WorldWideScience

Sample records for science classroom results

  1. Changes in science classrooms resulting from collaborative action research initiatives

    Science.gov (United States)

    Oh, Phil Seok

    Collaborative action research was undertaken over two years between a Korean science teacher and science education researchers at the University of Iowa. For the purpose of realizing science learning as envisioned by constructivist principles, Group-Investigations were implemented three or five times per project year. In addition, the second year project enacted Peer Assessments among students. Student perceptions of their science classrooms, as measured by the Constructivist Learning Environment Survey (CLES), provided evidence that the collaborative action research was successful in creating constructivist learning environments. Student attitudes toward science lessons, as examined by the Enjoyment of Science Lessons Scale (ESLS), indicated that the action research also contributed to developing more positive attitudes of students about science learning. Discourse analysis was conducted on video-recordings of in-class presentations and discussions. The results indicated that students in science classrooms which were moving toward constructivist learning environments engaged in such discursive practices as: (1) Communicating their inquiries to others, (2) Seeking and providing information through dialogues, and (3) Negotiating conflicts in their knowledge and beliefs. Based on these practices, science learning was viewed as the process of constructing knowledge and understanding of science as well as the process of engaging in scientific inquiry and discourse. The teacher's discursive practices included: (1) Wrapping up student presentations, (2) Addressing misconceptions, (3) Answering student queries, (4) Coaching, (5) Assessing and advising, (6) Guiding students discursively into new knowledge, and (7) Scaffolding. Science teaching was defined as situated acts of the teacher to facilitate the learning process. In particular, when the classrooms became more constructivist, the teacher intervened more frequently and carefully in student activities to fulfill a

  2. Understanding children's science identity through classroom interactions

    Science.gov (United States)

    Kim, Mijung

    2018-01-01

    Research shows that various stereotypes about science and science learning, such as science being filled with hard and dry content, laboratory experiments, and male-dominated work environments, have resulted in feelings of distance from science in students' minds. This study explores children's experiences of science learning and science identity. It asks how children conceive of doing science like scientists and how they develop views of science beyond the stereotypes. This study employs positioning theory to examine how children and their teacher position themselves in science learning contexts and develop science identity through classroom interactions. Fifteen students in grades 4-6 science classrooms in Western Canada participated in this study. Classroom activities and interactions were videotaped, transcribed, and analysed to examine how the teacher and students position each other as scientists in the classroom. A descriptive explanatory case analysis showed how the teacher's positioning acted to develop students' science identity with responsibilities of knowledge seeking, perseverance, and excitement about science.

  3. Mathematics and Science Learning Opportunities in Preschool Classrooms

    Science.gov (United States)

    Piasta, Shayne B.; Pelatti, Christina Yeager; Miller, Heather Lynnine

    2014-01-01

    Research findings The present study observed and coded instruction in 65 preschool classrooms to examine (a) overall amounts and (b) types of mathematics and science learning opportunities experienced by preschool children as well as (c) the extent to which these opportunities were associated with classroom and program characteristics. Results indicated that children were afforded an average of 24 and 26 minutes of mathematics and science learning opportunities, respectively, corresponding to spending approximately 25% of total instructional time in each domain. Considerable variability existed, however, in the amounts and types of mathematics and science opportunities provided to children in their classrooms; to some extent, this variability was associated with teachers’ years of experience, teachers’ levels of education, and the socioeconomic status of children served in the program. Practice/policy Although results suggest greater integration of mathematics and science in preschool classrooms than previously established, there was considerable diversity in the amounts and types of learning opportunities provided in preschool classrooms. Affording mathematics and science experiences to all preschool children, as outlined in professional and state standards, may require additional professional development aimed at increasing preschool teachers’ understanding and implementation of learning opportunities in these two domains in their classrooms. PMID:25489205

  4. Science Students' Classroom Discourse: Tasha's Umwelt

    Science.gov (United States)

    Arnold, Jenny

    2012-04-01

    Over the past twenty-five years researchers have been concerned with understanding the science student. The need for such research is still grounded in contemporary issues including providing opportunities for all students to develop scientific literacy and the failure of school science to connect with student's lives, interests and personal identities. The research reported here is unusual in its use of discourse analysis in social psychology to contribute to an understanding of the way students make meaning in secondary school science. Data constructed for the study was drawn from videotapes of nine consecutive lessons in a year-seven science classroom in Melbourne, post-lesson video-stimulated interviews with students and the teacher, classroom observation and the students' written work. The classroom videotapes were recorded using four cameras and seven audio tracks by the International Centre for Classroom Research at the University of Melbourne. Student talk within and about their science lessons was analysed from a discursive perspective. Classroom episodes in which students expressed their sense of personal identity and agency, knowledge, attitude or emotion in relation to science were identified for detailed analysis of the function of the discourse used by students, and in particular the way students were positioned by others or positioned themselves. This article presents the discursive Umwelt or life-space of one middle years science student, Tasha. Her case is used here to highlight the complex social process of meaning making in science classrooms and the need to attend to local moral orders of rights and duties in research on student language use, identity and learning in science.

  5. Teaching and Learning Science in Authoritative Classrooms: Teachers' Power and Students' Approval in Korean Elementary Classrooms

    Science.gov (United States)

    Lee, Jeong-A.; Kim, Chan-Jong

    2017-09-01

    This study aims to understand interactions in Korean elementary science classrooms, which are heavily influenced by Confucianism. Ethnographic observations of two elementary science teachers' classrooms in Korea are provided. Their classes are fairly traditional teaching, which mean teacher-centered interactions are dominant. To understand the power and approval in science classroom discourse, we have adopted Critical Discourse Analysis (CDA). Based on CDA, form and function analysis was adopted. After the form and function analysis, all episodes were analyzed in terms of social distance. The results showed that both teachers exercised their power while teaching. However, their classes were quite different in terms of getting approval by students. When a teacher got students' approval, he could conduct the science lesson more effectively. This study highlights the importance of getting approval by students in Korean science classrooms.

  6. Designing Summer Research Experiences for Teachers and Students That Promote Classroom Science Inquiry Projects and Produce Research Results

    Science.gov (United States)

    George, L. A.; Parra, J.; Rao, M.; Offerman, L.

    2007-12-01

    Research experiences for science teachers are an important mechanism for increasing classroom teachers' science content knowledge and facility with "real world" research processes. We have developed and implemented a summer scientific research and education workshop model for high school teachers and students which promotes classroom science inquiry projects and produces important research results supporting our overarching scientific agenda. The summer training includes development of a scientific research framework, design and implementation of preliminary studies, extensive field research and training in and access to instruments, measurement techniques and statistical tools. The development and writing of scientific papers is used to reinforce the scientific research process. Using these skills, participants collaborate with scientists to produce research quality data and analysis. Following the summer experience, teachers report increased incorporation of research inquiry in their classrooms and student participation in science fair projects. This workshop format was developed for an NSF Biocomplexity Research program focused on the interaction of urban climates, air quality and human response and can be easily adapted for other scientific research projects.

  7. Science beyond the Classroom Boundaries

    Science.gov (United States)

    Feasey, Rosemary; Bianchi, Lynne

    2011-01-01

    There have been many years of innovation in primary science education. Surprisingly, however, most of this has taken place within the confines of the classroom. What primary science has not yet done with universal success is step outside the classroom boundaries to use the school grounds for teaching and learning across all aspects of the science…

  8. Exploring alternative assessment strategies in science classrooms

    Directory of Open Access Journals (Sweden)

    Michèle Stears

    2010-01-01

    Full Text Available The knowledge children bring to the classroom or construct in the classroom may find expression in a variety of activities and is often not measurable with the traditional assessment instruments used in science classrooms. Different approaches to assessment are required to accommodate the various ways in which learners construct knowledge in social settings. In our research we attempted to determine the types of outcomes achieved in a Grade 6 classroom where alternative strategies such as interactive assessments were implemented. Analyses of these outcomes show that the learners learned much more than the tests indicate, although what they learnt was not necessarily science. The implications for assessment are clear: strategies that assess knowledge of science concepts, as well as assessment of outcomes other than science outcomes, are required if we wish to gain a holistic understanding of the learning that occurs in science classrooms.

  9. Mapping Science in Discourse-based Inquiry Classrooms

    Science.gov (United States)

    Yeneayhu, Demeke Gesesse

    Abstract The purpose of this study was to investigate how discourse-based inquiry science lessons provided opportunities for students to develop a network of semantic relations among core ideas and concepts in science. It was a naturalistic inquiry classroom lessons observation study on three science teachers--- a middle school science teacher and two high school physics teachers in an urban school district located in the Western New York region. Discourse and thematic analysis drawn from the theory of Systemic Functional Linguistics were utilized as guiding framework and analysis tools. Analysis of the pre-observation and post-observation interviews of the participant teachers revealed that all of the three teachers participated in at least one inquiry-based science teaching teacher professional development program and they all thought their classroom teaching practice was inquiry-based. Analysis of their classroom lesson videos that each participant teacher taught on a specific science topic revealed that the middle school teacher was found to be a traditional teacher-dominated classroom whereas the two high school physics teachers' classroom teaching approach was found to be discourse-based inquiry. One of the physics teachers who taught on a topic of Magnetic Interaction used relatively structured and guided-inquiry classroom investigations. The other physics teacher who taught on a topic of Color Mixing utilized open-ended classroom investigations where the students planned and executed the series of classroom science investigations with minimal guidance from the teacher. The traditional teacher-based classroom communicative pattern was found to be dominated by Triadic Dialogue and most of the science thematics were jointly developed by the teacher and the students, but the students' role was limited to providing responses to the teacher's series questions. In the guided-inquiry classroom, the common communicative pattern was found to be True Dialogue and most

  10. Do science coaches promote inquiry-based instruction in the elementary science classroom?

    Science.gov (United States)

    Wicker, Rosemary Knight

    The South Carolina Mathematics and Science Coaching Initiative established a school-based science coaching model that was effective in improving instruction by increasing the level of inquiry-based instruction in elementary science classrooms. Classroom learning environment data from both teacher groups indicated considerable differences in the quality of inquiry instruction for those classrooms of teachers supported by a science coach. All essential features of inquiry were demonstrated more frequently and at a higher level of open-ended inquiry in classrooms with the support of a science coach than were demonstrated in classrooms without a science coach. However, from teacher observations and interviews, it was determined that elementary schoolteacher practice of having students evaluate conclusions and connect them to current scientific knowledge was often neglected. Teachers with support of a science coach reported changes in inquiry-based instruction that were statistically significant. This mixed ethnographic study also suggested that the Mathematics and Science Coaching Initiative Theory of Action for Instructional Improvement was an effective model when examining the work of science coaches. All components of effective school infrastructure were positively impacted by a variety of science coaching strategies intended to promote inquiry. Professional development for competent teachers, implementation of researched-based curriculum, and instructional materials support were areas highly impacted by the work of science coaches.

  11. Understanding science teaching effectiveness: examining how science-specific and generic instructional practices relate to student achievement in secondary science classrooms

    Science.gov (United States)

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-12-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student achievement can provide teachers with beneficial information about how to best engage their students in meaningful science learning. To address this need, this study examined the instructional practices that 99 secondary biology teachers used in their classrooms and employed regression to determine which instructional practices are predictive of students' science achievement. Results revealed that the secondary science teachers who had well-managed classroom environments and who provided opportunities for their students to engage in student-directed investigation-related experiences were more likely to have increased student outcomes, as determined by teachers' value-added measures. These findings suggest that attending to both generic and subject-specific aspects of science teachers' instructional practice is important for understanding the underlying mechanisms that result in more effective science instruction in secondary classrooms. Implications about the use of these observational measures within teacher evaluation systems are discussed.

  12. Talking about science: An interpretation of the effects of teacher talk in a high school science classroom

    Science.gov (United States)

    Moje, Elizabeth B.

    This paper builds on research in science education, secondary education, and sociolinguistics by arguing that high school classrooms can be considered speech communities in which language may be selectively used and imposed on students as a means of fostering academic speech community identification. To demonstrate the ways in which a high school teacher's language use may encourage subject area identification, the results of an interactionist analysis of data from a 2-year ethnographic study of one high school chemistry classroom are presented. Findings indicate that this teacher's uses of language fell into three related categories. These uses of language served to foster identification with the academic speech community of science. As a result of the teacher's talk about science according to these three patterns, students developed or reinforced particular views of science. In addition, talking about science in ways that fostered identity with the discipline promoted the teacher as expert and built classroom solidarity or community. These results are discussed in light of sociolinguistic research on classroom competence and of the assertions of science educators regarding social and ideologic implications of language use in science instruction.Received: 23 September 1993; Revised: 15 September 1994;

  13. Teaching and learning science in linguistically diverse classrooms

    Science.gov (United States)

    Moore, Emilee; Evnitskaya, Natalia; Ramos-de Robles, S. Lizette

    2017-01-01

    In this paper we reflect on the article, Science education in a bilingual class: problematising a translational practice, by Zeynep Ünsal, Britt Jakobson, Bengt-Olav Molander and Per-Olaf Wickman (Cult Stud Sci Educ, 10.1007/s11422-016-9747-3). In their article, the authors present the results of a classroom research project by responding to one main question: How is continuity between everyday language and the language of science construed in a bilingual science classroom where the teacher and the students do not speak the same minority language? Specifically, Ünsal et al. examine how bilingual students construe relations between everyday language and the language of science in a class taught in Swedish, in which all students also spoke Turkish, whereas the teacher also spoke Bosnian, both being minority languages in the context of Swedish schools. In this forum, we briefly discuss why close attention to bilingual dynamics emerging in classrooms such as those highlighted by Ünsal et al. matters for science education. We continue by discussing changing ontologies in relation to linguistic diversity and education more generally. Recent research in bilingual immersion classroom settings in so-called "content" subjects such as Content and Language Integrated Learning, is then introduced, as we believe this research offers some significant insights in terms of how bilingualism contributes to knowledge building in subjects such as science. Finally, we offer some reflections in relation to the classroom interactional competence needed by teachers in linguistically diverse classrooms. In this way, we aim to further the discussion initiated by Ünsal et al. and to offer possible frameworks for future research on bilingualism in science education. In their article, Ünsal et al. conclude the analysis of the classroom data by arguing in favor of a translanguaging pedagogy, an approach to teaching and learning in which students' whole language repertoires are used as

  14. Girls Doing Science: A Case Study of Science Literacy in All-Female Middle Grade Classrooms

    Science.gov (United States)

    Faller, Susan Elisabeth

    In the face of low adolescent literacy rates (NCES, 2012), concerns about the nation's prospects of remaining competitive in science and technology (Hill, Corbett, & St. Rose, 2010), a persistent gender gap in science (NCES, 2012; Reilly, 2012), and the continued rollout of college- and career-ready standards, there is a need to focus on adolescent girls' science literacy. Such science literacy involves not only general knowledge about science, but also the ability to engage in the advanced reading and writing practices fundamental to doing science (Norris & Phillips, 2003). In this thesis, I present three articles with findings that respond to this need. They are the results of a multiple-case embedded (Yin, 2009) study that I conducted over the course of 7 months in four science classrooms (grades 5 through 8; 50 students) taught by a single teacher in a small all-female middle school. I collected in-depth data focused on science literacy from multiple sources, including (a) fieldnotes (Emerson, Fretz & Shaw, 2011), (b) videorecorded classroom observations (102 classes, 113 hours, recorded on 29 days), (c) a survey of all students, (d) semi-structured interviews with the subsample of 12 focal students (ranging from 18 to 37 minutes) and (e) photographs of classroom artifacts and student work. In the first article, I provide a window into standard literacy practices in science classrooms by examining the reading and writing genres to which students are exposed. In the second article, I examine how a teacher's language and instructional practices within her classrooms, and popular images of science from the world beyond their classrooms might shape adolescent girls' science identities. Finally, in the third article, I explore different aspects of science identity using the words of three case study students. Taken together, these studies fill gaps in the literature by investigating science literacy in an understudied context, all-female classrooms. In addition

  15. Learning Science beyond the Classroom.

    Science.gov (United States)

    Ramey-Gassert, Linda

    1997-01-01

    Examines a cross-section of craft knowledge and research-based literature of science learning beyond the classroom. Describes informal science education programs, and discusses implications for science teaching, focusing on the importance of informal science learning for children and in-service and preservice teachers. Proposes a model for…

  16. Examining classroom interactions related to difference in students' science achievement

    Science.gov (United States)

    Zady, Madelon F.; Portes, Pedro R.; Ochs, V. Dan

    2003-01-01

    The current study examines the cognitive supports that underlie achievement in science by using a cultural historical framework (L. S. Vygotsky (1934/1986), Thought and Language, MIT Press, Cambridge, MA.) and the activity setting (AS) construct (R. G. Tharp & R. Gallimore (1988), Rousing minds to life: Teaching, learning and schooling in social context, Cambridge University Press, Cambridge, MA.) with its five features: personnel, motivations, scripts, task demands, and beliefs. Observations were made of the classrooms of seventh-grade science students, 32 of whom had participated in a prior achievement-related parent-child interaction or home study (P. R. Portes, M. F. Zady, & R. M. Dunham (1998), Journal of Genetic Psychology, 159, 163-178). The results of a quantitative analysis of classroom interaction showed two features of the AS: personnel and scripts. The qualitative field analysis generated four emergent phenomena related to the features of the AS that appeared to influence student opportunity for conceptual development. The emergent phenomenon were science activities, the building of learning, meaning in lessons, and the conflict over control. Lastly, the results of the two-part classroom study were compared to those of the home science AS of high and low achievers. Mismatches in the AS features in the science classroom may constrain the opportunity to learn. Educational implications are discussed.

  17. The effect of classroom instruction, attitudes towards science and motivation on students' views of uncertainty in science

    Science.gov (United States)

    Schroeder, Meadow

    This study examined developmental and gender differences in Grade 5 and 9 students' views of uncertainty in science and the effect of classroom instruction on attitudes towards science, and motivation. Study 1 examined views of uncertainty in science when students were taught science using constructivist pedagogy. A total of 33 Grade 5 (n = 17, 12 boys, 5 girls) and Grade 9 (n = 16, 8 boys, 8 girls) students were interviewed about the ideas they had about uncertainty in their own experiments (i.e., practical science) and in professional science activities (i.e., formal science). Analysis found an interaction between grade and gender in the number of categories of uncertainty identified for both practical and formal science. Additionally, in formal science, there was a developmental shift from dualism (i.e., science is a collection of basic facts that are the result of straightforward procedures) to multiplism (i.e., there is more than one answer or perspective on scientific knowledge) from Grade 5 to Grade 9. Finally, there was a positive correlation between the understanding uncertainty in practical and formal science. Study 2 compared the attitudes and motivation towards science and motivation of students in constructivist and traditional classrooms. Scores on the measures were also compared to students' views of uncertainty for constructivist-taught students. A total of 28 students in Grade 5 (n = 13, 11 boys, 2 girls) and Grade 9 (n = 15, 6 boys, 9 girls), from traditional science classrooms and the 33 constructivist students from Study 1 participated. Regardless of classroom instruction, fifth graders reported more positive attitudes towards science than ninth graders. Students from the constructivist classrooms reported more intrinsic motivation than students from the traditional classrooms. Constructivist students' views of uncertainty in formal and practical science did not correlate with their attitudes towards science and motivation.

  18. Relationships Between the Way Students Are Assessed in Science Classrooms and Science Achievement Across Canada

    Science.gov (United States)

    Chu, Man-Wai; Fung, Karen

    2018-04-01

    Canadian students experience many different assessments throughout their schooling (O'Connor 2011). There are many benefits to using a variety of assessment types, item formats, and science-based performance tasks in the classroom to measure the many dimensions of science education. Although using a variety of assessments is beneficial, it is unclear exactly what types, format, and tasks are used in Canadian science classrooms. Additionally, since assessments are often administered to help improve student learning, this study identified assessments that may improve student learning as measured using achievement scores on a standardized test. Secondary analyses of the students' and teachers' responses to the questionnaire items asked in the Pan-Canadian Assessment Program were performed. The results of the hierarchical linear modeling analyses indicated that both students and teachers identified teacher-developed classroom tests or quizzes as the most common types of assessments used. Although this ranking was similar across the country, statistically significant differences in terms of the assessments that are used in science classrooms among the provinces were also identified. The investigation of which assessment best predicted student achievement scores indicated that minds-on science performance-based tasks significantly explained 4.21% of the variance in student scores. However, mixed results were observed between the student and teacher responses towards tasks that required students to choose their own investigation and design their own experience or investigation. Additionally, teachers that indicated that they conducted more demonstrations of an experiment or investigation resulted in students with lower scores.

  19. Using Infographics in the Science Classroom

    Science.gov (United States)

    Davidson, Rosemary

    2014-01-01

    As a chemistry teacher, Rosemary Davidson has found "infographics" (information graphics) successfully engage her students in science--not only in carrying out the research for classroom projects but also in presenting the results of their research to their peers. This article will help teachers integrate student-created infographics…

  20. The impact of single-gender classrooms on science achievement of middle school gifted girls

    Science.gov (United States)

    Ulkins, David S.

    Studies indicate a gap in science achievement and positive attitudes towards science between gifted male and female students with females performing less than the males. This study investigated the impact of a single-gender classroom environment as opposed to a mixed-gender classroom, on motivation, locus of control, self-concept, and science achievement of middle school gifted girls. The Motivated Strategies for Learning Questionnaire (MSLQ), Review of Personal Effectiveness with Locus of Control (ROPELOC), Test of Science Related Attitudes (TOSRA), and Stanford Achievement Test 10th Edition, were used to measure the dependent variables respectively. The independent-measure t test was used to compare the differences between girls in a single-gender classroom with the ones in a mixed-gender classroom. A significant difference in the external locus of control resulted for girls in the single gender classroom. However, there were no significant differences found in science achievement, motivation, and the attitudes toward science between the two groups. The implication is that a single-gender learning environment and the use of differentiated teaching strategies can help lessen the negative effects of societal stereotypes in today's classrooms. These, along with being cognizant of the differences in learning styles of girls and their male counterparts, will result in a greater level of success for gifted females in the area of science education.

  1. The flipped classroom: practices and opportunities for health sciences librarians.

    Science.gov (United States)

    Youngkin, C Andrew

    2014-01-01

    The "flipped classroom" instructional model is being introduced into medical and health sciences curricula to provide greater efficiency in curriculum delivery and produce greater opportunity for in-depth class discussion and problem solving among participants. As educators employ the flipped classroom to invert curriculum delivery and enhance learning, health sciences librarians are also starting to explore the flipped classroom model for library instruction. This article discusses how academic and health sciences librarians are using the flipped classroom and suggests opportunities for this model to be further explored for library services.

  2. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    Science.gov (United States)

    Zhai, Junqing; Tan, Aik-Ling

    2015-01-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers…

  3. Science classroom inquiry (SCI simulations: a novel method to scaffold science learning.

    Directory of Open Access Journals (Sweden)

    Melanie E Peffer

    Full Text Available Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  4. Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.

    Science.gov (United States)

    Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  5. Multilevel Effects of Student and Classroom Factors on Elementary Science Achievement in Five Countries

    Science.gov (United States)

    Kaya, Sibel; Rice, Diana C.

    2010-07-01

    This study examined the effects of individual student factors and classroom factors on elementary science achievement within and across five countries. The student-level factors included gender, self-confidence in science and home resources. The classroom-level factors included teacher characteristics, instructional variables and classroom composition. Results for the USA and four other countries, Singapore, Japan, Australia and Scotland, were reported. Multilevel effects were examined through Hierarchical Linear Modelling, using the Trends in International Mathematics and Science Study 2003 fourth grade dataset. Overall, the results showed that selected student background characteristics were consistently related to elementary science achievement in countries investigated. At the student level, higher levels of home resources and self-confidence and at the classroom level, higher levels of class mean home resources yielded higher science scores on the TIMSS 2003. In general, teacher and instructional variables were minimally related to science achievement. There was evidence of positive effects of teacher support in the USA and Singapore. The emphasis on science inquiry was positively related to science achievement in Singapore and negatively related in the USA and Australia. Recommendations for practice and policy were discussed.

  6. A case study on the formation and sharing process of science classroom norms

    Science.gov (United States)

    Chang, Jina; Song, Jinwoong

    2016-03-01

    The teaching and learning of science in school are influenced by various factors, including both individual factors, such as member beliefs, and social factors, such as the power structure of the class. To understand this complex context affected by various factors in schools, we investigated the formation and sharing process of science classroom norms in connection with these factors. By examining the developmental process of science classroom norms, we identified how the norms were realized, shared, and internalized among the members. We collected data through classroom observations and interviews focusing on two elementary science classrooms in Korea. From these data, factors influencing norm formation were extracted and developed as stories about norm establishment. The results indicate that every science classroom norm was established, shared, and internalized differently according to the values ingrained in the norms, the agent of norm formation, and the members' understanding about the norm itself. The desirable norms originating from values in science education, such as having an inquiring mind, were not established spontaneously by students, but were instead established through well-organized norm networks to encourage concrete practice. Educational implications were discussed in terms of the practice of school science inquiry, cultural studies, and value-oriented education.

  7. Signs of taste for science: a methodology for studying the constitution of interest in the science classroom

    Science.gov (United States)

    Anderhag, P.; Wickman, P.-O.; Hamza, K. M.

    2015-06-01

    In this paper we present a methodological approach for analyzing the transformation of interest in science through classroom talk and action. To this end, we use the construct of taste for science as a social and communicative operationalization, or proxy, to the more psychologically oriented construct of interest. To gain a taste for science as part of school science activities means developing habits of performing and valuing certain distinctions about ways to talk, act and be that are jointly construed as belonging in the school science classroom. In this view, to learn science is not only about learning the curriculum content, but also about learning a normative and aesthetic content in terms of habits of distinguishing and valuing. The approach thus complements previous studies on students' interest in science, by making it possible to analyze how taste for science is constituted, moment-by-moment, through talk and action in the science classroom. In developing the method, we supplement theoretical constructs coming from pragmatism and Pierre Bourdieu with empirical data from a lower secondary science classroom. The application of the method to this classroom demonstrates the potential that the approach has for analyzing how conceptual, normative, and aesthetic distinctions within the science classroom interact in the constitution of taste for, and thereby potentially also in the development of interest in science among students.

  8. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    Science.gov (United States)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle school science classrooms, and the research question that guided the present study is: How can we characterize Turkish PSTs' SSI-based teaching practices in middle school science classrooms (ages 11-14)? Sample: In order to address the research question of this study, we explored 10 Turkish PSTs' SSI-based teaching practices in middle school science classrooms. A purposeful sampling strategy was used, thus, PSTs were specifically chosen because they were ideal candidates to teach SSI and to integrate SSI into the science curricula since they were seniors in the science education program who had to take the field experience courses. Design and method: The participants' SSI teaching practices were characterized in light of qualitative research approach. SSI-based teaching practices were analyzed, and the transcripts of all videotape recordings were coded by two researchers. Results: The current data analysis describes Turkish PSTs' SSI-based teaching practices under five main categories: media, argumentation, SSI selection and presentation, risk analysis, and moral perspective. Most of PSTs did not use media resources in their lesson and none of them considered moral perspective in their teaching. While the risk analyses were very simple and superficial, the arguments developed in the classrooms generally remained at a simple level. PSTs did not think SSI as a central topic and discussed these issues in a very limited time and at the end of the class period. Conclusions: The findings of this study manifest the need of the reforms in science education programs. The present study provides evidence that moral, media

  9. Science Teacher Beliefs and Classroom Practice Related to Constructivism in Different School Settings

    Science.gov (United States)

    Savasci, Funda; Berlin, Donna F.

    2012-02-01

    Science teacher beliefs and classroom practice related to constructivism and factors that may influence classroom practice were examined in this cross-case study. Data from four science teachers in two schools included interviews, demographic questionnaire, Classroom Learning Environment Survey (preferred/perceived), and classroom observations and documents. Using an inductive analytic approach, results suggested that the teachers embraced constructivism, but classroom observations did not confirm implementation of these beliefs for three of the four teachers. The most preferred constructivist components were personal relevance and student negotiation; the most perceived component was critical voice. Shared control was the least preferred, least perceived, and least observed constructivist component. School type, grade, student behavior/ability, curriculum/standardized testing, and parental involvement may influence classroom practice.

  10. Science Specialists or Classroom Teachers: Who Should Teach Elementary Science?

    Science.gov (United States)

    Levy, Abigail Jurist; Jia, Yueming; Marco-Bujosa, Lisa; Gess-Newsome, Julie; Pasquale, Marian

    2016-01-01

    This study examined science programs, instruction, and student outcomes at 30 elementary schools in a large, urban district in the northeast United States in an effort to understand whether there were meaningful differences in the quality, quantity and cost of science education when provided by a science specialist or a classroom teacher. Student…

  11. Teaching Planetary Sciences in Bilingual Classrooms

    Science.gov (United States)

    Lebofsky, L. A.; Lebofsky, N. R.

    1993-05-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. It also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80% feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K--3 and 38 minutes per day in 4--6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. Therefore in order to teach earth/space science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. Tucson has another, but not unique, problem. The largest public school district, the Tucson Unified School District (TUSD), provides a neighborhood school system enhanced with magnet, bilingual and special needs schools for a school population of 57,000 students that is 4.1% Native American, 6.0% Black, and 36.0% Hispanic (1991). This makes TUSD and the other school districts in and around Tucson ideal for a program that reaches students of diverse ethnic backgrounds. However, few space sciences materials exist in Spanish; most materials could not be used effectively in the classroom. To address this issue, we have translated NASA materials into Spanish and are conducting a series of workshops for bilingual classroom teachers. We will discuss in detail our bilingual classroom workshops

  12. Senior science teachers' experience of teaching in a changing multicultural classroom: A case study

    Science.gov (United States)

    Ryan, Mark

    Demographic changes within the US are bringing significant changes in the cultural make-up of the classrooms in our schools. Results from national and state assessments indicate a growing achievement gap between the science scores of white students and students from minority communities. This gap indicates a disconnect somewhere in the science classrooms. This study examines the teacher's perspective of the changing learning environment. The study focuses on senior teachers with traditional Midwestern backgrounds and little multicultural experience assuming these teachers had little or no education in multicultural education. Senior teachers are also more likely to have completed their science education within a traditional Universalist perspective of science and likewise have little or no education in multicultural science. The research method was comparative case studies of a purposeful sample of nine science teachers within a community experiencing significant demographic change, seven core senior teachers and two frame of reference teachers. The interviews examined the teachers' awareness of their own cultural beliefs and the impact of those beliefs on classroom practices, the teachers' understanding of cultural influences on the students' academic performance, and the relationships between the teachers' understanding of the cultural aspects of the nature of science and their classroom practices. Analysis of the interview data revealed that the teachers maintain a strong, traditional Midwestern worldview for classroom expectations and they are generally unaware of the impact of those standards on the classroom environment. The teachers were supportive of minority students within their classroom, changing several practices to accommodate student needs, but they were unaware of the broader cultural influences on student learning. The teachers had a poor understanding of the nature of science and none of them recognized a cultural element of NOS. They maintained a

  13. Renegotiating the pedagogic contract: Teaching in digitally enhanced secondary science classrooms

    Science.gov (United States)

    Ajayi, Ajibola Oluneye

    This qualitative case study explores the effects of emerging digital technology as a teaching and learning tool in secondary school science classrooms. The study examines three teachers' perspectives on how the use of technology affects the teacher-student pedagogic relationship. The "pedagogic contract" is used as a construct to analyze the changes that took place in these teachers' classrooms amid the use of this new technology. The overarching question for this research is: How was the pedagogic contract renegotiated in three secondary science teachers' classrooms through the use of digitally enhanced science instruction. To answer this question, data was collected via semi-structured teacher interviews, classroom observations, and analysis of classroom documents such as student assignments, tests and Study Guides. This study reveals that the everyday use of digital technologies in these classrooms resulted in a re-negotiated pedagogic contract across three major dimensions: content of learning, method and management of learning activities, and assessment of learning. The extent to which the pedagogic contract was renegotiated varied with each of the teachers studied. Yet in each case, the content of learning was extended to include new topics, and greater depth of learning within the mandated curriculum. The management of learning was reshaped around metacognitive strategies, personal goal-setting, individual pacing, and small-group learning activities. With the assessment of learning, there was increased emphasis on self-directed interactive testing as a formative assessment tool. This study highlights the aspects of science classrooms that are most directly affected by the introduction of digital technologies and demonstrates how those changes are best understood as a renegotiation of the teacher-student pedagogic contract.

  14. Research on same-gender grouping in eighth-grade science classrooms

    Science.gov (United States)

    Friend, Jennifer Ingrid

    This study examined two hypotheses related to same-gender grouping of eighth-grade science classes in a public middle-school setting in suburban Kansas City. The first hypothesis, male and female students enrolled in same-gender eighth-grade science classes demonstrate more positive science academic achievement than their male and female peers enrolled in mixed-gender science classes. The second hypothesis, same-gender grouping of students in eighth-grade science has a positive effect on classroom climate. The participants in this study were randomly assigned to class sections of eighth-grade science. The first experimental group was an eighth-grade science class of all-male students (n = 20) taught by a male science teacher. The control group used for comparison to the male same-gender class consisted of the male students (n = 42) in the coeducational eighth-grade science classes taught by the same male teacher. The second experimental group was an eighth-grade science class of all-female students (n = 23) taught by a female science teacher. The control group for the female same-gender class consisted of female students (n = 61) in the coeducational eighth-grade science classes taught by the same female teacher. The male teacher and the female teacher did not vary instruction for the same-gender and mixed-gender classes. Science academic achievement was measured for both groups through a quantitative analysis using grades on science classroom assessment and overall science course grades. Classroom climate was measured through qualitative observations and through qualitative and quantitative analysis of a twenty-question student survey administered at the end of each trimester grading period. The results of this study did not indicate support for either hypothesis. Data led to the conclusions that same-gender grouping did not produce significant differences in student science academic achievement, and that same-gender classes did not create a more positive

  15. Everyday classroom assessment practices in science classrooms in Sweden

    Science.gov (United States)

    Gómez, María del Carmen; Jakobsson, Anders

    2014-12-01

    The focus of this study is to examine to what extent and in what ways science teachers practice assessment during classroom interactions in everyday activities in an upper-secondary school in Sweden. We are science teachers working now with a larger research project on assessment in science education that seeks to examine teachers' assessment practices in the upper-secondary school. Framing questions include: are teachers performing an integrated assessment of students' skills as the national curriculum mandates? If so, what do the instructional discourses look like in those situations and what are students' experiences regarding their agency on learning and assessment? We emphasize the social, cultural and historic character of assessment and sustain a situated character of learning instead of the notion that learning is "stored inside the head". Teacher led lessons in three science classrooms were video-recorded and analyzed by combining ethnographic and discourse methods of analysis. Both methods are appropriate to the theoretical foundation of our approach on learning and can give some answers to questions about how individuals interact socially, how their experience is passed on to next generations through language and how language use may reveal cultural changes in the studied context. Making the study of action in a classroom the focal point of sociocultural analysis supports the examination of assessment processes and identification of the social roles in which teachers and students are immersed. Such an approach requires observations of how teachers act in authentic teaching situations when they interact with their students in classroom making possible to observe negotiation processes, agencies when both teachers and students are involved in every-day activities. Our study showed that teachers mostly ignored students' questions and that students solved their own problems by helping each other. Teachers did not provide opportunities for students to discuss

  16. Engaging Nature of Science to Preservice Teachers through Inquiry-Based Classroom

    Science.gov (United States)

    Nuangchalerm, Prasart

    2013-01-01

    Inquiry-based classroom is widely distributed in the school science based on its useful and effective instruction. Science teachers are key elements allowing students to have scientific inquiry. If teachers understand and imply inquiry-based learning into science classroom, students will learn science as scientific inquiry and understand nature of…

  17. Citizen Science in the Classroom: Perils and Promise of the New Web

    Science.gov (United States)

    Loughran, T.; Dirksen, R.

    2010-12-01

    Classroom citizen science projects invite students to generate, curate, post, query, and analyze data, publishing and discussing results in potentially large collaborative contexts. The new web offers a rich palette of such projects for any STEM educator to select from or create. This easy access to citizen science in the classroom is full of both promise and peril for science education. By offering examples of classroom citizen science projects in particle physics, earth and environmental sciences, each supported by a common mashup of technologies available to ordinary users, we will illustrate something of the promise of these projects for science education, and point to some of the challenges and failure modes--the peril--raised by easy access and particularly easy publication of data. How one sensibly responds to this promise and peril depends on how one views the goals of science (or more broadly, STEM) education: either as the equipping of individual students with STEM knowledge and skills so as to empower them for future options, or as the issuing of effective invitations into STEM communities. Building on the claim that these are complementary perspectives, both of value, we will provide an example of a classroom citizen science project analyzed from both perspectives. The BOSCO classroom-to-classroom water source mapping project provides students both in Northern Uganda and in South Dakota a collaborative platform for analyzing and responding to local water quality concerns. Students gather water quality data, use Google Forms embedded in a project wiki to enter data in a spreadsheet, which then automatically (through Mapalist, a free web service) gets posted to a Google Map, itself embedded in the project wiki. Using these technologies, data is thus collected and posted for analysis in a collaborative environment: the stage is set for classroom citizen science. In the context of this project we will address the question of how teachers can take advantage

  18. Science for Girls: Successful Classroom Strategies

    Science.gov (United States)

    Goetz, Susan Gibbs

    2007-01-01

    "Science for Girls: Successful Classroom Strategies" looks at how girls learn, beginning with the time they are born through both the informal and formal education process. In the author's current role as professor of science education, Dr. Goetz has surveyed hundreds of female elementary education majors in their junior and senior year of…

  19. Scientists in the Classroom Mentor Model Program - Bringing real time science into the K - 12 classroom

    Science.gov (United States)

    Worssam, J. B.

    2017-12-01

    Field research finally within classroom walls, data driven, hands on with students using a series of electronic projects to show evidence of scientific mentor collaboration. You do not want to miss this session in which I will be sharing the steps to develop an interactive mentor program between scientists in the field and students in the classroom. Using next generation science standards and common core language skills you will be able to blend scientific exploration with scientific writing and communication skills. Learn how to make connections in your own community with STEM businesses, agencies and organizations. Learn how to connect with scientists across the globe to make your classroom instruction interactive and live for all students. Scientists, you too will want to participate, see how you can reach out and be a part of the K-12 educational system with students learning about YOUR science, a great component for NSF grants! "Scientists in the Classroom," a model program for all, bringing real time science, data and knowledge into the classroom.

  20. Implementing Concepts of Pharmaceutical Engineering into High School Science Classrooms

    Science.gov (United States)

    Kimmel, Howard; Hirsch, Linda S.; Simon, Laurent; Burr-Alexander, Levelle; Dave, Rajesh

    2009-01-01

    The Research Experience for Teachers was designed to help high school science teachers develop skills and knowledge in research, science and engineering with a focus on the area of pharmaceutical particulate and composite systems. The experience included time for the development of instructional modules for classroom teaching. Results of the…

  1. Science Teacher Beliefs and Classroom Practice Related to Constructivism in Different School Settings

    Science.gov (United States)

    Savasci, Funda; Berlin, Donna F.

    2012-01-01

    Science teacher beliefs and classroom practice related to constructivism and factors that may influence classroom practice were examined in this cross-case study. Data from four science teachers in two schools included interviews, demographic questionnaire, Classroom Learning Environment Survey (preferred/perceived), and classroom observations and…

  2. A Theoretical Understanding of the Literature on Student Voice in the Science Classroom

    Science.gov (United States)

    Laux, Katie

    2018-01-01

    Background: Incorporating student voice into the science classroom has the potential to positively impact science teaching and learning. However, students are rarely consulted on school and classroom matters. This literature review examines the effects of including student voice in the science classroom. Purpose: The purpose of this literature…

  3. Teacher and student perspectives on motivation within the high school science classroom

    Science.gov (United States)

    Pickens, Melanie Turnure

    The purpose of this study was to investigate teacher and student perspectives on the motivation of high school science students and to explore specific motivational strategies used by teachers as they attempt to enhance student motivation. Four science teachers took part in an initial audio-taped interview, classroom observations with debriefing conversations, and a final audio-taped interview to discuss findings and allow member checking for data triangulation and interpretation. Participating teachers also took part in a final focus group interview. Student participants from each teacher's class were given a Likert style anonymous survey on their views about motivation and learning, motivation in science class, and specific motivational strategies that emerged in their current science class. This study focused on effective teaching strategies for motivation commonly used by the four teachers and on specific teaching strategies used by two of these four teachers in different tracks of science classes. The intent was to determine not only what strategies worked well for all types of science classes, but also what specific motivational approaches were being used in high and low tracked science classes and the similarities and differences between them. This approach provided insight into the differences in motivating tracked students, with the hope that other educators in specific tracks might use such pedagogies to improve motivation in their own science classrooms. Results from this study showed that science teachers effectively motivate their students in the following ways: Questioning students to engage them in the lesson, exhibiting enthusiasm in lesson presentations, promoting a non-threatening environment, incorporating hands-on activities to help learn the lesson concepts, using a variety of activities, believing that students can achieve, and building caring relationships in the classroom. Specific to the higher tracked classroom, effective motivational

  4. Multimodal Teacher Input and Science Learning in a Middle School Sheltered Classroom

    Science.gov (United States)

    Zhang, Ying

    2016-01-01

    This article reports the results of an ethnographic research about the multimodal science discourse in a sixth-grade sheltered classroom involving English Language Learners (ELLs) only. Drawing from the perspective of multimodality, this study examines how science learning is constructed in science lectures through multiple semiotic resources,…

  5. Life Skills from the Perspectives of Classroom and Science Teachers

    Science.gov (United States)

    Kurtdede-Fidan, Nuray; Aydogdu, Bülent

    2018-01-01

    The aim of this study is to determine classroom and science teachers' views about life skills. The study employed phenomenological method. The participants of the study were 24 teachers; twelve of them were classroom teachers and the remaining were science teachers. They were working at public schools in Turkey. The participants were selected…

  6. The effects of student-level and classroom-level factors on elementary students' science achievement in five countries

    Science.gov (United States)

    Kaya, Sibel

    The interest in raising levels of achievement in math and science has led to a focus on investigating the factors that shape achievement in these subjects (Lamb & Fullarton, 2002) as well as understanding how these factors operate across countries (Baker, Fabrega, Galindo, & Mishook, 2004). The current study examined the individual student factors and classroom factors on fourth grade science achievement within and across five countries. Guided by the previous school learning models, the elements of students' science learning were categorized as student-level and classroom-level factors. The student-level factors included gender, self-confidence in science, and home resources. The classroom-level factors included teacher characteristics, instructional variables and classroom composition. Results for the United States and four other countries, Singapore, Japan, Australia, and Scotland were reported. Multilevel effects of student and classroom variables were examined through Hierarchical Linear Modeling (HLM) using the Trends in International Mathematics and Science Study (TIMSS) 2003 fourth grade dataset. The outcome variable was the TIMSS 2003 science score. Overall, the results of this study showed that selected student background characteristics were consistently related to elementary science achievement in countries investigated. At the student-level, higher levels of home resources and self-confidence and at the classroom-level, higher levels of class mean home resources yielded higher science scores on the TIMSS 2003. In general, teacher and instructional variables were minimally related to science achievement. There was evidence of positive effects of teacher support in the U.S. and Singapore. The emphasis on science inquiry was positively related to science achievement in Singapore and negatively related in the U.S. and Australia. Experimental studies that investigate the impacts of teacher and instructional factors on elementary science achievement are

  7. Classroom Animals Provide More than Just Science Education

    Science.gov (United States)

    Herbert, Sandra; Lynch, Julianne

    2017-01-01

    Keeping classroom animals is a common practice in many classrooms. Their value for learning is often seen narrowly as the potential to involve children in learning biological science. They also provide opportunities for increased empathy, as well as socio-emotional development. Realization of their potential for enhancing primary children's…

  8. Teaching Ocean Sciences in the 21st Century Classroom: Lab to Classroom Videoconferencing

    Science.gov (United States)

    Peach, C. L.; Gerwick, W.; Gerwick, L.; Senise, M.; Jones, C. S.; Malloy, K.; Jones, A.; Trentacoste, E.; Nunnery, J.; Mendibles, T.; Tayco, D.; Justice, L.; Deutscher, R.

    2010-12-01

    Teaching Ocean Science in the 21st Century Classroom (TOST) is a Center for Ocean Sciences Education Excellence (COSEE CA) initiative aimed at developing and disseminating technology-based instructional strategies, tools and ocean science resources for both formal and informal science education. San Diego Unified School District (SDUSD), Scripps Institution of Oceanography (SIO) and the Lawrence Hall of Science (LHS) have established a proving ground for TOST activities and for development of effective, sustainable solutions for researchers seeking to fulfill NSF and other funding agency broader impact requirements. Lab to Classroom Videoconferencing: Advances in Information and Communications Technology (ICT) are making it easier to connect students and researchers using simple online tools that allow them to interact in novel ways. COSEE CA is experimenting with these tools and approaches to identify effective practices for providing students with insight into the research process and close connections to researchers and their laboratory activities. At the same time researchers, including graduate students, are learning effective communication skills and how to align their presentations to specific classroom needs - all from the comfort of their own lab. The lab to classroom videoconferencing described here is an ongoing partnership between the Gerwick marine biomedical research lab and a group of three life science teachers (7th grade) at Pershing Middle School (SDUSD) that started in 2007. Over the last 5 years, the Pershing science teachers have created an intensive, semester-long unit focused on drug discovery. Capitalizing on the teacher team’s well-developed unit of study and the overlap with leading-edge research at SIO, COSEE CA created the videoconferencing program as a broader impact solution for the lab. The team has refined the program over 3 iterations, experimenting with structuring the activities to most effectively reach the students. In the

  9. Performance-based classrooms: A case study of two elementary teachers of mathematics and science

    Science.gov (United States)

    Jones, Kenneth W.

    This case study depicts how two elementary teachers develop classrooms devoted to performance-based instruction in mathematics and science. The purpose is to develop empirical evidence of classroom practices that leads to a conceptual framework about the nature of performance-based instruction. Performance-based assessment and instruction are defined from the literature to entail involving students in tasks that are complex and engaging, requiring them to apply knowledge and skills in authentic contexts. In elementary mathematics and science, such an approach emphasizes problem solving, exploration, inquiry, and reasoning. The body of the work examines teacher beliefs, curricular orientations, instructional strategies, assessment approaches, management and organizational skills, and interpersonal relationships. The focus throughout is on those aspects that foster student performance in elementary mathematics and science. The resulting framework describes five characteristics that contribute to performance-based classrooms: a caring classroom community, a connectionist learning theory, a thinking and doing curriculum, diverse opportunities for learning, and ongoing assessment, feedback, and adjustment. The conclusion analyzes factors external to the classroom that support or constrain the development of performance-based classrooms and discusses the implications for educational policy and further research.

  10. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    Science.gov (United States)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  11. Engagerande samtal i det naturvetenskapliga klassrummetInquiry based dialouge in science classroom

    Directory of Open Access Journals (Sweden)

    Ragnhild Löfgren

    2014-10-01

    Full Text Available This study focuses on classroom communication within an inquiry-based science education (IBSE program, called NTA (Naturvetenskap och Teknik för Alla. The overall aim of the study is to highlight the ways in which productive and engaging conversations are conducted in the classroom. We have analysed the work within the unit ”The Chemistry of food” and the theme testing of fat in food in grade five and six in a Swedish and a Danish science classroom. We have used video cameras and mp3-players to follow the classroom interaction. Our findings indicate that the classroom communication was focused on everyday science content and that the introduction and the summary of the theme were very important for the pupils’ possibilities to productive disciplinary engagement.

  12. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  13. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    Science.gov (United States)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  14. Silencing of Voices in a Swedish Science Classroom

    Science.gov (United States)

    Ramos de Robles, S. Lizette

    2018-01-01

    From a sociocultural perspective, I discuss data from a Swedish science classroom presented in María Gómez's article "Student Explanations of their Science Teachers' Assessments, Grading Practices, and How they learn Science". In this discussion, I focus on the need to change existing conceptions of assessment in the teaching and…

  15. Student Engagement in a Computer Rich Science Classroom

    Science.gov (United States)

    Hunter, Jeffrey C.

    The purpose of this study was to examine the student lived experience when using computers in a rural science classroom. The overarching question the project sought to examine was: How do rural students relate to computers as a learning tool in comparison to a traditional science classroom? Participant data were collected using a pre-study survey, Experience Sampling during class and post-study interviews. Students want to use computers in their classrooms. Students shared that they overwhelmingly (75%) preferred a computer rich classroom to a traditional classroom (25%). Students reported a higher level of engagement in classes that use technology/computers (83%) versus those that do not use computers (17%). A computer rich classroom increased student control and motivation as reflected by a participant who shared; "by using computers I was more motivated to get the work done" (Maggie, April 25, 2014, survey). The researcher explored a rural school environment. Rural populations represent a large number of students and appear to be underrepresented in current research. The participants, tenth grade Biology students, were sampled in a traditional teacher led class without computers for one week followed by a week using computers daily. Data supported that there is a new gap that separates students, a device divide. This divide separates those who have access to devices that are robust enough to do high level class work from those who do not. Although cellular phones have reduced the number of students who cannot access the Internet, they may have created a false feeling that access to a computer is no longer necessary at home. As this study shows, although most students have Internet access, fewer have access to a device that enables them to complete rigorous class work at home. Participants received little or no training at school in proper, safe use of a computer and the Internet. It is clear that the majorities of students are self-taught or receive guidance

  16. Single-sex middle school science classrooms: Separate and equal?

    Science.gov (United States)

    Glasser, Howard M.

    The U.S. Department of Education's amended regulations to Title IX have attempted to expand the circumstances in which single-sex classes are permissible in public schools. This ethnographic study uses grounded theory to investigate aspects of one single-sex offering at a public, coeducational middle school. Applying elements of postmodern, queer, and sociocultural lenses, it examines the perspectives for this offering, shedding insight into the cultures of two single-sex classrooms and what it meant to be a boy or girl in this setting. Additionally, it focuses attention on the all-boy and all-girl science classes that were taught by the same teacher and examines what it meant to learn science as boys and girls in this program. Although participants supplied financial, socio-emotional, and academic reasons for these classes, the initial motivation for these classes stemmed from the teachers' desire to curb the amount of sex talk and related behaviors that were exhibited in their classrooms. Through these conversations and classroom events, the girls were constructed as idealized students, academically and behaviorally, who needed to be protected from boys' behaviors---both boys' dominating classroom behaviors and aggressive (hetero)sexual behaviors. Conversely, boys were constructed as needing help both academically and behaviorally, but in the specific discipline of science boys were identified as the sex that was more interested in the content and gained greater exposure to skills that could assist them in future science courses and careers. Overall, boys and girls, and the culture of their two classrooms, were regularly defined relative to each other and efforts were made to maintain these constructed differences. As a result, the classes and students were hierarchically ranked in ways that often pitted one sex of students, or the entire class, as better or worse than the other. The theory emerging from this study is that single-sex policies arise and survive

  17. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    Science.gov (United States)

    Katz, Phyllis; Randy McGinnis, J.; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-12-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews, electronic communications, and drawing prompts. We found that our two participants referenced as important the ISE experiences in their development of classroom science identities that included resilience, excitement and engagement in science teaching and learning-qualities that are emphasized in ISE contexts. The data support our conclusion that the ISE experiences proved especially memorable to teacher education interns during the implementation of the No Child Left Behind policy which concentrated on school-tested subjects other than science.

  18. "But at school … I became a bit shy": Korean immigrant adolescents' discursive participation in science classrooms

    Science.gov (United States)

    Ryu, Minjung

    2013-09-01

    In reform-based science curricula, students' discursive participation is highly encouraged as a means of science learning as well as a goal of science education. However, Asian immigrant students are perceived to be quiet and passive in classroom discursive situations, and this reticence implies that they may face challenges in discourse-rich science classroom learning environments. Given this potentially conflicting situation, the present study aims to understand how and why Asian immigrant students participate in science classroom discourse. Findings from interviews with seven Korean immigrant adolescents illustrate that they are indeed hesitant to speak up in classrooms. Drawing upon cultural historical perspectives on identity and agency, this study shows how immigrant experiences shaped the participants' othered identity and influenced their science classroom participation, as well as how they negotiated their identities and situations to participate in science classroom and peer communities. I will discuss implications of this study for science education research and science teacher education to support classroom participation of immigrant students.

  19. Instructional strategies in science classrooms of specialized secondary schools for the gifted

    Science.gov (United States)

    Poland, Donna Lorraine

    This study examined the extent to which science teachers in Academic Year Governor's Schools were adhering to the national standards for suggested science instruction and providing an appropriate learning environment for gifted learners. The study asked 13 directors, 54 instructors of advanced science courses, and 1190 students of advanced science courses in 13 Academic Year Governor's Schools in Virginia to respond to researcher-developed surveys and to participate in classroom observations. The surveys and classroom observations collected demographic data as well as instructors' and students' perceptions of the use of various instructional strategies related to national science reform and gifted education recommendations. Chi-square analyses were used to ascertain significant differences between instructors' and students' perceptions. Findings indicated that instructors of advanced science classes in secondary schools for the gifted are implementing nationally recognized gifted education and science education instructional strategies with less frequency than desired. Both students and instructors concur that these strategies are being implemented in the classroom setting, and both concur as to the frequency with which the implementation occurs. There was no significant difference between instructors' and students' perceptions of the frequency of implementation of instructional strategies. Unfortunately, there was not a single strategy that students and teachers felt was being implemented on a weekly or daily basis across 90% of the sampled classrooms. Staff development in gifted education was found to be minimal as an ongoing practice. While this study offers some insights into the frequency of strategy usage, the study needs more classroom observations to support findings; an area of needed future research. While this study was conducted at the secondary level, research into instructional practices at the middle school and elementary school gifted science

  20. Spontaneous Play and Imagination in Everyday Science Classroom Practice

    Science.gov (United States)

    Andrée, Maria; Lager-Nyqvist, Lotta

    2013-01-01

    In science education, students sometimes create and engage in spontaneous science-oriented play where ideas about science and scientists are put to use. However, in previous research, little attention has been given to the role of informal spontaneous play in school science classrooms. We argue that, in order to enhance our understanding of…

  1. Translanguaging in a middle school science classroom: Constructing scientific arguments in English and Spanish

    Science.gov (United States)

    Licona, Peter R.

    This dissertation investigates translanguaging in an English/Spanish dual language middle school science classroom as the teacher and students worked through a curriculum unit focusing on socioscientific issues and implementing a scientific argumentation framework. Translanguaging is the process in which bilingual speakers fluidly and dynamically draw from their full linguistic repertoire to perform a communicative act. Using ethnographically informed data collection in conjunction with discourse analysis, teacher translanguaging was examined for its related functions in the science classroom and how teacher translanguaging afforded opportunities for framing and supporting scientific argumentation. Results suggest that the functions of teacher translanguaging fell into three main themes: maintaining classroom culture, facilitating the academic task, and framing epistemic practices. Of the three categories of translanguaging, framing epistemic practices proved to be of paramount importance in the teacher presenting and supporting the practice of scientific argumentation. Implications from this study are relevant for pre-service science teacher preparation and in-service science teacher professional development for teachers working with emergent bilingual students.

  2. The impact of the inclusion of students with handicaps and disabilities in the regular education science classroom

    Science.gov (United States)

    Donald, Cathey Nolan

    This study was conducted to determine the impact of the inclusion of students with handicaps and disabilities in the regular education science classroom. Surveys were mailed to the members of the Alabama Science Teachers Association to obtain information from teachers in inclusive classrooms. Survey responses from teachers provide insight into these classrooms. This study reports the results of the teachers surveyed. Results indicate multiple changes occur in the educational opportunities presented to regular education students when students with handicaps and disabilities are included in the regular science classroom. Responding teachers (60%) report omitting activities that formerly provided experiences for students, such as laboratory activities using dangerous materials, field activities, and some group activities. Also omitted, in many instances (64.1%), are skill building opportunities of word problems and higher order thinking skills. Regular education students participate in classes where discipline problems related to included students are reported as the teachers most time consuming task. In these classrooms, directions are repeated frequently, reteaching of material already taught occurs, and the pace of instruction has been slowed. These changes to the regular classroom occur across school levels. Many teachers (44.9%) report they do not see benefits associated with the inclusion of students with special needs in the regular classroom.

  3. Examining student-generated questions in an elementary science classroom

    Science.gov (United States)

    Diaz, Juan Francisco, Jr.

    This study was conducted to better understand how teachers use an argument-based inquiry technique known as the Science Writing Heuristic (SWH) approach to address issues on teaching, learning, negotiation, argumentation, and elaboration in an elementary science classroom. Within the SWH framework, this study traced the progress of promoting argumentation and negotiation (which led to student-generated questions) during a discussion in an elementary science classroom. Speech patterns during various classroom scenarios were analyzed to understand how teacher--student interactions influence learning. This study uses a mixture of qualitative and quantitative methods. The qualitative aspect of the study is an analysis of teacher--student interactions in the classroom using video recordings. The quantitative aspect uses descriptive statistics, tables, and plots to analyze the data. The subjects in this study were fifth grade students and teachers from an elementary school in the Midwest, during the academic years 2007/2008 and 2008/2009. The three teachers selected for this study teach at the same Midwestern elementary school. These teachers were purposely selected because they were using the SWH approach during the two years of the study. The results of this study suggest that all three teachers moved from using teacher-generated questions to student-generated questions as they became more familiar with the SWH approach. In addition, all three promoted the use of the components of arguments in their dialogs and discussions and encouraged students to elaborate, challenge, and rebut each other's ideas in a non-threatening environment. This research suggests that even young students, when actively participating in class discussions, are capable of connecting their claims and evidence and generating questions of a higher-order cognitive level. These findings demand the implementation of more professional development programs and the improvement in teacher education to help

  4. Teaching the content in context: Preparing "highly qualified" and "high quality" teachers for instruction in underserved secondary science classrooms

    Science.gov (United States)

    Tolbert, Sara E.

    2011-12-01

    This dissertation research project presents the results of a longitudinal study that investigates the knowledge, beliefs, and practices of 13 preservice secondary science teachers participating in a science teacher credentialing/Masters program designed to integrate issues of equity and diversity throughout coursework and seminars. Results are presented in the form of three papers: The first paper describes changes in preservice teacher knowledge about contextualization in science instruction, where contextualization is defined as facilitating authentic connections between science learning and relevant personal, social, cultural, ecological, and political contexts of students in diverse secondary classrooms; the second paper relates changes in the self-efficacy and content-specific beliefs about science, science teaching, diversity, and diversity in science instruction; and the final paper communicates the experiences and abilities of four "social justice advocates" learning to contextualize science instruction in underserved secondary placement classrooms. Results indicate that secondary student teachers developed more sophisticated understandings of how to contextualize science instruction with a focus on promoting community engagement and social/environmental activism in underserved classrooms and how to integrate science content and diversity instruction through student-centered inquiry activities. Although most of the science teacher candidates developed more positive beliefs about teaching science in underrepresented classrooms, many teacher candidates still attributed their minority students' underperformance and a (perceived) lack of interest in school to family and cultural values. The "social justice advocates" in this study were able to successfully contextualize science instruction to varying degrees in underserved placement classrooms, though the most significant limitations on their practice were the contextual factors of their student teaching

  5. Hierarchical Effects of School-, Classroom-, and Student-Level Factors on the Science Performance of Eighth-Grade Taiwanese Students

    Science.gov (United States)

    Tsai, Liang-Ting; Yang, Chih-Chien

    2015-05-01

    This study was conducted to understand the effect of student-, classroom-, and school-level factors on the science performance of 8th-grade Taiwanese students in the Trends in International Mathematics and Science Study (TIMSS) 2011 by using multilevel analysis. A total of 5,042 students from 153 classrooms of 150 schools participated in the TIMSS 2011 study, in which they were required to complete questionnaires. A 3-level multilevel analysis was used to assess the influence of factors at 3 levels on the science performance of 8th-grade Taiwanese students. The results showed that the provision of education resources at home, teachers' level of education, and school climate were the strongest predictor of science performance at the student, classroom, and school level, respectively. It was concluded that the science performance of 8th-grade Taiwanese students is driven largely by individual factors. Classroom-level factors accounted for a smaller proportion of the total variance in science performance than did school-level factors.

  6. Professional Vision of Classroom Management and Learning Support in Science Classrooms--Does Professional Vision Differ across General and Content-Specific Classroom Interactions?

    Science.gov (United States)

    Steffensky, Mirjam; Gold, Bernadette; Holdynski, Manfred; Möller, Kornelia

    2015-01-01

    The present study investigates the internal structure of professional vision of in-service teachers and student teachers with respect to classroom management and learning support in primary science lessons. Classroom management (including monitoring, managing momentum, and rules and routines) and learning support (including cognitive activation…

  7. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    Science.gov (United States)

    Katz, Phyllis; McGinnis, J. Randy; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-01-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews,…

  8. Streaming Seismograms into Earth-Science Classrooms

    Science.gov (United States)

    Ammon, C. J.

    2011-12-01

    background motions, interesting and formulate good questions related to the signal details. A few minutes at the beginning of class reviewing the activity between classes and a few minutes when an earthquake occurs provide valuable discussion points related to earthquake science and seismic-wave propagation. Other tools discussed are related to global earthquake geography, with self-updating global maps of earthquakes (Epicentral, a MacOS and iOS application). When a signal first shows up on the EMMA seismogram display, students can invest a few minutes estimating the event's general location (and checking the signal character - relative arrival times, dispersion, etc). When a location is posted by an appropriate authority (e.g. the U. S. Geological Survey) the student's estimates can be checked and discussed. Additionally, Epicentral for MacOS presents a self-updated Twitter stream that can light up substantially when a felt earthquake occurs. Although the language of many of the tweeters can be colorful, the results are interesting and instant. The inclusion of these tools takes some time away from traditional lectures, but helps produce a dynamic, thought-provoking classroom experience.

  9. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    Science.gov (United States)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-06-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to evaluate the (HIC) system, which incorporates augmented reality, virtual reality and cloud-classroom to teach basic materials science courses. The study followed a pretest-posttest quasi-experimental research design. A total of 92 students (aged 19-20 years), in a second-year undergraduate program, participated in this 18-week-long experiment. The students were divided into an experimental group and a control group. The experimental group (36 males and 10 females) was instructed utilizing the HIC system, while the control group (34 males and 12 females) was led through traditional teaching methods. Pretest, posttest, and delayed posttest scores were evaluated by multivariate analysis of covariance. The results indicated that participants in the experimental group who used the HIC system outperformed the control group, in the both posttest and delayed posttest, across three learning dimensions. Based on these results, the HIC system is recommended to be incorporated in formal materials science learning settings.

  10. Energy matters: An investigation of drama pedagogy in the science classroom

    Science.gov (United States)

    Alrutz, Megan

    The purpose of this study is to explore and document how informal and improvisational drama techniques affect student learning in the science classroom. While implementing a drama-based science unit, I examined multiple notions of learning, including, but not limited to, traditional notions of achievement, student understanding, student participation in the science classroom, and student engagement with, and knowledge of, science content. Employing an interpretivist research methodology, as outlined by Fredrick Erickson for qualitative analysis in the classroom, I collected data through personal observations; student and teacher interviews; written, artistic and performed class work; video-recorded class work; written tests; and questionnaires. In analyzing the data, I found strong support for student engagement during drama-based science instruction. The drama-based lessons provided structures that drew students into lessons, created enthusiasm for the science curriculum, and encouraged meaningful engagement with, and connections to, the science content, including the application and synthesis of science concepts and skills. By making student contributions essential to each of the lessons, and by challenging students to justify, explain, and clarify their understandings within a dramatic scenario, the classroom facilitators created a conducive learning environment that included both support for student ideas and intellectual rigor. The integration of drama-based pedagogy most affected student access to science learning and content. Students' participation levels, as well as their interest in both science and drama, increased during this drama-based science unit. In addition, the drama-based lessons accommodated multiple learning styles and interests, improving students' access to science content and perceptions of their learning experience and abilities. Finally, while the drama-based science lessons provided multiple opportunities for solidifying understanding of

  11. Collaborative CPD and inquiry-based science in the classroom

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    on the teaching of science and on collaboration. Qualitative data obtained by following the same teacher teaching Science & Technology from 4th to 6th grade are used to discuss changes in her classroom practice; in particular concerning inquiry-based methods shown in earlier QUEST-research to be understood......Continuous Professional Development (CPD) is crucial for reforming science teaching, but more knowledge is needed about how to embed CPD in teachers’ daily work. The Danish QUEST-project is a long-term collaborative CPD-project designed informed by research and with activities changing rhythmically...... between seminars, individual trials in own classroom, and collaborative activities in the science-team at local schools. The QUEST research is aimed at understanding the relation between individual and social changes. In this study, quantitative data are used to compare the perceived effect from QUEST...

  12. The value of storytelling in the science classroom

    Science.gov (United States)

    Isabelle, Aaron David

    The "traditional science classroom" asks students, "What do we know in science?," and ignores the question, "How do we know what we know?" The purpose of this research is to combine the powerful structure of narrative with the history of science in junior high school science classrooms. This study investigates whether history-of-science-based stories have advantages over traditional, lecture-style presentations. The storytelling approach aims to present science concepts in a meaningful and memorable context and in a coherent and connected manner. The research program employed parallel curricula: science concepts were taught through novel stories and through lectures, at different times, to eight different groups of seventh and eighth grade students at Holy Name Junior High School in Worcester, Massachusetts. Students were assessed with pre- and post-tests and through individual interviews: Before, immediately after, and two weeks after the lessons, students were given short-answer questionnaires. Two weeks after each lesson, individual interviews were also conducted with a sampling of the students. The questionnaires were coded according to a clear set of written standards and the interviews were transformed into concept maps. Student learning and retention levels, gender differences, and alternate conceptions were quantitatively analyzed. The results reveal that the students who were taught through stories learned the science concepts, on the average, 21% better and retained close to 48% more than the students who were taught through traditional lessons. Fewer alternate conceptions were expressed after story lessons than after lectures. Investigation of gender differences in learning science through the two methods revealed that boys profited more than girls did from the story lessons. The union of narrative with the history of science in the form of story lessons seems natural since the spatiotemporal structure of a narrative mirrors the unfolding of actions in

  13. Pre-Service Secondary Science and Mathematics Teachers' Classroom Management Styles in Turkey

    Science.gov (United States)

    Yilmaz, Kursad

    2009-01-01

    The aim of this study is to determine Pre-service secondary science and mathematics teachers' classroom management styles in Turkey. In addition, differences in pre-service secondary science and mathematics teachers' classroom management styles by gender, and field of study were examined. In the study, the survey model was employed. The research…

  14. Supporting Academic Language Development in Elementary Science: A Classroom Teaching Experiment

    Science.gov (United States)

    Jung, Karl Gerhard

    Academic language is the language that students must engage in while participating in the teaching and learning that takes place in school (Schleppegrell, 2012) and science as a content area presents specific challenges and opportunities for students to engage with language (Buxton & Lee, 2014; Gee, 2005). In order for students to engage authentically and fully in the science learning that will take place in their classrooms, it is important that they develop their abilities to use science academic language (National Research Council, 2012). For this to occur, teachers must provide support to their students in developing the science academic language they will encounter in their classrooms. Unfortunately, this type of support remains a challenge for many teachers (Baecher, Farnsworth, & Ediger, 2014; Bigelow, 2010; Fisher & Frey, 2010) and teachers must receive professional development that supports their abilities to provide instruction that supports and scaffolds students' science academic language use and development. This study investigates an elementary science teacher's engagement in an instructional coaching partnership to explore how that teacher planned and implemented scaffolds for science academic language. Using a theoretical framework that combines the literature on scaffolding (Bunch, Walqui, & Kibler, 2015; Gibbons, 2015; Sharpe, 2001/2006) and instructional coaching (Knight, 2007/2009), this study sought to understand how an elementary science teacher plans and implements scaffolds for science academic language, and the resources that assisted the teacher in planning those scaffolds. The overarching goal of this work is to understand how elementary science teachers can scaffold language in their classroom, and how they can be supported in that work. Using a classroom teaching experiment methodology (Cobb, 2000) and constructivist grounded theory methods (Charmaz, 2014) for analysis, this study examined coaching conversations and classroom

  15. Flipped Classrooms for Advanced Science Courses

    Science.gov (United States)

    Tomory, Annette; Watson, Sunnie Lee

    2015-12-01

    This article explains how issues regarding dual credit and Advanced Placement high school science courses could be mitigated via a flipped classroom instructional model. The need for advanced high school courses will be examined initially, followed by an analysis of advanced science courses and the reform they are experiencing. Finally, it will conclude with an explanation of flipped classes as well as how they may be a solution to the reform challenges teachers are experiencing as they seek to incorporate more inquiry-based activities.

  16. Scientific Participation at the Poles: K-12 Teachers in Polar Science for Careers and Classrooms

    Science.gov (United States)

    Crowley, S.; Warburton, J.

    2012-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the polar regions. PolarTREC highlights the importance of involving teachers in scientific research in regards to their careers as educators and their ability to engage students in the direct experience of science. To date, PolarTREC has placed over 90 teachers with research teams in the Arctic and Antarctic. Published results of our program evaluation quantify the effect of the field experience on the teachers' use of the real scientific process in the classroom, the improvement in science content taught in classrooms, and the use of non-fiction texts (real data and science papers) as primary learning tools for students. Teachers and students both report an increase of STEM literacy in the classroom content, confidence in science education, as well as a markedly broadened outlook of science as essential to their future. Research conducted with science teams affirms that they are achieving broader impacts when PolarTREC teachers are involved in their expeditions. Additionally, they reported that these teachers making vital contributions to the success of the scientific project.

  17. Teacher-student interaction in contemporary science classrooms: is participation still a question of gender?†

    Science.gov (United States)

    Eliasson, Nina; Sørensen, Helene; Göran Karlsson, Karl

    2016-07-01

    We show that boys still have a greater access to the space for interaction in science classrooms, which is unexpected since in Sweden today girls perform better in these subjects than boys. Results from video-recorded verbal communication, referred to here as interaction, show that the distribution of teacher-student interaction in the final year of lower secondary school follows the same patterns as in the 1980s. The interaction space for all kinds of talk continues to be distributed according to the two-thirds rule for communication in science classrooms as described by previous research. We also show that the overall interaction space in science classrooms has increased for both boys and girls when talk about science alone is considered. Another finding which follows old patterns is that male teachers still address boys more often than girls. This holds true both for general talk and for talk about science. If a more even distribution of teacher-student interaction is desirable, these results once again need to be considered. More research needs to be undertaken before the association between girls' attitudes and interest in science in terms of future career choice and the opportunity to participate in teacher-student interaction is more clearly understood. Research conducted at Mid Sweden University, Department of Science Education and Mathematics.

  18. The book of science mysteries classroom science activities to support student enquiry-based learning

    CERN Document Server

    McOwan, Peter; Olivotto, Cristina

    2015-01-01

    In this booklet, you will be introduced to an exciting new way to teach science in your classroom. The TEMI project (Teaching Enquiry with Mysteries Incorporated) is an EU-funded project that brings together experts in teacher training from across Europe to help you introduce enquiry-based learning successfully in the classroom and improve student engagement and skills.

  19. The perception of science teachers on the role of student relationships in the classroom

    Science.gov (United States)

    Mattison, Cheryl Ann

    With the increased accountability of educators comes the responsibility of the entire educational community to find ways in which we can help our students succeed in the classroom. In addition, it is important to discover what it takes to keep those students in school Many science teachers enter the profession unprepared to handle the regular classroom routine. Classroom management, grading, lesson planning, setting up labs, and the myriad of other obligations, can leave teachers overwhelmed and sometimes can get in the way of actually helping students be successful. This study investigated how science teachers viewed the importance of developing strong teacher/student relationships to the increase of student success in a science classroom. I attempted to answer 4 major questions: · How do science teachers in a select high school community view the role of interactive relationships in their classrooms and how that might impact their students? · How do science teachers in a select high school community believe they establish successful interactive relationships with their students? · What do science teachers in a select high school community believe are some of the outcomes of those relationships? · What do science teachers suggest to increase the teacher's ability to form good relationships with their students? A qualitative research method was used including observations, interviews and group discussions of 5 high school science teachers in a small urban school.

  20. College science teachers' views of classroom inquiry

    Science.gov (United States)

    Brown, Patrick L.; Abell, Sandra K.; Demir, Abdulkadir; Schmidt, Francis J.

    2006-09-01

    The purposes of this study were to (a) gain an understanding of the views of inquiry held by faculty members involved in undergraduate science teaching and (b) describe the challenges, constraints, and opportunities that they perceived in designing and teaching inquiry-based laboratories. Participants included 19 college professors, representing both life and physical science disciplines, from (a) 2-year community college, (b) small, private nonprofit liberal arts college, (c) public master's granting university, and (d) public doctoral/research extensive university. We collected data through semistructured interviews and applied an iterative data analysis process. College science faculty members held a full and open inquiry view, seeing classroom inquiry as time consuming, unstructured, and student directed. They believed that inquiry was more appropriate for upper level science majors than for introductory or nonscience majors. Although faculty members valued inquiry, they perceived limitations of time, class size, student motivation, and student ability. These limitations, coupled with their view of inquiry, constrained them from implementing inquiry-based laboratories. Our proposed inquiry continuum represents a broader view of inquiry that recognizes the interaction between two dimensions of inquiry: (a) the degree of inquiry and (b) the level of student directedness, and provides for a range of inquiry-based classroom activities.

  1. Teachers' perceptions of effective science, technology, and mathematics professional development and changes in classroom practices

    Science.gov (United States)

    Boriack, Anna Christine

    The purpose of this study is to examine teachers' perceptions of professional development and changes in classroom practice. A proposed conceptual framework for effective professional development that results in changes in classroom practices was developed. Data from two programs that provided professional development to teachers in the areas of technology, mathematics, and science was used to inform the conceptual framework. These two programs were Target Technology in Texas (T3) and Mathematics, Science, and Technology Teacher Preparation Academies (MSTTPA). This dissertation used a multiple article format to explore each program separately, yet the proposed conceptual framework allowed for comparisons to be made between the two programs. The first study investigated teachers' perceptions of technology-related professional development after their districts had received a T3 grant. An online survey was administrated to all teachers to determine their perceptions of technology-related professional development along with technology self-efficacy. Classroom observations were conducted to determine if teachers were implementing technology. The results indicated that teachers did not perceive professional development as being effective and were not implementing technology in their classrooms. Teachers did have high technology self-efficacy and perceived adequate school support, which implies that effective professional development may be a large factor in whether or not teachers implement technology in their classrooms. The second study evaluated participants' perceptions of the effectiveness of mathematics and science professional development offered through a MSTTP academy. Current and former participants completed an online survey which measured their perceptions of academy activities and school environment. Participants also self-reported classroom implementation of technology. Interviews and open-ended survey questions were used to provide further insight into

  2. Turkish Preservice Science Teachers' Socioscientific Issues-Based Teaching Practices in Middle School Science Classrooms

    Science.gov (United States)

    Genel, Abdulkadir; Topçu, Mustafa Sami

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle…

  3. Metacognitive Strategies in the Introduction to Political Science Classroom

    Science.gov (United States)

    Lusk, Adam

    2016-01-01

    This article examines metacognitive-based teaching strategies and provides preliminary evidence about their effectiveness in the political science classroom. In a 2013 Fall semester Introduction to Political Science course, three metacognitive-based teaching strategies were designed and implemented for improving student learning through greater…

  4. Learning to write in science: A study of English language learners' writing experience in sixth-grade science classrooms

    Science.gov (United States)

    Qi, Yang

    Writing is a predictor of academic achievement and is essential for student success in content area learning. Despite its importance, many students, including English language learners (ELLs), struggle with writing. There is thus a need to study students' writing experience in content area classrooms. Informed by systemic functional linguistics, this study examined 11 ELL students' writing experience in two sixth grade science classrooms in a southeastern state of the United States, including what they wrote, how they wrote, and why they wrote in the way they did. The written products produced by these students over one semester were collected. Also collected were teacher interviews, field notes from classroom observations, and classroom artifacts. Student writing samples were first categorized into extended and nonextended writing categories, and each extended essay was then analyzed with respect to its schematic structure and grammatical features. Teacher interviews and classroom observation notes were analyzed thematically to identify teacher expectations, beliefs, and practices regarding writing instruction for ELLs. It was found that the sixth-grade ELLs engaged in mostly non-extended writing in the science classroom, with extended writing (defined as writing a paragraph or longer) constituting roughly 11% of all writing assignments. Linguistic analysis of extended writing shows that the students (a) conveyed information through nouns, verbs, adjectives, adverbial groups and prepositional phrases; (b) constructed interpersonal context through choices of mood, modality, and verb tense; and (c) structured text through thematic choices and conjunctions. The appropriateness of these lexicogrammatical choices for particular writing tasks was related to the students' English language proficiency levels. The linguistic analysis also uncovered several grammatical problems in the students' writing, including a limited range of word choices, inappropriate use of mood

  5. Exploring the contexts of urban science classrooms: Cogenerative dialogues, coteaching, and cosmopolitanism

    Science.gov (United States)

    Emdin, Christopher

    The body of work presented in this dissertation is a response to the reported association between poor outcomes in science achievement and students of color in urban schools. By presenting counterexamples to the cultural motif that urban students of color perform poorly in science, I argue that poor achievement cannot be traced to a group of people but can be linked to institutions promoting subject delivery methods that instill distaste for science and compel students to display an illusion of disinterest in school. There are two major goals of this study. First, I plan to demonstrate how plans of action generated by coteachers and cogenerative dialogue groups can coalesce under the ethos of making science and schooling accessible to populations that are traditionally marginalized from science achievement. My second aim is to develop mechanisms for transforming science learning contexts into cosmopolitan learning communities that develop student success in science. Through a three-year ethnographic study of physics and chemistry classrooms in a high school in New York City, I present explorations of the culture and context of the urban classroom as a chief means to meet my goals. In my research, I find that obstacles to identity development around science can be tied to corporate understandings of teaching and learning that are amenable to local efforts toward change. This change is facilitated through the use of transformative tools like cogenerative dialogues, coteaching, and cosmopolitanism. Through the application of these research tools, I uncover and investigate how various misalignments that present themselves in physics and chemistry classrooms serve as signifiers of macro issues that permeate science classrooms from larger fields. By utilizing cogenerative dialogues as a tool for investigating both micro enactments within classrooms and the macro structures that generate these enactments, I show how students and teachers can work together as co

  6. Differences in the classroom: learning about practices of two science teachers

    Directory of Open Access Journals (Sweden)

    Elaine Soares França

    2012-12-01

    Full Text Available In this research, a case study, we adopted ethnography as logic of inquiry to learn about teaching for diverse groups in middle school science classrooms. Multiple data sources were used: participant observation, video and audio records, field notes and semi-structured interviews. We analyzed interviews with two teachers, as well as classroom episodes to construct, through contrast, a characterization of two types of practice involving diversity in the classroom. The first teacher show concerns with introducing students in school culture. She tried to “translate” terms that students do not understand, explaining their meanings. In this process, teaching subject matter knowledge (SMK is a secondary goal. The other teacher emphasized SMK, trying to establish connections between science content and students’ everyday life experiences. Both teachers do not acknowledge significant influences in science learning related to gender, social class, and ethnicity.

  7. CosmoQuest: Training Educators and Engaging Classrooms in Citizen Science through a Virtual Research Facility

    Science.gov (United States)

    Buxner, Sanlyn; Bracey, Georgia; Summer, Theresa; Cobb, Whitney; Gay, Pamela L.; Finkelstein, Keely D.; Gurton, Suzanne; Felix-Strishock, Lisa; Kruse, Brian; Lebofsky, Larry A.; Jones, Andrea J.; Tweed, Ann; Graff, Paige; Runco, Susan; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    CosmoQuest is a Citizen Science Virtual Research Facility that engages scientists, educators, students, and the public in analyzing NASA images. Often, these types of citizen science activities target enthusiastic members of the public, and additionally engage students in K-12 and college classrooms. To support educational engagement, we are developing a pipeline in which formal and informal educators and facilitators use the virtual research facility to engage students in real image analysis that is framed to provide meaningful science learning. This work also contributes to the larger project to produce publishable results. Community scientists are being solicited to propose CosmoQuest Science Projects take advantage of the virtual research facility capabilities. Each CosmoQuest Science Project will result in formal education materials, aligned with Next Generation Science Standards including the 3-dimensions of science learning; core ideas, crosscutting concepts, and science and engineering practices. Participating scientists will contribute to companion educational materials with support from the CosmoQuest staff of data specialists and education specialists. Educators will be trained through in person and virtual workshops, and classrooms will have the opportunity to not only work with NASA data, but interface with NASA scientists. Through this project, we are bringing together subject matter experts, classrooms, and informal science organizations to share the excitement of NASA SMD science with future citizen scientists. CosmoQuest is funded through individual donations, through NASA Cooperative Agreement NNX16AC68A, and through additional grants and contracts that are listed on our website, cosmoquest.org.

  8. Question Asking in the Science Classroom: Teacher Attitudes and Practices

    Science.gov (United States)

    Eshach, Haim; Dor-Ziderman, Yair; Yefroimsky, Yana

    2014-02-01

    Despite the wide agreement among educators that classroom learning and teaching processes can gain much from student and teacher questions, their potential is not fully utilized. Adopting the view that reporting both teachers' (of varying age groups) views and actual classroom practices is necessary for obtaining a more complete view of the phenomena at hand, the present study closely examines both cognitive and affective domains of: (a) teachers' views (via interviews) concerning: (1) importance and roles of teacher and student questions, (2) teacher responses, and (3) planning and teacher training; and (b) teachers' actual practices (via classroom observations) concerning: (1) number and (2) level of teacher and student questions, as well as (3) teachers' responses to questions. The data were collected from 3 elementary, 3 middle, and 3 high school science teachers and their respective classroom students. The findings lay out a wide view of classroom questioning and teachers' responses, and relate what actually occurs in classes to teachers' stated views. Some of the study's main conclusions are that a gap exists between how science researchers and teachers view the role of teacher questions: the former highlight the cognitive domain, while the latter emphasize the affective domain.

  9. Secondary science teachers' view toward and classroom translation of sustained professional development

    Science.gov (United States)

    Lewis, Elizabeth Blake

    This study concerns the phenomenon of secondary science teacher learning and enacting instructional strategies learned at the Communication in Science Inquiry Project (CISIP) teacher professional development events, as well as teacher perception of, and relationship to, this year-long professional development program. The CISIP program teaches science teachers how to build scientific classroom discourse communities with their students. Some of the science teachers were previous participants in the professional development, and acted as mentor teachers. The research design employed an integrated conceptual framework of situated learning theory with an analytical lens of teachers' professional, institutional and affinity, identities. A multi-method approach was used to generate data. Throughout the 2007-2008 academic year, the teachers' fidelity to the professional development model was measured using a classroom observation instrument aligned with the professional development model. From these observation data a longitudinal model, using hierarchical linear modeling, was constructed. In addition, surveys and interview data were used to construct both whole group and case studies of two high school science teachers who taught biology at the same school. The results indicated that there was a significant difference between previous and new participants; specifically, the longer teachers had participated in the professional development, and adopted a mentorship role, the greater their fidelity of classroom instruction to the CISIP model. Additionally, the case study teacher who developed a CISIP model-aligned affinity identity implemented more of the instructional strategies than the teacher who maintained his school-based institutional identity.

  10. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    Science.gov (United States)

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-08-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by prominent policy documents. Specifically, we examined the opportunities present in Montessori classrooms for students to develop an interest in the natural world, generate explanations in science, and communicate about science. Using ethnographic research methods in four Montessori classrooms at the primary and elementary levels, this research captured a range of scientific learning opportunities. The study found that the Montessori learning environment provided opportunities for students to develop enduring interests in scientific topics and communicate about science in various ways. The data also indicated that explanation was largely teacher-driven in the Montessori classroom culture. This study offers lessons for both conventional and Montessori classrooms and suggests further research that bridges educational contexts.

  11. Meaningful Engagement in Scientific Practices: How Classroom Communities Develop Authentic Epistemologies for Science

    Science.gov (United States)

    Krist, Christina Rae

    Recent reforms in science education, based on decades of learning research, emphasize engaging students in science and engineering practices as the means to develop and refine disciplinary ideas. These reforms advocate an epistemic shift in how school science is done: from students learning about science ideas to students figuring out core science ideas. This shift is challenging to implement: how do we bring the goals and practices of a discipline into classroom communities in meaningful ways that go beyond simply following rote scientific procedures? In this dissertation, I investigate how classroom communities learn to engage meaningfully in scientific practices, characterizing their engagement as a process of epistemic learning. I take a situated perspective that defines learning as shifts in how members engage in communities of practice. I examine students' epistemic learning as a function of their participation in a classroom community of scientific practice along two dimensions: what they do, or the practical epistemic heuristics they use to guide how they build knowledge; and who they are, or how ownership and authorship of ideas is negotiated and affectively marked through interaction. I focus on a cohort of students as they move from 6th to 8 th grade. I analyze three science units, one from each grade level, to look at the epistemic heuristics implicit in student and teacher talk and how the use of those heuristics shifts over time. In addition, I examine one anomalous 8th grade class to look at how students and the teacher position themselves and each other with respect to the ideas in their classroom and how that positioning supports epistemic learning. Taken together, these analyses demonstrate how students' engagement in scientific practices evolves in terms of what they do and who they are in relation to the knowledge and ideas in their classroom over time. I propose a model for epistemic learning that articulates how classroom communities develop

  12. The role of assessment infrastructures in crafting project-based science classrooms

    Science.gov (United States)

    D'Amico, Laura Marie

    In project-based science teaching, teachers engage students in the practice of conducting meaningful investigations and explanations of natural phenomena, often in collaboration with fellow students or adults. Reformers suggest that this approach can provide students with more profitable learning experiences; but for many teachers, a shift to such instruction can be difficult to manage. As some reform-minded teachers have discovered, classroom assessment can serve as a vital tool for meeting the challenges associated with project science activity. In this research, classroom assessment was viewed as an infrastructure that both students and teachers rely upon as a mediational tool for classroom activity and communications. The study explored the classroom assessment infrastructures created by three teachers involved in the Learning through Collaborative Visualization (CoVis) Project from 1993--94 to 1995--96. Each of the three teachers under study either created a new course or radically reformulated an old one in an effort to incorporate project-based science pedagogy and supporting technologies. Data in the form of interviews, classroom observations, surveys, student work, and teacher records was collected. From these data, an interpretive case study was developed for each course and its accompanying assessment infrastructure. A set of cross-case analyses was also constructed, based upon common themes that emerged from all three cases. These themes included: the assessment challenges based on the nature of project activity, the role of technology in the teachers' assessment infrastructure designs, and the influence of the wider assessment infrastructure on their course and assessment designs. In combination, the case studies and cross-case analyses describe the synergistic relationship between the design of pedagogical reforms and classroom assessment infrastructures, as well as the effectiveness of all three assessment designs. This work contributes to research

  13. Pedagogical Relationship in Secondary Social Science Classrooms

    Science.gov (United States)

    Girard, Brian James

    2010-01-01

    This study investigates two high school social science classrooms in order to better understand the pedagogical relationships among teachers, students, and disciplinary content, and how teachers can influence students' opportunities to learn disciplinary literacy. Drawing on conceptual resources from sociocultural theories of learning and…

  14. Designing Computer-Supported Complex Systems Curricula for the Next Generation Science Standards in High School Science Classrooms

    Directory of Open Access Journals (Sweden)

    Susan A. Yoon

    2016-12-01

    Full Text Available We present a curriculum and instruction framework for computer-supported teaching and learning about complex systems in high school science classrooms. This work responds to a need in K-12 science education research and practice for the articulation of design features for classroom instruction that can address the Next Generation Science Standards (NGSS recently launched in the USA. We outline the features of the framework, including curricular relevance, cognitively rich pedagogies, computational tools for teaching and learning, and the development of content expertise, and provide examples of how the framework is translated into practice. We follow this up with evidence from a preliminary study conducted with 10 teachers and 361 students, aimed at understanding the extent to which students learned from the activities. Results demonstrated gains in students’ complex systems understanding and biology content knowledge. In interviews, students identified influences of various aspects of the curriculum and instruction framework on their learning.

  15. The current practice of using multiple representations in year 4 science classrooms

    Science.gov (United States)

    Chuenmanee, Chanoknat; Thathong, Kongsak

    2018-01-01

    Multiple representations have been widely used as a reasoning tool for understanding complex scientific concepts. Thus this study attempted to investigate the current practice of using multiple representations on Year 4 science classrooms in terms of modes and levels which appear in curriculum documents, teaching plans, tasks and assessments, teaching practices, and students' behaviors. Indeed, documentary analysis, classroom observation, and interview were used as the data collection methods. First of all, Year 4 science documents were analyzed. Then classroom observation was used as a collecting method to seek what actually happen in the classroom. Finally, in-depth interviews were used to gather more information and obtain meaningful data. The finding reveals that many modes of verbal, visual, and tactile representations within three levels of representations are posed in Year 4 documents. Moreover, according to classroom observations and interviews, there are three main points of applying multiple representations into classrooms. First of all, various modes of representations were used, however, a huge number of them did not come together with the levels. The levels of representations, secondly, macroscopic and cellular levels were introduced into all classrooms while symbolic level was provided only in some classrooms. Finally, the connection of modes and levels pointed out that modes of representations were used without the considerations on the levels of them. So, it seems to be that teaching practice did not meet the aims of curriculum. Therefore, these issues were being considered in order to organize and design the further science lessons.

  16. A phenomenological study on middle-school science teachers' perspectives on utilization of technology in the science classroom and its effect on their pedagogy

    Science.gov (United States)

    Rajbanshi, Roshani

    With access to technology and expectation by the mainstream, the use of technology in the classroom has become essential these days. However, the problem in science education is that with classrooms filled with technological equipment, the teaching style is didactic, and teachers employ traditional teacher-centered methods in the classroom. In addition, results of international assessments indicate that students' science learning needs to be improved. The purpose of this study is to analyze and document the lived experience of middle-school science teachers and their use of technology in personal, professional lives as well as in their classroom and to describe the phenomenon of middle-school science teachers' technological beliefs for integration of digital devices or technology as an instructional delivery tool, knowledge construction tool and learning tool. For this study, technology is defined as digital devices such as computer, laptops, digital camera, iPad that are used in the science classroom as an instructional delivery tool, as a learning tool, and as a knowledge construction tool. Constructivism is the lens, the theoretical framework that guides this qualitative phenomenological research. Observation, interview, personal journal, photo elicitation, and journal reflection are used as methods of data collection. Data was analyzed based on a constructivist theoretical framework to construct knowledge and draw conclusion. MAXQDA, a qualitative analysis software, was also used to analyze the data. The findings indicate that middle-school science teachers use technology in various ways to engage and motivate students in science learning; however, there are multiple factors that influence teachers' technology use in the class. In conclusion, teacher, students, and technology are the three sides of the triangle where technology acts as the third side or the bridge to connect teachers' content knowledge to students through the tool with which students are

  17. Ethnographic case study of a high school science classroom: Strategies in stem education

    Science.gov (United States)

    Sohn, Lucinda N.

    Historically, science education research has promoted that learning science occurs through direct physical experiences. In recent years, the need for best practices and student motivation have been highlighted in STEM research findings. In response to the instructional challenges in STEM education, the National Research Council has provided guidelines for improving STEM literacy through best practices in science and mathematics instruction. A baseline qualitative ethnographic case study of the effect of instructional practices on a science classroom was an opportunity to understand how a teacher and students work together to learn in an International Baccalaureate life science course. This study was approached through an interpretivist lens with the assumption that learning science is socially constructed. The following were the research questions: 1.) How does the teacher implement science instruction strategies in the classroom? 2.) In what ways are students engaged in the classroom? 3.) How are science concepts communicated in the classroom? The total 35 participants included a high school science teacher and two classes of 11th grade students in the International Baccalaureate program. Using exploratory qualitative methods of research, data was collected from field notes and transcripts from a series of classroom observations, a single one-on-one interview with the teacher and two focus groups with students from each of the two classes. Three themes emerged from text coded using initial and process coding with the computer assisted qualitative data analysis software, MAXQDA. The themes were: 1.) Physical Forms of Communication Play Key Role in Instructional Strategy, 2.) Science Learning Occurs in Casual Environment Full of Distractions, and 3.) Teacher Persona Plays Vital Role in Classroom Culture. The findings provided insight into the teacher's role on students' motivation to learn science. The recommendation for STEM programs and new curriculum is a

  18. The influence of a Classroom Model of Scientific Scholarship on Four Girls' Trajectories of Identification with Science

    Science.gov (United States)

    Cook, Melissa Sunshine

    This study examines the teacher's role in shaping the identity construction resources available in a classroom and the ways in which individual students take up, modify, and appropriate those resources to construct themselves as scientists through interaction with their teacher and peers. Drawing on frameworks of identity construction and social positioning, I propose that the locally-negotiated classroom-level cultural model of what it means to be a "good" science student forms the arena in which students construct a sense of their own competence at, affiliation with, and interest in science. The setting for this study was a 6th grade science class at a progressive urban elementary school whose population roughly represents the ethnic and socioeconomic diversity of the state of California. The teacher was an experienced science and math teacher interested in social justice and inquiry teaching. Drawing from naturalistic observations, video and artifact analysis, survey data, and repeated interviews with students and the teacher, I demonstrated what it meant to be a "good" science student in this particular cultural community by analyzing what was required, reinforced, and rewarded in this classroom. Next, I traced the influence of this particular classroom's conception of what it meant to be good at science on the trajectories of identification with science of four 6th grade girls selected to represent a variety of stances towards science, levels of classroom participation, and personal backgrounds. Scientific scholarship in this class had two parts: values related to science as a discipline, and a more generic set of school-related values one might see in any classroom. Different meanings of and values for science were indexed in the everyday activities of the classroom: science as a language for describing the natural world, science as a set of rhetorical values, science as an adult social community, and science as a place for mess and explosions. Among school

  19. Inventing Creativity: An Exploration of the Pedagogy of Ingenuity in Science Classrooms

    Science.gov (United States)

    Meyer, Allison Antink; Lederman, Norman G.

    2013-01-01

    Concerns with the ability of U.S. classrooms to develop learners who will become the next generation of innovators, particularly given the present climate of standardized testing, warrants a closer look at creativity in science classrooms. The present study explored these concerns associated with teachers' classroom practice by addressing the…

  20. Interchangeable Positions in Interaction Sequences in Science Classrooms

    Directory of Open Access Journals (Sweden)

    Carol Rees

    2017-03-01

    Full Text Available Triadic dialogue, the Initiation, Response, Evaluation sequence typical of teacher /student interactions in classrooms, has long been identified as a barrier to students’ access to learning, including science learning. A large body of research on the subject has over the years led to projects and policies aimed at increasing opportunities for students to learn through interactive dialogue in classrooms. However, the triadic dialogue pattern continues to dominate, even when teachers intend changing this. Prior quantitative research on the subject has focused on identifying independent variables such as style of teacher questioning that have an impact, while qualitative researchers have worked to interpret the use of dialogue within the whole context of work in the classroom. A recent paper offers an alternative way to view the triadic dialogue pattern and its origin; the triadic dialogue pattern is an irreducible social phenomenon that arises in a particular situation regardless of the identity of the players who inhabit the roles in the turn-taking sequence (Roth & Gardner, 2012. According to this perspective, alternative patterns of dialogue would exist which are alternative irreducible social phenomena that arise in association with different situations. The aim of this paper is to examine as precisely as possible, the characteristics of dialogue patterns in a seventh-eighth grade classroom during science inquiry, and the precise situations from which these dialogue patterns emerge, regardless of the staffing (teacher or students in the turn-taking sequence. Three different patterns were identified each predominating in a particular situation. This fine-grained analysis could offer valuable insights into ways to support teachers working to alter the kinds of dialogue patterns that arise in their classrooms.

  1. Teacher perceptions of usefulness of mobile learning devices in rural secondary science classrooms

    Science.gov (United States)

    Tighe, Lisa

    The internet and easy accessibility to a wide range of digital content has created the necessity for teachers to embrace and integrate digitial media in their curriculums. Although there is a call for digital media integration in curriculum by current learning standards, rural schools continue to have access to fewer resources due to limited budgets, potentially preventing teachers from having access to the most current technology and science instructional materials. This dissertation identifies the perceptions rural secondary science teachers have on the usefulness of mobile learning devices in the science classroom. The successes and challenges in using mobile learning devices in the secondary classroom were also explored. Throughout this research, teachers generally supported the integration of mobile devices in the classroom, while harboring some concerns relating to student distractability and the time required for integrating mobile devices in exisiting curriculum. Quantitative and qualitative data collected through surveys, interviews, and classroom observations revealed that teachers perceive that mobile devices bring benefits such as ease of communication and easy access to digitial information. However, there are perceived challenges with the ability to effectively communicate complex scientific information via mobile devices, distractibility of students, and the time required to develop effective curriculum to integrate digital media into the secondary science classroom.

  2. The Earth Science for Tomorrows Classroom

    Science.gov (United States)

    Shanskiy, Merrit

    2015-04-01

    The Earth sciences comprises many fascinating topics that is teached to different age level pupils/students in order to bring hard core science closer to their daily life. With developing possibilities in IT, multimedia overall electronic sector the teachers/lecturers have continuous possibilities to accomplish novel approaches and utilize new ideas to make science more interesting for students in all ages. Emerging, from personal experiences, the teaching of our surrounding Environment can be very enjoyable. In our everyday life the SOIL remains invisible. The soil is covered by plant cover which makes the topic somewhat in distant that is not "visible" to an eye and its importance is underestimated. In other hand, the SOIL is valuable primary resource for food production and basis of life for healthy environment. From several studies have found that because its complications, SOIL related topics are not very often chosen topic for course or diploma works by students. The lower-school students are very open to environmental topics accordingly to the grades. Here, the good results can be obtained through complimentary materials creation, like story telling and drawing books and puzzles. The middle/ and upper/school students will experience "real science" being able to learn what the science is about which often can play a important role on making choices for future curriculum completion at university level. Current presentation shares the ideas of selected methods that had showed successful results on different Earth Science topics teaching (biodiversity, growing substrates, green house gas emissions). For some ideas the presentation introduces also the further developmental possibilities to be used in teaching at Tomorrows Classroom.

  3. Cosmic Times: Astronomy History and Science for the Classroom

    Science.gov (United States)

    Lochner, James C.; Mattson, B.

    2008-05-01

    Cosmic Times is a series of curriculum support materials and classroom activities for upper middle school and high school students which teach the nature of science by exploring the history of our understanding of the universe during the past 100 years. Starting with the confirmation of Einstein's theory of gravity in 1919 to the current conundrum posed by the discovery of dark energy, Cosmic Times examines the discoveries, the theories, and the people involved in this changing [understanding] of the universe. Cosmic Times takes the form of 6 posters, each resembling the front page of a newspaper from a particular time in this history with articles describing the discoveries. Each poster is accompanied by 4-5 classroom lessons which enable students to examine the science concepts behind the discoveries, develop techniques to improve science literacy, and investigate the nature of science using historical examples. Cosmic Times directly connects with the IYA theme of Astronomy in the Classroom, as well as the general theme of the impact of astronomy history. Cosmic Times has been developed with a freelance writer to write the articles for the posters, a group of teachers to develop the lessons, and evaluator to provide testing of the materials with a group of rural teachers in underserved communities. This poster presentation previews the Cosmic Times materials, which are posted on http://cosmictimes.gsfc.nasa.gov/ as they become available. Cosmic Times is funded in part via a NASA IDEAS grant.

  4. The third space: The use of self-study to examine the culture of a science classroom

    Science.gov (United States)

    Magee, Dashia M.

    Science educators are in the position to create bridges between their students and the world of science (Aikenhead, 1996, 1999). This connection has often been described as the third space (Bhabha, 1994; Moje, Collazo, Carrillo, & Marx, 2001; Wallace, 2004), which is represented as a combination or a meeting of the students' world and the world of science. In this study, I examined my role in creating the third space through the use of self-study. Self-study is a form of research, educators use to understand their practice (Austin & Senese, 2004; Loughran, 2004; Northfield & Loughran, 1996). It is a means of describing, analyzing, and interpreting a teacher's actions within his or her classroom (Tidwell, 2002). The focal point of this self-study is to understand my actions found within my past and present teaching experiences and the underlying beliefs that are expressed through those actions. In this self-study, I collected data from my life history, classroom observations, and member check interview. My life history described my influences that shaped my philosophy of teaching and learning, while the classroom observations provided a means of understanding my interactions with the science curriculum and my English Language Learner (ELL) students. And finally, a member check focus group interview occurred to confirm the results occurring in the classroom observations. Once the data were collected, I used grounded theory methods to analyze my results and answer the research questions. This self-study became the means of exploring my philosophy of teaching and learning and my teaching practices as they occurred in an ELL science classroom. I examined my own practice through a comparison between my past experiences and my current teaching situation and through this exploration, I identified my actions and the beliefs associated with those actions as they informed my teaching practices.

  5. Understanding Science Teaching Effectiveness: Examining How Science-Specific and Generic Instructional Practices Relate to Student Achievement in Secondary Science Classrooms

    Science.gov (United States)

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-01-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student…

  6. Visual, Critical, and Scientific Thinking Dispositions in a 3rd Grade Science Classroom

    Science.gov (United States)

    Foss, Stacy

    Many American students leave school without the required 21st century critical thinking skills. This qualitative case study, based on the theoretical concepts of Facione, Arheim, and Vygotsky, explored the development of thinking dispositions through the arts in science on the development of scientific thinking skills when used as a conceptual thinking routine in a rural 3rd grade classroom. Research questions examined the disposition to think critically through the arts in science and focused on the perceptions and experiences of 25 students with the Visual Thinking Strategy (VTS) process. Data were collected from classroom observations (n = 10), student interviews (n = 25), teacher interviews ( n = 1), a focus group discussion (n = 3), and artifacts of student work (n = 25); these data included perceptions of VTS, school culture, and classroom characteristics. An inductive analysis of qualitative data resulted in several emergent themes regarding disposition development and students generating questions while increasing affective motivation. The most prevalent dispositions were open-mindedness, the truth-seeking disposition, the analytical disposition, and the systematicity disposition. The findings about the teachers indicated that VTS questions in science supported "gradual release of responsibility", the internalization of process skills and vocabulary, and argumentation. This case study offers descriptive research that links visual arts inquiry and the development of critical thinking dispositions in science at the elementary level. A science curriculum could be developed, that emphasizes the development of thinking dispositions through the arts in science, which in turn, could impact the professional development of teachers and learning outcomes for students.

  7. Students' Regulation of Their Emotions in a Science Classroom

    Science.gov (United States)

    Tomas, Louisa; Rigano, Donna; Ritchie, Stephen M.

    2016-01-01

    Research aimed at understanding the role of the affective domain in student learning in classrooms has undergone a recent resurgence due to the need to understand students' affective response to science instruction. In a case study of a year 8 science class in North Queensland, students worked in small groups to write, film, edit, and produce…

  8. Teacher perspectives on science literacy in multilingual classrooms –multidisciplinary explorations

    DEFF Research Database (Denmark)

    Hajer, Maaike; Nielsen, Birgitte Lund; Tytler, Russell

    using Clarke & Hollingworth (2002) (referred to as C&H) model for analyzing teacher development as connections between teachers personal domain of knowledge and beliefs, practice domain of experimenting in the classroom, domain of consequence including salient student outcomes and the external domain...... that requires multidisciplinary cooperation. The Swedish Science and Literacy Teaching (SALT)project focuses on the questions How do science teachers address literacy skills in classes with secondary students in a multilingual classroom? and How can an explicit focus on literacy development become an integrated...... part of science teachers’ practice and thinking? The multidisciplinary team includes expertise in applied linguistics (text analysis, second language teaching), science pedagogy and teacher professional development. Having gathered the SALT data, the challenge in this phase is in the analysis. How can...

  9. Cultivating characters (moral value) through internalization strategy in science classroom

    Science.gov (United States)

    Ibrahim, M.; Abadi

    2018-01-01

    It is still in a crucial debate that characters play an important learning outcome to be realized by design. So far, most people think that characters were reached as nurturance effect with the assumption that students who are knowledgeable and skillful will have good characters automatically. Lately, obtained evidence that this assumption is not true. Characters should be taught deliberately or by design. This study was designed to culture elementary school students’ characters through science classroom. The teaching-learning process was conducted to facilitate and bridge the students from the known (concrete images: Science phenomena) to the unknown (abstract ideas: characters: care, and tolerance. Characters were observed five weeks before and after the intervention. Data were analyzed from observation of 24 students in internalization strategy-based courses. Qualitative and quantitative data suggested that the internalization strategy that use of science phenomena to represent abstract ideas (characters) in science classroom positively cultivating characters.

  10. SciNews: Incorporating Science Current Events in 21st Century Classrooms

    Science.gov (United States)

    DiMaggio, E.

    2011-12-01

    News materials, each lesson links to a brief online survey. I ask educators for basic information (grade level, number of students) as well as feedback on lesson content, accessibility of media types used, agreement with standards, and general comments on how to improve SciNews. Survey results show that SciNews lessons have been implemented in elementary through college classrooms. Comments express an overall agreement that Scinews lessons facilitate classroom discussion, heighten student interest in the topic, and that lessons are easy to use and modify. Current events help demonstrate to students that, unlike fact-filled textbooks suggest, science is not static and scientists are actively investigating many 'textbook' concepts. Showing students the process and progressive nature of scientific information reinforces critical thinking rather than pure memorization.

  11. Student cognition and motivation during the Classroom BirdWatch citizen science project

    Science.gov (United States)

    Tomasek, Terry Morton

    The purpose of this study was to examine and describe the ways various stakeholders (CBW project developer/coordinator, elementary and middle school teachers, and 5th through 8th grade students) envisioned, implemented and engaged in the citizen science project, eBird/Classroom BirdWatch. A multiple case study mixed-methods research design was used to examine student engagement in the cognitive processes associated with scientific inquiry as part of citizen science participation. Student engagement was described based on a sense of autonomy, competence, relatedness and intrinsic motivation. A goal of this study was to expand the taxonomy of differences between authentic scientific inquiry and simple inquiry to include those inquiry tasks associated with participation in citizen science by describing how students engaged in this type of science. This research study built upon the existing framework of cognitive processes associated with scientific inquiry described by Chinn and Malhotra (2002). This research provides a systematic analysis of the scientific processes and related reasoning tasks associated with the citizen science project eBird and the corresponding curriculum Classroom BirdWatch . Data consisted of responses to surveys, focus group interviews, document analysis and individual interviews. I suggest that citizen science could be an additional form of classroom-based science inquiry that can promote more authentic features of scientific inquiry and engage students in meaningful ways.

  12. Facilitating cultural border crossing in urban secondary science classrooms: A study of inservice teachers

    Science.gov (United States)

    Monteiro, Anna Karina

    Research acknowledges that if students are to be successful science, they must learn to navigate and cross cultural borders that exist between their own cultures and the subculture of science. This dissertation utilized a mixed methods approach to explore how inservice science teachers working in urban schools construct their ideas of and apply the concepts about the culture of science and cultural border crossing as relevant to the teaching and learning of science. The study used the lenses of cultural capital, social constructivism, and cultural congruency in the design and analysis of each of the three phases of data collection. Phase I identified the perspectives of six inservice science teachers on science culture, cultural border crossing, and which border crossing methods, if any, they used during science teaching. Phase II took a dialectical approach as the teachers read about science culture and cultural border crossing during three informal professional learning community meetings. This phase explored how teachers constructed their understanding of cultural border crossing and how the concept applied to the teaching and learning of science. Phase III evaluated how teachers' perspectives changed from Phase I. In addition, classroom observations were used to determine whether teachers' practices in their science classrooms changed from Phase I to Phase III. All three phases collected data through qualitative (i.e., interviews, classroom observations, and surveys) and quantitative (Likert items) means. The findings indicated that teachers found great value in learning about the culture of science and cultural border crossing as it pertained to their teaching methods. This was not only evidenced by their interviews and surveys, but also in the methods they used in their classrooms. Final conclusions included how the use of student capital resources (prior experiences, understandings and knowledge, ideas an interests, and personal beliefs), if supported by

  13. The application of language-game theory to the analysis of science learning: Developing an interpretive classroom-level learning framework

    Science.gov (United States)

    Ahmadibasir, Mohammad

    In this study an interpretive learning framework that aims to measure learning on the classroom level is introduced. In order to develop and evaluate the value of the framework, a theoretical/empirical study is designed. The researcher attempted to illustrate how the proposed framework provides insights on the problem of classroom-level learning. The framework is developed by construction of connections between the current literature on science learning and Wittgenstein's language-game theory. In this framework learning is defined as change of classroom language-game or discourse. In the proposed framework, learning is measured by analysis of classroom discourse. The empirical explanation power of the framework is evaluated by applying the framework in the analysis of learning in a fifth-grade science classroom. The researcher attempted to analyze how students' colloquial discourse changed to a discourse that bears more resemblance to science discourse. The results of the empirical part of the investigation are presented in three parts: first, the gap between what students did and what they were supposed to do was reported. The gap showed that students during the classroom inquiry wanted to do simple comparisons by direct observation, while they were supposed to do tool-assisted observation and procedural manipulation for a complete comparison. Second, it was illustrated that the first attempt to connect the colloquial to science discourse was done by what was immediately intelligible for students and then the teacher negotiated with students in order to help them to connect the old to the new language-game more purposefully. The researcher suggested that these two events in the science classroom are critical in discourse change. Third, it was illustrated that through the academic year, the way that students did the act of comparison was improved and by the end of the year more accurate causal inferences were observable in classroom communication. At the end of the

  14. Effectiveness of Various Innovative Learning Methods in Health Science Classrooms: A Meta-Analysis

    Science.gov (United States)

    Kalaian, Sema A.; Kasim, Rafa M.

    2017-01-01

    This study reports the results of a meta-analysis of the available literature on the effectiveness of various forms of innovative small-group learning methods on student achievement in undergraduate college health science classrooms. The results of the analysis revealed that most of the primary studies supported the effectiveness of the…

  15. Student control ideology and the science classroom environment in urban secondary schools of sudan

    Science.gov (United States)

    Harty, Harold; Hassan, Hassan A.

    An examination was made concerning the relationships between Sudanese secondary science teachers' pupil control ideology and their students' perceptions/observations of the psychosocial environment of their science classrooms. One hundred secondary science teachers were classified as possessing humanistic (N = 20) or custodial (N = 20) control ideologies. A class (N = 40) of students was randomly selected for every teacher in both groups. The findings revealed that no significant relationships existed between the control ideologies of the teachers and their students' perceptions/observations of the classroom environment. Custodialism in control ideology was significantly related to the classroom environment psychosocial aspect of low support. Discussion and implications of the findings have been approached from both Sudanese and American perspectives.

  16. Assessing Students' Attitudes and Achievements in a Multicultural and Multilingual Science Classroom.

    Science.gov (United States)

    Hadi-Tabassum, Samina

    1999-01-01

    Takes a qualitative and quantitative look at the curriculum and teaching of a two-way immersion eighth-grade solar energy science classroom and examines its implications for education policy and reform. Results for a class of 25 students indicate that the approach increases the retention rate of Hispanic students. (SLD)

  17. The Relationship between Teachers' Knowledge and Beliefs about Science and Inquiry and Their Classroom Practices

    Science.gov (United States)

    Saad, Rayana; BouJaoude, Saouma

    2012-01-01

    The purpose of this study was to investigate relationships between teachers' attitudes toward science, knowledge and beliefs about inquiry, and science classroom teaching practices. Specifically, the study addressed three questions: What are teachers' beliefs and knowledge about inquiry? What are teachers' teaching related classroom practices? Do…

  18. Classroom-based science research at the introductory level: changes in career choices and attitude.

    Science.gov (United States)

    Harrison, Melinda; Dunbar, David; Ratmansky, Lisa; Boyd, Kimberly; Lopatto, David

    2011-01-01

    Our study, focused on classroom-based research at the introductory level and using the Phage Genomics course as the model, shows evidence that first-year students doing research learn the process of science as well as how scientists practice science. A preliminary but notable outcome of our work, which is based on a small sample, is the change in student interest in considering different career choices such as graduate education and science in general. This is particularly notable, as previous research has described research internships as clarifying or confirming rather than changing undergraduates' decisions to pursue graduate education. We hypothesize that our results differ from previous studies of the impact of engaging in research because the students in our study are still in the early stages of their undergraduate careers. Our work builds upon the classroom-based research movement and should be viewed as encouraging to the Vision and Change in Undergraduate Biology Education movement advocated by the American Association for the Advancement of Science, the National Science Foundation, and other undergraduate education stakeholders.

  19. Silencing of voices in a Swedish science classroom

    Science.gov (United States)

    Ramos de Robles, S. Lizette

    2018-03-01

    From a sociocultural perspective, I discuss data from a Swedish science classroom presented in María Gómez's article "Student Explanations of their Science Teachers' Assessments, Grading Practices, and How they learn Science". In this discussion, I focus on the need to change existing conceptions of assessment in the teaching and learning of science. Next, I talk about the importance of taking into consideration the dialectic between agency and passivity as filters in order to understand what student silence may signify in science classes as well as in relation to their perceptions of assessment. I conclude with the importance of the teacher's role in developing formative assessment, along with the challenges in developing assessments which transform science education into a relevant field of knowledge for both students and society at large.

  20. The Multicultural Science Framework: Research on Innovative Two-Way Immersion Science Classrooms.

    Science.gov (United States)

    Hadi-Tabassum, Samina

    2000-01-01

    Reviews the different approaches to multicultural science teaching that have emerged in the past decade, focusing on the Spanish-English two-way immersion classroom, which meets the needs of Spanish speakers learning English and introduces students to the idea of collaboration across languages and cultures. Two urban two-way immersion classrooms…

  1. Strategies for Effective Implementation of Science Models into 6-9 Grade Classrooms on Climate, Weather, and Energy Topics

    Science.gov (United States)

    Yarker, M. B.; Stanier, C. O.; Forbes, C.; Park, S.

    2011-12-01

    As atmospheric scientists, we depend on Numerical Weather Prediction (NWP) models. We use them to predict weather patterns, to understand external forcing on the atmosphere, and as evidence to make claims about atmospheric phenomenon. Therefore, it is important that we adequately prepare atmospheric science students to use computer models. However, the public should also be aware of what models are in order to understand scientific claims about atmospheric issues, such as climate change. Although familiar with weather forecasts on television and the Internet, the general public does not understand the process of using computer models to generate a weather and climate forecasts. As a result, the public often misunderstands claims scientists make about their daily weather as well as the state of climate change. Since computer models are the best method we have to forecast the future of our climate, scientific models and modeling should be a topic covered in K-12 classrooms as part of a comprehensive science curriculum. According to the National Science Education Standards, teachers are encouraged to science models into the classroom as a way to aid in the understanding of the nature of science. However, there is very little description of what constitutes a science model, so the term is often associated with scale models. Therefore, teachers often use drawings or scale representations of physical entities, such as DNA, the solar system, or bacteria. In other words, models used in classrooms are often used as visual representations, but the purpose of science models is often overlooked. The implementation of a model-based curriculum in the science classroom can be an effective way to prepare students to think critically, problem solve, and make informed decisions as a contributing member of society. However, there are few resources available to help teachers implement science models into the science curriculum effectively. Therefore, this research project looks at

  2. The Responsive Classroom approach and fifth grade students' math and science anxiety and self-efficacy.

    Science.gov (United States)

    Griggs, Marissa Swaim; Rimm-Kaufman, Sara E; Merritt, Eileen G; Patton, Christine L

    2013-12-01

    Self-efficacy forecasts student persistence and achievement in challenging subjects. Thus, it is important to understand factors that contribute to students' self-efficacy, a key factor in their success in math and science. The current cross-sectional study examined the contribution of students' gender and math and science anxiety as well as schools' use of Social and Emotional Learning (SEL) practices to students' math and science self-efficacy. Fifth graders (n = 1,561) completed questionnaires regarding their feelings about math and science. Approximately half of the students attended schools implementing the Responsive Classroom® (RC) approach, an SEL intervention, as part of a randomized controlled trial. Results suggested no difference in math and science self-efficacy between boys and girls. Students who self-reported higher math and science anxiety also reported less self-efficacy toward these subjects. However, the negative association between students' anxiety and self-efficacy was attenuated in schools using more RC practices compared with those using fewer RC practices. RC practices were associated with higher science self-efficacy. Results highlight anxiety as contributing to poor self-efficacy in math and science and suggest that RC practices create classroom conditions in which students' anxiety is less strongly associated with negative beliefs about their ability to be successful in math and science. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  3. Sample classroom activities based on climate science

    Science.gov (United States)

    Miler, T.

    2009-09-01

    We present several activities developed for the middle school education based on a climate science. The first activity was designed to teach about the ocean acidification. A simple experiment can prove that absorption of CO2 in water increases its acidity. A liquid pH indicator is suitable for the demonstration in a classroom. The second activity uses data containing coordinates of a hurricane position. Pupils draw a path of a hurricane eye in a tracking chart (map of the Atlantic ocean). They calculate an average speed of the hurricane, investigate its direction and intensity development. The third activity uses pictures of the Arctic ocean on September when ice extend is usually the lowest. Students measure the ice extend for several years using a square grid printed on a plastic foil. Then they plot a graph and discuss the results. All these activities can be used to improve the natural science education and increase the climate change literacy.

  4. A cultural study of a science classroom and graphing calculator-based technology

    Science.gov (United States)

    Casey, Dennis Alan

    Social, political, and technological events of the past two decades have had considerable bearing on science education. While sociological studies of scientists at work have seriously questioned traditional histories of science, national and state educational systemic reform initiatives have been enacted, stressing standards and accountability. Recently, powerful instructional technologies have become part of the landscape of the classroom. One example, graphing calculator-based technology, has found its way from commercial and domestic applications into the pedagogy of science and math education. The purpose of this study was to investigate the culture of an "alternative" science classroom and how it functions with graphing calculator-based technology. Using ethnographic methods, a case study of one secondary, team-taught, Environmental/Physical Science (EPS) classroom was conducted. Nearly half of the 23 students were identified as students with special education needs. Over a four-month period, field data was gathered from written observations, videotaped interactions, audio taped interviews, and document analyses to determine how technology was used and what meaning it had for the participants. Analysis indicated that the technology helped to keep students from getting frustrated with handling data and graphs. In a relatively short period of time, students were able to gather data, produce graphs, and to use inscriptions in meaningful classroom discussions. In addition, teachers used the technology as a means to involve and motivate students to want to learn science. By employing pedagogical skills and by utilizing a technology that might not otherwise be readily available to these students, an environment of appreciation, trust, and respect was fostered. Further, the use of technology by these teachers served to expand students' social capital---the benefits that come from an individual's social contacts, social skills, and social resources.

  5. Girls in Primary School Science Classrooms: Theorising beyond Dominant Discourses of Gender

    Science.gov (United States)

    Cervoni, Cleti; Ivinson, Gabrielle

    2011-01-01

    The paper explores the ways girls appropriate gender through actions, gesture and talk to achieve things in primary school science classrooms. It draws on socio-cultural approaches to show that when everyday classroom practices are viewed from multiple planes of analysis, historical, institutional and in the micro dynamics of classroom…

  6. Bringing Inquiry Science to K-5 Classrooms

    Science.gov (United States)

    Schachtel, Paula L.; Messina, D. L.; McDermott, L. C.

    2006-12-01

    As a science coach in the Seattle School District, I am responsible for helping other elementary teachers teach science. For several years, I have been participating in a program that consists of intensive NSF Summer Institutes and an ongoing academic-year Continuation Course. Teachers in this program work through modules in Physics by Inquiry, a research-based curriculum developed by the Physics Education Group at the University of Washington.1 I will discuss how this type of professional development has deepened my understanding of topics in physical science, helped me to teach science by inquiry to my own students, and enabled me to assist my colleagues in implementing inquiry science in their K-5 classrooms. Sponsored by Lillian C. McDermott. 1. A research-based curriculum developed by L.C. McDermott and the Physics Education Group at the University of Washington, Physics by Inquiry, New York, NY, John Wiley & Sons, Inc. (1996.)

  7. The materiality of materials and artefacts used in science classrooms

    DEFF Research Database (Denmark)

    Cowie, Bronwen; Otrel-Cass, Kathrin; Moreland, Judy

    Material objects and artefacts receive limited attention in science education (Roehl, 2012) though they shape emerging interactions. This is surprising given science has material and a social dimensions (Pickering, 1995) whereby new knowledge develops as a consensus explanation of natural phenomena...... that is mediated significantly through materials and instruments used. Here we outline the ways teachers deployed material objects and artefacts by identifying their materiality to provide scenarios and resources (Roth, 2005) for interactions. Theoretical framework We use Ingold's (2011) distinction between...... materials as natural objects in this world and artefacts as manmade objects. We are aware that in a classroom material objects and artefacts shape, and are shaped by classroom practice through the way they selectively present scientific explanations. However, materials and artefacts have no intrinsic...

  8. Problem-Based Learning in the Life Science Classroom, K-12

    Science.gov (United States)

    McConnell, Tom; Parker, Joyce; Eberhardt, Janet

    2016-01-01

    "Problem-Based Learning in the Life Science Classroom, K-12" offers a great new way to ignite your creativity. Authors Tom McConnell, Joyce Parker, and Janet Eberhardt show you how to engage students with scenarios that represent real-world science in all its messy, thought-provoking glory. The scenarios prompt K-12 learners to immerse…

  9. Exploring the meaning of practicing classroom inquiry from the perspectives of National Board Certified Science Teachers

    Science.gov (United States)

    Karaman, Ayhan

    Inquiry has been one of the most prominent terms of the contemporary science education reform movement (Buck, Latta, & Leslie-Pelecky, 2007; Colburn, 2006; Settlage, 2007). Practicing classroom inquiry has maintained its central position in science education for several decades because science education reform documents promote classroom inquiry as the potential savior of science education from its current problems. Likewise, having the capabilities of teaching science through inquiry has been considered by National Board for Professional Teaching Standards [NBPTS] as one of the essential elements of being an accomplished science teacher. Successful completion of National Board Certification [NBC] assessment process involves presenting a clear evidence of enacting inquiry with students. Despite the high-profile of the word inquiry in the reform documents, the same is not true in schools (Crawford, 2007). Most of the science teachers do not embrace this type of approach in their everyday teaching practices of science (Johnson, 2006; Luera, Moyer, & Everett, 2005; Smolleck, Zembal-Saul, & Yoder, 2006; Trumbull, Scarano, & Bonney, 2006). And the specific meanings attributed to inquiry by science teachers do not necessarily match with the original intentions of science education reform documents (Matson & Parsons, 2006; Wheeler, 2000; Windschitl, 2003). Unveiling the various meanings held by science teachers is important in developing better strategies for the future success of science education reform efforts (Jones & Eick, 2007; Keys & Bryan, 2001). Due to the potential influences of National Board Certified Science Teachers [NBCSTs] on inexperienced science teachers as their mentors, examining inquiry conceptions of NBCSTs is called for. How do these accomplished practitioners understand and enact inquiry? The purpose of this dissertation research study was twofold. First, it investigated the role of NBC performance assessment process on the professional development

  10. Makiguchian pedagogy in the middle school science classroom

    Science.gov (United States)

    Pagan, Iris Teresa

    In an atmosphere of multi-culturism and the increasing need for innovative methods for science teaching, investigating educators from different parts of the world is well regarded. Tsunesaburo Makiguchi (1871--1944) was a prescient thinker who foreshadowed many of the modern social constructivist ideals of teaching before they became formalized in Western thought. He believed in the harmonious balance between an individual and society as the only viable goal of education. With this in mind, he introduced the concepts of "evaluation," "cognition" and "value creation" that embody this balance. "Cognition" is associated with "truth" and "evaluation" is involved with the subject-object relationship. Moreover, Makiguchian pedagogy's concept of "value creation" offers a sociological and philosophical basis for "classroom inclusion." Additionally, Makiguchian pedagogy is compared to John Dewey's philosophy as well as the educational philosophy expressed in The National Science Standards. In this teacher participant study, classroom observational data showed that several dimensions of Makiguchian pedagogical practice occurred conjointly with relatively high frequencies. These included frequent occurrences of interactional conversation between students and teacher merged within a context of expressions of personal and collective values, social contextual references, valuing and personal evaluative statements, and episodic information that the students contributed from personal experiences relevant to the science topics. Additionally, Likert-type questionnaire data collected from the students who experienced the Makiguchian lessons, and observational data from professional colleagues who viewed video taped records of the lessons, provided additional corroborative evidence supporting the researcher's findings. A content analysis of lesson plans containing Makiguchian principles of teaching and learning in relation to the ensuing classroom performance of the teacher showed a

  11. The Social Science Teacher. 1972. Collected Conference Papers: Social Science Concepts Classroom Methods.

    Science.gov (United States)

    Noble, Pat, Ed.; And Others

    Papers in this publication are collected from a conference on social science concepts and classroom methods which focused on the theories of Jerome Bruner. The first article, entitled "Jerome Bruner," outlines four of Bruner's themes--structure, readiness, intuition, and interest--which relate to cognitive learning. Three…

  12. The impact of professional development on classroom teaching for science educators participating in a long term community of practice

    Science.gov (United States)

    Jensen, Aaron C.

    Efforts to modify and improve science education in the United States have seen minimal success (Crawford, 2000; Borko & Putman, 1996; Puntambekar, Stylianou & Goldstein, 2007; Lustick, 2011). One important reason for this is the professional development that teachers go through in order to learn about and apply these new ideas is generally of poor quality and structured incorrectly for long-term changes in the classroom (Little, 1993; Fullen, 1996; Porter, 2000; Jeanpierre, Oberhauser, & Freeman, 2005). This grounded theory study explores a science community of practice and how the professional development achieved through participation in that community has effected the instruction of the teachers involved, specifically the incorporation of researched based effective science teaching instructional strategies. This study uses personal reflection papers written by the participants, interviews, and classroom observations to understand the influence that the science community of practice has had on the participants. Results indicate that participation in this science community of practice has significant impact on the teachers involved. Participants gained greater understanding of science content knowledge, incorporated effective science instructional strategies into their classroom, and were able to practice both content knowledge and strategies in a non-threatening environment thus gaining a greater understanding of how to apply them in the classrooms. These findings motivate continued research in the role that communities of practice may play in teacher professional develop and the effectiveness of quality professional development in attaining long-term, sustained improvement in science education.

  13. Cultural politics: Linguistic identity and its role as gatekeeper in the science classroom

    Science.gov (United States)

    Hilton-Brown, Bryan Anthony

    This dissertation investigated how participation in the cultural practices of science classrooms creates intrapersonal conflict for ethnic minority students. Grounded in research perspectives of cultural anthropology, sociocultural studies of science education, and critical pedagogy, this study examined the cultural tensions encountered by minority students as they assimilate into the culture of the science classroom. Classroom interaction was viewed from the perspective of instructional congruence---the active incorporation of students' culture into science pedagogy. Ogbu's notion of "oppositional identity", Fordham's "fictive kinship", Bahktin's "antidialogics", and Freire's "critical consciousness" were brought together to examine how members of marginalized cultures develop non-normative behaviors as a means of cultural resistance. Choice of genre for public discourse was seen as a political act, representing students' own cultural affiliations. Conducted in a diverse Southern Californian high school with an annual population of over 3,900 students, this study merged ethnographic research, action research, and sociolinguistic discourse analysis. Post hoc analysis of videotaped classroom activities, focus group interviews, and samples of student work revealed students' discursive behavior to shift as a product of the context of their discursive exchanges. In whole class discussions students explained their understanding of complex phenomena to classmates, while in small group discussions they favored brief exchanges of group data. Four domains of discursive identities were identified: Opposition Status, Maintenance Status, Incorporation Status, and Proficiency Status. Students demonstrating Opposition Status avoided use of science discourse. Those students who demonstrated Maintenance Status were committed to maintaining their own discursive behavior. Incorporation Status students were characterized by an active attempt to incorporate science discourse into

  14. Climate Change Education Today in K-12: What's Happening in the Earth and Space Science Classroom?

    Science.gov (United States)

    Holzer, M. A.; National Earth Science Teachers Association

    2011-12-01

    Climate change is a highly interdisciplinary topic, involving not only multiple fields of science, but also social science and the humanities. There are many aspects of climate change science that make it particularly well-suited for exploration in the K-12 setting, including opportunities to explore the unifying processes of science such as complex systems, models, observations, change and evolution. Furthermore, this field of science offers the opportunity to observe the nature of science in action - including how scientists develop and improve their understanding through research and debate. Finally, climate change is inherently highly relevant to students - indeed, students today will need to deal with the consequences of the climate change. The science of climate change is clearly present in current science education standards, both at the National level as well as in the majority of states. Nonetheless, a significant number of teachers across the country report difficulties addressing climate change in the classroom. The National Earth Science Teachers Association has conducted several surveys of Earth and space science educators across the country over the past several years on a number of issues, including their needs and concerns, including their experience of external influences on what they teach. While the number of teachers that report external pressures to not teach climate change science are in the minority (and less than the pressure to not teach evolution and related topics), our results suggest that this pressure against climate change science in the K-12 classroom has grown over the past several years. Some teachers report being threatened by parents, being encouraged by administrators to not teach the subject, and a belief that the "two sides" of climate change should be taught. Survey results indicate that teachers in religious or politically-conservative districts are more likely to report difficulties in teaching about climate change than in

  15. Literacy learning in secondary school science classrooms: A cross-case analysis of three qualitative studies

    Science.gov (United States)

    Dillon, Deborah R.; O'Brien, David G.; Moje, Elizabeth B.; Stewart, Roger A.

    The purpose of this cross-case analysis is to illustrate how and why literacy was incorporated into science teaching and learning in three secondary classrooms. Research questions guiding the analysis include: (a) How were literacy events shaped by the teachers' philosophies about teaching science content and teaching students? and (b) How was literacy (reading, writing, and oral language) structured by the teachers and manifested in science lessons? The methodology of ethnography and the theoretical framework of symbolic interactionism were employed in the three studies on which the cross-case analysis was based. The researchers assumed the role of participant observers, collecting data over the period of 1 year in each of the three classrooms. Data, in the form of fieldnotes, interviews, and artifacts, were collected. In each study, data were analyzed using the constant comparative method (Glaser & Strauss, 1967) to determine patterns in the teachers' beliefs about learning and how these influenced their choice of literacy activities. The cross-case analysis was conducted to determine patterns across the three teachers and their classrooms. The findings from this analysis are used to compare how the teachers' philosophies of teaching science and their beliefs about how students learn influenced their use of literacy practices during lessons. Specifically, each teacher's use of literacy activities varied based on his or her beliefs about teaching science concepts. Furthermore, reading, writing, and oral language were important vehicles to learning science concepts within daily classroom activities in the three classrooms.Received: 1 April 1993; Revised: 30 August 1993;

  16. Leveraging Current Initiatives to Bring Earth and Space Science into Elementary and Early Childhood Classrooms: NGSS in the Context of the Classroom Technology Push

    Science.gov (United States)

    Pacheco-Guffrey, H. A.

    2016-12-01

    Classroom teachers face many challenges today such as new standards, the moving targets of high stakes tests and teacher evaluations, inconsistent/insufficient access to resources and evolving education policies. Science education in the K-5 context is even more complex. NGSS can be intimidating, especially to K-5 educators with little science background. High stakes science tests are slow to catch up with newly drafted state level science standards, leaving teachers unsure about what to change and when to implement updated standards. Amid all this change, many schools are also piloting new technology programs. Though exciting, tech initiatives can also be overwhelming to teachers who are already overburdened. A practical way to support teachers in science while remaining mindful of these stressors is to design and share resources that leverage other K-5 school initiatives. This is often done by integrating writing or math into science learning to meet Common Core requirements. This presentation will suggest a method for bringing Earth and space science learning into elementary / early childhood classrooms by utilizing the current push for tablet technology. The goal is to make science integration reasonable by linking it to technology programs that are in their early stages. The roles and uses of K-5 Earth and space science apps will be examined in this presentation. These apps will be linked to NGSS standards as well as to the science and engineering practices. To complement the app resources, two support frameworks will also be shared. They are designed to help educators consider new technologies in the context of their own classrooms and lessons. The SAMR Model (Puentadura, 2012) is a conceptual framework that helps teachers think critically about the means and purposes of integrating technology into existing lessons. A practical framework created by the author will also be shared. It is designed to help teachers identify and address the important logistical

  17. How Elementary Teachers' Beliefs About the Nature of Science Mediate Implementing Prescribed Science Curricula in Their Classrooms

    Science.gov (United States)

    Giglio, Kathleen Rose Fitzgerald

    This is an in depth study of two elementary school teachers, who are generalists because they teach multiple subjects to their classes, in addition to science, respectively in grade 3 and grade 6. The teachers taught and their students learned using a contemporary understanding of the nature of science (NOS), which they learned by actually doing science investigations, rather than being explicitly told about NOS (contrary to what some scholars claim). Neither teacher completed any formal/informal science training/experiences, especially connected to the construct NOS. Even though the teachers did not explicitly reference NOS in the classroom, their teaching about NOS was made possible through their implementation of the FOSS ( Full Option Science System) curriculum. Although their students enthusiastically demonstrated competence in both science process and content, as prescribed by the FOSS curriculum, the teachers' felt undermined by the state mandated assessments and the inclusion of student performance as a criterion for the state teacher evaluation system. This research was designed to answer the following questions: (1) What are elementary teachers' conceptions about NOS? (2) How are the teachers' NOS views manifested in their implementation of the FOSS program and their choices of instructional methods/materials? (3) What factors may have enhanced or hindered how the teachers sustained their NOS conceptions as they implemented the FOSS program? To explicate the relationship between teachers' views of NOS and the extent to which constructivist practices were employed in their science instruction, a multiple research methodology using grounded theory as the foundation and employing both quantitative and qualitative measures, was needed. Sources of quantitative data were written survey results using the Student Understanding of Science and Scientific Inquiry Questionnaire (SUSSI; Liang et al., 2008) Likert scale responses and constructed responses. Face

  18. Intelligent Design in the Public School Science Classroom

    Science.gov (United States)

    Hickey, Wesley D.

    2013-01-01

    The ongoing battle to insert intelligent causes into the science classrooms has been met with political approval and scientific rejection. Administrators in the United States need to be aware of the law related to creationism and intelligent design in order to lead in local curricular battles. Although unlikely to appease the ID proponents, there…

  19. `Models of' versus `Models for'. Toward an Agent-Based Conception of Modeling in the Science Classroom

    Science.gov (United States)

    Gouvea, Julia; Passmore, Cynthia

    2017-03-01

    The inclusion of the practice of "developing and using models" in the Framework for K-12 Science Education and in the Next Generation Science Standards provides an opportunity for educators to examine the role this practice plays in science and how it can be leveraged in a science classroom. Drawing on conceptions of models in the philosophy of science, we bring forward an agent-based account of models and discuss the implications of this view for enacting modeling in science classrooms. Models, according to this account, can only be understood with respect to the aims and intentions of a cognitive agent (models for), not solely in terms of how they represent phenomena in the world (models of). We present this contrast as a heuristic— models of versus models for—that can be used to help educators notice and interpret how models are positioned in standards, curriculum, and classrooms.

  20. A cognitive framework to inform the design of professional development supporting teachers' classroom assessment of inquiry-based science

    Science.gov (United States)

    Matese, Gabrielle

    comparative case studies demonstrating the application of the framework and what it reveals about the cognitive influences on teacher practice, and outline the resulting design implications for professional development. This research allows us to better understand the cognitive factors underlying classroom assessment in inquiry-based science, and to design professional development to support teachers engaging in these practices.

  1. Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalised science classroom

    Science.gov (United States)

    De Carvalho, Roussel

    2016-06-01

    Steven Vertovec (2006, 2007) has recently offered a re-interpretation of population diversity in large urban centres due to a considerable increase in immigration patterns in the UK. This complex scenario called superdiversity has been conceptualised to help illuminate significant interactions of variables such as religion, language, gender, age, nationality, labour market and population distribution on a larger scale. The interrelationships of these themes have fundamental implications in a variety of community environments, but especially within our schools. Today, London schools have over 300 languages being spoken by students, all of whom have diverse backgrounds, bringing with them a wealth of experience and, most critically, their own set of religious beliefs. At the same time, Science is a compulsory subject in England's national curriculum, where it requires teachers to deal with important scientific frameworks about the world; teaching about the origins of the universe, life on Earth, human evolution and other topics, which are often in conflict with students' religious views. In order to cope with this dynamic and thought-provoking environment, science initial teacher education (SITE)—especially those catering large urban centres—must evolve to equip science teachers with a meaningful understanding of how to handle a superdiverse science classroom, taking the discourse of inclusion beyond its formal boundaries. Thus, this original position paper addresses how the role of SITE may be re-conceptualised and re-framed in light of the immense challenges of superdiversity as well as how science teachers, as enactors of the science curriculum, must adapt to cater to these changes. This is also the first in a series of papers emerging from an empirical research project trying to capture science teacher educators' own views on religio-scientific issues and their positions on the place of these issues within science teacher education and the science classroom.

  2. Elementary Teachers' Beliefs about Teaching Science and Classroom Practice: An Examination of Pre/Post NCLB Testing in Science

    Science.gov (United States)

    Milner, Andrea R.; Sondergeld, Toni A.; Demir, Abdulkadir; Johnson, Carla C.; Czerniak, Charlene M.

    2012-01-01

    The impact of No Child Left Behind (NCLB) mandated state science assessment on elementary teachers' beliefs about teaching science and their classroom practice is relatively unknown. For many years, the teaching of science has been minimized in elementary schools in favor of more emphasis on reading and mathematics. This study examines the…

  3. Continuing Professional Development and Learning in Primary Science Classrooms

    Science.gov (United States)

    Fraser, Christine A.

    2010-01-01

    This article explores the effects of continuing professional development (CPD) on teachers' and pupils' experiences of learning and teaching science in primary classrooms. During 2006-2007, quantitative and qualitative data were elicited from two primary teachers in Scotland using questionnaires, semi-structured interviews and video-stimulated…

  4. Backyard Botany: Using GPS Technology in the Science Classroom

    Science.gov (United States)

    March, Kathryn A.

    2012-01-01

    Global Positioning System (GPS) technology can be used to connect students to the natural world and improve their skills in observation, identification, and classification. Using GPS devices in the classroom increases student interest in science, encourages team-building skills, and improves biology content knowledge. Additionally, it helps…

  5. How WebQuests Can Enhance Science Learning Principles in the Classroom

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2012-01-01

    This article examines the merits of WebQuests in facilitating students' in-depth understanding of science concepts using the four principles of learning gathered from the National Research Council reports "How People Learn: Brain, Mind, Experience, and School" (1999) and the "How Students Learn: Science in the Classroom" (2005) as an analytic…

  6. Addressing Next Generation Science Standards: A Method for Supporting Classroom Teachers

    Science.gov (United States)

    Pellien, Tamara; Rothenburger, Lisa

    2014-01-01

    The Next Generation Science Standards (NGSS) will define science education for the foreseeable future, yet many educators struggle to see the bridge between current practice and future practices. The inquiry-based methods used by Extension professionals (Kress, 2006) can serve as a guide for classroom educators. Described herein is a method of…

  7. Ways to Prepare Future Teachers to Teach Science in Multicultural Classrooms

    Science.gov (United States)

    Billingsley, Berry

    2016-01-01

    Roussel De Carvalho uses the notion of superdiversity to draw attention to some of the pedagogical implications of teaching science in multicultural schools in cosmopolitan cities such as London. De Carvalho makes the case that if superdiverse classrooms exist then Science Initial Teacher Education has a role to play in helping future science…

  8. Facilitating Conceptual Change through Modeling in the Middle School Science Classroom

    Science.gov (United States)

    Carrejo, David J.; Reinhartz, Judy

    2014-01-01

    Engaging students in both hands-on and minds-on experiences is needed for education that is relevant and complete. Many middle school students enter science classrooms with pre-conceived ideas about their world. Some of these ideas are misconceptions that hinder students from developing accepted concepts in science, such as those related to…

  9. Students' Perceptions and Emotions Toward Learning in a Flipped General Science Classroom

    Science.gov (United States)

    Jeong, Jin Su; González-Gómez, David; Cañada-Cañada, Florentina

    2016-10-01

    Recently, the inverted instruction methodologies are gaining attentions in higher educations by claiming that flipping the classroom engages more effectively students with the learning process. Besides, students' perceptions and emotions involved in their learning process must be assessed in order to gauge the usability of this relatively new instruction methodology, since it is vital in the educational formation. For this reason, this study intends to evaluate the students' perceptions and emotions when a flipped classroom setting is used as instruction methodology. This research was conducted in a general science course, sophomore of the Primary Education bachelor degree in the Training Teaching School of the University of Extremadura (Spain). The results show that the students have the overall positive perceptions to a flipped classroom setting. Particularly, over 80 % of them considered that the course was a valuable learning experience. They also found this course more interactive and were willing to have more courses following a flipped model. According to the students' emotions toward a flipped classroom course, the highest scores were given to the positive emotions, being fun and enthusiasm along with keyword frequency test. Then, the lowest scores were corresponded to negative emotions, being boredom and fear. Therefore, the students attending to a flipped course demonstrated to have more positive and less negative emotions. The results obtained in this study allow drawing a promising tendency about the students' perceptions and emotions toward the flipped classroom methodology and will contribute to fully frame this relatively new instruction methodology.

  10. Teaching controversial issues in the secondary school science classroom

    Science.gov (United States)

    van Rooy, Wilhelmina

    1993-12-01

    A sample of fourteen secondary school biology teachers chosen from twelve schools were interviewed. The purpose was to determine their views on how controversial issues in science might be handled in the secondary school science classroom and whether the issues of surrogacy and human embryo experimentation were suitable controversial issues for discussion in schools. In general, teachers indicated that controversial issues deserve a more prominent place in the science curriculum because they have the potential to foster thinking, learning, and interest in science. The issues of surrogacy and human embryo experimentation were seen as appropriate contexts for learning, provided that teachers were well informed and sensitive to both the students and to the school environment.

  11. Japanese Family and Consumer Sciences Teachers' Lived Experiences: Self-Disclosure in the Classroom

    Science.gov (United States)

    Katadae, Ayako

    2008-01-01

    The purpose of this phenomenological study was to understand the lived experiences of Japanese family and consumer sciences teachers' self-disclosure in the classroom. Twelve secondary school teachers were interviewed, beginning with this primary question, "Think about a specific time and space when you self-disclosed in the classroom. Would you…

  12. Exploring the classroom: Teaching science in early childhood

    Directory of Open Access Journals (Sweden)

    Peter J.N. DEJONCKHEERE

    2016-06-01

    Full Text Available This study tested and integrated the effects of an inquiry-based didactic method for preschool science in a real practical classroom setting. Four preschool classrooms participated in the experiment (N= 57 and the children were 4–6 years old. In order to assess children’s attention for causal events and their understanding at the level of scientific reasoning skills, we designed a simple task in which a need for information gain was created. Compared to controls, children in the post-test showed significant learning gains in the development of the so-called control of variables strategy. Indeed, they executed more informative and less uninformative explorations during their spontaneous play. Furthermore, the importance of such programmes was discussed in the field of STEM education.

  13. Social Media in the Science Classroom: Using Instagram With Young Women to Incorporate Visual Literacy and Youth Culture

    Science.gov (United States)

    Serpagli, Lauren Paola

    The purpose of this study is to explore the impact that a digital, picture sharing platform, specifically Instagram, can have on the learning experience in the biology classroom. Students are surrounded by a societal culture inundated with technology, including smart phones and social media, and science educators need to find ways to harness the popularity of these tools in the classroom. The theoretical frameworks guiding this study are Culturally Relevant Pedagogy (CRP), Digital Visual Literacy, and a Critical Feminism. To understand the many ways of social media, specifically Instagram, could influence science content understanding in the classroom, the research methodology used was a connective ethnography. This approach allowed for analysis for the creation of the dual-setting of the classroom and the digital platform and the emerging culture that resulted. As Instagram was used as the virtual component of the classroom, this gave rise to a new identity for the classroom, one in which a digital culture was established. Instagram served as an extension of the classroom space that was not limited by time, location, or teacher availability. The participants in this study were female high school biology students in New York City. An Instagram profile was created for the course and used in different ways: To post homework reminders, lab pictures, biology memes, current events, and discoveries, thereby exposing students to science in "nontraditional" ways. Students discussed their reactions and feelings of the uses and effectiveness of Instagram in the class and made suggestions for future applications through questionnaires, focus groups, and individual interviews. Findings reveal Instagram to ease access for review and reminders, integrate teenage culture into learning, and serve as an effective supplement tool to traditional classroom instruction. One chief goal of this research project was to help educators increase their understanding of the role that social

  14. The impact of technology on the enactment of inquiry in a technology enthusiast's sixth grade science classroom

    Science.gov (United States)

    Waight, Noemi; Abd-El-Khalick, Fouad

    2007-01-01

    This study investigated the impact of the use of computer technology on the enactment of inquiry in a sixth grade science classroom. Participants were 42 students (38% female) enrolled in two sections of the classroom and taught by a technology-enthusiast instructor. Data were collected over the course of 4 months during which several inquiry activities were completed, some of which were supported with the use of technology. Non-participant observation, classroom videotaping, and semi-structured and critical-incident interviews were used to collect data. The results indicated that the technology in use worked to restrict rather than promote inquiry in the participant classroom. In the presence of computers, group activities became more structured with a focus on sharing tasks and accounting for individual responsibility, and less time was dedicated to group discourse with a marked decrease in critical, meaning-making discourse. The views and beliefs of teachers and students in relation to their specific contexts moderate the potential of technology in supporting inquiry teaching and learning and should be factored both in teacher training and attempts to integrate technology in science teaching.

  15. Signs of Taste for Science: A Methodology for Studying the Constitution of Interest in the Science Classroom

    Science.gov (United States)

    Anderhag, P.; Wickman, P.-O.; Hamza, K. M.

    2015-01-01

    In this paper we present a methodological approach for analyzing the transformation of interest in science through classroom talk and action. To this end, we use the construct of "taste for science" as a social and communicative operationalization, or proxy, to the more psychologically oriented construct of interest. To gain a taste for…

  16. How Latino/a bilingual students use their language in a fifth grade classroom and in the science laboratory during science instruction

    Science.gov (United States)

    Stevenson, Alma R.

    This qualitative research study examines how Latino/a bilingual students use their linguistic resources in their homeroom classroom and in the science laboratory during science instruction. This study was conducted in a school district located in the southwestern part of the United States. The school was chosen based on the criterion that the school is located in an area considered economically depressed, with a predominantly Latino student, school, and neighborhood population. The object of study was a fifth grade bilingual (Spanish/English) classroom where English was the means of instruction. Classroom interaction was examined from a sociolinguistics perspective. The study was descriptive in nature with the objective of analyzing the students' use of their linguistic resources while participating in science learning. The results of this study suggest that the students used their linguistic resources purposefully in order to facilitate their participation in science leaning. In the same manner, it was observed the students' reliance on Spanish as a foundation to enhance their comprehension of the scientific concepts and the dynamics involved in the science lessons, with the purpose of making sense, and thus, to express their understanding (orally and in writing) using their linguistic resources, especially their English language, as it was expected from them. Further, the findings disclose the students' awareness of their own bilingualism, preference for speaking Spanish, and their conceptualization of English as the language to achieve academic success. It has also been observed how the pressure put upon the teacher and the students by the accountability system brings about an implicit bias against Spanish, causing the teacher to assume a paradoxical stance regarding the students' use of Spanish, and thereby, placing the students in an ambivalent position, that might affect, to a certain extent, how students use their Spanish language as a resource to

  17. What Can a Teacher Do to Support Students' Interest in Science? A Study of the Constitution of Taste in a Science Classroom

    Science.gov (United States)

    Anderhag, Per; Hamza, Karim Mikael; Wickman, Per-Olof

    2015-10-01

    In this study, we examined how a teacher may make a difference to the way interest develops in a science classroom, especially for students from disadvantaged socioeconomic backgrounds. We adopted a methodology based on the concept of taste for science drawing on the work of John Dewey and Pierre Bourdieu. We investigated through transcripts from video recordings how such a taste is socially constituted in a 9th grade (ages 15-16) science classroom, where there was evidence that the teacher was making a positive difference to students' post-compulsory school choice with regard to science. Salient findings regarding how this teacher supported students' interest are summarized. For example, the teacher consistently followed up how the students acknowledged and enjoyed purposes, norms, and values of the science practice and so ensuing that they could participate successfully. During these instances, feelings and personal contributions of the students were also acknowledged and made continuous with the scientific practice. The results were compared with earlier research, implications are discussed, and some suggestions are given about how these can be used by teachers in order to support student interest.

  18. One-to-one iPad technology in the middle school mathematics and science classrooms

    Science.gov (United States)

    Bixler, Sharon G.

    Science, technology, engineering, and mathematics (STEM) education has become an emphasized component of PreK-12 education in the United States. The US is struggling to produce enough science, mathematics, and technology experts to meet its national and global needs, and the mean scores of science and mathematics students are not meeting the expected levels desired by our leaders (Hossain & Robinson, 2011). In an effort to improve achievement scores in mathematics and science, school districts must consider many components that can contribute to the development of a classroom where students are engaged and growing academically. Computer technology (CT) for student use is a popular avenue for school districts to pursue in their goal to attain higher achievement. The purpose of this study is to examine the use of iPads in a one-to-one setting, where every student has his own device 24/7, to determine the effects, if any, on academic achievement in the areas of mathematics and science. This comparison study used hierarchical linear modeling (HLM) to examine three middle schools in a private school district. Two of the schools have implemented a one-to-one iPad program with their sixth through eighth grades and the third school uses computers on limited occasions in the classroom and in a computer lab setting. The questions addressed were what effect, if any, do the implementation of a one-to-one iPad program and a teacher's perception of his use of constructivist teaching strategies have on student academic achievement in the mathematics and science middle school classrooms. The research showed that although the program helped promote the use of constructivist activities through the use of technology, the one-to-one iPad initiative had no effect on academic achievement in the middle school mathematics and science classrooms.

  19. Is there a correlation between students' perceptions of their middle school science classroom learning environment and their classroom grades?

    Science.gov (United States)

    Snyder, Wayne

    The purpose of this study was to determine if the marking period grades of middle school science students are correlated with their perception of the classroom learning environment, and if so could such an indicator be used in feedback loops for ongoing classroom learning environment evaluation and evolution. The study examined 24 classrooms in three districts representing several different types of districts and a diverse student population. The independent variable was the students' perceptions of their classroom learning environment (CLE). This variable was represented by their responses on the WIHIC (What Is Happening In This Class) questionnaire. The dependent variable was the students' marking period grades. Background data about the students was included, and for further elaboration and clarification, qualitative data was collected through student and teacher interviews. Middle school science students in this study perceived as most positive those domains over which they have more locus of control. Perceptions showed some variance by gender, ethnicity, teacher/district, and socio-economic status when viewing the absolute values of the domain variables. The patterns of the results show consistency between groups. Direct correlation between questionnaire responses and student grades was not found to be significant except for a small significance with "Task Orientation". This unexpected lack of correlation may be explained by inconsistencies between grading schemes, inadequacies of the indicator instrument, and/or by the one-time administration of the variables. Analysis of the qualitative and quantitative data led to the conclusion that this instrument is picking up information, but that revisions in both the variables and in the process are needed. Grading schemes need to be decomposed, the instrument needs to be revised, and the process needs to be implemented as a series of regular feed-back loops.

  20. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    Science.gov (United States)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-01-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to…

  1. Influences on teachers' curricular choices in project-based science classrooms

    Science.gov (United States)

    Laba, Karen Anne

    This descriptive research will present two case studies of experienced science teachers using project-based curricula in all or part of their secondary life science/biology courses. The purpose of this study is to reveal the underlying relationships between teachers' conceptions of the nature of science, their understanding of their role as science teachers and their expectations for appropriate and worthwhile student learning, and to describe the influence of these factors on their curricular choices within the project-based framework. Using a modification of Hewson, Kerby and Cook's (1995) Conceptions of Teaching Science protocol as a model, teachers' beliefs and intentions are classified and examined to identify organizing themes. Comparisons between teachers' beliefs and the actions they take in their project-based classroom are used to reveal relationships among the choices that result in students' learning experiences. Finally, the curricula presented by these two exemplary teachers are compared with the teaching standards and content goals defined in the National Science Education Standards (NRC, 1996). Recommendations for the application of the case study perspective of the evolution of learning experiences to reform efforts are offered to practitioners, policy makers, curriculum developers and teacher educators.

  2. Expanding the Reach of the Coastal Ocean Science Classroom to Teachers through Teleducation

    Science.gov (United States)

    Macko, S.; Szuba, T.

    2007-12-01

    In a first of its kind connectivity, using high speed internet connections, a summer class in Oceanography was live, interactively broadcast (teleducation) to Arcadia High School on the Eastern Shore of Virginia, allowing teachers in the Accomack County School District to receive university credit without leaving their home classrooms 250 miles from UVA. This project was an outreach and education program with a partner in the K-12 schools on the Eastern Shore of Virginia. It endeavored to build a community knowledgeable of the importance the ocean plays daily in our lives, and our own impact on the ocean. By establishing teleducation linkages with the Eastern Shore High Schools we were rigorously testing the live-Internet-based classroom with earth science teachers enabling them to remotely participate in University of Virginia classes in Oceanography. The classes were designed on a faculty development basis or to allow the teachers to acquire NSTA certification in Earth Science Education. While not without small problems of interruptions in connectivity or the occasional transmission of hardcopies of materials, the approach was seen to be extremely successful. The ability to reach school districts and teachers that are in more remote locations and with fewer resources is clearly supported by this venture. Currently we are planning to link multiple classrooms in the next iteration of this work, intending to offer the expanded classroom in more distant college-based classrooms where Ocean Sciences is a desired portion of the curriculum, but is presently only occasionally offered owing to limited resources.

  3. Graduate students teaching elementary earth science through interactive classroom lessons

    Science.gov (United States)

    Caswell, T. E.; Goudge, T. A.; Jawin, E. R.; Robinson, F.

    2014-12-01

    Since 2005, graduate students in the Brown University Department of Earth, Environmental, and Planetary Studies have volunteered to teach science to second-grade students at Vartan Gregorian Elementary School in Providence, RI. Initially developed to bring science into classrooms where it was not explicitly included in the curriculum, the graduate student-run program today incorporates the Providence Public Schools Grade 2 science curriculum into weekly, interactive sessions that engage the students in hypothesis-driven science. We will describe the program structure, its integration into the Providence Public Schools curriculum, and 3 example lessons relevant to geology. Lessons are structured to develop the students' ability to share and incorporate others' ideas through written and oral communication. The volunteers explain the basics of the topic and engage the students with introductory questions. The students use this knowledge to develop a hypothesis about the upcoming experiment, recording it in their "Science Notebooks." The students record their observations during the demonstration and discuss the results as a group. The process culminates in the students using their own words to summarize what they learned. Activities of particular interest to educators in geoscience are called "Volcanoes!", "The "Liquid Race," and "Phases of the Moon." The "Volcanoes!" lesson explores explosive vs. effusive volcanism using two simulated volcanoes: one explosive, using Mentos and Diet Coke, and one effusive, using vinegar and baking soda (in model volcanoes that the students construct in teams). In "Liquid Race," which explores viscosity and can be integrated into the "Volcanoes!" lesson, the students connect viscosity to flow speed by racing liquids down a ramp. "Phases of the Moon" teaches the students why the Moon has phases, using ball and stick models, and the terminology of the lunar phases using cream-filled cookies (e.g., Oreos). These lessons, among many others

  4. Ambitious Teachers' Design and Use of Classrooms as a Place of Science

    Science.gov (United States)

    Stroupe, David

    2017-01-01

    This multicase study examines how three teachers enacting ambitious instruction purposefully designed and used their classroom as a "place of science" in which students participated in disciplinary practices. A place of science is a location that shapes the norms, values, and history of disciplinary practices. Each participant's…

  5. Teacher and Student Perceptions on High School Science Flipped Classrooms: Educational Breakthrough or Media Hype?

    Science.gov (United States)

    Hunley, Rebecca C.

    For years educators have struggled to ensure students meet the rigors of state mandated tests. Challenges that often impede student success are student absences, school closings due to weather, and remediation for students who need additional help while advanced students can move ahead. Many educators, especially secondary math and science teachers, have responded to these issues by implementing a teaching strategy called the flipped classroom where students view lectures, power points, or podcasts outside of school and class time shifts to allow opportunities for collaborative learning. The purpose of this research was to evaluate teacher and student perceptions of high school flipped science classrooms. A qualitative phenomenological study was conducted to observe 3 high school science teachers from Georgia, North Carolina, and Tennessee selected through purposeful sampling who have used the flipped classroom method for a minimum of 2 years. Analysis of data from an online survey, direct observation, teacher interviews, and student focus groups helped to identify challenges and benefits of this teaching and learning strategy. Findings indicated that teachers find the flipped classroom beneficial to build student relationships but requires a significant amount of time to develop. Mixed student reactions revealed benefits of a flipped classroom as a successful learning tool for current and future endeavors for college or career preparation.

  6. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    Science.gov (United States)

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-01-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by…

  7. The effects of geographic information system (GIS) technologies on students' attitudes, self-efficacy, and achievement in middle school science classrooms

    Science.gov (United States)

    Baker, Thomas Ray

    . Instructor effects, despite controlling for the curriculum, instruction, and technology were still very strong. Results of the study suggest that GIS can enhance student outcomes when engaged in scientific inquiry, enriching student achievement through improved classroom data analysis activities. Finally, study implications direct future efforts to consider the need a science curriculum aimed at spatial reasoning and pattern seeking activities, ultimately allowing students to more completely leverage the powerful analytics of GIS and similar technologies.

  8. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  9. Toward Understanding the Nature of a Partnership between an Elementary Classroom Teacher and an Informal Science Educator

    Science.gov (United States)

    Weiland, Ingrid S.; Akerson, Valarie L.

    2013-01-01

    This study explored the nature of the relationship between a fifth-grade teacher and an informal science educator as they planned and implemented a life science unit in the classroom, and sought to define this relationship in order to gain insight into the roles of each educator. In addition, student learning as a result of instruction was…

  10. Initiating New Science Partnerships in Rural Education (INSPIRE) Brining STEM Research to 7th-12th Grade Science and Math Classrooms

    Science.gov (United States)

    Radencic, S.; McNeal, K. S.; Pierce, D.

    2012-12-01

    The Initiating New Science Partnerships in Rural Education (INSPIRE) program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on the advancement of Earth and Space science education in K-12 classrooms. INSPIRE currently in its third year of partnering ten graduate students each year from the STEM fields of Geosciences, Engineering, Physics and Chemistry at MSU with five teachers from local, rural school districts. The five year project serves to enhance graduate student's communication skills as they create interactive lessons linking their STEM research focus to the state and national standards covered in science and math classrooms for grades 7-12 through inquiry experiences. Each graduate student is responsible for the development of two lessons each month of the school year that include an aspect of their STEM research, including the technologies that they may utilize to conduct their STEM research. The plans are then published on the INSPIRE project webpage, www.gk12.msstate.edu, where they are a free resource for any K-12 classroom teacher seeking innovative activities for their classrooms and total over 300 lesson activities to date. Many of the participating teachers and graduate students share activities developed with non-participating teachers, expanding INSPIRE's outreach of incorporating STEM research into activities for K-12 students throughout the local community. Examples of STEM research connections to classroom topics related to earth and ocean science include activities using GPS with GIS for triangulation and measurement of area in geometry; biogeochemical response to oil spills compared to organism digestive system; hydrogeology water quality monitoring and GIS images used as a determinant for habitat suitability in area water; interactions of acids and bases in the Earth's environments and surfaces; and the importance of electrical circuitry in an electrode used in

  11. The Effectiveness of a Technology-Enhanced Flipped Science Classroom

    Science.gov (United States)

    Sezer, Baris

    2017-01-01

    This study examined the effect on the learning and motivation of students of a flipped classroom environment enriched with technology. A mixed research design using a pretest or posttest experimental model, combined with qualitative data, was conducted in a public middle school in Turkey for 2 weeks (three class hours) within a science course.…

  12. Flipping around the classroom: Accelerated Bachelor of Science in Nursing students' satisfaction and achievement.

    Science.gov (United States)

    El-Banna, Majeda M; Whitlow, Malinda; McNelis, Angela M

    2017-09-01

    The flipped classroom approach is based on shared responsibility for learning by students and teachers, and empowers students to take an active role in the learning process. While utilization of this approach has resulted in higher exam scores compared to traditional approaches in prior studies, the flipped classroom has not included learners in Accelerated Bachelor of Science in Nursing (ABSN) programs. To examine differences on exam scores and satisfaction of teaching between a 3-week flipped and traditional classroom approach. Mixed methods, crossover repeated measures design. Private school of nursing located in the eastern United States. 76 ABSN students. Two separate sections of a Pharmacology course received either 3-weeks of flipped or traditional classroom during Period 1, then switched approaches during Period 2. Two exam scores measuring knowledge and a questionnaire assessing satisfaction of teaching were collected. Focus groups were conducted to learn about students' experience in the flipped classroom. Descriptive statistics, Wilcoxon rank sum test, and stepwise linear mixed model were used to analyze quantitative data. Focus group data were transcribed, coded, and categorized in themes. Students in the flipped classroom achieved significantly higher scores on the first Pharmacology exam than students in the traditional classroom, but there was no significant difference on the second exam. Three themes emerged from focus groups on student perception of integrating the flipped approach: don't fix what isn't broken; treat me as an adult; and remember the work is overwhelming. Both traditional and flipped classroom approaches successfully prepared students for the Pharmacology exams. While results support the use of the flipped approach, judicious use of this instructional pedagogy with dense or difficult content, particularly in accelerated programs, is recommended. Instructors should also provide students with enough information and rationale for using

  13. Making connections: Exploring student agency in a science classroom in India

    Science.gov (United States)

    Sharma, Ajay

    India has been a free country for more than half a century now. In this time, the state has succeeded to a large extent in providing universal access to at least elementary education to all the citizens. However, the quality of education provided in state-run schools remains far removed from the ideals endorsed in policy documents. The vast majority of Indian poor, especially in rural areas, depend upon state-run schools for access to education. However, the low quality of education provided in these schools militates against their hopes and efforts for securing a better future through education. Undergirded by concerns over the raw deal students of government run schools get in rural India, this study is an ethnographic exploration of science learning in a rural middle school classroom in India. The study was conducted in the government middle school at the village Rajkheda, in the Hoshangabad district of the state of Madhya Pradesh, India. The study focused on the nature and scope of student participation in a middle school science classroom of rural school in India. Taking a socio-cultural perspective, it explored student participation in science classroom as engagement in a socioculturally mediated dialogue with the natural and the social world. Thus, two parallel yet intersecting themes run through the narrative this study presents. On one hand, it focuses on students' efforts to both learn and survive science as taught in that school. While on the other, it details the nature of their engagement with and knowledge of their immediate material world. The study shows that through active engagement with their local material and social world, students of the 8th grade had acquired an extensive, useful and situated funds of experiential knowledge that enabled them to enact their agency in the material world around them. This knowledge revealed itself differently in different contexts. Their knowledge representations about school science and the material world were

  14. Classroom -RE-SONANCE

    Indian Academy of Sciences (India)

    raised in a classroom situation. We may suggest strategies for dealing with them, or invite responses, or both. "Classroom" is equally a forum for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science. Proving a Result in Combinatorics using Equations.

  15. It's in the Bag!: Going beyond the Science Classroom with Take-Home Literacy Bags

    Science.gov (United States)

    Martin, Susan Ferguson; Daughenbaugh, Lynda; Shaw, Edward L., Jr.; Burch, Katrina

    2013-01-01

    Although literacy plays a large role in elementary science classrooms, one thing that offers a challenge for educators is meeting the linguistic needs of English language learners (ELLs) while also meeting their content needs. An additional challenge is ensuring that academic literacy extends beyond the classroom. This article presents ways of…

  16. Use of the Outdoor Classroom and Nature-Study to Support Science and Literacy Learning: A Narrative Case Study of a Third-Grade Classroom

    Science.gov (United States)

    Eick, Charles J.

    2012-01-01

    A case study of an exemplary third grade teacher's use of the outdoor classroom for meeting both state science and language arts standards is described. Data from the researcher's field journal, teacher lesson plans, and teacher interviews document how this teacher used nature-study to bridge outdoor classroom experiences with the state science…

  17. Improving Student Writing: Methods You Can Use in Science and Engineering Classrooms

    Science.gov (United States)

    Hitt, S. J.; Bright, K.

    2013-12-01

    Many educators in the fields of science and engineering assure their students that writing is an important and necessary part of their work. According to David Lindsay, in Scientific Writing=Thinking in Words, 99% of scientists agree that writing is an integral part of their jobs. However, only 5% of those same scientists have ever had formal instruction in scientific writing, and those who are also educators may then feel unconfident in teaching this skill to their students (2). Additionally, making time for writing instruction in courses that are already full of technical content can cause it to be hastily and/or peremptorily included. These situations may be some of the contributing factors to the prevailing attitude of frustration that pervades the conversation about writing in science and engineering classrooms. This presentation provides a summary of past, present, and ongoing Writing Center research on effective writing tutoring in order to give science and engineering educators integrated approaches for working with student writers in their disciplines. From creating assignments, providing instruction, guiding revisions, facilitating peer review, and using assessments, we offer a comprehensive approach to getting your students motivated to improve their writing. Our new research study focuses on developing student writing resources and support in science and engineering institutions, with the goal of utilizing cross-disciplinary knowledge that can be used by the various constituencies responsible for improving the effectiveness of writing among student engineers and scientists. We will will draw upon recent findings in the study of the rhetoric and compositional pedagogy and apply them to the specific needs of the science and engineering classroom. The fields of communication, journalism, social sciences, rhetoric, technical writing, and philosophy of science have begun to integrate these findings into classroom practice, and we will show how these can also

  18. Fostering Critical Thinking Practices at Primary Science Classrooms in Nepal

    Science.gov (United States)

    Acharya, Kamal Prasad

    2016-01-01

    This article examines the socio-cultural activities that have direct and indirect impacts on critical thinking practices in primary science classrooms and what kinds of teachers' activities help to foster the development of critical thinking practices in children. Meanwhile, the constructivist and the socio-cultural theoretical dimensions have…

  19. Results of Needs Assessments Related to Citizen Science Projects

    Science.gov (United States)

    Buxner, Sanlyn; Bracey, Georgia; Glushko, Anna; Bakerman, Maya; Gay, Pamela L.; CosmoQuest Team

    2017-01-01

    The CosmoQuest Virtual Research Facility invites the public and classrooms to participate in NASA Science Mission Directorate related research that leads to publishable results and data catalogues. One of the main goals of the project is to support professional scientists in doing science and the general public--including parents, children, teachers, and students--in learning and doing science. Through the effort, the CosmoQuest team is developing a variety of supports and opportunities to support the doing and teaching of science. To inform our efforts, we have implemented a set of needs surveys to assess the needs of our different audiences. These surveys are being used to understand the interests, motivations, resources, challenges and demographics of our growing CosmoQuest community and others interested in engaging in citizen science projects. The surveys include those for teachers, parents, adult learners, planetarium professionals, subject matter experts (SMEs), and the general public. We will share the results of these surveys and discuss the implications of the results for broader education and outreach programs.

  20. Turkish Mathematics and Science Teachers' Technology Use in Their Classroom Instruction: Findings from TIMSS 2011

    Science.gov (United States)

    Tas, Yasemin; Balgalmis, Esra

    2016-01-01

    The goal of this study was to describe Turkish mathematics and science teachers' use of computer in their classroom instruction by utilizing TIMSS 2011 data. Analyses results revealed that teachers most frequently used computers for preparation purpose and least frequently used computers for administration. There was no difference in teachers'…

  1. An exploratory study of the influence of national and state standards on middle school science teachers' classroom assessment practices

    Science.gov (United States)

    McWaters, Kathy Jean

    2001-07-01

    Classroom assessment practices of middle school science teachers were identified and the influence of national and state science standards on these practices was examined. In Phase I of this study a mail questionnaire was sent to 450 middle school (grades 5,6,7 and 8) science teachers in 17 parishes in Louisiana to obtain information about their classroom assessment practices. In Phase II, nine middle school teachers in eight departmentalized classrooms, two classes at each grade, participated in a qualitative study. Data were collected through questionnaires, classroom observations, interviews and document analysis. Data analysis revealed three major categories of classroom assessment targets: (a) student achievement, (b) student attitudes and, (c) student products. Results indicated that most teachers are using different assessment methods when assessing different achievement targets, as recommended by science reform documents. It was also determined that many teachers are using appropriate methods to assess student learning. While teachers reported that students spend an inordinate amount of time engaged in assessment activities, classroom observations suggested that the activities were not always written tests or graded activities. Another key finding is that there is a disconnect between the quality of teaching and the quality of assessment. Teachers who teach the material recommended by science reform documents and use recommended instructional strategies were observed to stop teaching and engage students in a "test rehearsal" geared towards rote memorization of factual information. Data suggest that the national and state science content standards are influencing the content and the format of teacher-made tests. Teachers' reported using the standards during assessment construction or selection in a wide variety of ways. The most direct use of the standards reported was to select content, format and cognitive level for test items. A more circumspect approach

  2. The effects of professional development on science teaching practices and classroom culture

    Science.gov (United States)

    Supovitz, Jonathan A.; Turner, Herbert M.

    2000-11-01

    The current science education reform movement emphasizes the importance of professional development as a means of improving student science achievement. Reformers have developed a vision for professional development based upon intensive and sustained training around concrete tasks that is focused on subject-matter knowledge, connected to specific standards for student performance, and embedded in a systemic context. Using data from a National Science Foundation Teacher Enhancement program called the Local Systemic Change initiative, this study employs hierarchical linear modeling to examine the relationship between professional development and the reformers' vision of teaching practice. The findings indicate that the quantity of professional development in which teachers participate is strongly linked with both inquiry-based teaching practice and investigative classroom culture. At the individual level, teachers' content preparation also has a powerful influence on teaching practice and classroom culture. At the school level, school socioeconomic status was found to influence practice more substantially than either principal supportiveness or available resources.

  3. Linking Classroom Environment with At-Risk Engagement in Science: A Mixed Method Approach

    Science.gov (United States)

    Collins, Stephen Craig

    This explanatory sequential mixed-method study analyzed how the teacher created learning environment links to student engagement for students at-risk across five science classroom settings. The learning environment includes instructional strategies, differentiated instruction, positive learning environment, and an academically challenging environment. Quantitative and qualitative data were gathered in the form of self-reporting surveys and a follow-up interview. The researcher aimed to use the qualitative results to explain the quantitative data. The general research question was "What are the factors of the teacher-created learning environment that were best suited to maximize engagement of students at-risk?" Specifically explaining, (1) How do the measured level of teacher created learning environment link to the engagement level of students at-risk in science class? and (2) What relationship exists between the student perception of the science classroom environment and the level of behavioral, cognitive, emotional, and social engagement for students at-risk in science class? This study took place within a large school system with more than 20 high schools, most having 2000-3000 students. Participating students were sent to a panel hearing that determined them unfit for the regular educational setting, and were given the option of attending one of the two alternative schools within the county. Students in this alternative school were considered at-risk due to the fact that 98% received free and reduced lunch, 97% were minority population, and all have been suspended from the regular educational setting. Pairwise comparisons of the SPS questions between teachers using t-test from 107 students at-risk and 40 interviews suggest that each category of the learning environment affects the level of behavioral, cognitive, emotional, and social engagement in science class for students at-risk in an alternative school setting. Teachers with higher student perceptions of

  4. The Development of Qualitative Classroom Action Research Workshop for In-Service Science Teachers

    Science.gov (United States)

    Buaraphan, Khajornsak

    2016-01-01

    In-service science teachers in Thailand are mandated to conduct classroom research, which can be quantitative and qualitative research, to improve teaching and learning. Comparing to quantitative research, qualitative research is a research approach that most of the Thai science teachers are not familiar with. This situation impedes science…

  5. Winners and Losers in Single-Sex Science and Mathematics Classrooms.

    Science.gov (United States)

    Baker, Dale; Jacobs, Kathy

    This paper discusses the success of single sex science and mathematics education classrooms. Most studies on single sex learning environments come from countries such as Australia, Jamaica, Nigeria, Great Britain, New Zealand, and Thailand, and there is little research on American public schools. This study investigates single sex mathematics and…

  6. Problem-Based Learning in the Physical Science Classroom, K-12

    Science.gov (United States)

    McConnell, Tom J.; Parker, Joyce; Eberhardt, Janet

    2018-01-01

    "Problem-Based Learning in the Physical Science Classroom, K-12" will help your students truly understand concepts such as motion, energy, and magnetism in true-to-life contexts. The book offers a comprehensive description of why, how, and when to implement problem-based learning (PBL) in your curriculum. Its 14 developmentally…

  7. Students' Perceptions of the Learning Environment in Tertiary Science Classrooms in Myanmar

    Science.gov (United States)

    Khine, Myint Swe; Fraser, Barry J.; Afari, Ernest; Oo, Zeya; Kyaw, Thein Thein

    2018-01-01

    We investigated students' perceptions of their science classroom environments with the use of the What Is Happening In this Class? (WIHIC) questionnaire at the university level in Myanmar. The translated questionnaire was administered to 251 students in first-year science classes at a university. Both exploratory factor analysis and confirmatory…

  8. Sustaining inquiry-based teaching methods in the middle school science classroom

    Science.gov (United States)

    Murphy, Amy Fowler

    This dissertation used a combination of case study and phenomenological research methods to investigate how individual teachers of middle school science in the Alabama Math, Science, and Technology Initiative (AMSTI) program sustain their use of inquiry-based methods of teaching and learning. While the overall context for the cases was the AMSTI program, each of the four teacher participants in this study had a unique, individual context as well. The researcher collected data through a series of interviews, multiple-day observations, and curricular materials. The interview data was analyzed to develop a textural, structural, and composite description of the phenomenon. The Reformed Teaching Observation Protocol (RTOP) was used along with the Assesing Inquiry Potential (AIP) questionnaire to determine the level of inquiry-based instruction occuring in the participants classrooms. Analysis of the RTOP data and AIP data indicated all of the participants utilized inquiry-based methods in their classrooms during their observed lessons. The AIP data also indicated the level of inquiry in the AMSTI curricular materials utilized by the participants during the observations was structured inquiry. The findings from the interview data suggested the ability of the participants to sustain their use of structured inquiry was influenced by their experiences with, beliefs about, and understandings of inquiry. This study contributed to the literature by supporting existing studies regarding the influence of teachers' experiences, beliefs, and understandings of inquiry on their classroom practices. The inquiry approach stressed in current reforms in science education targets content knowledge, skills, and processes needed in a future scientifically literate citizenry.

  9. NITARP: Bridging the Gap Between the Traditional Science Classroom and Authentic Research

    Science.gov (United States)

    Stalnaker, Olivia K.; Evans, Sam; Rutherford, Thomas; Taylor, John; Rebull, Luisa

    2018-01-01

    In this poster, the differences between what occurs in the traditional secondary science classroom and what happens in the actual research world is examined. Secondary classroom teachers generally have limited, if any, research experience beyond what is presented through their undergraduate college lab coursework. A disparity exists between classroom laboratory work and professional research. Opportunities like NITARP provide research elements that bridge this gap. NITARP teams are in a unique situation, joining a small team working alongside Caltech researchers on cutting edge investigations in astrophysics. In this poster it is shown how the NITARP program provides key components and experiences to expand the skill sets that teachers bring to their classrooms, bridging the gap between the typical secondary classroom and the world of the professional researcher. The NASA/IPAC program immerses participating teachers into a year-long training experience via online and face-to-face learning that translates into enhanced instruction at the secondary level. This work was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  10. Understanding Teaching or Teaching for Understanding: Alternative Frameworks for Science Classrooms.

    Science.gov (United States)

    Wildy, Helen; Wallace, John

    1995-01-01

    Describes the findings of a study that involved exploring the classroom practices of an experienced physics teacher to enable researchers to reexamine assumptions about good teaching. Asserts that a broader view of good science teaching is needed than that proposed by the constructivist literature. (ZWH)

  11. Relationship among science teacher personality characteristics and degree of teacher classroom implementation after in-service workshop

    Science.gov (United States)

    Sechler, Phares Lochiel Coleman

    State departments of public instruction require that teachers periodically update their licenses throughout their teaching careers. Various professional development events such as in-service workshops, university offerings, and special innovative programs provide opportunities for novice and experienced teachers to grow professionally. The "Team Science" workshop was designed from models supported by research that described guidelines for successful workshop strategies. In evaluating the workshop, the question was asked "Why did not all teachers implement the ideas from the workshop in their science classrooms?" This study investigates the possible relationship between teacher personality characteristics and implementation of technology innovations. Team Science was an extensive workshop program planned to develop science teachers' expertise in using computer and video technology to teach in physical science, chemistry, and physics classrooms in rural school in North Carolina. Upon evaluating the four-year effort, it was found that the 23 participants implemented the technological strategies at various levels. At the higher end of the range of technology use, some teachers exhibited complete integration of the computers and interfacing devices into both the laboratory work and the classroom inquiry. At the lower end of the range, some teachers used the technology very little. The resulting question emerged from the data collected: Do specific teacher personality characteristics (independent variables) correlate with the degree of implementation (dependent variable) of the innovative ideas and tools used in the teacher's science classroom after the in-service workshop? To determine if there were any significant personality traits, each teacher was given five personality tests. The tests were Hunt's Conceptual Development Test, the Paragraph Completion Test; James Rest's Defining Issues Test; Simmons Personal Survey, an emotional tendency test; the Myers-Briggs Type

  12. Factors Affecting the Implementation of Argument in the Elementary Science Classroom. A Longitudinal Case Study

    Science.gov (United States)

    Martin, Anita M.; Hand, Brian

    2009-01-01

    This longitudinal case study describes the factors that affect an experienced teacher’s attempt to shift her pedagogical practices in order to implement embedded elements of argument into her science classroom. Research data was accumulated over 2 years through video recordings of science classes. The Reformed Teacher Observation Protocol (RTOP) is an instrument designed to quantify changes in classroom environments as related to reform as defined by the National Research Council ( National science education standards. Washington, DC: National Academy Press, 1996b) and the National Research Council ( Fulfilling the promise: Biology education in the nation’s schools, Washington, DC: National Academy Press, 1990) and was used to analyze videotaped science lessons. Analysis of the data shows that there was a significant shift in the areas of teacher questioning, and student voice. Several levels of subsequent analysis were completed related to teacher questioning and student voice. The data suggests a relationship between these areas and the implementation of scientific argument. Results indicate that the teacher moved from a traditional, teacher-centered, didactic teaching style to instructional practices that allowed the focus and direction of the lesson to be affected by student voice. This was accomplished by a change in teacher questioning that included a shift from factual recall to more divergent questioning patterns allowing for increased student voice. As student voice increased, students began to investigate ideas, make statements or claims and to support these claims with strong evidence. Finally, students were observed refuting claims in the form of rebuttals. This study informs professional development related to experienced teachers in that it highlights pedagogical issues involved in implementing embedded elements of argument in the elementary classroom.

  13. A Cultural Study of a Science Classroom and Graphing Calculator-based Technology

    OpenAIRE

    Casey, Dennis Alan

    2001-01-01

    Social, political, and technological events of the past two decades have had considerable bearing on science education. While sociological studies of scientists at work have seriously questioned traditional histories of science, national and state educational systemic reform initiatives have been enacted, stressing standards and accountability. Recently, powerful instructional technologies have become part of the landscape of the classroom. One example, graphing calculator-based technology...

  14. Elementary Students Using a Tablet-Based Note-Taking Application in the Science Classroom

    Science.gov (United States)

    Paek, Seungoh; Fulton, Lori A.

    2016-01-01

    This exploratory study investigates the potential of a tablet-based note-taking application (TbNA) to serve as a digital notebook in support of students' classroom science practices. An elementary teacher (Grades 4-5) from a public charter school integrated a TbNA into her science class for one semester while participating in professional…

  15. The nanny in the schoolhouse: the role of femme-Caribbean identity in attaining success in urban science classrooms

    Science.gov (United States)

    Grimes, Nicole K.

    2013-06-01

    A growing body of teacher identity-based research has begun to embrace that the development of self-understanding about being a teacher is critical to learning how to teach. Construction of a professional teacher identity requires much more beyond mere content, skills and a foundational pedagogy. It also includes an intersection of the personal and professional self, which gives way to the emergence of multiple identities in the classroom. An educator's gender, nationality, language and interests among other tenets all permeate the classroom field and coexist alongside the professional role identity. This paper aims to use narrative as a way to discuss how science educators can mediate holding several identities in the classroom in order to create an environment characterized by successful teaching and learning. Drawing from an array of sociocultural theoretical perspectives, complementary constructs of identity by Jonathan Turner (Face to face: toward a sociological theory of interpersonal behavior. Stanford University Press, Stanford, CA, 2002) and Amartya Sen (Identity and violence: the illusion of destiny. W. W. Norton, New York, 2006), George Lakoff's (Metaphors we live by. University of Chicago Press, Chicago, 1980) work on metonymy, and David Bloome's (2005) theorization of the power of caring relationships, I explore the ways in which my Black female Caribbean identity has transformed the science classroom field and created positive resonance for some of my privileged White students who have Caribbean caretakers at home. To begin, I unpack how Afro-Caribbean immigration to urban centers in the United States continues to produce childcare occupational opportunities in places like New York City. Being a first generation Trinidadian immigrant, my many identities have structured my science teaching praxis and consequently transformed the way my students learn science. A significant part of this paper is a reflexive account of experiences (primarily dialogue

  16. Initiating New Science Partnerships in Rural Education: STEM Graduate Students Bring Current Research into 7th-12th Grade Science Classrooms

    Science.gov (United States)

    Radencic, S.; Dawkins, K. S.; Jackson, B. S.; Walker, R. M.; Schmitz, D.; Pierce, D.; Funderburk, W. K.; McNeal, K.

    2014-12-01

    Initiating New Science Partnerships in Rural Education (INSPIRE), a NSF Graduate K-12 (GK-12) program at Mississippi State University, pairs STEM graduate students with local K-12 teachers to bring new inquiry and technology experiences to the classroom (www.gk12.msstate.edu). The graduate fellows prepare lessons for the students incorporating different facets of their research. The lessons vary in degree of difficulty according to the content covered in the classroom and the grade level of the students. The focus of each lesson is directed toward the individual research of the STEM graduate student using inquiry based designed activities. Scientific instruments that are used in STEM research (e.g. SkyMaster weather stations, GPS, portable SEM, Inclinometer, Soil Moisture Probe, Google Earth, ArcGIS Explorer) are also utilized by K-12 students in the activities developed by the graduate students. Creativity and problem solving skills are sparked by curiosity which leads to the discovery of new information. The graduate students work to enhance their ability to effectively communicate their research to members of society through the creation of research linked classroom activities, enabling the 7-12th grade students to connect basic processes used in STEM research with the required state and national science standards. The graduate students become respected role models for the high school students because of their STEM knowledge base and their passion for their research. Sharing enthusiasm for their chosen STEM field, as well as the application techniques to discover new ideas, the graduate students stimulate the interests of the classroom students and model authentic science process skills while highlighting the relevance of STEM research to K-12 student lives. The measurement of the student attitudes about science is gathered from pre and post interest surveys for the past four years. This partnership allows students, teachers, graduate students, and the public to

  17. Science, School Science, and School: Looking at Science Learning in Classrooms from the Perspective of Basil Bernstein's Theory of the Structure of Pedagogic Discourse

    Science.gov (United States)

    Campbell, Ralph Ian

    This analytic paper asks one question: How does Basil Bernstein's concept of the structure of pedagogic discourse (SPD) contribute to our understanding of the role of teacher-student interactions in science learning in the classroom? Applying Bernstein's theory of the SPD to an analysis of current research in science education explores the structure of Bernstein's theory as a tool for understanding the challenges and questions related to current concerns about classroom science learning. This analysis applies Bernstein's theory of the SPD as a heuristic through a secondary reading of selected research from the past fifteen years and prompts further consideration of Bernstein's ideas. This leads to a reevaluation of the categories of regulative discourse (RD) and instructional discourse (ID) as structures that frame learning environments and the dynamics of student-teacher interactions, which determine learning outcomes. The SPD becomes a simple but flexible heuristic, offering a useful deconstruction of teaching and learning dynamics in three different classroom environments. Understanding the framing interactions of RD and ID provides perspectives on the balance of agency and expectation, suggesting some causal explanations for the student learning outcomes described by the authors. On one hand, forms of open inquiry and student-driven instruction may lack the structure to ensure the appropriation of desired forms of scientific thinking. On the other hand, well-designed pathways towards the understanding of fundamental concepts in science may lack the forms of more open-ended inquiry that develop transferable understanding. Important ideas emerge about the complex dynamics of learning communities, the materials of learning, and the dynamic role of the teacher as facilitator and expert. Simultaneously, the SPD as a flexible heuristic proves ambiguous, prompting a reevaluation of Bernstein's organization of RD and ID. The hierarchical structure of pedagogic

  18. Integrating Felting in Elementary Science Classrooms to Facilitate Understanding of the Polar Auroras

    Directory of Open Access Journals (Sweden)

    Brandy Terrill

    2017-10-01

    Full Text Available The Next Generation Science Standards (NGSS emphasize conceptual science instruction that draws on students’ ability to make observations, explain natural phenomena, and examine concept relationships. This paper explores integrating the arts, in the form of felting, in elementary science classrooms as a way for students to model and demonstrate understanding of the complex scientific processes that cause the polar auroras. The steps for creating felting, and using the felting artwork students create for assessing science learning, are described.

  19. A Longitudinal Study of Implementing Reality Pedagogy in an Urban Science Classroom: Effects, Challenges, and Recommendations for Science Teaching and Learning

    Science.gov (United States)

    Borges, Sheila Ivelisse

    Statistics indicate that students who reside in forgotten places do not engage in science-related careers. This is problematic because we are not tapping into diverse talent that could very well make scientific strides and because there is a moral obligation for equity as discussed in Science for all (AAAS, 1989). Research suggests that one of the reasons for this disparity is that students feel alienated from science early on in their K--12 education due to their inability to connect culturally with their teachers (Tobin, 2001). Urban students share an urban culture, a way of knowing and being that is separate from that of the majority of the teacher workforce whom have not experienced the nuances of urban culture. These teachers have challenges when teaching in urban classrooms and have a myriad of difficulties such as classroom management, limited access to experienced science colleagues and limited resources to teach effectively. This leads them to leaving the teaching profession affecting already high teacher attrition rates in urban areas (Ingersol, 2001). In order to address these issues a culturally relevant pedagogy, called reality pedagogy (Emdin, 2011), was implemented in an urban science classroom using a bricolage (Denzin & Lincoln, 2005) of different theories such as social capital (Bourdieu, 1986) and critical race theory (Ladson-Billings & Tate, 1995), along with reality pedagogy to construct a qualitative sociocultural lens. Reality pedagogy has five tools, which are cogenerative dialogues, coteaching, cosmopolitanism, context, and content. In this longitudinal critical ethnography a science teacher in an alternative teaching certification program was supported for two years as she implemented the tools of reality pedagogy with her urban students. Findings revealed that the science teacher enacted four racial microaggressions against her students, which negatively affected the teacher-student relationship and science teaching and learning. As the

  20. Student perception of writing in the science classroom

    Science.gov (United States)

    Deakin, Kathleen J.

    This study examines factors that shape four student's perceptions of writing tasks in their science classroom. This qualitative retrospective interview study focuses on four students concurrently enrolled in honors English and honors biology. This research employs a phenomenological perspective on writing, examining whether the writing strategies students acquire in the Language Arts classroom manifest in the content areas. I also adopt Bandura's theoretical perspective on self-efficacy as well as Hillock's notion of writing as inquiry and meaning making. This study concludes that students need ample opportunity to generate content and language that will help reveal a purpose and genre for writing tasks in the content areas. Although all four students approached the writing tasks differently in this study, the tasks set before them were opportunities for replication rather than inquiry Through the case studies of four students as well as current research on content writing, this project works to inform all content area teachers about student perceptions of writing in the content areas.

  1. Racial identification, knowledge, and the politics of everyday life in an Arizona science classroom: A linguistic ethnography

    Science.gov (United States)

    O'Connor, Brendan Harold

    This dissertation is a linguistic ethnography of a high school Astronomy/Oceanography classroom in southern Arizona, where an exceptionally promising, novice, white science teacher and mostly Mexican-American students confronted issues of identity and difference through interactions both related and unrelated to science learning. Through close analysis of video-recorded, naturally-occurring interaction and rich ethnographic description, the study documents how a teacher and students accomplished everyday classroom life, built caring relationships, and pursued scientific inquiry at a time and in a place where nationally- and locally-circulating discourses about immigration and race infused even routine interactions with tension and uncertainty. In their talk, students appropriated elements of racializing discourses, but also used language creatively to "speak back" to commonsense notions about Mexicanness. Careful examination of science-related interactions reveals the participants' negotiation of multiple, intersecting forms of citizenship (i.e., cultural and scientific citizenship) in the classroom, through multidirectional processes of language socialization in which students and the teacher regularly exchanged expert and novice roles. This study offers insight into the continuing relevance of racial, cultural, and linguistic identity to students' experiences of schooling, and sheds new light on classroom discourse, teacher-student relationships, and dimensions of citizenship in science learning, with important implications for teacher preparation and practice.

  2. The effects of professional development related to classroom assessment on student achievement in science

    Science.gov (United States)

    Mazzie, Dawn Danielle

    This study investigated the relationship between students' standardized test scores in science and (a) increases in teacher assessment literacy and (b) teacher participation in a Teacher Quality Research (TQR) project on classroom assessment. The samples for these studies were teachers from underperforming schools who volunteered to take part in a professional development program in classroom assessment. School groups were randomly assigned to the treatment group. For Study 1, teachers in the treatment received professional development in classroom assessment from a trained assessment coach. Teachers in the control received no professional development. For Study 2, teachers in Treatment 1 received professional development in classroom assessment from a trained assessment coach and teachers in Treatment 2 received professional development in classroom assessment from a facilitator with one day of training. Teachers in both groups completed a measure of assessment literacy, the Teacher Quality Research Test of Assessment Literacy Skills (TQR_TALS), prior to the beginning and then again at the conclusion of the four month professional development program. A hierarchical linear model (HLM) analysis was conducted to determine the relationship between students' standardized test scores in science and (a) increases in teacher assessment literacy and (b) teacher TQR status. Based upon these analyses, the professional development program increased teachers' assessment literacy skills; however, the professional development had no significant impact on students' achievement.

  3. An interactional ethnographic study of the construction of literate practices of science and writing in a university science classroom

    Science.gov (United States)

    Sena, Nuno Afonso De Freitas Lopes De

    An interactional ethnographic study informed by a sociocultural perspective was conducted to examine how a professor and students discursively and interactionally shaped the basis for engaging in the work of a community of geologists. Specifically, the study examined the role the Question of the Day, an interactive writing activity in the lecture, in affording students opportunities for learning the literate practices of science and how to incorporate them in thinking critically. A writing-intensive, introductory oceanography course given in the Geological Sciences Department was chosen because the professor designed it to emphasize writing in the discipline and science literacy within a science inquiry framework. The study was conducted in two phases: a pilot in 2002 and the current study in the Spring Quarter of 2003. Grounded in the view that members in a classroom construct a culture, this study explored the daily construction of the literate practices of science and writing. This view of classrooms was informed by four bodies of research: interactional ethnography, sociolinguistics sociology of science and Writing In the Disciplines. Through participant observation, data were collected in the lecture and laboratory settings in the form of field notes, video, interviews, and artifacts to explore issues of science literacy in discourse, social action, and writing. Examination of participation in the Question of the Day interactive writing activity revealed that it played a key role in initiating and supporting a view of science and inquiry. As the activity permitted collaboration, it encouraged students to engage in the social process to critically explore a discourse of science and key practices with and through their writing. In daily interaction, participants were shown to take up social positions as scientist and engage in science inquiry to explore theory, examine data, and articulately reformulate knowledge in making oral and written scientific arguments

  4. The Communication in Science Inquiry Project (CISIP): A Project to Enhance Scientific Literacy through the Creation of Science Classroom Discourse Communities

    Science.gov (United States)

    Baker, Dale R.; Lewis, Elizabeth B.; Purzer, Senay; Watts, Nievita Bueno; Perkins, Gita; Uysal, Sibel; Wong, Sissy; Beard, Rachelle; Lang, Michael

    2009-01-01

    This study reports on the context and impact of the Communication in Science Inquiry Project (CISIP) professional development to promote teachers' and students' scientific literacy through the creation of science classroom discourse communities. The theoretical underpinnings of the professional development model are presented and key professional…

  5. Classroom Environment in the Implementation of an Innovative Curriculum Project in Science Education.

    Science.gov (United States)

    Suarez, Mercedes; Pias, Rosa; Membiela, Pedro; Dapia, Dolores

    1998-01-01

    Analyzes the perceptions of students, teachers, and external observers in order to study the influence of classroom environment on the implementation of an innovative project in science education. Contains 33 references. (DDR)

  6. Fostering Scholarly Discussion and Critical Thinking in the Political Science Classroom

    Science.gov (United States)

    Marks, Michael P.

    2008-01-01

    This article suggests strategies for promoting scholarly discussion and critical thinking in political science classes. When scholars study politics they are engaged in an investigation into the dynamics of governance, not a debate over personal political beliefs. The problem with a politicized classroom is that it gives students a false…

  7. Leaving the Classroom: A Didactic Framework for Education in Environmental Sciences

    Science.gov (United States)

    Dopico, Eduardo; Garcia-Vazquez, Eva

    2011-01-01

    In Continuous Education curricula in Spain, the programs on sciences of the environment are aimed toward understandings of sustainability. Teaching practice rarely leaves the classroom for outdoor field studies. At the same time, teaching practice is generally focused on examples of how human activities are harmful for ecosystems. From a pedagogic…

  8. Bridging Theory and Practice: Using Hip-Hop Pedagogy As A Culturally Relevant Approach In The Urban Science Classroom

    Science.gov (United States)

    Adjapong, Edmund S.

    This dissertation explores the context of urban science education as it relates to the achievement and engagement of urban youth. This study provides a framework for Hip-Hop Pedagogy, an approach to teaching and learning anchored in the creative elements of Hip-Hop culture, in STEM as an innovative approach to teaching and learning demonstrates the effect that Hip-Hop Pedagogy, as a culturally relevant approach to teaching has on teaching and learning in an urban science classroom. This study establishes practical tools and approaches, which were formed from by theory and research that transcend the traditional monolithic approaches to teaching science. Participants in this study are middle school students who attend an urban school in one of the largest school systems in the country. This research showed that as result of utilizing Hip-Hop pedagogical practices, students reported that they developed a deeper understanding of science content, students were more likely to identify as scientists, and students were provided a space and opportunities to deconstruct traditional classroom spaces and structures.

  9. Approaching multidimensional forms of knowledge through Personal Meaning Mapping in science integrating teaching outside the classroom

    DEFF Research Database (Denmark)

    Hartmeyer, Rikke; Bolling, Mads; Bentsen, Peter

    2017-01-01

    knowledge dimensions is important, especially in science teaching outside the classroom, where “hands-on” approaches and experiments are often part of teaching and require procedural knowledge, among other things. Therefore, this study investigates PMM as a method for exploring specific knowledge dimensions......Current research points to Personal Meaning Mapping (PMM) as a method useful in investigating students’ prior and current science knowledge. However, studies investigating PMM as a method for exploring specific knowledge dimensions are lacking. Ensuring that students are able to access specific...... in formal science education integrating teaching outside the classroom. We applied a case study design involving two schools and four sixth-grade classes. Data were collected from six students in each class who constructed personal meaning maps and were interviewed immediately after natural science...

  10. Literacy Strategies in the Science Classroom The Influence of Teacher Cognitive Resources on Implementation

    Science.gov (United States)

    Mawyer, Kirsten Kamaile Noelani

    Scientific literacy is at the heart of science reform (AAAS, 1989; 1993: NRC, 1996). These initiatives advocate inquiry-based science education reform that promotes scientific literacy as the prerequisite ability to both understand and apply fundamental scientific ideas to real-world problems and issues involving science, technology, society and the environment. It has been argued that literacy, the very ability to read and write, is foundational to western science and is essential for the attainment of scientific literacy and the reform of science education in this country (Norris & Phillips, 2004). With this wave of reform comes the need to study initiatives that seek to support science teachers, as they take on the task of becoming teachers of literacy in the secondary science classroom. This qualitative research examines one such initiative that supports and guides teachers implementing literacy strategies designed to help students develop reading skills that will allow them to read closely, effectively, and with greater comprehension of texts in the context of science. The goal of this study is to gather data as teachers learn about literacy strategies through supports built into curricular materials, professional development, and implementation in the classroom. In particular, this research follows four secondary science teachers implementing literacy strategies as they enact a yearlong earth and environmental science course comprised of two different reform science curricula. The findings of this research suggest teacher's development of teacher cognitive resources bearing on Teaching & Design can be dynamic or static. They also suggest that the development of pedagogical design capacity (PDC) can be either underdeveloped or emergent. This study contributes to current understandings of the participatory relationship between curricular resources and teacher cognitive resources that reflects the design decision of teachers. In particular, it introduces a

  11. Teaching and nature: Middle school science teachers' relationship with nature in personal and classroom contexts

    Science.gov (United States)

    Ball, Nadine Butcher

    2000-10-01

    This qualitative study describes three middle-school science teachers' relationship-with-nature in personal and classroom contexts. Participating teachers had more than 7 years experience and were deemed exemplary practitioners by others. Interview data about personal context focused on photographs the teacher took representing her/his relationship-with-nature in daily life. Interview data for classroom context explored classroom events during three or more researcher observations. Transcripts were analyzed using a multiple-readings approach to data reduction (Gilligan, Brown & Rogers, 1990; Miles & Huberman, 1994, p. 14, 141). Readings generated categorical information focused on portrayals of: nature; self; and relationship-with-nature. Categorical data were synthesized into personal and teaching case portraits for each teacher, and cross case themes identified. Participants indicated the portraits accurately represented who they saw themselves to be. Additional readings identified sub-stories by plot and theme. Narrative data were clustered to highlight elements of practice with implications for the relationship-with-nature lived in the classroom. These individual-scale moments were compared with cultural-scale distinctions between anthropocentric and ecological world views. Cross case themes included dimensions of exemplary middle-school science teaching important to teacher education and development, including an expanded conception of knowing and skillful use of student experience. Categorical analysis revealed each teacher had a unique organizing theme influencing their interpretation of personal and classroom events, and that nature is experienced differently in personal as opposed to teaching contexts. Narrative analysis highlights teachers' stories of classroom pets, dissection, and student dissent, illustrating an interplay between conceptual distinctions and personal dimensions during moments of teacher decision making. Results suggest teachers

  12. Influence of teacher-directed scientific inquiry on students' primal inquiries in two science classrooms

    Science.gov (United States)

    Stone, Brian Andrew

    Scientific inquiry is widely used but pervasively misunderstood in elementary classrooms. The use of inquiry is often attached to direct instruction models of teaching, or is even passed as textbook readings or worksheets. Previous literature on scientific inquiry suggests a range or continuum beginning with teacher-directed inquiry on one extreme, which involves a question, process, and outcome that are predetermined by the teacher. On the other end of the continuum is an element of inquiry that is extremely personal and derived from innate curiosity without external constraints. This authentic inquiry is defined by the study as primal inquiry. If inquiry instruction is used in the elementary classroom, it is often manifested as teacher-directed inquiry, but previous research suggests the most interesting, motivating, and lasting content is owned by the individual and exists within the individual's own curiosity, questioning and processes. Therefore, the study examined the impact of teacher-directed inquiry in two elementary fourth grade classrooms on climate-related factors including interest, motivation, engagement, and student-generated inquiry involvement. The study took place at two elementary classrooms in Arizona. Both were observed for ten weeks during science instruction over the course of one semester. Field notes were written with regard for the inquiry process and ownership, along with climate indicators. Student journals were examined for evidence of primal inquiry, and twenty-two students were interviewed between the two classrooms for evidence of low climate-related factors and low inquiry involvement. Data from the three sources were triangulated. The results of this qualitative study include evidence for three propositions, which were derived from previous literature. Strong evidence was provided in support of all three propositions, which suggest an overall negative impact on climate-related factors of interest, motivation, and engagement for

  13. A Pedagogy of Civic Engagement for the Undergraduate Political Science Classroom

    Science.gov (United States)

    DeLaet, Debra L.

    2016-01-01

    This article provides an overview of a classroom project, titled the Priorities Project, which is designed to promote responsible and informed civic engagement on the part of students in upper level political science courses at Drake University. It provides an overview of the Priorities Project, a brief summary highlighting the process and results…

  14. Multicultural science education in Lesotho high school biology classrooms

    Science.gov (United States)

    Nthathakane, Malefu Christina

    2001-12-01

    This study investigated how Basotho high school biology students responded to a multicultural science education (MCSE) approach. Students' home language---Sesotho---and cultural experiences were integrated into the teaching of a unit on alcohol, tobacco and other drugs (ATOD) abuse. The focus was on students whose cultural background is African and who are English second language users. The study was conducted in three high school biology classrooms in Lesotho where the ATOD unit was taught using MCSE. A fourth biology classroom was observed for comparison purposes. In this classroom the regular biology teacher taught ATOD using typical instructional strategies. The study was framed by the general question: How does a multicultural science education approach affect Basotho high school biology students? More specifically: How does the use of Sesotho (or code-switching between Sesotho and English) and integration of Basotho students' cultural knowledge and experiences with respect to ATOD affect students' learning? In particular how does the approach affect students' participation and academic performance? A qualitative research method was used in this study. Data were drawn from a number of different sources and analyzed inductively. The data sources included field-notes, transcripts of ATOD lessons, research assistant lesson observation notes and interviews, regular biology teachers' interviews and notes from observing a few of their lessons, students' interviews and pre and posttest scripts, and other school documents that recorded students' performance throughout the year. Using the students' home language---Sesotho---was beneficial in that it enabled them to share ideas, communicate better and understand each other, the teacher and the material that was taught. Integrating students' cultural and everyday experiences was beneficial because it enabled students to anchor the new ATOD ideas in what was familiar and helped them find the relevance of the unit by

  15. Revisiting the silence of Asian immigrant students: The negotiation of Korean immigrant students' identities in science classrooms

    Science.gov (United States)

    Ryu, Minjung

    This dissertation is a study about Korean immigrant students' identities, including academic identities related to science learning and identities along various social dimensions. I explore how Korean immigrant students participate in science classrooms and how they enact and negotiate their identities in their classroom discursive participation. My dissertation is motivated by the increasing attention in educational research to the intersectionality between science learning and various dimensions of identities (e.g., gender, race, ethnicity, social networks) and a dearth of such research addressing Asian immigrant students. Asian immigrant students are stereotyped as quiet and successful learners, particularly in science and mathematics classes, and their success is often explained by cultural differences. I confront this static and oversimplified notion of cultural differences and Asians' academic success and examine the intersectionality between science learning and identities of Asian immigrant students, with the specific case of Korean immigrants. Drawing upon cultural historical and sociolinguistic perspectives of identity, I propose a theoretical framework that underscores multiple levels of contexts (macro level, meso level, personal, and micro level contexts) in understanding and analyzing students' identities. Based on a year-long ethnographic study in two high school Advanced Placement Biology classes in a public high school, I present the meso level contexts of the focal school and biology classes, and in-depth analyses of three focal students. The findings illustrate: (1) how meso level contexts play a critical role in these students' identities and science classroom participation, (2) how the meso level contexts are reinterpreted and have different meanings to different students depending on their personal contexts, and (3) how students negotiated their positions to achieve certain identity goals. I discuss the implications of the findings for the

  16. Classroom Preschool Science Learning: The Learner, Instructional Tools, and Peer-Learning Assignments

    Science.gov (United States)

    Reuter, Jamie M.

    The recent decades have seen an increased focus on improving early science education. Goals include helping young children learn about pertinent concepts in science, and fostering early scientific reasoning and inquiry skills (e.g., NRC 2007, 2012, 2015). However, there is still much to learn about what constitutes appropriate frameworks that blend science education with developmentally appropriate learning environments. An important goal for the construction of early science is a better understanding of appropriate learning experiences and expectations for preschool children. This dissertation examines some of these concerns by focusing on three dimensions of science learning in the preschool classroom: (1) the learner; (2) instructional tools and pedagogy; and (3) the social context of learning with peers. In terms of the learner, the dissertation examines some dimensions of preschool children's scientific reasoning skills in the context of potentially relevant, developing general reasoning abilities. As young children undergo rapid cognitive changes during the preschool years, it is important to explore how these may influence scientific thinking. Two features of cognitive functioning have been carefully studied: (1) the demonstration of an epistemic awareness through an emerging theory of mind, and (2) the rapid improvement in executive functioning capacity. Both continue to develop through childhood and adolescence, but changes in early childhood are especially striking and have been neglected as regards their potential role in scientific thinking. The question is whether such skills relate to young children's capacity for scientific thinking. Another goal was to determine whether simple physics diagrams serve as effective instructional tools in supporting preschool children's scientific thinking. Specifically, in activities involving predicting and checking in scientific contexts, the question is whether such diagrams facilitate children's ability to

  17. Attitudes toward science: measurement and psychometric properties of the Test of Science-Related Attitudes for its use in Spanish-speaking classrooms

    Science.gov (United States)

    Navarro, Marianela; Förster, Carla; González, Caterina; González-Pose, Paulina

    2016-06-01

    Understanding attitudes toward science and measuring them remain two major challenges for science teaching. This article reviews the concept of attitudes toward science and their measurement. It subsequently analyzes the psychometric properties of the Test of Science-Related Attitudes (TOSRA), such as its construct validity, its discriminant and concurrent validity, and its reliability. The evidence presented suggests that TOSRA, in its Spanish-adapted version, has adequate construct validity regarding its theoretical referents, as well as good indexes of reliability. In addition, it determines the attitudes toward science of secondary school students in Santiago de Chile (n = 664) and analyzes the sex variable as a differentiating factor in such attitudes. The analysis by sex revealed low-relevance gender difference. The results are contrasted with those obtained in English-speaking countries. This TOSRA sample showed good psychometric parameters for measuring and evaluating attitudes toward science, which can be used in classrooms of Spanish-speaking countries or with immigrant populations with limited English proficiency.

  18. How science teachers balance religion and evolution in the science classroom: A case study of science classes in a Florida Public School District

    Science.gov (United States)

    Willems, Pierre Dominique

    The purpose of this case study was to research how science teachers balance both religion and evolution in the science classroom with as little controversy as possible. In this study I attempted to provide some insight on how teachers are currently teaching evolution in their science classes in light of the religious beliefs of the students as well as their own. The case study was conducted in a school district in Florida where I attempted to answer the following questions: (a) How do science teachers in the Florida School District (FSD) approach the religion--evolution issue in preparing students for a career in a field of science? (b) How do science teachers in the FSD reconcile the subject of evolution with the religious views of their students? (c) How do science teachers in the FSD reconcile their own religious views with the teaching of evolution? (d) How do science teachers in the FSD perceive the relationship between religion and science? The data was collected through interviews with two high school teachers, and one middle school teacher, by observing each participant teach, by collecting site documents and by administering an exploratory survey to student volunteers. Analysis was conducted by open coding which produced four themes from which the research questions were answered and the survey answers were counted to produce the percentages displayed in the tables in chapter four. The teachers avoided discussion on religiously oriented questions or statements by the students and did not reveal their own religious orientation. The topic of microevolution appeared to reduce stress in the classroom environment, as opposed to addressing macroevolution.

  19. How fifth grade Latino/a bilingual students use their linguistic resources in the classroom and laboratory during science instruction

    Science.gov (United States)

    Stevenson, Alma R.

    2013-12-01

    This qualitative, sociolinguistic research study examines how bilingual Latino/a students use their linguistic resources in the classroom and laboratory during science instruction. This study was conducted in a school in the southwestern United States serving an economically depressed, predominantly Latino population. The object of study was a fifth grade science class entirely comprised of language minority students transitioning out of bilingual education. Therefore, English was the means of instruction in science, supported by informal peer-to-peer Spanish-language communication. This study is grounded in a social constructivist paradigm. From this standpoint, learning science is a social process where social, cultural, and linguistic factors are all considered crucial to the process of acquiring scientific knowledge. The study was descriptive in nature, examining specific linguistic behaviors with the purpose of identifying and analyzing the linguistic functions of students' utterances while participating in science learning. The results suggest that students purposefully adapt their use of linguistic resources in order to facilitate their participation in science leaning. What is underscored in this study is the importance of explicitly acknowledging, supporting, and incorporating bilingual students' linguistic resources both in Spanish and English into the science classroom in order to optimize students' participation and facilitate their understanding.

  20. Discovery stories in the science classroom

    Science.gov (United States)

    Arya, Diana Jaleh

    School science has been criticized for its lack of emphasis on the tentative, dynamic nature of science as a process of learning more about our world. This criticism is the guiding force for this present body of work, which focuses on the question: what are the educational benefits for middle school students of reading texts that highlight the process of science in the form of a discovery narrative? This dissertation traces my journey through a review of theoretical perspectives of narrative, an analysis of first-hand accounts of scientific discovery, the complex process of developing age-appropriate, cohesive and engaging science texts for middle school students, and a comparison study (N=209) that seeks to determine the unique benefits of the scientific discovery narrative for the interest in and retained understanding of conceptual information presented in middle school science texts. A total of 209 middle school participants in nine different classrooms from two different schools participated in the experimental study. Each subject read two science texts that differed in topic (the qualities of and uses for radioactive elements and the use of telescopic technology to see planets in space) and genre (the discovery narrative and the "conceptually known exposition" comparison text). The differences between the SDN and CKE versions for each topic were equivalent in all possible ways (initial introduction, overall conceptual accuracy, elements of human interest, coherence and readability level), save for the unique components of the discovery narrative (i.e., love for their work, acknowledgement of the known, identification of the unknown and the explorative or experimental process to discovery). Participants generally chose the discovery narrative version as the more interesting of the two texts. Additional findings from the experimental study suggest that science texts in the form of SDNs elicit greater long-term retention of key conceptual information, especially

  1. Pre-Service Science Teachers' Views on Their Online Argumentation about What Is Happening in Middle School Science Classrooms during Their Practicum Period

    Science.gov (United States)

    Kaya, Osman Nafiz; Dogan, Alev; Kilic, Ziya; Ebenezer, Jazlin

    2004-01-01

    In this study, Pre-service Science Teachers' (PSTs) views about the potential benefits and existing barriers of their argumentation on the World Wide Web about what is happening in middle school science classrooms during two semesters of their practicum experiences were investigated. "Special Web Group" called the "Collaborative…

  2. Assessment Strategies for Implementing Ngss in K12 Earth System Science Classrooms

    Science.gov (United States)

    McAuliffe, C.

    2016-12-01

    Several science education researchers have led assessment efforts that provide strategies particularly useful for evaluating the threedimensional learning that is central to NGSS (DeBarger, A. H., Penuel, W. R., Harris, C. J., Kennedy, C. K., 2016; Knight, A. M. & McNeill, K. L., 2015; McNeill, K. L., KatshSinger, R. & Pelletier, P., 2015; McNeill K.L., et.al., 2015; McNeill, K.L., & Krajcik, J.S., 2011; Penuel, W., 2016). One of the basic premises of these researchers is that, "Assessment is a practice of argument from evidence based on what students say, do, and write" and that "the classroom is the richest place to gather evidence of what students know (Penuel, W., 2016). The implementation of the NGSS in Earth System Science provides a unique opportunity for geoscience education researchers to study student learning and contribute to the development of this research as well as for geoscience educators to apply these approaches and strategies in their own work with K12 inservice and preservice educators. DeBarger, A. H., Penuel, W. R., Harris, C. J., Kennedy, C. K. (2016). Building an Assessment Argument to Design and Use Next Generation Science Assessments in Efficacy Studies of Curriculum Interventions. American†Journal†of†Evaluation†37(2) 174192Æ Knight, A. M. & McNeill, K. L. (2015). Comparing students' individual written and collaborative oral socioscientific arguments. International Journal of Environmental and Science Education.10(5), 23647. McNeill, K. L., KatshSinger, R. & Pelletier, P. (2015). Assessing science practices-Moving your class along a continuum. Science Scope. McNeill, K.L., & Krajcik, J.S. (2011). Supporting Grade 5-8 Students in Constructing Explanations in Science: The Claim, Evidence, and Reasoning Framework for Talk and Writing. Upper Saddle River, New Jersey: Pearson. Penuel, W. (2016). Classroom Assessment Strategies for NGSS Earth and Space Sciences. Implementing†the†NGSS†Webinar†Series, February 11, 2016.

  3. The Science of Serious Gaming: Exploring the Benefits of Science-Based Games in the Classroom

    Science.gov (United States)

    Kurtz, N.

    2016-02-01

    Finding ways to connect scientists with the classroom is an important part of sharing enthusiasm for science with the public. Utilizing the visual arts and serious gaming techniques has benefits for all participants including the engagement of multiple learning sectors and the involvement of whole-brain teaching methods. The activities in this presentation draw from real-world events that require higher level thinking strategies to discover and differential naturally occurring patterns.

  4. Meeting Classroom Needs: Designing Space Physics Educational Outreach for Science Education Standards

    Science.gov (United States)

    Urquhart, M. L.; Hairston, M.

    2008-12-01

    As with all NASA missions, the Coupled Ion Neutral Dynamics Investigation (CINDI) is required to have an education and public outreach program (E/PO). Through our partnership between the University of Texas at Dallas William B. Hanson Center for Space Sciences and Department of Science/Mathematics Education, the decision was made early on to design our educational outreach around the needs of teachers. In the era of high-stakes testing and No Child Left Behind, materials that do not meet the content and process standards teachers must teach cannot be expected to be integrated into classroom instruction. Science standards, both state and National, were the fundamental drivers behind the designs of our curricular materials, professional development opportunities for teachers, our target grade levels, and even our popular informal educational resource, the "Cindi in Space" comic book. The National Science Education Standards include much more than content standards, and our E/PO program was designed with this knowledge in mind as well. In our presentation we will describe how we came to our approach for CINDI E/PO, and how we have been successful in our efforts to have CINDI materials and key concepts make the transition into middle school classrooms. We will also present on our newest materials and high school physics students and professional development for their teachers.

  5. Oximetry: a reflective tool for the detection of physiological expression of emotions in a science education classroom

    Science.gov (United States)

    Calderón, Olga

    2016-09-01

    The pulse oximeter is a device that measures the oxygen concentration (or oxygen saturation—SpO2); heart rate, and heartbeat of a person at any given time. This instrument is commonly used in medical and aerospace fields to monitor physiological outputs of a patient according to health conditions or physiological yields of a flying pilot according to changes in altitude and oxygen availability in the atmosphere. Nonetheless, the uses for pulse oximetry may expand to other fields where there is human interaction and where physiological outputs reflect fluctuations mediated by arising emotions. A classroom, for instance is filled with a plethora of emotions, but very often participants in this space are unaware of others' or their own sentiments as these arise as a result of interactions and responses to class discussions. In this paper I describe part of a larger study-taking place at Brooklyn College of the City University of New York. The focus is on the exploration of emotions and mindfulness in the science classroom. The oximeter is used in this study as a reflexive tool to detect emotions emerging among participants of a graduate History and Philosophy of Science Education course offered in the spring of 2012. Important physiological information of class participants provided by the oximeter is used to analyze the role of emotions in the classroom as sensitive and controversial topics in science education are discussed every week.

  6. Young African American children constructing identities in an urban integrated science-literacy classroom

    Science.gov (United States)

    Kane, Justine M.

    This is a qualitative study of identities constructed and enacted by four 3rd-grade African American children (two girls and two boys) in an urban classroom that engaged in a year-long, integrated science-literacy project. Juxtaposing narrative and discursive identity lenses, coupled with race and gender perspectives, I examined the ways in which the four children saw and performed themselves as students and as science students in their classroom. Interview data were used for the narrative analysis and classroom Discourse and artifacts were used for the discursive analysis. A constructivist grounded theory framework was adopted for both analyses. The findings highlight the diversity and richness of perspectives and forms of engagement these young children shared and enacted, and help us see African American children as knowers, doers, and talkers of science individually and collectively. In their stories about themselves, all the children identified themselves as smart but they associated with smartness different characteristics and practices depending on their strengths and preferences. Drawing on the children's social, cultural, and ethnolinguistic resources, the dialogic and multimodal learning spaces facilitated by their teacher allowed the children to explore, negotiate, question, and learn science ideas. The children in this study brought their understandings and ways of being into the "lived-in" spaces co-created with classmates and teacher and influenced how these spaces were created. At the same time, each child's ways of being and understandings were shaped by the words, actions, behaviors, and feelings of peers and teacher. Moreover, as these four children engaged with science-literacy activities, they came to see themselves as competent, creative, active participants in science learning. Although their stories of "studenting" seemed dominated by following rules and being well-behaved, their stories of "sciencing" were filled with exploration, ingenuity

  7. The Most Common Patterns of Classroom Dialogue Used by Science Teachers in Omani Cycle Two Schools

    Science.gov (United States)

    Alshaqsi, Hanan; Ambusaidi, Abdullah

    2018-01-01

    This study aimed to identify the patterns of classroom dialogue used by science teachers in science classes at Omani schools with respect to their gender. The study sample consisted of science teachers: three males and three females. To achieve the aims of the study, mixed methods with three instruments were used. These are an observation card or…

  8. Assessing Bilingual Knowledge Organization in Secondary Science Classrooms =

    Science.gov (United States)

    Wu, Jason S.

    Improving outcomes for English language learners (ELLs) in secondary science remains an area of high need. The purpose of this study is to investigate bilingual knowledge organization in secondary science classrooms. This study involved thirty-nine bilingual students in three biology classes at a public high school in The Bronx, New York City. Methods included an in-class survey on language use, a science content and English proficiency exam, and bilingual free-recalls. Fourteen students participated in bilingual free-recalls which involved a semi-structured process of oral recall of information learned in science class. Free-recall was conducted in both English and Spanish and analyzed using flow-map methods. Novel methods were developed to quantify and visualize the elaboration and mobilization of ideas shared across languages. It was found that bilingual narratives displayed similar levels of organizational complexity across languages, though English recalls tended to be longer. English proficiency was correlated with narrative complexity in English. There was a high degree of elaboration on concepts shared across languages. Finally, higher Spanish proficiency correlated well with greater overlapping elaboration across languages. These findings are discussed in light of current cognitive theory before presenting the study's limitations and future directions of research.

  9. What Can a Teacher Do to Support Students' Interest in Science? A Study of the Constitution of Taste in a Science Classroom

    Science.gov (United States)

    Anderhag, Per; Hamza, Karim Mikael; Wickman, Per-Olof

    2015-01-01

    In this study, we examined how a teacher may make a difference to the way interest develops in a science classroom, especially for students from disadvantaged socioeconomic backgrounds. We adopted a methodology based on the concept of "taste for science" drawing on the work of John Dewey and Pierre Bourdieu. We investigated through…

  10. Sublime science: Teaching for scientific sublime experiences in middle school classrooms

    Science.gov (United States)

    Cavanaugh, Shane

    Due to a historical separation of cognition and emotion, the affective aspects of learning are often seen as trivial in comparison to the more 'essential' cognitive qualities - particularly in the domain of science. As a result of this disconnect, feelings of awe, wonder, and astonishment as well as appreciation have been largely ignored in the working lives of scientists. In turn, I believe that science education has not accurately portrayed the world of science to our students. In an effort to bring the affective qualities of science into the science classroom, I have drawn on past research in the field of aesthetic science teaching and learning as well as works by, Burke, Kant, and Dewey to explore a new construct I have called the "scientific sublime". Scientific sublime experiences represent a sophisticated treatment of the cognitive as well as affective qualities of science learning. The scientific sublime represents feelings of awe, wonder, and appreciation that come from a deep understanding. It is only through this understanding of a phenomenon that we can appreciate its true complexity and intricacies, and these understandings when mixed with the emotions of awe and reverence, are sublime. Scientific sublime experiences are an attempt at the re-integration of cognition and feeling. The goal of this research was twofold: to create and teach a curriculum that fosters scientific sublime experiences in middle school science classes, and to better understand how these experiences are manifested in students. In order to create an approach to teaching for scientific sublime experiences, it was first necessary for me to identify key characteristics of such an experience and a then to create a pedagogical approach, both of which are described in detail in the dissertation. This research was conducted as two studies in two different middle schools. My pedagogical approach was used to create and teach two five-week 7 th grade science units---one on weather

  11. Incorporating Science News Into Middle School Curricula: Current Events in the 21st Century Classroom

    Science.gov (United States)

    Dimaggio, E.

    2010-12-01

    Middle school students are instructed with the aid of textbooks, lectures, and activities to teach topics that satisfy state standards. However, teaching materials created to convey standard-aligned science concepts often leave students asking how the content relates to their lives and why they should be learning it. Conveying relevance, especially in science when abstract concepts can often be incorrectly perceived as irrelevant, is important for student learning and retention. One way to create an educational link between classroom content and everyday life is through the use of scientific current events. Students read, hear, and watch media coverage of natural events (such as the Haiti or Chile earthquakes in 2010), but do not necessarily relate the scientific information from media sources to classroom studies. Taking advantage of these brief ‘teachable moments’-when student interest is high- provides a valuable opportunity to make classroom-to-everyday life associations and to incorporate inquiry based learning. To address this need, we are creating pre-packaged current event materials for middle school teachers in Arizona that align to state standards and which are short, effective, and easy to implement in the classroom. Each lesson takes approximately 15 minutes to implement, allowing teachers time to facilitate brief but meaningful discussions. Materials are assembled within approximately one week of the regional or global science event (e.g., volcanic eruptions, earthquakes) and may include a short slide show, maps, videos, pictures, and real-time data. A listserv is used to send biweekly emails to subscribed instructors. The email contains the current event topic, specific Arizona science standards addressed, and a link to download the materials. All materials are hosted on the Arizona State University Education Outreach website and are archived. Early implementation efforts have been received positively by participating teachers. In one case

  12. Exploring How Second Grade Elementary Teachers Translate Their Nature of Science Views into Classroom Practice After a Graduate Level Nature of Science Course

    Science.gov (United States)

    Deniz, Hasan; Adibelli, Elif

    2015-12-01

    The main purpose of this study was to explore the factors mediating the translation of second grade teachers' nature of science (NOS) views into classroom practice after completing a graduate level NOS course. Four second grade in-service elementary teachers comprised the sample of this study. Data were collected from several sources during the course of this study. The primary data sources were (a) assessment of the elementary teachers' NOS views before and after the graduate level NOS course using the Views of Nature of Science Questionnaire Version B (VNOS-B) (Lederman et al., 2002) coupled with interviews, and (b) a classroom observation and videotaped recording of the elementary teachers' best NOS lessons coupled with interview. We identified three distinct but related factors that mediated the translation of NOS views into classroom practice: the teachers' perspectives about the developmental appropriateness of the NOS aspect, the teachers' selection of target NOS aspects, and the relative importance placed by teachers on each NOS aspect.

  13. Student use of Web 2.0 tools to support argumentation in a high school science classroom

    Science.gov (United States)

    Weible, Jennifer L.

    This ethnographic study is an investigation into how two classes of chemistry students (n=35) from a low-income high school with a one-to-one laptop initiative used Web 2.0 tools to support participation in the science practice of argumentation (i.e., sensemaking, articulating understandings, and persuading an audience) during a unit on alternative energy. The science curriculum utilized the Technology-Enhanced Inquiry Tools for Science Education as a pedagogical framework (Kim, Hannafin, & Bryan, 2007). Video recordings of the classroom work, small group discussions, and focus group interviews, documents, screen shots, wiki evidence, and student produced multi-media artifacts were the data analyzed for this study. Open and focused coding techniques, counts of social tags and wiki moves, and interpretive analyses were used to find patterns in the data. The study found that the tools of social bookmarking, wiki, and persuasive multimedia artifacts supported participation in argumentation. In addition, students utilized the affordances of the technologies in multiple ways to communicate, collaborate, manage the work of others, and efficiently complete their science project. This study also found that technologically enhanced science curriculum can bridge students' everyday and scientific understandings of making meaning, articulating understandings, and persuading others of their point of view. As a result, implications from this work include a set of design principles for science inquiry learning that utilize technology. This study suggests new consideration of analytical methodology that blends wiki data analytics and video data. It also suggests that utilizing technology as a bridging strategy serves two roles within classrooms: (a) deepening students' understanding of alternative energy science content and (b) supporting students as they learn to participate in the practices of argumentation.

  14. Teacher perspectives on specialisation in the elementary classroom: implications for science instruction

    Science.gov (United States)

    Poland, Susan; Colburn, Amanda; Long, David E.

    2017-09-01

    In the current educational climate of testing and accountability, many elementary teachers find they lack adequate time and confidence to enact reform-based science teaching due to pressure to perform in reading and mathematics. With this tension in mind, we explore the phenomenon of elementary teacher specialisation in comparison to the traditional, generalist model of teaching, wherein a teacher is responsible for teaching all subjects to one group of students each year. This mixed-methods study examines teacher perspectives on the practice of specialisation and generalisation through teacher interview data. Our teachers spoke candidly about their attitudes towards specialisation, the perceived impacts of specialization on teachers and students, and the role of accountability, administration, and testing in their decisions to specialise. Additionally, our teachers discussed time dedicated to science in specialist and generalist classrooms. Our findings suggest that specialist roles are sought by those who see specialisation as a means of reducing workload, while allowing for content mastery and improved instruction. Alternatively, generalist roles are sought by those who primarily view the role of elementary teaching as the care and development of children, and who prefer to focus on the classroom as a holistic, fluid space. Implications for science teaching are discussed.

  15. DLESE Teaching Boxes: Earth System Science Resources And Strategies For Using Data In The Classroom

    Science.gov (United States)

    Olds, S. E.; Weingroff, M.

    2005-12-01

    The DLESE Teaching Box project is both a professional development opportunity and an educational resource development project providing a pedagogic context that support teachers' use of data in the classroom. As a professional development opportunity, it is designed to augment teachers' science content knowledge, enhance their use of inquiry teaching strategies, and increase their confidence and facility with using digital libraries and online learning resources. Teams of educators, scientists, and instructional designers work together during a three part Teaching Box Development Workshop series to create Teaching Boxes on Earth system science topics. The resulting Teaching Boxes use Earth system science conceptual frameworks as their core and contain inquiry-based lessons which model scientific inquiry and process by focusing on the gathering and analysis of evidence. These lines of evidence employ an Earth systems approach to show how processes across multiple spheres, for example, how the biosphere, atmosphere, and geosphere interact in a complex Earth process. Each Teaching Box has interconnected lessons that provide 3-6 weeks of instruction, incorporate National and California science standards, and offer guidance on teaching pathways through the materials. They contain up-to-date digital materials including archived and real-time data sets, simulations, images, lesson plans, and other resources available through DLESE, NSDL, and the participating scientific institutions. Background information provided within the Box supports teacher learning and guides them to facilitate student access to the tools and techniques of authentic, modern science. In developing Teaching Boxes, DLESE adds value to existing educational resources by helping teachers more effectively interpret their use in a variety of standards-based classroom settings. In the past twelve months we have had over 100 requests for Teaching Box products from teachers and curriculum developers from

  16. A New Look at Genre and Authenticity: Making Sense of Reading and Writing Science News in High School Classrooms

    Science.gov (United States)

    Kohnen, Angela M.

    2012-01-01

    This qualitative study examined the importance of the genre and authenticity as teachers sought to bring science journalism to the high school science classroom. Undertaken as part of the National Science Foundation-funded grant "Science Literacy through Science Journalism (SciJourn)," this work was conducted as a series of smaller…

  17. Middle school girls: Experiences in a place-based education science classroom

    Science.gov (United States)

    Shea, Charlene K.

    The middle school years are a crucial time when girls' science interest and participation decrease (Barton, Tan, O'Neill, Bautista-Guerra, & Brecklin, 2013). The purpose of this study was to examine the experiences of middle school girls and their teacher in an eighth grade place-based education (PBE) science classroom. PBE strives to increase student recognition of the importance of educational concepts by reducing the disconnection between education and community (Gruenewald, 2008; Smith, 2007; Sobel, 2004). The current study provides two unique voices---the teacher and her students. I describe how this teacher and her students perceived PBE science instruction impacting the girls' participation in science and their willingness to pursue advanced science classes and science careers. The data were collected during the last three months of the girls' last year of middle school by utilizing observations, interviews and artifacts of the teacher and her female students in their eighth grade PBE science class. The findings reveal how PBE strategies, including the co-creation of science curriculum, can encourage girls' willingness to participate in advanced science education and pursue science careers. The implications of these findings support the use of PBE curricular strategies to encourage middle school girls to participate in advance science courses and science careers.

  18. Enhancing Literacy Practices in Science Classrooms through a Professional Development Program for Canadian Minority-Language Teachers

    Science.gov (United States)

    Rivard, Léonard P.; Gueye, Ndeye R.

    2016-01-01

    'Literacy in the Science Classroom Project" was a three-year professional development (PD) program supporting minority-language secondary teachers' use of effective language-based instructional strategies for teaching science. Our primary objective was to determine how teacher beliefs and practices changed over time and how these were enacted…

  19. Undergraduate-driven interventions to increase representation in science classrooms

    Science.gov (United States)

    Freilich, M.; Aluthge, D.; Bryant, R. M.; Knox, B.; McAdams, J.; Plummer, A.; Schlottman, N.; Stanley, Z.; Suglia, E.; Watson-Daniels, J.

    2014-12-01

    Recognizing that racial, ethnic, and gender underrepresentation in science classrooms persists despite intervention programs and institutional commitments to diversity, a group of undergraduates from a variety of backgrounds and academic disciplines came together for a group independent study to (a) study the theoretical foundations of the current practice of science and of programs meant to increase diversity, (b) utilize the experiences of course participants and our peers to better understand the drivers of underrepresentation, and (c) design and implement interventions at Brown University. We will present on individual and small group projects designed by course members in collaboration with faculty. The projects emerged from an exploration of literature in history, philosophy, and sociology of science, as well as an examination of anthropological and psychological studies. We also evaluated the effectiveness of top-down and bottom-up approaches that have already been attempted in developing our projects. They focus on the specific problems faced by underrepresented minorities, women, LGBTQ+ people, and well-represented minorities. We will share experiences of faculty-student collaboration and engaged scholarship focused on representation in science and discuss student-designed interventions.

  20. Local and Long Distance Computer Networking for Science Classrooms. Technical Report No. 43.

    Science.gov (United States)

    Newman, Denis

    This report describes Earth Lab, a project which is demonstrating new ways of using computers for upper-elementary and middle-school science instruction, and finding ways to integrate local-area and telecommunications networks. The discussion covers software, classroom activities, formative research on communications networks, and integration of…

  1. The Ripple Effect: Exploring How a Joint Science Specialist/TOSA Can Change Classroom Teachers' Instructional Practices through Project-Based Learning

    Science.gov (United States)

    Gradias, Jean

    In 2013, California became one of the first states to adopt the rigorous Next Generation Science Standards (NGSS). However, the current state of science instruction does not support the conceptual shifts of the NGSS, which call for consistent science instruction K-12, increased inquiry, subject integration, as well as science instruction that connects students to their communities and their world. Therefore, teachers are in need of instructional support for science teaching that can enable them to achieve these higher expectations. This dissertation explored whether implementing a Project-Based Learning (PBL)-centered science specialist changed classroom teachers' frequency of science instruction and use of instructional strategies that support NGSS science delivery. In addition, this study examined how providing a PBL science specialist supported teachers in their comfort with using these more rigorous instructional strategies. Five elementary teachers participated in an action research project conducted over the course of a school year. The frequency with which teachers used the following instructional strategies was analyzed: connecting science to real world phenomena, accessing community resources, integrating science into other subject areas, and using inquiry in science instruction. Quantitative and qualitative data revealed that a PBL science specialist does support classroom teachers in implementing teaching practices aligned to the conceptual shifts implicated by the NGSS; however, individual growth rates varied by instructional strategy. The results of this study provide a foundation for the legitimacy of utilizing a PBL-focused science specialist to support teachers in shifting their instructional practices in order to achieve the Next Generation Science Standards.

  2. Influence of Psychosocial Classroom Environment on Students' Motivation and Self-Regulation in Science Learning: A Structural Equation Modeling Approach

    Science.gov (United States)

    Velayutham, Sunitadevi; Aldridge, Jill M.

    2013-04-01

    The primary aim of this study was two-fold: 1) to identify salient psychosocial features of the classroom environment that influence students' motivation and self-regulation in science learning; and 2) to examine the effect of the motivational constructs of learning goal orientation, science task value and self-efficacy in science learning on students' self-regulation in science classrooms. Data collected from 1360 science students in grades 8, 9 and 10 in five public schools in Perth, Western Australia were utilized to validate the questionnaires and to investigate the hypothesized relationships. Structural Equation Modeling analysis suggested that student cohesiveness, investigation and task orientation were the most influential predictors of student motivation and self-regulation in science learning. In addition, learning goal orientation, task value and self-efficacy significantly influenced students' self-regulation in science. The findings offer potential opportunities for educators to plan and implement effective pedagogical strategies aimed at increasing students' motivation and self-regulation in science learning.

  3. Teaching Environmental Health Science for Informed Citizenship in the Science Classroom and Afterschool Clubs

    Science.gov (United States)

    Keselman, Alla; Levin, Daniel M.; Hundal, Savreen; Kramer, Judy F.; Matzkin, Karen; Dutcher, Gale

    2013-01-01

    In the era of growing concerns about human-induced climate change and sustainable development, it is important for the schools to prepare students for meaningful engagement with environmental policies that will determine the future of our society. To do this, educators need to face a number of challenges. These include deciding on the science knowledge and skills needed for informed citizenship, identifying teaching practices for fostering such knowledge and skills, and finding ways to implement new practices into the tightly packed existing curriculum. This paper describes two collaborative efforts between the U.S. National Library of Medicine (NLM) and University of Maryland College of Education that attempt to meet these challenges. The focus of both projects is on helping students develop information seeking and evaluation and argumentation skills, and applying them to complex socio-scientific issues that have bearing on students’ daily lives. The first effort involves co-designing an afterschool environmental health club curriculum with an interdisciplinary team of middle school teachers. The second effort is the development and implementation of a week-long school drinking water quality debate activity in a high school environmental science classroom. Both projects center on Tox Town, an NLM web resource that introduces students to environmental health issues in everyday environments. The paper describes successes and challenges of environmental health curriculum development, including teachers’ and researchers’ perception of contextual constraints in the club and classroom setting, tensions inherent in co-design, and students’ experience with socio-scientific argumentation. PMID:24382985

  4. Interactive Whiteboard Use in High-Tech Science Classrooms: Patterns of Integration

    Directory of Open Access Journals (Sweden)

    Rena Stroud

    2014-10-01

    Full Text Available Interactive whiteboard (IWB use has been associated with increased student motivation, engagement, and achievement, though many studies ignore the role of the teacher in effecting those positive changes. The current study followed the practice of 28 high school science teachers as they integrated the IWB into their regular classroom activities. The extent of teachers’ adoption and integration fell along a continuum, from the technologically confident “early adopter” to the low-use “resistant adopter.” Patterns of use are explored by extracting data from representative teachers’ practice. Science-specific benefits of IWB use, barriers to integration, and lessons learned for professional development are discussed.

  5. Science on a Sphere and Data in the Classroom: A Marriage Between Limitless Learning Experiences.

    Science.gov (United States)

    Zepecki, S., III; Dean, A. F.; Pisut, D.

    2017-12-01

    NOAA and other agencies have contributed significantly to the creation and distribution of educational materials to enhance the public understanding of the interconnectedness of the Earth processes and human activities. Intended for two different learning audiences, Science on a Sphere and Data in the Classroom are both educational tools used to enhance understanding of our world and how human activity influences change. Recently, NOAA has undertaken the task of marrying Data in the Classroom's NGSS aligned curriculum, which includes topics such as El Niño, sea level rise, and coral bleaching, with Science on a Sphere's Earth and space data visualization exhibits. This partnership allows for the fluidity of NOAA's data-driven learning materials, and fosters the homogeneity of formal and informal learning experiences for varied audiences.

  6. Bringing Computational Thinking into the High School Science and Math Classroom

    Science.gov (United States)

    Trouille, Laura; Beheshti, E.; Horn, M.; Jona, K.; Kalogera, V.; Weintrop, D.; Wilensky, U.; University CT-STEM Project, Northwestern; University CenterTalent Development, Northwestern

    2013-01-01

    Computational thinking (for example, the thought processes involved in developing algorithmic solutions to problems that can then be automated for computation) has revolutionized the way we do science. The Next Generation Science Standards require that teachers support their students’ development of computational thinking and computational modeling skills. As a result, there is a very high demand among teachers for quality materials. Astronomy provides an abundance of opportunities to support student development of computational thinking skills. Our group has taken advantage of this to create a series of astronomy-based computational thinking lesson plans for use in typical physics, astronomy, and math high school classrooms. This project is funded by the NSF Computing Education for the 21st Century grant and is jointly led by Northwestern University’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), the Computer Science department, the Learning Sciences department, and the Office of STEM Education Partnerships (OSEP). I will also briefly present the online ‘Astro Adventures’ courses for middle and high school students I have developed through NU’s Center for Talent Development. The online courses take advantage of many of the amazing online astronomy enrichment materials available to the public, including a range of hands-on activities and the ability to take images with the Global Telescope Network. The course culminates with an independent computational research project.

  7. Technology and science in classroom and interview talk with Swiss lower secondary school students: a Marxist sociological approach

    Science.gov (United States)

    Roth, Wolff-Michael

    2013-06-01

    In much of science education research, the content of talk tends to be attributed to the persons who produce the sound-words in a speech situation. A radically different, sociological perspective on language-in-use grounded in Marxism derives from the work of L. S. Vygotsky and the members of the circle around M. M. Bakhtin. Accordingly, each word belongs to speaker and recipient simultaneously. It represents collective consciousness and, therefore, shared ideology, which can no longer be attributed to the individual. The purpose of this study is to develop a sociological perspective on language in science education, a perspective in which language continuously changes. I articulate this position in the context of classroom and interview talk with 14-year-old Swiss non-academically streamed lower secondary students about technology and science. In this context, science classrooms and interviews are shown to be microcosms of Swiss (German) culture and society reproduced in and through the situated talk about science and technology.

  8. Professional Development for Early Childhood Educators: Efforts to Improve Math and Science Learning Opportunities in Early Childhood Classrooms

    Science.gov (United States)

    Piasta, Shayne B.; Logan, Jessica A. R.; Pelatti, Christina Yeager; Capps, Janet L.; Petrill, Stephen A.

    2014-01-01

    Because recent initiatives highlight the need to better support preschool-aged children’s math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hours) of training on math and science or on an alternative topic. Educators’ provision of math and science learning opportunities were documented, as were the fall-to-spring math and science learning gains of children (n = 385) enrolled in their classrooms. Professional development significantly impacted provision of science, but not math, learning opportunities. Professional development did not directly impact children’s math or science learning, although science learning was indirectly affected via the increase in science learning opportunities. Both math and science learning opportunities were positively associated with children’s learning. Results suggest that substantive efforts are necessary to ensure that children have opportunities to learn math and science from a young age. PMID:26257434

  9. Elementary science teachers' integration of engineering design into science instruction: results from a randomised controlled trial

    Science.gov (United States)

    Maeng, Jennifer L.; Whitworth, Brooke A.; Gonczi, Amanda L.; Navy, Shannon L.; Wheeler, Lindsay B.

    2017-07-01

    This randomised controlled trial used a mixed-methods approach to investigate the frequency and how elementary teachers integrated engineering design (ED) principles into their science instruction following professional development (PD). The ED components of the PD were aligned with Cunningham and Carlsen's [(2014). Teaching engineering practices. Journal of Science Teacher Education, 25, 197-210] guidelines for ED PD and promoted inclusion of ED within science teaching. The treatment group included 219 teachers from 83 schools. Participants in the control group included 145 teachers from 60 schools in a mid-Atlantic state. Data sources, including lesson overviews and videotaped classroom observations, were analysed quantitatively to determine the frequency of ED integration and qualitatively to describe how teachers incorporated ED into instruction after attending the PD. Results indicated more participants who attended the PD (55%) incorporated ED into instruction compared with the control participants (24%), χ2(1, n = 401) = 33.225, p .05) through ED lessons. In ED lessons, students typically conducted research and created and tested initial designs. The results suggest the PD supported teachers in implementing ED into their science instruction and support the efficacy of using Cunningham and Carlsen's (2014) guidelines to inform ED PD design.

  10. Examining student conceptions of the nature of science from two project-based classrooms

    Science.gov (United States)

    Moss, David M.

    The purpose of this research was to develop descriptive accounts of precollege students' conceptions of the nature of science from two project-based classrooms, and track those conceptions over the course of an academic year. A model of the nature of science was developed and served as the criterion by which students' beliefs were evaluated. The model distinguishes between two major categories of science, the nature of the scientific enterprise and the nature of scientific knowledge. Five students were selected from each class and interviewed individually for 30-45 minutes each, six times over the year. Data from semi-structured, formal interviewing consisted of audio-recorded interviews which were transcribed verbatim. All passages were coded using codes which corresponded to the premises of the model of the nature of science. Passages in the transcripts were interpreted to develop a summary of the students' conceptions over the year. Qualitative methodologies, especially formal interviewing in conjunction with participant observation, were effective for uncovering students' conceptions of the nature of science, adding to the knowledge base in this field. The research design of the current study was a significant factor in explaining the inconsistencies seen between findings from this study and the literature. This study finds that participants at both classroom sites held fully formed conceptions of the nature of science for approximately 40 percent of the premises across the model. For two-thirds of the elements which comprise the premises, participants held full understandings. Participants held more complete understandings of the nature of scientific knowledge than the nature of the scientific enterprise. Most participants had difficulty distinguishing between science and non-science and held poor understandings of the role of questions in science. Students' beliefs generally remained unchanged over the year. When their conceptions did evolve, project

  11. The Contribution of Perceived Classroom Learning Environment and Motivation to Student Engagement in Science

    Science.gov (United States)

    Tas, Yasemin

    2016-01-01

    This study investigated middle school students' engagement in science in relation to students' perceptions of the classroom learning environment (teacher support, student cohesiveness, and equity) and motivation (self-efficacy beliefs and achievement goals). The participants were 315 Turkish sixth and seventh grade students. Four hierarchical…

  12. The impact of podcasts, screencasts, and vodcasts on student achievement in the science classroom

    Science.gov (United States)

    Pena, Ruben, Jr.

    Educators in today's society are in search for different ways to reach their students in order to keep them engaged and active in the learning process. There are several strategies that teachers have utilized in the classroom in order to reach all students. Now seen more in the classroom is the use of technology in one form or another. There are several types of technologies that one may employ while in the classroom, but seen more recently is the use of podcasts, screencasts, and vodcasts. The major purpose of the study was to investigate the impact of using podcasts, screencasts, and vodcasts in conjunction with science curriculum on student academic achievement. Two intermediate schools from the south Texas region were chosen as a convenience sample for the study because one school utilized the technology of podcasts, screencasts, and vodcasts at the student created level while the other school did not utilize podcasts, screencasts, and vodcasts at the student created level. The researcher collected scores from curriculum based assessments that were aligned with the Texas Essential Knowledge and Skills (TEKS) for comparison between the two different groups, while controlling grade five science TAKS scores for group equalization. Once all data was collected, scores were entered into the Statistical Package for the Social Sciences (SPSS) and were analyzed using an analysis of covariance. The ANCOVA allowed the researcher to see that differences among curriculum based assessments scores existed between the two different schools. Scores were higher for the students who utilized podcasts, screencasts, and vodcasts at the student created level when compared to those scores for students who did not utilize podcasts, screencasts, and vodcasts at the student created level. This study showed the benefits reaped of having students create their own podcasts, screencasts, and vodcasts. Having students create their own technology has them actively engaged in the learning

  13. Mapping classroom experiences through the eyes of enlace students: The development of science literate identities

    Science.gov (United States)

    Oemig, Paulo Andreas

    The culture of a science classroom favors a particular speech community, thus membership requires students becoming bilingual and bicultural at the same time. The complexity of learning science rests in that it not only possesses a unique lexicon and discourse, but it ultimately entails a way of knowing. My dissertation examined the academic engagement and perceptions of a group (N=30) of high school students regarding their science literate practices. These students were participating in an Engaging Latino Communities for Education (ENLACE) program whose purpose is to increase Latino high school graduation rates and assist them with college entrance requirements. At the time of the study, 19 students were enrolled in different science classes to fulfill the science requirements for graduation. The primary research question: What kind of science classroom learning environment supports science literate identities for Latino/a students? was addressed through a convergent parallel mixed research design (Creswell & Plano Clark, 2011). Over the course of an academic semester I interviewed all 30 students arranged in focus groups and observed in their science classes. ENLACE students expressed interest in science when it was taught through hands-on activities or experiments. Students also stressed the importance of having teachers who made an effort to get to know them as persons and not just as students. Students felt more engaged in science when they perceived their teachers respected them for their experiences and knowledge. Findings strongly suggest students will be more interested in science when they have opportunities to learn through contextualized practices. Science literate identities can be promoted when inquiry serves as a vehicle for students to engage in the language of the discipline in all its modalities. Inquiry-based activities, when carefully planned and implemented, can provide meaningful spaces for students to construct knowledge, evaluate claims

  14. Video-based Analysis of Motivation and Interaction in Science Classrooms

    DEFF Research Database (Denmark)

    Andersen, Hanne Moeller; Nielsen, Birgitte Lund

    2013-01-01

    in groups. Subsequently, the framework was used for an analysis of students’ motivation in the whole class situation. A cross-case analysis was carried out illustrating characteristics of students’ motivation dependent on the context. This research showed that students’ motivation to learn science...... is stimulated by a range of different factors, with autonomy, relatedness and belonging apparently being the main sources of motivation. The teacher’s combined use of questions, uptake and high level evaluation was very important for students’ learning processes and motivation, especially students’ self......An analytical framework for examining students’ motivation was developed and used for analyses of video excerpts from science classrooms. The framework was developed in an iterative process involving theories on motivation and video excerpts from a ‘motivational event’ where students worked...

  15. Results of a Flipped Classroom Teaching Approach in Anesthesiology Residents.

    Science.gov (United States)

    Martinelli, Susan M; Chen, Fei; DiLorenzo, Amy N; Mayer, David C; Fairbanks, Stacy; Moran, Kenneth; Ku, Cindy; Mitchell, John D; Bowe, Edwin A; Royal, Kenneth D; Hendrickse, Adrian; VanDyke, Kenneth; Trawicki, Michael C; Rankin, Demicha; Guldan, George J; Hand, Will; Gallagher, Christopher; Jacob, Zvi; Zvara, David A; McEvoy, Matthew D; Schell, Randall M

    2017-08-01

    In a flipped classroom approach, learners view educational content prior to class and engage in active learning during didactic sessions. We hypothesized that a flipped classroom improves knowledge acquisition and retention for residents compared to traditional lecture, and that residents prefer this approach. We completed 2 iterations of a study in 2014 and 2015. Institutions were assigned to either flipped classroom or traditional lecture for 4 weekly sessions. The flipped classroom consisted of reviewing a 15-minute video, followed by 45-minute in-class interactive sessions with audience response questions, think-pair-share questions, and case discussions. The traditional lecture approach consisted of a 55-minute lecture given by faculty with 5 minutes for questions. Residents completed 3 knowledge tests (pretest, posttest, and 4-month retention) and surveys of their perceptions of the didactic sessions. A linear mixed model was used to compare the effect of both formats on knowledge acquisition and retention. Of 182 eligible postgraduate year 2 anesthesiology residents, 155 (85%) participated in the entire intervention, and 142 (78%) completed all tests. The flipped classroom approach improved knowledge retention after 4 months (adjusted mean = 6%; P  = .014; d  = 0.56), and residents preferred the flipped classroom (pre = 46%; post = 82%; P  flipped classroom approach to didactic education resulted in a small improvement in knowledge retention and was preferred by anesthesiology residents.

  16. Struggles with learning about scientific models in a middle school science classroom

    Science.gov (United States)

    Loper, Suzanna Jane

    Two important goals in science education are teaching students about the nature of science and teaching students to do scientific inquiry. Learning about scientific models is central to both of these endeavors, but studies have shown that students have very flawed and limited understandings of the nature and purposes of scientific models (Carey & Smith, 1993; Grosslight, Unger, & Jay, 1991; Lederman, 1992). In this dissertation I investigate the processes of teaching and learning about scientific models in an 8th grade classroom in an urban middle school. In order to do so, I examine recordings of student and teacher talk about models across a period of two months in which students completed two independent inquiry projects, using the Inquiry Island software and curriculum (Eslinger, 2004; Shimoda, White, & Frederiksen, 2002; White, Shimoda, & Frederiksen, 2000). My analysis draws on video records of small-group work and whole-class interactions, as well as on students' written work. I find that in this classroom, students struggled to understand the nature and purpose of scientific models. I analyze episodes in the classroom talk in which models appeared to be a source of trouble or confusion, and describe the ways in which the teacher attempted to respond to these troubles. I find that in many cases students appeared to be able to produce scientific models of the proper form, yet still struggled with displaying an understanding of what a model was, or of the functions of models in scientific research. I propose directions for further research and curriculum development in order to build on these findings. In particular, I argue, we need to design ways to help students engage in scientific modeling as a social and communicative practice, and to find ways to build from their everyday reasoning and argumentation practices. My research also reinforces the importance of looking at classroom talk, not just pre- and post-assessments, in order to understand teaching and

  17. Balancing acts: A mixed methods study of the figured world of African American 7th graders in urban science classrooms

    Science.gov (United States)

    Cleveland-Solomon, Tanya E.

    What beliefs and cultural models do youth who are underrepresented in science have about the domain of science and about themselves as science learners? What do they imagine is possible for them in relation to science both now and in the future? In other words, what constitutes their figured world of science? This dissertation study, using a mixed methods design, offers new perspectives on the ways that underrepresented youth's unexamined assumptions or cultural models and resources may shape their identities and motivation to learn science. Through analyses of survey and interview data, I found that urban African American youths' social context, gender, racial identity, and perceptions of the science they had in school influenced their motivation to learn science. Analyses of short-term classroom observations and interviews suggested that students had competing cultural models that they used in their constructions of identities as science learners, which they espoused and adopted in relation to how well they leveraged the science-related cultural resources available to them. Results from this study suggested that these 7th graders would benefit from access to more expansive cultural models through access to individuals with scientific capital as a way to allow them to create fruitful identities as science learners. If we want to ensure that students from groups that are underrepresented in science not only have better outcomes, but aspire to and enter the science career pipeline, we must also begin to support them in their negotiations of competing cultural models that limit their ability to adopt science-learner identities in their classrooms. This study endeavored to understand the particular cultural models and motivational beliefs that drive students to act, and what types of individuals they imagine scientists and science workers to be. This study also examined how cultural models and resources influence identity negotiation, specifically the roles youths

  18. Mobile Technology in Science Classrooms: Using iPad-Enabled Constructivist Learning to Promote Collaborative Problem Solving and Chemistry Learning

    Science.gov (United States)

    Ting, Melodie Mirth G.

    Most recently, there has been a noticeable rise in the push for use of technology in the classroom. The advancement in digital science has increased greatly the capacity to explore animations, models, and interesting apps. that should substantially enhance science cognition. At the same time, there is a great need to increase collaboration in the science classroom. There is a concern that the collaborative experience will be lost with the use of technology in the classroom. This study seeks to explore the use of iPads in conjunction with a constructivist learning approach to promote student collaboration. The participants in this study included two sections of 11 th grade AP Chemistry students. Data was generated from different sources such as teacher observations of classroom interactions patterned after Gilles (2004). In order to gauge student perception of working in groups with the use of the iPad, survey questions adapted from Knezek, Mills and Wakefield (2012) and group interviews were used (Galleta, 2013). Learning outcomes were assessed using methods adapted from a study by Lord and Baviskar (2007). Findings of this study showed high percentages of evidence for increased community, productive student group communication, effective feedback through use of the iPads, and value of the interactive apps., but it also showed that students still preferred face-to-face interactions over virtual interactions for certain learning situations. The study showed good content learning outcomes, as well as favorable opinions among the students for the effectiveness of the use of iPads in collaborative settings in the classroom.

  19. Secondary Science Teachers Making Sense of Model-Based Classroom Instruction: Understanding the Learning and Learning Pathways Teachers Describe as Supporting Changes in Teaching Practice

    Science.gov (United States)

    Hvidsten, Connie J.

    experiences to a larger literature base and rationale helped them negotiate the dissonance occurring as they tried new practices in their own classroom. Teachers associated these elements with learning about both science content and effective instructional pedagogy and producing a level of dissatisfaction with current understanding that motivated their persistence when met with obstacles or struggles. The second of the three papers analyzes what teachers said they learned in the ISIM program. Teachers' reported learning about scientific models, both how they are used in both the scientific community and how they can support students' classroom learning. Additionally, teachers mentioned learning more about the science they taught through interacting with models during the PD and learned more about effective teaching strategies. Teachers also reported learning about themselves as teachers and learners, as well as about the school and classroom contexts that shape their ability to implement new instructional practices. Finally, the third paper draws from interviews occurring a year or more after the program ended to identify how teachers reported changes in their classroom instruction resulting from their ISIM participation. Four of the teachers reported little or no change in classroom practice. Eight teachers described changes to their teaching to incorporate elements of the professional development, but who fell short of adopting model-based reasoning as a core feature of their classroom instruction. Nine teachers expressed a strong understanding of modeling instruction, and its ongoing influence on their classroom instruction.

  20. Transformative practices in secondary school science classrooms: Life histories of Black South African teachers

    Science.gov (United States)

    Jita, Loyiso Currell

    1999-11-01

    This study investigated the construction of teaching practices that are aimed at including all students in learning the key ideas of science and helping them to develop a voice for participating in the discourses in and outside of the science classroom. Such practices define what in this study is referred to as transformative practice. The study tells the stories of three Black secondary school teachers in South Africa who have worked to construct a transformative practice in their biology and physical science classrooms. Using a life history perspective, the study explored the relationships between teachers' identities and the changes in their classroom practices. Data were collected mainly through periodic interviews with the teachers and observations of their teaching practices over a period of 18 months. An important finding of the study was that the classroom practices of all three teachers were defined by three similar themes of: (1) "covering the content" and preparing their students to succeed in the national examinations, (2) developing deep conceptual understandings of the subject matter, and (3) including all students in their teaching by constructing what other researchers have called a "culturally-relevant" pedagogy. This finding was consistent despite the observed variations of context and personal histories. A major finding of this study on the question of the relationship between identity and teaching practice was that despite the importance of context, subject matter, material and social resources, another category of resources---the "resources of biography"---proved to be crucial for each of the teachers in crafting a transformative pedagogy. These "resources of biography" included such things as the teachers' own experiences of marginalization, the experiences of growing up or living in a particular culture, and the experiences of participating in certain kinds of social, political, religious or professional activities. The study suggests that it

  1. "Socratic Circles are a Luxury": Exploring the Conceptualization of a Dialogic Tool in Three Science Classrooms

    Science.gov (United States)

    Copelin, Michelle Renee

    Research has shown that dialogic instruction promotes learning in students. Secondary science has traditionally been taught from an authoritative stance, reinforced in recent years by testing policies requiring coverage. Socratic Circles are a framework for student-led dialogic discourse, which have been successfully used in English language arts and social studies classrooms. The purpose of this research was to explore the implementation process of Socratic Circles in secondary science classes where they have been perceived to be more difficult. Focusing on two physical science classes and one chemistry class, this study described the nature and characteristics of Socratic Circles, teachers' dispositions toward dialogic instruction, the nature and characteristics of student discussion, and student motivation. Socratic Circles were found to be a dialogic support that influenced classroom climate, social skills, content connections, and student participation. Teachers experienced conflict between using traditional test driven scripted teaching, and exploring innovation through dialogic instruction. Students experienced opportunities for peer interaction, participation, and deeper discussions in a framework designed to improve dialogic skills. Students in two of the classrooms showed evidence of motivation for engaging in peer-led discussion, and students in one class did not. The class that did not show evidence of motivation had not been given the same scaffolding as the other two classes. Two physical science teachers and one chemistry teacher found that Socratic Circles required more scaffolding than was indicated by their peers in other disciplines such as English and social studies. The teachers felt that student's general lack of background knowledge for any given topic in physical science or chemistry necessitated the building of a knowledge platform before work on a discussion could begin. All three of the teachers indicated that Socratic Circles were a

  2. Influence of Psychosocial Classroom Environment on Students' Motivation and Self-Regulation in Science Learning: A Structural Equation Modeling Approach

    Science.gov (United States)

    Velayutham, Sunitadevi; Aldridge, Jill M.

    2013-01-01

    The primary aim of this study was two-fold: 1) to identify salient psychosocial features of the classroom environment that influence students' motivation and self-regulation in science learning; and 2) to examine the effect of the motivational constructs of learning goal orientation, science task value and self-efficacy in science learning on…

  3. From Laboratories to Classrooms: Involving Scientists in Science Education

    Science.gov (United States)

    DeVore, E. K.

    2001-12-01

    Scientists play a key role in science education: the adventure of making new discoveries excites and motivates students. Yet, American science education test scores lag behind those of other industrial countries, and the call for better science, math and technology education is widespread. Thus, improving American science, math and technological literacy is a major educational goal for the NSF and NASA. Today, funding for research often carries a requirement that the scientist be actively involved in education and public outreach (E/PO) to enhance the science literacy of students, teachers and citizens. How can scientists contribute effectively to E/PO? What roles can scientists take in E/PO? And, how can this be balanced with research requirements and timelines? This talk will focus on these questions, with examples drawn from the author's projects that involve scientists in working with K-12 teacher professional development and with K-12 curriculum development and implementation. Experiences and strategies for teacher professional development in the research environment will be discussed in the context of NASA's airborne astronomy education and outreach projects: the Flight Opportunities for Science Teacher EnRichment project and the future Airborne Ambassadors Program for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Effective partnerships with scientists as content experts in the development of new classroom materials will be described with examples from the SETI Institute's Life in the Universe curriculum series for grades 3-9, and Voyages Through Time, an integrated high school science course. The author and the SETI Institute wish to acknowledge funding as well as scientific and technical support from the National Science Foundation, the National Aeronautics and Space Administration, the Hewlett Packard Company, the Foundation for Microbiology, and the Combined Federated Charities.

  4. Describing students' talk about physical science phenomena outside and inside the classroom: A case of secondary school students from Maragoli, western region of Kenya

    Science.gov (United States)

    Oberrecht, Stephen Patrick

    Because of cultural and linguistic influences on science learning involving students from diverse cultural and linguistic backgrounds, calls have been made for teachers to enact teaching that is sensitive to these students' backgrounds. However, most of the research involving such students has tended to focus on students at elementary grade levels from predominantly two linguistic backgrounds, Hispanic and Haitian Creole, learning science concepts mainly in the life sciences. Also, most of the studies examined classroom interactions between teachers and the students and among students. Not much attention had been paid to how students talk about ideas inherent in scientific phenomena in an outside-the-classroom context and much less on how that talk relates to that of the classroom. Thus, this research extends knowledge in the area of science learning involving students learning science in a language other than their first language to include students from a language background other than Hispanic and Haitian Creole at not only the high school level but also their learning of ideas in a content area other than the life science (i.e., the physical sciences). More importantly, this research extends knowledge in the area by relating science learning outside and inside the classroom. This dissertation describes this exploratory research project that adopted a case study strategy. The research involved seven Form Two (tenth grade) students (three boys and four girls) from one public, mixed gender day secondary school in rural Kenya. I collected data from the students through focus group discussions as they engaged in talking about ideas inherent in selected physical science phenomena and activities they encountered in their everyday lives, as well as learned about in their science classrooms. I supplemented these data with data from one-on-one semi-structured interviews with two teachers (one for chemistry and one for physics) on their teaching of ideas investigated in

  5. Revising laboratory work: sociological perspectives on the science classroom

    Science.gov (United States)

    Jobér, Anna

    2017-09-01

    This study uses sociological perspectives to analyse one of the core practices in science education: schoolchildren's and students' laboratory work. Applying an ethnographic approach to the laboratory work done by pupils at a Swedish compulsory school, data were generated through observations, field notes, interviews, and a questionnaire. The pupils, ages 14 and 15, were observed as they took a 5-week physics unit (specifically, mechanics). The analysis shows that the episodes of laboratory work could be filled with curiosity and exciting challenges; however, another picture emerged when sociological concepts and notions were applied to what is a very common way of working in the classroom. Laboratory work is characterised as a social activity that is expected to be organised as a group activity. This entails groups becoming, to some extent, `safe havens' for the pupils. On the other hand, this way of working in groups required pupils to subject to the groups and the peer effect, sometimes undermining their chances to learn and perform better. In addition, the practice of working in groups when doing laboratory work left some pupils and the teacher blaming themselves, even though the outcome of the learning situation was a result of a complex interplay of social processes. This article suggests a stronger emphasis on the contradictions and consequences of the science subjects, which are strongly influenced by their socio-historical legacy.

  6. Inclusivity in the Classroom and International Achievement in Mathematics and Science: An Exploratory Study

    Science.gov (United States)

    Barnard-Brak, Lucy; Wei, Tianlan; Schmidt, Marcelo; Sheffield, Rebecca

    2014-01-01

    Purpose: Few studies have examined the role of inclusivity in international assessments of student achievement, such as the TIMSS (Trends in International Mathematics and Science Study). The current study examined how the inclusivity of students with disabilities at the classroom level across countries may be associated with achievement scores,…

  7. Teaching neuroscience to science teachers: facilitating the translation of inquiry-based teaching instruction to the classroom.

    Science.gov (United States)

    Roehrig, G H; Michlin, M; Schmitt, L; MacNabb, C; Dubinsky, J M

    2012-01-01

    In science education, inquiry-based approaches to teaching and learning provide a framework for students to building critical-thinking and problem-solving skills. Teacher professional development has been an ongoing focus for promoting such educational reforms. However, despite a strong consensus regarding best practices for professional development, relatively little systematic research has documented classroom changes consequent to these experiences. This paper reports on the impact of sustained, multiyear professional development in a program that combined neuroscience content and knowledge of the neurobiology of learning with inquiry-based pedagogy on teachers' inquiry-based practices. Classroom observations demonstrated the value of multiyear professional development in solidifying adoption of inquiry-based practices and cultivating progressive yearly growth in the cognitive environment of impacted classrooms.

  8. Urban science classrooms and new possibilities: on intersubjectivity and grammar in the third space

    Science.gov (United States)

    Emdin, Christopher

    2009-03-01

    In this article I explore research in urban science education inspired by the work of Kris Gutierrez in a paper based on her 2005 Scribner Award. It addresses key points in Gutierrez's work by exploring theoretical frameworks for research and approaches to teaching and research that expand the discourse on the agency of urban youth in corporate school settings. The work serves as an overview of under-discussed approaches and theoretical frameworks to consider in teaching and conducting research with marginalized urban youth in urban science classrooms.

  9. #ClimateEdCommunity : Field Workshops Bring Together Teachers and Researchers to Make Meaning of Science and Classroom Integration

    Science.gov (United States)

    Bartholow, S.; Warburton, J.; Wood, J. H.; Steiner, S. M.

    2015-12-01

    Seeing Understanding and Teaching: Climate Change in Denali is a four-day immersive teacher professional development course held in Denali National Park. Developed through three partner organizations, the course aims to develop teachers' skills for integrating climate change content into their classrooms. This presentation aims to share tangible best practices for linking researchers and teachers in the field, through four years of experience in program delivery and reported through a published external evaluation. This presentation will examine the key aspects of a successful connection between teachers, researchers, science, and classrooms: (1) Inclusion of teacher leaders, (2) dedicated program staff, (3) workshop community culture, and will expose barriers to this type of collaboration including (1) differences in learning style, (2) prior teaching experience, (3) existing/scaffolding understanding of climate change science, and (4) accessibility of enrollment and accommodations for the extended learning experience. Presentation Content Examples:Participants overwhelmingly value the deep commitment this course has to linking their field experience to the classroom attributing to the role of a teacher-leader; an expert science teacher with first-hand field research experience in the polar regions. The goal of including a teacher-leader is to enhance translatability between fieldwork and the classroom. Additionally, qualitative aspects of the report touches on the intangible successes of the workshop such as: (1) the creation of a non-judgmental learning atmosphere, (2) addressing accessibility to science learning tools in rural and under-served communities, (3) defining successful collaboration as making meaning together through exploratory questioning while in the field (4) discussed the social and cultural implications of climate change, and the difficulty of navigating these topics in educational and/or multicultural spaces. Next Steps? Create a #Climate

  10. Hands across the divide: Finding spaces for student-centered pedagogy in the undergraduate science classroom

    Science.gov (United States)

    Spier-Dance, Lesley

    This study explored college science students' and instructors' experiences with student-generated and performed analogies. The objectives of the study were to determine whether the use of student-generated analogies could provide students with opportunities to develop robust understanding of difficult science concepts, and to examine students' and instructors' perspectives on the utilization of these analogies. To address my objectives, I carried out a case study at a university-college in British Columbia. I examined the use of analogies in undergraduate biology and chemistry courses. Working with three instructors, I explored the use of student-generated analogies in five courses. I carried out in-depth analyses for one biology case and one chemistry case. Data were collected using semi-structured interviews, classroom observations, researcher journal logs and students' responses to assessment questions. My findings suggest that involvement in the analogy exercise was associated with gains in students' conceptual understanding. Lower-achieving students who participated in the analogy activity exhibited significant gains in understanding of the science concept, but were unable to transfer their knowledge to novel situations. Higher-achieving students who participated in the activity were better able to transfer their knowledge of the analogy-related science topic to novel situations. This research revealed that students exhibited improved understanding when their analogies clearly represented important features of the target science concept. Students actively involved in the analogy activity exhibited gains in conceptual understanding. They perceived that embodied performative aspects of the activity promoted engagement, which motivated their learning. Participation in the analogy activity led to enhanced social interaction and a heightened sense of community within the classroom. The combination of social and performative elements provided motivational learning

  11. The creation of a pedagogy of promise: Examples of educational excellence in high-stakes science classrooms

    Science.gov (United States)

    McCollough, Cherie A.

    The current reform movement in education has two forces that appear contradictory in nature. The first is an emphasis on rigor and accountability that is assessed through high-stakes testing. The second is the recommendation to have student centered approaches to teaching and learning, especially those that emphasize inquiry methodology and constructivist pedagogy. Literature reports that current reform efforts involving accountability through high-stakes tests are detrimental to student learning and are contradictory to student-centered teaching approaches. However, by focusing attention on those teachers who "teach against the grain" and raise the achievement levels of students from diverse backgrounds, instructional strategies and personal characteristics of exemplary teachers can be identified. This mixed-methods research study investigated four exemplary urban high school science teachers in high-stakes (TAKS) tested science classrooms. Classroom observations, teacher and student interviews, pre-/postcontent tests and the Constructivist Learning Environment Survey (CLES) (Johnson & McClure, 2004) provided the main data sources. The How People Learn (National Research Council, 2000) theoretical framework provided evidence of elements of inquiry-based, student-centered teaching. Descriptive case analysis (Yin, 1994) and quantitative analysis of pre/post tests and the CLES revealed the following results. First, all participating teachers included elements of learner-centeredness, knowledge-centeredness, assessment-centeredness and community-centeredness in their teaching as recommended by the National Research Council, (2000), thus creating student-centered classroom environments. Second, by establishing a climate of caring where students felt supported and motivated to learn, teachers managed tensions resulting from the incorporation of student-centered elements and the accountability-based instructional mandates outlined by their school district and state

  12. Literacy events during science instruction in a fifth-grade classroom: Listening to teacher and student voices

    Science.gov (United States)

    Deal, Debby

    Concern with science literacy and how to achieve it has a long history in our education system. The goals and definitions established by the National Science Education Standards (1996) suggest that if we are to successfully prepare students for the information age, science education must blend the natural and social sciences. However, research indicates that connections between hands-on science and literacy, as a tool for processing information, do not regularly occur during school science instruction. This case study explored the use of literacy by a second year teacher in a fifth grade class during consecutive science units on chemistry and liquids. The research questions focused on how and why the teacher and students used literacy during science and how and why the teacher and selected focus students believed literacy influenced their learning in science. Data was collected through classroom observations and multiple interviews with the teacher and selected focus students. Interview data was analyzed and coded using an iterative process. Field notes and student artifacts were used to triangulate the data. The study found that the teacher and students used reading and writing to record and acquire content knowledge, learn to be organized, and to facilitate assessment. Although the teacher had learned content literacy strategies in her pre-service program, she did not implement them in the classroom and her practice seemed to reflect her limited science content knowledge and understanding of the nature of science. The focus students believed that recording and studying notes, reading books, drawing, and reading study guides helped them learn science. The findings suggest the following implications: (1) More data is needed on the relationship between teaching approach, science content knowledge, and beliefs about science. (2) Elementary student voices make a valuable contribution to our understanding of science learning. (3) Pre-service candidates should have

  13. Flipped Classroom Approach

    Science.gov (United States)

    Ozdamli, Fezile; Asiksoy, Gulsum

    2016-01-01

    Flipped classroom is an active, student-centered approach that was formed to increase the quality of period within class. Generally this approach whose applications are done mostly in Physical Sciences, also attracts the attention of educators and researchers in different disciplines recently. Flipped classroom learning which wide-spreads rapidly…

  14. Learning Environments as Basis for Cognitive Achievements of Students in Basic Science Classrooms in Nigeria

    Science.gov (United States)

    Atomatofa, Rachel; Okoye, Nnamdi; Igwebuike, Thomas

    2016-01-01

    The nature of classroom learning environments created by teachers had been considered very important for learning to take place effectively. This study investigated the effect of creating constructivist and transmissive learning environments on achievements of science students of different ability levels. 243 students formed the entire study…

  15. The Big Bang Theory--Coping with Multi-Religious Beliefs in the Super-Diverse Science Classroom

    Science.gov (United States)

    De Carvalho, Roussel

    2013-01-01

    Large urban schools have to cope with a "super-diverse" population with a multireligious background in their classrooms. The job of the science teacher within this environment requires an ultra-sensitive pedagogical approach, and a deeper understanding of students' backgrounds and of scientific epistemology. Teachers must create a safe…

  16. Studenters erfaringer med Flipped Classroom i en helsefagutdanning

    Directory of Open Access Journals (Sweden)

    Christine Tørris

    2015-12-01

    Full Text Available Background: The flipped classroom approach has gained increased attention in educational research literature. The purpose of this study was to investigate how students experience a flipped classroom approach in health education, compared to ordinary lectures. Method: Bachelor students (n=25 who watched the video-based material in the flipped classrooms pre-session, answered a questionnaire to evaluate their flipped classroom experience. The questionnaire consisted of both closed and open questions. Results: Ninety six per cent (24/25 of respondents found the video-based material in the pre-session useful. Seventy six per cent (19/25 of respondents found that the flipped classroom approach resulted in the highest learning outcome, over the traditional approach (16%, 4/25. Barriers to the flipped classroom approach was technical problems with the video-based material, such as screen view. Conclusion: The flipped classroom approach is promising as an acceptable approach for teaching in health science curricular in higher education.

  17. The Interactional Accomplishment of Not Knowing in Elementary School Science and Mathematics: Implications for Classroom Performance Assessment Practices

    Science.gov (United States)

    Reis, Giuliano; Barwell, Richard

    2013-01-01

    The day-to-day business of being a science or mathematics teacher involves the continuous assessment of students. This, in turn, is an inherently discursive process. The aim of the present study is to examine some of the specific discursive practices through which science and mathematics knowing is jointly produced through classroom interaction.…

  18. Making sense of shared sense-making in an inquiry-based science classroom: Toward a sociocultural theory of mind

    Science.gov (United States)

    Ladewski, Barbara G.

    Despite considerable exploration of inquiry and reflection in the literatures of science education and teacher education/teacher professional development over the past century, few theoretical or analytical tools exist to characterize these processes within a naturalistic classroom context. In addition, little is known regarding possible developmental trajectories for inquiry or reflection---for teachers or students---as these processes develop within a classroom context over time. In the dissertation, I use a sociocultural lens to explore these issues with an eye to the ways in which teachers and students develop shared sense-making, rather than from the more traditional perspective of individual teacher activity or student learning. The study includes both theoretical and empirical components. Theoretically, I explore the elaborations of sociocultural theory needed to characterize teacher-student shared sense-making as it develops within a classroom context, and, in particular, the role of inquiry and reflection in that sense-making. I develop a sociocultural model of shared sense-making that attempts to represent the dialectic between the individual and the social, through an elaboration of existing sociocultural and psychological constructs, including Vygotsky's zone of proximal development and theory of mind. Using this model as an interpretive framework, I develop a case study that explores teacher-student shared sense-making within a middle-school science classroom across a year of scaffolded introduction to inquiry-based science instruction. The empirical study serves not only as a test case for the theoretical model, but also informs our understanding regarding possible developmental trajectories and important mechanisms supporting and constraining shared sense-making within inquiry-based science classrooms. Theoretical and empirical findings provide support for the idea that perspectival shifts---that is, shifts of point-of-view that alter relationships

  19. Intending to stay: Positive images, attitudes, and classroom experiences as influences on students' intentions to persist in science and engineering majors

    Science.gov (United States)

    Wyer, Mary Beth

    2000-10-01

    Contemporary research on persistence in undergraduate education in science and engineering has focused primarily on identifying the structural, social, and psychological barriers to participation by students in underrepresented groups. As a result, there is a wealth of data to document why students leave their majors, but there is little direct empirical data to support prevailing presumptions about why students stay. Moreover, researchers have used widely differing definitions and measures of persistence, and they have seldom explored field differences. This study compared three ways of measuring persistence. These constituted three criterion variables: commitment to major, degree aspirations, and commitment to a science/engineering career. The study emphasized social factors that encourage students to persist, including four predictor variables---(1) positive images of scientists/engineers, (2) positive attitudes toward gender and racial equality, (3) positive classroom experiences, and (4) high levels of social integration. In addition, because researchers have repeatedly documented the degree to which women are more likely than men to drop out of science and engineering majors, the study examined the potential impact of gender in relation to these predictor variables. A survey was administered in the classroom to a total of 285 students enrolled in a required course for either a biological sciences and or an engineering major. Predictor variables were developed from standard scales, including the Images of Science/Scientists Scale, the Attitudes toward Women Scale, the Women in Science Scale, and the Perceptions of Prejudice Scale. Based on logistic regression models, results indicate that positive images of scientists and engineers was significantly related to improving the odds of students having a high commitment to major, high degree aspirations, and high commitment to career. There was also evidence that positive attitudes toward gender and racial equality

  20. Classroom -RE-SONANCE

    Indian Academy of Sciences (India)

    in a classroom situation. We may suggest strategies for dealing with them, or invite responses, or both. "Classroom" is equally a forum for raising broader issues and sharing personal experiences and viewpoints on matters related to· teaching and learning science. Logarithm and agM. In [1] we had discussed the evaluation.

  1. Lunar and Meteorite Sample Education Disk Program — Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, J.; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-03-01

    NASA’s Lunar and Meteorite Sample Education Disk Program has Lucite disks containing Apollo lunar samples and meteorite samples that are available for trained educators to borrow for use in classrooms, museums, science center, and libraries.

  2. Constructing and Using Multimodal Narratives to Research in Science Education: Contributions Based on Practical Classroom

    Science.gov (United States)

    Lopes, J. B.; Silva, A. A.; Cravino, J. P.; Santos, C. A.; Cunha, A.; Pinto, A.; Silva, A.; Viegas, C.; Saraiva, E.; Branco, M. J.

    2014-01-01

    This study deals with the problem of how to collect genuine and useful data about science classroom practices, and preserving the complex and holistic nature of teaching and learning. Additionally, we were looking for an instrument that would allow comparability and verifiability for teaching and research purposes. Given the multimodality of…

  3. The Student Actions Coding Sheet (SACS): An instrument for illuminating the shifts toward student-centered science classrooms

    Science.gov (United States)

    Erdogan, Ibrahim; Campbell, Todd; Hashidah Abd-Hamid, Nor

    2011-07-01

    This study describes the development of an instrument to investigate the extent to which student-centered actions are occurring in science classrooms. The instrument was developed through the following five stages: (1) student action identification, (2) use of both national and international content experts to establish content validity, (3) refinement of the item pool based on reviewer comments, (4) pilot testing of the instrument, and (5) statistical reliability and item analysis leading to additional refinement and finalization of the instrument. In the field test, the instrument consisted of 26 items separated into four categories originally derived from student-centered instruction literature and used by the authors to sort student actions in previous research. The SACS was administered across 22 Grade 6-8 classrooms by 22 groups of observers, with a total of 67 SACS ratings completed. The finalized instrument was found to be internally consistent, with acceptable estimates from inter-rater intraclass correlation reliability coefficients at the p Observation Protocol. Based on the analyses completed, the SACS appears to be a useful instrument for inclusion in comprehensive assessment packages for illuminating the extent to which student-centered actions are occurring in science classrooms.

  4. Learning with Web Tools, Simulations, and Other Technologies in Science Classrooms

    Science.gov (United States)

    Campbell, Todd; Wang, Shaing Kwei; Hsu, Hui-Yin; Duffy, Aaron M.; Wolf, Paul G.

    2010-10-01

    This position paper proposes the enhancement of teacher and student learning in science classrooms by tapping the enormous potential of information communication and technologies (ICTs) as cognitive tools for engaging students in scientific inquiry. This paper serves to challenge teacher-held assumptions about students learning science `from technology' with a framework and examples of students learning science `with technology'. Whereas a high percentage of students are finding their way in using ICTs outside of school, for the most part they currently are not doing so inside of school in ways that they find meaningful and relevant to their lives. Instead, the pedagogical approaches that are most often experienced are out-of-step with how students use ICTs outside of schools and are not supportive of learning framed by constructivism. Here we describe a theoretical and pedagogical foundation for better connecting the two worlds of students' lives: life in school and life outside of school. This position paper is in response to the changing landscape of students' lives. The position is transformative in nature because it proposes the use of cyber-enabled resources for cultivating and leveraging students new literacy skills by learning `with technology' to enhance science learning.

  5. Hanny and the Mystery of the Voorwerp: Citizen Science in the Classroom

    Science.gov (United States)

    Costello, K.; Reilly, E.; Bracey, G.; Gay, P.

    2012-08-01

    The highly engaging graphic comic Hanny and the Mystery of the Voorwerp is the focus of an eight-day educational unit geared to middle level students. Activities in the unit link national astronomy standards to the citizen science Zooniverse website through tutorials that lead to analysis of real data online. NASA resources are also included in the unit. The content of the session focused on the terminology and concepts - galaxy formation, types and characteristics of galaxies, use of spectral analysis - needed to classify galaxies. Use of citizen science projects as tools to teach inquiry in the classroom was the primary focus of the workshop. The session included a hands-on experiment taken from the unit, including a NASA spectral analysis activity called "What's the Frequency, Roy G Biv?" In addition, presenters demonstrated the galaxy classification tools found in the "Galaxy Zoo" project at the Zooniverse citizen science website.

  6. Using online pedagogy to explore student experiences of Science-Technology-Society-Environment (STSE) issues in a secondary science classroom

    Science.gov (United States)

    Ayyavoo, Gabriel Roman

    With the proliferation of 21st century educational technologies, science teaching and learning with digitally acclimatized learners in secondary science education can be realized through an online Science-Technology-Society-Environment (STSE)-based issues approach. STSE-based programs can be interpreted as the exploration of socially-embedded initiatives in science (e.g., use of genetically modified foods) to promote the development of critical cognitive processes and to empower learners with responsible decision-making skills. This dissertation presents a case study examining the online environment of a grade 11 physics class in an all-girls' school, and the outcomes from those online discursive opportunities with STSE materials. The limited in-class discussion opportunities are often perceived as low-quality discussions in traditional classrooms because they originate from an inadequate introduction and facilitation of socially relevant issues in science programs. Hence, this research suggests that the science curriculum should be inclusive of STSE-based issue discussions. This study also examines the nature of students' online discourse and, their perceived benefits and challenges of learning about STSE-based issues through an online environment. Analysis of interviews, offline classroom events and online threaded discussion transcripts draws from the theoretical foundations of critical reflective thinking delineated in the Practical Inquiry (P.I.) Model. The PI model of Cognitive Presence is situated within the Community of Inquiry framework, encompassing two other core elements, Teacher Presence and Social Presence. In studying Cognitive Presence, the online STSE-based discourses were examined according to the four phases of the P.I. Model. The online discussions were measured at macro-levels to reveal patterns in student STSE-based discussions and content analysis of threaded discussions. These analyses indicated that 87% of the students participated in

  7. Ways to prepare future teachers to teach science in multicultural classrooms

    Science.gov (United States)

    Billingsley, Berry

    2016-06-01

    Roussel De Carvalho uses the notion of superdiversity to draw attention to some of the pedagogical implications of teaching science in multicultural schools in cosmopolitan cities such as London. De Carvalho makes the case that if superdiverse classrooms exist then Science Initial Teacher Education has a role to play in helping future science teachers to become more knowledgeable and reflective about how to teach school students with a range of worldviews and religious beliefs. The aim of this paper is to take that proposition a step further by considering what the aims and content of a session in teacher education might be. The focus is on helping future teachers develop strategies to teach school students to think critically about the nature of science and what it means to have a scientific worldview. The paper draws on data gathered during an interview study with 28 students at five secondary schools in England. The data was analysed to discover students' perceptions of science and their perceptions of the way that science responds to big questions about being human. The findings are used to inform a set of three strategies that teachers could use to help young people progress in their understanding of the nature of science. These strategies together with the conceptual framework that underpins them are used to develop a perspective on what kinds of pedagogical content knowledge teacher education might usefully provide.

  8. Using Technology in the Classroom

    Science.gov (United States)

    Boles, Stephanie Reeve

    2011-01-01

    The author describes how she has come to use technology in her classroom over the years. Her main topics include using the internet, experiencing podcasts, using technology for assessment, and recording results from science research. (Contains 3 online resources and 5 figures.)

  9. Intertextuality in Read-Alouds of Integrated Science-Literacy Units in Urban Primary Classrooms: Opportunities for the Development of Thought and Language

    Science.gov (United States)

    Varelas, Maria; Pappas, Christine C.

    2006-01-01

    The nature and evolution of intertextuality was studied in 2 urban primary-grade classrooms, focusing on read-alouds of an integrated science-literacy unit. The study provides evidence that both debunks deficit theories for urban children by highlighting funds of knowledge that these children bring to the classroom and the sense they make of them…

  10. Classroom

    Indian Academy of Sciences (India)

    in a classroom situation. We may suggest strategies for dealing with them, or invite responses, or both. ... research, could then both inject greater vigour into teaching of ... ture, forestry and fishery sciences, management of natural resources.

  11. Deoxyribonucleic Acid and Other Words Students Avoid Speaking Aloud: Evaluating the Role of Pronunciation on Participation in Secondary School Science Classroom Conversations

    Science.gov (United States)

    Beck, Stacie Elizabeth

    Student's verbal participation in science classrooms is an essential element in building the skills necessary for proficiency in scientific literacy and discourse. The myriad of new, multisyllabic vocabulary terms introduced in one year of secondary school biology instruction can overwhelm students and further impede the self-efficacy needed for concise constructions of scientific explanations and arguments. Factors inhibiting students' inclination to answer questions, share ideas and respond to peers in biology classrooms include confidence and self-perceived competence in appropriately speaking the language of science. Providing students with explicit, engaging instruction in methods to develop vocabulary for use in expressing conclusions is critical for expanding comprehension of science concepts. This study fused the recommended strategies for engaging vocabulary instruction with linguistic practices for teaching pronunciation to examine the relationship between a student's ability to pronounce challenging bio-terminology and their propensity to speak in teacher-led, guided classroom discussions. Interviews, surveys, and measurements quantifying and qualifying students' participation in class discussions before and after explicit instruction in pronunciation were used to evaluate the potential of this strategy as an appropriate tool for increasing students' self-efficacy and willingness to engage in biology classroom conversations. The findings of this study showed a significant increase in student verbal participation in classroom discussions after explicit instruction in pronunciation combined with vocabulary literacy strategies. This research also showed an increase in the use of vocabulary words in student comments after the intervention.

  12. "Kindergarten, can I have your eyes and ears?" politeness and teacher directive choices in inquiry-based science classrooms

    Science.gov (United States)

    Oliveira, Alandeom Wanderlei

    2009-12-01

    This study explores elementary teachers' social understandings and employment of directives and politeness while facilitating inquiry science lessons prior and subsequent to their participation in a summer institute in which they were introduced to the scholarly literature on regulative discourse (directives used by teachers to regulate student behavior). A grounded theory analysis of the institute professional development activities revealed that teachers developed an increased awareness of the authoritative functions served by impolite or direct directives (i.e., pragmatic awareness). Furthermore, a comparative microethnographic analysis of participants' inquiry-based classroom practices revealed that after the institute teachers demonstrated an increased ability to share authority with students by strategically making directive choices that were more polite, indirect, inclusive, involvement-focused and creative. Such ability led to a reduced emphasis on teacher regulation of student compliance with classroom behavioral norms and an increased focus on the discursive organization of the inquiry-based science learning/teaching process. Despite teachers' increased pragmatic awareness, teacher-student linguistic relationships did not become entirely symmetrical subsequent to their participation in the summer institute (i.e., teacher authority was not completely relinquished or lost). Based on such findings, it is argued that teachers need to develop higher levels of pragmatic awareness to become effectively prepared to engage in language-mediated teacher-student interaction in the context of inquiry-based science classroom discourse.

  13. Flipped Classroom Approach

    Directory of Open Access Journals (Sweden)

    Fezile Ozdamli

    2016-07-01

    Full Text Available Flipped classroom is an active, student-centered approach that was formed to increase the quality of period within class. Generally this approach whose applications are done mostly in Physical Sciences, also attracts the attention of educators and researchers in different disciplines recently. Flipped classroom learning which wide-spreads rapidly in the world, is not well recognized in our country. That is why the aim of study is to attract attention to its potential in education field and provide to make it recognize more by educators and researchers. With this aim, in the study what flipped classroom approach is, flipped classroom technology models, its advantages and limitations were explained.

  14. Secondary science teachers' attitudes toward and beliefs about science reading and science textbooks

    Science.gov (United States)

    Yore, Larry D.

    Science textbooks are dominant influences behind most secondary science instruction but little is known about teachers' approach to science reading. The purpose of this naturalistic study was to develop and validate a Science and Reading Questionnaire to assess secondary science teachers' attitudes toward science reading and their beliefs or informed opinions about science reading. A survey of 428 British Columbia secondary science teachers was conducted and 215 science teachers responded. Results on a 12-item Likert attitude scale indicated that teachers place high value on reading as an important strategy to promote learning in science and that they generally accept responsibility for teaching content reading skills to science students. Results on a 13-item Likert belief scale indicated that science teachers generally reject the text-driven model of reading, but they usually do not have well-formulated alternative models to guide their teaching practices. Teachers have intuitive beliefs about science reading that partially agree with many research findings, but their beliefs are fragmented and particularly sketchy in regard to the cognitive and metacognitive skills required by readers to learn from science texts. The findings for attitude, belief, and total scales were substantiated by further questions in the Science and Reading Questionnaire regarding classroom practice and by individual interviews and classroom observations of a 15-teacher subsample of the questionnaire respondents.

  15. Classroom

    Indian Academy of Sciences (India)

    "Classroom" is equally a forum for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science. ! Quantum Theory of the Doppler Effed. Generally text books give only the wave ...

  16. Classroom

    Indian Academy of Sciences (India)

    responses, or both. "Classroom" is equally a forum for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science. ... I shall give the solution to the problem, along with relevant.

  17. Integrating ICTs into the Environmental Science Primary School Classroom in Chegutu District, Zimbabwe: Problems and Solutions

    Science.gov (United States)

    Shadreck, Mandina

    2015-01-01

    This study investigated primary school teachers' perceptions of the barriers and challenges preventing them from integrating ICTs in the environmental science classroom. The study adopted a qualitative research approach that is in line with the phenomenological perspective as it sought to acquire knowledge through understanding the direct…

  18. An Integrative Review of In-Class Activities That Enable Active Learning in College Science Classroom Settings

    Science.gov (United States)

    Arthurs, Leilani A.; Kreager, Bailey Zo

    2017-01-01

    Engaging students in active learning is linked to positive learning outcomes. This study aims to synthesise the peer-reviewed literature about "active learning" in college science classroom settings. Using the methodology of an integrative literature review, 337 articles archived in the Educational Resources Information Center (ERIC) are…

  19. Promoting 21st-Century Skills in the Science Classroom by Adapting Cookbook Lab Activities: The Case of DNA Extraction of Wheat Germ

    Science.gov (United States)

    Alozie, Nonye M.; Grueber, David J.; Dereski, Mary O.

    2012-01-01

    How can science instruction engage students in 21st-century skills and inquiry-based learning, even when doing simple labs in the classroom? We collaborated with teachers in professional development workshops to transform "cookbook" activities into engaging laboratory experiences. We show how to change the common classroom activity of DNA…

  20. Measuring student engagement in science classrooms: An investigation of the contextual factors and longitudinal outcomes

    Science.gov (United States)

    Spicer, Justina Judy

    using the results for chapters two and three to identify aspects of engagement and learning in science. These findings motivate a set of variables and analytic approach that is undertaken in chapter four. Specifically, the questions how engagement influences experiences in ninth grade science and students' interest in pursuing a career in STEM using the HSLS:09 data. This multifaceted study contributes to the conceptualization of student engagement, and will help bring clarity to the relationship among engagement, context, and long-term outcomes in science. Engagement is more than being on-task or paying attention, but is a condition influenced by many factors including student background, the learning context of the classroom, teacher characteristics, and the features of instruction. Understanding this relationship between engagement and contextual factors is helpful in uncovering teacher actions and instructional activities that may elicit higher engagement in science classes. These findings highlight the importance of science instruction using more cognitively-demanding activities, such as problem-based learning.

  1. Through the Looking Glass: Examining the Practice of Science Classroom Dissection with a Multi-Faceted Lens

    Science.gov (United States)

    Witte, Melissa Marie

    2014-01-01

    Dissection of lab specimens is a common procedure in science classrooms, yet there are many unasked and unexamined questions relating to this practice. In addition to ethical considerations, there are personal and environmental health impacts of using conventional dissection, which has historically included animals and animal organs embalmed in…

  2. A Review of Multi-Sensory Technologies in a Science, Technology, Engineering, Arts and Mathematics (STEAM) Classroom

    Science.gov (United States)

    Taljaard, Johann

    2016-01-01

    This article reviews the literature on multi-sensory technology and, in particular, looks at answering the question: "What multi-sensory technologies are available to use in a science, technology, engineering, arts and mathematics (STEAM) classroom, and do they affect student engagement and learning outcomes?" Here engagement is defined…

  3. Using Virtual Reality to Bring Ocean Science Field Experiences to the Classroom and Beyond

    Science.gov (United States)

    Waite, A. J.; Rosenberg, A.; Frehm, V.; Gravinese, P.; Jackson, J.; Killingsworth, S.; Williams, C.

    2017-12-01

    While still in its infancy, the application of virtual reality (VR) technology to classroom education provides unparalleled opportunities to transport students to otherwise inaccessible localities and increase awareness of and engagement in STEAM fields. Here we share VR programming in development by the ANGARI Foundation, a 501(c)(3) nonprofit committed to advancing ocean science research and education. ANGARI Foundation's series of thematic VR films features the research of ocean scientists from onboard the Foundation's research vessel, R/V ANGARI. The films are developed and produced through an iterative process between expedition scientists, the film production team, and ANGARI staff and Educator Council members. Upon completion of filming, the K-12 and informal educators of ANGARI's Educator Council work with ANGARI staff and affiliated scientists to develop and implement standards-aligned (e.g. Next Generation Science Standards and International Baccalaureate) lesson plans for the classroom. The goal of ANGARI Foundation's VR films is to immerse broad audiences in the marine environment, while actively engaging them in the at-sea scientific methods of expert scientists, ultimately increasing knowledge of our oceans and promoting their conservation. The foundation's VR films and developed lessons are made available for free to the public via YouTube and www.ANGARI.org. While South Florida educators may request that ANGARI Foundation visit their classrooms and bring the necessary headsets to run the experience, the Foundation is also partnering with VR hardware companies to facilitate the acquisition and adoption of VR headsets by schools in the U.S. and abroad. In this presentation we will share our most recent VR film that highlights coral reef ecosystems and the Florida Reef Tract, taking an interdisciplinary approach to investigating how it has changed over time and the issues and opportunities it currently faces. We will also discuss classroom

  4. Classroom

    Indian Academy of Sciences (India)

    "Classroom" is equally a foru11J. for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science. Point Set Topological ... a new way of looking at this problem and we will prove.

  5. Using constructivist teaching strategies in high school science classrooms to cultivate positive attitudes toward science

    Science.gov (United States)

    Heron, Lory Elen

    This study investigated the premise that the use of constructivist teaching strategies (independent variable) in high school science classrooms can cultivate positive attitudes toward science (dependent variable) in high school students. Data regarding the relationship between the use of constructivist strategies and change in student attitude toward science were collected using the Science Attitude Assessment Tool (SAAT) (Heron & Beauchamp, 1996). The format of this study used the pre-test, post-test, control group-experimental group design. The subjects in the study were high school students enrolled in biology, chemistry, or environmental science courses in two high schools in the western United States. Ten teachers and twenty-eight classes, involving a total of 249 students participated in the study. Six experimental group teachers and four control group teachers were each observed an average of six times using the Science Observation Guide (Chapman, 1995) to measure the frequency of observed constructivist behaviors. The mean for the control group teachers was 12.89 and the mean for experimental group teachers was 20.67; F(1, 8) = 16.2, p =.004, revealing teaching behaviors differed significantly between the two groups. After a four month experimental period, the pre-test and post-test SAAT scores were analyzed. Students received a score for their difference in positive attitude toward science. The null hypothesis stating there would be no change in attitude toward science as a subject, between students exposed to constructivist strategies, and students not exposed to constructivist strategies was rejected F(1, 247) = 8.04, p =.005. The control group had a generally higher reported grade in their last science class than the experimental group, yet the control group attitude toward science became more negative (-1.18) while attitude toward science in the experimental group became more positive (+1.34) after the four-month period. An analysis of positive

  6. Exoplanet Science in the Classroom: Learning Activities for an Introductory Physics Course

    Science.gov (United States)

    Della-Rose, Devin; Carlson, Randall; de La Harpe, Kimberly; Novotny, Steven; Polsgrove, Daniel

    2018-03-01

    Discovery of planets outside our solar system, known as extra-solar planets or exoplanets for short, has been at the forefront of astronomical research for over 25 years. Reports of new discoveries have almost become routine; however, the excitement surrounding them has not. Amazingly, as groundbreaking as exoplanet science is, the basic physics is quite accessible to first-year physics students, as discussed in previous TPT articles. To further illustrate this point, we developed an iOS application that generates synthetic exoplanet data to provide students and teachers with interactive learning activities. Using introductory physics concepts, we demonstrate how to estimate exoplanet mass, radius, and density from the app output. These calculations form the basis for a diverse range of classroom activities. We conclude with a summary of exoplanet science resources for teachers.

  7. Initiating New Science Partnerships in Rural Education (INSPIRE): Enhancing Scientific Communication by Bringing STEM Research into the Classroom

    Science.gov (United States)

    Pierce, D.; Radencic, S.; Funderburk, W. K.; Walker, R. M.; Jackson, B. S.; Dawkins, K. S.; Schmitz, D.; Bruce, L. M.; McNeal, K.

    2014-12-01

    INSPIRE, a five-year partnership between Mississippi State University and three local school districts, is designed to strengthen the communication skills of graduate Fellows in geosciences, physics, astronomy, chemistry, and engineering as they incorporate their research into inquiry-based lessons in 7th - 12th grade science and math classrooms. All lesson plans designed and taught by the graduate Fellows must include one or more connections to their research, and these connections must be demonstrated to the students during the lessons. International research partnerships with Australia, the Bahamas, England, and Poland provide valuable opportunities for graduate Fellows to conduct field work abroad and allow our partner teachers to have authentic research experiences that they can bring back to their classrooms. Program effectiveness has been examined using pre- and post-year attitudinal surveys, formal lesson plan documents, Fellow and teacher journals, focus group meetings with a project evaluator, and direct observation of Fellow-led classroom activities. Analyses of data gathered during the past four years of the partnership will be presented that examine the diversity in approaches taken by Fellows to communicate big ideas, changes in the ability of Fellows to find connections between their research and classroom lessons while keeping them aligned with state and national standards, and the quality of the mentorship provided to the Fellows by our partner teachers. INSPIRE is funded by the Graduate K-12 (GK-12) STEM Fellowship Program of the National Science Foundation (Award No. DGE-0947419).

  8. The effects of departmentalized and self-contained classrooms on fifth-grade students' achievement in science on the Georgia Criterion Referenced Competency Test

    Science.gov (United States)

    Koch, Lisa S.

    Elementary instruction of fifth grade classrooms was found to be primarily in two organizational models in a school district northwest of Atlanta, Georgia. The self-contained classroom provided a generalist teacher responsible for the instruction of all academic subjects to one group of students throughout the day, while departmentalized classrooms were structured utilizing one teacher for the instruction of one or two content areas, and students rotated throughout the day for each of the academic subjects. The majority of studies looking at the effect of instructional organization were concentrated in the content areas of mathematics and reading. This quantitative study, utilized an ex post facto methodology to determine whether fifth grade students attending departmentalized schools or self-contained classrooms had higher student achievement in science as measured by the Georgia Criterion Referenced Competency Test (CRCT). The statistical data was collected through the Georgia Department of Education and included raw mean scores of over 500 students attending departmentalized schools and 500 students attending self-contained classrooms, along with the various subgroups such as gender, ethnicity status, English language learners (ELL), and students with disability (SWD) placement. This data was analyzed to show if a significant statistical difference emerged from either instructional organization. The overall results that emerged from the archival data suggested no significant difference in student achievement existed for almost all subgroups tested of the total 1000+ participant scores used in the study. The results also did however, showed the departmentalization model of instruction had a slight advantage over self-contained classrooms for male students with disabilities.

  9. Promoting Collaborative Classrooms: The Impacts of Interdependent Cooperative Learning on Undergraduate Interactions and Achievement.

    Science.gov (United States)

    Premo, Joshua; Cavagnetto, Andy; Davis, William B; Brickman, Peggy

    2018-06-01

    Collaboration is an important career skill and vital to student understanding of the social aspects of science, but less is known about relationships among collaborative-learning strategies, classroom climate, and student learning. We sought to increase the collaborative character of introductory undergraduate laboratory classrooms by analyzing a 9-week intervention in 10 classrooms ( n = 251) that participated in cooperative-learning modules (promoting interdependence via a modified jigsaw technique). Students in an additional 10 classrooms ( n = 232) completed the same material in an unstructured format representative of common educational practice. Results showed that, when between-class variance was controlled for, intervention students did not score higher on weekly quizzes, but science interest and prior science experience had a reduced relationship to quiz performance in intervention classrooms. Also, intervention classrooms showed increased collaborative engagement at both whole-class and individual levels (24 students at three time points), but the intervention was only one of several factors found to account for late-intervention classroom collaborative engagement (prosocial behavior and discussion practices). Taken together, findings suggest that integrating interdependence-based tasks may foster collaborative engagement at both small-group and whole-classroom levels, but by itself may not be enough to promote increased student achievement.

  10. Classroom-based narrative and vocabulary instruction: results of an early-stage, nonrandomized comparison study.

    Science.gov (United States)

    Gillam, Sandra Laing; Olszewski, Abbie; Fargo, Jamison; Gillam, Ronald B

    2014-07-01

    This nonrandomized feasibility study was designed to provide a preliminary assessment of the impact of a narrative and vocabulary instruction program provided by a speech-language pathologist (SLP) in a regular classroom setting. Forty-three children attending 2 first-grade classrooms participated in the study. Children in each classroom were divided into high- and low-risk subgroups on the basis of their performance on a narrative test. Narrative and vocabulary instruction was provided by an SLP in 1 classroom for three 30-min periods per week for 6 weeks. The children in the experimental classroom made clinically significant improvements on narrative and vocabulary measures; children in the comparison classroom did not. Within the experimental classroom, children in the high-risk subgroup demonstrated greater gains in narration and fewer gains in vocabulary than children in the low-risk subgroup. There were no subgroup differences in the comparison classroom. These preliminary results provide early evidence of the feasibility of implementing a narrative instruction program in a classroom setting. Children at a high risk for language difficulties appeared to profit more from the narrative instruction than from the embedded vocabulary instruction. More extensive research on this instructional program is warranted.

  11. Connecting Research in Science Literacy and Classroom Practice: A Review of Science Teaching Journals in Australia, the UK and the United States, 1998-2008

    Science.gov (United States)

    Hand, Brian; Yore, Larry D.; Jagger, Susan; Prain, Vaughan

    2010-01-01

    In the last 15 years (1994-2009), there has been considerable increased research interest in: (1) characterising the distinctive nature and constitutive elements of science literacy and (2) investigating classroom practices or necessary conditions that enable students to acquire this disciplinary capacity. This raises the question of the extent to…

  12. Facilitating Elementary Science Teachers' Implementation of Inquiry-Based Science Teaching

    Science.gov (United States)

    Qablan, Ahmad M.; DeBaz, Theodora

    2015-01-01

    Preservice science teachers generally feel that the implementation of inquiry-based science teaching is very difficult to manage. This research project aimed at facilitating the implementation of inquiry-based science teaching through the use of several classroom strategies. The evaluation of 15 classroom strategies from 80 preservice elementary…

  13. AN ACTIVITY THEORY-BASED ANALYTIC FRAMEWORK FOR THE STUDY OF DISCOURSE IN SCIENCE CLASSROOMS

    Directory of Open Access Journals (Sweden)

    Rodrigo Drumond Vieira

    Full Text Available In this paper we introduce a new framework and methodology to analyze science classroom discourse and apply it to a university physics education course. Two fields of inquiry were adapted to develop the framework: activity theory and linguistics. From activity theory we applied levels of analysis (activity, actions, and operations to organize and structure the discourse analysis. From the field of linguistics we used resources from sociolinguistics and textual linguistics to perform analysis at the action and operation levels. Sociolinguistics gave us criteria to introduce contextualization cues into analysis in order to consider ways that participants segmented their classroom conversations. Textual linguistics provided a basis for categories of language organization (e.g, argumentation, explanation, narration, description, injunction, and dialogue. From this analysis, we propose an examination of a teacher's discourse moves, which we labeled Discursive Didactic Procedures (DDPs. Thus, the framework provides a means to situate these DDPs in different types of language organization, examine the roles such DDPs play in events, and consider the relevant didactic goals accomplished. We applied this framework to analyze the emergence and development of an argumentative situation and investigate its specific DDPs and their roles. Finally, we explore possible contributions of the framework to science education research and consider some of its limitations.

  14. Leaving the classroom: a didactic framework for education in environmental sciences

    Science.gov (United States)

    Dopico, Eduardo; Garcia-Vazquez, Eva

    2011-06-01

    In Continuous Education curricula in Spain, the programs on sciences of the environment are aimed toward understandings of sustainability. Teaching practice rarely leaves the classroom for outdoor field studies. At the same time, teaching practice is generally focused on examples of how human activities are harmful for ecosystems. From a pedagogic point of view, it is less effective to teach environmental science with negative examples such as catastrophe, tragedy, and crisis. Rather, teaching environmental sciences and sustainable development might be focused on positive human-environment relationships, which is both important for the further development of students and educators. Within rural settings, there are many such examples of positive relationships that can be emphasized and integrated into the curriculum. In this article, we propose teaching environmental sciences through immersion in rural cultural life. We discuss how fieldwork serves as a learning methodology. When students are engaged through research with traditional cultural practices of environmental management, which is a part of the real and traditional culture of a region, they better understand how positive pedagogy instead of pedagogy structured around how not-to-do examples, can be used to stimulate the interactions between humans and the environment with their students. In this way, cultural goods serve as teaching resources in science and environmental education. What we present is authentic cases where adults involved in a course of Continuous Education explore `environmentally-friendly' practices of traditional agriculture in Asturias (north of Spain), employing methodologies of cultural studies.

  15. The Teacher's Role in the Establishment of Whole-Class Dialogue in a Fifth Grade Science Classroom Using Argument-Based Inquiry

    Science.gov (United States)

    Benus, Matthew J.

    2011-01-01

    The purpose of this study was to examine the patterns of dialogue that were established and emerged in one experienced fifth-grade science teacher's classroom that used the argument-based inquiry (ABI) and the ways in which these patterns of dialogue and consensus-making were used toward the establishment of a grasp of science practice. Most…

  16. Predicting Pre-Service Classroom Teachers' Civil Servant Recruitment Examination's Educational Sciences Test Scores Using Artificial Neural Networks

    Science.gov (United States)

    Demir, Metin

    2015-01-01

    This study predicts the number of correct answers given by pre-service classroom teachers in Civil Servant Recruitment Examination's (CSRE) educational sciences test based on their high school grade point averages, university entrance scores, and grades (mid-term and final exams) from their undergraduate educational courses. This study was…

  17. Daily Autonomy Supporting or Thwarting and Students' Motivation and Engagement in the High School Science Classroom

    Science.gov (United States)

    Patall, Erika A.; Steingut, Rebecca R.; Vasquez, Ariana C.; Trimble, Scott S.; Pituch, Keenan A.; Freeman, Jen L.

    2018-01-01

    This diary study provided the first classroom-based empirical test of the relations between student perceptions of high school science teachers' various autonomy supporting and thwarting practices and students' motivation and engagement on a daily basis over the course of an instructional unit. Perceived autonomy supporting practices were…

  18. Correction Notice: Tools for Citizen-Science Recruitment and Student Engagement in Your Research and in Your Classroom

    Directory of Open Access Journals (Sweden)

    JMBE Production Editor

    2016-05-01

    Full Text Available Correction for Sarah E. Council and Julie E. Horvath, “Tools for Citizen-Science Recruitment and Student Engagement in Your Research and in Your Classroom,” which appeared in the Journal of Microbiology & Biology Education, volume 17, number 1, March 2016, pages 38–40.

  19. Neuroscientists' classroom visits positively impact student attitudes.

    Directory of Open Access Journals (Sweden)

    Janet L Fitzakerley

    Full Text Available The primary recommendation of the 2010 President's Council of Advisors on Science and Technology report on K-12 education was to inspire more students so that they are motivated to study science. Scientists' visits to classrooms are intended to inspire learners and increase their interest in science, but verifications of this impact are largely qualitative. Our primary goal was to evaluate the impact of a longstanding Brain Awareness classroom visit program focused on increasing learners understanding of their own brains. Educational psychologists have established that neuroscience training sessions can improve academic performance and shift attitudes of students from a fixed mindset to a growth mindset. Our secondary goal was to determine whether short interactive Brain Awareness scientist-in-the-classroom sessions could similarly alter learners' perceptions of their own potential to learn. Teacher and student surveys were administered in 4(th-6(th grade classrooms throughout Minnesota either before or after one-hour Brain Awareness sessions that engaged students in activities related to brain function. Teachers rated the Brain Awareness program as very valuable and said that the visits stimulated students' interest in the brain and in science. Student surveys probed general attitudes towards science and their knowledge of neuroscience concepts (particularly the ability of the brain to change. Significant favorable improvements were found on 10 of 18 survey statements. Factor analyses of 4805 responses demonstrated that Brain Awareness presentations increased positive attitudes toward science and improved agreement with statements related to growth mindset. Overall effect sizes were small, consistent with the short length of the presentations. Thus, the impact of Brain Awareness presentations was positive and proportional to the efforts expended, demonstrating that short, scientist-in-the-classroom visits can make a positive contribution to

  20. Undergraduate and Teaching Assistants' Perceptions of Classroom Community in Freshman Biological Sciences Laboratories and Implications for Persistence and Professional Development

    Science.gov (United States)

    Kardohely, Andrew

    The American economy hinges on the health and production of science, technology engineering and mathematics workforce (STEM). Although this sector of the American workforce represents a substantially fewer jobs the STEM workforce fuels job growth and sustainability in the other sectors of the American workforce. Unfortunately, over the next decade the U.S. will face an additional deficit of over a million STEM professionals, thus the need is here now to fill this deficit. STEM education should, therefore, dedicated to producing graduates. One strategy to produce more STEM graduates is through retention of student in STEM majors. Retention or persistence is highly related to student sense of belonging in academic environments. This study investigates graduate teaching assistants (GTAs) perceptions of their classrooms and the implications of those perceptions on professional development. Furthermore, correlations between classroom community and student desire to persist, as measured by Rovai's Classroom Community Index (CCI) were established (P=0.0311). The interactions are described and results are discussed. Using a framework of teaching for community, and a qualitative analytic case study with memo writing about codes and themes methodology supported several themes including passion to teach and dedication to student learning, innovation in teaching practices based on evidence, an intrinsic desire to seek a diverse set of feedback, and instructors can foster community in the classroom. Using the same methodology one emergent theme, a tacit rather than explicit understanding of reading the classroom, was also present in the current study. Based on the results and using a lens for professional development, strategies and suggestions are made regarding strategies to enhance instructors' use of feedback and professional development.

  1. Differentiating Science Instruction: Secondary science teachers' practices

    Science.gov (United States)

    Maeng, Jennifer L.; Bell, Randy L.

    2015-09-01

    This descriptive study investigated the implementation practices of secondary science teachers who differentiate instruction. Participants included seven high school science teachers purposefully selected from four different schools located in a mid-Atlantic state. Purposeful selection ensured participants included differentiated instruction (DI) in their lesson implementation. Data included semi-structured interviews and field notes from a minimum of four classroom observations, selected to capture the variety of differentiation strategies employed. These data were analyzed using a constant-comparative approach. Each classroom observation was scored using the validated Differentiated Instruction Implementation Matrix-Modified, which captured both the extent to which critical indicators of DI were present in teachers' instruction and the performance levels at which they engaged in these components of DI. Results indicated participants implemented a variety of differentiation strategies in their classrooms with varying proficiency. Evidence suggested all participants used instructional modifications that required little advance preparation to accommodate differences in students' interests and learning profile. Four of the seven participants implemented more complex instructional strategies that required substantial advance preparation by the teacher. Most significantly, this study provides practical strategies for in-service science teachers beginning to differentiate instruction and recommendations for professional development and preservice science teacher education.

  2. Teaching and Learning in the Mixed-Reality Science Classroom

    Science.gov (United States)

    Tolentino, Lisa; Birchfield, David; Megowan-Romanowicz, Colleen; Johnson-Glenberg, Mina C.; Kelliher, Aisling; Martinez, Christopher

    2009-12-01

    As emerging technologies become increasingly inexpensive and robust, there is an exciting opportunity to move beyond general purpose computing platforms to realize a new generation of K-12 technology-based learning environments. Mixed-reality technologies integrate real world components with interactive digital media to offer new potential to combine best practices in traditional science learning with the powerful affordances of audio/visual simulations. This paper introduces the realization of a learning environment called SMALLab, the Situated Multimedia Arts Learning Laboratory. We present a recent teaching experiment for high school chemistry students. A mix of qualitative and quantitative research documents the efficacy of this approach for students and teachers. We conclude that mixed-reality learning is viable in mainstream high school classrooms and that students can achieve significant learning gains when this technology is co-designed with educators.

  3. Negotiating Science and Engineering: An Exploratory Case Study of a Reform-Minded Science Teacher

    Science.gov (United States)

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-01-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the…

  4. Preparing teachers to create a mainstream science classroom conducive to the needs of English-language learners: A feminist action research project

    Science.gov (United States)

    Buck, Gayle; Mast, Colette; Ehlers, Nancy; Franklin, Elizabeth

    2005-11-01

    A feminist action research team, which consisted of a science educator, an English-language learner (ELL) educator, a first-year science teacher, and a graduate assistant, set a goal to work together to explore the process a beginning teacher goes through to establish a classroom conducive to the needs of middle-level ELL learners. The guiding questions of the study were answered by gathering a wealth of data over the course of 5 months and taken from the classroom, planning sessions, and researchers and students. These data were collected by observations, semistructured interviews, and written document reviews. The progressive analysis ultimately revealed that: (a) successful strategies a beginning teacher must utilize for teaching middle-level ELL children in a mainstream classroom involve complex structural considerations that are not part of the teacher's preparation; (b) learning increases for all children, but there are differences in learning achievement between ELL and non-ELL children; and (c) student and peer feedback proved to be an effective means of enhancing the growth of a beginning teacher seeking to increase her skills in teaching ELL learners. The experiences and findings from this project have implications for teacher preparation programs committed to preparing educators to teach science to all children.

  5. The Student Actions Coding Sheet (SACS): An Instrument for Illuminating the Shifts toward Student-Centered Science Classrooms

    Science.gov (United States)

    Erdogan, Ibrahim; Campbell, Todd; Abd-Hamid, Nor Hashidah

    2011-01-01

    This study describes the development of an instrument to investigate the extent to which student-centered actions are occurring in science classrooms. The instrument was developed through the following five stages: (1) student action identification, (2) use of both national and international content experts to establish content validity, (3)…

  6. Common Core Math in the K-8 Classroom: Results from a National Teacher Survey

    Science.gov (United States)

    Bay-Williams, Jennifer

    2016-01-01

    Successful implementation of the Common Core State Standards for Mathematics (CCSS-M) should result in noticeable differences in primary and middle school math classrooms across the United States. "Common Core Math in the K-8 Classroom: Results from a National Teacher Survey" takes a close look at how educators are implementing the…

  7. Climate change in the classroom: Reaching out to middle school students through science and math suitcase lessons

    Science.gov (United States)

    Jacobo, A. C.; Collay, R.; Harris, R. N.; de Silva, L.

    2011-12-01

    We have formed a link between the Increasing Diversity in Earth Sciences (IDES) program with the Science and Math Investigative Learning Experiences (SMILE) program, both at Oregon State University. The IDES mission is to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population and the SMILE mission is to provide science and math enrichment for underrepresented and other educationally underserved students in grades 4-12. Traditionally, underserved schools do not have enough time or resources to spend on science and mathematics. Furthermore, numerous budget cuts in many Oregon school districts have negatively impacted math and science cirriculum. To combat this trend we have designed suitcase lessons in climate change that can be carried to a number of classrooms. These lesson plans are scientifically rich and economically attractive. These lessons are designed to engage students in math and science through climate change presentations, group discussions, and hands-on activities. Over the past year we have familiarized ourselves with the academic ability of sixth and seventh graders through in-class observation in Salem Oregon. One of the suit case lessons we developed focuses on climate change by exploring the plight of polar bears in the face of diminishing sea ice. Our presentation will report the results of this activity.

  8. Effectiveness of various innovative learning methods in health science classrooms: a meta-analysis.

    Science.gov (United States)

    Kalaian, Sema A; Kasim, Rafa M

    2017-12-01

    This study reports the results of a meta-analysis of the available literature on the effectiveness of various forms of innovative small-group learning methods on student achievement in undergraduate college health science classrooms. The results of the analysis revealed that most of the primary studies supported the effectiveness of the small-group learning methods in improving students' academic achievement with an overall weighted average effect-size of 0.59 in standard deviation units favoring small-group learning methods. The subgroup analysis showed that the various forms of innovative and reform-based small-group learning interventions appeared to be significantly more effective for students in higher levels of college classes (sophomore, junior, and senior levels), students in other countries (non-U.S.) worldwide, students in groups of four or less, and students who choose their own group. The random-effects meta-regression results revealed that the effect sizes were influenced significantly by the instructional duration of the primary studies. This means that studies with longer hours of instruction yielded higher effect sizes and on average every 1 h increase in instruction, the predicted increase in effect size was 0.009 standard deviation units, which is considered as a small effect. These results may help health science and nursing educators by providing guidance in identifying the conditions under which various forms of innovative small-group learning pedagogies are collectively more effective than the traditional lecture-based teaching instruction.

  9. Fight Obesity in the Classroom

    Science.gov (United States)

    Bratsis, Michael E.

    2012-01-01

    U.S. health experts declared obesity an epidemic over a decade ago. Schools have tried to implement prevention programs for students, but as budgets shrink, educating students about obesity is increasingly falling to classroom instructors, including science teachers. The good news is that obesity-related classroom activities can be engaging, and…

  10. Gender Equity: Still Knocking at the Classroom Door.

    Science.gov (United States)

    Sadker, David

    1999-01-01

    Subtlety and complacency mask ongoing gender bias in today's classrooms. Updates are presented concerning career segregation; single-sex classrooms; safety and health problems; dropout rates; gifted programs; male/female stereotypes; classroom interactions; SAT scores; math, science and technology gender gaps; political reversals; and female…

  11. The effect of the flipped classroom on urban high school students' motivation and academic achievement in a high school science course

    Science.gov (United States)

    Dixon, Keshia L.

    This study investigated the effect of the flipped classroom on urban high school students' motivation and academic achievement in a high school science course. In this quantitative study, the sample population was comprised of North Star High School 12th grade students enrolled in human anatomy and physiology. A quasi-experimental, pretest-posttest non-equivalent group design was conducted. After receipt of Liberty University Institutional Review Board approval and the school district's Department of Research and Evaluation for School Improvement, students completed a pretest comprised of the Science Motivation Questionnaire II (SMQ-II) and the Human Anatomy and Physiology Unit Test. Participants in the experimental group engaged in the treatment, the flipped classroom, using instructional materials on the educational website, Edmodo(TM), and applied content material taught using hands-on activities inclusive of assigned laboratory experiments. Participants in the control group received instruction using traditional face-to-face lecture-homework format while also engaging in assigned laboratory experiments. After the completion of the treatment all participants completed a posttest. Data from both the pretest and posttest was statistically analyzed individually using two separate one-way ANOVA/ANCOVA analyses; and researcher reported the results of the statistical analyses. After completion of the analyses, and interpretation of the results, recommendations for future research were given.

  12. Bringing Real World Underwater Science, Engineering and Technology in Tomorrow's Classroom

    Science.gov (United States)

    Livingston, C.

    2012-04-01

    What do Remotely Operated Vehicles (ROVs), Ocean Science, Engineering and Technology have in common with science education in today's classroom? They all meet the growing demand for science, technology, engineering, and mathematics (STEM) professionals in tomorrow's U.S. workforce. Engaging students in real world science experiences will help them develop skills such as critical thinking, problem solving, collaboration, communication, innovation, and creativity. These skills are crucial to building a strong, competitive workforce in an integrated global economy. Fifth grade students from St. Andrew's School of Math and Science in Charleston, SC, USA science classes were introduced to engineering and robotics by using a combination of two underwater ROVs programs from the Office of Naval Research (SeaPerch) and Marine Advanced Technology Education (MATE). Students were grouped in teams as "real scientists" to design and construct a ROV. Students selected their role from a list of engineering positions, and researched how to construct the best ROV. Students created blueprints and models of their ROV design. Scientists/engineers from various local agencies were scheduled to come and share their expertise with the students. On World Ocean Day, a presentation was planned for fifth grade students to work closely with kindergarten through fourth grade students. The purpose of the day was two-fold; it provided students the opportunity to peer teach and the opportunity to present their experiences to a wide audience. All students presented their designs and demonstrated their ROV's movement capabilities in child size pools. They also modeled how submersible pilots communicate with scientists and other researchers while operating their newly designed ROV. As a culminating event, students visited a local marine science high school class with similar ROVs and evaluated their engineering designs in a fresh water pond.

  13. Science and Science Fiction

    Science.gov (United States)

    Oravetz, David

    2005-01-01

    This article is for teachers looking for new ways to motivate students, increase science comprehension, and understanding without using the old standard expository science textbook. This author suggests reading a science fiction novel in the science classroom as a way to engage students in learning. Using science fiction literature and language…

  14. Producing and Consuming the Controversial--A Social Media Perspective on Political Conversations in the Social Science Classroom

    Science.gov (United States)

    Andersson, Erik

    2016-01-01

    Teachers find it difficult to conduct political controversial conversations in the social science classroom and due to an increased use of social media in educational settings new challenges and possibilities are raised. The use of social media causes fundamental changes to the role of the learner who becomes a producer and consumer--a…

  15. Killing Curiosity? An Analysis of Celebrated Identity Performances among Teachers and Students in Nine London Secondary Science Classrooms

    Science.gov (United States)

    Archer, Louise; Dawson, Emily; DeWitt, Jennifer; Godec, Spela; King, Heather; Mau, Ada; Nomikou, Effrosyni; Seakins, Amy

    2017-01-01

    In this paper, we take the view that school classrooms are spaces that are constituted by complex power struggles (for voice, authenticity, and recognition), involving multiple layers of resistance and contestation between the "institution," teachers and students, which can have profound implications for students' science identity and…

  16. Science Fiction & Scientific Literacy

    Science.gov (United States)

    Czerneda, Julie E.

    2006-01-01

    The term "science fiction" has become synonymous, in the media at least, for any discovery in science too incredible or unexpected for the nonscientist to imagine. One of the most common classroom uses of science fiction is for students to pick out flaws in science fiction movies or television shows. Unfortunately, this approach can result in…

  17. Flipped Classroom Approach

    OpenAIRE

    Fezile Ozdamli; Gulsum Asiksoy

    2016-01-01

    Flipped classroom is an active, student-centered approach that was formed to increase the quality of period within class. Generally this approach whose applications are done mostly in Physical Sciences, also attracts the attention of educators and researchers in different disciplines recently. Flipped classroom learning which wide-spreads rapidly in the world, is not well recognized in our country. That is why the aim of study is to attract attention to its potential in education field and pr...

  18. Flipped Classroom as an Alternative Strategy for Teaching Stoichiometry

    Directory of Open Access Journals (Sweden)

    Norrie E. Gayeta

    2017-11-01

    Full Text Available This study aimed to compare the effectiveness of flipped classroom and traditional classroom instruction in measuring conceptual change and to determine if flipped classroom instruction would be an alternative method of teaching to traditional lecture method. This study covered the level of conceptual understanding of students on stoichiometry and the type of conceptual change before and after exposure to flipped and traditional classroom environment. Qualitative and quantitative research methods were used in the study. Respondents were two sections of third year Bachelor of Secondary Education, Biological Science. Frequency, percentage, ranking, mean, standard deviation, Hake factor test, and t-test were the statistical tools applied to answer specific questions. Results showed profound increase towards conceptual change representing a shift from intuitive understanding to correct incomplete understanding level. Thus, change for the better, in theoretical type was determined from pretest to posttest of students exposed to flipped and traditional classroom. Results also indicated that there is no significant difference on students’ conceptual change on stoichiometry exposed to flipped and traditional classroom environment thus, flipped classroom instruction can be used as an alternative teaching method to traditional lecture method in teaching stoichiometry

  19. Special science-fiction (Science Fiction Special).

    Science.gov (United States)

    Francais dans le Monde, 1985

    1985-01-01

    An issue devoted to the use of science fiction in the French language classroom discusses such topics as the development of the genre, literary techniques, themes, imagery, sociolinguistic elements, and potential classroom activities. (MSE)

  20. Teachers' Sensemaking about Implementation of an Innovative Science Curriculum Across the Settings of Professional Development and Classroom Enactment

    Science.gov (United States)

    de los Santos, Xeng

    Designing professional development that effectively supports teachers in learning new and often challenging practices remains a dilemma for teacher educators. Within the context of current reform efforts in science education, such as the Next Generation Science Standards, teacher educators are faced with managing the dilemma of how to support a large number of teachers in learning new practices while also considering factors such as time, cost, and effectiveness. Implementation of educative, reform-aligned curricula is one way to reach many teachers at once. However, one question is whether large-scale curriculum implementation can effectively support teachers in learning and sustaining new teaching practices. To address this dilemma, this study used a comparative, multiple case study design to investigate how secondary science teachers engaged in sensemaking about implementation of an innovative science curriculum across the settings of professional development and classroom enactment. In using the concept of sensemaking from organizational theory, I focused specifically on how teachers' roles in social organizations influenced their decisions to implement the curriculum in particular ways, with differing outcomes for their own learning and students' engagement in three-dimensional learning. My research questions explored: (1) patterns in teachers' occasions of sensemaking, including critical noticing of interactions among themselves, the curriculum, and their students; (2) how teachers' social commitments to different communities influenced their sensemaking; and, (3) how sustained sensemaking over time could facilitate teacher learning of rigorous and responsive science teaching practices. In privileging teachers' experiences in the classroom using the curriculum with their students, I used data generated primarily from teacher interviews with their case study coaches about implementation over the course of one school year. Secondary sources of data included

  1. The Use of Organising Purposes in Science Instruction as a Scaffolding Mechanism to Support Progressions: A Study of Talk in Two Primary Science Classrooms

    Science.gov (United States)

    Johansson, Annie-Maj; Wickman, Per-Olof

    2018-01-01

    Purpose: This study examines how different purposes can support teachers in their work with progressions as a part of a teaching sequences in science in primary school. Design/Method: The study was carried out in two classes working with inquiry and the events that took place in the classroom were filmed. In the study, we have chosen to use the…

  2. Curricular constraints, high-stakes testing and the reality of reform in high school science classrooms

    Science.gov (United States)

    Coble, Jennifer

    Through a series of open-ended interviews, this study investigated the beliefs of six third year high school science teachers about how they implement science education reform ideals in their practice and the contextual challenges they face as they attempt to implement reform. The teachers argue that the lack of connection between their curricula and students' lives serves as a significant obstacle to them utilizing more inquiry-based and student-centered strategies. In their science classes that are not subject to a high stakes exam, the teachers shared instances where they engage students in inquiry by refraining the focus of their curricula away from the decontextualized factual information and onto how the information relates to human experience. In their science classes subject to a high stakes test, however, the teachers confessed to feeling no choice but to utilize more teacher-centered strategies focused on information transmission. This study provides an in depth analysis of how the presence of high stakes tests discourages teachers from utilizing reform based teaching strategies within high school science classrooms.

  3. Real-world experiences of nuclear science in the classroom - What an individual can do

    International Nuclear Information System (INIS)

    Fox, M.R.

    1991-01-01

    Experience is showing that the public has yet to learn about the natural world, radiation, risk analysis, and energy, as well as other issues. This has occurred during a time in which the quality of education has declined in the US. As a former college professor who is married to a schoolteacher, the author realized that the two observations are linked. A communications gap has developed between science and the schools. Scientists perceive that once scientific advancements have taken place, new curriculum materials for schools automatically adapt to include these advancements. Teachers' schedules are typically so filled during and after school that new curriculum material is slowed in being introduced in the classroom. Thus, the question becomes, how do we bridge the gulf between scientists and the classroom? Scientists can be helpful to teachers in many ways. This paper is a summary of some of the activities and lessons learned in strengthening teacher-scientist relationships

  4. Contemporary Issues in Group Learning in Undergraduate Science Classrooms: A Perspective from Student Engagement.

    Science.gov (United States)

    Hodges, Linda C

    2018-06-01

    As the use of collaborative-learning methods such as group work in science, technology, engineering, and mathematics classes has grown, so has the research into factors impacting effectiveness, the kinds of learning engendered, and demographic differences in student response. Generalizing across the range of this research is complicated by the diversity of group-learning approaches used. In this overview, I discuss theories of how group-work formats support or hinder learning based on the ICAP (interactive, constructive, active, passive) framework of student engagement. I then use this model to analyze current issues in group learning, such as the nature of student discourse during group work, the role of group learning in making our classrooms inclusive, and how classroom spaces factor into group learning. I identify key gaps for further research and propose implications from this research for teaching practice. This analysis helps identify essential, effective, and efficient features of group learning, thus providing faculty with constructive guidelines to support their work and affirm their efforts.

  5. Factors Influencing Science Content Accuracy in Elementary Inquiry Science Lessons

    Science.gov (United States)

    Nowicki, Barbara L.; Sullivan-Watts, Barbara; Shim, Minsuk K.; Young, Betty; Pockalny, Robert

    2013-06-01

    Elementary teachers face increasing demands to engage children in authentic science process and argument while simultaneously preparing them with knowledge of science facts, vocabulary, and concepts. This reform is particularly challenging due to concerns that elementary teachers lack adequate science background to teach science accurately. This study examined 81 in-classroom inquiry science lessons for preservice education majors and their cooperating teachers to determine the accuracy of the science content delivered in elementary classrooms. Our results showed that 74 % of experienced teachers and 50 % of student teachers presented science lessons with greater than 90 % accuracy. Eleven of the 81 lessons (9 preservice, 2 cooperating teachers) failed to deliver accurate science content to the class. Science content accuracy was highly correlated with the use of kit-based resources supported with professional development, a preference for teaching science, and grade level. There was no correlation between the accuracy of science content and some common measures of teacher content knowledge (i.e., number of college science courses, science grades, or scores on a general science content test). Our study concluded that when provided with high quality curricular materials and targeted professional development, elementary teachers learn needed science content and present it accurately to their students.

  6. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  7. Exploring the Use of Audience Response Systems in Secondary School Science Classrooms

    Science.gov (United States)

    Kay, Robin; Knaack, Liesel

    2009-10-01

    An audience response systems (ARS) allows students to respond to multiple choice questions using remote control devices. Once the feedback is collected and displayed, the teacher and students discuss misconceptions and difficulties experienced. ARSs have been extremely popular and effective in higher education science classrooms, although almost no research has been done at the secondary school level. The purpose of this study was to conduct a detailed formative analysis of the benefits, challenges, and use of ARSs from the perspective of 213 secondary school science students. Perceived benefits were increased student involvement (engagement, participation, and attention) and effective formative assessment of student understanding. Perceived challenges included decreased student involvement and learning when ARSs were used for summative assessment, occasional technological malfunctions, resistance to using a new method of learning, and increased stress due to time constraints when responding to questions. Finally, students rated the use of ARSs significantly higher when it was used for formative as opposed to summative assessment.

  8. Good Intentions: AN Experiment in Middle School Single-Sex Science and Mathematics Classrooms with High Minority Enrollment

    Science.gov (United States)

    Baker, Dale

    This study examined the effects of single-sex middle school science and mathematics classrooms with high minority enrollment on achievement, affect, peer, and teacher-student interactions. All students earned higher grades in mathematics than in science. Girls earned higher grades than boys. The higher grades of girls were not clearly attributable to the singlesex environment, and aspects of the single-sex environment interfered with boys' achievement. The single-sex environment contributed to girls', but not boys', feelings of empowerment, peer support, and positive self-concept. The curriculum and pedagogy were better suited to girls than to boys, leading to discipline problems and hostile interactions. However, boys were more engaged in technology-based activities than girls. Overall, all-boy classes were less supportive learning environments than all-girl classes. Although the results replicate findings elsewhere, this is the only study to look at minority students in middle school.

  9. What Will Classroom Teachers Do With Shared Research Results?

    Science.gov (United States)

    Passow, M. J.; Weissel, J. K.; Cormier, M.; Newman, K. R.

    2005-12-01

    Scientists are passionate about the research problems they investigate, and wish to share their discoveries as widely as possible. Similarly, classroom teachers who are passionate about their subject can better foster student learning. One way to enhance such passions involves bringing teachers and scientists together to discuss cutting-edge discoveries and develop curricular materials based on the respective strengths of educators and investigators. Our presentation describes one example of this approach based on research about gas blowout structures offshore Virginia and North Carolina. Methane venting processes along continental margins may have important climatic, geotechnical, hazard, and resource implications. In 2000, shipboard surveys documented that large structures offshore VA-NC resulted from massive gas expulsion. Gas appears to be trapped in shelf edge deltas and stresses resulting from downslope creep is favoring its release. Scientists undertook a new expedition in 2004 to determine if there is present-day discharge of methane-rich fluids through the floors or walls of the blowouts or whether these seepage sites are relict features, and to gain insight into the origin of the vented methane. In July 2005, 12 teachers from New York and New Jersey met with the co-PIs (Weissel and Cormier), graduate student (Newman), and educational specialist (Passow) over a 2-day workshop to learn about how scientific problems are identified, how a research cruise is organized, what was learned through the measurements and analysis, and what might be possible significant impacts from such understandings. Based on what they learned, participants began development of classroom activities, Internet-based investigations, and constructed-response assessment items utilizing data and concepts from the project and other sources. The resulting curriculum units are designed for use in middle and high school chemistry, physics, earth science, and technology courses. Curricular

  10. Utilizing the National Research Council's (NRC) Conceptual Framework for the Next Generation Science Standards (NGSS): A Self-Study in My Science, Engineering, and Mathematics Classroom

    Science.gov (United States)

    Corvo, Arthur Francis

    Given the reality that active and competitive participation in the 21 st century requires American students to deepen their scientific and mathematical knowledge base, the National Research Council (NRC) proposed a new conceptual framework for K--12 science education. The framework consists of an integration of what the NRC report refers to as the three dimensions: scientific and engineering practices, crosscutting concepts, and core ideas in four disciplinary areas (physical, life and earth/spaces sciences, and engineering/technology). The Next Generation Science Standards (NGSS ), which are derived from this new framework, were released in April 2013 and have implications on teacher learning and development in Science, Technology, Engineering, and Mathematics (STEM). Given the NGSS's recent introduction, there is little research on how teachers can prepare for its release. To meet this research need, I implemented a self-study aimed at examining my teaching practices and classroom outcomes through the lens of the NRC's conceptual framework and the NGSS. The self-study employed design-based research (DBR) methods to investigate what happened in my secondary classroom when I designed, enacted, and reflected on units of study for my science, engineering, and mathematics classes. I utilized various best practices including Learning for Use (LfU) and Understanding by Design (UbD) models for instructional design, talk moves as a tool for promoting discourse, and modeling instruction for these designed units of study. The DBR strategy was chosen to promote reflective cycles, which are consistent with and in support of the self-study framework. A multiple case, mixed-methods approach was used for data collection and analysis. The findings in the study are reported by study phase in terms of unit planning, unit enactment, and unit reflection. The findings have implications for science teaching, teacher professional development, and teacher education.

  11. Teachers' implementation of gender-inclusive instructional strategies in single-sex and mixed-sex science classrooms

    Science.gov (United States)

    Parker, Lesley H.; Rennie, Léonie J.

    2002-09-01

    Debate continues over the benefits, or otherwise, of single-sex classes in science and mathematics, particularly for the performance of girls. Previous research and analyses of the circumstances surrounding the implementation of single-sex classes warn that the success of the strategy requires due consideration of the nature of the instructional environment for both boys and girls, together with appropriate support for the teachers involved. This article reports the circumstances under which teachers were able to implement gender-inclusive strategies in single-sex science classes in coeducational high schools and documents some of the difficulties faced. The study was part of the Single-Sex Education Pilot Project (SSEPP) in ten high schools in rural and urban Western Australia. Qualitative and quantitative data were gathered during the project from teachers, students and classroom observations. Overall, it was apparent that single-sex grouping created environments in which teachers could implement gender-inclusive science instructional strategies more readily and effectively than in mixed-sex settings. Teachers were able to address some of the apparent shortcomings of the students' previous education (specifically, the poor written and oral communication of boys and the limited experience of girls with 'hands-on' activities and open-ended problem solving). Further, in same-sex classrooms, sexual harassment which inhibited girls' learning was eliminated. The extent to which teachers were successful in implementing gender-inclusive instructional strategies, however, depended upon their prior commitment to the SSEPP as a whole, and upon the support or obstacles encountered from a variety of sources, including parents, the community, students, and non-SSEPP teachers.

  12. Understanding Curriculum, Instruction and Assessment within Eighth Grade Science Classrooms for Special Needs Students

    Science.gov (United States)

    Riedell, Kate Elizabeth

    The Individuals with Disabilities Education Act (IDEA, 2004) cemented the fact that students with disabilities must be placed in the least restrictive environment and be given the necessary supports to help them succeed (Lawrence-Brown, 2004). This provides significant challenges for general education teachers, especially in an era of standards based reform with the adoption of the Common Core State Standards (CCSSI, 2014) by most states, along with the Next Generation Science Standards (NGSS, 2013). While a variety of methods, strategies, and techniques are available to teachers, there is a dearth of literature that clearly investigates how teachers take into account the ability and motivation of students with special needs when planning and implementing curriculum, instruction, and assessment. Thus, this study sought to investigate this facet through the lens of differentiation, personalization, individualization and universal design for learning (UDL) (CAST, 2015), all of which are designed to meet the needs of diverse learners, including students with special needs. An embedded single-case study design (Yin, 2011) was used in this study with the case being differentiated and/or personalized curriculum, instruction and/or assessment, along with UDL for students with special needs, with each embedded unit of analysis being one eighth grade general education science teacher. Analyzing each sub-unit or case, along with a cross-case analysis, three eighth grade general education science teachers were observed over the course of two 10-day units of study in the fall and spring, as they collected artifacts and completed annotations within their electronic portfolios (ePortfolios). All three eighth grade general education science teachers collected ePortfolios as part of their participation in a larger study within California, "Measuring Next Generation Science Instruction Using Tablet-Based Teacher Portfolios," funded by the National Science Foundation. Each teacher

  13. Cognitive knowledge, attitude toward science, and skill development in virtual science laboratories

    Science.gov (United States)

    Babaie, Mahya

    The purpose of this quantitative, descriptive, single group, pretest posttest design study was to explore the influence of a Virtual Science Laboratory (VSL) on middle school students' cognitive knowledge, skill development, and attitudes toward science. This study involved 2 eighth grade Physical Science classrooms at a large urban charter middle school located in Southern California. The Buoyancy and Density Test (BDT), a computer generated test, assessed students' scientific knowledge in areas of Buoyancy and Density. The Attitude Toward Science Inventory (ATSI), a multidimensional survey assessment, measured students' attitudes toward science in the areas of value of science in society, motivation in science, enjoyment of science, self-concept regarding science, and anxiety toward science. A Virtual Laboratory Packet (VLP), generated by the researcher, captured students' mathematical and scientific skills. Data collection was conducted over a period of five days. BDT and ATSI assessments were administered twice: once before the Buoyancy and Density VSL to serve as baseline data (pre) and also after the VSL (post). The findings of this study revealed that students' cognitive knowledge and attitudes toward science were positively changed as expected, however, the results from paired sample t-tests found no statistical significance. Analyses indicated that VSLs were effective in supporting students' scientific knowledge and attitude toward science. The attitudes most changed were value of science in society and enjoyment of science with mean differences of 1.71 and 0.88, respectively. Researchers and educational practitioners are urged to further examine VSLs, covering a variety of topics, with more middle school students to assess their learning outcomes. Additionally, it is recommended that publishers in charge of designing the VSLs communicate with science instructors and research practitioners to further improve the design and analytic components of these

  14. Bridging Communities: Culturing a Professional Learning Community that Supports Novice Teachers and Transfers Authentic Science and Mathematics to the Classroom

    Science.gov (United States)

    Herbert, B. E.; Miller, H. R.; Loving, C. L.; Pedersen, S.

    2006-12-01

    Professional Learning Community Model for Alternative Pathways (PLC-MAP) is a partnership of North Harris Montgomery Community Colleges, Texas A&M University, and 11 urban, suburban, and rural school districts in the Greater Houston area focused on developing a professional learning community that increases the retention and quality of middle and high school mathematics and science teachers who are being certified through the NHMCCD Alternative Certification Program. Improved quality in teaching refers to increased use of effective inquiry teaching strategies, including information technology where appropriate, that engage students to ask worthy scientific questions and to reason, judge, explain, defend, argue, reflect, revise, and/or disseminate findings. Novice teachers learning to adapt or designing authentic inquiry in their classrooms face two enormous problems. First, there are important issues surrounding the required knowledgebase, habit of mind, and pedagogical content knowledge of the teachers that impact the quality of their lesson plans and instructional sequences. Second, many ACP intern teachers teach under challenging conditions with limited resources, which impacts their ability to implement authentic inquiry in the classroom. Members of our professional learning community, including scientists, mathematicians and master teachers, supports novice teachers as they design lesson plans that engage their students in authentic inquiry. The purpose of this research was to determine factors that contribute to success or barriers that prevent ACP secondary science intern and induction year teachers from gaining knowledge and engaging in classroom inquiry as a result of an innovative professional development experience. A multi-case study design was used for this research. We adopted a two-tail design where cases from both extremes (good and poor gains) were deliberately chosen. Six science teachers were selected from a total of 40+ mathematics and science

  15. The transfer of learning process: From an elementary science methods course to classroom instruction

    Science.gov (United States)

    Carter, Nina Leann

    The purpose of this qualitative multiple-case study was to explore the transfer of learning process in student teachers. This was carried out by focusing on information learned from an elementary science methods and how it was transferred into classroom instruction during student teaching. Participants were a purposeful sampling of twelve elementary education student teachers attending a public university in north Mississippi. Factors that impacted the transfer of learning during lesson planning and implementation were sought. The process of planning and implementing a ten-day science instructional unit during student teaching was examined through lesson plan documentation, in-depth individual interviews, and two focus group interviews. Narratives were created to describe the participants' experiences as well as how they plan for instruction and consider science pedagogical content knowledge (PCK). Categories and themes were then used to build explanations applying to the research questions. The themes identified were Understanding of Science PCK, Minimalism, Consistency in the Teacher Education Program, and Emphasis on Science Content. The data suggested that the participants lack in their understanding of science PCK, took a minimalistic approach to incorporating science into their ten-day instructional units, experienced inconsistencies in the teacher education program, and encountered a lack of emphasis on science content in their field experience placements. The themes assisted in recognizing areas in the elementary science methods courses, student teaching field placements, and university supervision in need of modification.

  16. Teacher classroom practices and Mathematics performance in ...

    African Journals Online (AJOL)

    The Mathematics teacher questionnaire, administered as part of the Trends in International Mathematics and Science Study (TIMSS) 2011, comprised questions pertaining to the classroom practices of Teacher Clarity, Classroom Discussion, Feedback, Formative Assessment, Problem Solving and Metacognitive Strategies, ...

  17. The Utility of Inquiry-Based Exercises in Mexican Science Classrooms: Reports from a Professional Development Workshop for Science Teachers in Quintana Roo, Mexico

    Science.gov (United States)

    Racelis, A. E.; Brovold, A. A.

    2010-12-01

    The quality of science teaching is of growing importance in Mexico. Mexican students score well below the world mean in math and science. Although the government has recognized these deficiencies and has implemented new policies aimed to improve student achievement in the sciences, teachers are still encountering in-class barriers to effective teaching, especially in public colleges. This paper reports on the utility of inquiry based exercises in Mexican classrooms. In particular, it describes a two-day professional development workshop with science teachers at the Instituto Tecnologico Superior in Felipe Carrillo Puerto in the Mexican state of Quintana Roo. Felipe Carrillo Puerto is an indigenous municipality where a significant majority of the population speak Maya as their first language. This alone presents a unique barrier to teaching science in the municipality, but accompanied with other factors such as student apathy, insufficient prior training of both students and teachers, and pressure to deliver specific science curriculum, science teachers have formidable challenges for effective science teaching. The goals of the workshop were to (1) have a directed discussion regarding science as both content and process, (2) introduce inquiry based learning as one tool of teaching science, and (3) get teachers to think about how they can apply these techniques in their classes.

  18. The impact of a Classroom Performance System on learning gains in a biology course for science majors

    Science.gov (United States)

    Marin, Nilo Eric

    This study was conducted to determine if the use of the technology known as Classroom Performance System (CPS), specifically referred to as "Clickers", improves the learning gains of students enrolled in a biology course for science majors. CPS is one of a group of developing technologies adapted for providing feedback in the classroom using a learner-centered approach. It supports and facilitates discussion among students and between them and teachers, and provides for participation by passive students. Advocates, influenced by constructivist theories, claim increased academic achievement. In science teaching, the results have been mixed, but there is some evidence of improvements in conceptual understanding. The study employed a pretest-posttest, non-equivalent groups experimental design. The sample consisted of 226 participants in six sections of a college biology course at a large community college in South Florida with two instructors trained in the use of clickers. Each instructor randomly selected their sections into CPS (treatment) and non-CPS (control) groups. All participants filled out a survey that included demographic data at the beginning of the semester. The treatment group used clicker questions throughout, with discussions as necessary, whereas the control groups answered the same questions as quizzes, similarly engaging in discussion where necessary. The learning gains were assessed on a pre/post-test basis. The average learning gains, defined as the actual gain divided by the possible gain, were slightly better in the treatment group than in the control group, but the difference was statistically non-significant. An Analysis of Covariance (ANCOVA) statistic with pretest scores as the covariate was conducted to test for significant differences between the treatment and control groups on the posttest. A second ANCOVA was used to determine the significance of differences between the treatment and control groups on the posttest scores, after

  19. Science Informational Trade Books: An Exploration of Text-based Practices and Interactions in a First-grade Classroom

    Science.gov (United States)

    Schreier, Virginia A.

    Although scholars have long advocated the use of informational texts in the primary grades, gaps and inconsistencies in research have produced conflicting reports on how teachers used these texts in the primary curriculum, and how primary students dealt with them during instruction and on their own (e.g., Saul & Dieckman, 2005). Thus, to add to research on informational texts in the primary grades, the purpose of this study was to examine: (a) a first-grade teacher's use of science informational trade books (SITBs) in her classroom, (b) the ways students responded to her instruction, and (c) how students interacted with these texts. My study was guided by a sociocultural perspective (e.g., Bakhtin, 1981; Vygotsky, 1978), providing me a lens to examine participants during naturally occurring social practices in the classroom, mediated by language and other symbolic tools. Data were collected by means of 28 observations, 6 semi-structured interviews, 21 unstructured interviews, and 26 documents over the course of 10 weeks. Three themes generated from the data to provide insight into the teacher's and students' practices and interactions with SITBs. First, the first-grade teacher used SITBs as teaching tools during guided conversations around the text to scaffold students' understanding of specialized vocabulary, science concepts, and text features. Her instruction with SITBs included shared reading lessons, interactive read-alouds and learning activities during two literacy/science units. However, there was limited use of SITBs during the rest of her reading program, in which she demonstrated a preference for narrative. Second, students responded to instruction by participating in guided conversations around the text, in which they used prior knowledge, shared ideas, and visual representations (e.g., illustrations, diagrams, labels, and captions) to actively make meaning of the text. Third, students interacted with SITBs on their own to make sense of science, in

  20. Science, mathematics and technology education in the US: a perspective from the "frontlines of the classroom to national policy"

    Directory of Open Access Journals (Sweden)

    R. A. Pertzborn

    2005-01-01

    Full Text Available In the past decade significant emphasis has been placed on increasing the involvement and influence of the professional scientific community in America's K-12 classrooms. The origins of this thrust have arisen from a variety of real and perceived crises occurring in America's K-12 classrooms. Projections for the nation's future workforce needs indicate an increased demand for science and technically literate workers, while fewer of the nation's students are pursuing advanced degrees in these academic areas of expertise. In an effort to address these issues and to impact the overall understanding and quality of science, math and technology education, several of the federal agencies have increasingly included a percentage of research funding devoted to the objective of improving the quality of kindergarten through Grade 12 (K-12, see Table 1 formal education and informal public outreach. To this end, NASA's Space Science Enterprise in particular has demonstrated a successful implementation approach and has been a national leader in forging strong partnerships with the education community to address these concerns.

  1. Classroom Experiment to Verify the Lorentz Force

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 3. Classroom Experiment to Verify the Lorentz Force. Somnath Basu Anindita Bose Sumit Kumar Sinha Pankaj Vishe S Chatterjee. Classroom Volume 8 Issue 3 March 2003 pp 81-86 ...

  2. Comparison between flipped classroom and lecture-based classroom in ophthalmology clerkship

    Science.gov (United States)

    Tang, Fen; Chen, Chuan; Zhu, Yi; Zuo, Chengguo; Zhong, Yimin; Wang, Nan; Zhou, Lijun; Zou, Yuxian; Liang, Dan

    2017-01-01

    ABSTRACT Background: In recent years, the flipped classroom method of teaching has received much attention in health sciences education. However, the application of flipped classrooms in ophthalmology education has not been well investigated. Objective: The goal of this study was to investigate the effectiveness and acceptability of the flipped classroom approach to teaching ophthalmology at the clerkship level. Design: Ninety-five fourth year medical students in an ophthalmology clerkship were randomly divided into two groups. An ocular trauma module was chosen for the content of this study. One group (FG (flipped group), n = 48) participated in flipped classroom instruction and was asked to watch a recorded lecture video and to read study materials before a face-to-face class meeting. They used the in-class time for discussion. The other group (TG (traditional group), n = 47) was assigned to traditional lecture-based instruction. These students attended a didactic lecture and completed assigned homework after the lecture. Feedback questionnaires were collected to compare students’ perspectives on the teaching approach they experienced and to evaluate students’ self-perceived competence and interest in ocular trauma. Pre- and post-tests were performed to assess student learning of the course materials. Results: More students in the FG agreed that the classroom helped to promote their learning motivation, improve their understanding of the course materials, and enhance their communication skill and clinical thinking. However, students in the FG did not show a preference for this method of teaching, and also reported more burden and pressure than those from the TG. Students from the FG performed better on the post test over the ocular trauma-related questions when compared to those from the TG. Conclusions: The flipped classroom approach shows promise in ophthalmology clerkship teaching. However, it has some drawbacks. Further evaluation and modifications

  3. Water in everyday life and in science classrooms: analysis of discursive interactions and teaching strategies in primary education

    Directory of Open Access Journals (Sweden)

    Andreza Fortini da Silva

    2012-02-01

    Full Text Available This article examines how a primary teacher establishes links between students' initial contributions on the theme ‘water’ and the elements that will make up the teaching approach of this subject in the science classroom. For this purpose, we examine discursive interactions in the first lessons of a teaching sequence, looking for links between events that are being elicited and developed by the teacher with intense participation of the students. We shall also examine the teaching strategies conducted by the teacher, emphasizing the presence of visual resources in text production activities, understanding them as literacy practices in the context of science lessons. To examine the effectiveness of these strategies and mediational resources, we shall analyze some exemplars of the students' productions (texts and drawings. We will use as criteria of analysis: speech marks of the opening activity and of the preliminary discussions in the texts produced by the pupils; evidence of changes in the pupils’ initial repertoires about the theme; evidence of connections between the “water in our lives” and “water as a science subject”. The context of the research is a third year grade classroom in a public elementary school in Contagem / MG - Brazil.

  4. "Why in This Bilingual Classroom … Hablamos Más Español?" Language Choice by Bilingual Science Students

    Science.gov (United States)

    Stevenson, Alma D.

    2015-01-01

    This qualitative sociolinguistic research study examines Latino/a students' use of language in a science classroom and laboratory. This study was conducted in a school in the southwestern United States that serves an economically depressed, predominantly Latino population. The object of study was a 5th-grade bilingual (Spanish/English) class. The…

  5. The Partially Flipped Classroom: The Effects of Flipping a Module on "Junk Science" in a Large Methods Course

    Science.gov (United States)

    Burgoyne, Stephanie; Eaton, Judy

    2018-01-01

    Flipped classrooms are gaining popularity, especially in psychology statistics courses. However, not all courses lend themselves to a fully flipped design, and some instructors might not want to commit to flipping every class. We tested the effectiveness of flipping just one component (a module on junk science) of a large methods course. We…

  6. A case study of an experienced teacher's beliefs and practice during implementation of an inquiry-based approach in her elementary science classroom

    Science.gov (United States)

    Martin, Anita Marie Benna

    The purpose of this study was to examine the relationship between one teacher's beliefs and her practices. This study examined this relationship during the implementation of reform by the teacher in the area of science as recommended by the National Science Education Standards (NRC, 1996). This study was a single case study of one experienced elementary teacher who was implementing the Science Writing Heuristic (SWH) approach in her science classroom. The study's focus was on the relationship between the teacher's beliefs and her practice during this innovation, as well as the factors that influenced that relationship. Data were collected from multiple sources such as routinely scheduled interviews, classroom observations, researcher's fieldnotes, teacher's written reflections, professional development liaison reflections, student responses, video-tape analysis, think-aloud protocol, audio-tapes of student discourse, metaphor analysis, and Reformed Teacher Observation Protocol (RTOP) scores. Data analysis was conducted using two different approaches: constant comparative method and RTOP scores. Results indicate that a central belief of this teacher was her beliefs about how students learn. This belief was entangled with other more peripheral beliefs such as beliefs about the focus of instruction and beliefs about student voice. As the teacher shifted her central belief from a traditional view of learning to one that is more closely aligned with a constructivist' view, these peripheral beliefs also shifted. This study also shows that the teacher's beliefs and her practice were consistent and entwined throughout the study. As her beliefs shifted, so did her practice and it supports Thompson's (1992) notion of a dialectic relationship between teacher beliefs and practice. Additionally, this study provides implications for teacher education and professional development. As teachers implement reform efforts related to inquiry in their science classrooms, professional

  7. Science teacher orientations and PCK across science topics in grade 9 earth science

    Science.gov (United States)

    Campbell, Todd; Melville, Wayne; Goodwin, Dawne

    2017-07-01

    While the literature is replete with studies examining teacher knowledge and pedagogical content knowledge (PCK), few studies have investigated how science teacher orientations (STOs) shape classroom instruction. Therefore, this research explores the interplay between a STOs and the topic specificity of PCK across two science topics within a grade 9 earth science course. Through interviews and observations of one teacher's classroom across two sequentially taught, this research contests the notion that teachers hold a single way of conceptualising science teaching and learning. In this, we consider if multiple ontologies can provide potential explanatory power for characterising instructional enactments. In earlier work with the teacher in this study, using generic interview prompts and general discussions about science teaching and learning, we accepted the existence of a unitary STO and its promise of consistent reformed instruction in the classroom. However, upon close examination of instruction focused on different science topics, evidence was found to demonstrate the explanatory power of multiple ontologies for shaping characteristically different epistemological constructions across science topics. This research points to the need for care in generalising about teacher practice, as it reveals that a teacher's practice, and orientation, can vary, dependent on the context and science topics taught.

  8. Historical short stories as nature of science instruction in secondary science classrooms: Science teachers' implementation and students' reactions

    Science.gov (United States)

    Reid-Smith, Jennifer Ann

    a science-related career. If NOS instructional materials are to be used effectively, designers must take into account the needs of classroom teachers by limiting the length of the materials and providing additional teacher support resources. Many teachers will likely require professional development opportunities to build their NOS understanding, develop a compelling rationale for teaching NOS and using the stories, observe modeling of effective implementation, and collaborate with other teachers regarding how to mitigate constraints.

  9. What is taking place in science classrooms?: A case study analysis of teaching and learning in seventh-grade science of one Alabama school and its impact on African American student learning

    Science.gov (United States)

    Norman, Lashaunda Renea

    This qualitative case study investigated the teaching strategies that improve science learning of African American students. This research study further sought the extent the identified teaching strategies that are used to improve African American science learning reflect culturally responsive teaching. Best teaching strategies and culturally responsive teaching have been researched, but there has been minimal research on the impact that both have on science learning, with an emphasis on the African American population. Consequently, the Black-White achievement gap in science persists. The findings revealed the following teaching strategies have a positive impact on African American science learning: (a) lecture-discussion, (b) notetaking, (c) reading strategies, (d) graphic organizers, (e) hands-on activities, (f) laboratory experiences, and (g) cooperative learning. Culturally responsive teaching strategies were evident in the seventh-grade science classrooms observed. Seven themes emerged from this research data: (1) The participating teachers based their research-based teaching strategies used in the classroom on all of the students' learning styles, abilities, attitudes towards science, and motivational levels about learning science, with no emphasis on the African American student population; (2) The participating teachers taught the state content standards simultaneously using the same instructional model daily, incorporating other content areas when possible; (3) The participating African American students believed their seventh-grade science teachers used a variety of teaching strategies to ensure science learning took place, that science learning was fun, and that science learning was engaging; (4) The participating African American students genuinely liked their teacher; (5) The participating African American students revealed high self-efficacy; (6) The African American student participants' parents value education and moved to Success Middle School

  10. Social justice pedagogies and scientific knowledge: Remaking citizenship in the non-science classroom

    Science.gov (United States)

    Lehr, Jane L.

    This dissertation contributes to efforts to rethink the meanings of democracy, scientific literacy, and non-scientist citizenship in the United States. Beginning with questions that emerged from action research and exploring the socio-political forces that shape educational practices, it shows why non-science educators who teach for social justice must first recognize formal science education as a primary site of training for (future) non-scientist citizens and then prepare to intervene in the dominant model of scientifically literate citizenship offered by formal science education. This model of citizenship defines (and limits) appropriate behavior for non-scientist citizens as acquiescing to the authority of science and the state by actively demarcating science from non-science, experts from non-experts, and the rational from the irrational. To question scientific authority is to be scientifically illiterate. This vision of 'acquiescent democracy' seeks to end challenges to the authority of science and the state by ensuring that scientific knowledge is privileged in all personal and public decision-making practices, producing a situation in which it becomes natural for non-scientist citizens to enroll scientific knowledge to naturalize oppression within our schools and society. It suggests that feminist and equity-oriented science educators, by themselves, are unable or unwilling to challenge certain assumptions in the dominant model of scientifically literate citizenship. Therefore, it is the responsibility of non-science educators who teach for social justice to articulate oppositional models of non-scientist citizenship and democracy in their classrooms and to challenge the naturalized authority of scientific knowledge in all aspects of our lives. It demonstrates how research in the field of Science & Technology Studies can serve as one resource in our efforts to intervene in the dominant model of scientifically literate citizenship and to support a model of

  11. Using Authentic Science in the Classroom: NASA's Coordinated Efforts to Enhance STEM Education

    Science.gov (United States)

    Lawton, B.; Schwerin, T.; Low, R.

    2015-11-01

    A key NASA education goal is to attract and retain students in science, technology engineering, and mathematics (STEM) disciplines. When teachers engage students in the examination of authentic data derived from NASA satellite missions, they simultaneously build 21st century technology skills as well as core content knowledge about the Earth and space. In this session, we highlight coordinated efforts by NASA Science Mission Directorate (SMD) Education and Public Outreach (EPO) programs to enhance educator accessibility to data resources, distribute state-of -the-art data tools and expand pathways for educators to find and use data resources. The group discussion explores how NASA SMD EPO efforts can further improve teacher access to authentic NASA data, identifies the types of tools and lessons most requested by the community, and explores how communication and collaboration between product developers and classroom educators using data tools and products can be enhanced.

  12. Case study of science teaching in an elementary school: Characteristics of an exemplary science teacher

    Science.gov (United States)

    Kao, Huey-Lien

    Improving the quality of science teaching is one of the greatest concerns in recent science education reform efforts. Many science educators suggest that case studies of exemplary science teachers may provide guidance for these reform efforts. For this reason, the characteristics of exemplary science teaching practices have been identified in recent years. However, the literature lacks research exploring exemplary teacher beliefs about the nature of science and science pedagogy, the relationships between their beliefs and practices, or how outstanding teachers overcome difficulties in order to facilitate their students' science learning. In this study, Sam-Yu, an identified exemplary science teacher who teaches in an elementary school in Pintung, Taiwan, was the subject. An interpretative research design (Erickson, 1986) based on principles of naturalistic inquiry (Lincoln & Guba, 1985) was used. Both qualitative and quantitative methods were employed in this case study. The qualitative method involved conducting interviews with the teacher and students, observing classroom activities and analyzing the structure of the learning materials. The quantitative methods involved using the Learning Climate Inventory (LCI) (Lin, 1997) instrument to assess the learning environment of the exemplary science classroom. This study found that Sam-Yu had a blend of views on the nature of science and a varied knowledge about science pedagogy. Personal preferences, past experiences, and the national science curriculum all played important roles in the development and refinement of Sam-Yu's beliefs about science and pedagogy. Regarding his teaching practices, Sam-Yu provided the best learning experiences, as evidenced in both classroom observations and the survey results, for his students by using a variety of strategies. In addition, his classroom behaviors were highly associated with his beliefs about science and pedagogy. However, due to school-based and socio-cultural constraints

  13. How Fifth Grade Latino/a Bilingual Students Use Their Linguistic Resources in the Classroom and Laboratory during Science Instruction

    Science.gov (United States)

    Stevenson, Alma R.

    2013-01-01

    This qualitative, sociolinguistic research study examines how bilingual Latino/a students use their linguistic resources in the classroom and laboratory during science instruction. This study was conducted in a school in the southwestern United States serving an economically depressed, predominantly Latino population. The object of study was a…

  14. An Integrative Review of Flipped Classroom Teaching Models in Nursing Education.

    Science.gov (United States)

    Njie-Carr, Veronica P S; Ludeman, Emilie; Lee, Mei Ching; Dordunoo, Dzifa; Trocky, Nina M; Jenkins, Louise S

    Nursing care is changing dramatically given the need for students to address complex and multiple patient comorbidities. Students experience difficulties applying knowledge gained from didactic instruction to make important clinical decisions for optimal patient care. To optimize nursing education pedagogy, innovative teaching strategies are required to prepare future nurses for practice. This integrative review synthesized the state of the science on flipped classroom models from 13 empirical studies published through May 2016. The purpose of the review was to evaluate studies conducted on flipped classroom models among nursing students using a validated framework by Whittemore and Knafl. Multiple academic databases were searched, ranging in scope including PubMed, Embase (Elsevier), CINAHL (Ebsco), Scopus, Web of Science, and Google Scholar, resulting in 95 unique records. After screening and full-text reviews, 82 papers were removed. Thirteen empirical studies were included in the final analysis and results provided (a) design and process information on flipped classroom models in nursing education, (b) a summary of the state of the evidence to inform the implementation of flipped classrooms, and (c) a foundation to build future research in this area of nursing education. To develop sound evidence-based teaching strategies, rigorous scientific methods are needed to inform the implementation of flipped classroom approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Classroom -RE-SONANCE

    Indian Academy of Sciences (India)

    "Classroom" is equally a forum for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science. ! Energy transfer in an elastic collision. One may intuitively feel that in an elastic ...

  16. Secondary Science Student Teachers' Use of Verbal Discourse to Communicate Scientific Ideas in Their Field Placement Classrooms

    Science.gov (United States)

    Cian, Heidi; Cook, Michelle

    2018-06-01

    Student teachers struggle to identify themselves as teachers in their field placement during their student teaching year, and some of the difficulty can be attributed to the change they encounter when they must communicate scientific ideas to students in a language that differs from how they recently learned science at the university level. Using developmental levels of student teaching (Drafall and Grant in Music Educators Journal, 81(1), 35-38, 1995), we explore how three cases differ in their use of verbal classroom discourse over the course of their student teaching year. We use data from six observations, post-observation debriefs, reflections associated with the observations, and responses to assignments from the student teachers' teaching classes as data to demonstrate how the cases differ in the proficiency of their verbal communication in their classroom placement. We find that when student teachers have difficulty communicating science to their students, they struggle to use lectures effectively or engage students in meaningful conversation or questioning. This work suggests a need for more study as to the causes of different communication proficiencies and how methods instructors can help teachers develop awareness of the value of their verbal discourse interactions with students.

  17. The nature of science in science education: theories and practices

    Directory of Open Access Journals (Sweden)

    Ana Maria Morais

    2018-01-01

    Full Text Available The article is based on results of research carried out by the ESSA Group (Sociological Studies of the Classroom centred on the inclusion of the nature of science (metascience on science education. The results, based on analyses of various educational texts and contexts – curricula/syllabuses, textbooks and pedagogic practices – and of the relations between those texts/contexts, have in general shown a reduced presence and low conceptualization of metascience. The article starts by presenting the theoretical framework of the research of the ESSA Group which was focused on the introduction of the nature of science in science education. It is mostly based on Ziman’s conceptualization of metascience (1984, 2000 and on Bernstein’s theorization of production and reproduction of knowledge, particularly his model of pedagogic discourse (1990, 2000 and knowledge structures (1999. This is followed by the description of a pedagogical strategy, theoretically grounded, which explores the nature of science in the classroom context. The intention is to give an example of a strategy which privileges a high level learning for all students and which may contribute to a reflection about the inclusion of the nature of science on science education. Finally, considerations are made about the applicability of the strategy on the basis of previous theoretical and empirical arguments which sustain its use in the context of science education.

  18. Implementation of National Science Education Standards in suburban elementary schools: Teachers' perceptions and classroom practices

    Science.gov (United States)

    Khan, Rubina Samer

    2005-07-01

    This was an interpretive qualitative study that focused on how three elementary school science teachers from three different public schools perceived and implemented the National Science Education Standards based on the Reformed Teaching Observation Protocol and individual interviews with the teachers. This study provided an understanding of the standards movement and teacher change in the process. Science teachers who were experienced with the National Science Education Standards were selected as the subjects of the study. Grounded in the theory of teacher change, this study's phenomenological premise was that the extent to which a new reform has an effect on students' learning and achievement on standardized tests depends on the content a teacher teaches as well as the style of teaching. It was therefore necessary to explore how teachers understand and implement the standards in the classrooms. The surveys, interviews and observations provided rich data from teachers' intentions, reflections and actions on the lessons that were observed while also providing the broader contextual framework for the understanding of the teachers' perspectives.

  19. Flipped classrooms and student learning: not just surface gains.

    Science.gov (United States)

    McLean, Sarah; Attardi, Stefanie M; Faden, Lisa; Goldszmidt, Mark

    2016-03-01

    The flipped classroom is a relatively new approach to undergraduate teaching in science. This approach repurposes class time to focus on application and discussion; the acquisition of basic concepts and principles is done on the students' own time before class. While current flipped classroom research has focused on student preferences and comparative learning outcomes, there remains a lack of understanding regarding its impact on students' approaches to learning. Focusing on a new flipped classroom-based course for basic medical sciences students, the purpose of the present study was to evaluate students' adjustments to the flipped classroom, their time on task compared with traditional lectures, and their deep and active learning strategies. Students in this course worked through interactive online learning modules before in-class sessions. Class time focused on knowledge application of online learning module content through active learning methods. Students completed surveys and optional prequiz questions throughout the term to provide data regarding their learning approaches. Our results showed that the majority of students completed their prework in one sitting just before class. Students reported performing less multitasking behavior in the flipped classroom compared with lecture-based courses. Students valued opportunities for peer-peer and peer-instructor interactions and also valued having multiple modes of assessment. Overall, this work suggests that there is the potential for greater educational gains from the flipped classroom than the modest improvements in grades previously demonstrated in the literature; in this implementation of the flipped classroom, students reported that they developed independent learning strategies, spent more time on task, and engaged in deep and active learning. Copyright © 2016 The American Physiological Society.

  20. Classroom Antarctica

    Science.gov (United States)

    Gozzard, David

    2017-01-01

    Australian company Antarctica Flights runs summer sightseeing trips out of Australian capital cities to tour the Antarctic coast. The Laby Foundation of the University of Melbourne, through its "Classroom Antarctica" program, sponsored Kent Street High School science teacher, Ms Suzy Urbaniak and 18 of her students to take the trip, to…

  1. The Roles of Teachers' Science Talk in Revealing Language Demands within Diverse Elementary School Classrooms: A Study of Teaching Heat and Temperature in Singapore

    Science.gov (United States)

    Seah, Lay Hoon; Yore, Larry D.

    2017-01-01

    This study of three science teachers' lessons on heat and temperature seeks to characterise classroom talk that highlighted the ways language is used and to examine the nature of the language demands revealed in constructing, negotiating, arguing and communicating science ideas. The transcripts from the entire instructional units for these…

  2. Creating Authentic Research Centers In Secondary Classrooms And Retaining The Best Science Teachers

    Science.gov (United States)

    Rodriguez, D.; McHenry, R. M.

    2006-12-01

    My name is David Rodriguez. I am a middle school science teacher with 18 years of teaching experience both in Leon County, Florida and in Guinea West Africa, and South Africa. I am a National Board Certified Teacher. Richard McHenry is a high school Chemistry Advance Placement teacher with over 25 years of teaching experience, also in Leon County, Florida. Rich is a National Board Certified Teacher as well. We participated in a Research Experience For Teachers (RET) program at the National High Magnetic Field Lab in Tallahassee, Florida in 2001 and 2002. This experience has had a profound impact on our teaching, and on our student's learning. During our experience, it became clear to us that there is great importance in how scientists approach their research. We discussed this approach with teams of scientists, and asked them how they thought it could be modeled in classrooms. As teachers, we have been convinced of the value of cooperative learning for years, but to assign roles in cooperative groups similar to the roles that are created in a research science setting has improved student learning. Each team of students is assigned a project manager, data analyst, engineer, and principal investigator. The role of each scientist is specific. As a result of our RET experience, Rich also created a new program in his high school class in which students write scientific papers at the end of each grading period that outline the achievements and lab experiences completed during that period. The importance of publishing research and communicating with the greater scientific community are highlighted through this unique experience. These papers go through a peer review process within the school, and are then sent to the National High Magnetic Field Lab for further review provided by scientists and educators. I was also involved in an atmospheric research project during my RET program that utilized teachers and students throughout the state in the collection of data

  3. Using NASA Data in the Classroom: Promoting STEM Learning in Formal Education using Real Space Science Data

    Science.gov (United States)

    Lawton, B.; Hemenway, M. K.; Mendez, B.; Odenwald, S.

    2013-04-01

    Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provides formal educators the opportunity to teach their students real-world applications of the STEM subjects. Combining real space science data with lessons aimed at meeting state and national education standards provides a memorable educational experience that students can build upon throughout their academic careers. Many of our colleagues have adopted the use of real data in their education and public outreach (EPO) programs. There are challenges in creating resources using real data for classroom use that include, but are not limited to, accessibility to computers/Internet and proper instruction. Understanding and sharing these difficulties and best practices with the larger EPO community is critical to the development of future resources. In this session, we highlight three examples of how NASA data is being utilized in the classroom: the Galaxies and Cosmos Explorer Tool (GCET) that utilizes real Hubble Space Telescope data; the computer image-analysis resources utilized by the NASA WISE infrared mission; and the space science derived math applications from SpaceMath@NASA featuring the Chandra and Kepler space telescopes. Challenges and successes are highlighted for these projects. We also facilitate small-group discussions that focus on additional benefits and challenges of using real data in the formal education environment. The report-outs from those discussions are given here.

  4. PORTAAL: A Classroom Observation Tool Assessing Evidence-Based Teaching Practices for Active Learning in Large Science, Technology, Engineering, and Mathematics Classes.

    Science.gov (United States)

    Eddy, Sarah L; Converse, Mercedes; Wenderoth, Mary Pat

    2015-01-01

    There is extensive evidence that active learning works better than a completely passive lecture. Despite this evidence, adoption of these evidence-based teaching practices remains low. In this paper, we offer one tool to help faculty members implement active learning. This tool identifies 21 readily implemented elements that have been shown to increase student outcomes related to achievement, logic development, or other relevant learning goals with college-age students. Thus, this tool both clarifies the research-supported elements of best practices for instructor implementation of active learning in the classroom setting and measures instructors' alignment with these practices. We describe how we reviewed the discipline-based education research literature to identify best practices in active learning for adult learners in the classroom and used these results to develop an observation tool (Practical Observation Rubric To Assess Active Learning, or PORTAAL) that documents the extent to which instructors incorporate these practices into their classrooms. We then use PORTAAL to explore the classroom practices of 25 introductory biology instructors who employ some form of active learning. Overall, PORTAAL documents how well aligned classrooms are with research-supported best practices for active learning and provides specific feedback and guidance to instructors to allow them to identify what they do well and what could be improved. © 2015 S. L. Eddy et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Attitudes of Saudi Arabian secondary preservice teachers toward teaching practices in science: The adequacy of preparation to use teaching strategies in classrooms

    Science.gov (United States)

    Aljabber, Jabber M.

    analysis of frequent themes, patterns, and phrases mentioned by participants, which were coded and classified under broader categories. Findings of this study revealed that there were some significant differences among SPSTs in different Teachers' colleges with regard to certain demographic variables such as 'Teachers' College location' and 'age.' A broad conclusion was that although SPSTs felt that these six science teaching practices were crucial and effective teaching methods in classrooms, they did not frequently implement them due to several factors: large numbers of students in classrooms, classroom management issues, time demands, and lack of necessary materials and equipment.

  6. Crossing borders: High school science teachers learning to teach the specialized language of science

    Science.gov (United States)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  7. Constructing Your Self in School Science

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2016-01-01

    of school science. Classrooms together with the new technological tools that are being used are places that fabricate and (re)align how young people see themselves in science and form their subjectivity in relation to society’s core values and rationalities and are embodied in primary science education...... in science classrooms. The findings suggest that digital tools used in classrooms expand not only the means of teaching and learning science but represent spaces for the emergence, negotiation and struggle of different forms of subjectivities.......It has been repeatedly argued that young people need to acquire science knowledge, skills and competencies, so that future economies can maintain social welfare, economic growth and international competitiveness. However, the attainment of understanding in science is not the only importance...

  8. Five Years of NASA Science and Engineering in the Classroom: The Integrated Product Team/NASA Space Missions Course

    Science.gov (United States)

    Hakkila, Jon; Runyon, Cassndra; Benfield, M. P. J.; Turner, Matthew W.; Farrington, Phillip A.

    2015-08-01

    We report on five years of an exciting and successful educational collaboration in which science undergraduates at the College of Charleston work with engineering seniors at the University of Alabama in Huntsville to design a planetary science mission in response to a mock announcement of opportunity. Alabama high schools are also heavily involved in the project, and other colleges and universities have also participated. During the two-semester course students learn about scientific goals, past missions, methods of observation, instrumentation, and component integration, proposal writing, and presentation. More importantly, students learn about real-world communication and teamwork, and go through a series of baseline reviews before presenting their results at a formal final review for a panel of NASA scientists and engineers. The project is competitive, with multiple mission designs competing with one another for the best review score. Past classes have involved missions to Venus, Europa, Titan, Mars, asteroids, comets, and even the Moon. Classroom successes and failures have both been on epic scales.

  9. Teaching Climate Science in Non-traditional Classrooms

    Science.gov (United States)

    Strybos, J.

    2015-12-01

    San Antonio College is the oldest, largest and centrally-located campus of Alamo Colleges, a network of five community colleges based around San Antonio, Texas with a headcount enrollment of approximately 20,000 students. The student population is diverse in ethnicity, age and income; and the Colleges understand that they play a salient role in educating its students on the foreseen impacts of climate change. This presentation will discuss the key investment Alamo Colleges has adopted to incorporate sustainability and climate science into non-traditional classrooms. The established courses that cover climate-related course material have historically had low enrollments. One of the most significant challenges is informing the student population of the value of this class both in their academic career and in their personal lives. By hosting these lessons in hands-on simulations and demonstrations that are accessible and understandable to students of any age, and pursuing any major, we have found an exciting way to teach all students about climate change and identify solutions. San Antonio College (SAC) hosts the Bill R. Sinkin Eco Centro Community Center, completed in early 2014, that serves as an environmental hub for Alamo Colleges' staff and students as well as the San Antonio community. The center actively engages staff and faculty during training days in sustainability by presenting information on Eco Centro, personal sustainability habits, and inviting faculty to bring their classes for a tour and sustainability primer for students. The Centro has hosted professors from diverse disciplines that include Architecture, Psychology, Engineering, Science, English, Fine Arts, and International Studies to bring their classes to center to learn about energy, water conservation, landscaping, and green building. Additionally, Eco Centro encourages and assists students with research projects, including a solar-hydroponic project currently under development with the support

  10. Using Flip Camcorders for Active Classroom Metacognitive Reflection

    Science.gov (United States)

    Hargis, Jace; Marotta, Sebastian M.

    2011-01-01

    A Center for Teaching and Learning provided Flip camcorders to a group of 10 new faculty members, who were asked to use this teaching tool in their classroom instruction. The classes included mathematics, political science, computer engineering, psychology, business, music and dance. The qualitative results indicate that all faculty members and…

  11. Posters that Foster Cognition in the Classroom: Multimedia Theory Applied to Educational Posters

    Science.gov (United States)

    Hubenthal, Michael; O'Brien, Thomas; Taber, John

    2011-01-01

    Despite a decline in popularity within US society, posters continue to hold a prominent place within middle and high school science classrooms. Teachers' demand is satisfied by governmental and non-profit science organizations that produce and disseminate posters as tangible products resulting from their research, and instruments to communicate…

  12. Exploring the impact of learning objects in middle school mathematics and science classrooms: A formative analysis

    Directory of Open Access Journals (Sweden)

    Robin H. Kay

    2008-12-01

    Full Text Available The current study offers a formative analysis of the impact of learning objects in middle school mathematics and science classrooms. Five reliable and valid measure of effectiveness were used to examine the impact of learning objects from the perspective of 262 students and 8 teachers (14 classrooms in science or mathematics. The results indicate that teachers typically spend 1-2 hours finding and preparing for learning-object based lesson plans that focus on the review of previous concepts. Both teachers and students are positive about the learning benefits, quality, and engagement value of learning objects, although teachers are more positive than students. Student performance increased significantly, over 40%, when learning objects were used in conjunction with a variety of teaching strategies. It is reasonable to conclude that learning objects have potential as a teaching tool in a middle school environment. L’impacte des objets d’apprentissage dans les classes de mathématique et de sciences à l’école intermédiaire : une analyse formative Résumé : Cette étude présente une analyse formative de l’impacte des objets d’apprentissage dans les classes de mathématique et de sciences à l’école intermédiaire. Cinq mesures de rendement fiables et valides ont été exploitées pour examiner l’effet des objets d’apprentissage selon 262 élèves et 8 enseignants (414 classes en science ou mathématiques. Les résultats indiquent que les enseignants passent typiquement 1-2 heures pour trouver des objets d’apprentissage et préparer les leçons associées qui seraient centrées sur la revue de concepts déjà vus en classe. Quoique les enseignants aient répondu de façon plus positive que les élèves, les deux groupes ont répondu positivement quant aux avantages au niveau de l’apprentissage, à la qualité ainsi qu’à la valeur motivationnelle des objets d’apprentissage. Le rendement des élèves aurait aussi augment

  13. Performance and Perception in the Flipped Learning Model: An Initial Approach to Evaluate the Effectiveness of a New Teaching Methodology in a General Science Classroom

    Science.gov (United States)

    González-Gómez, David; Jeong, Jin Su; Airado Rodríguez, Diego; Cañada-Cañada, Florentina

    2016-06-01

    "Flipped classroom" teaching methodology is a type of blended learning in which the traditional class setting is inverted. Lecture is shifted outside of class, while the classroom time is employed to solve problems or doing practical works through the discussion/peer collaboration of students and instructors. This relatively new instructional methodology claims that flipping your classroom engages more effectively students with the learning process, achieving better teaching results. Thus, this research aimed to evaluate the effects of the flipped classroom on the students' performance and perception of this new methodology. This study was conducted in a general science course, sophomore of the Primary Education bachelor degree in the Training Teaching School of the University of Extremadura (Spain) during the course 2014/2015. In order to assess the suitability of the proposed methodology, the class was divided in two groups. For the first group, a traditional methodology was followed, and it was used as control. On the other hand, the "flipped classroom" methodology was used in the second group, where the students were given diverse materials, such as video lessons and reading materials, before the class to be revised at home by them. Online questionnaires were as well provided to assess the progress of the students before the class. Finally, the results were compared in terms of students' achievements and a post-task survey was also conducted to know the students' perceptions. A statistically significant difference was found on all assessments with the flipped class students performing higher on average. In addition, most students had a favorable perception about the flipped classroom noting the ability to pause, rewind and review lectures, as well as increased individualized learning and increased teacher availability.

  14. Exploring Social Dynamics in School Science Context

    Directory of Open Access Journals (Sweden)

    Mehmet C. Ayar

    2014-09-01

    Full Text Available The purpose of this study was to explore the socio-cultural practices and interactions of learning science in a science classroom within the concept of communities of practice. Our qualitative data were collected through observing, taking field notes, and conducting interviews in a public science classroom during an entire school year. The study occurred in a seventh-grade classroom with a veteran physical science teacher, with more than 10 years teaching experience, and 22 students. For this article, we presented two classroom vignettes that reflect a sample of the participation, practice, and community that was observed in the science classroom on a daily basis. The first vignette illustrated a typical formula of Initiation–Response–Feedback (I-R-F that transfers knowledge to students through a teacher-led discussion with the entire class. The second vignette described a laboratory activity designed to allow students to apply or discover knowledge through practical experience, while taking responsibility for their learning through small-group work. The normative practices and routine behaviors of the science classroom are highlighted through the description of material resources, and different modes of participation accompanied by assigned roles and responsibilities. What we observed was that laboratory activities reproduced the epistemic authority of the I-R-F rather than creating collective cognitive responsibility where students have the independence to explore and create authentic science experiences.

  15. Boys and girls "doing science" and "doing gender"

    Science.gov (United States)

    Cervoni, Cleti

    The gender gap in achievement in science continues to plague science educators (AAAS, 2001). Strategies to close this gap have defined the problem in terms of girls' lack of interest or their inability to survive in science classrooms. Recent feminist scholarship has re-centered this problem of gender inequity not on girls, but on the nature of science and how it is taught in schools (Birke, 1986; Parker, 1997). Lesley Parker (1997) argues that it is schools that need to change and recommends a gender-inclusive science curriculum for schools. My dissertation argues for a new framework and research agenda for understanding the relationship between gender and science in schools. My study examines the gender dynamics of how unequal gender relations are negotiated, resisted and sustained in the context of a second grade science classroom. In examining the gender dynamics between the boys and the girls in a science classroom, I found that the boys positioned the girls as their assistants, as incompetent in science, as weak in contrast to the boys, and in need of the boys' help and protection. These discourses functioned to create and sustain unequal gender relations in the classroom. The girls responded in paradoxical ways to the boys' positioning of them. They resisted the boys by: (a) ignoring them; (b) using a domestic discourse to negotiate/gain more power; (c) appropriating teacher authority; or (d) using sexuality to embarrass and silence the boys. The girls also deferred to the boys as experts in science. In these ways, the girls themselves contributed to maintaining unequal gender relations in the classroom. I found that the classroom context is a site of struggle for both boys and girls as they seek to secure a place in the social hierarchy of the classroom. For the boys, masculinity is strong and powerful yet fragile and vulnerable. The girls struggle in holding multiple images of femininity. Examining gender dynamics through positioning and negotiation for

  16. Classroom management at the university level: lessons from a former high school earth science teacher

    Science.gov (United States)

    Lazar, C.

    2009-12-01

    Just a few days before my career as a fledgling science teacher began in a large public high school in New York City, a mentor suggested I might get some ideas about how to run a classroom from a book called The First Days Of School by Harry Wong. Although the book seemed to concentrate more on elementary students, I found that many of the principles in the book worked well for high school students. Even as I have begun to teach at the university level, many of Wong’s themes have persisted in my teaching style. Wong’s central thesis is that for learning to occur, a teacher must create the proper environment. In education jargon, a good climate for learning is generated via classroom management, an array of methods used by elementary and secondary school teachers to provide structure and routine to a class period via a seamless flow of complementary activities. Many college professors would likely consider classroom management to be chiefly a set of rules to maintain discipline and order among an otherwise unruly herd of schoolchildren, and therefore not a useful concept for mature university students. However, classroom management is much deeper than mere rules for behavior; it is an approach to instructional design that considers the classroom experience holistically. A typical professorial management style is to lecture for an hour or so and ask students to demonstrate learning via examinations several times in a semester. In contrast, a good high school teacher will manage a class from bell-to-bell to create a natural order and flow to a given lesson. In this presentation, I will argue for an approach to college lesson design similar to the classroom management style commonly employed by high school and elementary school teachers. I will suggest some simple, practical techniques learned during my high school experience that work just as well in college: warm-up and practice problems, time management, group activities, bulletin boards, learning environment

  17. Teaching and Learning Science Through Song: Exploring the experiences of students and teachers

    Science.gov (United States)

    Governor, Donna; Hall, Jori; Jackson, David

    2013-12-01

    This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and students suggested about using songs for middle school classroom science instruction. Data gathered included three teacher interviews, one classroom observation and a student focus-group discussion from each of six cases. The data from each unit of analysis were examined independently and then synthesized in a multi-case analysis, resulting in a number of merged findings, or assertions, about the experience. The results of this study indicated that teachers used content-rich music to enhance student understanding of concepts in science by developing content-based vocabulary, providing students with alternative examples and explanations of concepts, and as a sense-making experience to help build conceptual understanding. The use of science-content songs engaged students by providing both situational and personal interest, and provided a mnemonic device for remembering key concepts in science. The use of songs has relevance from a constructivist approach as they were used to help students build meaning; from a socio-cultural perspective in terms of student engagement; and from a cognitive viewpoint in that in these cases they helped students make connections in learning. The results of this research have implications for science teachers and the science education community in developing new instructional strategies for the middle school science classroom.

  18. Understanding Children's Science Identity through Classroom Interactions

    Science.gov (United States)

    Kim, Mijung

    2018-01-01

    Research shows that various stereotypes about science and science learning, such as science being filled with hard and dry content, laboratory experiments, and male-dominated work environments, have resulted in feelings of distance from science in students' minds. This study explores children's experiences of science learning and science identity.…

  19. The Use of Triadic Dialogue in the Science Classroom: a Teacher Negotiating Conceptual Learning with Teaching to the Test

    Science.gov (United States)

    Salloum, Sara; BouJaoude, Saouma

    2017-08-01

    The purpose of this research is to better understand the uses and potential of triadic dialogue (initiation-response-feedback) as a dominant discourse pattern in test-driven environments. We used a Bakhtinian dialogic perspective to analyze interactions among high-stakes tests and triadic dialogue. Specifically, the study investigated (a) the global influence of high-stakes tests on knowledge types and cognitive processes presented and elicited by the science teacher in triadic dialogue and (b) the teacher's meaning making of her discourse patterns. The classroom talk occurred in a classroom where the teacher tried to balance conceptual learning with helping low-income public school students pass the national tests. Videos and transcripts of 20 grade 8 and 9 physical science sessions were analyzed qualitatively. Teacher utterances were categorized in terms of science knowledge types and cognitive processes. Explicitness and directionality of shifts among different knowledge types were analyzed. It was found that shifts between factual/conceptual/procedural-algorithmic and procedural inquiry were mostly dialectical and implicit, and dominated the body of concept development lessons. These shifts called for medium-level cognitive processes. Shifts between the different knowledge types and procedural-testing were more explicit and occurred mostly at the end of lessons. Moreover, the science teacher's focus on success and high expectations, her explicitness in dealing with high-stakes tests, and the relaxed atmosphere she created built a constructive partnership with the students toward a common goal of cracking the test. We discuss findings from a Bakhtinian dialogic perspective and the potential of triadic dialogue for teachers negotiating multiple goals and commitments.

  20. What Is (Or Should Be) Scientific Evidence Use in K-12 Classrooms?

    Science.gov (United States)

    McNeill, Katherine L.; Berland, Leema

    2017-01-01

    Research and reform efforts frequently identify evidence as an essential component of science classroom instruction to actively engage students in science practices. Despite this agreement on the primacy of evidence, there is a lack of consensus around what counts as "evidence" in k-12 classrooms (e.g., ages 5-18): scholarship and…

  1. "Designing Instrument for Science Classroom Learning Environment in Francophone Minority Settings: Accounting for Voiced Concerns among Teachers and Immigrant/Refugee Students"

    Science.gov (United States)

    Bolivar, Bathélemy

    2015-01-01

    The three-phase process "-Instrument for Minority Immigrant Science Learning Environment," an 8-scale, 32-item see Appendix I- (I_MISLE) instrument when completed by teachers provides an accurate description of existing conditions in classrooms in which immigrant and refugee students are situated. Through the completion of the instrument…

  2. Question Asking in the Science Classroom: Teacher Attitudes and Practices

    Science.gov (United States)

    Eshach, Haim; Dor-Ziderman, Yair; Yefroimsky, Yana

    2014-01-01

    Despite the wide agreement among educators that classroom learning and teaching processes can gain much from student and teacher questions, their potential is not fully utilized. Adopting the view that reporting both teachers' (of varying age groups) views and actual classroom practices is necessary for obtaining a more complete view of the…

  3. Oceanography for Landlocked Classrooms. Monograph V.

    Science.gov (United States)

    Madrazo, Gerry M., Jr., Ed.; Hounshell, Paul B., Ed.

    This monograph attempts to show the importance of bringing marine biology into science classrooms, discusses what makes the ocean so important and explains why oceanography should be included in the science curriculum regardless of where students live. Section I, "Getting Started," includes discussions on the following: (1) "Why Marine Biology?";…

  4. Negotiating science and engineering: an exploratory case study of a reform-minded science teacher

    Science.gov (United States)

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-05-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the perspective of the science teacher, this would require not only the development of knowledge and pedagogies associated with engineering, but also the construction of new identities operating within the reforms and within the context of their school. In this study, a middle school science teacher was observed and interviewed over a period of nine months to explore his experiences as he adopted new values, discourses, and practices and constructed his identity as a reform-minded science teacher. Our findings revealed that, as the teacher attempted to become a reform-minded science teacher, he constantly negotiated his professional identities - a dynamic process that created conflicts in his classroom practices. Several differences were observed between the teacher's science and engineering instruction: hands-on activities, depth and detail of content, language use, and the way the teacher positioned himself and his students with respect to science and engineering. Implications for science teacher professional development are discussed.

  5. The History of Winter Thermochron Mission: Utilizing An Innovative Technology to Promote Science Research in the Classroom.

    Science.gov (United States)

    Bender, K. J.

    2007-12-01

    The goal of the Thermochron Mission, an embedded strand of the NASA Goddard Space Flight Center History of Winter (HOW) Program, is to engage participants actively in research methods while focusing on the observation and analysis of changes in ambient temperature. Through experiential learning opportunities, peer coaching, and expert instruction sessions, participants including in-service teachers, pre-service teachers, and ultimately their K-12 students, enhance their understanding of the processes and methods of science research. The initial engagement and exploration training has been provided to participants in the History of Winter (HOW) workshop since 2004. Supportive web-based multimedia resources utilized through modeling within the training program are available to participants online for continued later use within a classroom setting. The Thermochron Mission echoes the learning cycle embedded within the History of Winter Program. Emphasized are critical aspects of inquiry investigation including active and immersive experiences, opportunities for comparison and analysis of data, application of findings to new situations, and the communication of information in an appropriate forum. As a result, past HOW participants have utilized the Thermochron in settings as different as environmental studies through an outdoor education center and the study of acid mine drainage and its effect on local stream. In 2007, we collaborated with the FINNMARK 2007 and the GO NORTH expeditions, providing snow collection information and Thermochrons to gather a continual temperature record during these remote expeditions to the Arctic region. Both FINNMARK2007 and the POLAR Husky GoNorth 2007 dog sled expeditions took a complement of Thermochrons with multimedia instructions and the tools and protocols of the Global Snowflake Network (GSN), an International Polar Year project of the History of Winter Program, to measure temperature and the shape and characteristics of snow

  6. Interactive whiteboards in third grade science instruction

    Science.gov (United States)

    Rivers, Grier

    Strategies have been put into place to affect improvement in science achievement, including the use of Interactive Whiteboards (IWBs) in science instruction. IWBs enable rich resources, appropriate pacing, and multimodal presentation of content deemed as best practices. Professional development experiences, use of resources, instructional practices, and changes in professional behavior in science teachers were recorded. Also recorded were differences in the engagement and motivation of students in IWB classrooms versus IWB-free classrooms and observed differences in students' problem solving, critical thinking, and collaboration. Using a mixed-method research design quantitative data were collected to identify achievement levels of the target population on the assumption that all students, regardless of ability, will achieve greater mastery of science content in IWB classrooms. Qualitative data were collected through observations, interviews, videotapes, and a survey to identify how IWBs lead to increased achievement in third grade classrooms and to develop a record of teachers' professional practices, and students' measures of engagement and motivation. Comparative techniques determined whether science instruction is more effective in IWB classroom than in IWB-free classrooms. The qualitative findings concluded that, compared to science teachers who work in IWB-free settings, elementary science teachers who used IWBs incorporated more resources to accommodate learning objectives and the varied abilities and learning styles of their students. They assessed student understanding more frequently and perceived their classrooms as more collaborative and interactive. Furthermore, they displayed willingness to pursue professional development and employed different engagement strategies. Finally, teachers who used IWBs supported more instances of critical thinking and problem-solving. Quantitative findings concluded that students of all ability levels were more motivated

  7. The Classroom Observation Protocol for Undergraduate STEM (COPUS): A New Instrument to Characterize University STEM Classroom Practices

    OpenAIRE

    Smith, Michelle K.; Jones, Francis H. M.; Gilbert, Sarah L.; Wieman, Carl E.

    2013-01-01

    Instructors and the teaching practices they employ play a critical role in improving student learning in college science, technology, engineering, and mathematics (STEM) courses. Consequently, there is increasing interest in collecting information on the range and frequency of teaching practices at department-wide and institution-wide scales. To help facilitate this process, we present a new classroom observation protocol known as the Classroom Observation Protocol for Undergraduate STEM or C...

  8. Persisting mathematics and science high school teachers: A Q-methodology study

    Science.gov (United States)

    Robbins-Lavicka, Michelle M.

    There is a lack of qualified mathematics and science teachers at all levels of education in Arkansas. Lasting teaching initiative programs are needed to address retention so qualified teachers remain in the classroom. The dearth of studies regarding why mathematics and science teachers persist in the classroom beyond the traditional 5-year attrition period led this Q-methodological study to evaluate the subjective perceptions of persistent mathematics and science teachers to determine what makes them stay. This study sought to understand what factors persisting mathematics and science teachers used to explain their persistence in the classroom beyond 5 years and what educational factors contributed to persisting mathematics and science teachers. Q-methodology combines qualitative and quantitative techniques and provided a systematic means to investigate personal beliefs by collecting a concourse, developing a Q-sample and a person-sample, conducting a Q-sorting process, and analyzing the data. The results indicated that to encourage longevity within mathematics and science classrooms (a) teachers should remain cognizant of their ability to influence student attitudes toward teaching; (b) administrators should provide support for teachers and emphasize the role and importance of professional development; and (c) policy makers should focus their efforts and resources on developing recruitment plans, including mentorship programs, while providing and improving financial compensation. Significantly, the findings indicate that providing mentorship and role models at every level of mathematics and science education will likely encourage qualified teachers to remain in the mathematics and science classrooms, thus increasing the chance of positive social change.

  9. The status of environmental education in Illinois public high school science and social studies classrooms

    Science.gov (United States)

    Carter, Jill F.

    Examines relationships among the levels of pre-service and inservice teacher preparation in various topic areas within environmental education (EE) and the levels of implementation of those topic areas in public high school science and social studies classrooms in Illinois. Measures teacher attitudes toward EE. Findings indicate that teachers who had received pre-service/inservice teacher education in EE implemented significantly more EE topics into the curriculum than did teachers who reported receiving no pre-service/inservice teacher education in EE. Findings also indicate that beginning teachers do not implement the EE topics nearly as much as veteran teachers.

  10. The effect of inclusion classrooms on the science achievement of general education students

    Science.gov (United States)

    Dodd, Matthew Robert

    General education and Special Education students from three high schools in Rutherford County were sampled to determine the effect on their academic achievement on the Tennessee Biology I Gateway Exam in Inclusion classrooms. Each student's predicted and actual Gateway Exam scores from the academic year 2006--2007 were used to determine the effect the student's classroom had on his academic achievement. Independent variables used in the study were gender, ethnicity, socioeconomic level, grade point average, type of classroom (general or Inclusion), and type student (General Education or Special Education). The statistical tests used in this study were a t-test and a Mann--Whitney U Test. From this study, the effect of the Inclusion classroom on general education students was not significant statistically. Although the Inclusion classroom allows the special education student to succeed in the classroom, the effect on general education students is negligible. This study also provided statistical data that the Inclusion classroom did not improve the special education students' academic performances on the Gateway Exam. Students in a general education classroom with a GPA above 3.000 and those from a household without a low socioeconomic status performed at a statistically different level in this study.

  11. Exploring multiliteracies, student voice, and scientific practices in two elementary classrooms

    Science.gov (United States)

    Allison, Elizabeth Rowland

    This study explored the voices of children in a changing world with evolving needs and new opportunities. The workplaces of rapidly moving capitalist societies value creativity, collaboration, and critical thinking skills which are of growing importance and manifesting themselves in modern K-12 science classroom cultures (Gee, 2000; New London Group, 2000). This study explored issues of multiliteracies and student voice set within the context of teaching and learning in 4th and 5th grade science classrooms. The purpose of the study was to ascertain what and how multiliteracies and scientific practices (NGSS Lead States, 2013c) are implemented, explore how multiliteracies influence students' voices, and investigate teacher and student perceptions of multiliteracies, student voice, and scientific practices. Grounded in a constructivist framework, a multiple case study was employed in two elementary classrooms. Through observations, student focus groups and interviews, and teacher interviews, a detailed narrative was created to describe a range of multiliteracies, student voice, and scientific practices that occurred with the science classroom context. Using grounded theory analysis, data were coded and analyzed to reveal emergent themes. Data analysis revealed that these two classrooms were enriched with multiliteracies that serve metaphorically as breeding grounds for student voice. In the modern classroom, defined as a space where information is instantly accessible through the Internet, multiliteracies can be developed through inquiry-based, collaborative, and technology-rich experiences. Scientific literacy, cultivated through student communication and collaboration, is arguably a multiliteracy that has not been considered in the literature, and should be, as an integral component of overall individual literacy in the 21st century. Findings revealed four themes. Three themes suggest that teachers address several modes of multiliteracies in science, but identify

  12. Identfying the Needs of Pre-Service Classroom Teachers about Science Teaching Methodology Course in Terms of Parlett's Illuminative Program Evaluation Model

    Science.gov (United States)

    Çaliskan, Ilke

    2014-01-01

    The aim of this study was to identify the needs of third grade classroom teaching students about science teaching course in terms of Parlett's Illuminative program evaluation model. Phenomographic research design was used in this study. Illuminative program evaluation model was chosen for this study in terms of its eclectic and process-based…

  13. Identfying the Needs of Pre-Service Classroom Teachers about Science Teaching Methodology Courses in Terms of Parlett's Illuminative Program Evaluation Model

    Science.gov (United States)

    Çaliskan, Ilke

    2014-01-01

    The aim of this study was to identify the needs of third grade classroom teaching students about science teaching course in terms of Parlett's Illuminative program evaluation model. Phenomographic research design was used in this study. Illuminative program evaluation model was chosen for this study in terms of its eclectic and process-based…

  14. In the Footsteps of Roger Revelle: A STEM Partnership Between Scripps Institution of Oceanography, Office of Naval Research and Middle School Science Students Bringing Next Generation Science Standards into the Classroom through Ocean Science

    Science.gov (United States)

    Brice, D.; Appelgate, B., Jr.; Mauricio, P.

    2014-12-01

    Now in its tenth year, "In the Footsteps of Roger Revelle" (IFRR) is a middle school science education program that draws student interest, scientific content and coherence with Next Generation Science Standards from real-time research at sea in fields of physical science. As a successful collaboration involving Scripps Institution of Oceanography (SIO),Office of Naval Research (ONR), and San Marcos Middle School (SMMS), IFRR brings physical oceanography and related sciences to students at the San Marcos Middle School in real-time from research vessels at sea using SIO's HiSeasNet satellite communication system. With a generous grant from ONR, students are able to tour the SIO Ships and spend a day at sea doing real oceanographic data collection and labs. Through real-time and near-realtime broadcasts and webcasts, students are able to share data with scientists and gain an appreciation for the value of Biogeochemical research in the field as it relates to their classroom studies. Interaction with scientists and researchers as well as crew members gives students insights into not only possible career paths, but the vital importance of cutting edge oceanographic research on our society. With their science teacher on the ship as an education outreach specialist or ashore guiding students in their interactions with selected scientists at sea, students observe shipboard research being carried out live via videoconference, Skype, daily e-mails, interviews, digital whiteboard sessions, and web interaction. Students then research, design, develop, deploy, and field-test their own data-collecting physical oceanography instruments in their classroom. The online interactive curriculum models the Next Generation Science Standards encouraging active inquiry and critical thinking with intellectually stimulating problem- solving, enabling students to gain critical insight and skill while investigating some of the most provocative questions of our time, and seeing scientists as

  15. Teaching the Social Curriculum: Classroom Management as Behavioral Instruction

    Science.gov (United States)

    Skiba, Russ; Ormiston, Heather; Martinez, Sylvia; Cummings, Jack

    2016-01-01

    Psychological science has identified positive classroom management and climate building strategies as a key element in developing and maintaining effective learning environments. In this article, we review the literature that has identified effective strategies that build classroom climates to maximize student learning and minimize disruption. In…

  16. Modern Scientific Literacy: A Case Study of Multiliteracies and Scientific Practices in a Fifth Grade Classroom

    Science.gov (United States)

    Allison, Elizabeth; Goldston, M. Jenice

    2018-01-01

    This study investigates the convergence of multiliteracies and scientific practices in a fifth grade classroom. As students' lives become increasingly multimodal, diverse, and globalized, the traditional notions of literacy must be revisited (New London Group 1996). With the adoption of the Next Generation Science Standards (NGSS Lead States 2013a) in many states, either in their entirety or in adapted forms, it becomes useful to explore the interconnectedness multiliteracies and scientific practices and the resulting implications for scientific literacy. The case study included a fifth grade classroom, including the students and teacher. In order to create a rich description of the cases involved, data were collected and triangulated through teacher interviews, student interviews and focus groups, and classroom observations. Findings reveal that as science activities were enriched with multiliteracies and scientific practices, students were engaged in developing skills and knowledge central to being scientifically literate. Furthermore, this study establishes that characteristics of scientific literacy, by its intent and purpose, are a form of multiliteracies in elementary classrooms. Therefore, the teaching and learning of science and its practices for scientific literacy are in turn reinforcing the development of broader multiliteracies.

  17. Models and Materials: Bridging Art and Science in the Secondary Curriculum

    Science.gov (United States)

    Pak, D.; Cavazos, L.

    2006-12-01

    into their classrooms. Initial results indicate that the participating teachers developed a clearer understanding of the uses and limitations of models the classroom, better understanding of materials science, and strong initial ideas for integrated curricula.

  18. Posters that foster cognition in the classroom: Multimedia theory applied to educational posters

    Science.gov (United States)

    Hubenthal, M.; O'Brien, T.; Taber, J.

    2011-12-01

    Despite a decline in popularity within U.S. society, posters continue to hold a prominent place within middle and high school science classrooms. Teachers' demand for posters is largely satisfied by governmental and non-profit science organizations' education and public outreach (EPO) efforts. Here, posters are produced and disseminated as both tangible products resulting from the organization's research, and instruments to communicate scientific content to teachers and students. This study investigates the taken-for-granted good of posters through a survey/interview of science teachers who received sample posters at professional development workshops. The design of sample EPO posters were also examined for their implied, underlying assumptions about learning and their alignment to the setting of the classroom, which is unique for the genera of posters. Based on this analysis we found that rates of poster use were as low as 43% and that many EPO posters fail to achieve their potential as an instructional instrument. As a result, many EPO posters are relegated to merely a collection of pretty pictures on the wall. Leveraging existing research in both cognition and the cognitive theory of Multimedia learning, we propose a design framework for educational posters that is likely to activate students' attention, catalyze cognitive processing, provide a framework to guide students' construction of knowledge, and connect to extended learning through live or web-based exploration of phenomenon. While work to examine the implications of this framework is still on-going, we present a prototype poster and supporting website developed using the framework as a guide, as well as results from focus group discussions with classroom practitioners regarding the prototype poster and its potential in the classroom.

  19. Naturalized Philosophy of Science and Natural Science Education.

    Science.gov (United States)

    Siegel, Harvey

    1993-01-01

    Reviews the philosophical controversy concerning naturalism, and investigates the role it might play in the science classroom. Argues that science students can benefit from explicit study of this controversy and from explicit consideration of the extent to which philosophy of science can be studied naturalistically. (PR)

  20. Science is just around the corner: Outside and inside the classroom

    Science.gov (United States)

    Raposo, Cristina; Florêncio, Elsa; Roussado, Eduarda

    2016-04-01

    In this poster two activities will be presented, one outside and the other inside the classroom, both showing how science is easy to understand and takes part in everyday life. Sintra is a geological/biological rich area to explore. The Sintra hills are a small igneous intrusion, metamorphosing and deforming the surrounding sedimentary rocks. They have an E-W orientation and form a natural barrier to the N-NW winds, promoting a micro-climate that is moderately humid in the Sintra hills and semi-arid in Cabo da Roca. Teachers consider this area as an outdoor laboratory due to its geological and biological diversity. A Geo-Paper was developed (a walk evolving through a set of stops with observations/clues/questions), so participating students are able to observe and understand the importance of rocks in the village's buildings and their relation to the local/regional/national geology. The final stop is a guided tour to Sintra Natural History Museum. This is one of many activities to explore the wide choice of resources this area has to offer. Others include: walks in the forest to photograph species, recognize biodiversity and spot/report environmental issues; field-trips to visit geological spots in the Sintra-Cascais Natural Park that will enable students to make a virtual tour in Google maps and elaborate the geological history of the area. 'Science in Action' club: Where Primary School Meets Science The 'Science in Action' Club is an extra curriculum activity for 7th, 8th and 9th grade students, which takes place once a week and is run by a Biology/Geology and a Physics/Chemistry teacher. One or two activities are chosen, per week, to be carried out by the students, under the supervision of the teachers, in compliance with the rules for behaviour and safety in the laboratory. The main goals to be achieved are: motivating students towards Science, giving them the opportunity to learn by doing, complementing the knowledge acquired during the science classes and

  1. Hidden Expectations behind the Promise of the Flipped Classroom

    Science.gov (United States)

    Sammel, Alison; Townend, Geraldine; Kanasa, Harry

    2018-01-01

    The purpose of this study was to evaluate the student experience of pre-service teachers in a compulsory primary science education course that adopted a flipped classroom approach. Participants (n = 79) were surveyed at the conclusion of the course exploring their perceptions of engagement, enjoyment, and degree of learning as a result of…

  2. Nihithewak Ithiniwak, Nihithewatisiwin and science education: An exploratory narrative study examining Indigenous-based science education in K--12 classrooms from the perspectives of teachers in Woodlands Cree community contexts

    Science.gov (United States)

    Michell, Herman Jeremiah

    This study was guided by the following research questions: What do the stories of teachers in Nihithewak (Woodlands Cree) school contexts reveal about their experiences and tendencies towards cultural and linguistic-based pedagogical practices and actions in K-12 classrooms? How did these teachers come to teach this way? How do their beliefs and values from their experiences in science education and cultural heritage influence their teaching? Why do these teachers do what they do in their science classroom and instructional practices? The research explores Indigenous-based science education from the perspectives and experiences of science teachers in Nihithewak school contexts. Narrative methodology (Clandinin & Connelly, 2000) was used as a basis for collecting and analyzing data emerging from the research process. The results included thematic portraits and stories of science teaching that is connected to Nihithewak and Nihithewatisiwin (Woodlands Cree Way of Life). Major data sources included conversational interviews, out-of-class observations and occasional in-class observations, field notes, and a research journal. An interview guide with a set of open-ended and semi-structured questions was used to direct the interviews. My role as researcher included participation in storied conversations with ten selected volunteer teachers to document the underlying meanings behind the ways they teach science in Nihithewak contexts. This research is grounded in socio-cultural theory commonly used to support the examination and development of school science in Indigenous cultural contexts (Lemke, 2001; O'Loughlin, 1992). Socio-cultural theory is a framework that links education, language, literacy, and culture (Nieto, 2002). The research encapsulates a literature review that includes the history of Aboriginal education in Canada (Battiste & Barman, 1995; Kirkness, 1992; Perley, 1993), Indigenous-based science education (Cajete, 2000; Aikenhead, 2006a), multi

  3. The Classroom Animal: Daddy Longlegs.

    Science.gov (United States)

    Kramer, David C.

    1987-01-01

    Describes some of the characteristics of the common harvestmen, or daddy longlegs, and the true spider. Provides information on harvestmen's habitats and life cycles and includes tips on housing and observing these organisms in science classrooms. (TW)

  4. Science Fiction in the Classroom.

    Science.gov (United States)

    Brake, Mark; Thornton, Rosi

    2003-01-01

    Considers science fiction as an imaginative forum to focus on the relationships between science, culture, and society. Outlines some of the ways in which using the genre can help achieve a dynamic and pluralistic understanding of the nature and evolution of science. (Author/KHR)

  5. Technology Use in Science Instruction (TUSI): Aligning the Integration of Technology in Science Instruction in Ways Supportive of Science Education Reform

    Science.gov (United States)

    Campbell, Todd; Abd-Hamid, Nor Hashidah

    2013-08-01

    This study describes the development of an instrument to investigate the extent to which technology is integrated in science instruction in ways aligned to science reform outlined in standards documents. The instrument was developed by: (a) creating items consistent with the five dimensions identified in science education literature, (b) establishing content validity with both national and international content experts, (c) refining the item pool based on content expert feedback, (d) piloting testing of the instrument, (e) checking statistical reliability and item analysis, and (f) subsequently refining and finalization of the instrument. The TUSI was administered in a field test across eleven classrooms by three observers, with a total of 33 TUSI ratings completed. The finalized instrument was found to have acceptable inter-rater intraclass correlation reliability estimates. After the final stage of development, the TUSI instrument consisted of 26-items separated into the original five categories, which aligned with the exploratory factor analysis clustering of the items. Additionally, concurrent validity of the TUSI was established with the Reformed Teaching Observation Protocol. Finally, a subsequent set of 17 different classrooms were observed during the spring of 2011, and for the 9 classrooms where technology integration was observed, an overall Cronbach alpha reliability coefficient of 0.913 was found. Based on the analyses completed, the TUSI appears to be a useful instrument for measuring how technology is integrated into science classrooms and is seen as one mechanism for measuring the intersection of technological, pedagogical, and content knowledge in science classrooms.

  6. Delivering Hubble Discoveries to the Classroom

    Science.gov (United States)

    Eisenhamer, B.; Villard, R.; Weaver, D.; Cordes, K.; Knisely, L.

    2013-04-01

    Today's classrooms are significantly influenced by current news events, delivered instantly into the classroom via the Internet. Educators are challenged daily to transform these events into student learning opportunities. In the case of space science, current news events may be the only chance for educators and students to explore the marvels of the Universe. Inspired by these circumstances, the education and news teams developed the Star Witness News science content reading series. These online news stories (also available in downloadable PDF format) mirror the content of Hubble press releases and are designed for upper elementary and middle school level readers to enjoy. Educators can use Star Witness News stories to reinforce students' reading skills while exposing students to the latest Hubble discoveries.

  7. Instructional Style Meets Classroom Design.

    Science.gov (United States)

    Novelli, Joan

    1991-01-01

    Nine elementary teachers explain how they design their classrooms to match and support their instructional styles. The teachers focus on whole language programs, student portfolios, science activity set-ups, technology transformation, learning center strategies, and space utilization. (SM)

  8. Earth2Class Overview: An Innovative Program Linking Classroom Educators and Research Scientists

    Science.gov (United States)

    Passow, M.; Iturrino, G. J.; Baggio, F. D.; Assumpcao, C. M.

    2005-12-01

    The Earth2Class (E2C) workshops, held at the Lamont-Doherty Earth Observatory (LDEO), provide an effective model for improving knowledge, teaching, and technology skills of middle and high school science educators through ongoing interactions with research scientists and educational technology. With support from an NSF GeoEd grant, E2C has developed monthly workshops, web-based resources, and summer institutes in which classroom teachers and research scientists have produced exemplar curriculum materials about a wide variety of cutting-edge geoscience investigations suitable for dissemination to teachers and students. Some of the goals of this program are focused to address questions such as: (1) What aspects of the E2C format and educational technology most effectively connect research discoveries with classroom teachers and their students? (2) What benefits result through interactions among teachers from highly diverse districts and backgrounds with research scientists, and what benefits do the scientists gain from participation? (3) How can the E2C format serve as a model for other research institution-school district partnerships as a mechanism for broader dissemination of scientific discoveries? E2C workshops have linked LDEO scientists from diverse research specialties-seismology, marine geology, paleoclimatology, ocean drilling, dendrochronology, remote sensing, impact craters, and others-with teachers from schools in the New York metropolitan area. Through the workshops, we have trained teachers to enhance content knowledge in the Earth Sciences and develop skills to incorporate new technologies. We have made a special effort to increase the teaching competency of K-12 Earth Sciences educators serving in schools with high numbers of students from underrepresented groups, thereby providing greater role models to attract students into science and math careers. E2C sponsored Earth Science Teachers Conferences, bringing together educators from New York and New

  9. Ventilation System Type and the Resulting Classroom Temperature and Air Quality During Heating Season

    DEFF Research Database (Denmark)

    Gao, Jie; Wargocki, Pawel; Wang, Yi

    2014-01-01

    The present study investigated how different ventilation system types influence classroom temperature and air quality. Five classrooms were selected in the same school. They were ventilated by manually operable windows, manually operable windows with exhaust fan, automatically operable windows...... with and without exhaust fan and by mechanical ventilation system. Temperature, relative humidity, carbon dioxide (CO2) concentration and opening of windows were continuously monitored for one month during heating season in 2012. Classroom with manually operable windows had the highest carbon dioxide concentration...... levels so that the estimated ventilation rate was the lowest compared with the classrooms ventilated with other systems. Temperatures were slightly lower in classroom ventilated by manually operable windows with exhaust fan. Windows were opened seldom even in the classroom ventilated by manually operable...

  10. Effects of Single-Gender Middle School Classes on Science Achievement and Attitude

    Science.gov (United States)

    Brooks, Tanisha

    Many girls continue to achieve below their male counterparts and portray negative attitudes towards science classes. Some school districts are using single-gender education as a way to shrink the gender gap in school achievement and science related attitude. The purpose of this study was to compare achievement and science-related attitudes of 7th grade girls in single-gender education to 7th grade girls in mixed-gender education. The theoretical base for this study included knowledge from brain-based learning and assimilation, accommodation and age factors of Piaget's theory of cognitive development. The 12-week study included 48 7th grade girls, 21 in the single-gender classroom and 14 in each mixed-gender classroom. This quantitative randomized posttest only control group design utilized the TerraNova Science Assessment and the Test of Science Related Attitudes. Analysis of Variance (ANOVA) was used to determine if significant differences existed in the achievement and attitudes of girls in single and mixed-gender science classes. ANOVA analyses revealed that the girls in the single-gender classroom showed a significantly higher achievement level when compared to girls in the mixed-gender classrooms. Results showed no significant difference in attitude between the two groups. The results of this study contribute to social change by raising awareness about gender issues in science achievement and attitude, addressing a deficiency in the single-gender science education literature, and assisting educational systems in decision making to address achievement gaps while moving toward adequate yearly progress and meeting the requirements of the No Child Left Behind Act of 2001.

  11. Voices from inside the elementary classroom: Three teachers' perspectives on the Alabama Reading Initiative and elementary science

    Science.gov (United States)

    Webb, Brenda Hainley

    The influences of mandates, particularly the Alabama Reading Initiative (ARI) as the response to No Child Left Behind (2002), on elementary science education in Alabama were investigated. Teachers' voices provided insights to the status of science education in kindergarten, second grade, and third grade, and all three case participants reported negative influences of ARI on science education in their classrooms. The multiple case study, framed by critical theory and critical pedagogy, indicated that these teachers sometimes accepted marginalized roles in determining curriculum and pedagogy yet at other times made the decisions to empower themselves and negotiate or discard mandates in favor of meeting their children's learning needs or their own professional needs as they perceived them to be. Whether the case participants reached a threshold of resisting mandates or not, they struggled with the view of the political hierarchy that continues to force them into the status of being a technician rather than being a teaching professional. NCLB currently mandates standardized science testing, beginning in the spring of 2008. Historically, standardized testing reduces learning to low-level recall and teaching to rigid, uncreative, uncritical strategies. All of this intersects with science education reform and a national call for more attention to be given to science, technology, and mathematics learning. Research should track the continued influences of intersecting mandates on science education at every level.

  12. Flipped Classrooms and Student Learning: Not Just Surface Gains

    Science.gov (United States)

    McLean, Sarah; Attardi, Stefanie M.; Faden, Lisa; Goldszmidt, Mark

    2016-01-01

    The flipped classroom is a relatively new approach to undergraduate teaching in science. This approach repurposes class time to focus on application and discussion; the acquisition of basic concepts and principles is done on the students' own time before class. While current flipped classroom research has focused on student preferences and…

  13. Interdisciplinary Science in the Classroom

    Science.gov (United States)

    French, L. M.; Lopresti, V. C.; Papali, P.

    1993-05-01

    The practice of science is by its very nature interdisciplinary. Most school curricula, however, present science as a "layer cake" with one year each of biology, chemistry, earth science, and physics. Students are too often left with a fragmented, disjointed view of the sciences as separate and distinct bodies of information. The continuity of scientific thought and the importance of major ideas such as energy, rates of change, and the nature of matter are not seen. We describe two efforts to integrate the sciences in a middle school curriculum and in an introductory science course for prospective elementary teachers. Introductory physical science for eighth graders at the Park School has three major units: "Observing the Sky", "The Nature of Matter", and "The Nature of Light". The course moves from simple naked-eye observations of the Sun and Moon to an understanding of the apparent motions of the Sun and of the Earth's seasons. In "The Nature of Matter", students construct operational definitions of characteristic properties of matter such as density, boiling point, solubility, and flame color. They design and perform many experiments and conclude by separating a mixture of liquids and solids by techniques such as distillation and fractional crystallization. In studying flame tests, students learn that different materials have different color "signatures" and that the differences can be quantified with a spectroscope. They then observe solar absorption lines with their spectroscopes and discover which elements are present in the Sun. Teachers of young children are potentially some of the most powerful allies in increasing our country's scientific literacy, yet most remain at best uneasy about science. At Wheelock College we are designing a course to be called "Introduction to Natural Science" for elementary education majors. We will address special needs of many in this population, including science anxiety and poor preparation in mathematics. A broad conceptual

  14. Secondary science classroom dissections: Informing policy by evaluating cognitive outcomes and exploring affective outcomes

    Science.gov (United States)

    Allspaw, Kathleen M.

    Animal protection organizations claim that dissection is pedagogically unsound and that it will cause students to lose respect for non-human animals. Science teacher organizations support curricula that teach respect for animal life and include dissection. Prior research compared dissection to dissection alternatives. Four of the six studies revealed no difference between groups on tests of cognitive outcomes. One study revealed that dissection was superior, and one revealed that the alternative was superior. No differences in attitudes toward science, dissection or school were found. Attitudes toward non-human animals were not measured. This study focused on the dissections of earthworms and frogs in middle and high school classrooms. Pre and post-tests of conceptual understanding revealed failing scores and no significant pre/post differences. Because these tests required critical thinking skills, and the dissection activities did not, it is difficult to determine if the poor performance on these tests indicates the inability of the students to think critically, and/or if it indicates the ineffectiveness of dissection. Further studies of dissections that focus on critical thinking would be necessary to make this distinction. Classroom observations, student written narratives, and student and adult interviews revealed mixed attitudes toward non-human animals. Student behaviors during dissection were similar to those behaviors exhibited during non-dissection activities. Most students and adults readily supported worm dissections while they expressed some trepidation about frog dissections. Students and adults universally expressed affection for their pets and opposed the use of their own pets for dissection/research. There was slight support for the use of dogs and cats for dissection/research, but only those students who expressed hate for cats said that they could dissect cats. None of the students or adults expressed a willingness to dissect dogs. Some students

  15. The roles of teachers' science talk in revealing language demands within diverse elementary school classrooms: a study of teaching heat and temperature in Singapore

    Science.gov (United States)

    Seah, Lay Hoon; Yore, Larry D.

    2017-01-01

    This study of three science teachers' lessons on heat and temperature seeks to characterise classroom talk that highlighted the ways language is used and to examine the nature of the language demands revealed in constructing, negotiating, arguing and communicating science ideas. The transcripts from the entire instructional units for these teachers' four culturally and linguistically diverse Grade 4 classes (10 years old) with English as the language of instruction constitute the data for this investigation. Analysis of these transcripts focused on teachers' talk that made explicit reference to the form or function of the language of science and led to the inductive development of the 'Attending to Language Demands in Science' analytical framework. This framework in turn revealed that the major foregrounding purposes of teachers' talk include labelling, explaining, differentiating, selecting and constructing. Further classification of the instances within these categories revealed the extensive and contextualised nature of the language demands. The results challenge the conventional assumption that basic literacy skills dominate over disciplinary literacy skills in primary school science. Potential uses of the analytical framework that could further expand our understanding of the forms, functions and demands of language used in elementary school science are also discussed.

  16. Spacelab Science Results Study

    Science.gov (United States)

    Naumann, R. J.; Lundquist, C. A.; Tandberg-Hanssen, E.; Horwitz, J. L.; Germany, G. A.; Cruise, J. F.; Lewis, M. L.; Murphy, K. L.

    2009-01-01

    Beginning with OSTA-1 in November 1981 and ending with Neurolab in March 1998, a total of 36 Shuttle missions carried various Spacelab components such as the Spacelab module, pallet, instrument pointing system, or mission peculiar experiment support structure. The experiments carried out during these flights included astrophysics, solar physics, plasma physics, atmospheric science, Earth observations, and a wide range of microgravity experiments in life sciences, biotechnology, materials science, and fluid physics which includes combustion and critical point phenomena. In all, some 764 experiments were conducted by investigators from the U.S., Europe, and Japan. The purpose of this Spacelab Science Results Study is to document the contributions made in each of the major research areas by giving a brief synopsis of the more significant experiments and an extensive list of the publications that were produced. We have also endeavored to show how these results impacted the existing body of knowledge, where they have spawned new fields, and if appropriate, where the knowledge they produced has been applied.

  17. Academic Effort and Achievement in Science: Beyond a Gendered Relationship

    Science.gov (United States)

    Adamuti-Trache, Maria; Sweet, Robert

    2013-12-01

    This study employs the 2004 School Achievement Indicators Program (SAIP) data to examine whether academic effort manifested by greater investments in school and homework does result in higher literacy scores in science for Canadian students. The study compares four gender-immigrant profiles: Canadian-born males, immigrant males, Canadian-born females, and immigrant females on their scores on teacher-assigned grades in science and on the SAIP science literacy test, and across a range of dispositions, beliefs, and behaviors suggested in the literature as predictive of achievement in science. Study findings show that Canadian-born students, particularly boys, have higher performance in the science literacy test despite their lower achievement in the science classroom and the least investments of time in doing science homework. In contrast, immigrant female students demonstrate the highest academic effort and achievement in science courses which are not matched by similar results in the science literacy test. We discuss these results in relation to different socialization experiences with science and technology that limit female and immigrant students' abilities to transfer knowledge to new situations that have not been learned in the classroom.

  18. Dagik Earth: A Digital Globe Project for Classrooms, Science Museums, and Research Institutes

    Science.gov (United States)

    Saito, A.; Tsugawa, T.

    2017-12-01

    Digital globe system is a powerful tool to make the audiences understand phenomena on the Earth and planets in intuitive way. Geo-cosmos of Miraikan, Japan uses 6-m spherical LED, and is one of the largest systems of digital globe. Science on a Sphere (SOS) by NOAA is a digital globe system that is most widely used in science museums around the world. These systems are so expensive that the usage of the digital globes is mainly limited to large-scale science museums. Dagik Earth is a digital globe project that promotes educational programs using digital globe with low cost. It aims to be used especially in classrooms. The cost for the digital globe of Dagik Earth is from several US dollars if PC and PC projector are available. It uses white spheres, such as balloons and balance balls, as the screen. The software is provided by the project with free of charge for the educational usage. The software runs on devices of Windows, Mac and iOS. There are English and Chinese language versions of the PC software besides Japanese version. The number of the registered users of Dagik Earth is about 1,400 in Japan. About 60% of them belongs to schools, 30% to universities and research institutes, and 8% to science museums. In schools, it is used in classes by teachers, and science activities by students. Several teachers have used the system for five years and more. In a students' activity, Dagik Earth contents on the typhoon, solar eclipse, and satellite launch were created and presented in a school festival. This is a good example of the usage of Dagik Earth for STEM education. In the presentation, the system and activity of Dagik Earth will be presented, and the future expansion of the project will be discussed.

  19. Animals in the Classroom

    Science.gov (United States)

    Roy, Ken

    2011-01-01

    Use of animals in middle school science classrooms is a curriculum component worthy of consideration, providing proper investigation and planning are addressed. A responsible approach to this action, including safety, must be adopted for success. In this month's column, the author provides some suggestions on incorporating animals into the…

  20. An evaluation of community college student perceptions of the science laboratory and attitudes towards science in an introductory biology course

    Science.gov (United States)

    Robinson, Nakia Rae

    The science laboratory is an integral component of science education. However, the academic value of student participation in the laboratory is not clearly understood. One way to discern student perceptions of the science laboratory is by exploring their views of the classroom environment. The classroom environment is one determinant that can directly influence student learning and affective outcomes. Therefore, this study sought to examine community college students' perceptions of the laboratory classroom environment and their attitudes toward science. Quantitative methods using two survey instruments, the Science Laboratory Environment Instrument (SLEI) and the Test of Science Related Attitudes (TORSA) were administered to measure laboratory perceptions and attitudes, respectively. A determination of differences among males and females as well as three academic streams were examined. Findings indicated that overall community college students had positive views of the laboratory environment regardless of gender of academic major. However, the results indicated that the opportunity to pursue open-ended activities in the laboratory was not prevalent. Additionally, females viewed the laboratory material environment more favorably than their male classmates did. Students' attitudes toward science ranged from favorable to undecided and no significant gender differences were present. However, there were significantly statistical differences between the attitudes of nonscience majors compared to both allied health and STEM majors. Nonscience majors had less positive attitudes toward scientific inquiry, adoption of scientific attitudes, and enjoyment of science lessons. Results also indicated that collectively, students' experiences in the laboratory were positive predicators of their attitudes toward science. However, no laboratory environment scale was a significant independent predictor of student attitudes. .A students' academic streams was the only significant

  1. Project-Based Science

    Science.gov (United States)

    Krajcik, Joe

    2015-01-01

    Project-based science is an exciting way to teach science that aligns with the "Next Generation Science Standards" ("NGSS"). By focusing on core ideas along with practices and crosscutting concepts, classrooms become learning environments where teachers and students engage in science by designing and carrying out…

  2. Teaching Grade Eight Science with Reference to the Science Curriculum

    Directory of Open Access Journals (Sweden)

    Rasel Babu

    2016-08-01

    Full Text Available A mixed methodological approach was used to explore to what extent the science curriculum was being reflected in science teaching-learning of grade VIII students in Bangladesh. 160 students were randomly selected and 10 science teachers were purposively selected as study respondents. Fifteen science lessons were observed. Data were collected via student questionnaires, teacher interviews, and classroom observation checklists. Grade VIII science teaching-learning activities were not conducted according to the instructions of the science curriculum. Most teachers did not adhere to the curriculum and teacher's guide. Teachers mainly depended on lecture methods for delivering lessons. Learning by doing, demonstrating experiments, scientific inquiry, rational thinking, and analysing cause-effect relationships were noticeably absent. Teachers reported huge workloads and a lack of ingredients as reasons for not practising these activities. Teachers did not use teaching aids properly. Science teaching-learning was fully classroom centred, and students were never involved in any creative activities. 

  3. Comparison between flipped classroom and lecture-based classroom in ophthalmology clerkship.

    Science.gov (United States)

    Tang, Fen; Chen, Chuan; Zhu, Yi; Zuo, Chengguo; Zhong, Yimin; Wang, Nan; Zhou, Lijun; Zou, Yuxian; Liang, Dan

    2017-01-01

    In recent years, the flipped classroom method of teaching has received much attention in health sciences education. However, the application of flipped classrooms in ophthalmology education has not been well investigated. The goal of this study was to investigate the effectiveness and acceptability of the flipped classroom approach to teaching ophthalmology at the clerkship level. Ninety-five fourth year medical students in an ophthalmology clerkship were randomly divided into two groups. An ocular trauma module was chosen for the content of this study. One group (FG (flipped group), n = 48) participated in flipped classroom instruction and was asked to watch a recorded lecture video and to read study materials before a face-to-face class meeting. They used the in-class time for discussion. The other group (TG (traditional group), n = 47) was assigned to traditional lecture-based instruction. These students attended a didactic lecture and completed assigned homework after the lecture. Feedback questionnaires were collected to compare students' perspectives on the teaching approach they experienced and to evaluate students' self-perceived competence and interest in ocular trauma. Pre- and post-tests were performed to assess student learning of the course materials. More students in the FG agreed that the classroom helped to promote their learning motivation, improve their understanding of the course materials, and enhance their communication skill and clinical thinking. However, students in the FG did not show a preference for this method of teaching, and also reported more burden and pressure than those from the TG. Students from the FG performed better on the post test over the ocular trauma-related questions when compared to those from the TG. The flipped classroom approach shows promise in ophthalmology clerkship teaching. However, it has some drawbacks. Further evaluation and modifications are required before it can be widely accepted and implemented

  4. The GLOBE Carbon Project: Integrating the Science of Carbon Cycling and Climate Change into K-12 Classrooms.

    Science.gov (United States)

    Ollinger, S. V.; Silverberg, S.; Albrechtova, J.; Freuder, R.; Gengarelly, L.; Martin, M.; Randolph, G.; Schloss, A.

    2007-12-01

    The global carbon cycle is a key regulator of the Earth's climate and is central to the normal function of ecological systems. Because rising atmospheric CO2 is the principal cause of climate change, understanding how ecosystems cycle and store carbon has become an extremely important issue. In recent years, the growing importance of the carbon cycle has brought it to the forefront of both science and environmental policy. The need for better scientific understanding has led to establishment of numerous research programs, such as the North American Carbon Program (NACP), which seeks to understand controls on carbon cycling under present and future conditions. Parallel efforts are greatly needed to integrate state-of-the-art science on the carbon cycle and its importance to climate with education and outreach efforts that help prepare society to make sound decisions on energy use, carbon management and climate change adaptation. Here, we present a new effort that joins carbon cycle scientists with the International GLOBE Education program to develop carbon cycle activities for K-12 classrooms. The GLOBE Carbon Cycle project is focused on bringing cutting edge research and research techniques in the field of terrestrial ecosystem carbon cycling into the classroom. Students will collect data about their school field site through existing protocols of phenology, land cover and soils as well as new protocols focused on leaf traits, and ecosystem growth and change. They will also participate in classroom activities to understand carbon cycling in terrestrial ecosystems, these will include plant- a-plant experiments, hands-on demonstrations of various concepts, and analysis of collected data. In addition to the traditional GLOBE experience, students will have the opportunity to integrate their data with emerging and expanding technologies including global and local carbon cycle models and remote sensing toolkits. This program design will allow students to explore research

  5. Community and inquiry: journey of a science teacher

    Science.gov (United States)

    Goldberg, Jennifer; Welsh, Kate Muir

    2009-09-01

    In this case study, we examine a teacher's journey, including reflections on teaching science, everyday classroom interaction, and their intertwined relationship. The teacher's reflections include an awareness of being "a White middle-class born and raised teacher teaching other peoples' children." This awareness was enacted in the science classroom and emerges through approaches to inquiry . Our interest in Ms. Cook's journey grew out of discussions, including both informal and semi-structured interviews, in two research projects over a three-year period. Our interest was further piqued as we analyzed videotaped classroom interaction during science lessons and discovered connections between Ms. Cook's reflections and classroom interaction. In this article, we illustrate ways that her journey emerges as a conscientization. This, at least in part, shapes classroom interaction, which then again shapes her conscientization in a recursive, dynamic relationship. We examine her reflections on her "hegemonic (cultural and socio-economic) practices" and consider how these reflections help her reconsider such practices through analysis of classroom interaction. Analyses lead us to considering the importance of inquiry within this classroom community.

  6. The Ocean Acidification Curriculum Collection - sharing ocean science resources for k-12 classrooms

    Science.gov (United States)

    Williams, P.

    2016-02-01

    The fish and shellfish provided by ecosystems that abound in the waters of Puget Sound have sustained the Suquamish Tribe for millennia. However, years of development, pollution and over-harvest have reduced some fish and shellfish populations to just a fraction of their former abundance. Now, ocean acidification (OA) and climate change pose additional threats to these essential natural resources. Ocean acidification can't be stopped; however, many of the other human-caused stressors to ocean health can. If human behaviors that harm ocean health can be modified to reduce impacts, fish populations and ecosystems could become more resilient to the changing ocean conditions. School is arguably the best place to convey the ideas and awareness needed for people to adopt new behaviors. Students are open to new ideas and they influence their peers and parents. In addition, they are captive audiences in classrooms for many years.The Suquamish Tribe is helping to foster new generations of ocean stewards by creating an online searchable database (OACurriculumCollection.org). This site is designed to facilitate finding, reviewing and sharing free educational materials on OA. At the same time, the Next Generation Science Standards (NGSS) were released providing a great opportunity to get new materials into classrooms. OA provides highly appropriate context to teach many of the ideas in the new standards making it attractive to teachers looking for interesting and relevant materials. In this presentation, we will demonstrate how teachers can use the site as a place to find and share materials on OA. We will also present a framework developed by teachers for understanding OA, its impacts, and the many ways students can help ease the impacts on ocean ecosystems. We will provide examples of how OA can be used as context and content for the NGSS and finally, we will discuss the failures and successes on our journey to get relevant materials into the classroom.

  7. Developing pre-service science teachers' pedagogical content knowledge by using training program

    Science.gov (United States)

    Udomkan, Watinee; Suwannoi, Paisan

    2018-01-01

    A training program was developed for enhancing pre-service science teachers' pedagogical content knowledge (PCK). The pre-service science teachers are able to: understand science curriculum, knowledge of assessment in science, knowledge of students' understanding of science, instructional strategies and orientations towards science teaching, which is conceptualized as PCK [5]. This study examined the preservice science teachers' understandings and their practices which include five pre-service science teachers' PCK. In this study, the participants demonstrated their PCK through the process of the training program by writing content representations (CoRes), preparing the lesson plans, micro-teaching, and actual teaching respectively. All pre-service science teachers' performs were collected by classroom observations. Then, they were interviewed. The results showed that the pre-service science teachers progressively developed knowledge components of PCK. Micro-teaching is the key activities for developing PCK. However, they had some difficulties in their classroom teaching. They required of sufficient ability to design appropriate instructional strategies and assessment activities for teaching. Blending content and pedagogy is also a matter of great concern. The implication of this study was that science educators can enhance pre-service science teachers' PCK by fostering their better understandings of the instructional strategies, assessment activities and blending between content and pedagogy in their classroom.

  8. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries

    Science.gov (United States)

    Allen, J. S.

    2009-12-01

    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and

  9. Ninth Grade Student Responses to Authentic Science Instruction

    Science.gov (United States)

    Ellison, Michael Steven

    science classwork was also measured. In addition, direct observation measures of student behavioral engagement showed that behavioral engagement was generally high, but not associated with the authenticity of the pedagogy. Direct observation measures of student self-regulation found evidence that when instruction focused on core science and engineering concepts and made stronger connections to the student's world beyond the classroom, student self-regulated learning was greater, and included evidence of student ownership. In light of the alignment between the model of authenticity used in this study and the Next Generation Science Standards (NGSS), the results suggest that further research on the value beyond school component of the model could improve understanding of student engagement and performance in response to the implementation of the NGSS. In particular, it suggests a unique role environmental education can play in affording student success in K-12 science and a tool to measure that role.

  10. Galileo's 'Jumping-Hill' Experiment in the Classroom--A Constructivist's Analysis.

    Science.gov (United States)

    Kubli, Fritz

    2001-01-01

    Uses Galileo's 'jumping-hill' experiment as an historical element to improve science teaching in the classroom. Illustrates that the experiment can stimulate an animated discussion in the classroom, even if precise historic circumstances are not mentioned. The historical dimensions bring some color into the lesson, which increases attention. (SAH)

  11. Flipped Instruction in a High School Science Classroom

    Science.gov (United States)

    Leo, Jonathan; Puzio, Kelly

    2016-10-01

    This paper reports on a quasi-experimental study examining the effectiveness of flipped instruction in a 9th grade biology classroom. This study included four sections of freshmen-level biology taught by the first author at a private secondary school in the Pacific Northwest. Using a block randomized design, two sections were flipped and two remained traditional. The quiz and posttest data were adjusted for pretest differences using ANCOVA. The results suggest that flipped instruction had a positive effect student achievement, with effect sizes ranging from +0.16 to +0.44. In addition, some students reported that they preferred watching video lectures outside of class and appreciated more active approaches to learning.

  12. Science Fiction in the Political Science Classroom: A Comment

    Science.gov (United States)

    Landers, Clifford E.

    1977-01-01

    Science fiction can be used for introducing and analyzing political concepts at the undergraduate level for either a specialized theory-oriented course such as Political Science Fiction or an Introduction to Political Science course. (Author/RM)

  13. Cognitive science and mathematics education

    CERN Document Server

    Schoenfeld, Alan H

    1987-01-01

    This volume is a result of mathematicians, cognitive scientists, mathematics educators, and classroom teachers combining their efforts to help address issues of importance to classroom instruction in mathematics. In so doing, the contributors provide a general introduction to fundamental ideas in cognitive science, plus an overview of cognitive theory and its direct implications for mathematics education. A practical, no-nonsense attempt to bring recent research within reach for practicing teachers, this book also raises many issues for cognitive researchers to consider.

  14. Turning Science Results into News

    Science.gov (United States)

    Wanjek, Christopher

    2006-09-01

    Do you want to get into the New York Times? Aside from writing an angry letter or robbing a bank, getting into the news (with your science result) requires a well-crafted press release. Reaching out to reporters is very different from reaching out to fellow scientists. Scientific significance is not the same as newsworthiness, but many science results can be molded into interesting stories that reporters can relate to their audience. This presentation will present examples of science stories that made it big and some that flopped. We will also examine what makes a story attractive to newspaper and magazine editors.

  15. Examining small "c" creativity in the science classroom: Multiple case studies of five high school teachers

    Science.gov (United States)

    Lasky, Dorothea Shawn

    As the US continues to strive toward building capacity for a workforce in STEM fields (NSF, 2006), educational organizations and researchers have constructed frameworks that focus on increasing competencies in creativity in order to achieve this goal (ISTE, 2007; Karoly & Panis, 2004; Partnership for 21st Century Skills, 2007). Despite these recommendations, many teachers either do not believe in the relevance of nurturing creativity in their students (Kaufman & Sternberg, 2007) or accept the importance of it, but do not know how best to foster it in their classrooms (Kampylis et al., 2009). Researchers conclude that teachers need to revise their ideas about the kind of creativity they can expect from their students to reflect the idea of small 'c' versus large 'C' creativity. There is a dearth of literature that looks closely at teacher practice surrounding creativity in the US and gives teachers a set of practical suggestions they can follow easily. I examined five case studies of teachers as they participated in and implemented a large-scale, NSF-funded project premised on the idea that training teachers in 21 st century pedagogies, (for example, problem-based learning), helps teachers create classrooms that increase science competencies in students. I investigated how teachers' curricular choices affect the amount of student creativity produced in their classrooms. Analysis included determining CAT scores for student products and continua scores along the Small 'c' Creativity Framework. In the study, I present an understanding of how teachers' beliefs influence practice and how creativity is fostered in students through various styles of teacher practice. The data showed a relationship between teachers' CAT scores, framework scores, and school context. Thus, alongside CAT, the framework was determined to be a successful tool for understanding the degree to which teachers foster small 'c' creativity. Other themes emerged, which included teachers' allotment of

  16. The Six-Legged Subject: A Survey of Secondary Science Teachers' Incorporation of Insects into U.S. Life Science Instruction.

    Science.gov (United States)

    Ingram, Erin; Golick, Douglas

    2018-03-14

    To improve students' understanding and appreciation of insects, entomology education efforts have supported insect incorporation in formal education settings. While several studies have explored student ideas about insects and the incorporation of insects in elementary and middle school classrooms, the topic of how and why insects are incorporated in secondary science classrooms remains relatively unexplored. Using survey research methods, this study addresses the gap in the literature by (1) describing in-service secondary science teachers' incorporation of insects in science classrooms; (2) identifying factors that support or deter insect incorporation and (3) identifying teachers' preferred resources to support future entomology education efforts. Findings indicate that our sample of U.S. secondary science teachers commonly incorporate various insects in their classrooms, but that incorporation is infrequent throughout the academic year. Insect-related lesson plans are commonly used and often self-created to meet teachers' need for standards-aligned curriculum materials. Obstacles to insect incorporation include a perceived lack of alignment of insect education materials to state or national science standards and a lack of time and professional training to teach about insects. Recommendations are provided for entomology and science education organizations to support teachers in overcoming these obstacles.

  17. The Six-Legged Subject: A Survey of Secondary Science Teachers’ Incorporation of Insects into U.S. Life Science Instruction

    Science.gov (United States)

    Ingram, Erin

    2018-01-01

    To improve students’ understanding and appreciation of insects, entomology education efforts have supported insect incorporation in formal education settings. While several studies have explored student ideas about insects and the incorporation of insects in elementary and middle school classrooms, the topic of how and why insects are incorporated in secondary science classrooms remains relatively unexplored. Using survey research methods, this study addresses the gap in the literature by (1) describing in-service secondary science teachers’ incorporation of insects in science classrooms; (2) identifying factors that support or deter insect incorporation and (3) identifying teachers’ preferred resources to support future entomology education efforts. Findings indicate that our sample of U.S. secondary science teachers commonly incorporate various insects in their classrooms, but that incorporation is infrequent throughout the academic year. Insect-related lesson plans are commonly used and often self-created to meet teachers’ need for standards-aligned curriculum materials. Obstacles to insect incorporation include a perceived lack of alignment of insect education materials to state or national science standards and a lack of time and professional training to teach about insects. Recommendations are provided for entomology and science education organizations to support teachers in overcoming these obstacles. PMID:29538297

  18. Disciplinary Literacy in Science: Developing Science Literacy through Trade Books

    Science.gov (United States)

    Fang, Zhihui

    2014-01-01

    Developing science literacy requires not only firsthand explorations of the material world but also secondhand investigations with text. A potentially powerful kind of text in science is trade books. This column describes four classroom ploys for using science trade books to enhance students' secondhand experiences.

  19. The Challenges Faced by New Science Teachers in Saudi Arabia

    Science.gov (United States)

    Alsharari, Salman

    supplies. Moreover, excessive student absenteeism, student readiness to learn science and student lack of interest in science were the three most behavioral challenges encountered by beginning science teachers in the Kingdom of Saudi Arabia. Results also indicated that the perceptions of academic and behavioral classroom challenges may vary according to new science teacher gender, school level and years of teaching experience. More importantly, to become more effective science teachers, novice science teachers are expecting to receive more and better support from their schools. School principals and administrators should provide opportunities for beginning science teachers to attend effective new teacher orientation programs, use complete and well-developed curriculum materials with detailed sequence of teaching procedures, help in dealing with classroom management, and opportunities to participate in successful mentoring programs, coherent in-service training programs and regular professional development programs. Implications for Saudi Arabia government and policy makers, school principals and administrators, students and their parents were discussed and recommendations were made.

  20. Teacher classroom practices and Mathematics performance in ...

    African Journals Online (AJOL)

    Education and Skills Development, Human Sciences Research Council, Pretoria, South Africa ... Solving and Metacognitive Strategies, and Collaboration. ... Close monitoring, adequate pacing and classroom management, as well as clarity of ...

  1. Teaching evolution in the Australian classroom

    Science.gov (United States)

    Vozzo, Les

    A summary of the key issues of controversy encountered by science teachers in Australian classrooms. Evolution, cloning and gene manipulation, fertility control, artificial intelligence, irradiation of food, the use of nuclear energy, radiation from powerlines are some of the topics discussed and debated in classrooms. What are some of the difficulties encountered by teachers when students ask questions that raise moral dilemmas and challenges entrenched beliefs and views of the world. What are some of the teaching strategies used that deal with these difficulties.

  2. "Finding the Joy in the Unknown": Implementation of STEAM Teaching Practices in Middle School Science and Math Classrooms

    Science.gov (United States)

    Quigley, Cassie F.; Herro, Dani

    2016-06-01

    In response to a desire to strengthen the economy, educational settings are emphasizing science, technology, engineering, and mathematics (STEM) curriculum and programs. Yet, because of the narrow approach to STEM, educational leaders continue to call for a more balanced approach to teaching and learning, which includes the arts, design, and humanities. This desire created space for science, technology, engineering, arts, and mathematics (STEAM) education, a transdisciplinary approach that focuses on problem-solving. STEAM-based curricula and STEAM-themed schools are appearing all over the globe. This growing national and global attention to STEAM provides an opportunity for teacher education to explore the ways in which teachers implement STEAM practices, examining the successes and challenges, and how teachers are beginning to make sense of this innovative teaching practice. The purpose of this paper is to examine the implementation of STEAM teaching practices in science and math middle school classrooms, in hopes to provide research-based evidence on this emerging topic to guide teacher educators.

  3. A Science Classroom That's More than a Game

    Science.gov (United States)

    Barlow, Tim; Fleming, Barry

    2016-01-01

    "Blended" and "flipped" pedagogies are becoming more common features of classrooms as the technological revolution continues. While the appropriate use of technology in the learning environment can serve to motivate some students, significant problems surrounding student motivation and engagement remain. As such, the…

  4. Science Teacher Orientations and PCK across Science Topics in Grade 9 Earth Science

    Science.gov (United States)

    Campbell, Todd; Melville, Wayne; Goodwin, Dawne

    2017-01-01

    While the literature is replete with studies examining teacher knowledge and pedagogical content knowledge (PCK), few studies have investigated how science teacher orientations (STOs) shape classroom instruction. Therefore, this research explores the interplay between a STOs and the topic specificity of PCK across two science topics within a grade…

  5. Effects of the learning cycle upon student and classroom teacher performance

    Science.gov (United States)

    Marek, Edmund A.; Methven, Suzanne B.

    A great deal of research has been done regarding science in-service education and the conclusion can be drawn that positive results were generally achieved in workshop-participant attitude and implementation of instructional approaches into the classroom. One of the most important effects of an in-service workshop is upon the students of the teachers participating in an in-service program, but rarely, if ever, is this parameter assessed in the in-service evaluation design. This study investigated the relationships among (1) teacher's attitudes and implementation of in-service workshop developed science materials (learning cycles) and (2) elementary school student's conservation reasoning and language used to describe properties of objects. Data were gathered from over 100 students from grades K-5 and 16 teachers who had participated in an in-service program. A representative comparison group of students and teachers was selected which generally matched the teachers participating in the in-service workshop except for one variable--the comparison group taught science traditionally, that is, by exposition. Data from the research indicated that the teachers involved in the science in-service workshop implemented the workshop-developed learning cycles into their science classes. Significantly greater gains in conservation reasoning and language usage occurred with the students of the teachers participating in the science in-service workshop as compared to students in the exposition classrooms.

  6. Science in and out of the classroom: A look at Water Resource at Gammams Water Care Works, Namibia

    Science.gov (United States)

    Iileka-Shinavene, Leena

    2016-04-01

    Primary school pupils in Van Rhyn School in Namibia are taught Natural Sciences from grade 4 at the age of 9. The curriculum is mainly theory/classroom based and natural science is taught through theory and various practical activities. However occasionally teachers have opportunities to supplement the pupils' learning experience through outdoor activities such as excursions to museums, municipal works and science fairs. Apart from enhancing the learning experience and improving understanding, such activities make the Natural science subject more interesting subject to learners. Water, a scarce/limited resource in Namibia, is one of the topics we cover in Natural sciences. Sustainable management of water is one of the top priorities of the government, which through various initiatives including the National Development Plan supports innovative ideas and technologies to reclaim water from sewage, recycling of industry and mining water and use semi-purified water for public recreational places. Most of the water used in Windhoek is reclaimed by City of Windhoek. To better illustrate this to the pupils, a school trip with 40 pupils of seventh grade was taken to the City of Windhoek's Gammams Water Care works. The aim of the trip was to show how the sewage purification process works and how the water is reclaimed from sewage. A guided tour of the water works was given by the resident scientists and the pupils were provided with the worksheet to complete after the tour around the Centre. They were encouraged to ask questions in all stages of water purification process and write down short notes. Most learners completed their worksheet during the tour session as they are getting information from the tour guide. The rest had to retrieve information and do further research as they got back to class so they could complete their worksheets. After the tour to Gammams, learners were asked to share what they had learned with the lower grades, 5 and 6, in a classroom

  7. The Feasibility of Educating Trainee Science Teachers in Issues of Science and Religion

    Science.gov (United States)

    Poole, Michael

    2016-01-01

    This article reflects on Roussel De Carvalho's paper "Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom" (EJ1102211). It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher…

  8. Nature of Technology: Implications for design, development, and enactment of technological tools in school science classrooms

    Science.gov (United States)

    Waight, Noemi; Abd-El-Khalick, Fouad

    2012-12-01

    This position paper provides a theory-based explanation informed by philosophy of technology (PoT) of the recurrent documented patterns often associated with attempts to enact technology-supported, inquiry-based approaches in precollege science classrooms. Understandings derived from the history of technological development in other domains (e.g. medicine, transportation, and warfare) reveal numerous parallels that help to explain these recurrent patterns. Historical analyses of major technologies reveal a conglomerate of factors that interact to produce benefits, as well as intended and unintended consequences. On a macro-scale, PoT facilitates understandings of how technologies interact and are impacted by individuals, society, institutions, economy, politics, and culture. At the micro-level, and most relevant to science education, PoT engages the inherent nature of technology along a number of key dimensions: role of culture and values, notions of technological progression, technology as part of systems, technological diffusion, technology as a fix, and the notions of expertise. Overall, the present analysis has implications for the design, development, implementation, and adoption of technological tools for use in precollege science education, and highlights the role of technology as both artifact and process.

  9. An exploration of administrators' perceptions of elementary science: A case study of the role of science in two elementary schools based on the interactions of administrators with colleagues, science content and state standards

    Science.gov (United States)

    Brogdon, Lori-Anne Stelmark

    This research is a case study on the perceptions and attitudes of administrators in the area of elementary science and how their responses reflect agreement or dissonance with the perceptions of elementary teachers on the subject of science within the same district. The study used Likert-type surveys and interviews from both administrators and teachers on five key areas: 1) Attitudes towards science and teaching 2) Attitudes towards teaching science 3) Attitudes towards administrators 4) Time teaching science and 5) Attitudes about policy and standards. Survey data was analyzed within and across areas to identify similarity and difference within each group. The medians from the administrative and teacher surveys were then crossed referenced through the use of a Mann Whitney test to identify areas of similarity. Interview data was coded around three major themes: 1) Standards 2) Classroom Instruction and 3) Conversations. The findings show that even though administrators' perceptions favor the inclusion of science in the elementary classroom, both administrators and teachers in this study reported limited involvement from, and conversation with, each other on the topic of science education. Heavy reliance by the administrators was placed on the use of consultants to provide professional development in the area of science instruction and to review the use of state standards, resulting in limited conversation between administrators and teachers about science. Teachers reported a heavy reliance upon their colleagues in the area of science instruction and curriculum planning. In addition, both administrators and teachers reported a greater focus on math and English for classroom instruction. Findings in this research support implications that more focus should be placed on the role of administrators in the implementation of science instruction. Administrators can play a crucial role in the success of science programs at the building, district and state levels

  10. The Impact of the Social Norms of Education on Beginning Science Teachers' Understanding of NOS During their First Three Years in the Classroom

    Science.gov (United States)

    Firestone, Jonah B.

    An understanding of the Nature of Science (NOS) remains a fundamental goal of science education in the Unites States. A developed understanding of NOS provides a framework in which to situate science knowledge. Secondary science teachers play a critical role in providing students with an introduction to understanding NOS. Unfortunately, due to the high turnover rates of secondary science teachers in the United States, this critical role is often filled by relatively novice teachers. These beginning secondary science teachers make instructional decisions regarding science that are drawn from their emerging knowledge base, including a tentative understanding of NOS. This tentative knowledge can be affected by environment and culture of the classroom, school, and district in which beginning teachers find themselves. When examining NOS among preservice and beginning teachers the background and demographics of the teachers are often ignored. These teachers are treated as a homogenous block in terms of their initial understanding of NOS. This oversight potentially ignores interactions that may happen over time as teachers cross the border from college students, preservice teachers, and scientists into the classroom environment. Through Symbolic Interactionism we can explain how teachers change in order to adapt to their new surroundings and how this adaptation may be detrimental to their understanding of NOS and ultimately to their practice. 63 teachers drawn from a larger National Science Foundation (NSF) funded study were interviewed about their understanding of NOS over three years. Several demographic factors including college major, preservice program, number of History and Philosophy of Science classes, and highest academic degree achieve were shown to have an affect on the understanding of NOS over time. In addition, over time, the teachers tended to 'converge' in their understanding of NOS regardless of preservice experiences or induction support. Both the affect

  11. Discipline-Based Philosophy of Education and Classroom Teaching

    Science.gov (United States)

    Matthews, Michael R.

    2014-01-01

    This article concentrates on the necessity for teachers in just one discipline area, namely, science, having philosophical competence and using it to inform their professional life--in their classroom teaching, assessing and institutional engagements--in other words, having a philosophy of science teaching. This group of questions and issues might…

  12. Constructivism in Practice: An Exploratory Study of Teaching Patterns and Student Motivation in Physics Classrooms in Finland, Germany and Switzerland

    Science.gov (United States)

    Beerenwinkel, Anne; von Arx, Matthias

    2017-01-01

    For the last three decades, moderate constructivism has become an increasingly prominent perspective in science education. Researchers have defined characteristics of constructivist-oriented science classrooms, but the implementation of such science teaching in daily classroom practice seems difficult. Against this background, we conducted a…

  13. Instructional decision making of high school science teachers

    Science.gov (United States)

    Carver, Jeffrey S.

    The instructional decision-making processes of high school science teachers have not been well established in the literature. Several models for decision-making do exist in other teaching disciplines, business, computer game programming, nursing, and some fields of science. A model that incorporates differences in science teaching that is consistent with constructivist theory as opposed to conventional science teaching is useful in the current climate of standards-based instruction that includes an inquiry-based approach to teaching science. This study focuses on three aspects of the decision-making process. First, it defines what factors, both internal and external, influence high school science teacher decision-making. Second, those factors are analyzed further to determine what instructional decision-making processes are articulated or demonstrated by the participants. Third, by analyzing the types of decisions that are made in the classroom, the classroom learning environments established as a result of those instructional decisions are studied for similarities and differences between conventional and constructivist models. While the decision-making process for each of these teachers was not clearly articulated by the teachers themselves, the patterns that establish the process were clearly exhibited by the teachers. It was also clear that the classroom learning environments that were established were, at least in part, established as a result of the instructional decisions that were made in planning and implementation of instruction. Patterns of instructional decision-making were different for each teacher as a result of primary instructional goals that were different for each teacher. There were similarities between teachers who exhibited more constructivist epistemological tendencies as well as similarities between teachers who exhibited a more conventional epistemology. While the decisions that will result from these two camps may be different, the six step

  14. Constructing "Authentic" Science: Results from a University/High School Collaboration Integrating Digital Storytelling and Social Networking

    Science.gov (United States)

    Olitsky, Stacy; Becker, Elizabeth A.; Jayo, Ignacio; Vinogradov, Philip; Montcalmo, Joseph

    2018-02-01

    This study explores the implications of a redesign of a college course that entailed a new partnership between a college neuroscience classroom and a high school. In this course, the college students engaged in original research projects which included conducting brain surgery and behavioural tests on rats. They used digital storytelling and social networking to communicate with high school students and were visited by the students during the semester. The aims of the redesign were to align the course with science conducted in the field and to provide opportunities to disseminate scientific knowledge through emerging technologies. This study investigates the impact of these innovations on the college and high school students' perceptions of authentic science, including their relationship with science-centred communities. We found that these collaborative tools increased college students' perceptions that authentic science entailed communication with the general public, in addition to supporting prior perceptions of the importance of conducting experiments and presenting results to experts. In addition, the view of science as high-status knowledge was attenuated as students integrated non-formal communication practices into presentations, showing the backstage process of learning, incorporating music and youth discourse styles, and displaying emotional engagement. An impact of these hybrid presentation approaches was an increase in the high school students' perceptions of the accessibility of laboratory science. We discuss how the use of technologies that are familiar to youth, such as iPads, social networking sites, and multimedia presentations, has the potential to prioritize students' voices and promote a more inclusive view of science.

  15. Scientists in the making: An ethnographic investigation of scientific processes as literate practice in an elementary classroom

    Science.gov (United States)

    Crawford, Teresa Jo

    This study explored the issue of literacy in science by examining how the social and academic literate practices in an elementary classroom formed the basis for learning across the curriculum, with a specific focus on the disciplinary field of science. Through the study of classroom interaction, issues related to student knowledge and ability were addressed as they pertain to scientific literacy in the context of science education reform. The theoretical framework guiding this study was drawn from sociocultural studies of scientific communities and interactional ethnography in education. To investigate the literate practices of science in a school setting, data were collected over a two-year period with the same teacher in her third grade and then her fourth/fifth grade classroom. Data were collected through participant observation in the form of fieldnotes, video data, interviews, and various artifacts (e.g., writings, drawings, teaching protocols). Using ethnographic and sociolinguistic methods of analysis this work examined classroom members' discursive practices to illustrate the role that discourse plays in creating opportunities for engagement in, and access to, scientific knowledge. These analyses revealed that the discursive actions and practices among members of this classroom shaped a particular type of learning environment that was process-oriented and inquiry based. It was shown that this learning environment afforded opportunities for students to engage in the processes of science outside the official, planned curriculum, often leading to whole class scientific investigations and discussions. Additionally, within this classroom community students were able to draw on multiple discourses to display their knowledge of scientific concepts and practices. Overall, this study found that the literate practices of this classroom community, as they were socially constructed among members, contributed to opportunities for students to practice science and

  16. What influences on demonstration experimental work in chemistry classroom?

    OpenAIRE

    Logar, Ana; Ferk Savec, Vesna

    2016-01-01

    Teachers and researchers agree that experimental work has a crucial role in teaching and learning of science. The article presents results of a qualitative investigation dealing with factors that influence on the efficiency of primary school students` experimental work in chemistry classroom. The sample consisted of 9 chemistry teachers and 141 randomly selected primary school students (age 13-14 years). Based on the research results a model for effective planning and integration of students`...

  17. Science Self-Efficacy in the Primary Classroom: Using Mixed Methods to Investigate Sources of Self-Efficacy

    Science.gov (United States)

    Webb-Williams, Jane

    2017-04-01

    Self-efficacy has been shown to influence student engagement, effort and performance as well as course selection and future career choice. Extending our knowledge regarding the development of self-efficacy has important implications for educators and for those concerned about the international uptake of science careers. Previous research has identified four sources that may contribute towards self-efficacy: mastery experiences, vicarious experiences, verbal persuasion and physiological/affective states. Very little research has been conducted within the school environment that looks at the formation of these sources and yet early school experiences have been posited to be a key factor in girls' lack of engagement in post compulsory science education. This paper investigates children's self-efficacy beliefs in science and reports on findings from mixed method research conducted with 182 children aged between 10 and 12 years. Classroom data were collected through focus groups, individual interviews and surveys. Findings revealed that although girls and boys held similar levels of academic performance in science, many girls underestimated their capability. The four sources of self-efficacy identified by Bandura (1997) plus self-regulation as an additional source, were evident in the children's descriptions, with boys being more influenced by mastery experience and girls by a combination of vicarious experience and physiological/affective states. Girl's appraisal of information appeared to operate through a heuristic process whereby girls disregarded salient information such as teacher feedback in favour of reliance on social comparison. Contextual factors were identified. Implications for science teachers are discussed.

  18. The Benefits, Drawbacks, and Challenges of Using the Flipped Classroom in an Introduction to Psychology Course

    Science.gov (United States)

    Roehling, Patricia V.; Root Luna, Lindsey M.; Richie, Fallon J.; Shaughnessy, John J.

    2017-01-01

    Flipped pedagogy has become a popular approach in education. While preliminary research suggests that the flipped classroom has a positive effect on learning in Science, Technology, Engineering, and Mathematics and quantitative courses, the research on the flipped classroom in a content heavy social science course is minimal and contradictory. We…

  19. The feasibility of educating trainee science teachers in issues of science and religion

    Science.gov (United States)

    Poole, Michael

    2016-06-01

    This article reflects on Roussel De Carvalho's paper `Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom'. It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher education project more manageable.

  20. Final versions of the initial package of classroom materials and guidelines

    NARCIS (Netherlands)

    Doorman, Michiel; Jonker, Vincent

    2014-01-01

    The main aim of the mascil Work Package 3 ‘classroom materials’ is to present guidelines and an online collection of teaching materials that encourage and support teachers to design their own classroom materials that connect IBL and the WoW in mathematics and science education.The collection

  1. Incorporating Remote Robotic Telescopes into an Elementary Classroom Setting

    Science.gov (United States)

    Sharp, Zoe; Hock, Emily

    2016-03-01

    As Next Generation Science Standards (NGSS) are implemented across the nation, engaging and content-specific lessons are becoming an important addition to elementary classrooms. This paper demonstrate how effective hands-on teaching tactics, authentic learning, scientifically significant data, and research in the elementary realm can aid students in selfdiscovery about astronomy and uncover what it is to be a researcher and scientist. It also outlines an effective, engaging, and integrated classroom unit that is usable in both the scientific community and elementary schools. The lesson unit consists of NGSS science and engineering practices and performance expectations as well as California Common Core Standards (CCSS).

  2. Relating Teacher PCK and Teacher Practice Using Classroom Observation

    Science.gov (United States)

    Barendsen, Erik; Henze, Ineke

    2017-09-01

    Science teachers' pedagogical content knowledge (PCK) has been researched in many studies, yet little empirical evidence has been found to determine how this knowledge actually informs teachers' actions in the classroom. To complement previous quantitative studies, there is a need for more qualitative studies to investigate the relationship between teacher knowledge (as formulated by the teacher) and classroom practice, especially in the context of an educational innovation. In this study we explored a possible way to investigate this relationship in an in-depth and systematic fashion. To this end, we conducted a case study with a chemistry teacher in the context of the implementation of a context-based science curriculum in The Netherlands. The teacher's PCK was captured using the Content Representation form by Loughran, Mulhall, and Berry. We used an observation table to monitor classroom interactions in such a way that the observations could be related to specific elements of teachers' PCK. Thus, we were able to give a detailed characterization of the correspondences and differences between the teacher's personal PCK and classroom practice. Such an elaborate description turned out to be a useful basis for discussing mechanisms explaining the relationship between teachers' knowledge and teachers' actions.

  3. Arctic research in the classroom: A teacher's experiences translated into data driven lesson plans

    Science.gov (United States)

    Kendrick, E. O.; Deegan, L.

    2011-12-01

    Incorporating research into high school science classrooms can promote critical thinking skills and provide a link between students and the scientific community. Basic science concepts become more relevant to students when taught in the context of research. A vital component of incorporating current research into classroom lessons is involving high school teachers in authentic research. The National Science Foundation sponsored Research Experience for Teachers (RET) program has inspired me to bring research to my classroom, communicate the importance of research in the classroom to other teachers and create lasting connections between students and the research community. Through my experiences as an RET at Toolik Field Station in Alaska, I have created several hands-on lessons and laboratory activities that are based on current arctic research and climate change. Each lesson uses arctic research as a theme for exemplifying basic biology concepts as well as increasing awareness of current topics such as climate change. For instance, data collected on the Kuparuk River will be incorporated into classroom activities that teach concepts such as primary production, trophic levels in a food chain and nutrient cycling within an ecosystem. Students will not only understand the biological concepts but also recognize the ecological implications of the research being conducted in the arctic. By using my experience in arctic research as a template, my students will gain a deeper understanding of the scientific process. I hope to create a crucial link of information between the science community and science education in public schools.

  4. Teaching excellence and achivement in mathematics and science

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.D.

    1996-12-31

    This was a collaborative effort of Iowa State Univ. (College of Ed.), Ames, and the Ames Community Schools. Teams of four preservice teachers, one scientist, one classroom teacher, and one teacher educator were formed. Students in the project participated in a laboratory experience for 2 h/week, participated in a classroom experience for 2 hr/week, and attended seminar for 1 h/week. At end of each semester, studies and their cooperating scientists taught a lesson that included some of the material the students had worked with in the science laboratory. Results from interviews of project participants indicate that preservice teachers attitude and self concept toward science improved during the project. Results also suggest methods for making similar collaborative projects using scientists and teachers effective.

  5. From Teacher-at-Sea to Authentic Science in the Classroom

    Science.gov (United States)

    Holzer, M. A.; Laj, C.

    2007-12-01

    Research has shown that most teachers will teach the way they have been taught, unless a sustainable intervention has taken place. This has the greatest implications for teachers of science, where those who have been taught with inquiry approaches will employ inquiry approaches in their classrooms, and those who have been taught with lecture and note taking will teach primarily using lectures and note taking. If our children are to learn about the nature of science, they need to be taught using constructivist and inquiry methods. A teacher who only uses textbooks and lectures will not create students who can employ critical thinking skills indicative of the nature of science. There is a way to change the way our teachers teach science, and that is by exposing teachers to authentic inquiry. The Teacher at Sea Program sponsored by Institut Polaire Francais (IPEV) created such an opportunity for 4 teachers, who participated in the PACHIDERME deep sea sediment cruise on the R/V Marion Dufresne off the coast of Chile for 3 weeks in February, 2007. While onboard the teachers assisted research scientists from France, Germany, Norway, and Chile in their quest to gather and analyze sediment cores for clues to past climates. The teachers were immersed in the research projects right from the start. They all participated in a "watch" and assisted those on the watch with the processing of the cores, which included properly labeling and packaging each of the core segments. Prior to the packaging, preliminary analysis was done to identify the physical and biological attributes of the core. The scientists gave of their time to coach the teachers not only on the techniques they were using, but also on the process of science. Whether it's working on an unstable platform, coring into the unknown, or adjusting to the weather that Mother Nature brings, the nature and process of science out at sea is complicated. The teachers came to realize this as they sailed in and out of the fjord

  6. Photographs and Classroom Response Systems in Middle School Astronomy Classes

    Science.gov (United States)

    Lee, Hyunju; Feldman, Allan

    2015-01-01

    In spite of being readily available, photographs have played a minor and passive role in science classes. In our study, we present an active way of using photographs in classroom discussions with the use of a classroom response system (CRS) in middle school astronomy classes to teach the concepts of day-night and seasonal change. In this new…

  7. Implementing a Robotics Curriculum in an Early Childhood Montessori Classroom

    Science.gov (United States)

    Elkin, Mollie; Sullivan, Amanda; Bers, Marina Umaschi

    2014-01-01

    This paper explores how robotics can be used as a new educational tool in a Montessori early education classroom. It presents a case study of one early educator's experience of designing and implementing a robotics curriculum integrated with a social science unit in her mixed-age classroom. This teacher had no prior experience using robotics in…

  8. Critical classroom structures for empowering students to participate in science discourse

    Science.gov (United States)

    Belleau, Shelly N.; Otero, Valerie K.

    2013-01-01

    We compared contextual characteristics that impacted the nature and substance of "summarizing discussions" in a physics and a chemistry classroom in an Hispanic-serving urban high school. Specifically, we evaluated structural components of curricula and classrooms necessary to develop a culture of critical inquiry. Using the Physics and Everyday Thinking (PET) curriculum in the physics course, we found that students demonstrated critical thinking, critical evaluation, and used laboratory evidence to support ideas in whole-class summarizing discussions. We then implemented a model similar to PET in the chemistry course. However, chemistry students' statements lacked evidence, opposition and critical evaluation, and required greater teacher facilitation. We hypothesize that the designed laboratories and the research basis of PET influenced the extent to which physics students verbalized substantive scientific thought, authentic appeals to evidence, and a sense of empowerment to participate in the classroom scientific community.

  9. Dimensions of Communication in Urban Science Education: Interactions and Transactions

    Science.gov (United States)

    Emdin, Christopher

    2011-01-01

    This paper is birthed from my lifelong experiences as student, teacher, administrator, and researcher in urban science classrooms. This includes my years as a minority student in biology, chemistry, and physics classrooms, 10 tears as science teacher and high school science department chair, 5-years conducting research on youth experiences in…

  10. Science Learning outside the Classroom

    Science.gov (United States)

    Robelen, Erik W.; Sparks, Sarah D.; Cavanagh, Sean; Ash, Katie; Deily, Mary-Ellen Phelps; Adams, Caralee

    2011-01-01

    As concern mounts that U.S. students lack sufficient understanding of science and related fields, it has become increasingly clear that schools can't tackle the challenge alone. This special report explores the field often called "informal science education," which is gaining broader recognition for its role in helping young people…

  11. Science in the Bilingual Classroom

    Science.gov (United States)

    Gutierrez, Patricia A.

    1996-07-01

    One in seven children in the United States speaks a language other than English at home. Their difficulties with English may seem like a barrier to science education. But science education can be the impetus they need to overcome their difficulties with English. With sidebars by Isabel Hawkins and George Musser.

  12. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-01-01

    NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the

  13. An Invitation to Kitchen Earth Sciences, an Example of MISO Soup Convection Experiment in Classroom

    Science.gov (United States)

    Kurita, K.; Kumagai, I.; Davaille, A.

    2008-12-01

    In recent frontiers of earth sciences such as computer simulations and large-scale observations/experiments involved researchers are usually remote from the targets and feel difficulty in having a sense of touching the phenomena in hands. This results in losing sympathy for natural phenomena particularly among young researchers, which we consider a serious problem. We believe the analog experiments such as the subjects of "kitchen earth sciences" proposed here can be a remedy for this. Analog experiments have been used as an important tool in various research fields of earth science, particularly in the fields of developing new ideas. The experiment by H. Ramberg by using silicone pate is famous for guiding concept of the mantle dynamics. The term, "analog" means something not directly related to the target of the research but in analogical sense parallel comparison is possible. The advantages of the analog experiments however seem to have been overwhelmed by rapid progresses of computer simulations. Although we still believe in the present-day meaning, recently we are recognizing another aspect of its significance. The essence of "kitchen earth science" as an analog experiment is to provide experimental setups and materials easily from the kitchen, by which everyone can start experiments and participate in the discussion without special preparations because of our daily-experienced matter. Here we will show one such example which can be used as a heuristic subject in the classrooms at introductory level of earth science as well as in lunch time break of advanced researchers. In heated miso soup the fluid motion can be easily traced by the motion of miso "particles". At highly heated state immiscible part of miso convects with aqueous fluid. At intermediate heating the miso part precipitates to form a sediment layer at the bottom. This layered structure is destroyed regularly by the instability caused by accumulated heat in the miso layer as a bursting. By showing

  14. The connection between students' out-of-school experiences and science learning

    Science.gov (United States)

    Tran, Natalie A.

    This study sought to understand the connection between students' out-of-school experiences and their learning in science. This study addresses the following questions: (a) What effects does contextualized information have on student achievement and engagement in science? (b) To what extent do students use their out-of-school activities to construct their knowledge and understanding about science? (c) To what extent do science teachers use students' skills and knowledge acquired in out-of-school settings to inform their instructional practices? This study integrates mixed methods using both quantitative and qualitative approaches to answer the research questions. It involves the use of survey questionnaire and science assessment and features two-level hierarchical analyses of student achievement outcomes nested within classrooms. Hierarchical Linear Model (HLM) analyses were used to account for the cluster effect of students nested within classrooms. Interviews with students and teachers were also conducted to provide information about how learning opportunities that take place in out-of-school settings can be used to facilitate student learning in science classrooms. The results of the study include the following: (a) Controlling for student and classroom factors, students' ability to transfer science learning across contexts is associated with positive learning outcomes such as achievement, interest, career in science, self-efficacy, perseverance, and effort. Second, teacher practice using students' out-of-school experiences is associated with decrease in student achievement in science. However, as teachers make more connection to students' out-of-school experiences, the relationship between student effort and perseverance in science learning and transfer gets weaker, thus closing the gaps on these outcomes between students who have more ability to establish the transfer of learning across contexts and those who have less ability to do so. Third, science teachers

  15. Students' beliefs, attitudes, and conceptual change in a traditional and a constructivistic high school physics classroom

    Science.gov (United States)

    Adams, April Dean

    In this study, the relationships between student beliefs about the nature of science, student attitudes, and conceptual change about the nature of forces were investigated within a traditional and within a constructivistic high school physics classroom. Students in both classrooms were honors students taking a first year high school physics course and were primarily white and middle to upper SES. Students in the traditional classroom were all high ability juniors, and physics instruction was integrated with pre-calculus. Students in the constructivistic classroom were a mixture of juniors and seniors. Due to the interrelated nature of these factors and the complexity of their interactions, a naturalistic inquiry design was chosen. The data sources included videotape of 7-9 weeks of instruction; analysis of the videotapes using the Secondary Teacher Analysis Matrix (Gallagher & Parker, 1995); field notes; pretest/posttest assessment with the Force Concept Inventory (Hestenes, Wells, & Swackhammer, 1992); student responses from the Views on Science-Technology-Society questionnaire (Aikenhead & Ryan, 1992), the Questionnaire for the Assessment of a Science Course (Chiappetta, 1995), and the Constructivist Learning Environment Survey (Taylor, Fraser, & White, 1994); student interviews; and teacher interviews. In the traditional classroom, (a) students did not think that physics was relevant to everyday experiences; (b) high conceptual change students were more likely to have an angular world view (Cobern, 1993) and have views more similar to the teacher's about the nature of science; and (c) high conceptual change students were able to develop an internally consistent understanding of the content; however, that content appeared to be isolated knowledge in some students. In the constructivistic classroom, (a) students saw physics as relevant and useful; (b) there was no difference in world view or agreement with the teacher's views on the nature of science between high

  16. Pre-college Science Experiences; Timing and Causes of Gender Influence Science Interest Levels

    Science.gov (United States)

    Kaplita, E.; Reed, D. E.; McKenzie, D. A.; Jones, R.; May, L. W.

    2015-12-01

    It is known that female students tend to turn away from science during their pre-college years. Experiences during this time are not limited to the classroom, as cultural influences extend beyond K-12 science education and lead to the widely studied reduction in females in STEM fields. This has a large impact on climate science because currently relatively little effort is put into K-12 climate education, yet this is when college attitudes towards science are formed. To help quantify these changes, 400 surveys were collected from 4 different colleges in Oklahoma. Student responses were compared by gender against student experiences (positive and negative), and interest in science. Results of our work show that females tend to have their first positive experience with science at a younger age with friends, family and in the classroom, and have more of an interest in science when they are younger. Males in general like experiencing science more on their own, and surpass the interest levels of females late in high school and during college. While in college, males are more comfortable with science content than females, and males enjoy math and statistics more while those aspects of science were the largest areas of dislike in females. Understanding how to keep students (particularly female) interested in science as they enter their teen years is extremely important in preventing climate misconceptions in the adult population. Potential small changes such as hosting K-12 climate outreach events and including parents, as opposed to just inviting students, could greatly improve student experiences with science and hence, their understanding of climate science. Importantly, a greater focus on female students is warranted.

  17. Avatar in the Science Classroom

    Science.gov (United States)

    Siegel, Deborah

    2011-01-01

    Students love pop culture, which is often full of science and scientific concepts that may or may not be correctly presented. When teachers tie a science project to a movie, TV series, or song, they help guide students toward correct interpretations. And, more important, teachers stimulate their creativity by tapping into their culture. This…

  18. Inquiry Learning in the Singaporean Context: Factors affecting student interest in school science

    Science.gov (United States)

    Jocz, Jennifer Ann; Zhai, Junqing; Tan, Aik Ling

    2014-10-01

    Recent research reveals that students' interest in school science begins to decline at an early age. As this lack of interest could result in fewer individuals qualified for scientific careers and a population unprepared to engage with scientific societal issues, it is imperative to investigate ways in which interest in school science can be increased. Studies have suggested that inquiry learning is one way to increase interest in science. Inquiry learning forms the core of the primary syllabus in Singapore; as such, we examine how inquiry practices may shape students' perceptions of science and school science. This study investigates how classroom inquiry activities relate to students' interest in school science. Data were collected from 425 grade 4 students who responded to a questionnaire and 27 students who participated in follow-up focus group interviews conducted in 14 classrooms in Singapore. Results indicate that students have a high interest in science class. Additionally, self-efficacy and leisure-time science activities, but not gender, were significantly associated with an increased interest in school science. Interestingly, while hands-on activities are viewed as fun and interesting, connecting learning to real-life and discussing ideas with their peers had a greater relation to student interest in school science. These findings suggest that inquiry learning can increase Singaporean students' interest in school science; however, simply engaging students in hands-on activities is insufficient. Instead, student interest may be increased by ensuring that classroom activities emphasize the everyday applications of science and allow for peer discussion.

  19. Teachers' conceptions of the nature of science: Analyzing the impact of a teacher enhancement program in changing attitudes and perceptions of science and scientific research

    Science.gov (United States)

    Govett, Aimee Lee

    The purpose of this study was to determine the efficacy of a residential science research experience in changing participants' attitudes and understanding of the nature of science and their view of themselves as science researchers. Data from interviews, journal writings, classroom observations and two pre-post instruments were used in the evaluation plan. As participants of this study, 16 inservice teachers (K--16) attended a two-week residential institute at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. The format of the institute featured a scientific research experience designed to arm its participants with the skills needed to model their classroom teaching after scientific research. The program included lessons on the fundamentals of radio astronomy, science talks and interactions with practicing scientists, in-depth tours of the NRAO facilities, and pedagogical instruction for implementing research in the classroom. The WVU College of Education staff and the NRAO staff stressed the importance of the nature of the research experience offered to these teachers. In the Education Sessions the WVU science education staff guided participants through the steps required to turn their experience around, in order to develop student research projects for their classrooms. The results from the Research Self Assessment instrument show significant gains for all participants in being more comfortable doing research. For the Nature of Science and Science Teaching instrument there were only three items that showed significant gains for all participants both in understanding the nature of science and in their views on implementing the Green Bank constructivist learning philosophy. The women, especially the elementary teacher group, showed the greatest change in their understanding of the nature of science as reflected in the interviews as well as in their personal journals. The seven men, who were all in the secondary field, made no significant

  20. Young children's emergent science competencies in family and school contexts: A case study

    Science.gov (United States)

    Andrews, Kathryn Jean

    's emergent science competencies were a result of his experiences both in the home and classroom. His science experiences at home often involved engaging in conversation with his parents about the world around him and was driven by the things he was interested in or wondered about. He enjoyed daily family activities like cooking, playing, and building models with his dad. These experiences contributed to his naive conceptions of science. By contrast, his science experiences in school were also collaborative but less facilitated by Mrs. Young. His wide range of experiences at home and in the classroom illustrated that doing, learning, knowing, and demonstrating knowledge are intertwined and not easily distinguished from each other. Nathan's emergent science competencies were fueled by a child-environment loop. The child-environment loop is a concept that captures the reciprocal nature between a child's curiosities and his or her environment. As his curiosities were met, new questions and activity were produced. As a result, Nathan's activity continually influenced the environment in which his emergent science competencies emerged. Likewise, the changing environment contributed to new curiosities, interest, and science competencies. Findings extend current research of informal science learning by illustrating how family learning contributed to a child's naive scientific views through the development of non-spontaneous concepts. Findings also extend current research by illustrating how a child with a solid foundation of spontaneous concepts might be unable to further develop non-spontaneous concepts in a classroom where learning took a similar form (working with others and talking about ideas) as learning in the classroom was less mediated. Main implications of this project include a call for research and practice to more aggressively contribute to a learning progressions approach to provide a map of educational opportunities that neither under- or overestimate children