Foundation's report stating that the nation's students, on average, still rank near the bottom in science and math achievement internationally. This crisis is the background of the problem for this study. This investigation studied learner variables that were thought to play a role in teaching chemistry at the secondary school level, and related them to achievement in the chemistry classroom. Among these, cognitive style (field dependence/independence), attitudes toward science, and self-concept had been given considerable attention by researchers in recent years. These variables were related to different competencies that could be used to measure the various types of achievement in the chemistry classroom at the secondary school level. These different competencies were called academic, laboratory, and problem solving achievement. Each of these chemistry achievement components may be related to a different set of learner variables, and the main purpose of this study was to investigate the nature of these relationships. Three instruments to determine attitudes toward science, cognitive style, and self-concept were used for data collection. Teacher grades were used to determine chemistry achievement for each student. Research questions were analyzed using Pearson Product Moment Correlation Coefficients and t-tests. Results indicated that field independence was significantly correlated with problem solving, academic, and laboratory achievement. Educational researchers should therefore investigate how to teach students to be more field independent so they can achieve at higher levels in chemistry. It was also true that better attitudes toward the social benefits and problems that accompany scientific progress were significantly correlated with higher achievement on all three academic measures in chemistry. This suggests that educational researchers

  12. The Rebirth of the Theory of Imputation in the Science of Criminal Law: to an Overcoming Stage or an Involution to Pre-Scientific Conceptions?

    Directory of Open Access Journals (Sweden)

    Nicolás Santiago Cordini

    2015-06-01

    Full Text Available The Science of Criminal Law goes through a moment that can be characterized as a “crisis”. Faced with this situation, have been proliferate theories that define themselves as “theories of imputation” that leave, in whole or in part, the theory of crime up to now dominating. The aim of this article is to analyze three theories enrolled under the concept of imputation and determine in which proportion they conserve other they get off the categories proposed by the theory of crime. Then, we will establish in which proportion these theories constitute an advance for the Science of Criminal Law or, on the contrary, they are manifestations of a retreat to a pre-scientific stage.

  13. The effect of fifth grade science teachers' pedagogical content knowledge on their decision making and student learning outcomes on the concept of chemical change

    Science.gov (United States)

    Ogletree, Glenda Lee

    This study investigated the science pedagogical content knowledge (PCK) among teachers as they taught the concept of chemical change to fifth grade students. The purpose was to identify teachers' PCK and its impact in middle grade science classrooms. A second purpose was to investigate the possible relationship of teachers' science PCK to teacher actions and student learning outcomes in the classroom. The instruments used to capture PCK were background and demographic information, Content Representations (CoRe), and Professional and Pedagogical experience Repertoire (PaP-eR). The study investigated CoRe and PaP-eR with seven classroom teachers as they planned and taught chemical change to fifth grade students. Four levels of a Pedagogical Content Knowledge rubric were used to describe varying levels of PCK. The four levels were content knowledge of chemical change; knowledge of students' thinking; knowledge of how to represent chemical change to promote student learning; and professional development, collaboration, and leadership roles in science. The Reformed Teaching Observation Protocol (RTOP) described and evaluated science teaching performance levels of the teachers. In this study, 176 students were assessed to determine understanding of chemical change. There was a significant correlation between teachers' PCK scores and student achievement. The study also determined that a significant correlation existed between teachers' PCK scores and their RTOP scores revealing that RTOP scores could be predictors of PCK. Through this approach, understandings of PCK emerged that are of interest to university preservice preparation programs, research in understanding effective teachers and teaching, and the planning and implementation of professional development for teachers of science with middle grade students.

  14. Oral Traditions: A Contextual Framework for Complex Science Concepts--Laying the Foundation for a Paradigm of Promise in Rural Science Education

    Science.gov (United States)

    Avery, Leanne M.; Hains, Bryan J.

    2017-01-01

    The overarching goal of this paper is to bring a diverse educational context--rural sayings and oral traditions situated in ecological habitats--to light and emphasize that they need to be taken into consideration regarding twenty-first century science education. The rural sayings or tenets presented here are also considered alternative ways of…

  15. CONCEPTIONS ABOUT THE HISTORY OF SCIENCE PRESENTED IN THE TEXTBOOKS OF THE EARLY YEARS IN THE STATE OF GOIÁS

    Directory of Open Access Journals (Sweden)

    Jenyffer Soares Estival Murça

    2016-07-01

    Full Text Available The approach of the History of Science (HC in science teaching and textbooks (LD has been gaining ground in discussions involving teacher training, may be one way to combat naive conceptions about the Nature of Science (NDC. The present study sought to identify and analyze the presence of HC in the collection of Sciences textbook intended for the early years of elementary school (1st to 5th year, the largest acquisition for public schools in the state of Goiás. The collection of LDs used was approved in PNLD 2013-2015 collection, Open Door Collection (2011. Insertion of HC, by using categorization information for HC were analyzed. The analysis revealed eight inserted in the collection (Human Body, Energy, Evolution, Interaction, Environment, Health, Technology and Universe Theme, where were possible to identify only 17 inserts HC, surface and related mode of knowledge production. Thus, it is concluded that the insertion of the HC in the early years still gives a very modest way, should be reconsidered and discussed in training courses for teachers.

  16. Conceptual Mobility and Entrenchment in Introductory Geoscience Courses: New Questions Regarding Physics' and Chemistry's Role in Learning Earth Science Concepts

    Science.gov (United States)

    Anderson, Steven W.; Libarkin, Julie C.

    2016-01-01

    Nationwide pre- and posttesting of introductory courses with the Geoscience Concept Inventory (GCI) shows little gain for many of its questions. Analysis of more than 3,500 tests shows that 22 of the 73 GCI questions had gains of <0.03, and nearly half of these focused on basic physics and chemistry. We also discovered through an assessment of…

  17. Sound Science

    Science.gov (United States)

    Sickel, Aaron J.; Lee, Michele H.; Pareja, Enrique M.

    2010-01-01

    How can a teacher simultaneously teach science concepts through inquiry while helping students learn about the nature of science? After pondering this question in their own teaching, the authors developed a 5E learning cycle lesson (Bybee et al. 2006) that concurrently embeds opportunities for fourth-grade students to (a) learn a science concept,…

  18. The impact of real-time, Internet experiments versus interactive, asynchronous replays of experiments on high school students science concepts and attitudes

    Science.gov (United States)

    Kubasko, Dennis S., Jr.

    ). Students' attitudes towards learning about science concepts weren't different from one group to the other, but all students changed their views independent of treatment condition. Across treatment groups students performed similarly on all assessment instruments used to measure the nature of science domain. Furthermore, there were no significant differences, pre-test to post-test between groups or due to interaction. These findings show that students' investigations using the Internet and stored replay experiences can assist science educators in providing student with more inquiry-based experiences.

  19. Introduction to information science

    CERN Document Server

    Bawden, David

    2012-01-01

    This landmark textbook takes a whole subject approach to Information Science as a discipline. Introduced by leading international scholars and offering a global perspective on the discipline, this is designed to be the standard text for students worldwide. The authors' expert narrative guides you through each of the essential building blocks of information science offering a concise introduction and expertly chosen further reading and resources.Critical topics covered include:foundations: concepts, theories and historical perspectivesorganising and retrieving Information information behaviour,

  20. The pursuit of understanding: A study of exemplary high school students' conceptions of knowledge validation in science and history

    Science.gov (United States)

    Boix Mansilla, Veronica Maria

    The study presented examined 16 award-winning high school students' beliefs about the criteria by which scientific theories and historical narratives are deemed trustworthy. It sought to (a) describe such beliefs as students reasoned within each discipline; (b) examine the degree to which such beliefs were organized as coherent systems of thought; and (c) explore the relationship between students' beliefs and their prior disciplinary research experience. Students were multiple-year award-winners at the Massachusetts Science Fair and the National History Day---two pre-collegiate State-level competitions. Two consecutive semi-structured interviews invited students to assess and enhance the trustworthiness of competing accounts of genetic inheritance and the Holocaust in science and history respectively. A combined qualitative and quantitative data analysis yielded the following results: (a) Students valued three standards of acceptability that were common across disciplines: e.g. empirical strength, explanatory power and formal and presentational strength. However, when reasoning within each discipline they tended to define each standard in disciplinary-specific ways. Students also valued standards of acceptability that were not shared across disciplines: i.e., external validity in science and human understanding in history. (b) In science, three distinct epistemological orientations were identified---i.e., "faith in method," "trusting the scientific community" and "working against error." In history students held two distinct epistemologies---i.e., "reproducing the past" and "organizing the past". Students' epistemological orientations tended to operate as collections of mutually supporting ideas about what renders a theory or a narrative acceptable. (c) Contrary to the standard position to date in the literature on epistemological beliefs, results revealed that students' research training in a particular discipline (e.g., science or history) was strongly related to