WorldWideScience

Sample records for science classroom instruction

  1. Do science coaches promote inquiry-based instruction in the elementary science classroom?

    Science.gov (United States)

    Wicker, Rosemary Knight

    The South Carolina Mathematics and Science Coaching Initiative established a school-based science coaching model that was effective in improving instruction by increasing the level of inquiry-based instruction in elementary science classrooms. Classroom learning environment data from both teacher groups indicated considerable differences in the quality of inquiry instruction for those classrooms of teachers supported by a science coach. All essential features of inquiry were demonstrated more frequently and at a higher level of open-ended inquiry in classrooms with the support of a science coach than were demonstrated in classrooms without a science coach. However, from teacher observations and interviews, it was determined that elementary schoolteacher practice of having students evaluate conclusions and connect them to current scientific knowledge was often neglected. Teachers with support of a science coach reported changes in inquiry-based instruction that were statistically significant. This mixed ethnographic study also suggested that the Mathematics and Science Coaching Initiative Theory of Action for Instructional Improvement was an effective model when examining the work of science coaches. All components of effective school infrastructure were positively impacted by a variety of science coaching strategies intended to promote inquiry. Professional development for competent teachers, implementation of researched-based curriculum, and instructional materials support were areas highly impacted by the work of science coaches.

  2. Flipped Instruction in a High School Science Classroom

    Science.gov (United States)

    Leo, Jonathan; Puzio, Kelly

    2016-01-01

    This paper reports on a quasi-experimental study examining the effectiveness of flipped instruction in a 9th grade biology classroom. This study included four sections of freshmen-level biology taught by the first author at a private secondary school in the Pacific Northwest. Using a block randomized design, two sections were flipped and two…

  3. Flipped Instruction in a High School Science Classroom

    Science.gov (United States)

    Leo, Jonathan; Puzio, Kelly

    2016-10-01

    This paper reports on a quasi-experimental study examining the effectiveness of flipped instruction in a 9th grade biology classroom. This study included four sections of freshmen-level biology taught by the first author at a private secondary school in the Pacific Northwest. Using a block randomized design, two sections were flipped and two remained traditional. The quiz and posttest data were adjusted for pretest differences using ANCOVA. The results suggest that flipped instruction had a positive effect student achievement, with effect sizes ranging from +0.16 to +0.44. In addition, some students reported that they preferred watching video lectures outside of class and appreciated more active approaches to learning.

  4. Instructional strategies in science classrooms of specialized secondary schools for the gifted

    Science.gov (United States)

    Poland, Donna Lorraine

    This study examined the extent to which science teachers in Academic Year Governor's Schools were adhering to the national standards for suggested science instruction and providing an appropriate learning environment for gifted learners. The study asked 13 directors, 54 instructors of advanced science courses, and 1190 students of advanced science courses in 13 Academic Year Governor's Schools in Virginia to respond to researcher-developed surveys and to participate in classroom observations. The surveys and classroom observations collected demographic data as well as instructors' and students' perceptions of the use of various instructional strategies related to national science reform and gifted education recommendations. Chi-square analyses were used to ascertain significant differences between instructors' and students' perceptions. Findings indicated that instructors of advanced science classes in secondary schools for the gifted are implementing nationally recognized gifted education and science education instructional strategies with less frequency than desired. Both students and instructors concur that these strategies are being implemented in the classroom setting, and both concur as to the frequency with which the implementation occurs. There was no significant difference between instructors' and students' perceptions of the frequency of implementation of instructional strategies. Unfortunately, there was not a single strategy that students and teachers felt was being implemented on a weekly or daily basis across 90% of the sampled classrooms. Staff development in gifted education was found to be minimal as an ongoing practice. While this study offers some insights into the frequency of strategy usage, the study needs more classroom observations to support findings; an area of needed future research. While this study was conducted at the secondary level, research into instructional practices at the middle school and elementary school gifted science

  5. Turkish Mathematics and Science Teachers' Technology Use in Their Classroom Instruction: Findings from TIMSS 2011

    Science.gov (United States)

    Tas, Yasemin; Balgalmis, Esra

    2016-01-01

    The goal of this study was to describe Turkish mathematics and science teachers' use of computer in their classroom instruction by utilizing TIMSS 2011 data. Analyses results revealed that teachers most frequently used computers for preparation purpose and least frequently used computers for administration. There was no difference in teachers'…

  6. Instructional Style Meets Classroom Design.

    Science.gov (United States)

    Novelli, Joan

    1991-01-01

    Nine elementary teachers explain how they design their classrooms to match and support their instructional styles. The teachers focus on whole language programs, student portfolios, science activity set-ups, technology transformation, learning center strategies, and space utilization. (SM)

  7. The effect of classroom instruction, attitudes towards science and motivation on students' views of uncertainty in science

    Science.gov (United States)

    Schroeder, Meadow

    This study examined developmental and gender differences in Grade 5 and 9 students' views of uncertainty in science and the effect of classroom instruction on attitudes towards science, and motivation. Study 1 examined views of uncertainty in science when students were taught science using constructivist pedagogy. A total of 33 Grade 5 (n = 17, 12 boys, 5 girls) and Grade 9 (n = 16, 8 boys, 8 girls) students were interviewed about the ideas they had about uncertainty in their own experiments (i.e., practical science) and in professional science activities (i.e., formal science). Analysis found an interaction between grade and gender in the number of categories of uncertainty identified for both practical and formal science. Additionally, in formal science, there was a developmental shift from dualism (i.e., science is a collection of basic facts that are the result of straightforward procedures) to multiplism (i.e., there is more than one answer or perspective on scientific knowledge) from Grade 5 to Grade 9. Finally, there was a positive correlation between the understanding uncertainty in practical and formal science. Study 2 compared the attitudes and motivation towards science and motivation of students in constructivist and traditional classrooms. Scores on the measures were also compared to students' views of uncertainty for constructivist-taught students. A total of 28 students in Grade 5 (n = 13, 11 boys, 2 girls) and Grade 9 (n = 15, 6 boys, 9 girls), from traditional science classrooms and the 33 constructivist students from Study 1 participated. Regardless of classroom instruction, fifth graders reported more positive attitudes towards science than ninth graders. Students from the constructivist classrooms reported more intrinsic motivation than students from the traditional classrooms. Constructivist students' views of uncertainty in formal and practical science did not correlate with their attitudes towards science and motivation.

  8. The transfer of learning process: From an elementary science methods course to classroom instruction

    Science.gov (United States)

    Carter, Nina Leann

    The purpose of this qualitative multiple-case study was to explore the transfer of learning process in student teachers. This was carried out by focusing on information learned from an elementary science methods and how it was transferred into classroom instruction during student teaching. Participants were a purposeful sampling of twelve elementary education student teachers attending a public university in north Mississippi. Factors that impacted the transfer of learning during lesson planning and implementation were sought. The process of planning and implementing a ten-day science instructional unit during student teaching was examined through lesson plan documentation, in-depth individual interviews, and two focus group interviews. Narratives were created to describe the participants' experiences as well as how they plan for instruction and consider science pedagogical content knowledge (PCK). Categories and themes were then used to build explanations applying to the research questions. The themes identified were Understanding of Science PCK, Minimalism, Consistency in the Teacher Education Program, and Emphasis on Science Content. The data suggested that the participants lack in their understanding of science PCK, took a minimalistic approach to incorporating science into their ten-day instructional units, experienced inconsistencies in the teacher education program, and encountered a lack of emphasis on science content in their field experience placements. The themes assisted in recognizing areas in the elementary science methods courses, student teaching field placements, and university supervision in need of modification.

  9. Understanding Science Teaching Effectiveness: Examining How Science-Specific and Generic Instructional Practices Relate to Student Achievement in Secondary Science Classrooms

    Science.gov (United States)

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-01-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student…

  10. Understanding science teaching effectiveness: examining how science-specific and generic instructional practices relate to student achievement in secondary science classrooms

    Science.gov (United States)

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-12-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student achievement can provide teachers with beneficial information about how to best engage their students in meaningful science learning. To address this need, this study examined the instructional practices that 99 secondary biology teachers used in their classrooms and employed regression to determine which instructional practices are predictive of students' science achievement. Results revealed that the secondary science teachers who had well-managed classroom environments and who provided opportunities for their students to engage in student-directed investigation-related experiences were more likely to have increased student outcomes, as determined by teachers' value-added measures. These findings suggest that attending to both generic and subject-specific aspects of science teachers' instructional practice is important for understanding the underlying mechanisms that result in more effective science instruction in secondary classrooms. Implications about the use of these observational measures within teacher evaluation systems are discussed.

  11. Classroom Preschool Science Learning: The Learner, Instructional Tools, and Peer-Learning Assignments

    Science.gov (United States)

    Reuter, Jamie M.

    The recent decades have seen an increased focus on improving early science education. Goals include helping young children learn about pertinent concepts in science, and fostering early scientific reasoning and inquiry skills (e.g., NRC 2007, 2012, 2015). However, there is still much to learn about what constitutes appropriate frameworks that blend science education with developmentally appropriate learning environments. An important goal for the construction of early science is a better understanding of appropriate learning experiences and expectations for preschool children. This dissertation examines some of these concerns by focusing on three dimensions of science learning in the preschool classroom: (1) the learner; (2) instructional tools and pedagogy; and (3) the social context of learning with peers. In terms of the learner, the dissertation examines some dimensions of preschool children's scientific reasoning skills in the context of potentially relevant, developing general reasoning abilities. As young children undergo rapid cognitive changes during the preschool years, it is important to explore how these may influence scientific thinking. Two features of cognitive functioning have been carefully studied: (1) the demonstration of an epistemic awareness through an emerging theory of mind, and (2) the rapid improvement in executive functioning capacity. Both continue to develop through childhood and adolescence, but changes in early childhood are especially striking and have been neglected as regards their potential role in scientific thinking. The question is whether such skills relate to young children's capacity for scientific thinking. Another goal was to determine whether simple physics diagrams serve as effective instructional tools in supporting preschool children's scientific thinking. Specifically, in activities involving predicting and checking in scientific contexts, the question is whether such diagrams facilitate children's ability to

  12. K--12 science educator perception of instructing students with learning disabilities in the regular classroom

    Science.gov (United States)

    Holliday-Cashwell, Janet Rose

    2000-10-01

    Selected K--12 public school science educators in 14 eastern North Carolina counties were surveyed to examine their perceptions of their undergraduate preparation programs with regard to instructing students with learning disabilities in the regular classroom. A quantitative study, this research examined science educator preparedness in instructing students with learning disabilities by evaluating educator perception in regard to mainstrearned and inclusive educational settings. Specifically, two null hypotheses were tested. Null hypothesis I stated a significant difference does not exist between selected North Carolina K--12 science educators' perceptions of their undergraduate teacher education preparation programs and their perceptions of their abilities to instruct students needing accommodations on behalf of their learning disabilities in mainstrearned or inclusive settings. Participants' responses to perception as well as value statements regarding opinions, adaptations, and undergraduate training with respect to mainstreaming and inclusion were evaluated through t-test analyses of 22 Likert-scale items. Null hypothesis 1 was not accepted because a statistically significant difference did exist between the educators' perceptions of their undergraduate training and their perceived abilities to instruct students with learning disabilities in mainstreamed or inclusive settings. Null hypothesis 2 stated a significant difference does not exist between selected North Carolina K--12 science educators' attained educational level; grade level currently taught, supervised or chaired; and years of experience in teaching science, supervising science education, and/or chairing science departments in selected North Carolina public schools and their opinions of their undergraduate teacher education program with regard to instructing students with learning disabilities in mainstreamed or inclusive educational settings. Null hypothesis 2 was evaluated through an analysis of

  13. Teaching the content in context: Preparing "highly qualified" and "high quality" teachers for instruction in underserved secondary science classrooms

    Science.gov (United States)

    Tolbert, Sara E.

    2011-12-01

    This dissertation research project presents the results of a longitudinal study that investigates the knowledge, beliefs, and practices of 13 preservice secondary science teachers participating in a science teacher credentialing/Masters program designed to integrate issues of equity and diversity throughout coursework and seminars. Results are presented in the form of three papers: The first paper describes changes in preservice teacher knowledge about contextualization in science instruction, where contextualization is defined as facilitating authentic connections between science learning and relevant personal, social, cultural, ecological, and political contexts of students in diverse secondary classrooms; the second paper relates changes in the self-efficacy and content-specific beliefs about science, science teaching, diversity, and diversity in science instruction; and the final paper communicates the experiences and abilities of four "social justice advocates" learning to contextualize science instruction in underserved secondary placement classrooms. Results indicate that secondary student teachers developed more sophisticated understandings of how to contextualize science instruction with a focus on promoting community engagement and social/environmental activism in underserved classrooms and how to integrate science content and diversity instruction through student-centered inquiry activities. Although most of the science teacher candidates developed more positive beliefs about teaching science in underrepresented classrooms, many teacher candidates still attributed their minority students' underperformance and a (perceived) lack of interest in school to family and cultural values. The "social justice advocates" in this study were able to successfully contextualize science instruction to varying degrees in underserved placement classrooms, though the most significant limitations on their practice were the contextual factors of their student teaching

  14. Historical short stories as nature of science instruction in secondary science classrooms: Science teachers' implementation and students' reactions

    Science.gov (United States)

    Reid-Smith, Jennifer Ann

    a science-related career. If NOS instructional materials are to be used effectively, designers must take into account the needs of classroom teachers by limiting the length of the materials and providing additional teacher support resources. Many teachers will likely require professional development opportunities to build their NOS understanding, develop a compelling rationale for teaching NOS and using the stories, observe modeling of effective implementation, and collaborate with other teachers regarding how to mitigate constraints.

  15. Teacher perspectives on specialisation in the elementary classroom: implications for science instruction

    Science.gov (United States)

    Poland, Susan; Colburn, Amanda; Long, David E.

    2017-09-01

    In the current educational climate of testing and accountability, many elementary teachers find they lack adequate time and confidence to enact reform-based science teaching due to pressure to perform in reading and mathematics. With this tension in mind, we explore the phenomenon of elementary teacher specialisation in comparison to the traditional, generalist model of teaching, wherein a teacher is responsible for teaching all subjects to one group of students each year. This mixed-methods study examines teacher perspectives on the practice of specialisation and generalisation through teacher interview data. Our teachers spoke candidly about their attitudes towards specialisation, the perceived impacts of specialization on teachers and students, and the role of accountability, administration, and testing in their decisions to specialise. Additionally, our teachers discussed time dedicated to science in specialist and generalist classrooms. Our findings suggest that specialist roles are sought by those who see specialisation as a means of reducing workload, while allowing for content mastery and improved instruction. Alternatively, generalist roles are sought by those who primarily view the role of elementary teaching as the care and development of children, and who prefer to focus on the classroom as a holistic, fluid space. Implications for science teaching are discussed.

  16. Understanding Curriculum, Instruction and Assessment within Eighth Grade Science Classrooms for Special Needs Students

    Science.gov (United States)

    Riedell, Kate Elizabeth

    The Individuals with Disabilities Education Act (IDEA, 2004) cemented the fact that students with disabilities must be placed in the least restrictive environment and be given the necessary supports to help them succeed (Lawrence-Brown, 2004). This provides significant challenges for general education teachers, especially in an era of standards based reform with the adoption of the Common Core State Standards (CCSSI, 2014) by most states, along with the Next Generation Science Standards (NGSS, 2013). While a variety of methods, strategies, and techniques are available to teachers, there is a dearth of literature that clearly investigates how teachers take into account the ability and motivation of students with special needs when planning and implementing curriculum, instruction, and assessment. Thus, this study sought to investigate this facet through the lens of differentiation, personalization, individualization and universal design for learning (UDL) (CAST, 2015), all of which are designed to meet the needs of diverse learners, including students with special needs. An embedded single-case study design (Yin, 2011) was used in this study with the case being differentiated and/or personalized curriculum, instruction and/or assessment, along with UDL for students with special needs, with each embedded unit of analysis being one eighth grade general education science teacher. Analyzing each sub-unit or case, along with a cross-case analysis, three eighth grade general education science teachers were observed over the course of two 10-day units of study in the fall and spring, as they collected artifacts and completed annotations within their electronic portfolios (ePortfolios). All three eighth grade general education science teachers collected ePortfolios as part of their participation in a larger study within California, "Measuring Next Generation Science Instruction Using Tablet-Based Teacher Portfolios," funded by the National Science Foundation. Each teacher

  17. How Fifth Grade Latino/a Bilingual Students Use Their Linguistic Resources in the Classroom and Laboratory during Science Instruction

    Science.gov (United States)

    Stevenson, Alma R.

    2013-01-01

    This qualitative, sociolinguistic research study examines how bilingual Latino/a students use their linguistic resources in the classroom and laboratory during science instruction. This study was conducted in a school in the southwestern United States serving an economically depressed, predominantly Latino population. The object of study was a…

  18. The Ripple Effect: Exploring How a Joint Science Specialist/TOSA Can Change Classroom Teachers' Instructional Practices through Project-Based Learning

    Science.gov (United States)

    Gradias, Jean

    In 2013, California became one of the first states to adopt the rigorous Next Generation Science Standards (NGSS). However, the current state of science instruction does not support the conceptual shifts of the NGSS, which call for consistent science instruction K-12, increased inquiry, subject integration, as well as science instruction that connects students to their communities and their world. Therefore, teachers are in need of instructional support for science teaching that can enable them to achieve these higher expectations. This dissertation explored whether implementing a Project-Based Learning (PBL)-centered science specialist changed classroom teachers' frequency of science instruction and use of instructional strategies that support NGSS science delivery. In addition, this study examined how providing a PBL science specialist supported teachers in their comfort with using these more rigorous instructional strategies. Five elementary teachers participated in an action research project conducted over the course of a school year. The frequency with which teachers used the following instructional strategies was analyzed: connecting science to real world phenomena, accessing community resources, integrating science into other subject areas, and using inquiry in science instruction. Quantitative and qualitative data revealed that a PBL science specialist does support classroom teachers in implementing teaching practices aligned to the conceptual shifts implicated by the NGSS; however, individual growth rates varied by instructional strategy. The results of this study provide a foundation for the legitimacy of utilizing a PBL-focused science specialist to support teachers in shifting their instructional practices in order to achieve the Next Generation Science Standards.

  19. How fifth grade Latino/a bilingual students use their linguistic resources in the classroom and laboratory during science instruction

    Science.gov (United States)

    Stevenson, Alma R.

    2013-12-01

    This qualitative, sociolinguistic research study examines how bilingual Latino/a students use their linguistic resources in the classroom and laboratory during science instruction. This study was conducted in a school in the southwestern United States serving an economically depressed, predominantly Latino population. The object of study was a fifth grade science class entirely comprised of language minority students transitioning out of bilingual education. Therefore, English was the means of instruction in science, supported by informal peer-to-peer Spanish-language communication. This study is grounded in a social constructivist paradigm. From this standpoint, learning science is a social process where social, cultural, and linguistic factors are all considered crucial to the process of acquiring scientific knowledge. The study was descriptive in nature, examining specific linguistic behaviors with the purpose of identifying and analyzing the linguistic functions of students' utterances while participating in science learning. The results suggest that students purposefully adapt their use of linguistic resources in order to facilitate their participation in science leaning. What is underscored in this study is the importance of explicitly acknowledging, supporting, and incorporating bilingual students' linguistic resources both in Spanish and English into the science classroom in order to optimize students' participation and facilitate their understanding.

  20. Pacific CRYSTAL Project: Explicit Literacy Instruction Embedded in Middle School Science Classrooms

    Science.gov (United States)

    Anthony, Robert J.; Tippett, Christine D.; Yore, Larry D.

    2010-01-01

    Science literacy leading to fuller and informed participation in the public debate about science, technology, society, and environmental (STSE) issues that produce justified decisions and sustainable actions is the shared and central goal of the Pacific CRYSTAL Project. There is broad agreement by science education researchers that learners need to be able to construct and interpret specific scientific discourses and texts to be literate in science. We view these capabilities as components in the fundamental sense of science literacy and as interactive and synergetic to the derived sense of science literacy, which refers to having general knowledge about concepts, principles, and methods of science. This article reports on preliminary findings from Years 1, 2, and 3 of the 5-year Pacific CRYSTAL project that aims to identify, develop, and embed explicit literacy instruction in science programs to achieve both senses of science literacy. A community-based, opportunistic, engineering research and development approach has been utilized to identify problems and concerns and to design instructional solutions for teaching middle school (Grades 6, 7, and 8) science. Initial data indicate (a) opportunities in programs for embedding literacy instruction and tasks; (b) difficulties generalist teachers have with new science curricula; (c) difficulties specialist science teachers have with literacy activities, strategies, genre, and writing-to-learn science tasks; and (d) potential literacy activities (vocabulary, reading comprehension, visual literacy, genre, and writing tasks) for middle school science. Preinstruction student assessments indicate a range of challenges in achieving effective learning in science and the need for extensive teacher support to achieve the project’s goals. Postinstructional assessments indicate positive changes in students’ ability to perform target reading and writing tasks. Qualitative data indicate teachers’ desire for external direction

  1. Teachers' implementation of gender-inclusive instructional strategies in single-sex and mixed-sex science classrooms

    Science.gov (United States)

    Parker, Lesley H.; Rennie, Léonie J.

    2002-09-01

    Debate continues over the benefits, or otherwise, of single-sex classes in science and mathematics, particularly for the performance of girls. Previous research and analyses of the circumstances surrounding the implementation of single-sex classes warn that the success of the strategy requires due consideration of the nature of the instructional environment for both boys and girls, together with appropriate support for the teachers involved. This article reports the circumstances under which teachers were able to implement gender-inclusive strategies in single-sex science classes in coeducational high schools and documents some of the difficulties faced. The study was part of the Single-Sex Education Pilot Project (SSEPP) in ten high schools in rural and urban Western Australia. Qualitative and quantitative data were gathered during the project from teachers, students and classroom observations. Overall, it was apparent that single-sex grouping created environments in which teachers could implement gender-inclusive science instructional strategies more readily and effectively than in mixed-sex settings. Teachers were able to address some of the apparent shortcomings of the students' previous education (specifically, the poor written and oral communication of boys and the limited experience of girls with 'hands-on' activities and open-ended problem solving). Further, in same-sex classrooms, sexual harassment which inhibited girls' learning was eliminated. The extent to which teachers were successful in implementing gender-inclusive instructional strategies, however, depended upon their prior commitment to the SSEPP as a whole, and upon the support or obstacles encountered from a variety of sources, including parents, the community, students, and non-SSEPP teachers.

  2. Literacy events during science instruction in a fifth-grade classroom: Listening to teacher and student voices

    Science.gov (United States)

    Deal, Debby

    Concern with science literacy and how to achieve it has a long history in our education system. The goals and definitions established by the National Science Education Standards (1996) suggest that if we are to successfully prepare students for the information age, science education must blend the natural and social sciences. However, research indicates that connections between hands-on science and literacy, as a tool for processing information, do not regularly occur during school science instruction. This case study explored the use of literacy by a second year teacher in a fifth grade class during consecutive science units on chemistry and liquids. The research questions focused on how and why the teacher and students used literacy during science and how and why the teacher and selected focus students believed literacy influenced their learning in science. Data was collected through classroom observations and multiple interviews with the teacher and selected focus students. Interview data was analyzed and coded using an iterative process. Field notes and student artifacts were used to triangulate the data. The study found that the teacher and students used reading and writing to record and acquire content knowledge, learn to be organized, and to facilitate assessment. Although the teacher had learned content literacy strategies in her pre-service program, she did not implement them in the classroom and her practice seemed to reflect her limited science content knowledge and understanding of the nature of science. The focus students believed that recording and studying notes, reading books, drawing, and reading study guides helped them learn science. The findings suggest the following implications: (1) More data is needed on the relationship between teaching approach, science content knowledge, and beliefs about science. (2) Elementary student voices make a valuable contribution to our understanding of science learning. (3) Pre-service candidates should have

  3. Collaboration systems for classroom instruction

    Science.gov (United States)

    Chen, C. Y. Roger; Meliksetian, Dikran S.; Chang, Martin C.

    1996-01-01

    In this paper we discuss how classroom instruction can benefit from state-of-the-art technologies in networks, worldwide web access through Internet, multimedia, databases, and computing. Functional requirements for establishing such a high-tech classroom are identified, followed by descriptions of our current experimental implementations. The focus of the paper is on the capabilities of distributed collaboration, which supports both synchronous multimedia information sharing as well as a shared work environment for distributed teamwork and group decision making. Our ultimate goal is to achieve the concept of 'living world in a classroom' such that live and dynamic up-to-date information and material from all over the world can be integrated into classroom instruction on a real-time basis. We describe how we incorporate application developments in a geography study tool, worldwide web information retrievals, databases, and programming environments into the collaborative system.

  4. How Latino/a bilingual students use their language in a fifth grade classroom and in the science laboratory during science instruction

    Science.gov (United States)

    Stevenson, Alma R.

    This qualitative research study examines how Latino/a bilingual students use their linguistic resources in their homeroom classroom and in the science laboratory during science instruction. This study was conducted in a school district located in the southwestern part of the United States. The school was chosen based on the criterion that the school is located in an area considered economically depressed, with a predominantly Latino student, school, and neighborhood population. The object of study was a fifth grade bilingual (Spanish/English) classroom where English was the means of instruction. Classroom interaction was examined from a sociolinguistics perspective. The study was descriptive in nature with the objective of analyzing the students' use of their linguistic resources while participating in science learning. The results of this study suggest that the students used their linguistic resources purposefully in order to facilitate their participation in science leaning. In the same manner, it was observed the students' reliance on Spanish as a foundation to enhance their comprehension of the scientific concepts and the dynamics involved in the science lessons, with the purpose of making sense, and thus, to express their understanding (orally and in writing) using their linguistic resources, especially their English language, as it was expected from them. Further, the findings disclose the students' awareness of their own bilingualism, preference for speaking Spanish, and their conceptualization of English as the language to achieve academic success. It has also been observed how the pressure put upon the teacher and the students by the accountability system brings about an implicit bias against Spanish, causing the teacher to assume a paradoxical stance regarding the students' use of Spanish, and thereby, placing the students in an ambivalent position, that might affect, to a certain extent, how students use their Spanish language as a resource to

  5. Differentiating Science Instruction: Secondary science teachers' practices

    Science.gov (United States)

    Maeng, Jennifer L.; Bell, Randy L.

    2015-09-01

    This descriptive study investigated the implementation practices of secondary science teachers who differentiate instruction. Participants included seven high school science teachers purposefully selected from four different schools located in a mid-Atlantic state. Purposeful selection ensured participants included differentiated instruction (DI) in their lesson implementation. Data included semi-structured interviews and field notes from a minimum of four classroom observations, selected to capture the variety of differentiation strategies employed. These data were analyzed using a constant-comparative approach. Each classroom observation was scored using the validated Differentiated Instruction Implementation Matrix-Modified, which captured both the extent to which critical indicators of DI were present in teachers' instruction and the performance levels at which they engaged in these components of DI. Results indicated participants implemented a variety of differentiation strategies in their classrooms with varying proficiency. Evidence suggested all participants used instructional modifications that required little advance preparation to accommodate differences in students' interests and learning profile. Four of the seven participants implemented more complex instructional strategies that required substantial advance preparation by the teacher. Most significantly, this study provides practical strategies for in-service science teachers beginning to differentiate instruction and recommendations for professional development and preservice science teacher education.

  6. Secondary Science Teachers Making Sense of Model-Based Classroom Instruction: Understanding the Learning and Learning Pathways Teachers Describe as Supporting Changes in Teaching Practice

    Science.gov (United States)

    Hvidsten, Connie J.

    Connie J. Hvidsten September 2016 Education Secondary Science Teachers Making Sense of Model-Based Classroom Instruction: Understanding the Learning and Learning Pathways Teachers Describe as Supporting Changes in Teaching Practice This dissertation consists of three papers analyzing writings and interviews of experienced secondary science teachers during and after a two-year professional development (PD) program focused on model-based reasoning (MBR). MBR is an approach to science instruction that provides opportunities for students to use conceptual models to make sense of natural phenomena in ways that are similar to the use of models within the scientific community. The aim of this research is to better understand the learning and learning pathways teachers identified as valuable in supporting changes in their teaching practice. To accomplish this aim, the papers analyze the ways teachers 1) ascribe their learning to various aspects of the program, 2) describe what they learned, and 3) reflect on the impact the PD had on their teaching practice. Twenty-one secondary science teachers completed the Innovations in Science Instruction through Modeling (ISIM) program from 2007 through 2009. Commonalities in the written reflections and interview responses led to a set of generalizable findings related to the impacts and outcomes of the PD. The first of the three papers describes elements of the ISIM program that teachers associated with their own learning. One of the most frequently mentioned PD feature was being in the position of an adult learner. Embedding learning in instructional practice by collaboratively developing and revising lessons, and observing the lessons in one-another's classrooms provided a sense of professional community, accountability, and support teachers reported were necessary to overcome the challenges of implementing new pedagogical practices. Additionally, teachers described that opportunities to reflect on their learning and connect their

  7. A qualitative study of the instructional behaviors and practices of a dyad of educators in self-contained and inclusive co-taught secondary biology classrooms during a nine-week science instruction grading period

    Science.gov (United States)

    Hardy, Shanon D.

    The Individuals with Disabilities Education Act (IDEA) (1997) mandates that students with disabilities have access to the general education curriculum. School districts have developed a variety of service delivery models to provide challenging educational experiences for all students. Co-teaching or collaborative teaching is the most widely used of the different service delivery models. While the philosophy of inclusion is widely accepted, the efficacy of the various inclusion models has recently been the focus of educational research. Researchers have questioned whether the presence of a special educator in the general education classroom has resulted in students with high incidence disabilities receiving specialized instruction. A qualitative study was designed to examine the instructional behaviors and practices exhibited and used by a dyad of educators in self-contained learning disabilities and inclusive co-taught secondary Biology classrooms during a nine-week science instruction grading period. In addition to utilizing interviews, observations, and classroom observation scales to answer the research questions, supporting student data (time-sampling measurement/opportunity to learn and student grades) were collected. The study concluded that the presence of a special educator in a co-taught classroom: (1) did contribute to the creation of a new learning environment, and notable changes in the instructional behaviors and practices of a general educator; (2) did contribute to limited specialized instruction for students with disabilities in the co-taught classrooms and embedded (not overt) special education practices related to the planning and decision-making of the educators; (3) did contribute to the creation of a successful co-teaching partnership including the use of effective teaching behaviors; and (4) did impact success for some of the students with disabilities in the co-taught classrooms; but (5) did not ensure the continuation of some of the new

  8. Using Informal Classroom Observations to Improve Instruction

    Science.gov (United States)

    Ing, Marsha

    2010-01-01

    Purpose: The purpose of this study is to describe the variability of principals' classroom observations across schools and to relate classroom observations to the schools' instructional climate. This helps identify the conditions under which classroom observations effectively improve instruction in some schools and not in other schools.…

  9. Teacher Perspectives on Specialisation in the Elementary Classroom: Implications for Science Instruction

    Science.gov (United States)

    Poland, Susan; Colburn, Amanda; Long, David E.

    2017-01-01

    In the current educational climate of testing and accountability, many elementary teachers find they lack adequate time and confidence to enact reform-based science teaching due to pressure to perform in reading and mathematics. With this tension in mind, we explore the phenomenon of elementary teacher specialisation in comparison to the…

  10. Teacher Quality Indicators as Predictors of Instructional Assessment Practices in Science Classrooms in Secondary Schools in Barbados

    Science.gov (United States)

    Ogunkola, Babalola J.; Archer-Bradshaw, Ramona E.

    2013-02-01

    This study investigated the self-reported instructional assessment practices of a selected sample of secondary school science teachers in Barbados. The study sought to determine if there were statistically significant differences in the instructional assessment practices of teachers based on their sex and teacher quality (teaching experience, professional qualification and teacher academic qualification). It also sought to determine the extent to which each of these four selected variables individually and jointly affected the teachers' report of their instructional assessment practices. A sample of 55 science teachers from nine secondary schools in Barbados was randomly selected to participate in this study. Data was collected by means of a survey and was analyzed using the means and standard deviations of the instructional assessment practices scores and linear, multiple and binary logistic regression. The results of the study were such that the majority of the sample reported good overall instructional assessment practices while only a few participants reported moderate assessment practices. The instructional assessment practices in the area of student knowledge were mostly moderate as indicated by the sample. There were no statistically significant differences between or among the mean scores of the teachers' reported instructional assessment practices based on sex ( t = 0.10; df = 53; p = 0.992), teaching experience ( F[4,50] = 1.766; p = 0.150), the level of professional qualification (F[3,45] = 0.2117; p = 0.111) or the level of academic qualification (F[2,52] = 0.504; p = 0.607). The independent variables (teacher sex, teaching experience, teacher professional qualification or teacher academic qualification) were not significant predictors of the instructional assessment practices scores. However, teacher sex was a significant predictor of the teachers' report of good instructional assessment practices. The study also found that the joint effect of the

  11. Instructional scientific humor in the secondary classroom

    Science.gov (United States)

    Wizner, Francine

    This study is an examination of the manner in which educators employ scientific content humor and how that humor is perceived by their students. Content humor is a useful strategy in drawing the attention of students and improving their receptivity toward scientific information. It is also a useful tool in combating the growing distractions of the electronic classroom. Previous studies have found that humor has a positive effect on knowledge, memory, and understanding. However, few studies have been conducted below the undergraduate level and mainly quantitative measures of student recall have been used to measure learning. This study employed multiple data sources to determine how two secondary biology teachers used humor in order to explain scientific concepts and how their students perceived their teachers' use of scientific instructional humor. Evidence of student humor reception was collected from four students in each of the two classes. All of the scientific instructional humor used in the studied classrooms was cognitive in nature, varying among factual, procedural, conceptual, and metacognitive knowledge. Teachers tended to use dialogic forms of humor. Their scientific humor reflected everyday experiences, presented queries, poked fun at authority, and asked students to search out new perspectives and perform thought experiments. Teachers were the primary actors in performing the humorous events. The events were sometimes physical exaggerations of words or drawings, and they occurred for the purpose of establishing rapport or having students make connections between scientific concepts and prior knowledge. Student perceptions were that teachers did employ humor toward instructional objectives that helped their learning. Helping students become critical thinkers is a trademark of science teachers. Science teachers who take the risk of adopting some attributes of comedians may earn the reward of imparting behaviors on their students like critical thinking

  12. Teaching neuroscience to science teachers: facilitating the translation of inquiry-based teaching instruction to the classroom.

    Science.gov (United States)

    Roehrig, G H; Michlin, M; Schmitt, L; MacNabb, C; Dubinsky, J M

    2012-01-01

    In science education, inquiry-based approaches to teaching and learning provide a framework for students to building critical-thinking and problem-solving skills. Teacher professional development has been an ongoing focus for promoting such educational reforms. However, despite a strong consensus regarding best practices for professional development, relatively little systematic research has documented classroom changes consequent to these experiences. This paper reports on the impact of sustained, multiyear professional development in a program that combined neuroscience content and knowledge of the neurobiology of learning with inquiry-based pedagogy on teachers' inquiry-based practices. Classroom observations demonstrated the value of multiyear professional development in solidifying adoption of inquiry-based practices and cultivating progressive yearly growth in the cognitive environment of impacted classrooms.

  13. How Does Science Learning Occur in the Classroom? Students' Perceptions of Science Instruction during the Implementation of REAPS Model

    Science.gov (United States)

    Gomez-Arizaga, Maria P.; Bahar, A. Kadir; Maker, C. June; Zimmerman, Robert; Pease, Randal

    2016-01-01

    In this qualitative study the researchers explored children's perceptions of their participation in a science class in which an elementary science curriculum, the Full Option Science System (FOSS), was combined with an innovative teaching model, Real Engagement in Active Problem Solving (REAPS). The children were capable of articulating views…

  14. Understanding the Development of a Hybrid Practice of Inquiry-Based Science Instruction and Language Development: A Case Study of One Teacher's Journey Through Reflections on Classroom Practice

    Science.gov (United States)

    Capitelli, Sarah; Hooper, Paula; Rankin, Lynn; Austin, Marilyn; Caven, Gennifer

    2016-04-01

    This qualitative case study looks closely at an elementary teacher who participated in professional development experiences that helped her develop a hybrid practice of using inquiry-based science to teach both science content and English language development (ELD) to her students, many of whom are English language learners (ELLs). This case study examines the teacher's reflections on her teaching and her students' learning as she engaged her students in science learning and supported their developing language skills. It explicates the professional learning experiences that supported the development of this hybrid practice. Closely examining the pedagogical practice and reflections of a teacher who is developing an inquiry-based approach to both science learning and language development can provide insights into how teachers come to integrate their professional development experiences with their classroom expertise in order to create a hybrid inquiry-based science ELD practice. This qualitative case study contributes to the emerging scholarship on the development of teacher practice of inquiry-based science instruction as a vehicle for both science instruction and ELD for ELLs. This study demonstrates how an effective teaching practice that supports both the science and language learning of students can develop from ongoing professional learning experiences that are grounded in current perspectives about language development and that immerse teachers in an inquiry-based approach to learning and instruction. Additionally, this case study also underscores the important role that professional learning opportunities can play in supporting teachers in developing a deeper understanding of the affordances that inquiry-based science can provide for language development.

  15. Early Childhood Educators' Self-Efficacy in Science, Math, and Literacy Instruction and Science Practice in the Classroom

    Science.gov (United States)

    Gerde, Hope K.; Pierce, Steven J.; Lee, Kyungsook; Van Egeren, Laurie A.

    2018-01-01

    Research Findings: Quality early science education is important for addressing the low science achievement, compared to international peers, of elementary students in the United States. Teachers' beliefs about their skills in a content area, that is, their content self-efficacy is important because it has implications for teaching practice and…

  16. The Ripple Effect: Exploring How a Joint Science Specialist/TOSA Can Change Classroom Teachers' Instructional Practices through Project-Based Learning

    Science.gov (United States)

    Gradias, Jean

    2017-01-01

    In 2013, California became one of the first states to adopt the rigorous Next Generation Science Standards (NGSS). However, the current state of science instruction does not support the conceptual shifts of the NGSS, which call for consistent science instruction K-12, increased inquiry, subject integration, as well as science instruction that…

  17. The Implementation of Integrated Science Technology, Engineering and Mathematics (STEM) Instruction Using Robotics in the Middle School Science Classroom

    Science.gov (United States)

    Ntemngwa, Celestin; Oliver, J. Steve

    2018-01-01

    The research study reported here was conducted to investigate the implementation of integrated STEM lessons within courses that have a single subject science focus. The purpose also included development of a pedagogical theory. This technology-based teaching was conceptualized by school administrators and teachers in order to provide middle school…

  18. Flipped Classroom Instruction for Inclusive Learning

    Science.gov (United States)

    Altemueller, Lisa; Lindquist, Cynthia

    2017-01-01

    The flipped classroom is a teaching methodology that has gained recognition in primary, secondary and higher education settings. The flipped classroom inverts traditional teaching methods, delivering lecture instruction outside class, and devoting class time to problem solving, with the teacher's role becoming that of a learning coach and…

  19. Classroom Instruction: The Influences of Marie Clay

    Science.gov (United States)

    McNaughton, Stuart

    2014-01-01

    Marie Clay's body of work has influenced classroom instruction in direct and indirect ways, through large overarching themes in our pedagogical content knowledge as well as specific smart practices. This paper focuses on her the contributions to our thinking about instruction which come from two broad theoretical concepts; emergent literacy…

  20. Science Specialists or Classroom Teachers: Who Should Teach Elementary Science?

    Science.gov (United States)

    Levy, Abigail Jurist; Jia, Yueming; Marco-Bujosa, Lisa; Gess-Newsome, Julie; Pasquale, Marian

    2016-01-01

    This study examined science programs, instruction, and student outcomes at 30 elementary schools in a large, urban district in the northeast United States in an effort to understand whether there were meaningful differences in the quality, quantity and cost of science education when provided by a science specialist or a classroom teacher. Student…

  1. The Use of Organising Purposes in Science Instruction as a Scaffolding Mechanism to Support Progressions: A Study of Talk in Two Primary Science Classrooms

    Science.gov (United States)

    Johansson, Annie-Maj; Wickman, Per-Olof

    2018-01-01

    Purpose: This study examines how different purposes can support teachers in their work with progressions as a part of a teaching sequences in science in primary school. Design/Method: The study was carried out in two classes working with inquiry and the events that took place in the classroom were filmed. In the study, we have chosen to use the…

  2. Developing Marine Science Instructional Materials Using Integrated Scientist-Educator Collaborative Design Teams: A Discussion of Challenges and Success Developing Real Time Data Projects for the COOL Classroom

    Science.gov (United States)

    McDonnell, J.; Duncan, R. G.; Glenn, S.

    2007-12-01

    Current reforms in science education place increasing demands on teachers and students to engage not only with scientific content but also to develop an understanding of the nature of scientific inquiry (AAAS, 1993; NRC, 1996). Teachers are expected to engage students with authentic scientific practices including posing questions, conducting observations, analyzing data, developing explanations and arguing about them using evidence. This charge is challenging for many reasons most notably the difficulty in obtaining meaningful data about complex scientific phenomena that can be used to address relevant scientific questions that are interesting and understandable to K-12 students. We believe that ocean sciences provide an excellent context for fostering scientific inquiry in the classroom. Of particular interest are the technological and scientific advances of Ocean Observing Systems, which allow scientists to continuously interact with instruments, facilities, and other scientists to explore the earth-ocean- atmosphere system remotely. Oceanographers are making long-term measurements that can also resolve episodic oceanic processes on a wide range of spatial and temporal scales crucial to resolving scientific questions related to Earth's climate, geodynamics, and marine ecosystems. The availability of a diverse array of large data sets that are easily accessible provides a unique opportunity to develop inquiry-based learning environments in which students can explore many important questions that reflect current research trends in ocean sciences. In addition, due to the interdisciplinary nature of the ocean sciences these data sets can be used to examine ocean phenomena from a chemical, physical, or biological perspective; making them particularly useful for science teaching across the disciplines. In this session we will describe some of the efforts of the Centers for Ocean Sciences Education Excellence- Mid Atlantic (COSEE MA) to develop instructional materials

  3. Out of Classroom Instruction in the Flipped Classroom

    DEFF Research Database (Denmark)

    Triantafyllou, Evangelia; Timcenko, Olga

    2015-01-01

    This article presents experiences and student perceptions on the introduction of the flipped classroom model in two consecutive semesters at Media Technology department of Aalborg University, Copenhagen, Denmark. We introduced the flipped instruction model to a statistics course and a mathematics...

  4. 4E x 2 Instructional Model: Uniting Three Learning Constructs to Improve Praxis in Science and Mathematics Classrooms

    Science.gov (United States)

    Marshall, Jeff C.; Horton, Bob; Smart, Julie

    2009-01-01

    After decades of research endorsing inquiry-based learning, at best only moderate success has been noted in creating effective systemic implementation in K-12 classrooms. Thus, teachers need to be better equipped in how to bring this transformation to their own classrooms. Changing beliefs and overcoming external obstacles encourages the use of…

  5. The flipped classroom: practices and opportunities for health sciences librarians.

    Science.gov (United States)

    Youngkin, C Andrew

    2014-01-01

    The "flipped classroom" instructional model is being introduced into medical and health sciences curricula to provide greater efficiency in curriculum delivery and produce greater opportunity for in-depth class discussion and problem solving among participants. As educators employ the flipped classroom to invert curriculum delivery and enhance learning, health sciences librarians are also starting to explore the flipped classroom model for library instruction. This article discusses how academic and health sciences librarians are using the flipped classroom and suggests opportunities for this model to be further explored for library services.

  6. Instructional quality of lower grades natural science classes: the ...

    African Journals Online (AJOL)

    ... classes: the case of primary schools linked to Kemise College of Teacher Education. ... the quality of natural science education classroom instruction in lower grade ... on pedagogical and subject matter issue, closer support and supervision.

  7. Target Inquiry: Changing Chemistry High School Teachers' Classroom Practices and Knowledge and Beliefs about Inquiry Instruction

    Science.gov (United States)

    Herrington, Deborah G.; Yezierski, Ellen J.; Luxford, Karen M.; Luxford, Cynthia J.

    2011-01-01

    Inquiry-based instruction requires a deep, conceptual understanding of the process of science combined with a sophisticated knowledge of teaching and learning. This study examines the changes in classroom instructional practices and corresponding changes to knowledge and beliefs about inquiry instruction for eight high school chemistry teachers.…

  8. Interactive whiteboards in third grade science instruction

    Science.gov (United States)

    Rivers, Grier

    Strategies have been put into place to affect improvement in science achievement, including the use of Interactive Whiteboards (IWBs) in science instruction. IWBs enable rich resources, appropriate pacing, and multimodal presentation of content deemed as best practices. Professional development experiences, use of resources, instructional practices, and changes in professional behavior in science teachers were recorded. Also recorded were differences in the engagement and motivation of students in IWB classrooms versus IWB-free classrooms and observed differences in students' problem solving, critical thinking, and collaboration. Using a mixed-method research design quantitative data were collected to identify achievement levels of the target population on the assumption that all students, regardless of ability, will achieve greater mastery of science content in IWB classrooms. Qualitative data were collected through observations, interviews, videotapes, and a survey to identify how IWBs lead to increased achievement in third grade classrooms and to develop a record of teachers' professional practices, and students' measures of engagement and motivation. Comparative techniques determined whether science instruction is more effective in IWB classroom than in IWB-free classrooms. The qualitative findings concluded that, compared to science teachers who work in IWB-free settings, elementary science teachers who used IWBs incorporated more resources to accommodate learning objectives and the varied abilities and learning styles of their students. They assessed student understanding more frequently and perceived their classrooms as more collaborative and interactive. Furthermore, they displayed willingness to pursue professional development and employed different engagement strategies. Finally, teachers who used IWBs supported more instances of critical thinking and problem-solving. Quantitative findings concluded that students of all ability levels were more motivated

  9. Making Earth Science Relevant in the K-8 Classroom. The Development of an Instructional Soils Module for Pre-Service Elementary Teachers Using the Next Generation Science Standards

    Science.gov (United States)

    Baldwin, K. A.; Hauge, R.; Dechaine, J. M.; Varrella, G.; Egger, A. E.

    2013-12-01

    's STEP Center in the geosciences. The module goals are: 1) Pre-service teachers will apply classification methods, testing procedures and interdisciplinary systems thinking to analyze and evaluate a relevant societal issue in the context of soils, 2) Pre-service teachers will design, develop, and facilitate a standards-based K-8 soils unit, incorporating a relevant broader societal issue that applies authentic geoscientific data, and incorporates geoscientific habits of mind. In addition, pre-service teachers will look toward the NGSS and align activities with content standards, systems thinking, and science and engineering practices. This poster will provide an overview of module development to date as well as a summary of pre-semester survey results indicating pre-service elementary teachers' ideas (beliefs, attitudes, preconceptions, and content knowledge) about teaching soils, and making science relevant in a K-8 classroom.

  10. Science beyond the Classroom Boundaries

    Science.gov (United States)

    Feasey, Rosemary; Bianchi, Lynne

    2011-01-01

    There have been many years of innovation in primary science education. Surprisingly, however, most of this has taken place within the confines of the classroom. What primary science has not yet done with universal success is step outside the classroom boundaries to use the school grounds for teaching and learning across all aspects of the science…

  11. Science is for me: Meeting the needs of English language learners in an urban, middle school science classroom through an instructional intervention

    Science.gov (United States)

    Johnson, Joseph A.

    2011-12-01

    This study involved an intervention in which I explored how the multimodal, inquiry-based teaching strategies from a professional development model could be used to meet the educational needs of a group of middle school students, who were refugees, newly arrived in the United States, now residing in a large urban school district in the northeastern United States, and learning English as a second language. This group remains unmentioned throughout the research literature despite the fact that English Language Learners (ELLs) represent the fastest growing group of K-12 students in the United States. The specific needs of this particular group were explored as I attempted daily to confront a variety of obstacles to their science achievement and help to facilitate the development of a scientific discourse. This research was done in an effort to better address the needs of ELLs in general and to inform best practices for teachers to apply across a variety of different cultural and linguistic subgroups. This study is an autoethnographic case study analysis of the practices of the researcher, working in a science classroom, teaching the described group of students.

  12. Responding to Reading Instruction in a Primary-Grade Classroom

    Science.gov (United States)

    Mokhtari, Kouider; Porter, Leah; Edwards, Patricia

    2010-01-01

    In this article, the authors present a snapshot of how one kindergarten and Reading Recovery teacher organized instruction in her classroom, enabling her to provide constructively responsive reading assessment and instruction for her developing and struggling readers. (Contains 2 figures.)

  13. Learning Science beyond the Classroom.

    Science.gov (United States)

    Ramey-Gassert, Linda

    1997-01-01

    Examines a cross-section of craft knowledge and research-based literature of science learning beyond the classroom. Describes informal science education programs, and discusses implications for science teaching, focusing on the importance of informal science learning for children and in-service and preservice teachers. Proposes a model for…

  14. Flipped Classrooms for Advanced Science Courses

    Science.gov (United States)

    Tomory, Annette; Watson, Sunnie Lee

    2015-12-01

    This article explains how issues regarding dual credit and Advanced Placement high school science courses could be mitigated via a flipped classroom instructional model. The need for advanced high school courses will be examined initially, followed by an analysis of advanced science courses and the reform they are experiencing. Finally, it will conclude with an explanation of flipped classes as well as how they may be a solution to the reform challenges teachers are experiencing as they seek to incorporate more inquiry-based activities.

  15. Students' Regulation of Their Emotions in a Science Classroom

    Science.gov (United States)

    Tomas, Louisa; Rigano, Donna; Ritchie, Stephen M.

    2016-01-01

    Research aimed at understanding the role of the affective domain in student learning in classrooms has undergone a recent resurgence due to the need to understand students' affective response to science instruction. In a case study of a year 8 science class in North Queensland, students worked in small groups to write, film, edit, and produce…

  16. Implementing Concepts of Pharmaceutical Engineering into High School Science Classrooms

    Science.gov (United States)

    Kimmel, Howard; Hirsch, Linda S.; Simon, Laurent; Burr-Alexander, Levelle; Dave, Rajesh

    2009-01-01

    The Research Experience for Teachers was designed to help high school science teachers develop skills and knowledge in research, science and engineering with a focus on the area of pharmaceutical particulate and composite systems. The experience included time for the development of instructional modules for classroom teaching. Results of the…

  17. Metacognitive instruction in middle school science

    Science.gov (United States)

    Bonney, Dianna

    The purpose of this action research project was to determine the extent to which metacognitive instruction affected students' performance in the middle-grade science classroom. Conducted with four seventh grade science classes over a three-month time period, 105 students were engaged in 21 metacognitively enhanced lessons. Both quantitative and qualitative data sources were collected for this study and analyzed according to grounded theory methodology. Quantitative data came from the Jr. Metacognitive Awareness Inventory, administered as a pre-post test. Qualitative teacher-generated data was collected in a metacognitive observation protocol containing observations and reflections while student-generated data was gathered from reflective journal entries, modified rubrics, and checklists. Analysis of the data led to the assertions that metacognitive development occurred over time through systematic and varied implementation of explicit instruction. In addition, students perceived they learned best both when working collaboratively and when making multiple connections with content material. Implications for middle-grade teachers include the need for explicit instruction of metacognitive strategies, providing for instructional variation and student collaboration, and guiding students in making connections to prior learning.

  18. Engaging Nature of Science to Preservice Teachers through Inquiry-Based Classroom

    Science.gov (United States)

    Nuangchalerm, Prasart

    2013-01-01

    Inquiry-based classroom is widely distributed in the school science based on its useful and effective instruction. Science teachers are key elements allowing students to have scientific inquiry. If teachers understand and imply inquiry-based learning into science classroom, students will learn science as scientific inquiry and understand nature of…

  19. Instructional decision making of high school science teachers

    Science.gov (United States)

    Carver, Jeffrey S.

    The instructional decision-making processes of high school science teachers have not been well established in the literature. Several models for decision-making do exist in other teaching disciplines, business, computer game programming, nursing, and some fields of science. A model that incorporates differences in science teaching that is consistent with constructivist theory as opposed to conventional science teaching is useful in the current climate of standards-based instruction that includes an inquiry-based approach to teaching science. This study focuses on three aspects of the decision-making process. First, it defines what factors, both internal and external, influence high school science teacher decision-making. Second, those factors are analyzed further to determine what instructional decision-making processes are articulated or demonstrated by the participants. Third, by analyzing the types of decisions that are made in the classroom, the classroom learning environments established as a result of those instructional decisions are studied for similarities and differences between conventional and constructivist models. While the decision-making process for each of these teachers was not clearly articulated by the teachers themselves, the patterns that establish the process were clearly exhibited by the teachers. It was also clear that the classroom learning environments that were established were, at least in part, established as a result of the instructional decisions that were made in planning and implementation of instruction. Patterns of instructional decision-making were different for each teacher as a result of primary instructional goals that were different for each teacher. There were similarities between teachers who exhibited more constructivist epistemological tendencies as well as similarities between teachers who exhibited a more conventional epistemology. While the decisions that will result from these two camps may be different, the six step

  20. The Effects of Classroom Instructional Strategies on Science Achievement of Elementary-School Students in Japan: Findings from the Third International Mathematics and Science Study (TIMSS)

    Science.gov (United States)

    House, J. Daniel

    2006-01-01

    This article deals with the Third International Mathematics and Science Study (TIMSS). TIMSS has provided a comprehensive assessment of educational contexts and mathematics and science achievement (National Research Council, 1999). The initial TIMSS assessment was conducted in 1995 (TIMSS 1995) and several studies have examined factors related to…

  1. Understanding Mathematics Classroom Instruction Through Students and Teachers

    OpenAIRE

    Schenke, Katerina

    2015-01-01

    High quality instruction is necessary for students of all ages to develop a deep understanding of mathematics. Value-added models, a common approach used to describe teachers and classroom practices, are defined by the student standardized achievement gains teachers elicit. They may, however, fail to account for the complexity of mathematics instruction as it actually occurs in the classroom. To truly understand both a teacher’s impact on his/her students and how best to improve student learn...

  2. Ninth Grade Student Responses to Authentic Science Instruction

    Science.gov (United States)

    Ellison, Michael Steven

    This mixed methods case study documents an effort to implement authentic science and engineering instruction in one teacher's ninth grade science classrooms in a science-focused public school. The research framework and methodology is a derivative of work developed and reported by Newmann and others (Newmann & Associates, 1996). Based on a working definition of authenticity, data were collected for eight months on the authenticity in the experienced teacher's pedagogy and in student performance. Authenticity was defined as the degree to which a classroom lesson, an assessment task, or an example of student performance demonstrates construction of knowledge through use of the meaning-making processes of science and engineering, and has some value to students beyond demonstrating success in school (Wehlage et al., 1996). Instruments adapted for this study produced a rich description of the authenticity of the teacher's instruction and student performance. The pedagogical practices of the classroom teacher were measured as moderately authentic on average. However, the authenticity model revealed the teacher's strategy of interspersing relatively low authenticity instructional units focused on building science knowledge with much higher authenticity tasks requiring students to apply these concepts and skills. The authenticity of the construction of knowledge and science meaning-making processes components of authentic pedagogy were found to be greater, than the authenticity of affordances for students to find value in classroom activities beyond demonstrating success in school. Instruction frequently included one aspect of value beyond school, connections to the world outside the classroom, but students were infrequently afforded the opportunity to present their classwork to audiences beyond the teacher. When the science instruction in the case was measured to afford a greater level of authentic intellectual work, a higher level of authentic student performance on

  3. Everyday classroom assessment practices in science classrooms in Sweden

    Science.gov (United States)

    Gómez, María del Carmen; Jakobsson, Anders

    2014-12-01

    The focus of this study is to examine to what extent and in what ways science teachers practice assessment during classroom interactions in everyday activities in an upper-secondary school in Sweden. We are science teachers working now with a larger research project on assessment in science education that seeks to examine teachers' assessment practices in the upper-secondary school. Framing questions include: are teachers performing an integrated assessment of students' skills as the national curriculum mandates? If so, what do the instructional discourses look like in those situations and what are students' experiences regarding their agency on learning and assessment? We emphasize the social, cultural and historic character of assessment and sustain a situated character of learning instead of the notion that learning is "stored inside the head". Teacher led lessons in three science classrooms were video-recorded and analyzed by combining ethnographic and discourse methods of analysis. Both methods are appropriate to the theoretical foundation of our approach on learning and can give some answers to questions about how individuals interact socially, how their experience is passed on to next generations through language and how language use may reveal cultural changes in the studied context. Making the study of action in a classroom the focal point of sociocultural analysis supports the examination of assessment processes and identification of the social roles in which teachers and students are immersed. Such an approach requires observations of how teachers act in authentic teaching situations when they interact with their students in classroom making possible to observe negotiation processes, agencies when both teachers and students are involved in every-day activities. Our study showed that teachers mostly ignored students' questions and that students solved their own problems by helping each other. Teachers did not provide opportunities for students to discuss

  4. A Meta-Analytic Review of Graphic Organizers and Science Instruction for Adolescents with Learning Disabilities: Implications for the Intermediate and Secondary Science Classroom

    Science.gov (United States)

    Dexter, Douglas D.; Park, Youn J.; Hughes, Charles A.

    2011-01-01

    This article presents a meta-analysis of experimental and quasi-experimental studies in which intermediate and secondary students with learning disabilities were taught science content through the use of graphic organizers (GOs). Following an exhaustive search for studies meeting specified selection criteria, 23 standardized mean effect sizes were…

  5. Mathematics and Science Learning Opportunities in Preschool Classrooms

    Science.gov (United States)

    Piasta, Shayne B.; Pelatti, Christina Yeager; Miller, Heather Lynnine

    2014-01-01

    Research findings The present study observed and coded instruction in 65 preschool classrooms to examine (a) overall amounts and (b) types of mathematics and science learning opportunities experienced by preschool children as well as (c) the extent to which these opportunities were associated with classroom and program characteristics. Results indicated that children were afforded an average of 24 and 26 minutes of mathematics and science learning opportunities, respectively, corresponding to spending approximately 25% of total instructional time in each domain. Considerable variability existed, however, in the amounts and types of mathematics and science opportunities provided to children in their classrooms; to some extent, this variability was associated with teachers’ years of experience, teachers’ levels of education, and the socioeconomic status of children served in the program. Practice/policy Although results suggest greater integration of mathematics and science in preschool classrooms than previously established, there was considerable diversity in the amounts and types of learning opportunities provided in preschool classrooms. Affording mathematics and science experiences to all preschool children, as outlined in professional and state standards, may require additional professional development aimed at increasing preschool teachers’ understanding and implementation of learning opportunities in these two domains in their classrooms. PMID:25489205

  6. Tutorial Instruction in Science Education

    Directory of Open Access Journals (Sweden)

    Rhea Miles

    2015-06-01

    Full Text Available The purpose of the study is to examine the tutorial practices of in-service teachers to address the underachievement in the science education of K-12 students. Method: In-service teachers in Virginia and North Carolina were given a survey questionnaire to examine how they tutored students who were in need of additional instruction. Results: When these teachers were asked, “How do you describe a typical one-on-one science tutorial session?” the majority of their responses were categorized as teacher-directed. Many of the teachers would provide a science tutorial session for a student after school for 16-30 minutes, one to three times a week. Respondents also indicated they would rely on technology, peer tutoring, scientific inquiry, or themselves for one-on-one science instruction. Over half of the in-service teachers that responded to the questionnaire stated that they would never rely on outside assistance, such as a family member or an after school program to provide tutorial services in science. Additionally, very few reported that they incorporated the ethnicity, culture, or the native language of ELL students into their science tutoring sessions.

  7. Promoting Academic Achievement in the Middle School Classroom: Integrating Effective Study Skills Instruction

    Science.gov (United States)

    Thorpe, Christin

    2010-01-01

    This study aimed to discover what study skills are most useful for middle school students, as well as strategies for integrating study skills instruction into the four main content area classrooms (English, math, science, and social studies) at the middle school level. Twenty-nine in-service middle school teachers participated in the study by…

  8. Teaching Astronomy using a Flipped Classroom Model of Instruction

    Science.gov (United States)

    Wenger, Matthew; Impey, Chris D.; Rivera Chavez, Wendy

    2014-11-01

    Astronomy: State of the Art is a MOOC specifically developed to study student participation in an online learning environment. The project aims to serve multiple audiences of learners. For this project we focused on college students who use the online environment for lectures and quizzes but whose classroom time is devoted to hands-on activities and group work; this is the “flipped classroom” model.In spring 2014, Astronomy: State of the Art was co-convened with “The Physical Universe,” a Natural Sciences course taught at the University of Arizona that satisfies a General Education requirement for non-science majors. Using the same core material as Astronomy - State of the Art (with additional modules on the physics of radiation, atomic structure, energy, and gravity that are not necessary for the informal learners), the local course employed a “flipped” model where the students access lectures and podcasts online but are in a face-to-face classroom two times a week for labs and hands-on activities, lecture tutorials, group discussions, and other research-validated tools for enhancing learning. A flipped or hybrid model gives students flexibility, uses the online medium for the aspects of instruction where interaction with an instructor isn’t required, and optimizes the scarce resource of time in a large classroom.Final student grades were closely related to their attendance, however, performance in this class was not correlated with completion of the online video lectures, even though the quizzes were closely tied to the content of these videos. The course will next be taught using Coursera which allow instructors to more closely examine the relationship between students use of course materials and understanding of course topics. The eventual goal is to recruit undergraduates from anywhere in the United States and award them transferrable credit for completing the class.

  9. The pedagogy of argumentation in science education: science teachers' instructional practices

    Science.gov (United States)

    Özdem Yilmaz, Yasemin; Cakiroglu, Jale; Ertepinar, Hamide; Erduran, Sibel

    2017-07-01

    Argumentation has been a prominent concern in science education research and a common goal in science curriculum in many countries over the past decade. With reference to this goal, policy documents burden responsibilities on science teachers, such as involving students in dialogues and being guides in students' spoken or written argumentation. Consequently, teachers' pedagogical practices regarding argumentation gain importance due to their impact on how they incorporate this practice into their classrooms. In this study, therefore, we investigated the instructional strategies adopted by science teachers for their argumentation-based science teaching. Participants were one elementary science teacher, two chemistry teachers, and four graduate students, who have a background in science education. The study took place during a graduate course, which was aimed at developing science teachers' theory and pedagogy of argumentation. Data sources included the participants' video-recorded classroom practices, audio-recorded reflections, post-interviews, and participants' written materials. The findings revealed three typologies of instructional strategies towards argumentation. They are named as Basic Instructional Strategies for Argumentation, Meta-level Instructional ‌St‌‌rategies for ‌Argumentation, and Meta-strategic Instructional ‌St‌‌rategies for ‌Argumentation. In conclusion, the study provided a detailed coding framework for the exploration of science teachers' instructional practices while they are implementing argumentation-based lessons.

  10. Exploring the Amount and Type of Writing Instruction during Language Arts Instruction in Kindergarten Classrooms.

    Science.gov (United States)

    Puranik, Cynthia S; Al Otaiba, Stephanie; Sidler, Jessica Folsom; Greulich, Luana

    2014-02-01

    The objective of this exploratory investigation was to examine the nature of writing instruction in kindergarten classrooms and to describe student writing outcomes at the end of the school year. Participants for this study included 21 teachers and 238 kindergarten children from nine schools. Classroom teachers were videotaped once each in the fall and winter during the 90 minute instructional block for reading and language arts to examine time allocation and the types of writing instructional practices taking place in the kindergarten classrooms. Classroom observation of writing was divided into student-practice variables (activities in which students were observed practicing writing or writing independently) and teacher-instruction variables (activities in which the teacher was observed providing direct writing instruction). In addition, participants completed handwriting fluency, spelling, and writing tasks. Large variability was observed in the amount of writing instruction occurring in the classroom, the amount of time kindergarten teachers spent on writing and in the amount of time students spent writing. Marked variability was also observed in classroom practices both within and across schools and this fact was reflected in the large variability noted in kindergartners' writing performance.

  11. Exploring the Amount and Type of Writing Instruction during Language Arts Instruction in Kindergarten Classrooms

    Science.gov (United States)

    Puranik, Cynthia S.; Al Otaiba, Stephanie; Sidler, Jessica Folsom; Greulich, Luana

    2014-01-01

    The objective of this exploratory investigation was to examine the nature of writing instruction in kindergarten classrooms and to describe student writing outcomes at the end of the school year. Participants for this study included 21 teachers and 238 kindergarten children from nine schools. Classroom teachers were videotaped once each in the fall and winter during the 90 minute instructional block for reading and language arts to examine time allocation and the types of writing instructional practices taking place in the kindergarten classrooms. Classroom observation of writing was divided into student-practice variables (activities in which students were observed practicing writing or writing independently) and teacher-instruction variables (activities in which the teacher was observed providing direct writing instruction). In addition, participants completed handwriting fluency, spelling, and writing tasks. Large variability was observed in the amount of writing instruction occurring in the classroom, the amount of time kindergarten teachers spent on writing and in the amount of time students spent writing. Marked variability was also observed in classroom practices both within and across schools and this fact was reflected in the large variability noted in kindergartners’ writing performance. PMID:24578591

  12. Understanding children's science identity through classroom interactions

    Science.gov (United States)

    Kim, Mijung

    2018-01-01

    Research shows that various stereotypes about science and science learning, such as science being filled with hard and dry content, laboratory experiments, and male-dominated work environments, have resulted in feelings of distance from science in students' minds. This study explores children's experiences of science learning and science identity. It asks how children conceive of doing science like scientists and how they develop views of science beyond the stereotypes. This study employs positioning theory to examine how children and their teacher position themselves in science learning contexts and develop science identity through classroom interactions. Fifteen students in grades 4-6 science classrooms in Western Canada participated in this study. Classroom activities and interactions were videotaped, transcribed, and analysed to examine how the teacher and students position each other as scientists in the classroom. A descriptive explanatory case analysis showed how the teacher's positioning acted to develop students' science identity with responsibilities of knowledge seeking, perseverance, and excitement about science.

  13. Reading Comprehension Instruction in Irish Primary Classrooms: Key Insights into Teachers' Perspectives on Classroom Practices

    Science.gov (United States)

    Concannon-Gibney, Tara; Murphy, Brian

    2012-01-01

    Despite a wealth of international research indicating the importance but also the dearth of explicit reading comprehension instruction in classrooms, current classroom reading pedagogy does not appear to have acknowledged and addressed this shortcoming to any significant degree. This is cause for some considerable concern, as today's students…

  14. Elementary Students' Retention of Environmental Science Knowledge: Connected Science Instruction versus Direct Instruction

    Science.gov (United States)

    Upadhyay, Bhaskar; DeFranco, Cristina

    2008-01-01

    This study compares 3rd-grade elementary students' gain and retention of science vocabulary over time in two different classes--"connected science instruction" versus "direct instruction." Data analysis yielded that students who received connected science instruction showed less gain in science knowledge in the short term compared to students who…

  15. Design Principles for Online Instruction: A New Kind of Classroom

    Directory of Open Access Journals (Sweden)

    Neil TOPORSKI

    2004-01-01

    Full Text Available In the 1900’s, distance education attempted to mimic the traditional classroom lecture via the transmission of live or “canned” broadcasts, regardless of the technologies used: satellite, television, film, or radio. These kinds of media predisposed DE to closely adhere to the lecture (sit and absorb model, where content was disseminated in about the same time constraints as a traditional class: taught at scheduled times throughout the week–almost anywhere but not always anytime. Moreover, the modes of presentation in classic DE seemed to hinder the kinds of human interactions normally experienced in the traditional classroom, fostering individualized and isolated learning experiences.Online learning is a hybrid between the traditional classroom and the DE experience. Like the traditional classroom, instruction is teacher-facilitated. The student is enrolled in a conventional course with topic (lecture presentations, reading and homework assignments, classroom discussions, and class projects. Unlike the traditional classroom, courses are web-based and distributed from a distance, using an assortment of synchronous and asynchronous computer technologies and offered anywhere and anytime. In this way, online learning is different from the classic DE model by encouraging decentralized and collaborative learning environments. So that in this presentation will be discuss design principles for online instruction as being a new kind of classroom.

  16. Teaching the Social Curriculum: Classroom Management as Behavioral Instruction

    Science.gov (United States)

    Skiba, Russ; Ormiston, Heather; Martinez, Sylvia; Cummings, Jack

    2016-01-01

    Psychological science has identified positive classroom management and climate building strategies as a key element in developing and maintaining effective learning environments. In this article, we review the literature that has identified effective strategies that build classroom climates to maximize student learning and minimize disruption. In…

  17. Language used in interaction during developmental science instruction

    Science.gov (United States)

    Avenia-Tapper, Brianna

    The coordination of theory and evidence is an important part of scientific practice. Developmental approaches to instruction, which make the relationship between the abstract and the concrete a central focus of students' learning activity, provide educators with a unique opportunity to strengthen students' coordination of theory and evidence. Therefore, developmental approaches may be a useful instructional response to documented science achievement gaps for linguistically diverse students. However, if we are to leverage the potential of developmental instruction to improve the science achievement of linguistically diverse students, we need more information on the intersection of developmental science instruction and linguistically diverse learning contexts. This manuscript style dissertation uses discourse analysis to investigate the language used in interaction during developmental teaching-learning in three linguistically diverse third grade classrooms. The first manuscript asks how language was used to construct ascension from the abstract to the concrete. The second manuscript asks how students' non-English home languages were useful (or not) for meeting the learning goals of the developmental instructional program. The third manuscript asks how students' interlocutors may influence student choice to use an important discourse practice--justification--during the developmental teaching-learning activity. All three manuscripts report findings relevant to the instructional decisions that teachers need to make when implementing developmental instruction in linguistically diverse contexts.

  18. Effective instructional strategies in physics classrooms

    Science.gov (United States)

    Tosa, Sachiko

    2011-04-01

    Instructional strategies such as Think-Pair-Share and Socratic questioning are powerful ways to get students engaged in thinking processes. In this talk, tips and techniques that help students make sense of physics concepts in lecture-based classes are presented with specific examples. The participants will see the effectiveness of the instructional strategies by actually experiencing the process as learners with the use of clickers.

  19. Blogging as an Instructional Tool in the ESL Classroom

    Science.gov (United States)

    Featro, Susan Mary; DiGregorio, Daniela

    2016-01-01

    Theories on emerging technologies have stated that using blogs in the classroom can engage students in discussion, support peer learning, and improve students' literacy skills. Research has pointed to many ways that blogging is beneficial to student learning when used as an instructional tool. The researchers conducted a project that investigated…

  20. Research into Practice: Listening Strategies in an Instructed Classroom Setting

    Science.gov (United States)

    Graham, Suzanne

    2017-01-01

    This paper considers research and practice relating to listening in instructed classroom settings, limiting itself to what might be called unidirectional listening (Macaro, Graham & Vanderplank 2007)--in other words, where learners listen to a recording, a TV or radio clip or lecture, but where there is no communication back to the speaker(s).…

  1. Classroom instruction versus roadside training in traffic safety education

    NARCIS (Netherlands)

    van Schagen, I; Rothengatter, J.A.

    1997-01-01

    This study compares the effectiveness of different approaches to training complex cognitive and psychomotor skills within the framework of road safety education for primary school children. A method involving roadside behavioral training, a classroom instruction method and a method combining these

  2. Optimizing Classroom Instruction through Self-Paced Learning Prototype

    Science.gov (United States)

    Bautista, Romiro G.

    2015-01-01

    This study investigated the learning impact of self-paced learning prototype in optimizing classroom instruction towards students' learning in Chemistry. Two sections of 64 Laboratory High School students in Chemistry were used as subjects of the study. The Quasi-Experimental and Correlation Research Design was used in the study: a pre-test was…

  3. Classroom Talk for Rigorous Reading Comprehension Instruction

    Science.gov (United States)

    Wolf, Mikyung Kim; Crosson, Amy C.; Resnick, Lauren B.

    2004-01-01

    This study examined the quality of classroom talk and its relation to academic rigor in reading-comprehension lessons. Additionally, the study aimed to characterize effective questions to support rigorous reading comprehension lessons. The data for this study included 21 reading-comprehension lessons in several elementary and middle schools from…

  4. Computer aided instruction in the nuclear training classroom

    International Nuclear Information System (INIS)

    McFarlane, A.F.

    1983-01-01

    The objectives formulated for introducing computer aided instruction into the nuclear training programme are discussed and the process of comparative evaluation which was followed to arrive at a preferred system is described. Three points must be remembered. First it is unlikely that specialized training will benefit from any cost reduction since the total manpower invested can seldom be applied over enough students to represent an overall cost saving when compared with conventional classroom methods. Second it is unnecessary to present on a video screen material which would be better left in its original printed textbook or manual. Thirdly care must be taken not to assume too much or too little prior knowledge in the student. In nuclear training, concentrated information transfer is required in a short period of time. Carefully planned and executed computer assisted instruction can improve teaching effectiveness and provide a welcome alternative to conventional classroom instruction. (U.K.)

  5. Caring Enough to Teach Science: Helping Pre-Service Teachers View Science Instruction as an Ethical Responsibility

    Science.gov (United States)

    Grinell, Smith; Rabin, Colette

    2017-01-01

    The goal of this project was to motivate pre-service elementary teachers to commit to spending significant instructional time on science in their future classrooms despite their self-assessed lack of confidence about teaching science and other impediments (e.g., high-stakes testing practices that value other subjects over science). Pre-service…

  6. Exploring Flipped Classroom Instruction in Calculus III

    Science.gov (United States)

    Wasserman, Nicholas H.; Quint, Christa; Norris, Scott A.; Carr, Thomas

    2017-01-01

    In an undergraduate Calculus III class, we explore the effect of "flipping" the instructional delivery of content on both student performance and student perceptions. Two instructors collaborated to determine daily lecture notes, assigned the same homework problems, and gave identical exams; however, compared to a more traditional…

  7. Instructional Strategies for the Inclusive Music Classroom

    Science.gov (United States)

    Darrow, Alice-Ann; Adamek, Mary

    2018-01-01

    While inclusive education is an admirable ideal, it is often difficult to implement. Successful educators have found that employing certain instructional strategies can help meet the needs of students with varying abilities. Inclusive teaching strategies refer to any number of teaching approaches that address the needs of students with a variety…

  8. Redefining Classroom Culture through Instructional Design

    Science.gov (United States)

    Faryadi, Qais; Bakar, Zainab Abu; Maidinsah, Hamidah; Muhamad, Aminuddin

    2007-01-01

    This critical assessment attempts to define a good instructional design through the eyes and the minds of renowned scholars and the most outspoken educational psychologists such as Gagne, John Keller, Jerome Bruner, and Richard E. Mayer and so on. This examination also discusses ways in directing the mental map of students for better knowledge…

  9. Exploring alternative assessment strategies in science classrooms

    Directory of Open Access Journals (Sweden)

    Michèle Stears

    2010-01-01

    Full Text Available The knowledge children bring to the classroom or construct in the classroom may find expression in a variety of activities and is often not measurable with the traditional assessment instruments used in science classrooms. Different approaches to assessment are required to accommodate the various ways in which learners construct knowledge in social settings. In our research we attempted to determine the types of outcomes achieved in a Grade 6 classroom where alternative strategies such as interactive assessments were implemented. Analyses of these outcomes show that the learners learned much more than the tests indicate, although what they learnt was not necessarily science. The implications for assessment are clear: strategies that assess knowledge of science concepts, as well as assessment of outcomes other than science outcomes, are required if we wish to gain a holistic understanding of the learning that occurs in science classrooms.

  10. Optimizing classroom instruction through self-paced learning prototype

    Directory of Open Access Journals (Sweden)

    Romiro Gordo Bautista

    2015-09-01

    Full Text Available This study investigated the learning impact of self-paced learning prototype in optimizing classroom instruction towards students’ learning in Chemistry. Two sections of 64 Laboratory High School students in Chemistry were used as subjects of the study. The Quasi-Experimental and Correlation Research Design was used in the study: a pre-test was conducted, scored and analyzed which served as the basis in determining the initial learning schema of the respondents. A questionnaire was adopted to find the learning motivation of the students in science. Using Pearson-r correlation, it was found out that there is a highly significant relationship between their internal drive and their academic performance. Moreover, a post-test was conducted after self-paced learning prototype was used in the development of select topics in their curricular plot. It was found out that the students who experienced the self-paced learning prototype performed better in their academic performance as evidenced by the difference of their mean post-test results. ANCOVA results on the post-test mean scores of the respondents were utilized in establishing the causal-effect of the learning prototype to the academic performance of the students in Chemistry. A highly significant effect on their academic performance (R-square value of 70.7% and significant interaction of the models to the experimental grouping and mental abilities of the respondents are concluded in the study.

  11. Kuwaiti Science Teachers' Beliefs and Intentions Regarding the Use of Inquiry-Based Instruction

    Science.gov (United States)

    Alhendal, Dalal; Marshman, Margaret; Grootenboer, Peter

    2016-01-01

    To improve the quality of education, the Kuwaiti Ministry of Education has encouraged schools to implement inquiry-based instruction. This study identifies psychosocial factors that predict teachers' intention to use inquiry-based instruction in their science classrooms. An adapted model of Ajzen's (1985) theory of planned behaviour--the Science…

  12. USING PREZI PRESENTATION AS INSTRUCTIONAL MATERIAL IN ENGLISH GRAMMAR CLASSROOM

    Directory of Open Access Journals (Sweden)

    Rahmat Yusny

    2016-05-01

    Full Text Available Utilizing digital technology as a medium for educational instruction has now become one of the 21 century pedagogy trends. Numerous researches suggested that using digital technology provides positive impacts as it gives more access to resources for the learning. In Foreign language pedagogy, using digital technology fosters learners’ autonomy by self-managing the amount of learning inputs outside the classroom. However, many studies emphasize more on the communicative and the vast resources accessible for the learners. Very limited attention given to the impact of the visual aid that focuses on aesthetic values of instructional design. English Grammar is one of many subjects that often received complaints by learners and claimed as a “boring” subject. Many English teachers especially in developing countries still utilize traditional method in teaching grammar. They introduce sentence structure using grammar formulas. Although, this method is still very popular, it often considered monotonous by many learners. This paper discusses about the study of using Prezi.com presentation to deliver grammar instruction materials in an English language classroom. From the study, it was found that the majority of the students involved in the study are fond of the materials and the post-test results showed grammar mastery improvement after receiving a grammar lesson that shows instructional materials using prezi. On the other hand, the control class that uses only writing boards and worksheets showed less improvement. This research provides new technique in developing grammar instruction design using a web tool called Prezi in enhancing the display of the instruction material. The experiment was given to students of English Language Education. The result of the study shows students’ positive perception toward the use of Prezi in English grammar instructional material.

  13. Embedding Sustainability Instruction across Content Areas: best Classroom Practices from Informal Environmental Education

    Science.gov (United States)

    Clary, R. M.; Walker, R. M.; Wissehr, C.

    2017-12-01

    Environmental education (EE) facilitates students' scientific and environmental literacy, and addresses content areas including sustainability, ecology, and civic responsibility. However, U.S. science content compartmentalization and EE's interdisciplinary nature historically made it a fragmented curriculum within U.S. schools. To gain a better understanding of effective EE instruction that can be transferred to traditional K-12 classrooms, we researched the interactions between a recognized environmental residential camp and students and teachers from six participating schools using grounded theory methodology. Our research identified the residential learning center's objectives, methods of instruction, and objectives' alignment to the delivered curricula. Data generated included lesson plans, survey responses, and interviews. Students (n = 215) identified wilderness and geology activities as the activities they wanted to experience more; they also identified developing curiosity and a sense of discovery as the most meaningful. Whereas most student-identified meaningful experiences aligned with the center's curricular objectives within the optional units, categories emerged that were not explicitly targeted in the unit activities but were embedded throughout the curriculum in sustainable practices, data collection, and reflections. We propose that embedded activities and implicit instruction can be included across content areas within K-12 classrooms. Teacher modeling and implicit instruction will require minimal classroom time, and facilitate students' scientific and environmental literacy in topics such as sustainability and citizen responsibility.

  14. Scientists in the Classroom Mentor Model Program - Bringing real time science into the K - 12 classroom

    Science.gov (United States)

    Worssam, J. B.

    2017-12-01

    Field research finally within classroom walls, data driven, hands on with students using a series of electronic projects to show evidence of scientific mentor collaboration. You do not want to miss this session in which I will be sharing the steps to develop an interactive mentor program between scientists in the field and students in the classroom. Using next generation science standards and common core language skills you will be able to blend scientific exploration with scientific writing and communication skills. Learn how to make connections in your own community with STEM businesses, agencies and organizations. Learn how to connect with scientists across the globe to make your classroom instruction interactive and live for all students. Scientists, you too will want to participate, see how you can reach out and be a part of the K-12 educational system with students learning about YOUR science, a great component for NSF grants! "Scientists in the Classroom," a model program for all, bringing real time science, data and knowledge into the classroom.

  15. Perceptions of Crop Science Instructional Materials.

    Science.gov (United States)

    Elkins, D. M.

    1994-01-01

    A number of crop science instructors have indicated that there is a shortage of quality, current crop/plant science teaching materials, particularly textbooks. A survey instrument was developed to solicit information from teachers about the use and adequacy of textbooks, laboratory manuals, and videotapes in crop/plant science instruction. (LZ)

  16. Classroom Instruction That Works: Research-Based Strategies for Increasing Student Achievement. Second Edition

    Science.gov (United States)

    Dean, Ceri B.; Stone, BJ; Hubbell, Elizabeth; Pitler, Howard

    2012-01-01

    First published in 2001, "Classroom Instruction That Works" revolutionized teaching by linking classroom strategies to evidence of increased student learning. Now this landmark guide has been reenergized and reorganized for today's classroom with new evidence-based insights and a refined framework that strengthens instructional planning. Whether…

  17. The Translation of Teachers' Understanding of Gifted Students Into Instructional Strategies for Teaching Science

    Science.gov (United States)

    Park, Soonhye; Steve Oliver, J.

    2009-08-01

    This study examined how instructional challenges presented by gifted students shaped teachers’ instructional strategies. This study is a qualitative research grounded in a social constructivist framework. The participants were three high school science teachers who were teaching identified gifted students in both heterogeneously- and homogeneously-grouped classrooms. Major data sources are classroom observations and interviews. Data analysis indicated that these science teachers developed content-specific teaching strategies based on their understanding of gifted students, including: (a) instructional differentiation, e.g., thematic units, (b) variety in instructional mode and/or students’ products, (c) student grouping strategies and peer tutoring, (d) individualized support, (e) strategies to manage challenging questions, (f) strategies to deal with the perfectionism, and (g) psychologically safe classroom environments.

  18. Instructional leaders for all? High school science department heads and instructional leadership across all science disciplines

    Science.gov (United States)

    Sanborn, Stephen

    Many high school science departments are responding to changes in state standards with respect to both curricular content and instructional practices. In the typical American high school organization, the academic department head is ideally positioned to influence change in the instructional practices of teachers within the department. Even though science department heads are well situated to provide leadership during this period of transition, the literature has not addressed the question of how well science department heads believe they can provide instructional leadership for all of the teachers in their department, whether they are teaching within and outside of the head's own sub-discipline. Nor is it known how science department heads view the role of pedagogical content knowledge in teaching different science disciplines. Using an online survey comprised of 26 objective questions and one open response question, a 54-respondent sample of science department heads provided no strong consensus regarding their beliefs about the role of pedagogical content knowledge in science instruction. However, science department heads expressed a significant difference in their views about their capacity to provide instructional leadership for teachers sharing their science content area compared to teachers instructing other science content areas. Given wide-spread science education reform efforts introduced in response to the Next Generation Science Standards, these findings may serve to provide some direction for determining how to best support the work of science department heads as they strive to provide instructional leadership for the teachers in their departments.

  19. Understanding the Development of a Hybrid Practice of Inquiry-Based Science Instruction and Language Development: A Case Study of One Teacher's Journey through Reflections on Classroom Practice

    Science.gov (United States)

    Capitelli, Sarah; Hooper, Paula; Rankin, Lynn; Austin, Marilyn; Caven, Gennifer

    2016-01-01

    This qualitative case study looks closely at an elementary teacher who participated in professional development experiences that helped her develop a hybrid practice of using inquiry-based science to teach both science content and English language development (ELD) to her students, many of whom are English language learners (ELLs). This case study…

  20. Technology Use in Science Instruction (TUSI): Aligning the Integration of Technology in Science Instruction in Ways Supportive of Science Education Reform

    Science.gov (United States)

    Campbell, Todd; Abd-Hamid, Nor Hashidah

    2013-08-01

    This study describes the development of an instrument to investigate the extent to which technology is integrated in science instruction in ways aligned to science reform outlined in standards documents. The instrument was developed by: (a) creating items consistent with the five dimensions identified in science education literature, (b) establishing content validity with both national and international content experts, (c) refining the item pool based on content expert feedback, (d) piloting testing of the instrument, (e) checking statistical reliability and item analysis, and (f) subsequently refining and finalization of the instrument. The TUSI was administered in a field test across eleven classrooms by three observers, with a total of 33 TUSI ratings completed. The finalized instrument was found to have acceptable inter-rater intraclass correlation reliability estimates. After the final stage of development, the TUSI instrument consisted of 26-items separated into the original five categories, which aligned with the exploratory factor analysis clustering of the items. Additionally, concurrent validity of the TUSI was established with the Reformed Teaching Observation Protocol. Finally, a subsequent set of 17 different classrooms were observed during the spring of 2011, and for the 9 classrooms where technology integration was observed, an overall Cronbach alpha reliability coefficient of 0.913 was found. Based on the analyses completed, the TUSI appears to be a useful instrument for measuring how technology is integrated into science classrooms and is seen as one mechanism for measuring the intersection of technological, pedagogical, and content knowledge in science classrooms.

  1. Virtual science instructional strategies: A set of actual practices as perceived by secondary science educators

    Science.gov (United States)

    Gillette, Tammy J.

    2009-12-01

    The purpose of this proposed research study was to identify actual teaching practices/instructional strategies for online science courses. The identification of these teaching practices/instructional strategies could be used to compile a set of teaching practices/instructional strategies for virtual high school and online academy science instructors. This study could assist online science instructors by determining which teaching practices/instructional strategies were preferred for the online teaching environment. The literature reviewed the role of online and face-to-face instructional strategies, then discussed and elaborated on the science instructional strategies used by teachers, specifically at the secondary level. The current literature did not reflect an integration of these areas of study. Therefore, the connectedness of these two types of instructional strategies and the creation of a set of preferred instructional practices for online science instruction was deemed necessary. For the purpose of this study, the researcher designed a survey for face-to-face and online teachers to identify preferred teaching practices, instructional strategies, and types of technology used when teaching high school science students. The survey also requested demographic data information from the faculty members, including years of experience, subject(s) taught, and whether the teacher taught in a traditional classroom or online, to determine if any of those elements affect differences in faculty perceptions with regard to the questions under investigation. The findings from the current study added to the literature by demonstrating the differences and the similarities that exist between online and face-to-face instruction. Both forms of instruction tend to rely on student-centered approaches to teaching. There were many skills that were similar in that both types of instructors tend to focus on implementing the scientific method. The primary difference is the use of

  2. Classroom Assessment in Web-Based Instructional Environment: Instructors' Experience

    Directory of Open Access Journals (Sweden)

    Xin Liang

    2004-03-01

    Full Text Available While a great deal has been written on the advantage and benefits of online teaching, little is known on how..assessment is implemented in online classrooms to monitor and inform performance and progress. The..purpose of this study is to investigate the dynamics of WebCT classroom assessment by analyzing the..perceptions and experience of the instructors. Grounded theory method was employed to generate a - process..theory- . The study included 10 faculties who taught WebCT classes, and 216 students in the College of..Education in an urban university in the Mid west. Interviews and classroom observations were undertaken..on line. The findings indicated that, performance-based assessment, writing skills, interactive assessment..and learner autonomy were major assessment aspects to inform teaching and enhance learning. If one of..the major roles of online instruction is to increase self-directed learning, as part of the pedagogical..mechanism, web-based classroom assessment should be designed and practiced to impact learner autonomy.

  3. Science Students' Classroom Discourse: Tasha's Umwelt

    Science.gov (United States)

    Arnold, Jenny

    2012-04-01

    Over the past twenty-five years researchers have been concerned with understanding the science student. The need for such research is still grounded in contemporary issues including providing opportunities for all students to develop scientific literacy and the failure of school science to connect with student's lives, interests and personal identities. The research reported here is unusual in its use of discourse analysis in social psychology to contribute to an understanding of the way students make meaning in secondary school science. Data constructed for the study was drawn from videotapes of nine consecutive lessons in a year-seven science classroom in Melbourne, post-lesson video-stimulated interviews with students and the teacher, classroom observation and the students' written work. The classroom videotapes were recorded using four cameras and seven audio tracks by the International Centre for Classroom Research at the University of Melbourne. Student talk within and about their science lessons was analysed from a discursive perspective. Classroom episodes in which students expressed their sense of personal identity and agency, knowledge, attitude or emotion in relation to science were identified for detailed analysis of the function of the discourse used by students, and in particular the way students were positioned by others or positioned themselves. This article presents the discursive Umwelt or life-space of one middle years science student, Tasha. Her case is used here to highlight the complex social process of meaning making in science classrooms and the need to attend to local moral orders of rights and duties in research on student language use, identity and learning in science.

  4. Ambitious Teachers' Design and Use of Classrooms as a Place of Science

    Science.gov (United States)

    Stroupe, David

    2017-01-01

    This multicase study examines how three teachers enacting ambitious instruction purposefully designed and used their classroom as a "place of science" in which students participated in disciplinary practices. A place of science is a location that shapes the norms, values, and history of disciplinary practices. Each participant's…

  5. Student evaluation of the flipped classroom instruction method: is it aligned with Problem-Based Learning?

    DEFF Research Database (Denmark)

    Triantafyllou, Evangelia; Timcenko, Olga; Kofoed, Lise

    2017-01-01

    The flipped classroom approach is an instructional method that has gained momentum in the last years. In a flipped classroom the traditional lecture and homework sessions are inverted. We believe that the flipped classroom, which employs computer-based individual instruction outside the classroom...... presents data from the second year, where we conducted a survey study among students participating in the flipped statistics course. This study consisted of two surveys designed to gather student perceptions on the out-of-classroom preparation material (videos and quizzes) and the flipped classroom...

  6. Science for Girls: Successful Classroom Strategies

    Science.gov (United States)

    Goetz, Susan Gibbs

    2007-01-01

    "Science for Girls: Successful Classroom Strategies" looks at how girls learn, beginning with the time they are born through both the informal and formal education process. In the author's current role as professor of science education, Dr. Goetz has surveyed hundreds of female elementary education majors in their junior and senior year of…

  7. Response switching and self-efficacy in Peer Instruction classrooms

    Science.gov (United States)

    Miller, Kelly; Schell, Julie; Ho, Andrew; Lukoff, Brian; Mazur, Eric

    2015-06-01

    Peer Instruction, a well-known student-centered teaching method, engages students during class through structured, frequent questioning and is often facilitated by classroom response systems. The central feature of any Peer Instruction class is a conceptual question designed to help resolve student misconceptions about subject matter. We provide students two opportunities to answer each question—once after a round of individual reflection and then again after a discussion round with a peer. The second round provides students the choice to "switch" their original response to a different answer. The percentage of right answers typically increases after peer discussion: most students who answer incorrectly in the individual round switch to the correct answer after the peer discussion. However, for any given question there are also students who switch their initially right answer to a wrong answer and students who switch their initially wrong answer to a different wrong answer. In this study, we analyze response switching over one semester of an introductory electricity and magnetism course taught using Peer Instruction at Harvard University. Two key features emerge from our analysis: First, response switching correlates with academic self-efficacy. Students with low self-efficacy switch their responses more than students with high self-efficacy. Second, switching also correlates with the difficulty of the question; students switch to incorrect responses more often when the question is difficult. These findings indicate that instructors may need to provide greater support for difficult questions, such as supplying cues during lectures, increasing times for discussions, or ensuring effective pairing (such as having a student with one right answer in the pair). Additionally, the connection between response switching and self-efficacy motivates interventions to increase student self-efficacy at the beginning of the semester by helping students develop early mastery or

  8. Teaching and learning science in linguistically diverse classrooms

    Science.gov (United States)

    Moore, Emilee; Evnitskaya, Natalia; Ramos-de Robles, S. Lizette

    2017-01-01

    In this paper we reflect on the article, Science education in a bilingual class: problematising a translational practice, by Zeynep Ünsal, Britt Jakobson, Bengt-Olav Molander and Per-Olaf Wickman (Cult Stud Sci Educ, 10.1007/s11422-016-9747-3). In their article, the authors present the results of a classroom research project by responding to one main question: How is continuity between everyday language and the language of science construed in a bilingual science classroom where the teacher and the students do not speak the same minority language? Specifically, Ünsal et al. examine how bilingual students construe relations between everyday language and the language of science in a class taught in Swedish, in which all students also spoke Turkish, whereas the teacher also spoke Bosnian, both being minority languages in the context of Swedish schools. In this forum, we briefly discuss why close attention to bilingual dynamics emerging in classrooms such as those highlighted by Ünsal et al. matters for science education. We continue by discussing changing ontologies in relation to linguistic diversity and education more generally. Recent research in bilingual immersion classroom settings in so-called "content" subjects such as Content and Language Integrated Learning, is then introduced, as we believe this research offers some significant insights in terms of how bilingualism contributes to knowledge building in subjects such as science. Finally, we offer some reflections in relation to the classroom interactional competence needed by teachers in linguistically diverse classrooms. In this way, we aim to further the discussion initiated by Ünsal et al. and to offer possible frameworks for future research on bilingualism in science education. In their article, Ünsal et al. conclude the analysis of the classroom data by arguing in favor of a translanguaging pedagogy, an approach to teaching and learning in which students' whole language repertoires are used as

  9. Performance-based classrooms: A case study of two elementary teachers of mathematics and science

    Science.gov (United States)

    Jones, Kenneth W.

    This case study depicts how two elementary teachers develop classrooms devoted to performance-based instruction in mathematics and science. The purpose is to develop empirical evidence of classroom practices that leads to a conceptual framework about the nature of performance-based instruction. Performance-based assessment and instruction are defined from the literature to entail involving students in tasks that are complex and engaging, requiring them to apply knowledge and skills in authentic contexts. In elementary mathematics and science, such an approach emphasizes problem solving, exploration, inquiry, and reasoning. The body of the work examines teacher beliefs, curricular orientations, instructional strategies, assessment approaches, management and organizational skills, and interpersonal relationships. The focus throughout is on those aspects that foster student performance in elementary mathematics and science. The resulting framework describes five characteristics that contribute to performance-based classrooms: a caring classroom community, a connectionist learning theory, a thinking and doing curriculum, diverse opportunities for learning, and ongoing assessment, feedback, and adjustment. The conclusion analyzes factors external to the classroom that support or constrain the development of performance-based classrooms and discusses the implications for educational policy and further research.

  10. Girls Doing Science: A Case Study of Science Literacy in All-Female Middle Grade Classrooms

    Science.gov (United States)

    Faller, Susan Elisabeth

    In the face of low adolescent literacy rates (NCES, 2012), concerns about the nation's prospects of remaining competitive in science and technology (Hill, Corbett, & St. Rose, 2010), a persistent gender gap in science (NCES, 2012; Reilly, 2012), and the continued rollout of college- and career-ready standards, there is a need to focus on adolescent girls' science literacy. Such science literacy involves not only general knowledge about science, but also the ability to engage in the advanced reading and writing practices fundamental to doing science (Norris & Phillips, 2003). In this thesis, I present three articles with findings that respond to this need. They are the results of a multiple-case embedded (Yin, 2009) study that I conducted over the course of 7 months in four science classrooms (grades 5 through 8; 50 students) taught by a single teacher in a small all-female middle school. I collected in-depth data focused on science literacy from multiple sources, including (a) fieldnotes (Emerson, Fretz & Shaw, 2011), (b) videorecorded classroom observations (102 classes, 113 hours, recorded on 29 days), (c) a survey of all students, (d) semi-structured interviews with the subsample of 12 focal students (ranging from 18 to 37 minutes) and (e) photographs of classroom artifacts and student work. In the first article, I provide a window into standard literacy practices in science classrooms by examining the reading and writing genres to which students are exposed. In the second article, I examine how a teacher's language and instructional practices within her classrooms, and popular images of science from the world beyond their classrooms might shape adolescent girls' science identities. Finally, in the third article, I explore different aspects of science identity using the words of three case study students. Taken together, these studies fill gaps in the literature by investigating science literacy in an understudied context, all-female classrooms. In addition

  11. Integrating Felting in Elementary Science Classrooms to Facilitate Understanding of the Polar Auroras

    Directory of Open Access Journals (Sweden)

    Brandy Terrill

    2017-10-01

    Full Text Available The Next Generation Science Standards (NGSS emphasize conceptual science instruction that draws on students’ ability to make observations, explain natural phenomena, and examine concept relationships. This paper explores integrating the arts, in the form of felting, in elementary science classrooms as a way for students to model and demonstrate understanding of the complex scientific processes that cause the polar auroras. The steps for creating felting, and using the felting artwork students create for assessing science learning, are described.

  12. In-Depth Analysis of Handwriting Curriculum and Instruction in Four Kindergarten Classrooms

    Science.gov (United States)

    Vander Hart, Nanho; Fitzpatrick, Paula; Cortesa, Cathryn

    2010-01-01

    The quality of handwriting curriculum and instructional practices in actual classrooms was investigated in an in-depth case study of four inner city kindergarten classrooms using quantitative and qualitative methods. The handwriting proficiency of students was also evaluated to assess the impact of the instructional practices observed. The…

  13. Use of the Flipped Classroom Instructional Model in Higher Education: Instructors' Perspectives

    Science.gov (United States)

    Long, Taotao; Cummins, John; Waugh, Michael

    2017-01-01

    The flipped classroom model is an instructional model in which students learn basic subject matter knowledge prior to in-class meetings, then come to the classroom for active learning experiences. Previous research has shown that the flipped classroom model can motivate students towards active learning, can improve their higher-order thinking…

  14. Supporting Academic Language Development in Elementary Science: A Classroom Teaching Experiment

    Science.gov (United States)

    Jung, Karl Gerhard

    Academic language is the language that students must engage in while participating in the teaching and learning that takes place in school (Schleppegrell, 2012) and science as a content area presents specific challenges and opportunities for students to engage with language (Buxton & Lee, 2014; Gee, 2005). In order for students to engage authentically and fully in the science learning that will take place in their classrooms, it is important that they develop their abilities to use science academic language (National Research Council, 2012). For this to occur, teachers must provide support to their students in developing the science academic language they will encounter in their classrooms. Unfortunately, this type of support remains a challenge for many teachers (Baecher, Farnsworth, & Ediger, 2014; Bigelow, 2010; Fisher & Frey, 2010) and teachers must receive professional development that supports their abilities to provide instruction that supports and scaffolds students' science academic language use and development. This study investigates an elementary science teacher's engagement in an instructional coaching partnership to explore how that teacher planned and implemented scaffolds for science academic language. Using a theoretical framework that combines the literature on scaffolding (Bunch, Walqui, & Kibler, 2015; Gibbons, 2015; Sharpe, 2001/2006) and instructional coaching (Knight, 2007/2009), this study sought to understand how an elementary science teacher plans and implements scaffolds for science academic language, and the resources that assisted the teacher in planning those scaffolds. The overarching goal of this work is to understand how elementary science teachers can scaffold language in their classroom, and how they can be supported in that work. Using a classroom teaching experiment methodology (Cobb, 2000) and constructivist grounded theory methods (Charmaz, 2014) for analysis, this study examined coaching conversations and classroom

  15. Science Fiction in the Classroom.

    Science.gov (United States)

    Brake, Mark; Thornton, Rosi

    2003-01-01

    Considers science fiction as an imaginative forum to focus on the relationships between science, culture, and society. Outlines some of the ways in which using the genre can help achieve a dynamic and pluralistic understanding of the nature and evolution of science. (Author/KHR)

  16. Classroom-based narrative and vocabulary instruction: results of an early-stage, nonrandomized comparison study.

    Science.gov (United States)

    Gillam, Sandra Laing; Olszewski, Abbie; Fargo, Jamison; Gillam, Ronald B

    2014-07-01

    This nonrandomized feasibility study was designed to provide a preliminary assessment of the impact of a narrative and vocabulary instruction program provided by a speech-language pathologist (SLP) in a regular classroom setting. Forty-three children attending 2 first-grade classrooms participated in the study. Children in each classroom were divided into high- and low-risk subgroups on the basis of their performance on a narrative test. Narrative and vocabulary instruction was provided by an SLP in 1 classroom for three 30-min periods per week for 6 weeks. The children in the experimental classroom made clinically significant improvements on narrative and vocabulary measures; children in the comparison classroom did not. Within the experimental classroom, children in the high-risk subgroup demonstrated greater gains in narration and fewer gains in vocabulary than children in the low-risk subgroup. There were no subgroup differences in the comparison classroom. These preliminary results provide early evidence of the feasibility of implementing a narrative instruction program in a classroom setting. Children at a high risk for language difficulties appeared to profit more from the narrative instruction than from the embedded vocabulary instruction. More extensive research on this instructional program is warranted.

  17. A case study examining classroom instructional practices at a U.S. dental school.

    Science.gov (United States)

    Behar-Horenstein, Linda S; Mitchell, Gail S; Dolan, Teresa A

    2005-06-01

    A case study is used to illustrate how an evaluation strategy was used to assess classroom instructional practices following a multiyear institutional curriculum revision process. From January through April of 2003, twelve faculty in medicine and three faculty in dentistry who taught in the first- and second-year basic science courses within the dental curriculum participated in a qualitative study. The purpose was to use a formative evaluation process to assess the impact of the curriculum revision at the level of classroom instruction. The observations revealed that seventeen of the twenty classes observed were teacher-centered, passive, and lacked observable effort to help students understand the relationship of the lecture content to the oral health problems. Findings illustrate the importance of using formative evaluation as a mechanism to assess change efforts and how evidence-based study can be used to support initiatives directed toward assessing active student learning and problem solving. Raising faculty awareness about the importance of acquiring evidence-based educational skills, aligning instruction with course goals and objectives, formatively assessing teaching, and providing learning experiences that will actually be used in practice are essential to ensuring that active learning and critical thinking are demonstrated in the curriculum.

  18. Pedagogical Relationship in Secondary Social Science Classrooms

    Science.gov (United States)

    Girard, Brian James

    2010-01-01

    This study investigates two high school social science classrooms in order to better understand the pedagogical relationships among teachers, students, and disciplinary content, and how teachers can influence students' opportunities to learn disciplinary literacy. Drawing on conceptual resources from sociocultural theories of learning and…

  19. Using Infographics in the Science Classroom

    Science.gov (United States)

    Davidson, Rosemary

    2014-01-01

    As a chemistry teacher, Rosemary Davidson has found "infographics" (information graphics) successfully engage her students in science--not only in carrying out the research for classroom projects but also in presenting the results of their research to their peers. This article will help teachers integrate student-created infographics…

  20. The effect of science-technology-society issue instruction on the attitudes of female middle school students toward science

    Science.gov (United States)

    Mullinnix, Debra Lynn

    An assessment of the science education programs of the last thirty years reveals traditional science courses are producing student who have negative attitudes toward science, do not compete successfully in international science and mathematics competitions, are not scientifically literate, and are not interested in pursuing higher-level science courses. When the number of intellectually-capable females that fall into this group is considered, the picture is very disturbing. Berryman (1983) and Kahle (1985) have suggested the importance of attitude both, in terms of achievement in science and intention to pursue high-level science courses. Studies of attitudes toward science reveal that the decline in attitudes during grades four through eight was much more dramatic for females than for males. There exists a need, therefore, to explore alternative methods of teaching science, particularly in the middle school, that would increase scientific literacy, improve attitudes toward science, and encourage participation in higher-level science courses of female students. Yager (1996) has suggested that science-technology-society (STS) issue instruction does make significant changes in students' attitudes toward science, stimulates growth in science process skills, and increases concept mastery. The purpose of this study was to examine the effect STS issue instruction had on the attitudes of female middle school students toward science in comparison to female middle school students who experience traditional science instruction. Another purpose was to examine the effect science-technology-society issue instruction had on the attitudes of female middle school students in comparison to male middle school students. The pretests and the posttests were analyzed to examine differences in ten domains: enjoyment of science class; usefulness of information learned in science class; usefulness of science skills; feelings about science class in general; attitudes about what took place

  1. Designing Computer-Supported Complex Systems Curricula for the Next Generation Science Standards in High School Science Classrooms

    Directory of Open Access Journals (Sweden)

    Susan A. Yoon

    2016-12-01

    Full Text Available We present a curriculum and instruction framework for computer-supported teaching and learning about complex systems in high school science classrooms. This work responds to a need in K-12 science education research and practice for the articulation of design features for classroom instruction that can address the Next Generation Science Standards (NGSS recently launched in the USA. We outline the features of the framework, including curricular relevance, cognitively rich pedagogies, computational tools for teaching and learning, and the development of content expertise, and provide examples of how the framework is translated into practice. We follow this up with evidence from a preliminary study conducted with 10 teachers and 361 students, aimed at understanding the extent to which students learned from the activities. Results demonstrated gains in students’ complex systems understanding and biology content knowledge. In interviews, students identified influences of various aspects of the curriculum and instruction framework on their learning.

  2. Elementary science teachers' integration of engineering design into science instruction: results from a randomised controlled trial

    Science.gov (United States)

    Maeng, Jennifer L.; Whitworth, Brooke A.; Gonczi, Amanda L.; Navy, Shannon L.; Wheeler, Lindsay B.

    2017-07-01

    This randomised controlled trial used a mixed-methods approach to investigate the frequency and how elementary teachers integrated engineering design (ED) principles into their science instruction following professional development (PD). The ED components of the PD were aligned with Cunningham and Carlsen's [(2014). Teaching engineering practices. Journal of Science Teacher Education, 25, 197-210] guidelines for ED PD and promoted inclusion of ED within science teaching. The treatment group included 219 teachers from 83 schools. Participants in the control group included 145 teachers from 60 schools in a mid-Atlantic state. Data sources, including lesson overviews and videotaped classroom observations, were analysed quantitatively to determine the frequency of ED integration and qualitatively to describe how teachers incorporated ED into instruction after attending the PD. Results indicated more participants who attended the PD (55%) incorporated ED into instruction compared with the control participants (24%), χ2(1, n = 401) = 33.225, p .05) through ED lessons. In ED lessons, students typically conducted research and created and tested initial designs. The results suggest the PD supported teachers in implementing ED into their science instruction and support the efficacy of using Cunningham and Carlsen's (2014) guidelines to inform ED PD design.

  3. Science Learning outside the Classroom

    Science.gov (United States)

    Robelen, Erik W.; Sparks, Sarah D.; Cavanagh, Sean; Ash, Katie; Deily, Mary-Ellen Phelps; Adams, Caralee

    2011-01-01

    As concern mounts that U.S. students lack sufficient understanding of science and related fields, it has become increasingly clear that schools can't tackle the challenge alone. This special report explores the field often called "informal science education," which is gaining broader recognition for its role in helping young people…

  4. Avatar in the Science Classroom

    Science.gov (United States)

    Siegel, Deborah

    2011-01-01

    Students love pop culture, which is often full of science and scientific concepts that may or may not be correctly presented. When teachers tie a science project to a movie, TV series, or song, they help guide students toward correct interpretations. And, more important, teachers stimulate their creativity by tapping into their culture. This…

  5. Science in the Bilingual Classroom

    Science.gov (United States)

    Gutierrez, Patricia A.

    1996-07-01

    One in seven children in the United States speaks a language other than English at home. Their difficulties with English may seem like a barrier to science education. But science education can be the impetus they need to overcome their difficulties with English. With sidebars by Isabel Hawkins and George Musser.

  6. Interdisciplinary Science in the Classroom

    Science.gov (United States)

    French, L. M.; Lopresti, V. C.; Papali, P.

    1993-05-01

    The practice of science is by its very nature interdisciplinary. Most school curricula, however, present science as a "layer cake" with one year each of biology, chemistry, earth science, and physics. Students are too often left with a fragmented, disjointed view of the sciences as separate and distinct bodies of information. The continuity of scientific thought and the importance of major ideas such as energy, rates of change, and the nature of matter are not seen. We describe two efforts to integrate the sciences in a middle school curriculum and in an introductory science course for prospective elementary teachers. Introductory physical science for eighth graders at the Park School has three major units: "Observing the Sky", "The Nature of Matter", and "The Nature of Light". The course moves from simple naked-eye observations of the Sun and Moon to an understanding of the apparent motions of the Sun and of the Earth's seasons. In "The Nature of Matter", students construct operational definitions of characteristic properties of matter such as density, boiling point, solubility, and flame color. They design and perform many experiments and conclude by separating a mixture of liquids and solids by techniques such as distillation and fractional crystallization. In studying flame tests, students learn that different materials have different color "signatures" and that the differences can be quantified with a spectroscope. They then observe solar absorption lines with their spectroscopes and discover which elements are present in the Sun. Teachers of young children are potentially some of the most powerful allies in increasing our country's scientific literacy, yet most remain at best uneasy about science. At Wheelock College we are designing a course to be called "Introduction to Natural Science" for elementary education majors. We will address special needs of many in this population, including science anxiety and poor preparation in mathematics. A broad conceptual

  7. Relationship between teacher preparedness and inquiry-based instructional practices to students' science achievement: Evidence from TIMSS 2007

    Science.gov (United States)

    Martin, Lynn A.

    The purpose of this study was to examine the relationship between teachers' self-reported preparedness for teaching science content and their instructional practices to the science achievement of eighth grade science students in the United States as demonstrated by TIMSS 2007. Six hundred eighty-seven eighth grade science teachers in the United States representing 7,377 students responded to the TIMSS 2007 questionnaire about their instructional preparedness and their instructional practices. Quantitative data were reported. Through correlation analysis, the researcher found statistically significant positive relationships emerge between eighth grade science teachers' main area of study and their self-reported beliefs about their preparedness to teach that same content area. Another correlation analysis found a statistically significant negative relationship existed between teachers' self-reported use of inquiry-based instruction and preparedness to teach chemistry, physics and earth science. Another correlation analysis discovered a statistically significant positive relationship existed between physics preparedness and student science achievement. Finally, a correlation analysis found a statistically significant positive relationship existed between science teachers' self-reported implementation of inquiry-based instructional practices and student achievement. The data findings support the conclusion that teachers who have feelings of preparedness to teach science content and implement more inquiry-based instruction and less didactic instruction produce high achieving science students. As science teachers obtain the appropriate knowledge in science content and pedagogy, science teachers will feel prepared and will implement inquiry-based instruction in science classrooms.

  8. Local and Long Distance Computer Networking for Science Classrooms. Technical Report No. 43.

    Science.gov (United States)

    Newman, Denis

    This report describes Earth Lab, a project which is demonstrating new ways of using computers for upper-elementary and middle-school science instruction, and finding ways to integrate local-area and telecommunications networks. The discussion covers software, classroom activities, formative research on communications networks, and integration of…

  9. Development of innovative classroom instruction material for enhancing creative teaching and learning nuclear topics: A proposal

    International Nuclear Information System (INIS)

    Puse, Judeza S.; Awata, Takaaki; Atobe, Kozo

    2005-01-01

    The role of education all over the world is becoming more and more significant and requires an in depth study since the life of the people is advanced, expanded and complicated. Educators are once again asked to address problems which have arisen within their own society. Thus, the search for ways to improve quality of education is global especially in line with nuclear science and technology. One area of focus is that managing and promoting learning inside the classroom, how teacher's utilized instructional materials were such an issue. Indeed, qualifications and resources are not the only factors that influence teachers' effectiveness, equally important are teachers' motivation, commitment, resourcefulness, innovativeness and creativeness in dealing with instructional materials. Lack of these things will produce poor attendance and unprofessional attitudes towards students. This paper aims to present a proposal on the use of innovative teaching device from the sample photographs as a result of the experiment taken at Kyoto University Research Reactor Institute (KURRI) where samples were treated with gamma rays from a radioactive source 60 Co and lately exposed to photographic giving rise to understanding of photons emitted by radioactive material in a form of electromagnetic waves and later converted into visible light in a more authentic and simplified manners. As a consequent, this proposal was made to enhance teaching and encourage science teachers to exert great effort to develop instructional materials specifically in this area that requires the concretization of concepts which could not be detected by human senses. (author)

  10. Science education beyond the classroom

    International Nuclear Information System (INIS)

    Harle, E.J.; Van Natta, D.; Powell, M.L.

    1993-01-01

    The Yucca Mountain Site Characterization Project (YMP) sponsors a variety of classroom-oriented projects and activities for teachers who request them. Also available, though, are extra-curricular programs. One notably successful program is a workshop designed to award girl and boy scouts with geology and atomic energy merit badges. There was a tremendous response to this workshop--it attracted 450 requests within the first week of its announcement. Since October 1991, the YMP has sponsored five such girl scout workshops and four boy scout workshops, attended by a total of 400 scouts. These workshops demonstrate that highly technical subjects can be taught simply through hands-on activities. The idea behind them is not to teach scouts what to think but, rather, how to think. For adults meanwhile, the YMP offers a monthly lecture series, with each lecture averaging 45 minutes in length with 35 people in attendance. These lectures center on such subjects as volcanoes, earthquakes and hydrology. They are usually delivered by YMP technical staff members, who have learned that complex technical issues are best addressed in a small-group format

  11. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    Science.gov (United States)

    Zhai, Junqing; Tan, Aik-Ling

    2015-01-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers…

  12. Multilevel Effects of Student and Classroom Factors on Elementary Science Achievement in Five Countries

    Science.gov (United States)

    Kaya, Sibel; Rice, Diana C.

    2010-07-01

    This study examined the effects of individual student factors and classroom factors on elementary science achievement within and across five countries. The student-level factors included gender, self-confidence in science and home resources. The classroom-level factors included teacher characteristics, instructional variables and classroom composition. Results for the USA and four other countries, Singapore, Japan, Australia and Scotland, were reported. Multilevel effects were examined through Hierarchical Linear Modelling, using the Trends in International Mathematics and Science Study 2003 fourth grade dataset. Overall, the results showed that selected student background characteristics were consistently related to elementary science achievement in countries investigated. At the student level, higher levels of home resources and self-confidence and at the classroom level, higher levels of class mean home resources yielded higher science scores on the TIMSS 2003. In general, teacher and instructional variables were minimally related to science achievement. There was evidence of positive effects of teacher support in the USA and Singapore. The emphasis on science inquiry was positively related to science achievement in Singapore and negatively related in the USA and Australia. Recommendations for practice and policy were discussed.

  13. Bringing Inquiry Science to K-5 Classrooms

    Science.gov (United States)

    Schachtel, Paula L.; Messina, D. L.; McDermott, L. C.

    2006-12-01

    As a science coach in the Seattle School District, I am responsible for helping other elementary teachers teach science. For several years, I have been participating in a program that consists of intensive NSF Summer Institutes and an ongoing academic-year Continuation Course. Teachers in this program work through modules in Physics by Inquiry, a research-based curriculum developed by the Physics Education Group at the University of Washington.1 I will discuss how this type of professional development has deepened my understanding of topics in physical science, helped me to teach science by inquiry to my own students, and enabled me to assist my colleagues in implementing inquiry science in their K-5 classrooms. Sponsored by Lillian C. McDermott. 1. A research-based curriculum developed by L.C. McDermott and the Physics Education Group at the University of Washington, Physics by Inquiry, New York, NY, John Wiley & Sons, Inc. (1996.)

  14. Development of an Instructional Quality Assurance Model in Nursing Science

    Science.gov (United States)

    Ajpru, Haruthai; Pasiphol, Shotiga; Wongwanich, Suwimon

    2011-01-01

    The purpose of this study was to develop an instructional quality assurance model in nursing science. The study was divided into 3 phases; (1) to study the information for instructional quality assurance model development (2) to develop an instructional quality assurance model in nursing science and (3) to audit and the assessment of the developed…

  15. The construction of different classroom norms during Peer Instruction: Students perceive differences

    Directory of Open Access Journals (Sweden)

    Chandra Turpen

    2010-11-01

    Full Text Available This paper summarizes variations in instructors’ implementation practices during Peer Instruction (PI and shows how these differences in practices shape different norms of classroom interaction. We describe variations in classroom norms along three dimensions of classroom culture that are integral to Peer Instruction, emphasis on: (1 faculty-student collaboration, (2 student-student collaboration, and (3 sense-making vs answer-making. Based on interpretations by an observing researcher, we place three different PI classrooms along a continuum representing a set of possible norms. We then check these interpretations against students’ perceptions of these environments from surveys collected at the end of the term. We find significant correspondence between the researchers’ interpretations and students’ perceptions of Peer Instruction in these environments. We find that variation in faculty practices can set up what students perceive as discernibly different norms. For interested instructors, concrete classroom practices are described that appear to encourage or discourage these norms.

  16. Pre-Service Teachers: An Analysis of Reading Instruction in High Needs Districts Dual Language Classrooms

    Directory of Open Access Journals (Sweden)

    Michael Whitacre

    2013-01-01

    Full Text Available Pre-service teachers need opportunities to apply theory and connect to best practices as they teach in classroom settings be it, whole or small group. For many pre-service teachers often times their experience is limited to simply watching instruction or working with small groups of students (Pryor & Kuhn, 2004. The student teaching experience is a critical component of the teacher preparation program. Through the use of the English Language Learner Classroom Observation Instrument (ELLCOI, and researcher observation the hope is that these will aid in bringing to light the instructional activities used by pre-service teachers during reading instruction with ELLs. This study explores how pre-service bilingual teachers connect theory into practice by examining their instruction in the following categories: Instructional Practices, Interactive Teaching, English-Language Development, and Content Specific to Reading as listed in The English Language Learner Classroom Observation Instrument (ELLCOI developed by Haager, Gersten, Baker, and Graves (2003. To capture these instructional events video tape recordings of eight South Texas pre-service teachers were taken during a reading language arts lesson in order to observe instruction in high need districts’ dual language/bilingual classrooms. Data were compiled to capture the nature and quality of instruction on key essential elements, as well as reading instructional practices specific to the teaching/learning process in the dual language classroom. The findings portray the results of the ELLCOI with bilingual/ESL pre- service teachers and how they make sense of their instructional practices as a means to instruction in one-way dual language public school classrooms.

  17. Conceptual question response times in Peer Instruction classrooms

    Directory of Open Access Journals (Sweden)

    Kelly Miller

    2014-08-01

    Full Text Available Classroom response systems are widely used in interactive teaching environments as a way to engage students by asking them questions. Previous research on the time taken by students to respond to conceptual questions has yielded insights on how students think and change conceptions. We measure the amount of time students take to respond to in-class, conceptual questions [ConcepTests (CTs] in two introductory physics courses taught using Peer Instruction and use item response theory to determine the difficulty of the CTs. We examine response time differences between correct and incorrect answers both before and after the peer discussion for CTs of varying difficulty. We also determine the relationship between response time and student performance on a standardized test of incoming physics knowledge, precourse self-efficacy, and gender. Our data reveal three results of interest. First, response time for correct answers is significantly faster than for incorrect answers, both before and after peer discussion, especially for easy CTs. Second, students with greater incoming physics knowledge and higher self-efficacy respond faster in both rounds. Third, there is no gender difference in response rate after controlling for incoming physics knowledge scores, although males register significantly more attempts before committing to a final answer than do female students. These results provide insight into effective CT pacing during Peer Instruction. In particular, in order to maintain a pace that keeps everyone engaged, students should not be given too much time to respond. When around 80% of the answers are in, the ratio of correct to incorrect responses rapidly approaches levels indicating random guessing and instructors should close the poll.

  18. Teaching Planetary Sciences in Bilingual Classrooms

    Science.gov (United States)

    Lebofsky, L. A.; Lebofsky, N. R.

    1993-05-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. It also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80% feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K--3 and 38 minutes per day in 4--6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. Therefore in order to teach earth/space science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. Tucson has another, but not unique, problem. The largest public school district, the Tucson Unified School District (TUSD), provides a neighborhood school system enhanced with magnet, bilingual and special needs schools for a school population of 57,000 students that is 4.1% Native American, 6.0% Black, and 36.0% Hispanic (1991). This makes TUSD and the other school districts in and around Tucson ideal for a program that reaches students of diverse ethnic backgrounds. However, few space sciences materials exist in Spanish; most materials could not be used effectively in the classroom. To address this issue, we have translated NASA materials into Spanish and are conducting a series of workshops for bilingual classroom teachers. We will discuss in detail our bilingual classroom workshops

  19. The Impact of Data-Based Science Instruction on Standardized Test Performance

    Science.gov (United States)

    Herrington, Tia W.

    Increased teacher accountability efforts have resulted in the use of data to improve student achievement. This study addressed teachers' inconsistent use of data-driven instruction in middle school science. Evidence of the impact of data-based instruction on student achievement and school and district practices has been well documented by researchers. In science, less information has been available on teachers' use of data for classroom instruction. Drawing on data-driven decision making theory, the purpose of this study was to examine whether data-based instruction impacted performance on the science Criterion Referenced Competency Test (CRCT) and to explore the factors that impeded its use by a purposeful sample of 12 science teachers at a data-driven school. The research questions addressed in this study included understanding: (a) the association between student performance on the science portion of the CRCT and data-driven instruction professional development, (b) middle school science teachers' perception of the usefulness of data, and (c) the factors that hindered the use of data for science instruction. This study employed a mixed methods sequential explanatory design. Data collected included 8th grade CRCT data, survey responses, and individual teacher interviews. A chi-square test revealed no improvement in the CRCT scores following the implementation of professional development on data-driven instruction (chi 2 (1) = .183, p = .67). Results from surveys and interviews revealed that teachers used data to inform their instruction, indicating time as the major hindrance to their use. Implications for social change include the development of lesson plans that will empower science teachers to deliver data-based instruction and students to achieve identified academic goals.

  20. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    Science.gov (United States)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle school science classrooms, and the research question that guided the present study is: How can we characterize Turkish PSTs' SSI-based teaching practices in middle school science classrooms (ages 11-14)? Sample: In order to address the research question of this study, we explored 10 Turkish PSTs' SSI-based teaching practices in middle school science classrooms. A purposeful sampling strategy was used, thus, PSTs were specifically chosen because they were ideal candidates to teach SSI and to integrate SSI into the science curricula since they were seniors in the science education program who had to take the field experience courses. Design and method: The participants' SSI teaching practices were characterized in light of qualitative research approach. SSI-based teaching practices were analyzed, and the transcripts of all videotape recordings were coded by two researchers. Results: The current data analysis describes Turkish PSTs' SSI-based teaching practices under five main categories: media, argumentation, SSI selection and presentation, risk analysis, and moral perspective. Most of PSTs did not use media resources in their lesson and none of them considered moral perspective in their teaching. While the risk analyses were very simple and superficial, the arguments developed in the classrooms generally remained at a simple level. PSTs did not think SSI as a central topic and discussed these issues in a very limited time and at the end of the class period. Conclusions: The findings of this study manifest the need of the reforms in science education programs. The present study provides evidence that moral, media

  1. Ethnographic case study of a high school science classroom: Strategies in stem education

    Science.gov (United States)

    Sohn, Lucinda N.

    Historically, science education research has promoted that learning science occurs through direct physical experiences. In recent years, the need for best practices and student motivation have been highlighted in STEM research findings. In response to the instructional challenges in STEM education, the National Research Council has provided guidelines for improving STEM literacy through best practices in science and mathematics instruction. A baseline qualitative ethnographic case study of the effect of instructional practices on a science classroom was an opportunity to understand how a teacher and students work together to learn in an International Baccalaureate life science course. This study was approached through an interpretivist lens with the assumption that learning science is socially constructed. The following were the research questions: 1.) How does the teacher implement science instruction strategies in the classroom? 2.) In what ways are students engaged in the classroom? 3.) How are science concepts communicated in the classroom? The total 35 participants included a high school science teacher and two classes of 11th grade students in the International Baccalaureate program. Using exploratory qualitative methods of research, data was collected from field notes and transcripts from a series of classroom observations, a single one-on-one interview with the teacher and two focus groups with students from each of the two classes. Three themes emerged from text coded using initial and process coding with the computer assisted qualitative data analysis software, MAXQDA. The themes were: 1.) Physical Forms of Communication Play Key Role in Instructional Strategy, 2.) Science Learning Occurs in Casual Environment Full of Distractions, and 3.) Teacher Persona Plays Vital Role in Classroom Culture. The findings provided insight into the teacher's role on students' motivation to learn science. The recommendation for STEM programs and new curriculum is a

  2. Biological design in science classrooms

    Science.gov (United States)

    Scott, Eugenie C.; Matzke, Nicholas J.

    2007-01-01

    Although evolutionary biology is replete with explanations for complex biological structures, scientists concerned about evolution education have been forced to confront “intelligent design” (ID), which rejects a natural origin for biological complexity. The content of ID is a subset of the claims made by the older “creation science” movement. Both creationist views contend that highly complex biological adaptations and even organisms categorically cannot result from natural causes but require a supernatural creative agent. Historically, ID arose from efforts to produce a form of creationism that would be less vulnerable to legal challenges and that would not overtly rely upon biblical literalism. Scientists do not use ID to explain nature, but because it has support from outside the scientific community, ID is nonetheless contributing substantially to a long-standing assault on the integrity of science education. PMID:17494747

  3. Using the ICOT Instrument to Improve Instructional Technology Usage in the ABE Classroom

    Science.gov (United States)

    Lentz, Brannon W.

    2011-01-01

    The International Society for Technology (ISTE) in Education promotes the use of a specific tool--the ISTE Classroom Observation Tool (ICOT)--to measure and improve the use of instructional technologies in Adult Basic Education (ABE) classrooms. The purpose of this article is to describe an application process for the use of the ICOT instrument…

  4. Effective Classroom Management and Instruction: An Exploration of Models. Executive Summary of Final Report.

    Science.gov (United States)

    Evertson, Carolyn M.; And Others

    A summary is presented of the final report, "Effective Classroom Management and Instruction: An Exploration of Models." The final report presents a set of linked investigations of the effects of training teachers in effective classroom management practices in a series of school-based workshops. Four purposes were addressed by the study: (1) to…

  5. A Classroom Observational Study of Qatar's Independent Schools: Instruction and School Reform

    Science.gov (United States)

    Palmer, Douglas J.; Sadiq, Hissa M.; Lynch, Patricia; Parker, Dawn; Viruru, Radhika; Knight, Stephanie; Waxman, Hersh; Alford, Beverly; Brown, Danielle Bairrington; Rollins, Kayla; Stillisano, Jacqueline; Abu-Tineh, Abdullah M. Hamdan; Nasser, Ramzi; Allen, Nancy; Al-Binali, Hessa; Ellili, Maha; Al-Kateeb, Haithem; Al-Kubaisi, Huda

    2016-01-01

    Qatar initiated a K-12 national educational reform in 2001. However, there is limited information on the instructional practices of the teachers in the reform schools. This project was an observational study of classrooms with a stratified random sample of the first six cohorts of reform schools. Specifically, 156 classrooms were observed in 29…

  6. Virtual Classroom Instruction and Academic Performance of Educational Technology Students in Distance Education, Enugu State

    Science.gov (United States)

    Akpan, Sylvester J.; Etim, Paulinus J.; Udom, Stella Ogechi

    2016-01-01

    The virtual classroom and distance education have created new teaching pedagogy. This study was carried out to investigate Virtual Classroom Instruction on Academic Performance of Educational Technology Students in Distance Education, Enugu State. The population for this study was limited to the Students in National Open University, Enugu study…

  7. A narrative study of novice elementary teachers' perceptions of science instruction

    Science.gov (United States)

    Harrell, Roberta

    It is hoped that, once implemented, the Next Generation Science Standards (NGSS) will engage students more deeply in science learning and build science knowledge sequentially beginning in Kindergarten (NRC, 2013). Early instruction is encouraged but must be delivered by qualified elementary teachers who have both the science content knowledge and the necessary instructional skills to teach science effectively to young children (Ejiwale, 2012, Spencer, Vogel, 2009, Walker, 2011). The purpose of this research study is to gain insight into novice elementary teachers' perceptions of science instruction. This research suggests that infusion of constructivist teaching in the elementary classroom is beneficial to the teacher's instruction of science concepts to elementary students. Constructivism is theory that learning is centered on the learner constructing new ideas or concepts built upon their current/past knowledge (Bruner, 1966). Based on this theory, it is recommended that the instructor should try to encourage students to discover principles independently; essentially the instructor presents the problem and lets students go (Good & Brophy, 2004). Discovery learning, hands-on, experimental, collaborative, and project-based learning are all approaches that use constructivist principles. The NGSS are based on constructivist principles. This narrative study provides insight into novice elementary teachers' perceptions of science instruction considered through the lens of Constructivist Theory (Bruner, 1960).

  8. A Cultural Study of a Science Classroom and Graphing Calculator-based Technology

    OpenAIRE

    Casey, Dennis Alan

    2001-01-01

    Social, political, and technological events of the past two decades have had considerable bearing on science education. While sociological studies of scientists at work have seriously questioned traditional histories of science, national and state educational systemic reform initiatives have been enacted, stressing standards and accountability. Recently, powerful instructional technologies have become part of the landscape of the classroom. One example, graphing calculator-based technology...

  9. College science teachers' views of classroom inquiry

    Science.gov (United States)

    Brown, Patrick L.; Abell, Sandra K.; Demir, Abdulkadir; Schmidt, Francis J.

    2006-09-01

    The purposes of this study were to (a) gain an understanding of the views of inquiry held by faculty members involved in undergraduate science teaching and (b) describe the challenges, constraints, and opportunities that they perceived in designing and teaching inquiry-based laboratories. Participants included 19 college professors, representing both life and physical science disciplines, from (a) 2-year community college, (b) small, private nonprofit liberal arts college, (c) public master's granting university, and (d) public doctoral/research extensive university. We collected data through semistructured interviews and applied an iterative data analysis process. College science faculty members held a full and open inquiry view, seeing classroom inquiry as time consuming, unstructured, and student directed. They believed that inquiry was more appropriate for upper level science majors than for introductory or nonscience majors. Although faculty members valued inquiry, they perceived limitations of time, class size, student motivation, and student ability. These limitations, coupled with their view of inquiry, constrained them from implementing inquiry-based laboratories. Our proposed inquiry continuum represents a broader view of inquiry that recognizes the interaction between two dimensions of inquiry: (a) the degree of inquiry and (b) the level of student directedness, and provides for a range of inquiry-based classroom activities.

  10. Students' Perceptions and Emotions Toward Learning in a Flipped General Science Classroom

    Science.gov (United States)

    Jeong, Jin Su; González-Gómez, David; Cañada-Cañada, Florentina

    2016-10-01

    Recently, the inverted instruction methodologies are gaining attentions in higher educations by claiming that flipping the classroom engages more effectively students with the learning process. Besides, students' perceptions and emotions involved in their learning process must be assessed in order to gauge the usability of this relatively new instruction methodology, since it is vital in the educational formation. For this reason, this study intends to evaluate the students' perceptions and emotions when a flipped classroom setting is used as instruction methodology. This research was conducted in a general science course, sophomore of the Primary Education bachelor degree in the Training Teaching School of the University of Extremadura (Spain). The results show that the students have the overall positive perceptions to a flipped classroom setting. Particularly, over 80 % of them considered that the course was a valuable learning experience. They also found this course more interactive and were willing to have more courses following a flipped model. According to the students' emotions toward a flipped classroom course, the highest scores were given to the positive emotions, being fun and enthusiasm along with keyword frequency test. Then, the lowest scores were corresponded to negative emotions, being boredom and fear. Therefore, the students attending to a flipped course demonstrated to have more positive and less negative emotions. The results obtained in this study allow drawing a promising tendency about the students' perceptions and emotions toward the flipped classroom methodology and will contribute to fully frame this relatively new instruction methodology.

  11. A Study of Differentiated Instruction Based on the SIOP Model in Georgia Classrooms

    Science.gov (United States)

    Tomlinson, Sherry Marie

    2013-01-01

    This mixed methods study investigated the teachers' concerns of the sheltered instruction observation protocol (SIOP) model (Echevarria, Short and Vogt, 2008) as a means to differentiate instruction for LEP students in public school classrooms. This study took place in one central Georgia school district with a sample of 16 teachers who…

  12. Behold the Trojan Horse: Instructional vs. Productivity Computing in the Classroom.

    Science.gov (United States)

    Loop, Liza

    This background paper for a symposium on the school of the future reviews the current instructional applications of computers in the classroom (the computer as a means or the subject of instruction), and suggests strategies that administrators might use to move toward viewing the computer as a productivity tool for students, i.e., its use for word…

  13. From the Laboratory to the Classroom: The Effects of Equivalence-Based Instruction on Neuroanatomy Competencies

    Science.gov (United States)

    Fienup, Daniel M.; Mylan, Sanaa E.; Brodsky, Julia; Pytte, Carolyn

    2016-01-01

    Equivalence-based instruction (EBI) has been used to successfully teach college-level concepts in research laboratories, but few studies have examined the results of such instruction on classroom performance. The current study answered a basic question about the ordering of training stimuli as well as an applied question regarding the effects of…

  14. SERVQUAL-Based Measurement of Student Satisfaction with Classroom Instructional Technologies: A 2001 Update.

    Science.gov (United States)

    Kleen, Betty; Shell, L. Wayne

    The researchers, using a variation of the SERVQUAL instrument, repeated a 1999 study to measure students' satisfaction with instructional technology tools used in their classrooms. Student satisfaction varied by course discipline, by instructional technology, by anticipated grade, and by frequency of use. Female respondents were less satisfied…

  15. Enhancing Literacy Practices in Science Classrooms through a Professional Development Program for Canadian Minority-Language Teachers

    Science.gov (United States)

    Rivard, Léonard P.; Gueye, Ndeye R.

    2016-01-01

    'Literacy in the Science Classroom Project" was a three-year professional development (PD) program supporting minority-language secondary teachers' use of effective language-based instructional strategies for teaching science. Our primary objective was to determine how teacher beliefs and practices changed over time and how these were enacted…

  16. Toward Understanding the Nature of a Partnership between an Elementary Classroom Teacher and an Informal Science Educator

    Science.gov (United States)

    Weiland, Ingrid S.; Akerson, Valarie L.

    2013-01-01

    This study explored the nature of the relationship between a fifth-grade teacher and an informal science educator as they planned and implemented a life science unit in the classroom, and sought to define this relationship in order to gain insight into the roles of each educator. In addition, student learning as a result of instruction was…

  17. Experimental Comparison of Inquiry and Direct Instruction in Science

    Science.gov (United States)

    Cobern, William W.; Schuster, David; Adams, Betty; Applegate, Brooks; Skjold, Brandy; Undreiu, Adriana; Loving, Cathleen C.; Gobert, Janice D.

    2010-01-01

    There are continuing educational and political debates about "inquiry" versus "direct" teaching of science. Traditional science instruction has been largely direct but in the US, recent national and state science education standards advocate inquiry throughout K-12 education. While inquiry-based instruction has the advantage of modelling aspects…

  18. Mediated Instruction and Redundancy Remediation in Sciences in ...

    African Journals Online (AJOL)

    The data were analyzed using t-test statistics. Data analysis revealed that use of mediated instruction significantly removed redundancy for science students also the use of mediated instruction influenced academic achievement of science students in secondary schools. Some of the recommendations include that science ...

  19. Chemistry Teachers' Perceived Benefits and Challenges of Inquiry-Based Instruction in Inclusive Chemistry Classrooms

    Science.gov (United States)

    Mumba, F.; Banda, A.; Chabalengula, V. M.

    2015-01-01

    Studies on inquiry-based instruction in inclusive science teaching have mainly focused on elementary and middle school levels. Little is known about inquiry-based instruction in high school inclusive science classes. Yet, such classes have become the norm in high schools, fulfilling the instructional needs of students with mild disabilities. This…

  20. Development and validation of science, technology, engineering and mathematics (STEM) based instructional material

    Science.gov (United States)

    Gustiani, Ineu; Widodo, Ari; Suwarma, Irma Rahma

    2017-05-01

    This study is intended to examine the development and validation of simple machines instructional material that developed based on Science, Technology, Engineering and Mathematics (STEM) framework that provides guidance to help students learn and practice for real life and enable individuals to use knowledge and skills they need to be an informed citizen. Sample of this study consist of one class of 8th grader at a junior secondary school in Bandung, Indonesia. To measure student learning, a pre-test and post-test were given before and after implementation of the STEM based instructional material. In addition, a questionnaire of readability was given to examine the clarity and difficulty level of each page of instructional material. A questionnaire of students' response towards instructional material given to students and teachers at the end of instructional material reading session to measure layout aspects, content aspects and utility aspects of instructional material for being used in the junior secondary school classroom setting. The results show that readability aspect and students' response towards STEM based instructional material of STEM based instructional material is categorized as very high. Pretest and posttest responses revealed that students retained significant amounts information upon completion of the STEM instructional material. Student overall learning gain is 0.67 which is categorized as moderate. In summary, STEM based instructional material that was developed is valid enough to be used as educational materials necessary for conducting effective STEM education.

  1. An Investigation of Turkish Middle School Science Teachers' Pedagogical Orientations Towards Direct and Inquiry Instructional Approaches

    Science.gov (United States)

    Sahingoz, Selcuk

    research found that several contextual factors contributed to teachers' instructional practices including internal and external issues such as school environment, limited resources, large class sizes, standardized test pressure, and limited accessibility to professional development. The findings provide insight on the readiness of middle school teachers to implement the Turkish Curriculum Framework, specifically, teacher readiness to put science inquiry instructional approaches into actual classroom practice. Given that new Turkish policy calls for greater inquiry instruction, this study can help inform teacher development efforts directed at promoting science inquiry instruction.

  2. Secondary science teachers' view toward and classroom translation of sustained professional development

    Science.gov (United States)

    Lewis, Elizabeth Blake

    This study concerns the phenomenon of secondary science teacher learning and enacting instructional strategies learned at the Communication in Science Inquiry Project (CISIP) teacher professional development events, as well as teacher perception of, and relationship to, this year-long professional development program. The CISIP program teaches science teachers how to build scientific classroom discourse communities with their students. Some of the science teachers were previous participants in the professional development, and acted as mentor teachers. The research design employed an integrated conceptual framework of situated learning theory with an analytical lens of teachers' professional, institutional and affinity, identities. A multi-method approach was used to generate data. Throughout the 2007-2008 academic year, the teachers' fidelity to the professional development model was measured using a classroom observation instrument aligned with the professional development model. From these observation data a longitudinal model, using hierarchical linear modeling, was constructed. In addition, surveys and interview data were used to construct both whole group and case studies of two high school science teachers who taught biology at the same school. The results indicated that there was a significant difference between previous and new participants; specifically, the longer teachers had participated in the professional development, and adopted a mentorship role, the greater their fidelity of classroom instruction to the CISIP model. Additionally, the case study teacher who developed a CISIP model-aligned affinity identity implemented more of the instructional strategies than the teacher who maintained his school-based institutional identity.

  3. The PISCES Project: How Teacher-Scientist Partners can Enhance Elementary Science Instruction

    Science.gov (United States)

    Reif, C.; Oechel, W.

    2003-12-01

    , Mexico where there are SDSU climate research stations. San Diego and Alaska scientists travel to Barrow twice a year to participate in an intense, month-long science instruction partnership. PISCES collects a variety of data including student work, science attitude surveys, interviews with students and teachers, video, as well as science content knowledge. The students find themselves enjoying science and are deeply impacted by the presence of an actual scientist in their classroom. As PISCES enters its fifth year, it is evident that the combination of continuous support inside and outside of the classroom is successful in developing teacher engagement in science instruction.

  4. Revisiting Classroom Practices in East Asian Countries: Examination of Within-Country Variations and Effects of Classroom Instruction

    Science.gov (United States)

    Kim, Yoonjeon

    2018-01-01

    Background/Context: East Asian schools receive much attention for the comparatively high achievement of their students. To account for this success, scholars and commentators advance broad claims about the rote character of instruction or the complexity of classroom practice, typically generalizing to an entire nation. Yet little is known about…

  5. Teaching Ocean Sciences in the 21st Century Classroom: Lab to Classroom Videoconferencing

    Science.gov (United States)

    Peach, C. L.; Gerwick, W.; Gerwick, L.; Senise, M.; Jones, C. S.; Malloy, K.; Jones, A.; Trentacoste, E.; Nunnery, J.; Mendibles, T.; Tayco, D.; Justice, L.; Deutscher, R.

    2010-12-01

    Teaching Ocean Science in the 21st Century Classroom (TOST) is a Center for Ocean Sciences Education Excellence (COSEE CA) initiative aimed at developing and disseminating technology-based instructional strategies, tools and ocean science resources for both formal and informal science education. San Diego Unified School District (SDUSD), Scripps Institution of Oceanography (SIO) and the Lawrence Hall of Science (LHS) have established a proving ground for TOST activities and for development of effective, sustainable solutions for researchers seeking to fulfill NSF and other funding agency broader impact requirements. Lab to Classroom Videoconferencing: Advances in Information and Communications Technology (ICT) are making it easier to connect students and researchers using simple online tools that allow them to interact in novel ways. COSEE CA is experimenting with these tools and approaches to identify effective practices for providing students with insight into the research process and close connections to researchers and their laboratory activities. At the same time researchers, including graduate students, are learning effective communication skills and how to align their presentations to specific classroom needs - all from the comfort of their own lab. The lab to classroom videoconferencing described here is an ongoing partnership between the Gerwick marine biomedical research lab and a group of three life science teachers (7th grade) at Pershing Middle School (SDUSD) that started in 2007. Over the last 5 years, the Pershing science teachers have created an intensive, semester-long unit focused on drug discovery. Capitalizing on the teacher team’s well-developed unit of study and the overlap with leading-edge research at SIO, COSEE CA created the videoconferencing program as a broader impact solution for the lab. The team has refined the program over 3 iterations, experimenting with structuring the activities to most effectively reach the students. In the

  6. Sample classroom activities based on climate science

    Science.gov (United States)

    Miler, T.

    2009-09-01

    We present several activities developed for the middle school education based on a climate science. The first activity was designed to teach about the ocean acidification. A simple experiment can prove that absorption of CO2 in water increases its acidity. A liquid pH indicator is suitable for the demonstration in a classroom. The second activity uses data containing coordinates of a hurricane position. Pupils draw a path of a hurricane eye in a tracking chart (map of the Atlantic ocean). They calculate an average speed of the hurricane, investigate its direction and intensity development. The third activity uses pictures of the Arctic ocean on September when ice extend is usually the lowest. Students measure the ice extend for several years using a square grid printed on a plastic foil. Then they plot a graph and discuss the results. All these activities can be used to improve the natural science education and increase the climate change literacy.

  7. On the Value of Computer-aided Instruction: Thoughts after Teaching Sales Writing in a Computer Classroom.

    Science.gov (United States)

    Hagge, John

    1986-01-01

    Focuses on problems encountered with computer-aided writing instruction. Discusses conflicts caused by the computer classroom concept, some general paradoxes and ethical implications of computer-aided instruction. (EL)

  8. Teaching science to English Language Learners: Instructional approaches of high school teachers

    Science.gov (United States)

    Frank, Betty-Vinca N.

    Students who are English Language Learners (ELLs) form the fastest growing segment of the American school population. Prompted by the call for scientific literacy for all citizens, science educators too have investigated the intersection of language and science instruction of ELLs. However these studies have typically been conducted with elementary students. Few studies have explored how high school science teachers, particularly those who have not received any special training, approach science instruction of ELLs and what supports them in this endeavor. This was a qualitative case study conducted with five science teachers in one small urban high school that predominantly served ELLs. The purpose of this study was to examine instructional approaches used by teachers to make science accessible to ELLs and the factors that supported or inhibited them in developing their instructional approaches. This goal encompassed the following questions: (a) how teachers viewed science instruction of ELLs, (b) how teachers designed a responsive program to teach science to ELLs, (c) what approaches teachers used for curriculum development and instruction, (d) how teachers developed classroom learning communities to meet the needs of ELLs. Seven instructional strategies and five perceived sources of support emerged as findings of this research. In summary, teachers believed that they needed to make science more accessible for their ELL students while promoting their literacy skills. Teachers provided individualized attention to students to provide relevant support. Teachers engaged their students in various types of active learning lessons in social contexts, where students worked on both hands-on and meaning-making activities and interacted with their peers and teachers. Teachers also created classroom communities and learning spaces where students felt comfortable to seek and give help. Finally, teachers identified several sources of support that influenced their instructional

  9. Streaming Seismograms into Earth-Science Classrooms

    Science.gov (United States)

    Ammon, C. J.

    2011-12-01

    Seismograms are the fundamental observations upon which seismology is based; they are central to any course in seismology and important for any discussion of earthquake-related phenomena based on seismic observations. Advances in the collection and distribution of seismic data have made the use of research-quality seismograms in any network capable classroom feasible. The development of large, deep seismogram archives place an unprecedented quantity of high-quality data within reach of the modern classroom environment. I describe and discuss several computer tools and classroom activities that I use in introductory (general education) and advanced undergraduate courses that present near real-time research-quality seismic observations in the classroom. The Earth Motion Monitor Application (EMMA), is a MacOS application that presents a visually clear seismogram display that can be projected in classrooms with internet access. Seismic signals from thousands of station are available from the IRIS data center and the bandwidth can be tailored to the particular type of signal of interest (large event, low frequencies; small event, high frequencies). In introductory classes for non-science students, the near realtime display routinely shows magnitude 4.0-5.0 earthquake-generated signals, demonstrating to students the frequency of earthquake occurrence. Over the next few minutes as the waves travel through and across the planet, their arrival on the seismogram display provides some basic data for a qualitative estimate of the event's general location. When a major or great earthquake occurs, a broad-band display of signals from nearby stations can dramatically and dynamically illuminate the frequent activity associated with the aftershock sequence. Routine use of the display (while continuing the traditional classroom activities) provides students with a significant dose of seismogram study. Students generally find all the signals, including variations in seismic

  10. Talking about science: An interpretation of the effects of teacher talk in a high school science classroom

    Science.gov (United States)

    Moje, Elizabeth B.

    This paper builds on research in science education, secondary education, and sociolinguistics by arguing that high school classrooms can be considered speech communities in which language may be selectively used and imposed on students as a means of fostering academic speech community identification. To demonstrate the ways in which a high school teacher's language use may encourage subject area identification, the results of an interactionist analysis of data from a 2-year ethnographic study of one high school chemistry classroom are presented. Findings indicate that this teacher's uses of language fell into three related categories. These uses of language served to foster identification with the academic speech community of science. As a result of the teacher's talk about science according to these three patterns, students developed or reinforced particular views of science. In addition, talking about science in ways that fostered identity with the discipline promoted the teacher as expert and built classroom solidarity or community. These results are discussed in light of sociolinguistic research on classroom competence and of the assertions of science educators regarding social and ideologic implications of language use in science instruction.Received: 23 September 1993; Revised: 15 September 1994;

  11. Life Skills from the Perspectives of Classroom and Science Teachers

    Science.gov (United States)

    Kurtdede-Fidan, Nuray; Aydogdu, Bülent

    2018-01-01

    The aim of this study is to determine classroom and science teachers' views about life skills. The study employed phenomenological method. The participants of the study were 24 teachers; twelve of them were classroom teachers and the remaining were science teachers. They were working at public schools in Turkey. The participants were selected…

  12. Learning to write in science: A study of English language learners' writing experience in sixth-grade science classrooms

    Science.gov (United States)

    Qi, Yang

    Writing is a predictor of academic achievement and is essential for student success in content area learning. Despite its importance, many students, including English language learners (ELLs), struggle with writing. There is thus a need to study students' writing experience in content area classrooms. Informed by systemic functional linguistics, this study examined 11 ELL students' writing experience in two sixth grade science classrooms in a southeastern state of the United States, including what they wrote, how they wrote, and why they wrote in the way they did. The written products produced by these students over one semester were collected. Also collected were teacher interviews, field notes from classroom observations, and classroom artifacts. Student writing samples were first categorized into extended and nonextended writing categories, and each extended essay was then analyzed with respect to its schematic structure and grammatical features. Teacher interviews and classroom observation notes were analyzed thematically to identify teacher expectations, beliefs, and practices regarding writing instruction for ELLs. It was found that the sixth-grade ELLs engaged in mostly non-extended writing in the science classroom, with extended writing (defined as writing a paragraph or longer) constituting roughly 11% of all writing assignments. Linguistic analysis of extended writing shows that the students (a) conveyed information through nouns, verbs, adjectives, adverbial groups and prepositional phrases; (b) constructed interpersonal context through choices of mood, modality, and verb tense; and (c) structured text through thematic choices and conjunctions. The appropriateness of these lexicogrammatical choices for particular writing tasks was related to the students' English language proficiency levels. The linguistic analysis also uncovered several grammatical problems in the students' writing, including a limited range of word choices, inappropriate use of mood

  13. Validity of "Hi_Science" as instructional media based-android refer to experiential learning model

    Science.gov (United States)

    Qamariah, Jumadi, Senam, Wilujeng, Insih

    2017-08-01

    Hi_Science is instructional media based-android in learning science on material environmental pollution and global warming. This study is aimed: (a) to show the display of Hi_Science that will be applied in Junior High School, and (b) to describe the validity of Hi_Science. Hi_Science as instructional media created with colaboration of innovative learning model and development of technology at the current time. Learning media selected is based-android and collaborated with experiential learning model as an innovative learning model. Hi_Science had adapted student worksheet by Taufiq (2015). Student worksheet had very good category by two expert lecturers and two science teachers (Taufik, 2015). This student worksheet is refined and redeveloped in android as an instructional media which can be used by students for learning science not only in the classroom, but also at home. Therefore, student worksheet which has become instructional media based-android must be validated again. Hi_Science has been validated by two experts. The validation is based on assessment of meterials aspects and media aspects. The data collection was done by media assessment instrument. The result showed the assessment of material aspects has obtained the average value 4,72 with percentage of agreement 96,47%, that means Hi_Science on the material aspects is in excellent category or very valid category. The assessment of media aspects has obtained the average value 4,53 with percentage of agreement 98,70%, that means Hi_Science on the media aspects is in excellent category or very valid category. It was concluded that Hi_Science as instructional media can be applied in the junior high school.

  14. Instructional Immediacy in the Chinese Quantitative Reasoning Classroom

    Science.gov (United States)

    Kelly, Stephanie; Liu, Liping; Denton, Zachary; Lee, Clinton; Croucher, Stephen

    2018-01-01

    The present investigation examined instructor immediacy behaviors, students' perceptions of those behaviors, and student math anxiety in Chinese classrooms. Consistent with the American college classroom, a simple causal chain was anticipated in which instructor immediacy behaviors positively induced a psychological response to immediacy, which…

  15. Digital Instructional Strategies and Their Role in Classroom Learning

    Science.gov (United States)

    Yarbro, Jessica; McKnight, Katherine; Elliott, Stephen; Kurz, Alexander; Wardlow, Liane

    2016-01-01

    Research that examines technology use in the context of daily classroom practices is needed to support the effective digital conversion of classrooms. In this study, 65 seventh- through 10th-grade Mathematics and English Language Arts teachers from six districts across six states logged information about digital strategies they incorporated into…

  16. Earth Science for Educators: Preparing 7-12 Teachers for Standards-based, Inquiry Instruction

    Science.gov (United States)

    Sloan, H.

    2002-05-01

    "Earth Science for Educators" is an innovative, standards-based, graduate level teacher education curriculum that presents science content and pedagogic technique in parallel. The curriculum calls upon the resources and expertise of the American Museum of Natural History (AMNH) to prepare novice New York City teachers for teaching Earth Science. One of the goals of teacher education is to assure and facilitate science education reform through preparation of K-12 teachers who understand and are able to implement standard-based instruction. Standards reflect not only the content knowledge students are expected to attain but also the science skills and dispositions towards science they are expected to develop. Melding a list of standards with a curriculum outline to create inquiry-based classroom instruction that reaches a very diverse population of learners is extremely challenging. "Earth Science for Educators" helps novice teachers make the link between standards and practice by constantly connecting standards with instruction they receive and activities they carry out. Development of critical thinking and enthusiasm for inquiry is encouraged through engaging experience and contact with scientists and their work. Teachers are taught Earth systems science content through modeling of a wide variety of instruction and assessment methods based upon authentic scientific inquiry and aimed at different learning styles. Use of fieldwork and informal settings, such as the Museum, familiarizes novice teachers with ways of drawing on community resources for content and instructional settings. Metacognitive reflection that articulates standards, practice, and the teachers' own learning experience help draw out teachers' insights into their students' learning. The innovation of bring science content together with teaching methods is key to preparing teachers for standards-based, inquiry instruction. This curriculum was successfully piloted with a group of 28 novice teachers as

  17. The impact of professional development on classroom teaching for science educators participating in a long term community of practice

    Science.gov (United States)

    Jensen, Aaron C.

    Efforts to modify and improve science education in the United States have seen minimal success (Crawford, 2000; Borko & Putman, 1996; Puntambekar, Stylianou & Goldstein, 2007; Lustick, 2011). One important reason for this is the professional development that teachers go through in order to learn about and apply these new ideas is generally of poor quality and structured incorrectly for long-term changes in the classroom (Little, 1993; Fullen, 1996; Porter, 2000; Jeanpierre, Oberhauser, & Freeman, 2005). This grounded theory study explores a science community of practice and how the professional development achieved through participation in that community has effected the instruction of the teachers involved, specifically the incorporation of researched based effective science teaching instructional strategies. This study uses personal reflection papers written by the participants, interviews, and classroom observations to understand the influence that the science community of practice has had on the participants. Results indicate that participation in this science community of practice has significant impact on the teachers involved. Participants gained greater understanding of science content knowledge, incorporated effective science instructional strategies into their classroom, and were able to practice both content knowledge and strategies in a non-threatening environment thus gaining a greater understanding of how to apply them in the classrooms. These findings motivate continued research in the role that communities of practice may play in teacher professional develop and the effectiveness of quality professional development in attaining long-term, sustained improvement in science education.

  18. The Earth Science for Tomorrows Classroom

    Science.gov (United States)

    Shanskiy, Merrit

    2015-04-01

    The Earth sciences comprises many fascinating topics that is teached to different age level pupils/students in order to bring hard core science closer to their daily life. With developing possibilities in IT, multimedia overall electronic sector the teachers/lecturers have continuous possibilities to accomplish novel approaches and utilize new ideas to make science more interesting for students in all ages. Emerging, from personal experiences, the teaching of our surrounding Environment can be very enjoyable. In our everyday life the SOIL remains invisible. The soil is covered by plant cover which makes the topic somewhat in distant that is not "visible" to an eye and its importance is underestimated. In other hand, the SOIL is valuable primary resource for food production and basis of life for healthy environment. From several studies have found that because its complications, SOIL related topics are not very often chosen topic for course or diploma works by students. The lower-school students are very open to environmental topics accordingly to the grades. Here, the good results can be obtained through complimentary materials creation, like story telling and drawing books and puzzles. The middle/ and upper/school students will experience "real science" being able to learn what the science is about which often can play a important role on making choices for future curriculum completion at university level. Current presentation shares the ideas of selected methods that had showed successful results on different Earth Science topics teaching (biodiversity, growing substrates, green house gas emissions). For some ideas the presentation introduces also the further developmental possibilities to be used in teaching at Tomorrows Classroom.

  19. Classroom observation data and instruction in primary mathematics education: improving design and rigour

    Science.gov (United States)

    Thompson, Carla J.; Davis, Sandra B.

    2014-06-01

    The use of formal observation in primary mathematics classrooms is supported in the literature as a viable method of determining effective teaching strategies and appropriate tasks for inclusion in the early years of mathematics learning. The twofold aim of this study was to (a) investigate predictive relationships between primary mathematics classroom observational data and student achievement data, and (b) to examine the impact of providing periodic classroom observational data feedback to teachers using a Relational-Feedback-Intervention (RFI) Database Model. This observational research effort focused on an empirical examination of student engagement levels in time spent on specific learning activities observed in primary mathematics classrooms as predictors of student competency outcomes in mathematics. Data were collected from more than 2,000 primary classroom observations in 17 primary schools during 2009-2011 and from standardised end-of-year tests for mathematics achievement. Results revealed predictive relationships among several types of teaching and learning tasks with student achievement. Specifically, the use of mathematics concepts, technology and hands-on materials in primary mathematics classrooms was found to produce substantive predictors of increased student mathematics achievement. Additional findings supported the use of periodic classroom observation data reporting as a positive influence on teachers' decisions in determining instructional tasks for inclusion in primary mathematics classrooms. Study results indicate classroom observational research involving a RFI Database Model is a productive tool for improving teaching and learning in primary mathematics classrooms.

  20. Teaching about teaching and instruction on instruction: a challenge for health sciences library education.

    Science.gov (United States)

    Detlefsen, Ellen Gay

    2012-10-01

    This is a review of the master's-level curricula of the fifty-eight America Library Association-accredited library and information science programs and iSchools for evidence of coursework and content related to library instruction. Special emphasis is placed on the schools and programs that also offer coursework in medical or health sciences librarianship. Fifty-eight school and program websites were reviewed. Course titles and course descriptions for seventy-three separate classes were analyzed. Twenty-three syllabi were examined. All North American library education programs offer at least one course in the general area of library instruction; some programs offer multiple courses. No courses on instruction, however, are focused directly on the specialized area of health sciences librarianship. Master's degree students can take appropriate classes on library instruction, but the medical library profession needs to offer continuing education opportunities for practitioners who want to have specific instruction for the specialized world of the health sciences.

  1. Promoting 21st-Century Skills in the Science Classroom by Adapting Cookbook Lab Activities: The Case of DNA Extraction of Wheat Germ

    Science.gov (United States)

    Alozie, Nonye M.; Grueber, David J.; Dereski, Mary O.

    2012-01-01

    How can science instruction engage students in 21st-century skills and inquiry-based learning, even when doing simple labs in the classroom? We collaborated with teachers in professional development workshops to transform "cookbook" activities into engaging laboratory experiences. We show how to change the common classroom activity of DNA…

  2. Teachers' instructional goals for science practice: Identifying knowledge gaps using cultural-historical activity theory (CHAT)

    Science.gov (United States)

    Farrar, Cynthia Hamen

    In AP Biology, the course goal, with respect to scientific acts and reasoning, has recently shifted toward a reform goal of science practice, where the goal is for students to have a scientific perspective that views science as a practice of a community rather than a body of knowledge. Given this recent shift, this study is interested in the gaps that may exist between an individual teacher's instructional goal and the goals of the AP Biology course. A Cultural-Historical Activity Theory (CHAT) methodology and perspective is used to analyze four teachers' knowledge, practice, and learning. Teachers have content knowledge for teaching, a form of knowledge that is unique for teaching called specialized content knowledge. This specialized content knowledge (SCK) defines their instructional goals, the student outcomes they ultimately aim to achieve with their students. The study employs a cultural-historical continuum of scientific acts and reasoning, which represents the development of the AP Biology goal over time, to study gaps in their instructional goal. The study also analyzes the contradictions within their teaching practice and how teachers address those contradictions to shift their instructional practice and learn. The findings suggest that teachers have different interpretations of the AP Biology goals of science practice, placing their instructional goal at different points along the continuum. Based on the location of their instructional goal, different micro-communities of teachers exist along the continuum, comprised of teachers with a shared goal, language, and culture of their AP Biology teaching. The in-depth study of one teacher's AP Biology teaching, using a CHAT perspective, provides a means for studying the mechanisms that connect SCK to classroom actions and ultimately to instructional practice. CHAT also reveals the nature and importance of contradictions or cognitive dissonance in teacher learning and the types of support teachers need to

  3. Effective Science Instruction: What Does Research Tell Us? Second Edition

    Science.gov (United States)

    Banilower, Eric; Cohen, Kim; Pasley, Joan; Weiss, Iris

    2010-01-01

    This brief distills the research on science learning to inform a common vision of science instruction and to describe the extent to which K-12 science education currently reflects this vision. A final section on implications for policy makers and science education practitioners describes actions that could integrate the findings from research into…

  4. Multicultural science education in Lesotho high school biology classrooms

    Science.gov (United States)

    Nthathakane, Malefu Christina

    2001-12-01

    This study investigated how Basotho high school biology students responded to a multicultural science education (MCSE) approach. Students' home language---Sesotho---and cultural experiences were integrated into the teaching of a unit on alcohol, tobacco and other drugs (ATOD) abuse. The focus was on students whose cultural background is African and who are English second language users. The study was conducted in three high school biology classrooms in Lesotho where the ATOD unit was taught using MCSE. A fourth biology classroom was observed for comparison purposes. In this classroom the regular biology teacher taught ATOD using typical instructional strategies. The study was framed by the general question: How does a multicultural science education approach affect Basotho high school biology students? More specifically: How does the use of Sesotho (or code-switching between Sesotho and English) and integration of Basotho students' cultural knowledge and experiences with respect to ATOD affect students' learning? In particular how does the approach affect students' participation and academic performance? A qualitative research method was used in this study. Data were drawn from a number of different sources and analyzed inductively. The data sources included field-notes, transcripts of ATOD lessons, research assistant lesson observation notes and interviews, regular biology teachers' interviews and notes from observing a few of their lessons, students' interviews and pre and posttest scripts, and other school documents that recorded students' performance throughout the year. Using the students' home language---Sesotho---was beneficial in that it enabled them to share ideas, communicate better and understand each other, the teacher and the material that was taught. Integrating students' cultural and everyday experiences was beneficial because it enabled students to anchor the new ATOD ideas in what was familiar and helped them find the relevance of the unit by

  5. Excellence in College Teaching and Learning: Classroom and Online Instruction

    Science.gov (United States)

    Henderson, George; Nash, Susan Smith

    2007-01-01

    This book will improve the quality of instruction that college students need. It makes numerous suggestions that must be tended to when teachers instruct students. For example, the authors speculate about ways teachers can present what may at times seem to be a mountain of information without burying students under it; why teachers must…

  6. Teacher perceptions of usefulness of mobile learning devices in rural secondary science classrooms

    Science.gov (United States)

    Tighe, Lisa

    The internet and easy accessibility to a wide range of digital content has created the necessity for teachers to embrace and integrate digitial media in their curriculums. Although there is a call for digital media integration in curriculum by current learning standards, rural schools continue to have access to fewer resources due to limited budgets, potentially preventing teachers from having access to the most current technology and science instructional materials. This dissertation identifies the perceptions rural secondary science teachers have on the usefulness of mobile learning devices in the science classroom. The successes and challenges in using mobile learning devices in the secondary classroom were also explored. Throughout this research, teachers generally supported the integration of mobile devices in the classroom, while harboring some concerns relating to student distractability and the time required for integrating mobile devices in exisiting curriculum. Quantitative and qualitative data collected through surveys, interviews, and classroom observations revealed that teachers perceive that mobile devices bring benefits such as ease of communication and easy access to digitial information. However, there are perceived challenges with the ability to effectively communicate complex scientific information via mobile devices, distractibility of students, and the time required to develop effective curriculum to integrate digital media into the secondary science classroom.

  7. Spontaneous Play and Imagination in Everyday Science Classroom Practice

    Science.gov (United States)

    Andrée, Maria; Lager-Nyqvist, Lotta

    2013-01-01

    In science education, students sometimes create and engage in spontaneous science-oriented play where ideas about science and scientists are put to use. However, in previous research, little attention has been given to the role of informal spontaneous play in school science classrooms. We argue that, in order to enhance our understanding of…

  8. Discovery stories in the science classroom

    Science.gov (United States)

    Arya, Diana Jaleh

    School science has been criticized for its lack of emphasis on the tentative, dynamic nature of science as a process of learning more about our world. This criticism is the guiding force for this present body of work, which focuses on the question: what are the educational benefits for middle school students of reading texts that highlight the process of science in the form of a discovery narrative? This dissertation traces my journey through a review of theoretical perspectives of narrative, an analysis of first-hand accounts of scientific discovery, the complex process of developing age-appropriate, cohesive and engaging science texts for middle school students, and a comparison study (N=209) that seeks to determine the unique benefits of the scientific discovery narrative for the interest in and retained understanding of conceptual information presented in middle school science texts. A total of 209 middle school participants in nine different classrooms from two different schools participated in the experimental study. Each subject read two science texts that differed in topic (the qualities of and uses for radioactive elements and the use of telescopic technology to see planets in space) and genre (the discovery narrative and the "conceptually known exposition" comparison text). The differences between the SDN and CKE versions for each topic were equivalent in all possible ways (initial introduction, overall conceptual accuracy, elements of human interest, coherence and readability level), save for the unique components of the discovery narrative (i.e., love for their work, acknowledgement of the known, identification of the unknown and the explorative or experimental process to discovery). Participants generally chose the discovery narrative version as the more interesting of the two texts. Additional findings from the experimental study suggest that science texts in the form of SDNs elicit greater long-term retention of key conceptual information, especially

  9. Improving Student Writing: Methods You Can Use in Science and Engineering Classrooms

    Science.gov (United States)

    Hitt, S. J.; Bright, K.

    2013-12-01

    Many educators in the fields of science and engineering assure their students that writing is an important and necessary part of their work. According to David Lindsay, in Scientific Writing=Thinking in Words, 99% of scientists agree that writing is an integral part of their jobs. However, only 5% of those same scientists have ever had formal instruction in scientific writing, and those who are also educators may then feel unconfident in teaching this skill to their students (2). Additionally, making time for writing instruction in courses that are already full of technical content can cause it to be hastily and/or peremptorily included. These situations may be some of the contributing factors to the prevailing attitude of frustration that pervades the conversation about writing in science and engineering classrooms. This presentation provides a summary of past, present, and ongoing Writing Center research on effective writing tutoring in order to give science and engineering educators integrated approaches for working with student writers in their disciplines. From creating assignments, providing instruction, guiding revisions, facilitating peer review, and using assessments, we offer a comprehensive approach to getting your students motivated to improve their writing. Our new research study focuses on developing student writing resources and support in science and engineering institutions, with the goal of utilizing cross-disciplinary knowledge that can be used by the various constituencies responsible for improving the effectiveness of writing among student engineers and scientists. We will will draw upon recent findings in the study of the rhetoric and compositional pedagogy and apply them to the specific needs of the science and engineering classroom. The fields of communication, journalism, social sciences, rhetoric, technical writing, and philosophy of science have begun to integrate these findings into classroom practice, and we will show how these can also

  10. Teaching and Learning Science in Authoritative Classrooms: Teachers' Power and Students' Approval in Korean Elementary Classrooms

    Science.gov (United States)

    Lee, Jeong-A.; Kim, Chan-Jong

    2017-09-01

    This study aims to understand interactions in Korean elementary science classrooms, which are heavily influenced by Confucianism. Ethnographic observations of two elementary science teachers' classrooms in Korea are provided. Their classes are fairly traditional teaching, which mean teacher-centered interactions are dominant. To understand the power and approval in science classroom discourse, we have adopted Critical Discourse Analysis (CDA). Based on CDA, form and function analysis was adopted. After the form and function analysis, all episodes were analyzed in terms of social distance. The results showed that both teachers exercised their power while teaching. However, their classes were quite different in terms of getting approval by students. When a teacher got students' approval, he could conduct the science lesson more effectively. This study highlights the importance of getting approval by students in Korean science classrooms.

  11. Flipped Classroom versus Traditional Textbook Instruction: Assessing Accuracy and Mental Effort at Different Levels of Mathematical Complexity

    Science.gov (United States)

    Mattis, Kristina V.

    2015-01-01

    Flipped classrooms are an instructional technology trend mostly incorporated in higher education settings, with growing prominence in high school and middle school (Tucker in Leveraging the power of technology to create student-centered classrooms. Corwin, Thousand Oaks, 2012). Flipped classrooms are meant to effectively combine traditional and…

  12. The efficacy of student-centered instruction in supporting science learning.

    Science.gov (United States)

    Granger, E M; Bevis, T H; Saka, Y; Southerland, S A; Sampson, V; Tate, R L

    2012-10-05

    Transforming science learning through student-centered instruction that engages students in a variety of scientific practices is central to national science-teaching reform efforts. Our study employed a large-scale, randomized-cluster experimental design to compare the effects of student-centered and teacher-centered approaches on elementary school students' understanding of space-science concepts. Data included measures of student characteristics and learning and teacher characteristics and fidelity to the instructional approach. Results reveal that learning outcomes were higher for students enrolled in classrooms engaging in scientific practices through a student-centered approach; two moderators were identified. A statistical search for potential causal mechanisms for the observed outcomes uncovered two potential mediators: students' understanding of models and evidence and the self-efficacy of teachers.

  13. Daily Autonomy Supporting or Thwarting and Students' Motivation and Engagement in the High School Science Classroom

    Science.gov (United States)

    Patall, Erika A.; Steingut, Rebecca R.; Vasquez, Ariana C.; Trimble, Scott S.; Pituch, Keenan A.; Freeman, Jen L.

    2018-01-01

    This diary study provided the first classroom-based empirical test of the relations between student perceptions of high school science teachers' various autonomy supporting and thwarting practices and students' motivation and engagement on a daily basis over the course of an instructional unit. Perceived autonomy supporting practices were…

  14. An Assessment of Need for Instructional Professional Development for Middle School Science Teachers Using Interactive Lessons

    Science.gov (United States)

    Burton, Amanda

    Numerous studies on the impact of interactive lessons on student learning have been conducted, but there has been a lack of professional development (PD) programs at a middle school focusing on ways to incorporate interactive lessons into the science classroom setting. The purpose of this case study was to examine the instructional practices of science teachers to determine whether the need for an interactive lessons approach to teaching students exists. This qualitative case study focused on teachers' perceptions and pedagogy to determine whether the need to use interactive lessons to meet the needs of all students is present. The research question focused on identifying current practices and determining whether a need for interactive lessons is present. Qualitative data were gathered from science teachers at the school through interviews, lesson plans, and observations, all of which were subsequently coded using an interpretative analysis. The results indicated the need for a professional development (PD) program centered on interactive science lessons. Upon completion of the qualitative study, a detailed PD program has been proposed to increase the instructional practices of science teachers to incorporate interactive lessons within the science classroom. Implications for positive social change include improved teaching strategies and lessons that are more student-centered resulting in better understanding and comprehension, as well as performance on state-mandated tests.

  15. Beyond the Initiatives: Developing instructional leadership in school principals as a system-wide effort to improve the quality of classroom instruction.

    OpenAIRE

    Aguilera, Sondra Denise

    2016-01-01

    This design research effort implemented a series of intervention activities designed to support a small group of elementary school principals improve their instructional leadership practices. The purpose of this research was to improve the skills of principals to lead instructional improvements identified through classroom observations, work with their school-level Instructional Leadership Team (ILT) to create teacher professional development that addresses the instructional improvement, and ...

  16. Effectiveness of Science-Technology-Society (STS) Instruction on Student Understanding of the Nature of Science and Attitudes toward Science

    Science.gov (United States)

    Akcay, Behiye; Akcay, Hakan

    2015-01-01

    The study reports on an investigation about the impact of science-technology-society (STS) instruction on middle school student understanding of the nature of science (NOS) and attitudes toward science compared to students taught by the same teacher using traditional textbook-oriented instruction. Eight lead teachers used STS instruction an…

  17. Classroom Animals Provide More than Just Science Education

    Science.gov (United States)

    Herbert, Sandra; Lynch, Julianne

    2017-01-01

    Keeping classroom animals is a common practice in many classrooms. Their value for learning is often seen narrowly as the potential to involve children in learning biological science. They also provide opportunities for increased empathy, as well as socio-emotional development. Realization of their potential for enhancing primary children's…

  18. Engaging Pre-Service Teachers to Teach Science Contextually with Scientific Approach Instructional Video

    Science.gov (United States)

    Susantini, E.; Kurniasari, I.; Fauziah, A. N. M.; Prastowo, T.; Kholiq, A.; Rosdiana, L.

    2018-01-01

    Contextual teaching and learning/CTL presents new concepts in real-life experiences and situations where students can find out the meaningful relationship between abstract ideas and practical applications. Implementing contextual teaching by using scientific approach will foster teachers to find the constructive ways of delivering and organizing science content. This research developed an instructional video that represented a modeling of using a scientific approach in CTL. The aim of this research are to engage pre-service teachers in learning how to teach CTL and to show how pre-service teachers’ responses about learning how to teach CTL using an instructional video. The subjects of this research were ten pre-service teachers in Department of Natural Sciences, Universitas Negeri Surabaya, Indonesia. All subjects observed the instructional video which demonstrated contextual teaching and learning combined with the scientific approach as they completed a worksheet to analyze the video content. The results showed that pre-service teachers could learn to teach contextually as well as applying the scientific approach in science classroom through a modeling in the instructional video. They also responded that the instructional video could help them to learn to teach each component contextual teaching as well as scientific approach.

  19. Is the Flipped Classroom Model for All? Correspondence Analysis from Trainee Instructional Media Designers

    Science.gov (United States)

    Pellas, Nikolaos

    2018-01-01

    The educational potentials and challenges of "flipping" a classroom are today well-documented. However, taking into account the contradictory results, literature on the benefits in using the flipped model as a socially inclusive technology-supported instructional design model is still in its infancy. This study seeks to investigate the…

  20. Reading the Rainbow: LGBTQ-Inclusive Literacy Instruction in the Elementary Classroom

    Science.gov (United States)

    Ryan, Caitlin L.; Hermann-Wilmarth, Jill M.

    2018-01-01

    Drawing on examples of teaching from elementary school classrooms, this timely book for practitioners explains why LGBTQ-inclusive literacy instruction is possible, relevant, and necessary in grades K-5. The authors show how expanding the English language arts curriculum to include representations of LGBTQ people and themes will benefit all…

  1. Learner Diversity in Inclusive Classrooms: The Interplay of Language of Instruction, Gender and Disability

    Science.gov (United States)

    Possi, Mwajabu K.; Milinga, Joseph Reginard

    2017-01-01

    The research was conducted to look into learner diversity in inclusive classrooms focusing on language of instruction, gender and disability issues, and their implications for education practices. A qualitative research approach was used to obtain data addressing the research problem from two inclusive secondary schools in Dar es Salaam region,…

  2. The Use of Instructional Simulations to Support Classroom Teaching: A Crisis Communication Case Study

    Science.gov (United States)

    Shifflet, Mark; Brown, Jane

    2006-01-01

    The purpose of this study was to investigate how exposure to classroom instruction affected the use of a computer simulation that was designed to provide students an opportunity to apply material presented in class. The study involved an analysis of a computer-based crisis communication case study designed for a college-level public relations…

  3. Code-Switching in Vietnamese University EFL Teachers' Classroom Instruction: A Pedagogical Focus

    Science.gov (United States)

    Grant, Lynn E.; Nguyen, Thi Hang

    2017-01-01

    This study examines the under-explored phenomenon in Vietnamese tertiary settings of code-switching practised by EFL (English as a foreign language) teachers in classroom instruction, as well as their awareness of this practice. Among the foreign languages taught and learned in Vietnamese universities, English is the most popular. The research…

  4. Theoretical Beliefs and Instructional Practices Used for Teaching Spelling in Elementary Classrooms

    Science.gov (United States)

    McNeill, Brigid; Kirk, Cecilia

    2014-01-01

    The current study aimed to examine teachers' reported spelling assessment and instruction practices. Analysis of the match between teachers' theoretical beliefs about spelling and their reported pedagogy was conducted to elucidate factors that may support or impede the use of evidence-based teaching strategies in the classroom. An electronic…

  5. Using the DSAP Framework to Guide Instructional Design and Technology Integration in BYOD Classrooms

    Science.gov (United States)

    Wasko, Christopher W.

    2016-01-01

    The purpose of this study was to determine the suitability of the DSAP Framework to guide instructional design and technology integration for teachers piloting a BYOD (Bring Your Own Device) initiative and to measure the impact the initiative had on the amount and type of technology used in pilot classrooms. Quantitative and qualitative data were…

  6. Approaches to inclusive English classrooms a teacher's handbook for content-based instruction

    CERN Document Server

    Mastruserio Reynolds, Kate

    2015-01-01

    This accessible book takes a critical approach towards content-based instruction methods, bridging the gap between theory and practice in order to allow teachers to make an informed decision about best practices for an inclusive classroom. It is a resource for both educators and ESL teachers working within an English learner inclusion environment.

  7. Standards-Based Testing Outcomes in Instructional Consultation Team Classrooms: An Analysis of Growth in Reading

    Science.gov (United States)

    Coleman, Chaka-Monique Nicole

    2013-01-01

    Recent federal education legislation has recognized the over-identification and overrepresentation of students in special education and mandated that schools use evidence-based teaching strategies and instructional interventions within the general education classroom before initiating a special education referral. Legislation also put greater…

  8. Evaluation Comparison of Online and Classroom Instruction for HEPE 129--Fitness and Lifestyle Management Course.

    Science.gov (United States)

    Davies, Randall S.; Mendenhall, Robert

    This evaluation compared online (i.e., World Wide Web-based) and classroom instructional delivery methods for the Health Education/Physical Education course, "Fitness and Lifestyle Management," at Brigham Young University (Utah). The results of the study were intended to add to the discussion on the value of web-based courses as a means…

  9. Evaluating Instructional Effects of Flipped Classroom in University: A Case Study on Electronic Business Course

    Science.gov (United States)

    Zhu, Wenlong; Xie, Wenjing

    2018-01-01

    Flipped classroom provides the new ideas and ways for the innovation of university pedagogical mode. Nowadays instructors may apply this new approach to liberal arts majors in university class in order to make up for the problems of low instructional effects in traditional teaching method. From the subjective and objective perspectives, this…

  10. The Evolution of Teachers' Instructional Beliefs and Practices in High-Access-to-Technology Classrooms.

    Science.gov (United States)

    Dwyer, David C.; And Others

    Beginning in 1985, Apple Computer, Inc., and several school districts began a collaboration to examine the impact of computer saturation on instruction and learning in K-12 classrooms. The initial guiding question was simply put: What happens when teachers and students have constant access to technology? To provide "constant access,"…

  11. Special Education Teachers' Nature of Science Instructional Experiences

    Science.gov (United States)

    Mulvey, Bridget K.; Chiu, Jennifer L.; Ghosh, Rajlakshmi; Bell, Randy L.

    2016-01-01

    Special education teachers provide critical science instruction to students. However, little research investigates special education teacher beliefs and practices around science in general or the nature of science and inquiry in particular. This investigation is a cross-case analysis of four elementary special education teachers' initial…

  12. The Instructional Model for Using History of Science

    Science.gov (United States)

    Seker, Hayati

    2012-01-01

    This paper discusses the levels of The Instructional Model for Using History of Science (UHOS) to explain the relationship between the history of science and science teaching. The UHOS model proposes four levels: Conceptual Level, Epistemological Level, Sociocultural Level, and Interest Level. Each Level has sublevels with regards to types of…

  13. Renegotiating the pedagogic contract: Teaching in digitally enhanced secondary science classrooms

    Science.gov (United States)

    Ajayi, Ajibola Oluneye

    This qualitative case study explores the effects of emerging digital technology as a teaching and learning tool in secondary school science classrooms. The study examines three teachers' perspectives on how the use of technology affects the teacher-student pedagogic relationship. The "pedagogic contract" is used as a construct to analyze the changes that took place in these teachers' classrooms amid the use of this new technology. The overarching question for this research is: How was the pedagogic contract renegotiated in three secondary science teachers' classrooms through the use of digitally enhanced science instruction. To answer this question, data was collected via semi-structured teacher interviews, classroom observations, and analysis of classroom documents such as student assignments, tests and Study Guides. This study reveals that the everyday use of digital technologies in these classrooms resulted in a re-negotiated pedagogic contract across three major dimensions: content of learning, method and management of learning activities, and assessment of learning. The extent to which the pedagogic contract was renegotiated varied with each of the teachers studied. Yet in each case, the content of learning was extended to include new topics, and greater depth of learning within the mandated curriculum. The management of learning was reshaped around metacognitive strategies, personal goal-setting, individual pacing, and small-group learning activities. With the assessment of learning, there was increased emphasis on self-directed interactive testing as a formative assessment tool. This study highlights the aspects of science classrooms that are most directly affected by the introduction of digital technologies and demonstrates how those changes are best understood as a renegotiation of the teacher-student pedagogic contract.

  14. Generating Testable Questions in the Science Classroom: The BDC Model

    Science.gov (United States)

    Tseng, ChingMei; Chen, Shu-Bi Shu-Bi; Chang, Wen-Hua

    2015-01-01

    Guiding students to generate testable scientific questions is essential in the inquiry classroom, but it is not easy. The purpose of the BDC ("Big Idea, Divergent Thinking, and Convergent Thinking") instructional model is to to scaffold students' inquiry learning. We illustrate the use of this model with an example lesson, designed…

  15. Constructivism: Its Theoretical Underpinnings, Variations, and Implications for Classroom Instruction

    Science.gov (United States)

    Yilmaz, Kaya

    2008-01-01

    This article provides an overview of constructivism and its implications for classroom practices. To that end, it first describes the basic features of constructivism along with its major forms or variations. It then elucidates the constructivist view of knowledge, learning, teaching, and the relationship among these constructs. More specifically,…

  16. The GALAXY Classroom: An Interactive, Thematic Approach to Literacy Instruction.

    Science.gov (United States)

    Lewison, Mitzi

    The GALAXY Classroom, developed as a nation-wide reform effort, was designed to make a significant positive difference in the educational lives of elementary school students who have traditionally been labeled "at-risk." As part of a 2-year demonstration and research phase, 39 elementary schools across the United States (and one school…

  17. Embedding "Clickers" into Classroom Instruction: Benefits and Strategies

    Science.gov (United States)

    Blood, Erika; Gulchak, Daniel

    2013-01-01

    Student response systems, often called clickers, have become more popular and visible in the K-12 classroom in recent years. There are numerous competing systems on the market, but all perform the same function: to allow the student to use a small hand-held device (i.e., a clicker), or even web browsers on laptops or mobile phones, to respond to…

  18. Undergraduate Teacher Candidate Perceptions Integrating Technology in Classroom Instruction

    Science.gov (United States)

    Anderson, Charlise Askew

    2016-01-01

    The purpose of this study was to analyze undergraduate teacher candidates' perceptions on integrating technology in the classroom. The study was embedded in the "Technology Pedagogical Content Knowledge" theoretical model. A sample of 143 undergraduate teacher candidates participated in the study. They were asked to address items on a…

  19. Social Studies Instruction in a Non-Classroom Setting.

    Science.gov (United States)

    Murphy, Margaret M.

    Certain areas in the social studies can be effectively taught in a non-classroom setting. This experiment determined if, in a supermarket situation, consumer preferences (as measured in sales figures and augmented by questionnaire data) could be altered by the addition of nutritional information to the labels of sixteen items which had moderate…

  20. Improving Instruction in the Mathematics Methods Classroom through Action Research

    Science.gov (United States)

    Mostofo, Jameel; Zambo, Ron

    2015-01-01

    There is a continuing emphasis in the United States on improving students' mathematical abilities, and one approach is to better prepare teachers. To investigate the potential usefulness of Lesson Study to better prepare teachers, one author set out to conduct action research on his classroom practice. Specifically, he sought to determine whether…

  1. Design Principles for Online Instruction: A New Kind of Classroom

    Science.gov (United States)

    Toporski, Neil; Foley, Tim

    2004-01-01

    In the 1900s, distance education attempted to mimic the traditional classroom lecture via the transmission of live or "canned" broadcasts, regardless of the technologies used: satellite, television, film, or radio. These kinds of media predisposed distance education (DE) to closely adhere to the lecture (sit and absorb) model, where…

  2. Instructional Leadership in Elementary School Science

    Science.gov (United States)

    Sherman, Ann; MacDonald, Leo

    2008-01-01

    Instructional leadership is internationally recognized as being a key role for school administrators to advance in their relationships with teachers. But what happens when a principal lacks content knowledge or specific pedagogical knowledge about certain curriculum areas? How do administrators support instructional practices of teachers who teach…

  3. Silencing of Voices in a Swedish Science Classroom

    Science.gov (United States)

    Ramos de Robles, S. Lizette

    2018-01-01

    From a sociocultural perspective, I discuss data from a Swedish science classroom presented in María Gómez's article "Student Explanations of their Science Teachers' Assessments, Grading Practices, and How they learn Science". In this discussion, I focus on the need to change existing conceptions of assessment in the teaching and…

  4. Using embedded computer-assisted instruction to teach science to students with Autism Spectrum Disorders

    Science.gov (United States)

    Smith, Bethany

    The need for promoting scientific literacy for all students has been the focus of recent education reform resulting in the rise of the Science Technology, Engineering, and Mathematics movement. For students with Autism Spectrum Disorders and intellectual disability, this need for scientific literacy is further complicated by the need for individualized instruction that is often required to teach new skills, especially when those skills are academic in nature. In order to address this need for specialized instruction, as well as scientific literacy, this study investigated the effects of embedded computer-assisted instruction to teach science terms and application of those terms to three middle school students with autism and intellectual disability. This study was implemented within an inclusive science classroom setting. A multiple probe across participants research design was used to examine the effectiveness of the intervention. Results of this study showed a functional relationship between the number of correct responses made during probe sessions and introduction of the intervention. Additionally, all three participants maintained the acquired science terms and applications over time and generalized these skills across materials and settings. The findings of this study suggest several implications for practice within inclusive settings and provide suggestions for future research investigating the effectiveness of computer-assisted instruction to teach academic skills to students with Autism Spectrum Disorders and intellectual disability.

  5. From inside the black box: Teacher perceptions of science instruction at the elementary level

    Science.gov (United States)

    Ferrini, Cynthia D.

    Science education reform projects aimed at elementary school children arose in the 1960's. The most prevalent of these reforms utilized the inquiry, or hands-on, science method. Billions of dollars have been invested in these reforms. Yet, reports indicate that science is not being taught at the level one might expect in elementary schools. This research was an analysis of the problems and concerns teachers at one school district faced as they tried to implement and sustain elementary inquiry science instruction. The district chosen was a large suburban district in the Western United States. The population was ninety percent Caucasian with a slightly more ethnically diverse school population. This district was chosen because it had an elementary science program for over twenty years and had received national acclaim for that program. The district had a stable and homogeneous staff there was a low administrator and teacher turnover rate and the elementary teaching population was ninety percent Caucasian and ninety percent female. Interviews with administrators and teachers were conducted. Data were collected from focus groups of teachers and science partners. Observations of elementary science classroom instruction and professional development sessions were made. Results of this research indicated that one important key to elementary science reform rests in the hands of teachers. Once the door to the classroom is closed, the teacher can decide to teach or not to teach science. The findings of this research illustrate that teachers hold ideas about science and science instruction that are antithetical to some tenets of inquiry science. Until these ideas are addressed it will be difficult, if not impossible, to implement a systemic elementary inquiry science program. This study demonstrates that professional development for elementary teachers in science needs to change from a focus on the mechanical usage of individual units to a focus on teacher expectations for

  6. Teacher interaction in psychosocial learning environments: cultural differences and their implications in science instruction

    Science.gov (United States)

    Khine, Myint Swe; Fisher, Darrell L.

    2004-01-01

    The purpose of this study was to examine interpersonal behaviour in psychosocial learning environments and to determine the associations between science students' perceptions of their interactions with their teachers, the cultural background of teachers and their attitudinal outcomes. A sample of 1188 students completed the Questionnaire on Teacher Interaction instrument. The responses to two subscales of Test of Science-related Attitudes were used as attitudinal measures. Significant associations between students' perceptions of teacher interpersonal behaviour and the cultural background of teachers were detected. The results showed that students perceived a more favourable interpersonal relationship with Western teachers in the secondary science classrooms. The students in the classes of Western teachers indicated that they enjoyed science lessons more than those in the classes of Asian teachers. Some implications for science instruction in this context are discussed.

  7. Using Art to Teach Students Science Outdoors: How Creative Science Instruction Influences Observation, Question Formation, and Involvement

    Science.gov (United States)

    Cone, Christina Schull

    Elementary education has become increasingly divided into subjects and focused on the demand for high math and reading scores. Consequently, teachers spend less time devoted to science and art instruction. However, teaching art and science is crucial to developing creative and rational thinking, especially for observation and questioning skills. In this study, third grade students attending an urban school in Portland, Oregon received instruction of an art strategy using observational and quantifying drawing techniques. This study examines, "Will an art strategy observing the local environment help students make observations and ask questions?" and "In what ways are student learning and perspectives of science affected by the art strategy?" The independent variable is the art strategy developed for this study. There are three dependent variables: quality of student observations, quality of questions, and themes on student learning and perspectives of science. I predicted students would develop strong observation and questioning skills and that students would find the strategy useful or have an increased interest in science. The art scores were high for relevance and detail, but not for text. There were significant correlations between art scores and questions. Interviews revealed three themes: observations create questions, drawing is helpful and challenging, and students connected to science. By examining science through art, students were engaged and created strong observations and questions. Teachers need to balance unstructured drawing time with scaffolding for optimal results. This study provides an integrated science and art strategy that teachers can use outdoors or adapt for the classroom.

  8. Caring Enough to Teach Science. Helping Pre-service Teachers View Science Instruction as an Ethical Responsibility

    Science.gov (United States)

    Grinell, Smith; Rabin, Colette

    2017-11-01

    The goal of this project was to motivate pre-service elementary teachers to commit to spending significant instructional time on science in their future classrooms despite their self-assessed lack of confidence about teaching science and other impediments (e.g., high-stakes testing practices that value other subjects over science). Pre-service teachers in science methods courses explored connections between science and ethics, specifically around issues of ecological sustainability, and grappled with their ethical responsibilities as teachers to provide science instruction. Survey responses, student "quick-writes," interview transcripts, and field notes were analyzed. Findings suggest that helping pre-service teachers see these connections may shape their beliefs and dispositions in ways that may motivate them to embark on the long road toward improving their science pedagogical content knowledge and ultimately to teach science to their students more often and better than they otherwise might. The approach may also offer a way for teachers to attend to the moral work of teaching.

  9. HOW TO USE PROGRAMMED INSTRUCTION IN THE CLASSROOM.

    Science.gov (United States)

    SILVERMAN, ROBERT E.

    THIS BOOKLET DESCRIBES FOR TEACHERS THE BASIC FACETS OF PROGRAMED INSTRUCTION, GIVES EXAMPLES OF PROGRAM FRAMES, AND SUMMARIZES 10 CASE STUDIES. ITS PRICE IS $1 (DISCOUNTS ON QUANTITY PURCHASES), AND IT IS AVAILABLE FROM HONOR PRODUCTS CO., A DIVISION OF BOLT BERANEK AND NEWMAN INC., CAMBRIDGE, MASS. (LH)

  10. Supporting Classroom Instruction: The Textbook Navigator/Journal

    Science.gov (United States)

    Cogan, Leland S.; Burroughs, Nathan; Schmidt, William H.

    2015-01-01

    Researchers at the Center for the Study of Curriculum at Michigan State University have developed a tool to help teachers implement the Common Core State Standards in mathematics by letting standards, not textbooks, guide their instruction. Using the web-based Textbook Navigator/Journal, teachers can pick a standard and ask which portions of the…

  11. Blending Online and Traditional Instruction in the Mathematics Classroom.

    Science.gov (United States)

    Abrams, Gene; Haefner, Jeremy

    2002-01-01

    Describes the MathOnline system at the University of Colorado (Colorado Springs), a learning delivery method that, in addition to blending synchronous and asynchronous learning, combines traditional mathematics instruction with distance learning. Student surveys indicate the system greatly enhances traditional learners' educational experiences…

  12. Flipped classroom instructional approach in undergraduate medical education.

    Science.gov (United States)

    Fatima, Syeda Sadia; Arain, Fazal Manzoor; Enam, Syed Ather

    2017-01-01

    In this study we implemented the "flipped classroom" model to enhance active learning in medical students taking neurosciences module at Aga Khan University, Karachi. Ninety eight undergraduate medical students participated in this study. The study was conducted from January till March 2017. Study material was provided to students in form of video lecture and reading material for the non-face to face sitting, while face to face time was spent on activities such as case solving, group discussions, and quizzes to consolidate learning under the supervision of faculty. To ensure deeper learning, we used pre- and post-class quizzes, work sheets and blog posts for each session. Student feedback was recorded via a likert scale survey. Eighty four percent students gave positive responses towards utility of flipped classroom in terms of being highly interactive, thought provoking and activity lead learning. Seventy five percent of the class completed the pre-session preparation. Students reported that their queries and misconceptions were cleared in a much better way in the face-to-face session as compared to the traditional setting (4.09 ±1.04). Flipped classroom(FCR) teaching and learning pedagogy is an effective way of enhancing student engagement and active learning. Thus, this pedagogy can be used as an effective tool in medical schools.

  13. Multiple Representation Instruction First versus Traditional Algorithmic Instruction First: Impact in Middle School Mathematics Classrooms

    Science.gov (United States)

    Flores, Raymond; Koontz, Esther; Inan, Fethi A.; Alagic, Mara

    2015-01-01

    This study examined the impact of the order of two teaching approaches on students' abilities and on-task behaviors while learning how to solve percentage problems. Two treatment groups were compared. MR first received multiple representation instruction followed by traditional algorithmic instruction and TA first received these teaching…

  14. Flipping around the classroom: Accelerated Bachelor of Science in Nursing students' satisfaction and achievement.

    Science.gov (United States)

    El-Banna, Majeda M; Whitlow, Malinda; McNelis, Angela M

    2017-09-01

    The flipped classroom approach is based on shared responsibility for learning by students and teachers, and empowers students to take an active role in the learning process. While utilization of this approach has resulted in higher exam scores compared to traditional approaches in prior studies, the flipped classroom has not included learners in Accelerated Bachelor of Science in Nursing (ABSN) programs. To examine differences on exam scores and satisfaction of teaching between a 3-week flipped and traditional classroom approach. Mixed methods, crossover repeated measures design. Private school of nursing located in the eastern United States. 76 ABSN students. Two separate sections of a Pharmacology course received either 3-weeks of flipped or traditional classroom during Period 1, then switched approaches during Period 2. Two exam scores measuring knowledge and a questionnaire assessing satisfaction of teaching were collected. Focus groups were conducted to learn about students' experience in the flipped classroom. Descriptive statistics, Wilcoxon rank sum test, and stepwise linear mixed model were used to analyze quantitative data. Focus group data were transcribed, coded, and categorized in themes. Students in the flipped classroom achieved significantly higher scores on the first Pharmacology exam than students in the traditional classroom, but there was no significant difference on the second exam. Three themes emerged from focus groups on student perception of integrating the flipped approach: don't fix what isn't broken; treat me as an adult; and remember the work is overwhelming. Both traditional and flipped classroom approaches successfully prepared students for the Pharmacology exams. While results support the use of the flipped approach, judicious use of this instructional pedagogy with dense or difficult content, particularly in accelerated programs, is recommended. Instructors should also provide students with enough information and rationale for using

  15. "Socratic Circles are a Luxury": Exploring the Conceptualization of a Dialogic Tool in Three Science Classrooms

    Science.gov (United States)

    Copelin, Michelle Renee

    Research has shown that dialogic instruction promotes learning in students. Secondary science has traditionally been taught from an authoritative stance, reinforced in recent years by testing policies requiring coverage. Socratic Circles are a framework for student-led dialogic discourse, which have been successfully used in English language arts and social studies classrooms. The purpose of this research was to explore the implementation process of Socratic Circles in secondary science classes where they have been perceived to be more difficult. Focusing on two physical science classes and one chemistry class, this study described the nature and characteristics of Socratic Circles, teachers' dispositions toward dialogic instruction, the nature and characteristics of student discussion, and student motivation. Socratic Circles were found to be a dialogic support that influenced classroom climate, social skills, content connections, and student participation. Teachers experienced conflict between using traditional test driven scripted teaching, and exploring innovation through dialogic instruction. Students experienced opportunities for peer interaction, participation, and deeper discussions in a framework designed to improve dialogic skills. Students in two of the classrooms showed evidence of motivation for engaging in peer-led discussion, and students in one class did not. The class that did not show evidence of motivation had not been given the same scaffolding as the other two classes. Two physical science teachers and one chemistry teacher found that Socratic Circles required more scaffolding than was indicated by their peers in other disciplines such as English and social studies. The teachers felt that student's general lack of background knowledge for any given topic in physical science or chemistry necessitated the building of a knowledge platform before work on a discussion could begin. All three of the teachers indicated that Socratic Circles were a

  16. Flipped Classroom: A Comparison Of Student Performance Using Instructional Videos And Podcasts Versus The Lecture-Based Model Of Instruction

    Directory of Open Access Journals (Sweden)

    Retta Guy

    2016-05-01

    Full Text Available The authors present the results of a study conducted at a comprehensive, urban, coeducational, land-grant university. A quasi-experimental design was chosen for this study to compare student performance in two different classroom environments, traditional versus flipped. The study spanned 3 years, beginning fall 2012 through spring 2015. The participants included 433 declared business majors who self-enrolled in several sections of the Management Information Systems course during the study. The results of the current study mirrored those of previous works as the instructional method impacted students’ final grade. Thus, reporting that the flipped classroom approach offers flexibility with no loss of performance when compared to traditional lecture-based environments.

  17. Classroom

    Indian Academy of Sciences (India)

    "Classroom" is equally a forum for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science. ! Quantum Theory of the Doppler Effed. Generally text books give only the wave ...

  18. Classroom

    Indian Academy of Sciences (India)

    "Classroom" is equally a foru11J. for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science. Point Set Topological ... a new way of looking at this problem and we will prove.

  19. Classroom

    Indian Academy of Sciences (India)

    responses, or both. "Classroom" is equally a forum for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science. ... I shall give the solution to the problem, along with relevant.

  20. Classroom

    Indian Academy of Sciences (India)

    in a classroom situation. We may suggest strategies for dealing with them, or invite responses, or both. ... research, could then both inject greater vigour into teaching of ... ture, forestry and fishery sciences, management of natural resources.

  1. Teaching Science Through the Language of Students in Technology-Enhanced Instruction

    Science.gov (United States)

    Ryoo, Kihyun

    2015-02-01

    This study examines whether and how tapping into students' everyday language in a web-based learning environment can improve all students' science learning in linguistically heterogeneous classrooms. A total of 220 fifth-grade English Language Learners (ELLs) and their non-ELL peers were assigned to either an everyday English approach condition or a textbook approach condition, and completed technology-enhanced instruction focusing on respiration and photosynthesis. Students in the everyday English approach condition were taught the concepts in everyday, conversational English before content-specific scientific terms were introduced, while students in the textbook approach condition were taught the same concepts and vocabulary simultaneously. The results show that the everyday English approach was significantly more effective in helping both ELLs and non-ELL students develop a coherent understanding of abstract concepts related to photosynthesis and respiration. Students in the everyday English approach condition were also better able to link content-specific terms to their understanding of the concepts. These findings show the potential advantage of using students' everyday English as a resource to make science more accessible to linguistically diverse students in mainstream classrooms. By integrating students' everyday language in science instruction, it is possible for all students including ELLs to acquire both the content and language of science.

  2. Teachers’ Beliefs about Differentiated Instructions in Mixed Ability Classrooms: A Case of Time Limitation

    Directory of Open Access Journals (Sweden)

    Jaweria Aftab

    2015-12-01

    Full Text Available Students in today’s mixed ability classrooms come from diverse backgrounds with needs. In such a scenario, differentiated instructions are of prime importance for teachers to deal with in mixed ability classrooms. The teaching experiences and academic life mould perceptions of teachers which effects their teaching style; therefore, it is important to know teachers’ beliefs and perceptions regarding teaching in a mixed ability classroom at middle school level so as to guide educators and heads inside and outside the institution. For this study, quantitative research method was used to explore and understand the beliefs and perceptions of the teachers of middle schools regarding implementing differentiated instructions. The sample size included 120 teachers who were sent a survey questionnaire through online Google form and was constructed by customizing the questionnaire from Ballone and Czerniak (2001. The analysis of quantitative inquiry revealed that there is a positive association between teachers’ beliefs about their intentions and stakeholders’ expectations to implement differentiated instruction. It was highlighted that all stakeholders wanted teachers to implement differentiated strategies; however, the teachers were found to be short of planning and instructional time for differentiation.

  3. Deaf Children's Science Content Learning in Direct Instruction Versus Interpreted Instruction

    Science.gov (United States)

    Kurz, Kim B.; Schick, Brenda; Hauser, Peter C.

    2015-01-01

    This research study compared learning of 6-9th grade deaf students under two modes of educational delivery--interpreted vs. direct instruction using science lessons. Nineteen deaf students participated in the study in which they were taught six science lessons in American Sign Language. In one condition, the lessons were taught by a hearing…

  4. The Effects of a Flipped Classroom Model of Instruction on Students' Performance and Attitudes Towards Chemistry

    Science.gov (United States)

    Olakanmi, Eunice Eyitayo

    2017-02-01

    This study establishes the effects of a flipped classroom model of instruction on academic performance and attitudes of 66 first-year secondary school students towards chemistry. A pre-test and post-test experimental design was employed to assign students randomly into either the experimental or control group. In order to assess the suitability of using flipped model of instruction, students were divided in two groups. For the first group called the experimental group, a "flipped classroom" was used in which the students were given video lessons and reading materials, before the class to be revised at home. On the other hand, the second group followed traditional methodology, and it was used as control. The rate of reaction knowledge test and the chemistry attitude scale were administered. In addition, the researcher documented classroom observations, experiences, thoughts and insights regarding the intervention in a journal on a daily basis in order to enrich the data. Students were interviewed at the end of the research in order to enrich the qualitative data also. Findings from this study reveal that the flipped instruction model facilitates a shift in students' conceptual understanding of the rate of chemical reaction significantly more than the control condition. Positive significant differences were found on all assessments with the flipped class students performing higher on average. Students in the flipped classroom model condition benefited by preparing for the lesson before the classes and had the opportunity to interact with peers and the teacher during the learning processes in the classroom. The findings support the notion that teachers should be trained or retrained on how to incorporate the flipped classroom model into their teaching and learning processes because it encourages students to be directly involved and active in the learning.

  5. Inspiring Instructional Change in Elementary School Science: The Relationship Between Enhanced Self-efficacy and Teacher Practices

    Science.gov (United States)

    Sandholtz, Judith Haymore; Ringstaff, Cathy

    2014-10-01

    This longitudinal study examined the extent to which teachers' participation in a 3-year professional development program enhanced their self-efficacy and prompted changes in science instruction in the early elementary grades. The study used a mixed-methods design, and included 39 teachers who taught in kindergarten, first grade, or second grade classrooms in rural school districts. Data sources, administered pre-program and at the end of each year, included a self-efficacy assessment and teacher survey. Interviews and classroom observations provided corroborating data about teachers' beliefs and science instruction. Results showed significant increases in teachers' overall self-efficacy in teaching science, personal efficacy, and outcome expectancy efficacy during the 3 years. Gains in self-efficacy were correlated with changes in reported instructional practices, particularly student participation activities. However, changes in self-efficacy tended not to be correlated with changes in instructional time. Contextual factors beyond teachers' direct control, such as curricular and testing requirements in mathematics and language arts influenced time allotted to science instruction.

  6. A Case Study Investigating Secondary Science Teachers' Perceptions of Science Literacy Instruction

    Science.gov (United States)

    Blackmon, Phyllis Ann

    This project study addressed the lack of inclusion of discipline literacy pedagogy in secondary classrooms in a rural school district in eastern North Carolina. Discipline literacy practices are recommended in the Common Core Standards for History/Social Studies, Science, and Technical Subjects. The district had implemented content area reading strategies across content areas, yet no significant progress in secondary students' reading abilities had been demonstrated in statewide or national assessments. The conceptual framework that drove this study was disciplinary literacy, founded by the literacy research of Shanahan, Shanahan, and Zygouris-Coe. Within a qualitative case study method, this investigation of 8 secondary science teachers' experiences teaching literacy during content instruction focused on practices of embedding science-specific reading strategies into lessons and factors that influence teachers' decisions to participate in professional development to advance their learning of discipline-specific literacy methods. Data were collected and triangulated using a focus group and 8 individual interviews. Data from both methods were analyzed into codes and categories that developed into emergent themes. Findings from the focus group and individual interviews revealed that the science teachers possessed limited knowledge of science-specific reading strategies; used random, general literacy practices; and had completed inadequate professional development on science-related topics. Positive change may occur if district leaders support teachers in expanding their knowledge and application of discipline literacy strategies through participation in discipline literacy-focused professional development. The study may provide educators and researchers a deeper understanding of disciplinary literacy and increase research on the topic.

  7. Research on same-gender grouping in eighth-grade science classrooms

    Science.gov (United States)

    Friend, Jennifer Ingrid

    This study examined two hypotheses related to same-gender grouping of eighth-grade science classes in a public middle-school setting in suburban Kansas City. The first hypothesis, male and female students enrolled in same-gender eighth-grade science classes demonstrate more positive science academic achievement than their male and female peers enrolled in mixed-gender science classes. The second hypothesis, same-gender grouping of students in eighth-grade science has a positive effect on classroom climate. The participants in this study were randomly assigned to class sections of eighth-grade science. The first experimental group was an eighth-grade science class of all-male students (n = 20) taught by a male science teacher. The control group used for comparison to the male same-gender class consisted of the male students (n = 42) in the coeducational eighth-grade science classes taught by the same male teacher. The second experimental group was an eighth-grade science class of all-female students (n = 23) taught by a female science teacher. The control group for the female same-gender class consisted of female students (n = 61) in the coeducational eighth-grade science classes taught by the same female teacher. The male teacher and the female teacher did not vary instruction for the same-gender and mixed-gender classes. Science academic achievement was measured for both groups through a quantitative analysis using grades on science classroom assessment and overall science course grades. Classroom climate was measured through qualitative observations and through qualitative and quantitative analysis of a twenty-question student survey administered at the end of each trimester grading period. The results of this study did not indicate support for either hypothesis. Data led to the conclusions that same-gender grouping did not produce significant differences in student science academic achievement, and that same-gender classes did not create a more positive

  8. The Effects of the Flipped Model of Instruction on Student Engagement and Performance in the Secondary Mathematics Classroom

    Directory of Open Access Journals (Sweden)

    Kevin R. Clark

    2015-01-01

    Full Text Available In many of the secondary classrooms across the country, students are passively engaged in the mathematics content, and academic performance can be described, at best, as mediocre. This research study sought to bring about improvements in student engagement and performance in the secondary mathematics classroom through the implementation of the flipped model of instruction and compared student interaction in the flipped classroom with a traditional format. The flipped model of instruction is a relatively new teaching strategy attempting to improve student engagement and performance by moving the lecture outside the classroom via technology and moving homework and exercises with concepts inside the classroom via learning activities. Changes in the student participants’ perceptions and attitudes were evidenced and evaluated through the completion of a pre- and post-survey, a teacher-created unit test, random interviews, and a focus group session. In addition, the researcher documented observations, experiences, thoughts, and insights regarding the intervention in a journal on a daily basis. Quantitative results and qualitative findings revealed the student participants responded favorably to the flipped model of instruction and experienced an increase in their engagement and communication when compared to the traditional classroom experience. The student participants also recognized improvements in the quality of instruction and use of class of time with the flipped model of instruction. In terms of academic performance, no significant changes were demonstrated between the flipped model of instruction students and those taught in a traditional classroom environment.

  9. Using Technology to Facilitate Differentiated High School Science Instruction

    Science.gov (United States)

    Maeng, Jennifer L.

    2017-10-01

    This qualitative investigation explored the beliefs and practices of one secondary science teacher, Diane, who differentiated instruction and studied how technology facilitated her differentiation. Diane was selected based on the results of a previous study, in which data indicated that Diane understood how to design and implement proactively planned, flexible, engaging instructional activities in response to students' learning needs better than the other study participants. Data for the present study included 3 h of semi-structured interview responses, 37.5 h of observations of science instruction, and other artifacts such as instructional materials. This variety of data allowed for triangulation of the evidence. Data were analyzed using a constant comparative approach. Results indicated that technology played an integral role in Diane's planning and implementation of differentiated science lessons. The technology-enhanced differentiated lessons employed by Diane typically attended to students' different learning profiles or interest through modification of process or product. This study provides practical strategies for science teachers beginning to differentiate instruction, and recommendations for science teacher educators and school and district administrators. Future research should explore student outcomes, supports for effective formative assessment, and technology-enhanced readiness differentiation among secondary science teachers.

  10. Flipped classroom instructional approach in undergraduate medical education

    Science.gov (United States)

    Fatima, Syeda Sadia; Arain, Fazal Manzoor; Enam, Syed Ather

    2017-01-01

    Objective: In this study we implemented the “flipped classroom” model to enhance active learning in medical students taking neurosciences module at Aga Khan University, Karachi. Methods: Ninety eight undergraduate medical students participated in this study. The study was conducted from January till March 2017. Study material was provided to students in form of video lecture and reading material for the non-face to face sitting, while face to face time was spent on activities such as case solving, group discussions, and quizzes to consolidate learning under the supervision of faculty. To ensure deeper learning, we used pre- and post-class quizzes, work sheets and blog posts for each session. Student feedback was recorded via a likert scale survey. Results: Eighty four percent students gave positive responses towards utility of flipped classroom in terms of being highly interactive, thought provoking and activity lead learning. Seventy five percent of the class completed the pre-session preparation. Students reported that their queries and misconceptions were cleared in a much better way in the face-to-face session as compared to the traditional setting (4.09 ±1.04). Conclusion: Flipped classroom(FCR) teaching and learning pedagogy is an effective way of enhancing student engagement and active learning. Thus, this pedagogy can be used as an effective tool in medical schools. PMID:29492071

  11. Multifaceted NOS Instruction: Contextualizing Nature of Science with Documentary Films

    Science.gov (United States)

    Bloom, Mark; Binns, Ian C.; Koehler, Catherine

    2015-01-01

    This research focuses on inservice science teachers' conceptions of nature of science (NOS) before and after a two-week intensive summer professional development (PD). The PD combined traditional explicit NOS instruction, numerous interactive interventions that highlighted NOS aspects, along with documentary films that portrayed NOS in context of…

  12. Science Instructional Leadership: The Role of the Department Chair

    Science.gov (United States)

    Peacock, Jeremy S.

    2014-01-01

    With science teachers facing comprehensive curriculum reform that will shape science education for decades to come, high school department chairs represent a critical resource for instructional leadership and teacher support. While the historical literature on the department chair indicates that chairs are in prime positions to provide…

  13. Improving Students' Attitudes toward Science Using Instructional Congruence

    Science.gov (United States)

    Zain, Ahmad Nurulazam Md; Samsudin, Mohd Ali; Rohandi, Robertus; Jusoh, Azman

    2010-01-01

    The objective of this study was to improve students' attitudes toward science using instructional congruence. The study was conducted in Malaysia, in three low-performing secondary schools in the state of Penang. Data collected with an Attitudes in Science instrument were analysed using Rasch modeling. Qualitative data based on the reflections of…

  14. The Roles of Teachers' Science Talk in Revealing Language Demands within Diverse Elementary School Classrooms: A Study of Teaching Heat and Temperature in Singapore

    Science.gov (United States)

    Seah, Lay Hoon; Yore, Larry D.

    2017-01-01

    This study of three science teachers' lessons on heat and temperature seeks to characterise classroom talk that highlighted the ways language is used and to examine the nature of the language demands revealed in constructing, negotiating, arguing and communicating science ideas. The transcripts from the entire instructional units for these…

  15. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    Science.gov (United States)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-06-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to evaluate the (HIC) system, which incorporates augmented reality, virtual reality and cloud-classroom to teach basic materials science courses. The study followed a pretest-posttest quasi-experimental research design. A total of 92 students (aged 19-20 years), in a second-year undergraduate program, participated in this 18-week-long experiment. The students were divided into an experimental group and a control group. The experimental group (36 males and 10 females) was instructed utilizing the HIC system, while the control group (34 males and 12 females) was led through traditional teaching methods. Pretest, posttest, and delayed posttest scores were evaluated by multivariate analysis of covariance. The results indicated that participants in the experimental group who used the HIC system outperformed the control group, in the both posttest and delayed posttest, across three learning dimensions. Based on these results, the HIC system is recommended to be incorporated in formal materials science learning settings.

  16. Evaluating Educational Resources for Inclusion in the Dig Texas Instructional Blueprints for Earth & Space Science

    Science.gov (United States)

    Jacobs, B. E.; Bohls-Graham, E.; Martinez, A. O.; Ellins, K. K.; Riggs, E. M.; Serpa, L. F.; Stocks, E.; Fox, S.; Kent, M.

    2014-12-01

    Today's instruction in Earth's systems requires thoughtful selection of curricula, and in turn, high quality learning activities that address modern Earth science. The Next Generation Science Standards (NGSS), which are intended to guide K-12 science instruction, further demand a discriminating selection process. The DIG (Diversity & Innovation in Geoscience) Texas Instructional Blueprints attempt to fulfill this practice by compiling vetted educational resources freely available online into units that are the building blocks of the blueprints. Each blueprint is composed of 9 three-week teaching units and serves as a scope and sequence for teaching a one-year Earth science course. In the earliest stages of the project, teams explored the Internet for classroom-worthy resources, including laboratory investigations, videos, visualizations, and readings, and submitted the educational resources deemed suitable for the project into the project's online review tool. Each team member evaluated the educational resources chosen by fellow team members according to a set of predetermined criteria that had been incorporated into the review tool. Resources rated as very good or excellent by all team members were submitted to the project PIs for approval. At this stage, approved resources became candidates for inclusion in the blueprint units. Team members tagged approved resources with descriptors for the type of resource and instructional strategy, and aligned these to the Texas Essential Knowledge and Skills for Earth and Space Science and the Earth Science Literacy Principles. Each team then assembled and sequenced resources according to content strand, balancing the types of learning experiences within each unit. Once units were packaged, teams then considered how they addressed the NGSS and identified the relevant disciplinary core ideas, crosscutting concepts, and science and engineering practices. In addition to providing a brief overview of the project, this

  17. Metacognitive Strategies in the Introduction to Political Science Classroom

    Science.gov (United States)

    Lusk, Adam

    2016-01-01

    This article examines metacognitive-based teaching strategies and provides preliminary evidence about their effectiveness in the political science classroom. In a 2013 Fall semester Introduction to Political Science course, three metacognitive-based teaching strategies were designed and implemented for improving student learning through greater…

  18. The Flipped Classroom Teaching Model and Its Use for Information Literacy Instruction

    Directory of Open Access Journals (Sweden)

    Sara Arnold-Garza

    2014-07-01

    Full Text Available The “flipped classroom” teaching model has emerged in a variety of educational settings. It provides many advantages for students and exploits the affordances of modern technology. This article describes some of the pedagogical and logistical characteristics of the flipped teaching model. It situates the flipped classroom in higher education and library instruction, and make the case that there are characteristics of information literacy instruction that fit well with the flipped teaching model, in addition to providing some unique challenges.

  19. How Elementary Teachers' Beliefs About the Nature of Science Mediate Implementing Prescribed Science Curricula in Their Classrooms

    Science.gov (United States)

    Giglio, Kathleen Rose Fitzgerald

    This is an in depth study of two elementary school teachers, who are generalists because they teach multiple subjects to their classes, in addition to science, respectively in grade 3 and grade 6. The teachers taught and their students learned using a contemporary understanding of the nature of science (NOS), which they learned by actually doing science investigations, rather than being explicitly told about NOS (contrary to what some scholars claim). Neither teacher completed any formal/informal science training/experiences, especially connected to the construct NOS. Even though the teachers did not explicitly reference NOS in the classroom, their teaching about NOS was made possible through their implementation of the FOSS ( Full Option Science System) curriculum. Although their students enthusiastically demonstrated competence in both science process and content, as prescribed by the FOSS curriculum, the teachers' felt undermined by the state mandated assessments and the inclusion of student performance as a criterion for the state teacher evaluation system. This research was designed to answer the following questions: (1) What are elementary teachers' conceptions about NOS? (2) How are the teachers' NOS views manifested in their implementation of the FOSS program and their choices of instructional methods/materials? (3) What factors may have enhanced or hindered how the teachers sustained their NOS conceptions as they implemented the FOSS program? To explicate the relationship between teachers' views of NOS and the extent to which constructivist practices were employed in their science instruction, a multiple research methodology using grounded theory as the foundation and employing both quantitative and qualitative measures, was needed. Sources of quantitative data were written survey results using the Student Understanding of Science and Scientific Inquiry Questionnaire (SUSSI; Liang et al., 2008) Likert scale responses and constructed responses. Face

  20. The Responsive Environmental Assessment for Classroom Teaching (REACT): the dimensionality of student perceptions of the instructional environment.

    Science.gov (United States)

    Nelson, Peter M; Demers, Joseph A; Christ, Theodore J

    2014-06-01

    This study details the initial development of the Responsive Environmental Assessment for Classroom Teachers (REACT). REACT was developed as a questionnaire to evaluate student perceptions of the classroom teaching environment. Researchers engaged in an iterative process to develop, field test, and analyze student responses on 100 rating-scale items. Participants included 1,465 middle school students across 48 classrooms in the Midwest. Item analysis, including exploratory and confirmatory factor analysis, was used to refine a 27-item scale with a second-order factor structure. Results support the interpretation of a single general dimension of the Classroom Teaching Environment with 6 subscale dimensions: Positive Reinforcement, Instructional Presentation, Goal Setting, Differentiated Instruction, Formative Feedback, and Instructional Enjoyment. Applications of REACT in research and practice are discussed along with implications for future research and the development of classroom environment measures. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  1. The effects of student-level and classroom-level factors on elementary students' science achievement in five countries

    Science.gov (United States)

    Kaya, Sibel

    The interest in raising levels of achievement in math and science has led to a focus on investigating the factors that shape achievement in these subjects (Lamb & Fullarton, 2002) as well as understanding how these factors operate across countries (Baker, Fabrega, Galindo, & Mishook, 2004). The current study examined the individual student factors and classroom factors on fourth grade science achievement within and across five countries. Guided by the previous school learning models, the elements of students' science learning were categorized as student-level and classroom-level factors. The student-level factors included gender, self-confidence in science, and home resources. The classroom-level factors included teacher characteristics, instructional variables and classroom composition. Results for the United States and four other countries, Singapore, Japan, Australia, and Scotland were reported. Multilevel effects of student and classroom variables were examined through Hierarchical Linear Modeling (HLM) using the Trends in International Mathematics and Science Study (TIMSS) 2003 fourth grade dataset. The outcome variable was the TIMSS 2003 science score. Overall, the results of this study showed that selected student background characteristics were consistently related to elementary science achievement in countries investigated. At the student-level, higher levels of home resources and self-confidence and at the classroom-level, higher levels of class mean home resources yielded higher science scores on the TIMSS 2003. In general, teacher and instructional variables were minimally related to science achievement. There was evidence of positive effects of teacher support in the U.S. and Singapore. The emphasis on science inquiry was positively related to science achievement in Singapore and negatively related in the U.S. and Australia. Experimental studies that investigate the impacts of teacher and instructional factors on elementary science achievement are

  2. Using the instructional congruence model to change a science teacher's practices and English language learners' attitudes and achievement in science

    Science.gov (United States)

    Salame, Hania Moussa

    The purpose of the current study was to examine the effects of adapting the instructional congruence model on the English Language Learners' (ELL) attitudes and achievement in science. Changes in teacher's views and practices were documented. The mixed-method approach was adapted. Data sources were the "Attitude Towards Science" survey, VNOS-C questionnaire, Luykx and Lee (2007) observational instrument, Gee (1997) discussion categories, video recordings, and pre- and post-tests. A science teacher and a class of 24 ELL female students in a charter school participated in this research. The results of this study indicated that student achievement increased significantly and students' attitudes improved in all contexts. At the conclusion of the study, all teacher's views on NOS were reported to be informed, teacher's practices were rated higher, and different classroom interactions increased significantly. The instructional congruence model in science education has been successful in reaching different learners, improving students' attitudes and achievement in science and enhancing teacher's views and practices. This model has significant potential for meeting the challenging goals of reformed science education.

  3. The effectiveness of constructivist science instructional methods on high school students' motivation

    Science.gov (United States)

    Cook, Michele T.

    2007-12-01

    A problem facing educators is students' academic motivation to successfully complete science class offerings and pass state standardized tests. This study focused on the effectiveness of constructivist science instructional methods to motivate high school science students to complete classroom activities. It was the intent of this study to provide a voice for students regarding what activities promote their motivation. A constant comparative analysis including open, axial, and selective coding of participants' interview responses and classroom observations provided codes used to develop a substantive theory of motivation and personal investment in students' learning. The findings of this study were that teachers should provide students with constructivist lessons such as cooperative groups, problem-based learning, and inquiry questions in which to learn content objectives. As social beings, students are more motivated to participate in activities that allow them to work with peers, contribute their own ideas, and relate topics of interest to their own realities. Keeping these ideas in mind during lesson preparation will increase students' motivation and achievement. Variation of instruction should include activities that reflect multiple intelligences and real world situations. The researcher recommends the development of professional learning communities as a way for teachers to share teaching practices that motivate students to learn and become problem solvers, thus promoting social change in educators' pedagogy in the researcher's teaching community. In an era of educational accountability and federal regulations, this study provides an important tool for teachers to employ in order to meet the educational needs of their students.

  4. Best Practices for Implementing Inquiry-Based Science Instruction for English Language Learners

    Science.gov (United States)

    Williams, Erica

    This applied dissertation was designed to provide better access to current information to link literacy and science. Students frequently used literacy skills to gather information and communicate understanding of scientific concepts to others. Science became applicable through the tools associated with literacy. There was a need for instruction that integrated language development with science content. This research focused on revealing the instructional trends of English language learners science teachers in the United Arab Emirates. The researcher introduced the questionnaire surveys in the form of a professional development session. The participants were asked to complete the questionnaire concurrently with the descriptive presentation of each component of the sheltered instruction observation protocol (SIOP) model. Completing the SIOP Checklist Survey provided data on the type of constructivist strategies (best practices) teachers were utilizing and to what degree of fidelity the strategies were being implemented. Teachers were encouraged to continue to use these services for curriculum enrichment and as an additional source for future lesson plans. An analysis of the data revealed authentic learning as the most common best practice used with the most fidelity by teachers. The demographic subgroup, teaching location, was the only subgroup to show statistical evidence of an association between teaching location and the use of problem-based learning techniques in the classroom. Among factors that influenced the degree of teacher fidelity, teachers' expectation for student achievement had a moderate degree of association between the use of scaffolding techniques and co-operative learning.

  5. Instructional Strategies and Practices Used to Enhance Student Success in the High School Algebra I Inclusive Classroom

    OpenAIRE

    Lowery, Lillian Margretta

    2003-01-01

    Instructional Strategies and Practices Used to Enhance Student Success in the High School Algebra I Inclusive Classroom Lillian M. Lowery Dr. Jean B. Crockett, Chair (ABSTRACT) The purpose of this qualitative study was to examine the instructional conditions and practices described as successful for teachers in the Algebra I inclusive classroom. In the southeastern suburban school district used for this study, students who began their freshman year of high school in fiscal y...

  6. The impact of the inclusion of students with handicaps and disabilities in the regular education science classroom

    Science.gov (United States)

    Donald, Cathey Nolan

    This study was conducted to determine the impact of the inclusion of students with handicaps and disabilities in the regular education science classroom. Surveys were mailed to the members of the Alabama Science Teachers Association to obtain information from teachers in inclusive classrooms. Survey responses from teachers provide insight into these classrooms. This study reports the results of the teachers surveyed. Results indicate multiple changes occur in the educational opportunities presented to regular education students when students with handicaps and disabilities are included in the regular science classroom. Responding teachers (60%) report omitting activities that formerly provided experiences for students, such as laboratory activities using dangerous materials, field activities, and some group activities. Also omitted, in many instances (64.1%), are skill building opportunities of word problems and higher order thinking skills. Regular education students participate in classes where discipline problems related to included students are reported as the teachers most time consuming task. In these classrooms, directions are repeated frequently, reteaching of material already taught occurs, and the pace of instruction has been slowed. These changes to the regular classroom occur across school levels. Many teachers (44.9%) report they do not see benefits associated with the inclusion of students with special needs in the regular classroom.

  7. Comparisons of the Educational Outcomes from Distance Delivered versus Traditional Classroom Instruction in Principles of Microeconomics

    OpenAIRE

    Crouse, Tricia Lynn

    2002-01-01

    Recent advancements in the speed and availability of the Internet have catapulted distance education into the forefront of possible economic education alternatives. Distance learning courses are taught exclusively over the Internet. Economics distance courses provide alternatives for economics students to traditional classroom instruction, and also invite new students to the discipline who may not have otherwise enrolled. An increase in the number of distance courses in the economics field ha...

  8. Cutting edge technology to enhance nursing classroom instruction at Coppin State University.

    Science.gov (United States)

    Black, Crystal Day; Watties-Daniels, A Denyce

    2006-01-01

    Educational technologies have changed the paradigm of the teacher-student relationship in nursing education. Nursing students expect to use and to learn from cutting edge technology during their academic careers. Varied technology, from specified software programs (Tegrity and Blackboard) to the use of the Internet as a research medium, can enhance student learning. The authors provide an overview of current cutting edge technologies in nursing classroom instruction and its impact on future nursing practice.

  9. Energy matters: An investigation of drama pedagogy in the science classroom

    Science.gov (United States)

    Alrutz, Megan

    The purpose of this study is to explore and document how informal and improvisational drama techniques affect student learning in the science classroom. While implementing a drama-based science unit, I examined multiple notions of learning, including, but not limited to, traditional notions of achievement, student understanding, student participation in the science classroom, and student engagement with, and knowledge of, science content. Employing an interpretivist research methodology, as outlined by Fredrick Erickson for qualitative analysis in the classroom, I collected data through personal observations; student and teacher interviews; written, artistic and performed class work; video-recorded class work; written tests; and questionnaires. In analyzing the data, I found strong support for student engagement during drama-based science instruction. The drama-based lessons provided structures that drew students into lessons, created enthusiasm for the science curriculum, and encouraged meaningful engagement with, and connections to, the science content, including the application and synthesis of science concepts and skills. By making student contributions essential to each of the lessons, and by challenging students to justify, explain, and clarify their understandings within a dramatic scenario, the classroom facilitators created a conducive learning environment that included both support for student ideas and intellectual rigor. The integration of drama-based pedagogy most affected student access to science learning and content. Students' participation levels, as well as their interest in both science and drama, increased during this drama-based science unit. In addition, the drama-based lessons accommodated multiple learning styles and interests, improving students' access to science content and perceptions of their learning experience and abilities. Finally, while the drama-based science lessons provided multiple opportunities for solidifying understanding of

  10. Technologies and Reformed-Based Science Instruction: The Examination of a Professional Development Model Focused on Supporting Science Teaching and Learning with Technologies

    Science.gov (United States)

    Campbell, Todd; Longhurst, Max L.; Wang, Shiang-Kwei; Hsu, Hui-Yin; Coster, Dan C.

    2015-10-01

    While access to computers, other technologies, and cyber-enabled resources that could be leveraged for enhancing student learning in science is increasing, generally it has been found that teachers use technology more for administrative purposes or to support traditional instruction. This use of technology, especially to support traditional instruction, sits in opposition to most recent standards documents in science education that call for student involvement in evidence-based sense-making activities. Many see technology as a potentially powerful resource that is reshaping society and has the potential to do the same in science classrooms. To consider the promise of technology in science classrooms, this research investigated the impact of a professional development project focused on enhancing teacher and student learning by using information and communication technologies (ICTs) for engaging students in reformed-based instruction. More specifically, these findings revealed positive teacher outcomes with respect to reformed-based and technology-supported instruction and increased ICT and new literacies skills. When considering students, the findings revealed positive outcomes with respect to ICT and new literacies skills and student achievement in science.

  11. Mapping Science in Discourse-based Inquiry Classrooms

    Science.gov (United States)

    Yeneayhu, Demeke Gesesse

    Abstract The purpose of this study was to investigate how discourse-based inquiry science lessons provided opportunities for students to develop a network of semantic relations among core ideas and concepts in science. It was a naturalistic inquiry classroom lessons observation study on three science teachers--- a middle school science teacher and two high school physics teachers in an urban school district located in the Western New York region. Discourse and thematic analysis drawn from the theory of Systemic Functional Linguistics were utilized as guiding framework and analysis tools. Analysis of the pre-observation and post-observation interviews of the participant teachers revealed that all of the three teachers participated in at least one inquiry-based science teaching teacher professional development program and they all thought their classroom teaching practice was inquiry-based. Analysis of their classroom lesson videos that each participant teacher taught on a specific science topic revealed that the middle school teacher was found to be a traditional teacher-dominated classroom whereas the two high school physics teachers' classroom teaching approach was found to be discourse-based inquiry. One of the physics teachers who taught on a topic of Magnetic Interaction used relatively structured and guided-inquiry classroom investigations. The other physics teacher who taught on a topic of Color Mixing utilized open-ended classroom investigations where the students planned and executed the series of classroom science investigations with minimal guidance from the teacher. The traditional teacher-based classroom communicative pattern was found to be dominated by Triadic Dialogue and most of the science thematics were jointly developed by the teacher and the students, but the students' role was limited to providing responses to the teacher's series questions. In the guided-inquiry classroom, the common communicative pattern was found to be True Dialogue and most

  12. The Role of Relational and Instructional Classroom Supports in the Language Development of At-Risk Preschoolers

    Science.gov (United States)

    Gosse, Carolyn S.; McGinty, Anita S.; Mashburn, Andrew J.; Hoffman, LaVae M.; Pianta, Robert C.

    2014-01-01

    The present study examined the extent to which preschool classroom supports--relational support (RS) and instructional support (IS)--are associated with children's language development and whether these associations vary as a function of children's language ability. The language skills of 360 children within 95 classrooms were assessed using an…

  13. The Effect of the Flipped Classroom Approach to OpenCourseWare Instruction on Students' Self-Regulation

    Science.gov (United States)

    Sun, Jerry Chih-Yuan; Wu, Yu-Ting; Lee, Wei-I

    2017-01-01

    The purpose of this study was to investigate the effect of the flipped classroom approach to OpenCourseWare instruction on students' self-regulation. OpenCourseWare was integrated into the flipped classroom model (experimental group) and distance learning (control group). Overall, 181 freshmen taking a physics course were allowed to choose their…

  14. Instructional and Motivational Classroom Discourse and Their Relationship with Teacher Autonomy and Competence Support--Findings from Teacher Professional Development

    Science.gov (United States)

    Kiemer, Katharina; Gröschner, Alexander; Kunter, Mareike; Seidel, Tina

    2018-01-01

    The present study investigates whether productive classroom discourse in the form of instructional and motivational classroom discourse (Turner et al., "Journal of Educational Psychology" 94: 88-106, 2002) provides a supportive social context for students that fosters the fulfilment of the basic psychological needs of autonomy and…

  15. Deoxyribonucleic Acid and Other Words Students Avoid Speaking Aloud: Evaluating the Role of Pronunciation on Participation in Secondary School Science Classroom Conversations

    Science.gov (United States)

    Beck, Stacie Elizabeth

    Student's verbal participation in science classrooms is an essential element in building the skills necessary for proficiency in scientific literacy and discourse. The myriad of new, multisyllabic vocabulary terms introduced in one year of secondary school biology instruction can overwhelm students and further impede the self-efficacy needed for concise constructions of scientific explanations and arguments. Factors inhibiting students' inclination to answer questions, share ideas and respond to peers in biology classrooms include confidence and self-perceived competence in appropriately speaking the language of science. Providing students with explicit, engaging instruction in methods to develop vocabulary for use in expressing conclusions is critical for expanding comprehension of science concepts. This study fused the recommended strategies for engaging vocabulary instruction with linguistic practices for teaching pronunciation to examine the relationship between a student's ability to pronounce challenging bio-terminology and their propensity to speak in teacher-led, guided classroom discussions. Interviews, surveys, and measurements quantifying and qualifying students' participation in class discussions before and after explicit instruction in pronunciation were used to evaluate the potential of this strategy as an appropriate tool for increasing students' self-efficacy and willingness to engage in biology classroom conversations. The findings of this study showed a significant increase in student verbal participation in classroom discussions after explicit instruction in pronunciation combined with vocabulary literacy strategies. This research also showed an increase in the use of vocabulary words in student comments after the intervention.

  16. NITARP: Bridging the Gap Between the Traditional Science Classroom and Authentic Research

    Science.gov (United States)

    Stalnaker, Olivia K.; Evans, Sam; Rutherford, Thomas; Taylor, John; Rebull, Luisa

    2018-01-01

    In this poster, the differences between what occurs in the traditional secondary science classroom and what happens in the actual research world is examined. Secondary classroom teachers generally have limited, if any, research experience beyond what is presented through their undergraduate college lab coursework. A disparity exists between classroom laboratory work and professional research. Opportunities like NITARP provide research elements that bridge this gap. NITARP teams are in a unique situation, joining a small team working alongside Caltech researchers on cutting edge investigations in astrophysics. In this poster it is shown how the NITARP program provides key components and experiences to expand the skill sets that teachers bring to their classrooms, bridging the gap between the typical secondary classroom and the world of the professional researcher. The NASA/IPAC program immerses participating teachers into a year-long training experience via online and face-to-face learning that translates into enhanced instruction at the secondary level. This work was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  17. Science Teacher Beliefs and Classroom Practice Related to Constructivism in Different School Settings

    Science.gov (United States)

    Savasci, Funda; Berlin, Donna F.

    2012-01-01

    Science teacher beliefs and classroom practice related to constructivism and factors that may influence classroom practice were examined in this cross-case study. Data from four science teachers in two schools included interviews, demographic questionnaire, Classroom Learning Environment Survey (preferred/perceived), and classroom observations and…

  18. Middle school girls: Experiences in a place-based education science classroom

    Science.gov (United States)

    Shea, Charlene K.

    The middle school years are a crucial time when girls' science interest and participation decrease (Barton, Tan, O'Neill, Bautista-Guerra, & Brecklin, 2013). The purpose of this study was to examine the experiences of middle school girls and their teacher in an eighth grade place-based education (PBE) science classroom. PBE strives to increase student recognition of the importance of educational concepts by reducing the disconnection between education and community (Gruenewald, 2008; Smith, 2007; Sobel, 2004). The current study provides two unique voices---the teacher and her students. I describe how this teacher and her students perceived PBE science instruction impacting the girls' participation in science and their willingness to pursue advanced science classes and science careers. The data were collected during the last three months of the girls' last year of middle school by utilizing observations, interviews and artifacts of the teacher and her female students in their eighth grade PBE science class. The findings reveal how PBE strategies, including the co-creation of science curriculum, can encourage girls' willingness to participate in advanced science education and pursue science careers. The implications of these findings support the use of PBE curricular strategies to encourage middle school girls to participate in advance science courses and science careers.

  19. The Pedagogical Orientations of South African Physical Sciences Teachers Towards Inquiry or Direct Instructional Approaches

    Science.gov (United States)

    Ramnarain, Umesh; Schuster, David

    2014-08-01

    In recent years, inquiry-based science instruction has become widely advocated in science education standards in many countries and, hence, in teacher preparation programmes. Nevertheless, in practice, one finds a wide variety of science instructional approaches. In South Africa, as in many countries, there is also a great disparity in school demographic situations, which can also affect teaching practices. This study investigated the pedagogical orientations of in-service physical sciences teachers at a diversity of schools in South Africa. Assessment items in a Pedagogy of Science Teaching Test (POSTT) were used to identify teachers' science teaching orientations, and reasons for pedagogical choices were probed in interviews. The findings reveal remarkable differences between the orientations of teachers at disadvantaged township schools and teachers at more privileged suburban schools. We found that teachers at township schools have a strong `active direct' teaching orientation overall, involving direct exposition of the science followed by confirmatory practical work, while teachers at suburban schools exhibit a guided inquiry orientation, with concepts being developed via a guided exploration phase. The study identified contextual factors such as class size, availability of resources, teacher competence and confidence, time constraints, student ability, school culture and parents' expectations as influencing the methods adopted by teachers. In view of the recent imperative for inquiry-based learning in the new South African curriculum, this study affirms the context specificity of curriculum implementation (Bybee 1993) and suggests situational factors beyond the curriculum mandate that need to be addressed to achieve successful inquiry-based classroom instruction in science.

  20. A cultural study of a science classroom and graphing calculator-based technology

    Science.gov (United States)

    Casey, Dennis Alan

    Social, political, and technological events of the past two decades have had considerable bearing on science education. While sociological studies of scientists at work have seriously questioned traditional histories of science, national and state educational systemic reform initiatives have been enacted, stressing standards and accountability. Recently, powerful instructional technologies have become part of the landscape of the classroom. One example, graphing calculator-based technology, has found its way from commercial and domestic applications into the pedagogy of science and math education. The purpose of this study was to investigate the culture of an "alternative" science classroom and how it functions with graphing calculator-based technology. Using ethnographic methods, a case study of one secondary, team-taught, Environmental/Physical Science (EPS) classroom was conducted. Nearly half of the 23 students were identified as students with special education needs. Over a four-month period, field data was gathered from written observations, videotaped interactions, audio taped interviews, and document analyses to determine how technology was used and what meaning it had for the participants. Analysis indicated that the technology helped to keep students from getting frustrated with handling data and graphs. In a relatively short period of time, students were able to gather data, produce graphs, and to use inscriptions in meaningful classroom discussions. In addition, teachers used the technology as a means to involve and motivate students to want to learn science. By employing pedagogical skills and by utilizing a technology that might not otherwise be readily available to these students, an environment of appreciation, trust, and respect was fostered. Further, the use of technology by these teachers served to expand students' social capital---the benefits that come from an individual's social contacts, social skills, and social resources.

  1. An administrative concern: Science teachers' instructional efficacy beliefs regarding racially, culturally, economically, and linguistically diverse student populations

    Science.gov (United States)

    Tuck Bonner, Natalie Christine

    A teacher's sense of {instructional} efficacy has been considered a critical variable in student academic performance. Researchers Tschannen-Moran and Hoy Woolfolk (2001, p.783) defined teachers' {instructional} efficacy as a teacher's judgment of his or her capabilities to bring about desired outcomes of student engagement and learning, even among those students who may be difficult or unmotivated. There has been a substantial amount of research which reveals a strong correlation among teacher efficacy, teaching performance, and student achievement (Goddard & Goddard, et.al., 2000; Hackett; Hackett, 1995; Pajares, 1997 as cited in Villereal, 2005). This research study explored the content area of science and teacher's personal perception of their competency level in teaching science to all learners regardless of socio-economic, ethnicity/race or gender for grade levels Pre-K to 12. Lewthwaite states that a science teacher's personal teacher attributes or intrinsic factors such as science teaching self-efficacy, professional science knowledge, science teaching, instructional methodologies, interest in science, and motivation to teach science are critical dimensions and noted barriers in the delivery of science programs on elementary level campuses (Lewthwaite, Stableford & Fisher, 2001). This study focused on teacher instructional efficacy issues which may affect diverse learners' classroom and state-mandated assessment academic performance outcomes. A SPSS analysis of data was obtained from the following teacher survey instruments: The Bandura Teacher Efficacy Scale, the SEBEST, and the SETAKIST. Research findings revealed that a majority of science teachers surveyed believe they can effectively teach learners of diverse backgrounds, but responded with a sense of lower efficaciousness in teaching English Language Learners. There was also a statistically significant difference found between a state science organization and a national science organization

  2. The Curriculum Customization Service: A Tool for Customizing Earth Science Instruction and Supporting Communities of Practice

    Science.gov (United States)

    Melhado, L. C.; Devaul, H.; Sumner, T.

    2010-12-01

    Accelerating demographic trends in the United States attest to the critical need to broaden access to customized learning: reports refer to the next decade as the era of “extreme diversity” in K-12 classrooms, particularly in large urban school districts. This diverse student body possesses a wide range of knowledge, skills, and abilities in addition to cultural differences. A single classroom may contain students with different levels of quantitative skills, different levels of English language proficiency, and advanced students preparing for college-level science. A uniform curriculum, no matter how well designed and implemented, cannot possibly serve the needs of such diverse learners equally well. Research has shown positive learning outcomes when pedagogical strategies that customize instruction to address specific learner needs are implemented, with under-achieving students often benefiting most. Supporting teachers in the effective adoption and use of technology to meet these instructional challenges is the underlying goal of the work to be presented here. The Curriculum Customization Service (CCS) is an integrated web-based platform for middle and high school Earth science teachers designed to facilitate teachers’ instructional planning and delivery; enhancing existing curricula with digital library resources and shared teacher-contributed materials in the context of articulated learning goals. The CCS integrates interactive resources from the Digital Library for Earth System Education (DLESE) with an inquiry-based curriculum component developed by the American Geological Institute (EarthComm and Investigating Earth Systems). The digital library resources emphasize visualizations and animations of Earth processes that often challenge students’ understanding, offering multiple representations of phenomena to address different learning styles, reading abilities, and preconceived ideas. Teachers can access these materials, as well as those created or

  3. History of Science as an Instructional Context: Student Learning in Genetics and Nature of Science

    Science.gov (United States)

    Kim, Sun Young; Irving, Karen E.

    2010-01-01

    This study (1) explores the effectiveness of the contextualized history of science on student learning of nature of science (NOS) and genetics content knowledge (GCK), especially interrelationships among various genetics concepts, in high school biology classrooms; (2) provides an exemplar for teachers on how to utilize history of science in…

  4. Phonetics and Technology in the Classroom: A Practical Approach to Using Speech Analysis Software in Second-Language Pronunciation Instruction

    Science.gov (United States)

    Olsen, Daniel J.

    2014-01-01

    While speech analysis technology has become an integral part of phonetic research, and to some degree is used in language instruction at the most advanced levels, it appears to be mostly absent from the beginning levels of language instruction. In part, the lack of incorporation into the language classroom can be attributed to both the lack of…

  5. Teacher Progress Monitoring of Instructional and Behavioral Management Practices: An Evidence-Based Approach to Improving Classroom Practices

    Science.gov (United States)

    Reddy, Linda A.; Dudek, Christopher M.

    2014-01-01

    In the era of teacher evaluation and effectiveness, assessment tools that identify and monitor educators' instruction and behavioral management practices are in high demand. The Classroom Strategies Scale (CSS) Observer Form is a multidimensional teacher progress monitoring tool designed to assess teachers' usage of instructional and behavioral…

  6. Socioscience and Ethics in Science Classrooms: Teacher Perspectives and Strategies

    Science.gov (United States)

    Sadler, Troy D.; Amirshokoohi, Aidin; Kazempour, Mahsa; Allspaw, Kathleen M.

    2006-01-01

    This study explored teacher perspectives on the use of socioscientific issues (SSI) and on dealing with ethics in the context of science instruction. Twenty-two middle and high school science teachers from three US states participated in semi-structured interviews, and researchers employed inductive analyses to explore emergent patterns relative…

  7. Epistemology & the Nature of Science: A Classroom Strategy

    Science.gov (United States)

    Viney, Mike

    2007-01-01

    Efforts to enact balanced treatment laws represent an attempt to wedge the supernatural into scientific explanations. Current attempts to displace methodological naturalism from science indicate a need to make the nature of science a central theme in our instruction. This article utilizes constructivist listening to introduce students to five…

  8. Instructional strategies to improve women's attitudes toward science

    Science.gov (United States)

    Newbill, Phyllis Leary

    Although negative attitudes toward science are common among women and men in undergraduate introductory science classes, women's attitudes toward science tend to be more negative than men's. The reasons for women's negative attitudes toward science include lack of self-confidence, fear of association with social outcasts, lack of women role models in science, and the fundamental differences between traditional scientific and feminist values. Attitudes are psychological constructs theorized to be composed of emotional, cognitive, and behavioral components. Attitudes serve functions, including social expressive, value expressive, utilitarian, and defensive functions, for the people who hold them. To change attitudes, the new attitudes must serve the same function as the old one, and all three components must be treated. Instructional designers can create instructional environments to effect attitude change. In designing instruction to improve women's attitudes toward science, instructional designers should (a) address the emotions that are associated with existing attitudes, (b) involve credible, attractive women role models, and (c) address the functions of the existing attitudes. Two experimental instructional modules were developed based on these recommendations, and two control modules were developed that were not based on these recommendations. The asynchronous, web-based modules were administered to 281 undergraduate geology and chemistry students at two universities. Attitude assessment revealed that attitudes toward scientists improved significantly more in the experimental group, although there was no significant difference in overall attitudes toward science. Women's attitudes improved significantly more than men's in both the experimental and control groups. Students whose attitudes changed wrote significantly more in journaling activities associated with the modules. Qualitative analysis of journals revealed that the guidelines worked exactly as predicted

  9. Web-based vs. traditional classroom instruction in gerontology: a pilot study.

    Science.gov (United States)

    Gallagher, Judith E; Dobrosielski-Vergona, Kathleen A; Wingard, Robin G; Williams, Theresa M

    2005-01-01

    Numerous studies have documented comparable outcomes from Web-based and traditional classroom instruction. However, there is a paucity of literature comparing these two delivery formats for gerontology courses in dental hygiene curricula. This study examines the effectiveness of alternative methods of course delivery by comparing student profiles and instructional outcomes from a dental hygiene gerontology course offered both on the Web and in a traditional classroom setting. Questionnaires were sent to both groups of students completing the course. The instrument was designed to establish profiles of the participating students. The data collected included familiarity with Web-based instruction, extent of prior computer training, previous interaction with the elderly, and student evaluations of course effectiveness. Traditional instructional outcomes from evaluated course work were compared, as were post-course exam outcomes that assessed retention of course information six months after course completion. The statistical significance of these data was determined using Statistical Package for Social Scientists software (SPSS, Inc., version 12.0, Chicago, IL). A comparison of student characteristics enrolled in the two course formats revealed marked differences. The Web-based group (n=12) included dental hygiene students (67%) and other health care providers (25%). All participants in the traditional classroom format (n=32) were dental hygiene students. Half of the Web-based respondents were over 25 years of age, and the majority (n=8) had previously taken an online course. The majority of traditional classroom students were 25 years of age or younger (n=21) and had never taken a Web-based course (n=20). Statistically significant differences in instructional outcomes were observed between students enrolled in these two formats. Student retention of course material six months after completion of the course was greater in the Web-based format. Students selecting a Web

  10. A phenomenological study on middle-school science teachers' perspectives on utilization of technology in the science classroom and its effect on their pedagogy

    Science.gov (United States)

    Rajbanshi, Roshani

    With access to technology and expectation by the mainstream, the use of technology in the classroom has become essential these days. However, the problem in science education is that with classrooms filled with technological equipment, the teaching style is didactic, and teachers employ traditional teacher-centered methods in the classroom. In addition, results of international assessments indicate that students' science learning needs to be improved. The purpose of this study is to analyze and document the lived experience of middle-school science teachers and their use of technology in personal, professional lives as well as in their classroom and to describe the phenomenon of middle-school science teachers' technological beliefs for integration of digital devices or technology as an instructional delivery tool, knowledge construction tool and learning tool. For this study, technology is defined as digital devices such as computer, laptops, digital camera, iPad that are used in the science classroom as an instructional delivery tool, as a learning tool, and as a knowledge construction tool. Constructivism is the lens, the theoretical framework that guides this qualitative phenomenological research. Observation, interview, personal journal, photo elicitation, and journal reflection are used as methods of data collection. Data was analyzed based on a constructivist theoretical framework to construct knowledge and draw conclusion. MAXQDA, a qualitative analysis software, was also used to analyze the data. The findings indicate that middle-school science teachers use technology in various ways to engage and motivate students in science learning; however, there are multiple factors that influence teachers' technology use in the class. In conclusion, teacher, students, and technology are the three sides of the triangle where technology acts as the third side or the bridge to connect teachers' content knowledge to students through the tool with which students are

  11. Science, School Science, and School: Looking at Science Learning in Classrooms from the Perspective of Basil Bernstein's Theory of the Structure of Pedagogic Discourse

    Science.gov (United States)

    Campbell, Ralph Ian

    This analytic paper asks one question: How does Basil Bernstein's concept of the structure of pedagogic discourse (SPD) contribute to our understanding of the role of teacher-student interactions in science learning in the classroom? Applying Bernstein's theory of the SPD to an analysis of current research in science education explores the structure of Bernstein's theory as a tool for understanding the challenges and questions related to current concerns about classroom science learning. This analysis applies Bernstein's theory of the SPD as a heuristic through a secondary reading of selected research from the past fifteen years and prompts further consideration of Bernstein's ideas. This leads to a reevaluation of the categories of regulative discourse (RD) and instructional discourse (ID) as structures that frame learning environments and the dynamics of student-teacher interactions, which determine learning outcomes. The SPD becomes a simple but flexible heuristic, offering a useful deconstruction of teaching and learning dynamics in three different classroom environments. Understanding the framing interactions of RD and ID provides perspectives on the balance of agency and expectation, suggesting some causal explanations for the student learning outcomes described by the authors. On one hand, forms of open inquiry and student-driven instruction may lack the structure to ensure the appropriation of desired forms of scientific thinking. On the other hand, well-designed pathways towards the understanding of fundamental concepts in science may lack the forms of more open-ended inquiry that develop transferable understanding. Important ideas emerge about the complex dynamics of learning communities, the materials of learning, and the dynamic role of the teacher as facilitator and expert. Simultaneously, the SPD as a flexible heuristic proves ambiguous, prompting a reevaluation of Bernstein's organization of RD and ID. The hierarchical structure of pedagogic

  12. Examining classroom interactions related to difference in students' science achievement

    Science.gov (United States)

    Zady, Madelon F.; Portes, Pedro R.; Ochs, V. Dan

    2003-01-01

    The current study examines the cognitive supports that underlie achievement in science by using a cultural historical framework (L. S. Vygotsky (1934/1986), Thought and Language, MIT Press, Cambridge, MA.) and the activity setting (AS) construct (R. G. Tharp & R. Gallimore (1988), Rousing minds to life: Teaching, learning and schooling in social context, Cambridge University Press, Cambridge, MA.) with its five features: personnel, motivations, scripts, task demands, and beliefs. Observations were made of the classrooms of seventh-grade science students, 32 of whom had participated in a prior achievement-related parent-child interaction or home study (P. R. Portes, M. F. Zady, & R. M. Dunham (1998), Journal of Genetic Psychology, 159, 163-178). The results of a quantitative analysis of classroom interaction showed two features of the AS: personnel and scripts. The qualitative field analysis generated four emergent phenomena related to the features of the AS that appeared to influence student opportunity for conceptual development. The emergent phenomenon were science activities, the building of learning, meaning in lessons, and the conflict over control. Lastly, the results of the two-part classroom study were compared to those of the home science AS of high and low achievers. Mismatches in the AS features in the science classroom may constrain the opportunity to learn. Educational implications are discussed.

  13. A comparative analysis of on-line and classroom-based instructional formats for teaching social work research

    OpenAIRE

    David Westhuis; Philip M. Ouellette; Corey L. Pfahler

    2006-01-01

    Research comparing courses taught exclusively in traditional face-to-face settings versus courses taught entirely online have shown similar levels of student satisfaction. This article reports findings from a comparative study of student achievement in research skills from classes using two different instructional formats. One group used a classroom-based instructional format and the other group used an online web-based instructional format. Findings indicate that there were no statistically ...

  14. The College Science Learning Cycle: An Instructional Model for Reformed Teaching.

    Science.gov (United States)

    Withers, Michelle

    2016-01-01

    Finding the time for developing or locating new class materials is one of the biggest barriers for instructors reforming their teaching approaches. Even instructors who have taken part in training workshops may feel overwhelmed by the task of transforming passive lecture content to engaging learning activities. Learning cycles have been instrumental in helping K-12 science teachers design effective instruction for decades. This paper introduces the College Science Learning Cycle adapted from the popular Biological Sciences Curriculum Study 5E to help science, technology, engineering, and mathematics faculty develop course materials to support active, student-centered teaching approaches in their classrooms. The learning cycle is embedded in backward design, a learning outcomes-oriented instructional design approach, and is accompanied by resources and examples to help faculty transform their teaching in a time-efficient manner. © 2016 M. Withers. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Influence of teacher-directed scientific inquiry on students' primal inquiries in two science classrooms

    Science.gov (United States)

    Stone, Brian Andrew

    Scientific inquiry is widely used but pervasively misunderstood in elementary classrooms. The use of inquiry is often attached to direct instruction models of teaching, or is even passed as textbook readings or worksheets. Previous literature on scientific inquiry suggests a range or continuum beginning with teacher-directed inquiry on one extreme, which involves a question, process, and outcome that are predetermined by the teacher. On the other end of the continuum is an element of inquiry that is extremely personal and derived from innate curiosity without external constraints. This authentic inquiry is defined by the study as primal inquiry. If inquiry instruction is used in the elementary classroom, it is often manifested as teacher-directed inquiry, but previous research suggests the most interesting, motivating, and lasting content is owned by the individual and exists within the individual's own curiosity, questioning and processes. Therefore, the study examined the impact of teacher-directed inquiry in two elementary fourth grade classrooms on climate-related factors including interest, motivation, engagement, and student-generated inquiry involvement. The study took place at two elementary classrooms in Arizona. Both were observed for ten weeks during science instruction over the course of one semester. Field notes were written with regard for the inquiry process and ownership, along with climate indicators. Student journals were examined for evidence of primal inquiry, and twenty-two students were interviewed between the two classrooms for evidence of low climate-related factors and low inquiry involvement. Data from the three sources were triangulated. The results of this qualitative study include evidence for three propositions, which were derived from previous literature. Strong evidence was provided in support of all three propositions, which suggest an overall negative impact on climate-related factors of interest, motivation, and engagement for

  16. Scientific reasoning during adolescence: The influence of instruction in science knowledge and reasoning strategies

    Science.gov (United States)

    Linn, M. C.; Clement, C.; Pulos, S.; Sullivan, P.

    The mechanism linking instruction in scientific topics and instruction in logical reasoning strategies is not well understood. This study assesses the role of science topic instruction combined with logical reasoning strategy instruction in teaching adolescent students about blood pressure problems. Logical reasoning instruction for this study emphasizes the controlling-variables strategy. Science topic instruction emphasizes variables affecting blood pressure. Subjects receiving logical reasoning instruction link their knowledge of blood pressure variables to their knowledge of controlling variables more effectively than those receiving science topic instruction alone - their specific responses show how they attempt to integrate their understanding.Received: 15 April 1988

  17. Using Reflective Practice to Facilitate Conversations and Transform Instructional Practice for Middle School Science Teachers

    Science.gov (United States)

    Higdon, Robbie L.

    The process of teaching, especially inquiry, is complex and requires extended time for developing one's instructional practice (Loucks-Horsley, Stiles, Mundry, Love, & Hewson, 2010). The implementation of a continued cycle of self-reflection can engage teachers in analyzing their prior experiences and understandings about their instructional practice to promote the accommodation of new concepts and transform their practice. However, many teachers have difficulty engaging in the cognitive dissonance needed to identify those problems and promote their own growth without support. As one's professional practice becomes more repetitive and routine, it is difficult for the practitioner to recognize opportunities in which to contemplate one's habitual actions (Schon, 1983). In this multi-case study, two middle school science teachers who were engaged within a sustained professional development initiative participated in a series of one-on-one reflective dialogues regarding the decisions they made about the utilization of inquiry-based instruction. In addition, these teachers were asked to reflect upon the criteria used to determine how and when to implement these inquiry-based practices. These reflective dialogue sessions provided the opportunity to observe teacher conceptions and stimulate teacher cognitive dissonance about instructional practice. Qualitative analysis of data collected from these reflective dialogues along with informal and formal classroom observations of instructional practice uncovered diverse perceptions regarding the implementation of inquiry-based methods into present teaching practice. The use of reflective dialogue within the existing structure of the professional development initiative allowed for the facilitators of the professional development initiative to tailor ongoing support and their effective implementation of inquiry-based instruction. Additional research is needed to investigate the impact of reflective dialogue in achieving

  18. Kindergarten Teachers' Understanding of the Elements of Implementing Inquiry-Based Science Instruction

    Science.gov (United States)

    Blevins, Kathryn

    The purpose of this basic qualitative research study was to identify the extent to which kindergarten teachers understand and implement inquiry-based instruction in their science classrooms. This study was conducted in response to the indication that traditional didactic teaching methods were not enough to adequately prepare American students to compete in the global economy. Inquiry is a teaching method that could prepare students for the critical thinking skills needed to enter society in the 21st century. It is vital that teachers be sufficiently trained in teaching using the necessary components of inquiry-based instruction. This study could be used to inform leaders in educational administration of the gaps in teachers' understanding as it pertains to inquiry, thus allowing for the delivery of professional development that will address teachers' needs. Existing literature on inquiry-based instruction provides minimal information on kindergarten teachers' understanding and usage of inquiry to teach science content, and this information would be necessary to inform administrators in their response to supporting teachers in the implementation of inquiry. The primary research question for this study was "To what extent do kindergarten teachers understand the elements of implementing inquiry-based lessons in science instruction?" The 10 participants in this study were all kindergarten teachers in a midsized school district in the Mid-Atlantic region of the United States. Data were collected using face-to-face semistructured interviews, observations of the teachers implementing what they perceived to be inquiry-based instruction, and the analysis of lesson plans to indicate the components used to plan for inquiry-instruction. The findings of this study indicated that while teachers believed inquiry to be a beneficial method for teaching science, they did not understand the components of inquiry and tended to implement lesson plans created at the district level. By

  19. Better learning through instructional science: a health literacy case study in "how to teach so learners can learn".

    Science.gov (United States)

    Freedman, Ariela M; Echt, Katharina V; Cooper, Hannah L F; Miner, Kathleen R; Parker, Ruth

    2012-09-01

    Health education and behavior change interventions typically pay little attention to the intervention's instructional foundation. Combining the fields of health literacy, cognitive psychology, and adult learning theory, this article provides an integrative scientific approach, called the BEAN (Better Education and iNnovation) model, to creating an instructional foundation based on how individuals acquire knowledge and skills. The article uses a case study example from an adult literacy center's health literacy class to explore how environmental factors and instructional strategies can be applied to health education and behavior change interventions. Data for this case study were derived through 20 hours of classroom observation and qualitative interviews with 21 adult education students and 3 instructors. Results provide practical examples of environmental factors and instructional strategies designed to facilitate learning, such as fostering autonomy, activating prior knowledge, and fostering perspective change. Results also describe the resulting health behavior changes of students attending the health literacy class, such as increased medication adherence and physical activity, improved nutritional habits, and increased question asking of health practitioners. This article serves as a first step to encouraging researchers and educators to consider the importance of drawing on cognitive psychology and theories of adult learning to create a scientifically based instructional foundation for health behavior change programs. Additionally, by drawing on the expertise of adult educators well versed in the science of instructional design, this article also demonstrates that the adult education classroom is an excellent setting for conducting health education and behavior change interventions.

  20. The role of assessment infrastructures in crafting project-based science classrooms

    Science.gov (United States)

    D'Amico, Laura Marie

    In project-based science teaching, teachers engage students in the practice of conducting meaningful investigations and explanations of natural phenomena, often in collaboration with fellow students or adults. Reformers suggest that this approach can provide students with more profitable learning experiences; but for many teachers, a shift to such instruction can be difficult to manage. As some reform-minded teachers have discovered, classroom assessment can serve as a vital tool for meeting the challenges associated with project science activity. In this research, classroom assessment was viewed as an infrastructure that both students and teachers rely upon as a mediational tool for classroom activity and communications. The study explored the classroom assessment infrastructures created by three teachers involved in the Learning through Collaborative Visualization (CoVis) Project from 1993--94 to 1995--96. Each of the three teachers under study either created a new course or radically reformulated an old one in an effort to incorporate project-based science pedagogy and supporting technologies. Data in the form of interviews, classroom observations, surveys, student work, and teacher records was collected. From these data, an interpretive case study was developed for each course and its accompanying assessment infrastructure. A set of cross-case analyses was also constructed, based upon common themes that emerged from all three cases. These themes included: the assessment challenges based on the nature of project activity, the role of technology in the teachers' assessment infrastructure designs, and the influence of the wider assessment infrastructure on their course and assessment designs. In combination, the case studies and cross-case analyses describe the synergistic relationship between the design of pedagogical reforms and classroom assessment infrastructures, as well as the effectiveness of all three assessment designs. This work contributes to research

  1. The book of science mysteries classroom science activities to support student enquiry-based learning

    CERN Document Server

    McOwan, Peter; Olivotto, Cristina

    2015-01-01

    In this booklet, you will be introduced to an exciting new way to teach science in your classroom. The TEMI project (Teaching Enquiry with Mysteries Incorporated) is an EU-funded project that brings together experts in teacher training from across Europe to help you introduce enquiry-based learning successfully in the classroom and improve student engagement and skills.

  2. Virtual Reality Hypermedia Design Frameworks for Science Instruction.

    Science.gov (United States)

    Maule, R. William; Oh, Byron; Check, Rosa

    This paper reports on a study that conceptualizes a research framework to aid software design and development for virtual reality (VR) computer applications for instruction in the sciences. The framework provides methodologies for the processing, collection, examination, classification, and presentation of multimedia information within hyperlinked…

  3. Analogy-Enhanced Instruction: Effects on Reasoning Skills in Science

    Science.gov (United States)

    Remigio, Krisette B.; Yangco, Rosanelia T.; Espinosa, Allen A.

    2014-01-01

    The study examined the reasoning skills of first year high school students after learning general science concepts through analogies. Two intact heterogeneous sections were randomly assigned to Analogy-Enhanced Instruction (AEI) group and Non Analogy-Enhanced (NAEI) group. Various analogies were incorporated in the lessons of the AEI group for…

  4. Applying the Brakes: How Practical Classroom Decisions Affect the Adoption of Inquiry Instruction

    Science.gov (United States)

    Yarnall, Louise; Fusco, Judi

    2014-01-01

    If college science instructors are to use inquiry practices more in the classroom, they need both professional support to foster comfort with the pedagogy and practical ways to engage students in inquiry. Over a semester, we studied 13 community college biology instructors as they adopted bioinformatics problem-based learning (PBL) modules in…

  5. Hal in the Classroom: Science Fiction Films.

    Science.gov (United States)

    Amelio, Ralph J.

    The articles in this book provide political, social, sociological, psychological, sexual, mythical, literary, and filmic approaches to the study of science fiction film. "Journey into Science Fiction" by W. Johnson and "The Imagination of Disaster" by S. Sontag treat broadly the essentials of science fiction films. "For the Future: The Science…

  6. Building "Science Capital" in the Classroom

    Science.gov (United States)

    Nomikou, Effrosyni; Archer, Louise; King, Heather

    2017-01-01

    In this article we share insights from our ongoing research on the concept of "science capital"--a term that refers to an individual's science-related resources and dispositions. We have been working in collaboration with secondary teachers in England to explore the applications of the concept in science teaching practice. Underpinned by…

  7. Laboratory Notebooks in the Science Classroom

    Science.gov (United States)

    Roberson, Christine; Lankford, Deanna

    2010-01-01

    Lab notebooks provide students with authentic science experiences as they become active, practicing scientists. Teachers gain insight into students' understanding of science content and processes, while students create a lasting personal resource. This article provides high school science teachers with guidelines for implementing lab notebooks in…

  8. Effectiveness of various innovative learning methods in health science classrooms: a meta-analysis.

    Science.gov (United States)

    Kalaian, Sema A; Kasim, Rafa M

    2017-12-01

    This study reports the results of a meta-analysis of the available literature on the effectiveness of various forms of innovative small-group learning methods on student achievement in undergraduate college health science classrooms. The results of the analysis revealed that most of the primary studies supported the effectiveness of the small-group learning methods in improving students' academic achievement with an overall weighted average effect-size of 0.59 in standard deviation units favoring small-group learning methods. The subgroup analysis showed that the various forms of innovative and reform-based small-group learning interventions appeared to be significantly more effective for students in higher levels of college classes (sophomore, junior, and senior levels), students in other countries (non-U.S.) worldwide, students in groups of four or less, and students who choose their own group. The random-effects meta-regression results revealed that the effect sizes were influenced significantly by the instructional duration of the primary studies. This means that studies with longer hours of instruction yielded higher effect sizes and on average every 1 h increase in instruction, the predicted increase in effect size was 0.009 standard deviation units, which is considered as a small effect. These results may help health science and nursing educators by providing guidance in identifying the conditions under which various forms of innovative small-group learning pedagogies are collectively more effective than the traditional lecture-based teaching instruction.

  9. A Theoretical Understanding of the Literature on Student Voice in the Science Classroom

    Science.gov (United States)

    Laux, Katie

    2018-01-01

    Background: Incorporating student voice into the science classroom has the potential to positively impact science teaching and learning. However, students are rarely consulted on school and classroom matters. This literature review examines the effects of including student voice in the science classroom. Purpose: The purpose of this literature…

  10. ANALYZING TEACHER’S INSTRUCTIONAL AND NONVERBAL COMMUNICATION IN EFL CLASSROOM

    Directory of Open Access Journals (Sweden)

    Ranta

    2017-11-01

    Full Text Available The objectives of this research were to find out the teacher’s instructional language, kinds of nonverbal communication and effects in EFL Classroom. The objects of the research were the teacher and students of one primary school in Merauke. The approach employed was qualitative approach. The type of this research applied discourse analysis (DA. Data collection was conducted through observation by recording and interview. Data from observa tion was used to know the teacher’s instructional Language and kinds of nonverbal communication. Interview was used to know the effects of using the teacher’s instructional Language and nonverbal communication to the students. The research findings showed that (1 the teacher’s instructional language in the classroom activities covered explanations, asking questions, giving feedback, and giving corrections. In term of explanation, the teacher used English, switched and mixed the Indonesian language. The teacher used display question to know the students understanding related to the material. She used referential question to start the classroom and when she checked the progress of the students’ activity. In giving feedback, mostly same with explanation, the teacher also used English even she switched and mixed her language with Indonesian. The teacher used direct correction and indirect correction in giving correction. Repetition was also found in explanation, asking question, giving feedback and giving correction. (2 that the kind The findings revealed s of nonverbal communication used by the teacher in the classroom included gesture, body movement and posture, eye contact and facial expression. These nonverbal were applied to explain some unclear verbal communication. (3 The last, the findings showed that there were positive and negative effects of the teacher’s instructional language The positive effects included motivating the students in studying, increasing the students’ vocabulary mastery

  11. Collaborative CPD and inquiry-based science in the classroom

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    on the teaching of science and on collaboration. Qualitative data obtained by following the same teacher teaching Science & Technology from 4th to 6th grade are used to discuss changes in her classroom practice; in particular concerning inquiry-based methods shown in earlier QUEST-research to be understood......Continuous Professional Development (CPD) is crucial for reforming science teaching, but more knowledge is needed about how to embed CPD in teachers’ daily work. The Danish QUEST-project is a long-term collaborative CPD-project designed informed by research and with activities changing rhythmically...... between seminars, individual trials in own classroom, and collaborative activities in the science-team at local schools. The QUEST research is aimed at understanding the relation between individual and social changes. In this study, quantitative data are used to compare the perceived effect from QUEST...

  12. Cultivating characters (moral value) through internalization strategy in science classroom

    Science.gov (United States)

    Ibrahim, M.; Abadi

    2018-01-01

    It is still in a crucial debate that characters play an important learning outcome to be realized by design. So far, most people think that characters were reached as nurturance effect with the assumption that students who are knowledgeable and skillful will have good characters automatically. Lately, obtained evidence that this assumption is not true. Characters should be taught deliberately or by design. This study was designed to culture elementary school students’ characters through science classroom. The teaching-learning process was conducted to facilitate and bridge the students from the known (concrete images: Science phenomena) to the unknown (abstract ideas: characters: care, and tolerance. Characters were observed five weeks before and after the intervention. Data were analyzed from observation of 24 students in internalization strategy-based courses. Qualitative and quantitative data suggested that the internalization strategy that use of science phenomena to represent abstract ideas (characters) in science classroom positively cultivating characters.

  13. Intelligent Design in the Public School Science Classroom

    Science.gov (United States)

    Hickey, Wesley D.

    2013-01-01

    The ongoing battle to insert intelligent causes into the science classrooms has been met with political approval and scientific rejection. Administrators in the United States need to be aware of the law related to creationism and intelligent design in order to lead in local curricular battles. Although unlikely to appease the ID proponents, there…

  14. Fostering Critical Thinking Practices at Primary Science Classrooms in Nepal

    Science.gov (United States)

    Acharya, Kamal Prasad

    2016-01-01

    This article examines the socio-cultural activities that have direct and indirect impacts on critical thinking practices in primary science classrooms and what kinds of teachers' activities help to foster the development of critical thinking practices in children. Meanwhile, the constructivist and the socio-cultural theoretical dimensions have…

  15. Continuing Professional Development and Learning in Primary Science Classrooms

    Science.gov (United States)

    Fraser, Christine A.

    2010-01-01

    This article explores the effects of continuing professional development (CPD) on teachers' and pupils' experiences of learning and teaching science in primary classrooms. During 2006-2007, quantitative and qualitative data were elicited from two primary teachers in Scotland using questionnaires, semi-structured interviews and video-stimulated…

  16. The Effectiveness of a Technology-Enhanced Flipped Science Classroom

    Science.gov (United States)

    Sezer, Baris

    2017-01-01

    This study examined the effect on the learning and motivation of students of a flipped classroom environment enriched with technology. A mixed research design using a pretest or posttest experimental model, combined with qualitative data, was conducted in a public middle school in Turkey for 2 weeks (three class hours) within a science course.…

  17. Backyard Botany: Using GPS Technology in the Science Classroom

    Science.gov (United States)

    March, Kathryn A.

    2012-01-01

    Global Positioning System (GPS) technology can be used to connect students to the natural world and improve their skills in observation, identification, and classification. Using GPS devices in the classroom increases student interest in science, encourages team-building skills, and improves biology content knowledge. Additionally, it helps…

  18. An Exploration of Teachers' Efforts to Understand Identity Work and its Relevance to Science Instruction

    Science.gov (United States)

    Smith, M. Cecil; Darfler, Anne

    2012-06-01

    US educators express concern that students are turning away from the study of science and have little interest in pursuing science careers. Nationally, science achievement scores for 8th graders are unchanged since 1996, but 12th graders' scores have significantly decreased. A shortcoming of education reform efforts is lack of attention to students' developmental needs. Science study should enable students to learn about themselves—to develop and refine their skills, define their values, explore personal interests, and understand the importance of science to themselves and others. Effective secondary science instruction requires attention to students' identity development—the key developmental task of adolescence. Secondary science teachers participated in an 8-week course focused on understanding adolescent identity development and methods for addressing identity. Transcripts of the teachers' online discussions of salient issues were analyzed to determine their perceptions regarding classroom identity work. Teachers identified several assets and obstacles to identity work that were organized into two broad categories: teacher knowledge, training opportunities, and administrative support, or lack of these; and, presence of inflexible curricula, standardized testing regimes, and increased teacher accountability. Implications for student growth and science teacher professional development are discussed.

  19. LANGUAGE LEARNING UNDER CLASSROOM CONDITIONS DURING THE TRANSITION TO HYBRID INSTRUCTION: A CASE-STUDY OF STUDENT PERFORMANCE DURING THE IMPLEMENTATION OF INSTRUCTIONAL TECHNOLOGY

    OpenAIRE

    Lisbeth O. Swain; Timothy D. Swain

    2017-01-01

    We examined the unmanipulated performance of students under real classroom conditions in order to assess the effect of a technology-enhanced hybrid learning approach to second language, (L2) instruction on beginning and advanced Spanish language learners. This research focused on the transition period of technology implementation when the entire section of Spanish of a modern language department of a liberal arts university transitioned from traditional face-to-face instruction, to a technolo...

  20. Integrating Scientific Methods and Knowledge into the Teaching of Newton's Theory of Gravitation: An Instructional Sequence for Teachers' and Students' Nature of Science Education

    Science.gov (United States)

    Develaki, Maria

    2012-01-01

    The availability of teaching units on the nature of science (NOS) can reinforce classroom instruction in the subject, taking into account the related deficiencies in textbook material and teacher training. We give a sequence of teaching units in which the teaching of Newton's gravitational theory is used as a basis for reflecting on the…

  1. Instructing high school students in forensic environmental science using Brownfield Action

    Science.gov (United States)

    Bower, Peter; Liddicoat, Joseph; Patterson, Angelica; Kelsey, Ryan; Cox, Alice; Tynes, Nicholas

    2010-05-01

    Barnard College and Columbia University's Center for New Media Teaching and Learning's Brownfield Action is a digital web-based, interactive simulation that combines lecture, laboratory exercises, and individual and collaborative out-of-classroom assignments. The objective of the instruction is to locate and define a subsurface plume of gasoline whose point source is a leaking underground storage tank (LUST) at a gas station. In the fall of 2009, fifteen pre-college high school students from the five boroughs of New York City used Brownfield Action in a 12-week after-school enrichment program at Barnard to investigate the gasoline plume using a variety of geophysical methods - excavation, ground penetrating radar, magnetic metal detection, soil gas, and drilling. The investigation resulted in individual Phase One Site Assessment Reports about the LUST. As coordinators and instructors of the program, we will share our experience teaching the students and the advantages and challenges of using a digital simulation as an instructional centerpiece. Such instruction is intended to include civic engagement and responsibility as part of science education and to create a curriculum that, instead of relying on fragmented and abstract instruction, provides students with a realistic, inquiry-based, and interdisciplinary construction of knowledge.

  2. Preparing medical students for future learning using basic science instruction.

    Science.gov (United States)

    Mylopoulos, Maria; Woods, Nicole

    2014-07-01

    The construct of 'preparation for future learning' (PFL) is understood as the ability to learn new information from available resources, relate new learning to past experiences and demonstrate innovation and flexibility in problem solving. Preparation for future learning has been proposed as a key competence of adaptive expertise. There is a need for educators to ensure that opportunities are provided for students to develop PFL ability and that assessments accurately measure the development of this form of competence. The objective of this research was to compare the relative impacts of basic science instruction and clinically focused instruction on performance on a PFL assessment (PFLA). This study employed a 'double transfer' design. Fifty-one pre-clerkship students were randomly assigned to either basic science instruction or clinically focused instruction to learn four categories of disease. After completing an initial assessment on the learned material, all participants received clinically focused instruction for four novel diseases and completed a PFLA. The data from the initial assessment and the PFLA were submitted to independent-sample t-tests. Mean ± standard deviation [SD] scores on the diagnostic cases in the initial assessment were similar for participants in the basic science (0.65 ± 0.11) and clinical learning (0.62 ± 0.11) conditions. The difference was not significant (t[42] = 0.90, p = 0.37, d = 0.27). Analysis of the diagnostic cases on the PFLA revealed significantly higher mean ± SD scores for participants in the basic science learning condition (0.72 ± 0.14) compared with those in the clinical learning condition (0.63 ± 0.15) (t[42] = 2.02, p = 0.05, d = 0.62). Our results show that the inclusion of basic science instruction enhanced the learning of novel related content. We discuss this finding within the broader context of research on basic science instruction, development of adaptive expertise and assessment

  3. Turkish Preservice Science Teachers' Socioscientific Issues-Based Teaching Practices in Middle School Science Classrooms

    Science.gov (United States)

    Genel, Abdulkadir; Topçu, Mustafa Sami

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle…

  4. Question Asking in the Science Classroom: Teacher Attitudes and Practices

    Science.gov (United States)

    Eshach, Haim; Dor-Ziderman, Yair; Yefroimsky, Yana

    2014-02-01

    Despite the wide agreement among educators that classroom learning and teaching processes can gain much from student and teacher questions, their potential is not fully utilized. Adopting the view that reporting both teachers' (of varying age groups) views and actual classroom practices is necessary for obtaining a more complete view of the phenomena at hand, the present study closely examines both cognitive and affective domains of: (a) teachers' views (via interviews) concerning: (1) importance and roles of teacher and student questions, (2) teacher responses, and (3) planning and teacher training; and (b) teachers' actual practices (via classroom observations) concerning: (1) number and (2) level of teacher and student questions, as well as (3) teachers' responses to questions. The data were collected from 3 elementary, 3 middle, and 3 high school science teachers and their respective classroom students. The findings lay out a wide view of classroom questioning and teachers' responses, and relate what actually occurs in classes to teachers' stated views. Some of the study's main conclusions are that a gap exists between how science researchers and teachers view the role of teacher questions: the former highlight the cognitive domain, while the latter emphasize the affective domain.

  5. The Effect of an Instructional Intervention on Enhancement Pre-Service Science Teachers' Science Processes Skills

    Science.gov (United States)

    Durmaz, Hüsnüye

    2016-01-01

    The aim of this study is to investigate the effects of an instructional intervention on enhancement the pre-service science teachers' (PSTs) science process skills (SPSs) and to identify problems in using SPSs through Laboratory Applications in Science Education-I course (LASE-I). One group pretest-posttest pre-experimental design was employed. An…

  6. An interactional ethnographic study of the construction of literate practices of science and writing in a university science classroom

    Science.gov (United States)

    Sena, Nuno Afonso De Freitas Lopes De

    An interactional ethnographic study informed by a sociocultural perspective was conducted to examine how a professor and students discursively and interactionally shaped the basis for engaging in the work of a community of geologists. Specifically, the study examined the role the Question of the Day, an interactive writing activity in the lecture, in affording students opportunities for learning the literate practices of science and how to incorporate them in thinking critically. A writing-intensive, introductory oceanography course given in the Geological Sciences Department was chosen because the professor designed it to emphasize writing in the discipline and science literacy within a science inquiry framework. The study was conducted in two phases: a pilot in 2002 and the current study in the Spring Quarter of 2003. Grounded in the view that members in a classroom construct a culture, this study explored the daily construction of the literate practices of science and writing. This view of classrooms was informed by four bodies of research: interactional ethnography, sociolinguistics sociology of science and Writing In the Disciplines. Through participant observation, data were collected in the lecture and laboratory settings in the form of field notes, video, interviews, and artifacts to explore issues of science literacy in discourse, social action, and writing. Examination of participation in the Question of the Day interactive writing activity revealed that it played a key role in initiating and supporting a view of science and inquiry. As the activity permitted collaboration, it encouraged students to engage in the social process to critically explore a discourse of science and key practices with and through their writing. In daily interaction, participants were shown to take up social positions as scientist and engage in science inquiry to explore theory, examine data, and articulately reformulate knowledge in making oral and written scientific arguments

  7. The equivalence of learning paths in early science instruction: effect of direct instruction and discovery learning.

    Science.gov (United States)

    Klahr, David; Nigam, Milena

    2004-10-01

    In a study with 112 third- and fourth-grade children, we measured the relative effectiveness of discovery learning and direct instruction at two points in the learning process: (a) during the initial acquisition of the basic cognitive objective (a procedure for designing and interpreting simple, unconfounded experiments) and (b) during the subsequent transfer and application of this basic skill to more diffuse and authentic reasoning associated with the evaluation of science-fair posters. We found not only that many more children learned from direct instruction than from discovery learning, but also that when asked to make broader, richer scientific judgments, the many children who learned about experimental design from direct instruction performed as well as those few children who discovered the method on their own. These results challenge predictions derived from the presumed superiority of discovery approaches in teaching young children basic procedures for early scientific investigations.

  8. Controversial Issues in the Science Classroom

    Science.gov (United States)

    Owens, David C.; Sadler, Troy D.; Zeidler, Dana L.

    2018-01-01

    As the partisan divide becomes more toxic to civil discourse, the role of science in that conversation also suffers from collateral damage, becoming suspect at best, and marginalized at worse, in terms of its contribution to resolving issues rooted in science having national and global significance. The authors suggest ameliorating that damage by…

  9. Linking Classroom Environment with At-Risk Engagement in Science: A Mixed Method Approach

    Science.gov (United States)

    Collins, Stephen Craig

    This explanatory sequential mixed-method study analyzed how the teacher created learning environment links to student engagement for students at-risk across five science classroom settings. The learning environment includes instructional strategies, differentiated instruction, positive learning environment, and an academically challenging environment. Quantitative and qualitative data were gathered in the form of self-reporting surveys and a follow-up interview. The researcher aimed to use the qualitative results to explain the quantitative data. The general research question was "What are the factors of the teacher-created learning environment that were best suited to maximize engagement of students at-risk?" Specifically explaining, (1) How do the measured level of teacher created learning environment link to the engagement level of students at-risk in science class? and (2) What relationship exists between the student perception of the science classroom environment and the level of behavioral, cognitive, emotional, and social engagement for students at-risk in science class? This study took place within a large school system with more than 20 high schools, most having 2000-3000 students. Participating students were sent to a panel hearing that determined them unfit for the regular educational setting, and were given the option of attending one of the two alternative schools within the county. Students in this alternative school were considered at-risk due to the fact that 98% received free and reduced lunch, 97% were minority population, and all have been suspended from the regular educational setting. Pairwise comparisons of the SPS questions between teachers using t-test from 107 students at-risk and 40 interviews suggest that each category of the learning environment affects the level of behavioral, cognitive, emotional, and social engagement in science class for students at-risk in an alternative school setting. Teachers with higher student perceptions of

  10. Cultural politics: Linguistic identity and its role as gatekeeper in the science classroom

    Science.gov (United States)

    Hilton-Brown, Bryan Anthony

    This dissertation investigated how participation in the cultural practices of science classrooms creates intrapersonal conflict for ethnic minority students. Grounded in research perspectives of cultural anthropology, sociocultural studies of science education, and critical pedagogy, this study examined the cultural tensions encountered by minority students as they assimilate into the culture of the science classroom. Classroom interaction was viewed from the perspective of instructional congruence---the active incorporation of students' culture into science pedagogy. Ogbu's notion of "oppositional identity", Fordham's "fictive kinship", Bahktin's "antidialogics", and Freire's "critical consciousness" were brought together to examine how members of marginalized cultures develop non-normative behaviors as a means of cultural resistance. Choice of genre for public discourse was seen as a political act, representing students' own cultural affiliations. Conducted in a diverse Southern Californian high school with an annual population of over 3,900 students, this study merged ethnographic research, action research, and sociolinguistic discourse analysis. Post hoc analysis of videotaped classroom activities, focus group interviews, and samples of student work revealed students' discursive behavior to shift as a product of the context of their discursive exchanges. In whole class discussions students explained their understanding of complex phenomena to classmates, while in small group discussions they favored brief exchanges of group data. Four domains of discursive identities were identified: Opposition Status, Maintenance Status, Incorporation Status, and Proficiency Status. Students demonstrating Opposition Status avoided use of science discourse. Those students who demonstrated Maintenance Status were committed to maintaining their own discursive behavior. Incorporation Status students were characterized by an active attempt to incorporate science discourse into

  11. Effects of Inquiry-Based Science Instruction on Science Achievement and Interest in Science: Evidence from Qatar

    Science.gov (United States)

    Areepattamannil, Shaljan

    2012-01-01

    The author sought to investigate the effects of inquiry-based science instruction on science achievement and interest in science of 5,120 adolescents from 85 schools in Qatar. Results of hierarchical linear modeling analyses revealed the substantial positive effects of science teaching and learning with a focus on model or applications and…

  12. Examining student conceptions of the nature of science from two project-based classrooms

    Science.gov (United States)

    Moss, David M.

    The purpose of this research was to develop descriptive accounts of precollege students' conceptions of the nature of science from two project-based classrooms, and track those conceptions over the course of an academic year. A model of the nature of science was developed and served as the criterion by which students' beliefs were evaluated. The model distinguishes between two major categories of science, the nature of the scientific enterprise and the nature of scientific knowledge. Five students were selected from each class and interviewed individually for 30-45 minutes each, six times over the year. Data from semi-structured, formal interviewing consisted of audio-recorded interviews which were transcribed verbatim. All passages were coded using codes which corresponded to the premises of the model of the nature of science. Passages in the transcripts were interpreted to develop a summary of the students' conceptions over the year. Qualitative methodologies, especially formal interviewing in conjunction with participant observation, were effective for uncovering students' conceptions of the nature of science, adding to the knowledge base in this field. The research design of the current study was a significant factor in explaining the inconsistencies seen between findings from this study and the literature. This study finds that participants at both classroom sites held fully formed conceptions of the nature of science for approximately 40 percent of the premises across the model. For two-thirds of the elements which comprise the premises, participants held full understandings. Participants held more complete understandings of the nature of scientific knowledge than the nature of the scientific enterprise. Most participants had difficulty distinguishing between science and non-science and held poor understandings of the role of questions in science. Students' beliefs generally remained unchanged over the year. When their conceptions did evolve, project

  13. Using a motivation-based instructional model for teacher development and students' learning of science

    Science.gov (United States)

    Bae, Min-Jung

    2009-10-01

    Science teachers often have difficulty helping students participate in scientific practices and understand scientific ideas. In addition, they do not frequently help students value their science learning. As one way to address these problems, I designed and examined the effects of professional development using a motivation-based instructional model with teachers and students. This motivation-based inquiry and application instructional model (MIAIM) consists of four steps of activities and identifies instructional and motivational functions that teachers can use to engage their students in scientific inquiry and application and to help them value their science learning. In order to conduct this study, I worked with three teachers (4 th, 8th, and 8th) in both suburban and urban environments. This study consisted of three parts-an initial observation of teachers' classrooms, professional development with MIAIM, and an observation of teachers' classrooms after the professional development. Data analysis of class observations, interviews, and class artifacts shows that there was a moderate change in teachers' teaching approach after the intervention. The three teachers designed and enacted some inquiry and application lessons that fit the intent of MIAIM. They also used some instructional and motivational practices more frequently after the intervention than they did before the intervention. In particular, they more frequently established central questions for investigations, helped students find patterns in data by themselves, provided opportunities for application, related science to students' everyday lives, and created students' interests in scientific investigation by using interesting stories. However, there was no substantial change in teachers' use of some practices such as providing explanations, supporting students' autonomy, and using knowledge about students in designing and enacting science lessons. In addition, data analysis of students' surveys, class

  14. Science Fiction in the Political Science Classroom: A Comment

    Science.gov (United States)

    Landers, Clifford E.

    1977-01-01

    Science fiction can be used for introducing and analyzing political concepts at the undergraduate level for either a specialized theory-oriented course such as Political Science Fiction or an Introduction to Political Science course. (Author/RM)

  15. Classroom Demonstrations in Materials Science/Engineering.

    Science.gov (United States)

    Hirschhorn, J. S.; And Others

    Examples are given of demonstrations used at the University of Wisconsin in a materials science course for nontechnical students. Topics include crystal models, thermal properties, light, and corrosion. (MLH)

  16. Classroom Implementation of Science, Technology, Engineering ...

    African Journals Online (AJOL)

    Zimbabwe Journal of Educational Research ... Understanding science, technology, engineering, and mathematics (STEM) education as a ... life skills in general and scientific literacy, along with a productive disposition and sense of social ...

  17. Modelling Spark Integration in Science Classroom

    Directory of Open Access Journals (Sweden)

    Marie Paz E. Morales

    2014-02-01

    Full Text Available The study critically explored how a PASCO-designed technology (SPARK ScienceLearning System is meaningfully integrated into the teaching of selected topics in Earth and Environmental Science. It highlights on modelling the effectiveness of using the SPARK Learning System as a primary tool in learning science that leads to learning and achievement of the students. Data and observation gathered and correlation of the ability of the technology to develop high intrinsic motivation to student achievement were used to design framework on how to meaningfully integrate SPARK ScienceLearning System in teaching Earth and Environmental Science. Research instruments used in this study were adopted from standardized questionnaires available from literature. Achievement test and evaluation form were developed and validated for the purpose of deducing data needed for the study. Interviews were done to delve into the deeper thoughts and emotions of the respondents. Data from the interviews served to validate all numerical data culled from this study. Cross-case analysis of the data was done to reveal some recurring themes, problems and benefits derived by the students in using the SPARK Science Learning System to further establish its effectiveness in the curriculum as a forerunner to the shift towards the 21st Century Learning.

  18. Silencing of voices in a Swedish science classroom

    Science.gov (United States)

    Ramos de Robles, S. Lizette

    2018-03-01

    From a sociocultural perspective, I discuss data from a Swedish science classroom presented in María Gómez's article "Student Explanations of their Science Teachers' Assessments, Grading Practices, and How they learn Science". In this discussion, I focus on the need to change existing conceptions of assessment in the teaching and learning of science. Next, I talk about the importance of taking into consideration the dialectic between agency and passivity as filters in order to understand what student silence may signify in science classes as well as in relation to their perceptions of assessment. I conclude with the importance of the teacher's role in developing formative assessment, along with the challenges in developing assessments which transform science education into a relevant field of knowledge for both students and society at large.

  19. Meeting Classroom Needs: Designing Space Physics Educational Outreach for Science Education Standards

    Science.gov (United States)

    Urquhart, M. L.; Hairston, M.

    2008-12-01

    As with all NASA missions, the Coupled Ion Neutral Dynamics Investigation (CINDI) is required to have an education and public outreach program (E/PO). Through our partnership between the University of Texas at Dallas William B. Hanson Center for Space Sciences and Department of Science/Mathematics Education, the decision was made early on to design our educational outreach around the needs of teachers. In the era of high-stakes testing and No Child Left Behind, materials that do not meet the content and process standards teachers must teach cannot be expected to be integrated into classroom instruction. Science standards, both state and National, were the fundamental drivers behind the designs of our curricular materials, professional development opportunities for teachers, our target grade levels, and even our popular informal educational resource, the "Cindi in Space" comic book. The National Science Education Standards include much more than content standards, and our E/PO program was designed with this knowledge in mind as well. In our presentation we will describe how we came to our approach for CINDI E/PO, and how we have been successful in our efforts to have CINDI materials and key concepts make the transition into middle school classrooms. We will also present on our newest materials and high school physics students and professional development for their teachers.

  20. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    Science.gov (United States)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  1. Using WebQuests in the Social Sciences Classroom

    Science.gov (United States)

    Kachina, Olga A.

    2012-01-01

    This article investigates if WebQuests have been an effective instructional tool for teaching Social Sciences subjects. In order to obtain an answer to this question, a review of scholarly literature from 1995 to the present has been undertaken and action research in 8th grade U.S. history course was conducted. The literature investigation has…

  2. An Investigation of Literacy Practices in High School Science Classrooms

    Science.gov (United States)

    Wexler, Jade; Mitchell, Marisa A.; Clancy, Erin E.; Silverman, Rebecca D.

    2017-01-01

    This study reports findings from an exploration of the literacy practices of 10 high school science teachers. Based on observations of teachers' instruction, we report teachers' use of text, evidence-based vocabulary and comprehension practices, and grouping practices. Based on interviews with teachers, we also report teachers' perceptions…

  3. Changes in science classrooms resulting from collaborative action research initiatives

    Science.gov (United States)

    Oh, Phil Seok

    Collaborative action research was undertaken over two years between a Korean science teacher and science education researchers at the University of Iowa. For the purpose of realizing science learning as envisioned by constructivist principles, Group-Investigations were implemented three or five times per project year. In addition, the second year project enacted Peer Assessments among students. Student perceptions of their science classrooms, as measured by the Constructivist Learning Environment Survey (CLES), provided evidence that the collaborative action research was successful in creating constructivist learning environments. Student attitudes toward science lessons, as examined by the Enjoyment of Science Lessons Scale (ESLS), indicated that the action research also contributed to developing more positive attitudes of students about science learning. Discourse analysis was conducted on video-recordings of in-class presentations and discussions. The results indicated that students in science classrooms which were moving toward constructivist learning environments engaged in such discursive practices as: (1) Communicating their inquiries to others, (2) Seeking and providing information through dialogues, and (3) Negotiating conflicts in their knowledge and beliefs. Based on these practices, science learning was viewed as the process of constructing knowledge and understanding of science as well as the process of engaging in scientific inquiry and discourse. The teacher's discursive practices included: (1) Wrapping up student presentations, (2) Addressing misconceptions, (3) Answering student queries, (4) Coaching, (5) Assessing and advising, (6) Guiding students discursively into new knowledge, and (7) Scaffolding. Science teaching was defined as situated acts of the teacher to facilitate the learning process. In particular, when the classrooms became more constructivist, the teacher intervened more frequently and carefully in student activities to fulfill a

  4. Cosmic Times: Astronomy History and Science for the Classroom

    Science.gov (United States)

    Lochner, James C.; Mattson, B.

    2008-05-01

    Cosmic Times is a series of curriculum support materials and classroom activities for upper middle school and high school students which teach the nature of science by exploring the history of our understanding of the universe during the past 100 years. Starting with the confirmation of Einstein's theory of gravity in 1919 to the current conundrum posed by the discovery of dark energy, Cosmic Times examines the discoveries, the theories, and the people involved in this changing [understanding] of the universe. Cosmic Times takes the form of 6 posters, each resembling the front page of a newspaper from a particular time in this history with articles describing the discoveries. Each poster is accompanied by 4-5 classroom lessons which enable students to examine the science concepts behind the discoveries, develop techniques to improve science literacy, and investigate the nature of science using historical examples. Cosmic Times directly connects with the IYA theme of Astronomy in the Classroom, as well as the general theme of the impact of astronomy history. Cosmic Times has been developed with a freelance writer to write the articles for the posters, a group of teachers to develop the lessons, and evaluator to provide testing of the materials with a group of rural teachers in underserved communities. This poster presentation previews the Cosmic Times materials, which are posted on http://cosmictimes.gsfc.nasa.gov/ as they become available. Cosmic Times is funded in part via a NASA IDEAS grant.

  5. Incorporating Science News Into Middle School Curricula: Current Events in the 21st Century Classroom

    Science.gov (United States)

    Dimaggio, E.

    2010-12-01

    Middle school students are instructed with the aid of textbooks, lectures, and activities to teach topics that satisfy state standards. However, teaching materials created to convey standard-aligned science concepts often leave students asking how the content relates to their lives and why they should be learning it. Conveying relevance, especially in science when abstract concepts can often be incorrectly perceived as irrelevant, is important for student learning and retention. One way to create an educational link between classroom content and everyday life is through the use of scientific current events. Students read, hear, and watch media coverage of natural events (such as the Haiti or Chile earthquakes in 2010), but do not necessarily relate the scientific information from media sources to classroom studies. Taking advantage of these brief ‘teachable moments’-when student interest is high- provides a valuable opportunity to make classroom-to-everyday life associations and to incorporate inquiry based learning. To address this need, we are creating pre-packaged current event materials for middle school teachers in Arizona that align to state standards and which are short, effective, and easy to implement in the classroom. Each lesson takes approximately 15 minutes to implement, allowing teachers time to facilitate brief but meaningful discussions. Materials are assembled within approximately one week of the regional or global science event (e.g., volcanic eruptions, earthquakes) and may include a short slide show, maps, videos, pictures, and real-time data. A listserv is used to send biweekly emails to subscribed instructors. The email contains the current event topic, specific Arizona science standards addressed, and a link to download the materials. All materials are hosted on the Arizona State University Education Outreach website and are archived. Early implementation efforts have been received positively by participating teachers. In one case

  6. SciNews: Incorporating Science Current Events in 21st Century Classrooms

    Science.gov (United States)

    DiMaggio, E.

    2011-12-01

    Middle school students are instructed with the aid of textbooks, lectures, and activities to teach topics that satisfy state standards. However, teaching materials created to convey standard-aligned science concepts often leave students asking how the content relates to their lives and why they should be learning it. Conveying relevance is important for student learning and retention, especially in science where abstract concepts can often be incorrectly perceived as irrelevant. One way to create an educational link between classroom content and everyday life is through the use of scientific current events. Students read, hear, and watch media coverage of natural events (such as the 2011 earthquake and tsunami in Japan), but do not necessarily relate the scientific information from media sources to classroom studies. Taking advantage of these brief 'teachable moments'--when student interest is high--provides a valuable opportunity to make classroom-to-everyday life associations and to incorporate inquiry based learning. To address this need, I create pre-packaged current event materials for middle to high school teachers that align to state standards, and which are short, effective, and easy to implement in the classroom. Each lesson takes approximately 15-30 minutes to implement, allowing teachers time to facilitate brief but meaningful discussions. I assemble materials within approximately one week of the regional or global science event, consisting of short slide shows, maps, videos, pictures, and real-time data. I use a listserv to send biweekly emails to subscribed instructors containing the current event topic and a link to download the materials. All materials are hosted on the Arizona State University Education Outreach SciNews website (http://sese.asu.edu/teacher-resources) and are archived. Currently, 285 educators subscribe to the SciNews listserv, representing 36 states and 19 countries. In order to assess the effectiveness and usefulness of Sci

  7. The nature of advanced reasoning and science instruction

    Science.gov (United States)

    Lawson, Anton E.

    Although the development of reasoning is recognized as an important goal of science instruction, its nature remains somewhat of a mystery. This article discusses two key questions: Does formal thought constitute a structured whole? And what role does propositional logic play in advanced reasoning? Aspects of a model of advanced reasoning are presented in which hypothesis generation and testing are viewed as central processes in intellectual development. It is argued that a number of important advanced reasoning schemata are linked by these processes and should be made a part of science instruction designed to improve students' reasoning abilities.Concerning students' development and use of formal reasoning, Linn (1982) calls for research into practical issues such as the roles of task-specific knowledge and individual differences in performance, roles not emphasized by Piaget in his theory and research. From a science teacher's point of view, this is good advice. Accordingly, this article will expand upon some of the issues raised by Linn in a discussion of the nature of advanced reasoning which attempts to reconcile the apparent contradiction between students' differential use of advanced reasoning schemata in varying contexts with the notion of a general stage of formal thought. Two key questions will be discussed: Does formal thought constitute a structured whole? And what role does propositional logic play in advanced reasoning? The underlying assumption of the present discussion is that, among other things, science instruction should concern itself with the improvement of students' reasoning abilities (cf. Arons, 1976; Arons & Karplus, 1976; Bady, 1979; Bauman, 1976; Educational Policies Commission, 1966; Herron, 1978; Karplus, 1979; Kohlberg & Mayer, 1972; Moshman & Thompson, 1981; Lawson, 1979; Levine & linn, 1977; Pallrand, 1977; Renner & Lawson, 1973; Sayre & Ball, 1975; Schneider & Renner, 1980; Wollman, 1978). The questions are of interest because to

  8. Informal Science Learning in the Formal Classroom

    Science.gov (United States)

    Walsh, Lori; Straits, William

    2014-01-01

    In this article the authors share advice from the viewpoints of both a formal and informal educator that will help teachers identify the right Informal Science Institutions (ISIs)--institutions that specialize in learning that occurs outside of the school setting--to maximize their students' learning and use informal education to their…

  9. University Students' Perceptions of Their Science Classrooms

    Science.gov (United States)

    Kaya, Osman Nafiz; Kilic, Ziya; Akdeniz, Ali Riza

    2004-01-01

    The purpose of this study was to investigate the dimensions of the university students' perceptions of their science classes and whether or not the students' perceptions differ significantly as regards to the gender and grade level in six main categories namely; (1) pedagogical strategies, (2) faculty interest in teaching, (3) students interest…

  10. Blogging in the Political Science Classroom

    Science.gov (United States)

    Lawrence, Christopher N.; Dion, Michelle L.

    2010-01-01

    Weblogs (or blogs), as a form of communication on the Internet, have recently risen in prominence but may be poorly understood by both faculty and students. This article explains how blogs differ from other online communication tools and how political science faculty can make use of blogs in their classes. The focus is on using blogs as part of…

  11. The effectiveness of computer-managed instruction versus traditional classroom lecture on achievement outcomes.

    Science.gov (United States)

    Schmidt, S M; Arndt, M J; Gaston, S; Miller, B J

    1991-01-01

    This controlled experimental study examines the effect of two teaching methods on achievement outcomes from a 15-week, 2 credit hour semester course taught at two midwestern universities. Students were randomly assigned to either computer-managed instruction in which faculty function as tutors or the traditional classroom course of study. In addition, the effects of age, grade point average, attitudes toward computers, and satisfaction with the course on teaching method were analyzed using analysis of covariance. Younger students achieved better scores than did older students. Regardless of teaching method, however, neither method appeared to be better than the other for teaching course content. Students did not prefer one method over the other as indicated by their satisfaction scores. With demands upon university faculty to conduct research and publish, alternative methods of teaching that free faculty from the classroom should be considered. This study suggests that educators can select such an alternative teaching method to traditional classroom teaching without sacrificing quality education for certain courses.

  12. Measuring Medical Student Preference: A Comparison of Classroom Versus Online Instruction for Teaching Pubmed*EC

    Science.gov (United States)

    Schimming, Laura M.

    2008-01-01

    Objective: The research analyzed evaluation data to assess medical student satisfaction with the learning experience when required PubMed training is offered entirely online. Methods: A retrospective study analyzed skills assessment scores and student feedback forms from 455 first-year medical students who completed PubMed training either through classroom sessions or an online tutorial. The class of 2006 (n = 99) attended traditional librarian-led sessions in a computer classroom. The classes of 2007 (n = 120), 2008 (n = 121), and 2009 (n = 115) completed the training entirely online through a self-paced tutorial. PubMed skills assessment scores and student feedback about the training were compared for all groups. Results: As evidenced by open-ended comments about the training, students who took the online tutorial were equally or more satisfied with the learning experience than students who attended classroom sessions, with the classes of 2008 and 2009 reporting greater satisfaction (PPubMed skills assessment (91%) was the same for all groups of students. Conclusions: Student satisfaction improved and PubMed assessment scores did not change when instruction was offered online to first-year medical students. Comments from the students who received online training suggest that the increased control and individual engagement with the web-based content led to their satisfaction with the online tutorial. PMID:18654658

  13. The materiality of materials and artefacts used in science classrooms

    DEFF Research Database (Denmark)

    Cowie, Bronwen; Otrel-Cass, Kathrin; Moreland, Judy

    Material objects and artefacts receive limited attention in science education (Roehl, 2012) though they shape emerging interactions. This is surprising given science has material and a social dimensions (Pickering, 1995) whereby new knowledge develops as a consensus explanation of natural phenomena...... that is mediated significantly through materials and instruments used. Here we outline the ways teachers deployed material objects and artefacts by identifying their materiality to provide scenarios and resources (Roth, 2005) for interactions. Theoretical framework We use Ingold's (2011) distinction between...... materials as natural objects in this world and artefacts as manmade objects. We are aware that in a classroom material objects and artefacts shape, and are shaped by classroom practice through the way they selectively present scientific explanations. However, materials and artefacts have no intrinsic...

  14. Suggesting a NOS Map for Nature of Science for Science Education Instruction

    Science.gov (United States)

    Oh, Jun-Young

    2017-01-01

    The aims of this research are 1) to explore the inter-relationships within the individual elements or tenets of Nature of Science (NOS), based on the dimensions of scientific knowledge in science learning, and 2) to consider Kuhn's concept of how scientific revolution takes place. This study suggests that instruction according to our NOS Flowchart…

  15. Observing the interactive qualities of L2 instructional practices in ESL and FSL classrooms

    Directory of Open Access Journals (Sweden)

    Michael Zuniga

    2016-03-01

    Full Text Available Discourse features that promote the generation of interactionally modified input and output, such as negotiation for meaning, have been shown to significantly enhance second language acquisition. Research has also identified several characteristics of instructional practices that render them more or less propitious to the generation of these discourse features. While various classroom observation studies have successfully measured the communicative orientation of classroom environments, most of the indicators of interactivity analyzed in those studies were obtained through micro-level discourse analyses and not through macro-level analyses of task-related factors shown to directly influence the interactivity of instructional practices. Such a macro-level scale has potential practical implications for teachers and administrators seeking an efficient tool for assessing and improving the interactivity afforded by a given curriculum. The objective of the present study was therefore to develop macro-level scale to determine the extent to which teachers of French and English as a second language use interaction-friendly instructional practices. Using an observation scheme designed to code data on factors shown to influence interactivity, 63 hours of FSL and ESL classes from secondary schools in the Montreal area were observed and analyzed. Results indicate clear differences between the two groups. While both ESL and FSL classes were less teacher-centered than those observed in previous studies, they were still rated as not-very-interactive. Target language differences showed that the FSL classes were more teacher-centered and characterized by fewer interaction-friendly tasks and activities than the ESL classes. Task characteristics, reasons for ESL and FSL differences and recommendations for improvement are discussed.

  16. Diversity and Innovation for Geosciences (dig) Texas Earth and Space Science Instructional Blueprints

    Science.gov (United States)

    Ellins, K. K.; Bohls-Graham, E.; Riggs, E. M.; Serpa, L. F.; Jacobs, B. E.; Martinez, A. O.; Fox, S.; Kent, M.; Stocks, E.; Pennington, D. D.

    2014-12-01

    The NSF-sponsored DIG Texas Instructional Blueprint project supports the development of online instructional blueprints for a yearlong high school-level Earth science course. Each blueprint stitches together three-week units that contain curated educational resources aligned with the Texas state standards for Earth and Space Science and the Earth Science Literacy Principles. Units focus on specific geoscience content, place-based concerns, features or ideas, or other specific conceptual threads. Five regional teams composed of geoscientists, pedagogy specialists, and practicing science teachers chose unit themes and resources for twenty-two units during three workshops. In summer 2014 three Education Interns (Earth science teachers) spent six weeks refining the content of the units and aligning them with the Next Generation Science Standards. They also assembled units into example blueprints. The cross-disciplinary collaboration among blueprint team members allowed them to develop knowledge in new areas and to share their own discipline-based knowledge and perspectives. Team members and Education Interns learned where to find and how to evaluate high quality geoscience educational resources, using a web-based resource review tool developed by the Science Education Resource Center (SERC). SERC is the repository for the DIG Texas blueprint web pages. Work is underway to develop automated tools to allow educators to compile resources into customized instructional blueprints by reshuffling units within an existing blueprint, by mixing units from other blueprints, or creating new units and blueprints. These innovations will enhance the use of the units by secondary Earth science educators beyond Texas. This presentation provides an overview of the project, shows examples of blueprints and units, reports on the preliminary results of classroom implementation by Earth science teachers, and considers challenges encountered in developing and testing the blueprints. The

  17. Guided Instruction Improves Elementary Student Learning and Self-Efficacy in Science

    Science.gov (United States)

    Hushman, Carolyn J.; Marley, Scott C.

    2015-01-01

    The authors investigated whether the amount of instructional guidance affects science learning and self-efficacy. Sixty 9- and 10-year-old children were randomly assigned to one of the following three instructional conditions: (a) guided instruction consisting of examples and student-generated explanations, (b) direct instruction consisting of a…

  18. Interchangeable Positions in Interaction Sequences in Science Classrooms

    Directory of Open Access Journals (Sweden)

    Carol Rees

    2017-03-01

    Full Text Available Triadic dialogue, the Initiation, Response, Evaluation sequence typical of teacher /student interactions in classrooms, has long been identified as a barrier to students’ access to learning, including science learning. A large body of research on the subject has over the years led to projects and policies aimed at increasing opportunities for students to learn through interactive dialogue in classrooms. However, the triadic dialogue pattern continues to dominate, even when teachers intend changing this. Prior quantitative research on the subject has focused on identifying independent variables such as style of teacher questioning that have an impact, while qualitative researchers have worked to interpret the use of dialogue within the whole context of work in the classroom. A recent paper offers an alternative way to view the triadic dialogue pattern and its origin; the triadic dialogue pattern is an irreducible social phenomenon that arises in a particular situation regardless of the identity of the players who inhabit the roles in the turn-taking sequence (Roth & Gardner, 2012. According to this perspective, alternative patterns of dialogue would exist which are alternative irreducible social phenomena that arise in association with different situations. The aim of this paper is to examine as precisely as possible, the characteristics of dialogue patterns in a seventh-eighth grade classroom during science inquiry, and the precise situations from which these dialogue patterns emerge, regardless of the staffing (teacher or students in the turn-taking sequence. Three different patterns were identified each predominating in a particular situation. This fine-grained analysis could offer valuable insights into ways to support teachers working to alter the kinds of dialogue patterns that arise in their classrooms.

  19. Factors Affecting the Implementation of Argument in the Elementary Science Classroom. A Longitudinal Case Study

    Science.gov (United States)

    Martin, Anita M.; Hand, Brian

    2009-01-01

    This longitudinal case study describes the factors that affect an experienced teacher’s attempt to shift her pedagogical practices in order to implement embedded elements of argument into her science classroom. Research data was accumulated over 2 years through video recordings of science classes. The Reformed Teacher Observation Protocol (RTOP) is an instrument designed to quantify changes in classroom environments as related to reform as defined by the National Research Council ( National science education standards. Washington, DC: National Academy Press, 1996b) and the National Research Council ( Fulfilling the promise: Biology education in the nation’s schools, Washington, DC: National Academy Press, 1990) and was used to analyze videotaped science lessons. Analysis of the data shows that there was a significant shift in the areas of teacher questioning, and student voice. Several levels of subsequent analysis were completed related to teacher questioning and student voice. The data suggests a relationship between these areas and the implementation of scientific argument. Results indicate that the teacher moved from a traditional, teacher-centered, didactic teaching style to instructional practices that allowed the focus and direction of the lesson to be affected by student voice. This was accomplished by a change in teacher questioning that included a shift from factual recall to more divergent questioning patterns allowing for increased student voice. As student voice increased, students began to investigate ideas, make statements or claims and to support these claims with strong evidence. Finally, students were observed refuting claims in the form of rebuttals. This study informs professional development related to experienced teachers in that it highlights pedagogical issues involved in implementing embedded elements of argument in the elementary classroom.

  20. Comparing levels of school performance to science teachers' reports on knowledge/skills, instructional use and student use of computers

    Science.gov (United States)

    Kerr, Rebecca

    The purpose of this descriptive quantitative and basic qualitative study was to examine fifth and eighth grade science teachers' responses, perceptions of the role of technology in the classroom, and how they felt that computer applications, tools, and the Internet influence student understanding. The purposeful sample included survey and interview responses from fifth grade and eighth grade general and physical science teachers. Even though they may not be generalizable to other teachers or classrooms due to a low response rate, findings from this study indicated teachers with fewer years of teaching science had a higher level of computer use but less computer access, especially for students, in the classroom. Furthermore, teachers' choice of professional development moderated the relationship between the level of school performance and teachers' knowledge/skills, with the most positive relationship being with workshops that occurred outside of the school. Eighteen interviews revealed that teachers perceived the role of technology in classroom instruction mainly as teacher-centered and supplemental, rather than student-centered activities.

  1. Science Teachers' Understanding and Practice of Inquiry-Based Instruction in Uganda

    Science.gov (United States)

    Ssempala, Fredrick

    High school students in Uganda perform poorly in science subjects despite the Ugandan government's efforts to train science teachers and build modern science laboratories in many public high schools. The poor performance of students in science subjects has been largely blamed on the inability by many science teachers to teach science through Inquiry-Based Instruction (IBI) to motivate the students to learn science. However, there have been no empirical studies done to establish the factors that influence science teachers' understanding and practice of IBI in Uganda. Most of the published research on IBI has been conducted in developed countries, where the prevailing contexts are very different from the contexts in developing countries such as Uganda. Additionally, few studies have explored how professional development (PD) training workshops on inquiry and nature of science (NOS) affect chemistry teachers' understanding and practice of IBI. My purpose in this multi-case exploratory qualitative study was to explore the effect of a PD workshop on inquiry and NOS on chemistry teachers' understanding and practice of IBI in Kampala city public schools in Uganda. I also explored the relationship between chemistry teachers' NOS understanding and the nature of IBI implemented in their classrooms and the internal and external factors that influence teachers' understanding and practice of IBI. I used a purposive sampling procedure to identify two schools of similar standards from which I selected eight willing chemistry teachers (four from each school) to participate in the study. Half of the teachers (those from School A) attended the PD workshop on inquiry and NOS for six days, while the control group (those from School B) did not. I collected qualitative data through semi-structured interviews, classroom observation, and document analysis. I analyzed these data by structural, conceptual and theoretical coding approach. I established that all the participating chemistry

  2. NASA IDEAS to Improve Instruction in Astronomy and Space Science

    Science.gov (United States)

    Malphrus, B.; Kidwell, K.

    1999-12-01

    The IDEAS to Improve Instructional Competencies in Astronomy and Space Science project is intended to develop and/or enhance teacher competencies in astronomy and space sciences of teacher participants (Grades 5-12) in Kentucky. The project is being implemented through a two-week summer workshop, a series of five follow-up meetings, and an academic year research project. The resources of Kentucky's only Radio Astronomy Observatory- the Morehead Radio Telescope (MRT), Goldstone Apple Valley Radio Telescope (GAVRT) (via remote observing using the Internet), and the Kentucky Department of Education regional service centers are combined to provide a unique educational experience. The project is designed to improve science teacher's instructional methodologies by providing pedagogical assistance, content training, involving the teachers and their students in research in radio astronomy, providing access to the facilities of the Morehead Astrophysical Observatory, and by working closely with a NASA-JOVE research astronomer. Participating teachers will ultimately produce curriculum units and research projects, the results of which will be published on the WWW. A major goal of this project is to share with teachers and ultimately students the excitement and importance of scientific research. The project represents a partnership of five agencies, each matching the commitment both financially and/or personnel. This project is funded by the NASA IDEAS initiative administered by the Space Telescope Science Institute and the National Air and Space Administration (NASA).

  3. Examining student-generated questions in an elementary science classroom

    Science.gov (United States)

    Diaz, Juan Francisco, Jr.

    This study was conducted to better understand how teachers use an argument-based inquiry technique known as the Science Writing Heuristic (SWH) approach to address issues on teaching, learning, negotiation, argumentation, and elaboration in an elementary science classroom. Within the SWH framework, this study traced the progress of promoting argumentation and negotiation (which led to student-generated questions) during a discussion in an elementary science classroom. Speech patterns during various classroom scenarios were analyzed to understand how teacher--student interactions influence learning. This study uses a mixture of qualitative and quantitative methods. The qualitative aspect of the study is an analysis of teacher--student interactions in the classroom using video recordings. The quantitative aspect uses descriptive statistics, tables, and plots to analyze the data. The subjects in this study were fifth grade students and teachers from an elementary school in the Midwest, during the academic years 2007/2008 and 2008/2009. The three teachers selected for this study teach at the same Midwestern elementary school. These teachers were purposely selected because they were using the SWH approach during the two years of the study. The results of this study suggest that all three teachers moved from using teacher-generated questions to student-generated questions as they became more familiar with the SWH approach. In addition, all three promoted the use of the components of arguments in their dialogs and discussions and encouraged students to elaborate, challenge, and rebut each other's ideas in a non-threatening environment. This research suggests that even young students, when actively participating in class discussions, are capable of connecting their claims and evidence and generating questions of a higher-order cognitive level. These findings demand the implementation of more professional development programs and the improvement in teacher education to help

  4. Optimizing the orchestration of resemiotization with teacher "talk moves": A model of guided-inquiry instruction in middle school science

    Science.gov (United States)

    Millstone, Rachel Diana

    The current conceptualization of science set forth by the National Research Council (2008) is one of science as a social activity, rather than a view of science as a fixed body of knowledge. This requires teachers to consider how communication, processing, and meaning-making contribute to science learning. It also requires teachers to think deeply about what constitutes knowledge and understanding in science, and what types of instruction are most conducive to preparing students to participate meaningfully in the society of tomorrow. Because argumentation is the prominent form of productive talk leading to the building of new scientific knowledge, one indicator of successful inquiry lies in students' abilities to communicate their scientific understandings in scientific argumentation structures. The overarching goal of this study is to identify factors that promote effective inquiry-based instruction in middle school science classrooms, as evidenced in students' abilities to engage in quality argumentation with their peers. Three specific research questions were investigated: (1) What factors do teachers identify in their practice as significant to the teaching and learning of science? (2) What factors do students identify as significant to their learning of science? and (3) What factors affect students' opportunities and abilities to achieve sophisticated levels of argumentation in the classroom? Two teachers and forty students participated in this study. Four principle sources of data were collected over a three-month period of time. These included individual teacher interviews, student focus group interviews, fieldnotes, and approximately 85 hours of classroom videotape. From this sample, four pathways for guided-inquiry instruction are identified. Opportunities for student talk were influenced by a combination of factors located in the domains of "teacher practice," "classroom systems," and "physical structures." Combinations of elements from these three

  5. Earth Science Instruction Using Brownfields in the Virtual Classroom

    Science.gov (United States)

    Bower, P. M.; Liddicoat, J. C.

    2008-05-01

    Geophysical methods of defining contaminant plumes from brownfields are taught in lecture and laboratory using Brownfield Action (BA) that is a network-based, interactive, digital space and simulation in which undergraduate students explore and solve problems in geohydrology. In the U.S., BA is recognized nationally as an innovative curriculum and simulation that has been developed by Peter Bower at Barnard College in collaboration with Columbia University's Center for New Media Teaching and Learning. Brownfields are former industrial sites that have potential as recreational, residential, and commercial real estate sites when reclaimed. As part of assessing the value of such a site, an environmental site assessment (ESA) is required to determine the nature and extent of any contamination. To reach that objective, BA contains a narrative element that is embedded and to be discovered in simulation; it is a story of groundwater contamination complete with underground contaminant plumes in a fictitious town with buildings, roads, wells, water tower, homes, and businesses as well as a municipal government with relevant historical documents. Student companies work collaboratively in teams of two, sign a contract with a development corporation to conduct a Phase One ESA, receive a realistic budget, and compete with other teams to fulfill the contract while maximizing profit. To reach a valid conclusion in the form of a professional-level ESA and 3-D maps of the physical site, teams must construct a detailed narrative from diverse forms of information, including socio-historical and a scientific dataset comprised of over 2,000,000 data points. BA forces the students to act on their perceptions of the interlocking realms of knowledge, theory and practical experience, providing an opportunity for them to gain valuable practice at tackling the complexity and ambiguity of a large-scale, interdisciplinary investigation of groundwater contamination and environmental forensics.

  6. Teaching controversial issues in the secondary school science classroom

    Science.gov (United States)

    van Rooy, Wilhelmina

    1993-12-01

    A sample of fourteen secondary school biology teachers chosen from twelve schools were interviewed. The purpose was to determine their views on how controversial issues in science might be handled in the secondary school science classroom and whether the issues of surrogacy and human embryo experimentation were suitable controversial issues for discussion in schools. In general, teachers indicated that controversial issues deserve a more prominent place in the science curriculum because they have the potential to foster thinking, learning, and interest in science. The issues of surrogacy and human embryo experimentation were seen as appropriate contexts for learning, provided that teachers were well informed and sensitive to both the students and to the school environment.

  7. Employing Augmented-Reality-Embedded Instruction to Disperse the Imparities of Individual Differences in Earth Science Learning

    Science.gov (United States)

    Chen, Cheng-ping; Wang, Chang-Hwa

    2015-12-01

    Studies have proven that merging hands-on and online learning can result in an enhanced experience in learning science. In contrast to traditional online learning, multiple in-classroom activities may be involved in an augmented-reality (AR)-embedded e-learning process and thus could reduce the effects of individual differences. Using a three-stage AR-embedded instructional process, we conducted an experiment to investigate the influences of individual differences on learning earth science phenomena of "day, night, and seasons" for junior highs. The mixed-methods sequential explanatory design was employed. In the quantitative phase, factors of learning styles and ICT competences were examined alongside with the overall learning achievement. Independent t tests and ANCOVAs were employed to achieve inferential statistics. The results showed that overall learning achievement was significant for the AR-embedded instruction. Nevertheless, neither of the two learner factors exhibited significant effect on learning achievement. In the qualitative phase, we analyzed student interview records, and a wide variation on student's preferred instructional stages were revealed. These findings could provide an alternative rationale for developing ICT-supported instruction, as our three-stage AR-embedded comprehensive e-learning scheme could enhance instruction adaptiveness to disperse the imparities of individual differences between learners.

  8. Associations of Newly Qualified Teachers' Beliefs with Classroom Management Practices and Approaches to Instruction over One School Year

    Science.gov (United States)

    Aus, Kati; Jõgi, Anna-Liisa; Poom-Valickis, Katrin; Eisenschmidt, Eve; Kikas, Eve

    2017-01-01

    We focus on assessing whether newly qualified teachers' professional outcome expectations and their beliefs about students' intellectual potential are associated with teachers' self-reported classroom management and instructional practices. One hundred and eighteen novice teachers participating in the induction year programme were studied during…

  9. Prospect for Cell Phones as Instructional Tools in the EFL Classroom: A Case Study of Jahangirnagar University, Bangladesh

    Science.gov (United States)

    Begum, Roksana

    2011-01-01

    The aim of this study was to investigate the potentiality of cell phone use in the EFL classroom of Bangladesh as an instructional tool. The researcher conducted a case study on Jahangirnagar University of Bangladesh. For the study, some SMS based class tests were conducted in the English Department of the university where one hundred…

  10. Differentiating Instruction "in the Regular" Classroom: How To Reach and Teach All Learners, Grades 3-12.

    Science.gov (United States)

    Heacox, Diane

    This book provides a wide variety of strategies for differentiating instruction for students in grades 3-12. Chapter 1 presents an overview of differentiated content, process, and product, and the role of the teacher in a differentiated classroom. Chapter 2 focuses on the first step of differentiation: gathering information about students. Chapter…

  11. A Survey of Exemplar Teachers' Perceptions, Use, and Access of Computer-Based Games and Technology for Classroom Instruction

    Science.gov (United States)

    Proctor, Michael D.; Marks, Yaela

    2013-01-01

    This research reports and analyzes for archival purposes surveyed perceptions, use, and access by 259 United States based exemplar Primary and Secondary educators of computer-based games and technology for classroom instruction. Participating respondents were considered exemplary as they each won the Milken Educator Award during the 1996-2009…

  12. Beyond Measurement-Driven Instruction: Achieving Deep Learning Based on Constructivist Learning Theory, Integrated Assessment, and a Flipped Classroom Approach

    Science.gov (United States)

    Bernauer, James A.; Fuller, Richard G.

    2017-01-01

    The authors focus on the critical role of assessment within a flipped classroom environment where instruction is based on constructivist learning theory and where desired student outcomes are at the higher levels of Bloom's Taxonomy. While assessment is typically thought of in terms of providing summative measures of performance or achievement, it…

  13. The Influence of Principal Leadership on Classroom Instruction and Student Learning: A Study of Mediated Pathways to Learning

    Science.gov (United States)

    Sebastian, James; Allensworth, Elaine

    2012-01-01

    Purpose: This study examines the influence of principal leadership in high schools on classroom instruction and student achievement through key organizational factors, including professional capacity, parent-community ties, and the school's learning climate. It identifies paths through which leadership explains differences in achievement and…

  14. DLESE Teaching Boxes: Earth System Science Resources And Strategies For Using Data In The Classroom

    Science.gov (United States)

    Olds, S. E.; Weingroff, M.

    2005-12-01

    The DLESE Teaching Box project is both a professional development opportunity and an educational resource development project providing a pedagogic context that support teachers' use of data in the classroom. As a professional development opportunity, it is designed to augment teachers' science content knowledge, enhance their use of inquiry teaching strategies, and increase their confidence and facility with using digital libraries and online learning resources. Teams of educators, scientists, and instructional designers work together during a three part Teaching Box Development Workshop series to create Teaching Boxes on Earth system science topics. The resulting Teaching Boxes use Earth system science conceptual frameworks as their core and contain inquiry-based lessons which model scientific inquiry and process by focusing on the gathering and analysis of evidence. These lines of evidence employ an Earth systems approach to show how processes across multiple spheres, for example, how the biosphere, atmosphere, and geosphere interact in a complex Earth process. Each Teaching Box has interconnected lessons that provide 3-6 weeks of instruction, incorporate National and California science standards, and offer guidance on teaching pathways through the materials. They contain up-to-date digital materials including archived and real-time data sets, simulations, images, lesson plans, and other resources available through DLESE, NSDL, and the participating scientific institutions. Background information provided within the Box supports teacher learning and guides them to facilitate student access to the tools and techniques of authentic, modern science. In developing Teaching Boxes, DLESE adds value to existing educational resources by helping teachers more effectively interpret their use in a variety of standards-based classroom settings. In the past twelve months we have had over 100 requests for Teaching Box products from teachers and curriculum developers from

  15. Single-sex middle school science classrooms: Separate and equal?

    Science.gov (United States)

    Glasser, Howard M.

    The U.S. Department of Education's amended regulations to Title IX have attempted to expand the circumstances in which single-sex classes are permissible in public schools. This ethnographic study uses grounded theory to investigate aspects of one single-sex offering at a public, coeducational middle school. Applying elements of postmodern, queer, and sociocultural lenses, it examines the perspectives for this offering, shedding insight into the cultures of two single-sex classrooms and what it meant to be a boy or girl in this setting. Additionally, it focuses attention on the all-boy and all-girl science classes that were taught by the same teacher and examines what it meant to learn science as boys and girls in this program. Although participants supplied financial, socio-emotional, and academic reasons for these classes, the initial motivation for these classes stemmed from the teachers' desire to curb the amount of sex talk and related behaviors that were exhibited in their classrooms. Through these conversations and classroom events, the girls were constructed as idealized students, academically and behaviorally, who needed to be protected from boys' behaviors---both boys' dominating classroom behaviors and aggressive (hetero)sexual behaviors. Conversely, boys were constructed as needing help both academically and behaviorally, but in the specific discipline of science boys were identified as the sex that was more interested in the content and gained greater exposure to skills that could assist them in future science courses and careers. Overall, boys and girls, and the culture of their two classrooms, were regularly defined relative to each other and efforts were made to maintain these constructed differences. As a result, the classes and students were hierarchically ranked in ways that often pitted one sex of students, or the entire class, as better or worse than the other. The theory emerging from this study is that single-sex policies arise and survive

  16. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  17. The relationship between school environment, preservice science teachers' science teaching self-efficacy, and their use of instructional strategies at teachers' colleges in Saudi Arabia

    Science.gov (United States)

    Alshalaan, Nasser A.

    Studies indicate that many teachers have negative beliefs about science, which translates into low teacher efficacy, resulting in avoidance of science teaching or in ineffective science teaching behaviors. Highly efficacious teachers have been found to be more likely to use inquiry and student-centered teaching strategies, while teachers with a low sense of science-teaching efficacy are more likely to use teacher-directed strategies, such as didactic lectures and reading from the textbook (Czemiak, 1990). The purpose of this study was to investigate preservice science teachers' science-teaching self-efficacy changes and their correlation to teaching environment factors during the student teaching semester. Moreover, it explains how teaching environment factors and preservice teachers' science-teaching self-efficacy beliefs may relate to their use of teaching strategies in the science classroom during their student teacher training at teachers' colleges in Saudi Arabia. The population of this study is consisted of 184 middle and elementary preservice science teachers who were doing their student teaching at nine teachers' colleges (i.e., teachers' colleges of Riyadh, Dammam, Alrras, Almadinah, Alihsa, Jeddah, Makah, Altaief, and Abha) in Saudi Arabia during the spring semester of 2005. Three instruments were used to collect data for this study: (1) to measure science teaching self-efficacy, the researcher adapted the Science Teaching Efficacy Belief Instrument form B designed specifically for preservice teachers (STEBI-B); (2) to measure the school environment, the researcher adapted the Organizational Health Inventory (OHI), developed by Hoy, Tarter & Kottkamp (1991); and (3) to measure the type and frequency of instructional strategies that preservice science teachers use in the classroom, the researcher adapted the teaching practice subscale from The Local Systemic Change through Teacher Enhancement Science K-8 Teacher Questionnaire (Horizon Research, Inc., 2000

  18. Dialogical argumentation in elementary science classrooms

    Science.gov (United States)

    Kim, Mijung; Roth, Wolff-Michael

    2018-02-01

    To understand students' argumentation abilities, there have been practices that focus on counting and analyzing argumentation schemes such as claim, evidence, warrant, backing, and rebuttal. This analytic approach does not address the dynamics of epistemic criteria of children's reasoning and decision-making in dialogical situations. The common approach also does not address the practice of argumentation in lower elementary grades (K-3) because these children do not master the structure of argumentation and, therefore, are considered not ready for processing argumentative discourse. There is thus little research focusing on lower elementary school students' argumentation in school science. This study, drawing on the societal-historical approach by L. S. Vygotsky, explored children's argumentation as social relations by investigating the genesis of evidence-related practices (especially burden of proof) in second- and third-grade children. The findings show (a) students' capacity for connecting claim and evidence/responding to the burden of proof and critical move varies and (b) that teachers play a significant role to emphasize the importance of evidence but experience difficulties removing children's favored ideas during the turn taking of argumentative dialogue. The findings on the nature of dialogical reasoning and teacher's role provide further insights about discussions on pedagogical approaches to children's reasoning and argumentation.

  19. Professional Vision of Classroom Management and Learning Support in Science Classrooms--Does Professional Vision Differ across General and Content-Specific Classroom Interactions?

    Science.gov (United States)

    Steffensky, Mirjam; Gold, Bernadette; Holdynski, Manfred; Möller, Kornelia

    2015-01-01

    The present study investigates the internal structure of professional vision of in-service teachers and student teachers with respect to classroom management and learning support in primary science lessons. Classroom management (including monitoring, managing momentum, and rules and routines) and learning support (including cognitive activation…

  20. The value of storytelling in the science classroom

    Science.gov (United States)

    Isabelle, Aaron David

    The "traditional science classroom" asks students, "What do we know in science?," and ignores the question, "How do we know what we know?" The purpose of this research is to combine the powerful structure of narrative with the history of science in junior high school science classrooms. This study investigates whether history-of-science-based stories have advantages over traditional, lecture-style presentations. The storytelling approach aims to present science concepts in a meaningful and memorable context and in a coherent and connected manner. The research program employed parallel curricula: science concepts were taught through novel stories and through lectures, at different times, to eight different groups of seventh and eighth grade students at Holy Name Junior High School in Worcester, Massachusetts. Students were assessed with pre- and post-tests and through individual interviews: Before, immediately after, and two weeks after the lessons, students were given short-answer questionnaires. Two weeks after each lesson, individual interviews were also conducted with a sampling of the students. The questionnaires were coded according to a clear set of written standards and the interviews were transformed into concept maps. Student learning and retention levels, gender differences, and alternate conceptions were quantitatively analyzed. The results reveal that the students who were taught through stories learned the science concepts, on the average, 21% better and retained close to 48% more than the students who were taught through traditional lessons. Fewer alternate conceptions were expressed after story lessons than after lectures. Investigation of gender differences in learning science through the two methods revealed that boys profited more than girls did from the story lessons. The union of narrative with the history of science in the form of story lessons seems natural since the spatiotemporal structure of a narrative mirrors the unfolding of actions in

  1. Sustaining inquiry-based teaching methods in the middle school science classroom

    Science.gov (United States)

    Murphy, Amy Fowler

    This dissertation used a combination of case study and phenomenological research methods to investigate how individual teachers of middle school science in the Alabama Math, Science, and Technology Initiative (AMSTI) program sustain their use of inquiry-based methods of teaching and learning. While the overall context for the cases was the AMSTI program, each of the four teacher participants in this study had a unique, individual context as well. The researcher collected data through a series of interviews, multiple-day observations, and curricular materials. The interview data was analyzed to develop a textural, structural, and composite description of the phenomenon. The Reformed Teaching Observation Protocol (RTOP) was used along with the Assesing Inquiry Potential (AIP) questionnaire to determine the level of inquiry-based instruction occuring in the participants classrooms. Analysis of the RTOP data and AIP data indicated all of the participants utilized inquiry-based methods in their classrooms during their observed lessons. The AIP data also indicated the level of inquiry in the AMSTI curricular materials utilized by the participants during the observations was structured inquiry. The findings from the interview data suggested the ability of the participants to sustain their use of structured inquiry was influenced by their experiences with, beliefs about, and understandings of inquiry. This study contributed to the literature by supporting existing studies regarding the influence of teachers' experiences, beliefs, and understandings of inquiry on their classroom practices. The inquiry approach stressed in current reforms in science education targets content knowledge, skills, and processes needed in a future scientifically literate citizenry.

  2. Exploring the classroom: Teaching science in early childhood

    Directory of Open Access Journals (Sweden)

    Peter J.N. DEJONCKHEERE

    2016-06-01

    Full Text Available This study tested and integrated the effects of an inquiry-based didactic method for preschool science in a real practical classroom setting. Four preschool classrooms participated in the experiment (N= 57 and the children were 4–6 years old. In order to assess children’s attention for causal events and their understanding at the level of scientific reasoning skills, we designed a simple task in which a need for information gain was created. Compared to controls, children in the post-test showed significant learning gains in the development of the so-called control of variables strategy. Indeed, they executed more informative and less uninformative explorations during their spontaneous play. Furthermore, the importance of such programmes was discussed in the field of STEM education.

  3. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    Science.gov (United States)

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-08-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by prominent policy documents. Specifically, we examined the opportunities present in Montessori classrooms for students to develop an interest in the natural world, generate explanations in science, and communicate about science. Using ethnographic research methods in four Montessori classrooms at the primary and elementary levels, this research captured a range of scientific learning opportunities. The study found that the Montessori learning environment provided opportunities for students to develop enduring interests in scientific topics and communicate about science in various ways. The data also indicated that explanation was largely teacher-driven in the Montessori classroom culture. This study offers lessons for both conventional and Montessori classrooms and suggests further research that bridges educational contexts.

  4. Student Engagement in a Computer Rich Science Classroom

    Science.gov (United States)

    Hunter, Jeffrey C.

    The purpose of this study was to examine the student lived experience when using computers in a rural science classroom. The overarching question the project sought to examine was: How do rural students relate to computers as a learning tool in comparison to a traditional science classroom? Participant data were collected using a pre-study survey, Experience Sampling during class and post-study interviews. Students want to use computers in their classrooms. Students shared that they overwhelmingly (75%) preferred a computer rich classroom to a traditional classroom (25%). Students reported a higher level of engagement in classes that use technology/computers (83%) versus those that do not use computers (17%). A computer rich classroom increased student control and motivation as reflected by a participant who shared; "by using computers I was more motivated to get the work done" (Maggie, April 25, 2014, survey). The researcher explored a rural school environment. Rural populations represent a large number of students and appear to be underrepresented in current research. The participants, tenth grade Biology students, were sampled in a traditional teacher led class without computers for one week followed by a week using computers daily. Data supported that there is a new gap that separates students, a device divide. This divide separates those who have access to devices that are robust enough to do high level class work from those who do not. Although cellular phones have reduced the number of students who cannot access the Internet, they may have created a false feeling that access to a computer is no longer necessary at home. As this study shows, although most students have Internet access, fewer have access to a device that enables them to complete rigorous class work at home. Participants received little or no training at school in proper, safe use of a computer and the Internet. It is clear that the majorities of students are self-taught or receive guidance

  5. The effects of departmentalized and self-contained classrooms on fifth-grade students' achievement in science on the Georgia Criterion Referenced Competency Test

    Science.gov (United States)

    Koch, Lisa S.

    Elementary instruction of fifth grade classrooms was found to be primarily in two organizational models in a school district northwest of Atlanta, Georgia. The self-contained classroom provided a generalist teacher responsible for the instruction of all academic subjects to one group of students throughout the day, while departmentalized classrooms were structured utilizing one teacher for the instruction of one or two content areas, and students rotated throughout the day for each of the academic subjects. The majority of studies looking at the effect of instructional organization were concentrated in the content areas of mathematics and reading. This quantitative study, utilized an ex post facto methodology to determine whether fifth grade students attending departmentalized schools or self-contained classrooms had higher student achievement in science as measured by the Georgia Criterion Referenced Competency Test (CRCT). The statistical data was collected through the Georgia Department of Education and included raw mean scores of over 500 students attending departmentalized schools and 500 students attending self-contained classrooms, along with the various subgroups such as gender, ethnicity status, English language learners (ELL), and students with disability (SWD) placement. This data was analyzed to show if a significant statistical difference emerged from either instructional organization. The overall results that emerged from the archival data suggested no significant difference in student achievement existed for almost all subgroups tested of the total 1000+ participant scores used in the study. The results also did however, showed the departmentalization model of instruction had a slight advantage over self-contained classrooms for male students with disabilities.

  6. Classroom management at the university level: lessons from a former high school earth science teacher

    Science.gov (United States)

    Lazar, C.

    2009-12-01

    Just a few days before my career as a fledgling science teacher began in a large public high school in New York City, a mentor suggested I might get some ideas about how to run a classroom from a book called The First Days Of School by Harry Wong. Although the book seemed to concentrate more on elementary students, I found that many of the principles in the book worked well for high school students. Even as I have begun to teach at the university level, many of Wong’s themes have persisted in my teaching style. Wong’s central thesis is that for learning to occur, a teacher must create the proper environment. In education jargon, a good climate for learning is generated via classroom management, an array of methods used by elementary and secondary school teachers to provide structure and routine to a class period via a seamless flow of complementary activities. Many college professors would likely consider classroom management to be chiefly a set of rules to maintain discipline and order among an otherwise unruly herd of schoolchildren, and therefore not a useful concept for mature university students. However, classroom management is much deeper than mere rules for behavior; it is an approach to instructional design that considers the classroom experience holistically. A typical professorial management style is to lecture for an hour or so and ask students to demonstrate learning via examinations several times in a semester. In contrast, a good high school teacher will manage a class from bell-to-bell to create a natural order and flow to a given lesson. In this presentation, I will argue for an approach to college lesson design similar to the classroom management style commonly employed by high school and elementary school teachers. I will suggest some simple, practical techniques learned during my high school experience that work just as well in college: warm-up and practice problems, time management, group activities, bulletin boards, learning environment

  7. Science classroom inquiry (SCI simulations: a novel method to scaffold science learning.

    Directory of Open Access Journals (Sweden)

    Melanie E Peffer

    Full Text Available Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  8. Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.

    Science.gov (United States)

    Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  9. Instructional characteristics in mathematics classrooms: relationships to achievement goal orientation and student engagement

    Science.gov (United States)

    Lazarides, Rebecca; Rubach, Charlott

    2017-02-01

    This longitudinal study examined relationships between student-perceived teaching for meaning, support for autonomy, and competence in mathematic classrooms (Time 1), and students' achievement goal orientations and engagement in mathematics 6 months later (Time 2). We tested whether student-perceived instructional characteristics at Time 1 indirectly related to student engagement at Time 2, via their achievement goal orientations (Time 2), and, whether student gender moderated these relationships. Participants were ninth and tenth graders (55.2% girls) from 46 classrooms in ten secondary schools in Berlin, Germany. Only data from students who participated at both timepoints were included (N = 746 out of total at Time 1 1118; dropout 33.27%). Longitudinal structural equation modeling showed that student-perceived teaching for meaning and support for competence indirectly predicted intrinsic motivation and effort, via students' mastery goal orientation. These paths were equivalent for girls and boys. The findings are significant for mathematics education, in identifying motivational processes that partly explain the relationships between student-perceived teaching for meaning and competence support and intrinsic motivation and effort in mathematics.

  10. Relationships Between the Way Students Are Assessed in Science Classrooms and Science Achievement Across Canada

    Science.gov (United States)

    Chu, Man-Wai; Fung, Karen

    2018-04-01

    Canadian students experience many different assessments throughout their schooling (O'Connor 2011). There are many benefits to using a variety of assessment types, item formats, and science-based performance tasks in the classroom to measure the many dimensions of science education. Although using a variety of assessments is beneficial, it is unclear exactly what types, format, and tasks are used in Canadian science classrooms. Additionally, since assessments are often administered to help improve student learning, this study identified assessments that may improve student learning as measured using achievement scores on a standardized test. Secondary analyses of the students' and teachers' responses to the questionnaire items asked in the Pan-Canadian Assessment Program were performed. The results of the hierarchical linear modeling analyses indicated that both students and teachers identified teacher-developed classroom tests or quizzes as the most common types of assessments used. Although this ranking was similar across the country, statistically significant differences in terms of the assessments that are used in science classrooms among the provinces were also identified. The investigation of which assessment best predicted student achievement scores indicated that minds-on science performance-based tasks significantly explained 4.21% of the variance in student scores. However, mixed results were observed between the student and teacher responses towards tasks that required students to choose their own investigation and design their own experience or investigation. Additionally, teachers that indicated that they conducted more demonstrations of an experiment or investigation resulted in students with lower scores.

  11. Do emotional support and classroom organization earlier in the year set the stage for higher quality instruction?

    Science.gov (United States)

    Curby, Timothy W; Rimm-Kaufman, Sara E; Abry, Tashia

    2013-10-01

    Many teachers believe that providing greater emotional and organizational supports in the beginning of the year strengthens their ability to teach effectively as the year progresses. Some interventions, such as the Responsive Classroom (RC) approach, explicitly embed this sequence into professional development efforts. We tested the hypothesis that earlier emotional and organizational supports set the stage for improved instruction later in the year in a sample of third- and fourth-grade teachers enrolled in a randomized controlled trial of the RC approach. Further, we examined the extent to which the model generalized for teachers using varying levels of RC practices as well as whether or not teachers were in the intervention or control groups. Teachers' emotional, organizational, and instructional interactions were observed using the Classroom Assessment Scoring System (Pianta, La Paro, & Hamre, 2008) on five occasions throughout the year. Results indicated a reciprocal relation between emotional and instructional supports. Specifically, higher levels of emotional support earlier in the year predicted higher instructional support later in the year. Also, higher levels of instructional support earlier in the year predicted higher emotional support later in the year. Classroom organization was not found to have longitudinal associations with the other domains across a year. This pattern was robust when controlling for the use of RC practices as well as across intervention and control groups. Further, teachers' use of RC practices predicted higher emotional support and classroom organization throughout the year, suggesting the malleability of this teacher characteristic. Discussion highlights the connection between teachers' emotional and instructional supports and how the use of RC practices improves teachers' emotionally supportive interactions with students. Copyright © 2013 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights

  12. Capturing the complexity: Content, type, and amount of instruction and quality of the classroom learning environment synergistically predict third graders' vocabulary and reading comprehension outcomes.

    Science.gov (United States)

    Connor, Carol McDonald; Spencer, Mercedes; Day, Stephanie L; Giuliani, Sarah; Ingebrand, Sarah W; McLean, Leigh; Morrison, Frederick J

    2014-08-01

    We examined classrooms as complex systems that affect students' literacy learning through interacting effects of content and amount of time individual students spent in literacy instruction along with the global quality of the classroom-learning environment. We observed 27 third grade classrooms serving 315 target students using two different observation systems. The first assessed instruction at a more micro-level; specifically, the amount of time individual students spent in literacy instruction defined by the type of instruction, role of the teacher, and content. The second assessed the quality of the classroom-learning environment at a more macro level focusing on classroom organization, teacher responsiveness, and support for vocabulary and language. Results revealed that both global quality of the classroom learning environment and time individual students spent in specific types of literacy instruction covering specific content interacted to predict students' comprehension and vocabulary gains whereas neither system alone did. These findings support a dynamic systems model of how individual children learn in the context of classroom literacy instruction and the classroom-learning environment, which can help to improve observations systems, advance research, elevate teacher evaluation and professional development, and enhance student achievement.

  13. Capturing the complexity: Content, type, and amount of instruction and quality of the classroom learning environment synergistically predict third graders’ vocabulary and reading comprehension outcomes

    Science.gov (United States)

    Connor, Carol McDonald; Spencer, Mercedes; Day, Stephanie L.; Giuliani, Sarah; Ingebrand, Sarah W.; McLean, Leigh; Morrison, Frederick J.

    2014-01-01

    We examined classrooms as complex systems that affect students’ literacy learning through interacting effects of content and amount of time individual students spent in literacy instruction along with the global quality of the classroom-learning environment. We observed 27 third grade classrooms serving 315 target students using two different observation systems. The first assessed instruction at a more micro-level; specifically, the amount of time individual students spent in literacy instruction defined by the type of instruction, role of the teacher, and content. The second assessed the quality of the classroom-learning environment at a more macro level focusing on classroom organization, teacher responsiveness, and support for vocabulary and language. Results revealed that both global quality of the classroom learning environment and time individual students spent in specific types of literacy instruction covering specific content interacted to predict students’ comprehension and vocabulary gains whereas neither system alone did. These findings support a dynamic systems model of how individual children learn in the context of classroom literacy instruction and the classroom-learning environment, which can help to improve observations systems, advance research, elevate teacher evaluation and professional development, and enhance student achievement. PMID:25400293

  14. Graduate students teaching elementary earth science through interactive classroom lessons

    Science.gov (United States)

    Caswell, T. E.; Goudge, T. A.; Jawin, E. R.; Robinson, F.

    2014-12-01

    Since 2005, graduate students in the Brown University Department of Earth, Environmental, and Planetary Studies have volunteered to teach science to second-grade students at Vartan Gregorian Elementary School in Providence, RI. Initially developed to bring science into classrooms where it was not explicitly included in the curriculum, the graduate student-run program today incorporates the Providence Public Schools Grade 2 science curriculum into weekly, interactive sessions that engage the students in hypothesis-driven science. We will describe the program structure, its integration into the Providence Public Schools curriculum, and 3 example lessons relevant to geology. Lessons are structured to develop the students' ability to share and incorporate others' ideas through written and oral communication. The volunteers explain the basics of the topic and engage the students with introductory questions. The students use this knowledge to develop a hypothesis about the upcoming experiment, recording it in their "Science Notebooks." The students record their observations during the demonstration and discuss the results as a group. The process culminates in the students using their own words to summarize what they learned. Activities of particular interest to educators in geoscience are called "Volcanoes!", "The "Liquid Race," and "Phases of the Moon." The "Volcanoes!" lesson explores explosive vs. effusive volcanism using two simulated volcanoes: one explosive, using Mentos and Diet Coke, and one effusive, using vinegar and baking soda (in model volcanoes that the students construct in teams). In "Liquid Race," which explores viscosity and can be integrated into the "Volcanoes!" lesson, the students connect viscosity to flow speed by racing liquids down a ramp. "Phases of the Moon" teaches the students why the Moon has phases, using ball and stick models, and the terminology of the lunar phases using cream-filled cookies (e.g., Oreos). These lessons, among many others

  15. Making learning whole: an instructional approach for mediating the practices of authentic science inquiries

    Science.gov (United States)

    Liljeström, Anu; Enkenberg, Jorma; Pöllänen, Sinikka

    2013-03-01

    This design experiment aimed to answer the question of how to mediate the practices of authentic science inquiries in primary education. An instructional approach based on activity theory was designed and carried out with multi-age students in a small village school. An open-ended learning task was offered to the older students. Their task was to design and implement instruction about the Ice Age to their younger fellows. The objective was collaborative learning among students, the teacher, and outside domain experts. Mobile phones and GPS technologies were applied as the main technological mediators in the learning process. Technology provided an opportunity to expand the learning environment outside the classroom, including the natural environment. Empirically, the goal was to answer the following questions: What kind of learning project emerged? How did the students' knowledge develop? What kinds of science learning processes, activities, and practices were represented? Multiple and parallel data were collected to achieve this aim. The data analysis revealed that the learning project both challenged the students to develop explanations for the phenomena and generated high quality conceptual and physical models in question. During the learning project, the roles of the community members were shaped, mixed, and integrated. The teacher also repeatedly evaluated and adjusted her behavior. The confidence of the learners in their abilities raised the quality of their learning outcomes. The findings showed that this instructional approach can not only mediate the kind of authentic practices that scientists apply but also make learning more holistic than it has been. Thus, it can be concluded that nature of the task, the tool-integrated collaborative inquiries in the natural environment, and the multiage setting can make learning whole.

  16. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    Science.gov (United States)

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-01-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by…

  17. Inventing Creativity: An Exploration of the Pedagogy of Ingenuity in Science Classrooms

    Science.gov (United States)

    Meyer, Allison Antink; Lederman, Norman G.

    2013-01-01

    Concerns with the ability of U.S. classrooms to develop learners who will become the next generation of innovators, particularly given the present climate of standardized testing, warrants a closer look at creativity in science classrooms. The present study explored these concerns associated with teachers' classroom practice by addressing the…

  18. The effects of hands-on-science instruction on the science achievement of middle school students

    Science.gov (United States)

    Wiggins, Felita

    Student achievement in the Twenty First Century demands a new rigor in student science knowledge, since advances in science and technology require students to think and act like scientists. As a result, students must acquire proficient levels of knowledge and skills to support a knowledge base that is expanding exponentially with new scientific advances. This study examined the effects of hands-on-science instruction on the science achievement of middle school students. More specifically, this study was concerned with the influence of hands-on science instruction versus traditional science instruction on the science test scores of middle school students. The subjects in this study were one hundred and twenty sixth-grade students in six classes. Instruction involved lecture/discussion and hands-on activities carried out for a three week period. Specifically, the study ascertained the influence of the variables gender, ethnicity, and socioeconomic status on the science test scores of middle school students. Additionally, this study assessed the effect of the variables gender, ethnicity, and socioeconomic status on the attitudes of sixth grade students toward science. The two instruments used to collect data for this study were the Prentice Hall unit ecosystem test and the Scientific Work Experience Programs for Teachers Study (SWEPT) student's attitude survey. Moreover, the data for the study was treated using the One-Way Analysis of Covariance and the One-Way Analysis of Variance. The following findings were made based on the results: (1) A statistically significant difference existed in the science performance of middle school students exposed to hands-on science instruction. These students had significantly higher scores than the science performance of middle school students exposed to traditional instruction. (2) A statistically significant difference did not exist between the science scores of male and female middle school students. (3) A statistically

  19. Developing android-based science instructional media to improve scientific literacy of junior high school students

    Science.gov (United States)

    Farida, I. I.; Jumadi; Wilujeng; Senam

    2018-04-01

    The aims of this study are: to develop android-based science instructional media and to reveal the characteristic, the quality, and the effectiveness of android-based science instructional media with global warming topic to increase junior high school students’ scientific literacy. This study is a development research. The instructional media were reviewed by a media expert, a material expert, science teachers, peer reviewers, and students. The data was collected using media evaluation questionnaires. The results of the study showed that: (1) the android-based science instructional media has characteristics including interesting visualization, easy to use, flexible, and practical, (2) the android-based science instructional media was appropriate for teaching, in terms of material evaluation aspects, media evaluation aspects, and based on student test results, and (3) the android-based science instructional media can effectively used for teaching.

  20. The Pedagogical Orientations of South African Physical Sciences Teachers towards Inquiry or Direct Instructional Approaches

    Science.gov (United States)

    Ramnarain, Umesh; Schuster, David

    2014-01-01

    In recent years, inquiry-based science instruction has become widely advocated in science education standards in many countries and, hence, in teacher preparation programmes. Nevertheless, in practice, one finds a wide variety of science instructional approaches. In South Africa, as in many countries, there is also a great disparity in school…

  1. Social Media in the Science Classroom: Using Instagram With Young Women to Incorporate Visual Literacy and Youth Culture

    Science.gov (United States)

    Serpagli, Lauren Paola

    The purpose of this study is to explore the impact that a digital, picture sharing platform, specifically Instagram, can have on the learning experience in the biology classroom. Students are surrounded by a societal culture inundated with technology, including smart phones and social media, and science educators need to find ways to harness the popularity of these tools in the classroom. The theoretical frameworks guiding this study are Culturally Relevant Pedagogy (CRP), Digital Visual Literacy, and a Critical Feminism. To understand the many ways of social media, specifically Instagram, could influence science content understanding in the classroom, the research methodology used was a connective ethnography. This approach allowed for analysis for the creation of the dual-setting of the classroom and the digital platform and the emerging culture that resulted. As Instagram was used as the virtual component of the classroom, this gave rise to a new identity for the classroom, one in which a digital culture was established. Instagram served as an extension of the classroom space that was not limited by time, location, or teacher availability. The participants in this study were female high school biology students in New York City. An Instagram profile was created for the course and used in different ways: To post homework reminders, lab pictures, biology memes, current events, and discoveries, thereby exposing students to science in "nontraditional" ways. Students discussed their reactions and feelings of the uses and effectiveness of Instagram in the class and made suggestions for future applications through questionnaires, focus groups, and individual interviews. Findings reveal Instagram to ease access for review and reminders, integrate teenage culture into learning, and serve as an effective supplement tool to traditional classroom instruction. One chief goal of this research project was to help educators increase their understanding of the role that social

  2. Learning Science through Talking Science in Elementary Classroom

    Science.gov (United States)

    Tank, Kristina Maruyama; Coffino, Kara

    2014-01-01

    Elementary students in grade two make sense of science ideas and knowledge through their contextual experiences. Mattis Lundin and Britt Jakobson find in their research that early grade students have sophisticated understandings of human anatomy and physiology. In order to understand what students' know about human body and various systems,…

  3. The Multicultural Science Framework: Research on Innovative Two-Way Immersion Science Classrooms.

    Science.gov (United States)

    Hadi-Tabassum, Samina

    2000-01-01

    Reviews the different approaches to multicultural science teaching that have emerged in the past decade, focusing on the Spanish-English two-way immersion classroom, which meets the needs of Spanish speakers learning English and introduces students to the idea of collaboration across languages and cultures. Two urban two-way immersion classrooms…

  4. The Social Science Teacher. 1972. Collected Conference Papers: Social Science Concepts Classroom Methods.

    Science.gov (United States)

    Noble, Pat, Ed.; And Others

    Papers in this publication are collected from a conference on social science concepts and classroom methods which focused on the theories of Jerome Bruner. The first article, entitled "Jerome Bruner," outlines four of Bruner's themes--structure, readiness, intuition, and interest--which relate to cognitive learning. Three…

  5. Making connections: Exploring student agency in a science classroom in India

    Science.gov (United States)

    Sharma, Ajay

    situated improvised responses to ongoing dialogues that enabled them to survive, negotiate and maneuver their way through their immediate social world. Inside the science classroom, students negotiated their roles as students in a varied, improvised, and contingent manner. Further, whenever the constraints and affordances of the local situation and the resources at their disposal made it feasible, students exercised their social agency to selectively appropriate school science discourse for their own out-of-school purposes. The science teacher did much to encourage this contingent and situated emergence of students' social agency. However, the extant teacher professional and school science discourses allowed him to achieve only limited success in making science more meaningful and relevant to the students. The study reveals that though much has been accomplished to provide universal access to elementary education in India, the science instruction still persists along traditional lines. Thus, the state is still far from providing access to the type of science education it advocates in its national policy documents. The study urges the state to fulfill its constitutional obligations by providing a science education that enables students to not only build a better future for themselves, but also work for peaceful and progressive social change. The study recommends informed bricolage as a goal for teacher education and professional development.

  6. Measuring student engagement in science classrooms: An investigation of the contextual factors and longitudinal outcomes

    Science.gov (United States)

    Spicer, Justina Judy

    using the results for chapters two and three to identify aspects of engagement and learning in science. These findings motivate a set of variables and analytic approach that is undertaken in chapter four. Specifically, the questions how engagement influences experiences in ninth grade science and students' interest in pursuing a career in STEM using the HSLS:09 data. This multifaceted study contributes to the conceptualization of student engagement, and will help bring clarity to the relationship among engagement, context, and long-term outcomes in science. Engagement is more than being on-task or paying attention, but is a condition influenced by many factors including student background, the learning context of the classroom, teacher characteristics, and the features of instruction. Understanding this relationship between engagement and contextual factors is helpful in uncovering teacher actions and instructional activities that may elicit higher engagement in science classes. These findings highlight the importance of science instruction using more cognitively-demanding activities, such as problem-based learning.

  7. Pittsburgh Science Technology Society Project: Instruction Modules. Interrelationships Science--Technology--Society.

    Science.gov (United States)

    O'Brien, George, Ed.

    This collection of instruction modules studies the interactions of science, technology, and society (STS) using five activity sets. The introduction module includes activities which show students the STS relationships in their world, develop good organizational skills, develop an understanding of who and what a scientist is, develop graphing…

  8. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    Science.gov (United States)

    Katz, Phyllis; McGinnis, J. Randy; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-01-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews,…

  9. Hands across the divide: Finding spaces for student-centered pedagogy in the undergraduate science classroom

    Science.gov (United States)

    Spier-Dance, Lesley

    experiences valued by students and instructors. Instructors also valued the activity because of insights into students' understanding that were revealed. This research provides an example of how a student-centered, embodied learning approach can be brought into the undergraduate science classroom. This is valuable because, if instructors are to change from a transmission mode of instruction to more student-centered approaches, they must re-examine and re-construct their practices. An important step in this process is provision of evidence that change is warranted and fruitful.

  10. Signs of taste for science: a methodology for studying the constitution of interest in the science classroom

    Science.gov (United States)

    Anderhag, P.; Wickman, P.-O.; Hamza, K. M.

    2015-06-01

    In this paper we present a methodological approach for analyzing the transformation of interest in science through classroom talk and action. To this end, we use the construct of taste for science as a social and communicative operationalization, or proxy, to the more psychologically oriented construct of interest. To gain a taste for science as part of school science activities means developing habits of performing and valuing certain distinctions about ways to talk, act and be that are jointly construed as belonging in the school science classroom. In this view, to learn science is not only about learning the curriculum content, but also about learning a normative and aesthetic content in terms of habits of distinguishing and valuing. The approach thus complements previous studies on students' interest in science, by making it possible to analyze how taste for science is constituted, moment-by-moment, through talk and action in the science classroom. In developing the method, we supplement theoretical constructs coming from pragmatism and Pierre Bourdieu with empirical data from a lower secondary science classroom. The application of the method to this classroom demonstrates the potential that the approach has for analyzing how conceptual, normative, and aesthetic distinctions within the science classroom interact in the constitution of taste for, and thereby potentially also in the development of interest in science among students.

  11. From Laboratories to Classrooms: Involving Scientists in Science Education

    Science.gov (United States)

    DeVore, E. K.

    2001-12-01

    Scientists play a key role in science education: the adventure of making new discoveries excites and motivates students. Yet, American science education test scores lag behind those of other industrial countries, and the call for better science, math and technology education is widespread. Thus, improving American science, math and technological literacy is a major educational goal for the NSF and NASA. Today, funding for research often carries a requirement that the scientist be actively involved in education and public outreach (E/PO) to enhance the science literacy of students, teachers and citizens. How can scientists contribute effectively to E/PO? What roles can scientists take in E/PO? And, how can this be balanced with research requirements and timelines? This talk will focus on these questions, with examples drawn from the author's projects that involve scientists in working with K-12 teacher professional development and with K-12 curriculum development and implementation. Experiences and strategies for teacher professional development in the research environment will be discussed in the context of NASA's airborne astronomy education and outreach projects: the Flight Opportunities for Science Teacher EnRichment project and the future Airborne Ambassadors Program for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Effective partnerships with scientists as content experts in the development of new classroom materials will be described with examples from the SETI Institute's Life in the Universe curriculum series for grades 3-9, and Voyages Through Time, an integrated high school science course. The author and the SETI Institute wish to acknowledge funding as well as scientific and technical support from the National Science Foundation, the National Aeronautics and Space Administration, the Hewlett Packard Company, the Foundation for Microbiology, and the Combined Federated Charities.

  12. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  13. Pre-Service Secondary Science and Mathematics Teachers' Classroom Management Styles in Turkey

    Science.gov (United States)

    Yilmaz, Kursad

    2009-01-01

    The aim of this study is to determine Pre-service secondary science and mathematics teachers' classroom management styles in Turkey. In addition, differences in pre-service secondary science and mathematics teachers' classroom management styles by gender, and field of study were examined. In the study, the survey model was employed. The research…

  14. The Relationship between Teachers' Knowledge and Beliefs about Science and Inquiry and Their Classroom Practices

    Science.gov (United States)

    Saad, Rayana; BouJaoude, Saouma

    2012-01-01

    The purpose of this study was to investigate relationships between teachers' attitudes toward science, knowledge and beliefs about inquiry, and science classroom teaching practices. Specifically, the study addressed three questions: What are teachers' beliefs and knowledge about inquiry? What are teachers' teaching related classroom practices? Do…

  15. Impact of Integrated Science and English Language Arts Literacy Supplemental Instructional Intervention on Science Academic Achievement of Elementary Students

    Science.gov (United States)

    Marks, Jamar Terry

    2017-01-01

    The purpose of this quasi-experimental, nonequivalent pretest-posttest control group design study was to determine if any differences existed in upper elementary school students' science academic achievement when instructed using an 8-week integrated science and English language arts literacy supplemental instructional intervention in conjunction…

  16. Makiguchian pedagogy in the middle school science classroom

    Science.gov (United States)

    Pagan, Iris Teresa

    In an atmosphere of multi-culturism and the increasing need for innovative methods for science teaching, investigating educators from different parts of the world is well regarded. Tsunesaburo Makiguchi (1871--1944) was a prescient thinker who foreshadowed many of the modern social constructivist ideals of teaching before they became formalized in Western thought. He believed in the harmonious balance between an individual and society as the only viable goal of education. With this in mind, he introduced the concepts of "evaluation," "cognition" and "value creation" that embody this balance. "Cognition" is associated with "truth" and "evaluation" is involved with the subject-object relationship. Moreover, Makiguchian pedagogy's concept of "value creation" offers a sociological and philosophical basis for "classroom inclusion." Additionally, Makiguchian pedagogy is compared to John Dewey's philosophy as well as the educational philosophy expressed in The National Science Standards. In this teacher participant study, classroom observational data showed that several dimensions of Makiguchian pedagogical practice occurred conjointly with relatively high frequencies. These included frequent occurrences of interactional conversation between students and teacher merged within a context of expressions of personal and collective values, social contextual references, valuing and personal evaluative statements, and episodic information that the students contributed from personal experiences relevant to the science topics. Additionally, Likert-type questionnaire data collected from the students who experienced the Makiguchian lessons, and observational data from professional colleagues who viewed video taped records of the lessons, provided additional corroborative evidence supporting the researcher's findings. A content analysis of lesson plans containing Makiguchian principles of teaching and learning in relation to the ensuing classroom performance of the teacher showed a

  17. Supporting Ngss-Congruent Instruction in Earth & Space Science Through Educator Implementation and Feedback: Refining the Dig Texas Blueprints

    Science.gov (United States)

    Jacobs, B. E.; Bohls-Graham, C. E.; Ellins, K. K.; Riggs, E. M.; Serpa, L. F.; Stocks, E.; McIver, H.; Sergent, C.

    2015-12-01

    The development of the Next Generation Science Standards (NGSS) as a framework around which to guide K-12 science instruction has generated a call for rigorous curricula that meets the demand for developing a workforce with expertise in tackling modern Earth science challenges. The Diversity and Innovation in Geosciences (DIG) Texas Blueprints project addresses this need for quality, aligned curricula with educator-vetted, freely available resources carefully selected and compiled into three week thematic units that have been aligned with the Earth Science Literacy Principles and the NGSS. These units can then be packaged into customized blueprints for a year-long Earth & Space Science course that engages students in the relevant disciplinary core ideas, crosscutting concepts and science and engineering practices. As part of supporting NGSS-congruent instruction, each unit has extensive scaffolding notes for the learning activities selected for that unit. Designed with both the new and veteran teacher in mind, these scaffolding notes yield information regarding advanced teacher preparation, student prerequisite skills, and potential challenges that might arise during classroom implementation. Feedback from Texas high school teachers implementing the DIG Texas Blueprints in the classroom, in addition to that of university secondary education majors in a preparation course utilizing the blueprints, instigated the most recent revisions to these scaffolding notes. The DIG Texas Blueprints Educator Intern Team charged with these revisions then determined which learning activities became candidates for either inclusion in the refined units, retention as an additional resource, or elimination from the blueprints. This presentation will focus on the development of these scaffolding notes and their role in supporting congruence with the NGSS. A review of the second year of implementation of the blueprints and the feedback that generated the final revisions will be shared

  18. Integrating Mathematics, Science, and Language Arts Instruction Using the World Wide Web.

    Science.gov (United States)

    Clark, Kenneth; Hosticka, Alice; Kent, Judi; Browne, Ron

    1998-01-01

    Addresses issues of access to World Wide Web sites, mathematics and science content-resources available on the Web, and methods for integrating mathematics, science, and language arts instruction. (Author/ASK)

  19. Assessing Bilingual Knowledge Organization in Secondary Science Classrooms =

    Science.gov (United States)

    Wu, Jason S.

    Improving outcomes for English language learners (ELLs) in secondary science remains an area of high need. The purpose of this study is to investigate bilingual knowledge organization in secondary science classrooms. This study involved thirty-nine bilingual students in three biology classes at a public high school in The Bronx, New York City. Methods included an in-class survey on language use, a science content and English proficiency exam, and bilingual free-recalls. Fourteen students participated in bilingual free-recalls which involved a semi-structured process of oral recall of information learned in science class. Free-recall was conducted in both English and Spanish and analyzed using flow-map methods. Novel methods were developed to quantify and visualize the elaboration and mobilization of ideas shared across languages. It was found that bilingual narratives displayed similar levels of organizational complexity across languages, though English recalls tended to be longer. English proficiency was correlated with narrative complexity in English. There was a high degree of elaboration on concepts shared across languages. Finally, higher Spanish proficiency correlated well with greater overlapping elaboration across languages. These findings are discussed in light of current cognitive theory before presenting the study's limitations and future directions of research.

  20. Undergraduate-driven interventions to increase representation in science classrooms

    Science.gov (United States)

    Freilich, M.; Aluthge, D.; Bryant, R. M.; Knox, B.; McAdams, J.; Plummer, A.; Schlottman, N.; Stanley, Z.; Suglia, E.; Watson-Daniels, J.

    2014-12-01

    Recognizing that racial, ethnic, and gender underrepresentation in science classrooms persists despite intervention programs and institutional commitments to diversity, a group of undergraduates from a variety of backgrounds and academic disciplines came together for a group independent study to (a) study the theoretical foundations of the current practice of science and of programs meant to increase diversity, (b) utilize the experiences of course participants and our peers to better understand the drivers of underrepresentation, and (c) design and implement interventions at Brown University. We will present on individual and small group projects designed by course members in collaboration with faculty. The projects emerged from an exploration of literature in history, philosophy, and sociology of science, as well as an examination of anthropological and psychological studies. We also evaluated the effectiveness of top-down and bottom-up approaches that have already been attempted in developing our projects. They focus on the specific problems faced by underrepresented minorities, women, LGBTQ+ people, and well-represented minorities. We will share experiences of faculty-student collaboration and engaged scholarship focused on representation in science and discuss student-designed interventions.

  1. Interactive Higher Education Instruction to Advance STEM Instruction in the Environmental Sciences - the Brownfield Action Model

    Science.gov (United States)

    Liddicoat, J. C.; Bower, P.

    2015-12-01

    The U.S. Environmental Protection Agency estimates that presently there are over half a million brownfields in the United States, but this number only includes sites for which an Environmental Site Assessment has been conducted. The actual number of brownfields is certainly in the millions and constitutes one of the major environmental issues confronting all communities today. Taught in part or entirely online for more than 15 years in environmental science, engineering, and hydrology courses at over a dozen colleges, universities, and high schools in the United States, Brownfield Action (BA) is an interactive, web-based simulation that combines scientific expertise, constructivist education philosophy, and multimedia to advance the teaching of environmental science (Bower et al., 2011, 2014; Liddicoat and Bower, 2015). In the online simulation and classroom, students form geotechnical consulting companies with a peer chosen at random to solve a problem in environmental forensics. The BA model contains interdisciplinary scientific and social information that are integrated within a digital learning environment that encourages students to construct their knowledge as they learn by doing. As such, the approach improves the depth and coherence of students understanding of the course material. Like real-world environmental consultants and professionals, students are required to develop and apply expertise from a wide range of fields, including environmental science and engineering as well as journalism, medicine, public health, law, civics, economics, and business management. The overall objective is for students to gain an unprecedented appreciation of the complexity, ambiguity, and risk involved in any environmental issue, and to acquire STEM knowledge that can be used constructively when confronted with such an issue.

  2. Examination of instructional strategies: Secondary science teachers of mainstreamed English language learners in two high schools in southern New England

    Science.gov (United States)

    Yangambi, Matthieu Wakalewae

    2005-12-01

    Increasingly, English Language Learners (ELLs) are mainstreamed in science classes. As a result, science teachers must assume responsibility for these students' education. Currently, state tests show a wide performance gap between ELLs and non-ELLs in science and other content area courses. For instance, the Massachusetts Comprehensive Assessment System (MCAS) shows a two years average performance of 6% for ELLs and 33% for non-ELLs in English Language Arts (ELA), Mathematics, and Science and Technology, a 27% performance gap (Lachat, 2000). The use of research based effective teaching strategies for ELLs is indispensable in order to meet ELLs' learning needs (Jarret, 1999). The purpose of this study was to determine if differences exist between ELLs and non-ELLs regarding instructional strategies that secondary science teachers employ. Four areas were examined: instructional strategies mainstreamed ELLs and non-ELLs report as being most frequently employed by their science teachers, instructional strategies ELLs and non-ELLs consider most effective in their learning, the existing differences between ELLs and non-ELLs in the rating of effectiveness of instructional strategies their teachers currently practice, and factors impacting ELLs and non-ELLs' performance on high-stakes tests. This study was conducted in two urban high schools in Southern New England. The sample (N = 71) was based on the non-probability sampling technique known as convenience sampling from students registered in science classes. The questionnaire was designed based on research-based effective teaching strategies (Burnette, 1999; Ortiz, 1997), using a Likert-type scale. Several findings were of importance. First, ELLs and non-ELLs reported similar frequency of use of effective instructional strategies by teachers. However, ELLs and non-ELLs identified different preferences for strategies. Whereas non-ELLs preferred connecting learning to real life situations, ELLs rated that strategy as least

  3. Using inquiry-based instruction to meet the standards of No Child Left Behind for middle school earth science

    Science.gov (United States)

    Harris, Michael W.

    This study examined the effectiveness of a specific instructional strategy employed to improve performance on the end-of-the-year Criterion-Referenced Competency Test (CRCT) as mandated by the No Child Left Behind (NCLB) Act of 2001. A growing body of evidence suggests that the perceived pressure to produce adequate aggregated scores on the CRCT causes teachers to neglect other relevant aspects of teaching and attend less to individualized instruction. Rooted in constructivist theory, inquiry-based programs provide a o developmental plan of instruction that affords the opportunity for each student to understand their academic needs and strengths. However, the utility of inquiry-based instruction is largely unknown due to the lack of evaluation studies. To address this problem, this quantitative evaluation measured the impact of the Audet and Jordan inquiry-based instructional model on CRCT test scores of 102 students in a sixth-grade science classroom in one north Georgia school. A series of binomial tests of proportions tested differences between CRCT scores of the program participants and those of a matched control sample selected from other district schools that did not adopt the program. The study found no significant differences on CRCT test scores between the treatment and control groups. The study also found no significant performance differences among genders in the sample using inquiry instruction. This implies that the utility of inquiry education might exist outside the domain of test scores. This study can contribute to social change by informing a reevaluation of the instructional strategies that ideally will serve NCLB high-stakes assessment mandates, while also affording students the individual-level skills needed to become productive members of society.

  4. An investigation of mathematics and science instruction in English and Spanish for English language learners

    Science.gov (United States)

    Rodriguez-Esquivel, Marina

    The contextual demands of language in content area are difficult for ELLS. Content in the native language furthers students' academic development and native language skills, while they are learning English. Content in English integrates pedagogical strategies for English acquisition with subject area instruction. The following models of curriculum content are provided in most Miami Dade County Public Schools: (a) mathematics instruction in the native language with science instruction in English or (b) science instruction in the native language with mathematics instruction in English. The purpose of this study was to investigate which model of instruction is more contextually supportive for mathematics and science achievement. A pretest and posttest, nonequivalent group design was used with 94 fifth grade ELLs who received instruction in curriculum model (a) or (b). This allowed for statistical analysis that detected a difference in the means of .5 standard deviations with a power of .80 at the .05 level of significance. Pretreatment and post-treatment assessments of mathematics, reading, and science achievement were obtained through the administration of Aprenda-Segunda Edicion and the Florida Comprehensive Achievement Test. The results indicated that students receiving mathematics in English and Science in Spanish scored higher on achievement tests in both Mathematics and Science than the students who received Mathematics in Spanish and Science in English. In addition, the mean score of students on the FCAT mathematics examination was higher than their mean score on the FCAT science examination regardless of the language of instruction.

  5. Impacts of Contextual and Explicit Instruction on Preservice Elementary Teachers' Understandings of the Nature of Science

    Science.gov (United States)

    Bell, Randy L.; Matkins, Juanita Jo; Gansneder, Bruce M.

    2011-01-01

    This mixed-methods investigation compared the relative impacts of instructional approach and context of nature of science instruction on preservice elementary teachers' understandings. The sample consisted of 75 preservice teachers enrolled in four sections of an elementary science methods course. Independent variables included instructional…

  6. Kindergarten girls "illuminating" their identities-in-practice through science instruction framed in explanation building: From the shadows into the light

    Science.gov (United States)

    McDyre, Alicia M.

    Recent research on young children's learning has revealed that they are capable of sophisticated scientific reasoning and has prompted a new era of reform framed around the integration of three main strands -- core disciplinary ideas, scientific and engineering practices, and cross-cutting themes. Given the documented issues with girls in science in later grades, I chose to examine their participation in scientific norms and practices in kindergarten to gain insights into their identities-in-practice. From the perspective of identity as an enactment of self, I used the lens identities-in-practice (Lave & Wenger, 1991) to examine the impact that having classroom science instruction framed around constructing explanations with evidence would have on the girls in the class. In this study, I drew from theories of sociocultural learning, positioning, and identities-in-practice to study: a) the norms of participation, b) the authoring and positioning of girls, and c) the identities-in-practice that the girls' enacted in the kindergarten science classroom. Using a research design informed by qualitative methods and participant observation, I analyzed data using a constant comparative approach and crafted case studies of four girls in the science classroom. Three assertions were generated from this study: a) Identity-in-practice manifests differently in different literacy practices and shows how students chose to be science students across time and activities- a focus on one literacy practice alone is insufficient to understand identity; b) The ways in which the teacher positions girls, especially "quiet" girls, is essential for engaging them in productive participation in science discourse and learning; and c) A focus on classroom science instruction grounded in constructing explanations from evidence provided a consistent framework for students' writing and talking, which facilitated the establishment of expectations and norms of participation for all students

  7. Guiding students to develop an understanding of scientific inquiry: a science skills approach to instruction and assessment.

    Science.gov (United States)

    Stone, Elisa M

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations-for example, hypothesizing, data analysis, or use of controls-and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level.

  8. Guiding Students to Develop an Understanding of Scientific Inquiry: A Science Skills Approach to Instruction and Assessment

    Science.gov (United States)

    Stone, Elisa M.

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations—for example, hypothesizing, data analysis, or use of controls—and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level. PMID:24591508

  9. Student perception of writing in the science classroom

    Science.gov (United States)

    Deakin, Kathleen J.

    This study examines factors that shape four student's perceptions of writing tasks in their science classroom. This qualitative retrospective interview study focuses on four students concurrently enrolled in honors English and honors biology. This research employs a phenomenological perspective on writing, examining whether the writing strategies students acquire in the Language Arts classroom manifest in the content areas. I also adopt Bandura's theoretical perspective on self-efficacy as well as Hillock's notion of writing as inquiry and meaning making. This study concludes that students need ample opportunity to generate content and language that will help reveal a purpose and genre for writing tasks in the content areas. Although all four students approached the writing tasks differently in this study, the tasks set before them were opportunities for replication rather than inquiry Through the case studies of four students as well as current research on content writing, this project works to inform all content area teachers about student perceptions of writing in the content areas.

  10. Teaching and Learning in the Mixed-Reality Science Classroom

    Science.gov (United States)

    Tolentino, Lisa; Birchfield, David; Megowan-Romanowicz, Colleen; Johnson-Glenberg, Mina C.; Kelliher, Aisling; Martinez, Christopher

    2009-12-01

    As emerging technologies become increasingly inexpensive and robust, there is an exciting opportunity to move beyond general purpose computing platforms to realize a new generation of K-12 technology-based learning environments. Mixed-reality technologies integrate real world components with interactive digital media to offer new potential to combine best practices in traditional science learning with the powerful affordances of audio/visual simulations. This paper introduces the realization of a learning environment called SMALLab, the Situated Multimedia Arts Learning Laboratory. We present a recent teaching experiment for high school chemistry students. A mix of qualitative and quantitative research documents the efficacy of this approach for students and teachers. We conclude that mixed-reality learning is viable in mainstream high school classrooms and that students can achieve significant learning gains when this technology is co-designed with educators.

  11. An exploratory study of the influence of national and state standards on middle school science teachers' classroom assessment practices

    Science.gov (United States)

    McWaters, Kathy Jean

    2001-07-01

    Classroom assessment practices of middle school science teachers were identified and the influence of national and state science standards on these practices was examined. In Phase I of this study a mail questionnaire was sent to 450 middle school (grades 5,6,7 and 8) science teachers in 17 parishes in Louisiana to obtain information about their classroom assessment practices. In Phase II, nine middle school teachers in eight departmentalized classrooms, two classes at each grade, participated in a qualitative study. Data were collected through questionnaires, classroom observations, interviews and document analysis. Data analysis revealed three major categories of classroom assessment targets: (a) student achievement, (b) student attitudes and, (c) student products. Results indicated that most teachers are using different assessment methods when assessing different achievement targets, as recommended by science reform documents. It was also determined that many teachers are using appropriate methods to assess student learning. While teachers reported that students spend an inordinate amount of time engaged in assessment activities, classroom observations suggested that the activities were not always written tests or graded activities. Another key finding is that there is a disconnect between the quality of teaching and the quality of assessment. Teachers who teach the material recommended by science reform documents and use recommended instructional strategies were observed to stop teaching and engage students in a "test rehearsal" geared towards rote memorization of factual information. Data suggest that the national and state science content standards are influencing the content and the format of teacher-made tests. Teachers' reported using the standards during assessment construction or selection in a wide variety of ways. The most direct use of the standards reported was to select content, format and cognitive level for test items. A more circumspect approach

  12. Classroom communication in lessons of educational science and psychology at secondary school

    OpenAIRE

    Šimáková, Monika

    2017-01-01

    This bachelor thesis deals with classroom communication during pedagogy and psychology lessons at high schools. The aim of the thesis is to describe classroom communication in the observed subjects in a complex way and to give the reader a realistic idea about the communication between the teachers and their students during instruction. The thesis is divided into a theoretical and an empirical part. The theoretical part focuses on pedagogical communication itself, which is a key term in class...

  13. The Science of Serious Gaming: Exploring the Benefits of Science-Based Games in the Classroom

    Science.gov (United States)

    Kurtz, N.

    2016-02-01

    Finding ways to connect scientists with the classroom is an important part of sharing enthusiasm for science with the public. Utilizing the visual arts and serious gaming techniques has benefits for all participants including the engagement of multiple learning sectors and the involvement of whole-brain teaching methods. The activities in this presentation draw from real-world events that require higher level thinking strategies to discover and differential naturally occurring patterns.

  14. THE USE OF RESEARCH PAPER WRITING INSTRUCTIONAL MATERIALSTO IMPROVE STUDENTS‟ACADEMIC WRITING: A CLASSROOM ACTION RESEARCH

    Directory of Open Access Journals (Sweden)

    M. Ali Ghufron

    2017-04-01

    Full Text Available Most of students in English Education Department of IKIP PGRI Bojonegoro frequently consider that academic writing, in term of writing scientific paper, is not easy task to do. The result of their academic writing performance at preliminary research indicated that they achieved low scores in writing a scientific article. Consequently, they are not motivated in academic writing. For this case, I used Research Paper Writing Instructional Materials as sources in teaching and learning. This research investigatedwhether the use of Research Paper Writing Instructional Materials can improve students‘ academic writing andhow class situation is when Research Paper Writing Instructional Materials are used as a source of teaching and learning process. This is a Classroom Action Research (CAR which is conducted at the fourth semester students of English Education Department of IKIP PGRI Bojonegoro in the academic year of 2014/2015. This research was done in two cycles. Each cycle consisted of four steps: Planning, Acting, Observing, and Reflecting. The qualitative data were collected through observation and interview. The quantitative data were collected through test. The research findings revealed that the use of Research Paper Writing Instructional Materialscan improve students‘ academic writing and improve students‘ motivation in academic writing class.Derived from the findings, it can be concluded that the use of Research Paper Writing Instructional Materialscan improve students‘ academic writing and class situation. Therefore, it is recommended for the lecturers to use Research Paper Writing Instructional Materialsas it can improve students‘ academic writing as well as class situation.

  15. Constructivist Instructional Practices and Teacher Beliefs Related to Secondary Science Teaching and Learning

    Science.gov (United States)

    Nelson, Adrienne Fleurette

    The purpose of this mixed method research study was to examine the constructivist beliefs and instructional practices of secondary science teachers. The research also explored situations that impacted whether or not student centered instruction occurred. The study revealed science teachers held constructive beliefs pertaining to student questioning of the learning process and student autonomy in interacting with other learners. Teachers held the least constructivist beliefs pertaining to student teacher collaboration on lesson design. Additionally, teacher beliefs and practice were not congruent due to instructional practices being deemed less constructivist than reported. The study found that curricular demands, teacher perceptions about students, inadequate laboratory resources, and the lack of teacher understanding about the components of constructivist instruction inhibited student centered instruction. The results of this study led to six recommendations that can be implemented by school districts in collaboration with science teachers to promote constructivist instruction.

  16. A Descriptive Analysis of Instructional Coaches' Data Use in Science

    Science.gov (United States)

    Snodgrass Rangel, Virginia; Bell, Elizabeth R.; Monroy, Carlos

    2017-01-01

    A key assumption of accountability policies is that educators will use data to improve their instruction. In practice, however, data use is quite hard, and more districts are looking to instructional coaches to support their teachers. The purpose of this descriptive analysis is to examine how instructional coaches in elementary and middle school…

  17. Promoting Prospective Elementary Teachers' Learning to Use Formative Assessment for Life Science Instruction

    Science.gov (United States)

    Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura

    2015-01-01

    To support elementary students' learning of core, standards-based life science concepts highlighted in the "Next Generation Science Standards," prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning…

  18. Utilizing the National Research Council's (NRC) Conceptual Framework for the Next Generation Science Standards (NGSS): A Self-Study in My Science, Engineering, and Mathematics Classroom

    Science.gov (United States)

    Corvo, Arthur Francis

    Given the reality that active and competitive participation in the 21 st century requires American students to deepen their scientific and mathematical knowledge base, the National Research Council (NRC) proposed a new conceptual framework for K--12 science education. The framework consists of an integration of what the NRC report refers to as the three dimensions: scientific and engineering practices, crosscutting concepts, and core ideas in four disciplinary areas (physical, life and earth/spaces sciences, and engineering/technology). The Next Generation Science Standards (NGSS ), which are derived from this new framework, were released in April 2013 and have implications on teacher learning and development in Science, Technology, Engineering, and Mathematics (STEM). Given the NGSS's recent introduction, there is little research on how teachers can prepare for its release. To meet this research need, I implemented a self-study aimed at examining my teaching practices and classroom outcomes through the lens of the NRC's conceptual framework and the NGSS. The self-study employed design-based research (DBR) methods to investigate what happened in my secondary classroom when I designed, enacted, and reflected on units of study for my science, engineering, and mathematics classes. I utilized various best practices including Learning for Use (LfU) and Understanding by Design (UbD) models for instructional design, talk moves as a tool for promoting discourse, and modeling instruction for these designed units of study. The DBR strategy was chosen to promote reflective cycles, which are consistent with and in support of the self-study framework. A multiple case, mixed-methods approach was used for data collection and analysis. The findings in the study are reported by study phase in terms of unit planning, unit enactment, and unit reflection. The findings have implications for science teaching, teacher professional development, and teacher education.

  19. Urban school leadership for elementary science instruction: Identifying and activating resources in an undervalued school subject

    Science.gov (United States)

    Spillane, James P.; Diamond, John B.; Walker, Lisa J.; Halverson, Rich; Jita, Loyiso

    2001-10-01

    This article explores school leadership for elementary school science teaching in an urban setting. We examine how school leaders bring resources together to enhance science instruction when there appear to be relatively few resources available for it. From our study of 13 Chicago elementary (K-8) schools' efforts to lead instructional change in mathematics, language arts, and science education, we show how resources for leading instruction are unequally distributed across subject areas. We also explore how over time leaders in one school successfully identified and activated resources for leading change in science education. The result has been a steady, although not always certain, development of science as an instructional area in the school. We argue that leading change in science education involves the identification and activation of material resources, the development of teachers' and school leaders' human capital, and the development and use of social capital.

  20. Science Teacher Beliefs and Classroom Practice Related to Constructivism in Different School Settings

    Science.gov (United States)

    Savasci, Funda; Berlin, Donna F.

    2012-02-01

    Science teacher beliefs and classroom practice related to constructivism and factors that may influence classroom practice were examined in this cross-case study. Data from four science teachers in two schools included interviews, demographic questionnaire, Classroom Learning Environment Survey (preferred/perceived), and classroom observations and documents. Using an inductive analytic approach, results suggested that the teachers embraced constructivism, but classroom observations did not confirm implementation of these beliefs for three of the four teachers. The most preferred constructivist components were personal relevance and student negotiation; the most perceived component was critical voice. Shared control was the least preferred, least perceived, and least observed constructivist component. School type, grade, student behavior/ability, curriculum/standardized testing, and parental involvement may influence classroom practice.

  1. The Student Actions Coding Sheet (SACS): An instrument for illuminating the shifts toward student-centered science classrooms

    Science.gov (United States)

    Erdogan, Ibrahim; Campbell, Todd; Hashidah Abd-Hamid, Nor

    2011-07-01

    This study describes the development of an instrument to investigate the extent to which student-centered actions are occurring in science classrooms. The instrument was developed through the following five stages: (1) student action identification, (2) use of both national and international content experts to establish content validity, (3) refinement of the item pool based on reviewer comments, (4) pilot testing of the instrument, and (5) statistical reliability and item analysis leading to additional refinement and finalization of the instrument. In the field test, the instrument consisted of 26 items separated into four categories originally derived from student-centered instruction literature and used by the authors to sort student actions in previous research. The SACS was administered across 22 Grade 6-8 classrooms by 22 groups of observers, with a total of 67 SACS ratings completed. The finalized instrument was found to be internally consistent, with acceptable estimates from inter-rater intraclass correlation reliability coefficients at the p Observation Protocol. Based on the analyses completed, the SACS appears to be a useful instrument for inclusion in comprehensive assessment packages for illuminating the extent to which student-centered actions are occurring in science classrooms.

  2. A phenomenological study on the impacts of embedding disciplinary literacy during science instruction on elementary teachers' metacognition of instructional techniques

    Science.gov (United States)

    Weiss, Kelley

    The educational community has been increasing its focus on literacy for several years. The modern definition of literacy requires students to be an informed and integrated thinker, synthesizing new information beyond the mere ability to read and write (Guzzetti & Bang, 2011). This qualitative phenomenological study focused on how teachers of science view literacy and how that view changes when they implement the concept of disciplinary literacy into science instruction. This phenomenological study examined how teachers became more metacognitive of their instructional methods after implementation of the Question-Answer Relationship strategy (QAR) and direct vocabulary instruction into their science instruction. Teachers utilized schema theory and social cognitive theory to integrate the two strategies into their science lessons throughout the study. This phenomenological study collected data during a six-week implementation period through interviews, observations, teacher journals and collection of artifacts from 12 teachers who taught students in grades one through five and three literacy specialists in a rural central Maine school. These data sources were analyzed using Moustakas' (1994) seven steps to discover themes that were identified from the data. Findings from this study, as viewed through the pragmatic lens, suggested that teachers benefit from systematic reflection of their teaching to develop literacy rich content area lessons that address all of the students' learning needs.

  3. Science Informational Trade Books: An Exploration of Text-based Practices and Interactions in a First-grade Classroom

    Science.gov (United States)

    Schreier, Virginia A.

    Although scholars have long advocated the use of informational texts in the primary grades, gaps and inconsistencies in research have produced conflicting reports on how teachers used these texts in the primary curriculum, and how primary students dealt with them during instruction and on their own (e.g., Saul & Dieckman, 2005). Thus, to add to research on informational texts in the primary grades, the purpose of this study was to examine: (a) a first-grade teacher's use of science informational trade books (SITBs) in her classroom, (b) the ways students responded to her instruction, and (c) how students interacted with these texts. My study was guided by a sociocultural perspective (e.g., Bakhtin, 1981; Vygotsky, 1978), providing me a lens to examine participants during naturally occurring social practices in the classroom, mediated by language and other symbolic tools. Data were collected by means of 28 observations, 6 semi-structured interviews, 21 unstructured interviews, and 26 documents over the course of 10 weeks. Three themes generated from the data to provide insight into the teacher's and students' practices and interactions with SITBs. First, the first-grade teacher used SITBs as teaching tools during guided conversations around the text to scaffold students' understanding of specialized vocabulary, science concepts, and text features. Her instruction with SITBs included shared reading lessons, interactive read-alouds and learning activities during two literacy/science units. However, there was limited use of SITBs during the rest of her reading program, in which she demonstrated a preference for narrative. Second, students responded to instruction by participating in guided conversations around the text, in which they used prior knowledge, shared ideas, and visual representations (e.g., illustrations, diagrams, labels, and captions) to actively make meaning of the text. Third, students interacted with SITBs on their own to make sense of science, in

  4. Engagerande samtal i det naturvetenskapliga klassrummetInquiry based dialouge in science classroom

    Directory of Open Access Journals (Sweden)

    Ragnhild Löfgren

    2014-10-01

    Full Text Available This study focuses on classroom communication within an inquiry-based science education (IBSE program, called NTA (Naturvetenskap och Teknik för Alla. The overall aim of the study is to highlight the ways in which productive and engaging conversations are conducted in the classroom. We have analysed the work within the unit ”The Chemistry of food” and the theme testing of fat in food in grade five and six in a Swedish and a Danish science classroom. We have used video cameras and mp3-players to follow the classroom interaction. Our findings indicate that the classroom communication was focused on everyday science content and that the introduction and the summary of the theme were very important for the pupils’ possibilities to productive disciplinary engagement.

  5. Revising laboratory work: sociological perspectives on the science classroom

    Science.gov (United States)

    Jobér, Anna

    2017-09-01

    This study uses sociological perspectives to analyse one of the core practices in science education: schoolchildren's and students' laboratory work. Applying an ethnographic approach to the laboratory work done by pupils at a Swedish compulsory school, data were generated through observations, field notes, interviews, and a questionnaire. The pupils, ages 14 and 15, were observed as they took a 5-week physics unit (specifically, mechanics). The analysis shows that the episodes of laboratory work could be filled with curiosity and exciting challenges; however, another picture emerged when sociological concepts and notions were applied to what is a very common way of working in the classroom. Laboratory work is characterised as a social activity that is expected to be organised as a group activity. This entails groups becoming, to some extent, `safe havens' for the pupils. On the other hand, this way of working in groups required pupils to subject to the groups and the peer effect, sometimes undermining their chances to learn and perform better. In addition, the practice of working in groups when doing laboratory work left some pupils and the teacher blaming themselves, even though the outcome of the learning situation was a result of a complex interplay of social processes. This article suggests a stronger emphasis on the contradictions and consequences of the science subjects, which are strongly influenced by their socio-historical legacy.

  6. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    Science.gov (United States)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  7. From Teacher-Centred Instruction to Peer Tutoring in the Heterogeneous International Classroom: A Danish Case of Instructional Change

    Directory of Open Access Journals (Sweden)

    Klarissa Lueg

    2014-04-01

    Our study contributes on several levels: firstly, we provide course responsibles with a detailed insight into how a seminar redesign to RPT can be achieved. Secondly, we provide a basis for introducing such change by documenting the positive assessment as an outcome of the monitoring. We thereby address diversity and in-classroom heterogeneity on a didactical level.

  8. Learning Designs using Flipped Classroom Instruction | Conception d’apprentissage à l’aide de l’instruction en classe inversée

    Directory of Open Access Journals (Sweden)

    Amber Danielle Mazur

    2015-05-01

    Full Text Available The flipped classroom is an instructional model that leverages technology-enhanced instruction outside of class time in order to maximize student engagement and learning during class time. As part of an action research study, the authors synthesize reflections about three learning designs and how the flipped classroom model can support teaching, learning and assessment through: (1 guided collaborative discussion, (2 tabletop white boarding and (3 the development of augmented reality auras. Principles for teaching effectiveness are used as a lens to guide the reflection on the benefits and challenges with each of the learning designs. Findings suggest that flipped classroom models that emphasize collaborative learning, group work and accessibility can enable and support inquiry-based learning. Recommendations are provided for educators interested in designing learning using a flipped classroom instructional model, as well as suggestions for future action research agendas. La classe inversée est un modèle pédagogique qui met à profit l’apprentissage hors des heures en classe et qui est rehaussé par la technologie pour maximiser l’engagement et l’apprentissage des apprenants en classe. Dans le cadre de cette étude de recherche-action, les auteurs résument les réflexions sur la façon dont le modèle de la classe inversée peut appuyer l’enseignement, l’apprentissage et l’évaluation par la mise en œuvre de trois conceptions d’apprentissage par investigation : 1 discussion collaborative guidée, 2 tableau blanc de table et 3 développement d’auras en réalité augmentée. Les principes d’enseignement de l’efficacité sont utilisés comme optique guidant la réflexion sur les avantages et les défis de chacune des conceptions d’apprentissage. Les conclusions suggèrent que les modèles de classes inversées qui mettent l’accent sur l’apprentissage collaboratif, le travail en groupe et l’accessibilité peuvent

  9. Elementary Teachers' Beliefs about Teaching Science and Classroom Practice: An Examination of Pre/Post NCLB Testing in Science

    Science.gov (United States)

    Milner, Andrea R.; Sondergeld, Toni A.; Demir, Abdulkadir; Johnson, Carla C.; Czerniak, Charlene M.

    2012-01-01

    The impact of No Child Left Behind (NCLB) mandated state science assessment on elementary teachers' beliefs about teaching science and their classroom practice is relatively unknown. For many years, the teaching of science has been minimized in elementary schools in favor of more emphasis on reading and mathematics. This study examines the…

  10. History of Science and Instructional Design: The Case of Electromagnetism

    Science.gov (United States)

    Seroglou, Fanny; Koumaras, Panagiotis; Tselfes, Vassilis

    This paper deals with two main research questions: a) Can we search for pupils'' potential alternative ideas in the history of science and especially in those areas where early scientific ideas were distinct from the current ones? b) Is it possible to overcome pupils'' alternative ideas by using experiments in the classroom, based on early experiments carried out by scientists in the past, in order to promote current scientific ideas? In this paper we present a case study in the field of electromagnetism. From the age of Thales up to the 16th century electrostatic and magnetic phenomena were unified in the context of a ''magic'' idea and were supposed to be of the same nature. Their differences were pointed out during the 16th century by Gardano and Gilbert and the two fields of science were established: electrostatics and magnetism. From the 17th century up to 1830, scientists dealt with the question whether electricities derived from different sources were of the same nature. During 1832-1833, Faraday successfully carried out a number of experiments in order to compare the ability of various electricities to produce the same effects. The above data from the history of science indicated electrostatic, electrodynamic and magnetic phenomena as a field of research on pupils'' and student-teachers'' ideas. The research was carried out in three phases: 10 individual in-depth interviews with 10-14-year-old pupils and 19-21-year-old student-teachers, questionnaire distribution to 109 13-year-old pupils and 148 student-teachers, 10 individual in-depth interviews for further clarification of pupils'' and student-teachers'' reasoning. Research results show that 53% of the student-teachers and 83% of the pupils that were involved in the investigation relate electrostatic with magnetic phenomena, in the same way scientists related these phenomena up to the 16th century. The results also indicate that the lack of common perceptions, commonly observed effects or procedures

  11. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    Science.gov (United States)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-01-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to…

  12. Kindergartners' Mental Models of the Day and Night Cycle: Implications for Instructional Practices in Early Childhood Classrooms

    Science.gov (United States)

    Saçkes, Mesut

    2015-01-01

    This study aims to examine kindergarten children's mental models of the day and night cycle and provide implications for pedagogical practices targeting space science concepts in early childhood classrooms. A total of 46 kindergartners participated in the study, their age ranging from 60 to 75 months, including 22 boys and 24 girls.…

  13. The Utilization of Inquiry-Based Science Instruction in Connecticut

    Science.gov (United States)

    Bozzuto, David M.

    The purpose of this study was to explore the perspectives of practitioners of inquiry-based instruction from 35 Connecticut school districts. The source of the participants, Connecticut State Science Assessment Advisory Committee members, and their involvement in science education acted to bound the research. Using a multiple case study design, data were gathered from 28 participants: teachers n = 21, curriculum leaders n = 4, professional development experts n = 2, and state education advisor/ teacher preparation expert n = 1 involved with Connecticut schools. Each participant was asked to complete an online demographic and inquiry utilization questionnaire. From the results of the questionnaires, a cadre of 11 participants was selected to participate in semi-structured interviews. A round of follow-up interviews of five key participants was conducted to further clarify the phenomenon. Two of the follow up interviewees were observed using the EQUIP rubric to assess inquiry implementation. Artifacts such as minutes, PowerPoint presentations, and a reflexive journal were collected throughout the study. An inductive approach to content analysis of data from the survey and interviews was used to explore constructs, themes, and patterns. After segmentation took place, the data were categorized to allow patterns and constructs to emerge. The data were reduced based on the emergent design and those reductions, or themes, were informed by ongoing data collection using constant comparison as different levels of codes emerge. Data collection further informed data analysis and future data collection. Initial coding of patterns was reduced until theoretical saturation occurred and the data allowed five thematic findings to emerge from the data. The five themes were: teach, process, impasse, develop, and support. The significance of each theme and its implication for practitioners and researchers were discussed and offered, respectively.

  14. Japanese Family and Consumer Sciences Teachers' Lived Experiences: Self-Disclosure in the Classroom

    Science.gov (United States)

    Katadae, Ayako

    2008-01-01

    The purpose of this phenomenological study was to understand the lived experiences of Japanese family and consumer sciences teachers' self-disclosure in the classroom. Twelve secondary school teachers were interviewed, beginning with this primary question, "Think about a specific time and space when you self-disclosed in the classroom. Would you…

  15. It's in the Bag!: Going beyond the Science Classroom with Take-Home Literacy Bags

    Science.gov (United States)

    Martin, Susan Ferguson; Daughenbaugh, Lynda; Shaw, Edward L., Jr.; Burch, Katrina

    2013-01-01

    Although literacy plays a large role in elementary science classrooms, one thing that offers a challenge for educators is meeting the linguistic needs of English language learners (ELLs) while also meeting their content needs. An additional challenge is ensuring that academic literacy extends beyond the classroom. This article presents ways of…

  16. Girls in Primary School Science Classrooms: Theorising beyond Dominant Discourses of Gender

    Science.gov (United States)

    Cervoni, Cleti; Ivinson, Gabrielle

    2011-01-01

    The paper explores the ways girls appropriate gender through actions, gesture and talk to achieve things in primary school science classrooms. It draws on socio-cultural approaches to show that when everyday classroom practices are viewed from multiple planes of analysis, historical, institutional and in the micro dynamics of classroom…

  17. Instructional leadership in elementary science: How are school leaders positioned to lead in a next generation science standards era?

    Science.gov (United States)

    Winn, Kathleen Mary

    The Next Generation Science Standards (NGSS) are the newest K-12 science content standards created by a coalition of educators, scientists, and researchers available for adoption by states and schools. Principals are important actors during policy implementation especially since principals are charged with assuming the role of an instructional leader for their teachers in all subject areas. Science poses a unique challenge to the elementary curricular landscape because traditionally, elementary teachers report low levels of self-efficacy in the subject. Support in this area therefore becomes important for a successful integration of a new science education agenda. This study analyzed self-reported survey data from public elementary principals (N=667) to address the following three research questions: (1) What type of science backgrounds do elementary principals have? (2) What indicators predict if elementary principals will engage in instructional leadership behaviors in science? (3) Does self-efficacy mediate the relationship between science background and a capacity for instructional leadership in science? The survey data were analyzed quantitatively. Descriptive statistics address the first research question and inferential statistics (hierarchal regression analysis and a mediation analysis) answer the second and third research questions.The sample data show that about 21% of elementary principals have a formal science degree and 26% have a degree in a STEM field. Most principals have not had recent experience teaching science, nor were they every exclusively a science teacher. The analyses suggests that demographic, experiential, and self-efficacy variables predict instructional leadership practices in science.

  18. Indigenous Elementary Students' Science Instruction in Taiwan: Indigenous Knowledge and Western Science

    Science.gov (United States)

    Lee, Huei; Yen, Chiung-Fen; Aikenhead, Glen S.

    2012-12-01

    This preliminary ethnographic investigation focused on how Indigenous traditional wisdom can be incorporated into school science and what students learned as a result. Participants included community elders and knowledge keepers, as well as 4th grade (10-year-old) students, all of Amis ancestry, an Indigenous tribe in Taiwan. The students' non-Indigenous teacher played a central role in developing a science module `Measuring Time' that combined Amis knowledge and Western science knowledge. The study identified two cultural worldview perspectives on time; for example, the place-based cyclical time held by the Amis, and the universal rectilinear time presupposed by scientists. Students' pre-instructional fragmented concepts from both knowledge systems became more informed and refined through their engagement in `Measuring Time'. Students' increased interest and pride in their Amis culture were noted.

  19. The impact of single-gender classrooms on science achievement of middle school gifted girls

    Science.gov (United States)

    Ulkins, David S.

    Studies indicate a gap in science achievement and positive attitudes towards science between gifted male and female students with females performing less than the males. This study investigated the impact of a single-gender classroom environment as opposed to a mixed-gender classroom, on motivation, locus of control, self-concept, and science achievement of middle school gifted girls. The Motivated Strategies for Learning Questionnaire (MSLQ), Review of Personal Effectiveness with Locus of Control (ROPELOC), Test of Science Related Attitudes (TOSRA), and Stanford Achievement Test 10th Edition, were used to measure the dependent variables respectively. The independent-measure t test was used to compare the differences between girls in a single-gender classroom with the ones in a mixed-gender classroom. A significant difference in the external locus of control resulted for girls in the single gender classroom. However, there were no significant differences found in science achievement, motivation, and the attitudes toward science between the two groups. The implication is that a single-gender learning environment and the use of differentiated teaching strategies can help lessen the negative effects of societal stereotypes in today's classrooms. These, along with being cognizant of the differences in learning styles of girls and their male counterparts, will result in a greater level of success for gifted females in the area of science education.

  20. The impact of computer-based versus "traditional" textbook science instruction on selected student learning outcomes

    Science.gov (United States)

    Rothman, Alan H.

    This study reports the results of research designed to examine the impact of computer-based science instruction on elementary school level students' science content achievement, their attitude about science learning, their level of critical thinking-inquiry skills, and their level of cognitive and English language development. The study compared these learning outcomes resulting from a computer-based approach compared to the learning outcomes from a traditional, textbook-based approach to science instruction. The computer-based approach was inherent in a curriculum titled The Voyage of the Mimi , published by The Bank Street College Project in Science and Mathematics (1984). The study sample included 209 fifth-grade students enrolled in three schools in a suburban school district. This sample was divided into three groups, each receiving one of the following instructional treatments: (a) Mixed-instruction primarily based on the use of a hardcopy textbook in conjunction with computer-based instructional materials as one component of the science course; (b) Non-Traditional, Technology-Based -instruction fully utilizing computer-based material; and (c) Traditional, Textbook-Based-instruction utilizing only the textbook as the basis for instruction. Pre-test, or pre-treatment, data related to each of the student learning outcomes was collected at the beginning of the school year and post-test data was collected at the end of the school year. Statistical analyses of pre-test data were used as a covariate to account for possible pre-existing differences with regard to the variables examined among the three student groups. This study concluded that non-traditional, computer-based instruction in science significantly improved students' attitudes toward science learning and their level of English language development. Non-significant, positive trends were found for the following student learning outcomes: overall science achievement and development of critical thinking

  1. Promoting Argumentation in Middle School Science Classrooms: A Project SEPIA Evaluation.

    Science.gov (United States)

    Duschl, Richard A.; Ellenbogen, Kirsten; Erduran, Sibel

    Effective argumentation is the distinguishing feature of a classroom that employs discovery teaching and student inquiry methodologies. In the long term, the objective of the program is to understand how to design learning environments and curriculum, instruction, and assessment models that promote student self-reflection. The study evaluates the…

  2. An integrative review of in-class activities that enable active learning in college science classroom settings

    Science.gov (United States)

    Arthurs, Leilani A.; Kreager, Bailey Zo

    2017-10-01

    Engaging students in active learning is linked to positive learning outcomes. This study aims to synthesise the peer-reviewed literature about 'active learning' in college science classroom settings. Using the methodology of an integrative literature review, 337 articles archived in the Educational Resources Information Center (ERIC) are examined. Four categories of in-class activities emerge: (i) individual non-polling activities, (ii) in-class polling activities, (iii) whole-class discussion or activities, and (iv) in-class group activities. Examining the collection of identified in-class activities through the lens of a theoretical framework informed by constructivism and social interdependence theory, we synthesise the reviewed literature to propose the active learning strategies (ALSs) model and the instructional decisions to enable active learning (IDEAL) theory. The ALS model characterises in-class activities in terms of the degrees to which they are designed to promote (i) peer interaction and (ii) social interdependence. The IDEAL theory includes the ALS model and provides a framework for conceptualising different levels of the general concept 'active learning' and how these levels connect to instructional decision-making about using in-class activities. The proposed ALS model and IDEAL theory can be utilised to inform instructional decision-making and future research about active learning in college science courses.

  3. Classroom Environment in the Implementation of an Innovative Curriculum Project in Science Education.

    Science.gov (United States)

    Suarez, Mercedes; Pias, Rosa; Membiela, Pedro; Dapia, Dolores

    1998-01-01

    Analyzes the perceptions of students, teachers, and external observers in order to study the influence of classroom environment on the implementation of an innovative project in science education. Contains 33 references. (DDR)

  4. Systems for Instructional Improvement: Creating Coherence from the Classroom to the District Office

    Science.gov (United States)

    Cobb, Paul; Jackson, Kara; Henrick, Erin; Smith, Thomas M.

    2018-01-01

    In "Systems for Instructional Improvement," Paul Cobb and his colleagues draw on their extensive research to propose a series of specific, empirically grounded recommendations that together constitute a theory of action for advancing instruction at scale. The authors outline the elements of a coherent instructional system; describe…

  5. Differentiating Writing Instruction: Meeting the Diverse Needs of Authors in a Classroom

    Science.gov (United States)

    Shea, Mary

    2015-01-01

    This article outlines a rational for responsive, differentiated writing instruction that targets students' identified needs with respect to various dimensions of the writing process. Discussed is a cycle that requires ongoing assessment, instructional decision-making, responsive, differentiated instruction, guided practice, and assessment.…

  6. The Most Common Patterns of Classroom Dialogue Used by Science Teachers in Omani Cycle Two Schools

    Science.gov (United States)

    Alshaqsi, Hanan; Ambusaidi, Abdullah

    2018-01-01

    This study aimed to identify the patterns of classroom dialogue used by science teachers in science classes at Omani schools with respect to their gender. The study sample consisted of science teachers: three males and three females. To achieve the aims of the study, mixed methods with three instruments were used. These are an observation card or…

  7. Multimodal Teacher Input and Science Learning in a Middle School Sheltered Classroom

    Science.gov (United States)

    Zhang, Ying

    2016-01-01

    This article reports the results of an ethnographic research about the multimodal science discourse in a sixth-grade sheltered classroom involving English Language Learners (ELLs) only. Drawing from the perspective of multimodality, this study examines how science learning is constructed in science lectures through multiple semiotic resources,…

  8. Learning in Earth and Space Science: A Review of Conceptual Change Instructional Approaches

    Science.gov (United States)

    Mills, Reece; Tomas, Louisa; Lewthwaite, Brian

    2016-01-01

    In response to calls for research into effective instruction in the Earth and space sciences, and to identify directions for future research, this systematic review of the literature explores research into instructional approaches designed to facilitate conceptual change. In total, 52 studies were identified and analyzed. Analysis focused on the…

  9. An Analysis of Data Activities and Instructional Supports in Middle School Science Textbooks

    Science.gov (United States)

    Morris, Bradley J.; Masnick, Amy M.; Baker, Katie; Junglen, Angela

    2015-01-01

    A critical component of science and math education is reasoning with data. Science textbooks are instructional tools that provide opportunities for learning science content (e.g. facts about force and motion) and process skills (e.g. data recording) that support and augment reasoning with data. In addition, the construction and design of textbooks…

  10. Applying the Science of Learning: Evidence-Based Principles for the Design of Multimedia Instruction

    Science.gov (United States)

    Mayer, Richard E.

    2008-01-01

    During the last 100 years, a major accomplishment of psychology has been the development of a science of learning aimed at understanding how people learn. In attempting to apply the science of learning, a central challenge of psychology and education is the development of a science of instruction aimed at understanding how to present material in…

  11. Instructional Support and Implementation Structure during Elementary Teachers' Science Education Simulation Use

    Science.gov (United States)

    Gonczi, Amanda L.; Chiu, Jennifer L.; Maeng, Jennifer L.; Bell, Randy L.

    2016-01-01

    This investigation sought to identify patterns in elementary science teachers' computer simulation use, particularly implementation structures and instructional supports commonly employed by teachers. Data included video-recorded science lessons of 96 elementary teachers who used computer simulations in one or more science lessons. Results…

  12. Classroom

    Indian Academy of Sciences (India)

    Classroom. In this section of Resonance, we in'Vite readers to pose questions likely to be raised in a classroom situation. We may suggest strategies for dealing with them, or in'Vite responses, or ... "Classroom" is equally a forum for raising broader issues and .... Now we can approach the question from a different viewpoint.

  13. Classrooms.

    Science.gov (United States)

    Butin, Dan

    This paper addresses classroom design trends and the key issues schools should consider for better classroom space flexibility and adaptability. Classroom space design issues when schools embrace technology are discussed, as are design considerations when rooms must accommodate different grade levels, the importance of lighting, furniture…

  14. The current practice of using multiple representations in year 4 science classrooms

    Science.gov (United States)

    Chuenmanee, Chanoknat; Thathong, Kongsak

    2018-01-01

    Multiple representations have been widely used as a reasoning tool for understanding complex scientific concepts. Thus this study attempted to investigate the current practice of using multiple representations on Year 4 science classrooms in terms of modes and levels which appear in curriculum documents, teaching plans, tasks and assessments, teaching practices, and students' behaviors. Indeed, documentary analysis, classroom observation, and interview were used as the data collection methods. First of all, Year 4 science documents were analyzed. Then classroom observation was used as a collecting method to seek what actually happen in the classroom. Finally, in-depth interviews were used to gather more information and obtain meaningful data. The finding reveals that many modes of verbal, visual, and tactile representations within three levels of representations are posed in Year 4 documents. Moreover, according to classroom observations and interviews, there are three main points of applying multiple representations into classrooms. First of all, various modes of representations were used, however, a huge number of them did not come together with the levels. The levels of representations, secondly, macroscopic and cellular levels were introduced into all classrooms while symbolic level was provided only in some classrooms. Finally, the connection of modes and levels pointed out that modes of representations were used without the considerations on the levels of them. So, it seems to be that teaching practice did not meet the aims of curriculum. Therefore, these issues were being considered in order to organize and design the further science lessons.

  15. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    Science.gov (United States)

    Katz, Phyllis; Randy McGinnis, J.; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-12-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews, electronic communications, and drawing prompts. We found that our two participants referenced as important the ISE experiences in their development of classroom science identities that included resilience, excitement and engagement in science teaching and learning-qualities that are emphasized in ISE contexts. The data support our conclusion that the ISE experiences proved especially memorable to teacher education interns during the implementation of the No Child Left Behind policy which concentrated on school-tested subjects other than science.

  16. The Value of Supplementing Science Education with Outdoor Instruction for Sixth Grade Students

    Science.gov (United States)

    Jackson, Devin Joseph Guilford

    Science education is moving away from memorization of facts to inquiry based learning. Adding outdoor instruction can be an effective way to promote this exploratory method of learning. The limited number of empirical studies available have shown significant increase in attitudes and learning with outdoor science instruction. An eight-week quasi-experimental teacher research study was conducted to further this research and assess the value of schoolyard science instruction on student engagement and learning. Participants were 60 students in two sixth grade middle school Earth Science classes. A crossover study design was used with two classes alternating as experimental and control groups. NASA Global Precipitation Measurement mission curriculum was used (NASA/GPM, 2011). While the results did not show a clear increase in student engagement and content knowledge, the study adds to the body of knowledge on outdoor instruction and identifies limitations to consider in future studies.

  17. Impact of Practice-Based Instruction on Graduate Programs in the Pharmaceutical Sciences--A Response.

    Science.gov (United States)

    Gourley, Dick R.

    1979-01-01

    Issues concerning graduate programs in the pharmaceutical sciences are discussed, including: recent trends, recruitment, clinical instruction, doctoral programs, graduate faculty, master's programs, competition, supply and demand, and professional education of professionals. (SF)

  18. The effects of computer-assisted instruction on the mathematics performance and classroom behavior of children with ADHD.

    Science.gov (United States)

    Mautone, Jennifer A; DuPaul, George J; Jitendra, Asha K

    2005-08-01

    The present study examines the effects of computer-assisted instruction (CAI) on the mathematics performance and classroom behavior of three second-through fourth-grade students with ADHD. A controlled case study is used to evaluate the effects of the computer software on participants' mathematics performance and on-task behavior. Participants' mathematics achievement improve and their on-task behavior increase during the CAI sessions relative to independent seatwork conditions. In addition, students and teachers consider CAI to be an acceptable intervention for some students with ADHD who are having difficulty with mathematics. Implications of these results for practice and research are discussed.

  19. Brownfield Action III - Modular use of hydrogeology instruction in the virtual classroom

    Science.gov (United States)

    Bower, P.; Liddicoat, J.

    2009-04-01

    Brownfield Action III (BA III) is a network-based, interactive, digital space and simulation developed by Barnard College and the Columbia Center for New Media Teaching and Learning in which students explore and solve problems in environmental forensics. BA III is a proven inquiry-based approach to teaching and learning that, since its inception in 1999, has been recognized as an exemplary curriculum. Indeed, in 2002 it was selected as a national model curriculum by SENCER (Science Education for New Civic Engagements and Responsibilities). BA III provides instruction in environmental site assessments and in the remediation of former industrial sites (brownfields) for secondary and higher education students. The initial full-semester, three hours of weekly laboratory instruction that complements lectures in BA II has been revised for modular use in Hydrology, Environmental Science, and Environmental Ethics undergraduate and graduate courses in the United States. The remediation of brownfields is important because they have potential as recreational, residential, and commercial real estate sites. As part of determining the value of such a site, an environmental site assessment (ESA) is required to determine the nature and extent of any contamination. To reach that objective, BA III contains a narrative that is embedded and to be discovered in simulation; it is a story of groundwater contamination complete with underground contaminant plumes in a fictitious town with buildings, roads, wells, water tower, homes, and businesses as well as a municipal government with relevant historical documents. Student companies work collaboratively in teams of two, sign a contract with a development corporation to conduct a Phase One ESA, receive a realistic budget, and compete with other teams to fulfill the contract while maximizing profit. To reach a valid conclusion in the form of a professional-level ESA and 3-D maps of the physical site, teams construct a detailed narrative

  20. Holistic Approach to Secondary Earth Science Teacher Professional Development: the Triad of Project-based Instruction, Earth Science Content, and GIS Technology

    Science.gov (United States)

    Rubino-Hare, L.; Sample, J. C.; Fredrickson, K.; Claesgens, J.; Bloom, N.; Henderson-Dahms, C.; Manone, M.

    2011-12-01

    We have provided two years of professional development for secondary and middle school teachers with a focus on project-based instruction (PBI) using GIS. The EYE-POD project (funded by NSF-ITEST) involved pairs of teachers from Arizona and the surrounding region in two-week institutes during Summer, 2010, and an advanced institute in Summer, 2011. The NAz-POD project (funded by Arizona Department of Education and administered by Science Foundation Arizona) provided similar PD experiences, but the institutes occurred during weekends in the academic year. The institutes were led by a team with expertise in Earth science content, professional development and pedagogy, and GIS. The teachers developed learning modules using the project based learning instructional model. Pedagogy, content, and GIS skills were combined throughout the professional development activities. Academic year follow up by NAU personnel included classroom observations and technical support. For assessing student work we provided a rubric, but learned that teachers were not prepared to assess GIS products in order to determine the level of student understanding. In year two of the project we incorporated strategies for assessment of student products into the professional development. Teacher-participants and their students completed several pre- and post- assessments. Teacher assessments included a geospatial performance assessment, classroom observations, and content tests. Student data collection included attitude and efficacy questionnaires, content tests, and authentic assessments including products using GIS. Content tests were the same for teachers and students and included spatial reasoning, data analysis, and Earth science content. Data was also collected on teacher perception of professional development delivery and self-reported confidence in teaching with PBI and geospatial technology. Student assessments show that improvement occurred in all areas on the content test. Possible factors

  1. Teaching Climate Science in Non-traditional Classrooms

    Science.gov (United States)

    Strybos, J.

    2015-12-01

    San Antonio College is the oldest, largest and centrally-located campus of Alamo Colleges, a network of five community colleges based around San Antonio, Texas with a headcount enrollment of approximately 20,000 students. The student population is diverse in ethnicity, age and income; and the Colleges understand that they play a salient role in educating its students on the foreseen impacts of climate change. This presentation will discuss the key investment Alamo Colleges has adopted to incorporate sustainability and climate science into non-traditional classrooms. The established courses that cover climate-related course material have historically had low enrollments. One of the most significant challenges is informing the student population of the value of this class both in their academic career and in their personal lives. By hosting these lessons in hands-on simulations and demonstrations that are accessible and understandable to students of any age, and pursuing any major, we have found an exciting way to teach all students about climate change and identify solutions. San Antonio College (SAC) hosts the Bill R. Sinkin Eco Centro Community Center, completed in early 2014, that serves as an environmental hub for Alamo Colleges' staff and students as well as the San Antonio community. The center actively engages staff and faculty during training days in sustainability by presenting information on Eco Centro, personal sustainability habits, and inviting faculty to bring their classes for a tour and sustainability primer for students. The Centro has hosted professors from diverse disciplines that include Architecture, Psychology, Engineering, Science, English, Fine Arts, and International Studies to bring their classes to center to learn about energy, water conservation, landscaping, and green building. Additionally, Eco Centro encourages and assists students with research projects, including a solar-hydroponic project currently under development with the support

  2. Using NASA Data in the Classroom: Promoting STEM Learning in Formal Education using Real Space Science Data

    Science.gov (United States)

    Lawton, B.; Hemenway, M. K.; Mendez, B.; Odenwald, S.

    2013-04-01

    Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provides formal educators the opportunity to teach their students real-world applications of the STEM subjects. Combining real space science data with lessons aimed at meeting state and national education standards provides a memorable educational experience that students can build upon throughout their academic careers. Many of our colleagues have adopted the use of real data in their education and public outreach (EPO) programs. There are challenges in creating resources using real data for classroom use that include, but are not limited to, accessibility to computers/Internet and proper instruction. Understanding and sharing these difficulties and best practices with the larger EPO community is critical to the development of future resources. In this session, we highlight three examples of how NASA data is being utilized in the classroom: the Galaxies and Cosmos Explorer Tool (GCET) that utilizes real Hubble Space Telescope data; the computer image-analysis resources utilized by the NASA WISE infrared mission; and the space science derived math applications from SpaceMath@NASA featuring the Chandra and Kepler space telescopes. Challenges and successes are highlighted for these projects. We also facilitate small-group discussions that focus on additional benefits and challenges of using real data in the formal education environment. The report-outs from those discussions are given here.

  3. The perception of science teachers on the role of student relationships in the classroom

    Science.gov (United States)

    Mattison, Cheryl Ann

    With the increased accountability of educators comes the responsibility of the entire educational community to find ways in which we can help our students succeed in the classroom. In addition, it is important to discover what it takes to keep those students in school Many science teachers enter the profession unprepared to handle the regular classroom routine. Classroom management, grading, lesson planning, setting up labs, and the myriad of other obligations, can leave teachers overwhelmed and sometimes can get in the way of actually helping students be successful. This study investigated how science teachers viewed the importance of developing strong teacher/student relationships to the increase of student success in a science classroom. I attempted to answer 4 major questions: · How do science teachers in a select high school community view the role of interactive relationships in their classrooms and how that might impact their students? · How do science teachers in a select high school community believe they establish successful interactive relationships with their students? · What do science teachers in a select high school community believe are some of the outcomes of those relationships? · What do science teachers suggest to increase the teacher's ability to form good relationships with their students? A qualitative research method was used including observations, interviews and group discussions of 5 high school science teachers in a small urban school.

  4. The use of Web-based GIS data technologies in the construction of geoscience instructional materials: examples from the MARGINS Data in the Classroom project

    Science.gov (United States)

    Ryan, J. G.; McIlrath, J. A.

    2008-12-01

    Web-accessible geospatial information system (GIS) technologies have advanced in concert with an expansion of data resources that can be accessed and used by researchers, educators and students. These resources facilitate the development of data-rich instructional resources and activities that can be used to transition seamlessly into undergraduate research projects. MARGINS Data in the Classroom (http://serc.carleton.edu/ margins/index.html) seeks to engage MARGINS researchers and educators in using the images, datasets, and visualizations produced by NSF-MARGINS Program-funded research and related efforts to create Web-deliverable instructional materials for use in undergraduate-level geoscience courses (MARGINS Mini-Lessons). MARGINS science data is managed by the Marine Geosciences Data System (MGDS), and these and all other MGDS-hosted data can be accessed, manipulated and visualized using GeoMapApp (www.geomapapp.org; Carbotte et al, 2004), a freely available geographic information system focused on the marine environment. Both "packaged" MGDS datasets (i.e., global earthquake foci, volcanoes, bathymetry) and "raw" data (seismic surveys, magnetics, gravity) are accessible via GeoMapApp, with WFS linkages to other resources (geodesy from UNAVCO; seismic profiles from IRIS; geochemical and drillsite data from EarthChem, IODP, and others), permitting the comprehensive characterization of many regions of the ocean basins. Geospatially controlled datasets can be imported into GeoMapApp visualizations, and these visualizations can be exported into Google Earth as .kmz image files. Many of the MARGINS Mini-Lessons thus far produced use (or have studentss use the varied capabilities of GeoMapApp (i.e., constructing topographic profiles, overlaying varied geophysical and bathymetric datasets, characterizing geochemical data). These materials are available for use and testing from the project webpage (http://serc.carleton.edu/margins/). Classroom testing and assessment

  5. Teachers' Instructional Practices within Connected Classroom Technology Environments to Support Representational Fluency

    Science.gov (United States)

    Gunpinar, Yasemin; Pape, Stephen

    2018-01-01

    The purpose of this study was to investigate the ways that teachers use connected classroom technology (CCT) in conjunction with the Texas Instruments Nspire calculator to potentially support achievement on Algebra problems that require translation between representations (i.e., symbolic to graphical). Four Algebra I classrooms that initially…

  6. Influence of University Level Direct Instruction on Educators' Use of Technology in the Classroom

    Science.gov (United States)

    Garner, Angie M.; Bonds-Raacke, Jennifer M.

    2013-01-01

    Previous research regarding technology integration in education has indicated that when technology is integrated into the classroom with fidelity it can enhance educational experiences. Research has also indicated, however that despite the growing presence of technology in classrooms, it is not being effectively utilized. The present study…

  7. Instructional Activities and the Quality of Language in Chilean Preschool Classrooms

    Science.gov (United States)

    Strasser, Katherine; Darricades, Michelle; Mendive, Susana; Barra, Gabriela

    2018-01-01

    Research Findings: This study examines the association between preschool classroom activity and the quality of the language spoken by teachers and children. Eighteen classrooms serving low-income children between the ages of 3 and 4 in Santiago de Chile were audio-recorded during one morning shift. Recordings were transcribed and segmented into…

  8. An Application of Flipped Classroom Method in the Instructional Technologies and Material Development Course

    Science.gov (United States)

    Özpinar, Ilknur; Yenmez, Arzu Aydogan; Gökçe, Semirhan

    2016-01-01

    A natural outcome of change in technology, new approaches towards teaching and learning have emerged and the applicability of the flipped classroom method, a new educational strategy, in the field of education has started to be discussed. It was aimed with the study to examine the effect of using flipped classroom method in academic achievements…

  9. Measuring Changes in Interest in Science and Technology at the College Level in Response to Two Instructional Interventions

    Science.gov (United States)

    Romine, William L.; Sadler, Troy D.

    2016-06-01

    Improving interest in science, technology, engineering, and mathematics (STEM) is crucial to widening participation and success in STEM studies at the college level. To understand how classroom and extracurricular interventions affect interest, it is necessary to have appropriate measurement tools. We describe the adaptation and revalidation of a previously existing multidimensional instrument to the end of measuring interest in environmental science and technology in college nonscience majors. We demonstrate the revised instrument's ability to detect change in this group over an 8-week time period. While collection of demographic information was not part of the study design, participating students were similar in that they hailed from three environmental science nonmajor classes sharing a common syllabus and instructional delivery method. Change in interest was measured in response to two types of scientific literature-based learning approaches: a scientific practice approach and a traditional, quiz-driven approach. We found that both approaches led to moderate gains in interest in learning environmental science and careers in environmental science across an 8-week time period. Interest in using technology for learning increased among students using the scientific practice approach; in contrast, the same measure decreased among students using the reading/quiz approach. This result invites the possibility that interest in using technology as a learning tool may relate to technological literacy, which must be taught explicitly in the context of authentic inquiry experiences.

  10. Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalised science classroom

    Science.gov (United States)

    De Carvalho, Roussel

    2016-06-01

    Steven Vertovec (2006, 2007) has recently offered a re-interpretation of population diversity in large urban centres due to a considerable increase in immigration patterns in the UK. This complex scenario called superdiversity has been conceptualised to help illuminate significant interactions of variables such as religion, language, gender, age, nationality, labour market and population distribution on a larger scale. The interrelationships of these themes have fundamental implications in a variety of community environments, but especially within our schools. Today, London schools have over 300 languages being spoken by students, all of whom have diverse backgrounds, bringing with them a wealth of experience and, most critically, their own set of religious beliefs. At the same time, Science is a compulsory subject in England's national curriculum, where it requires teachers to deal with important scientific frameworks about the world; teaching about the origins of the universe, life on Earth, human evolution and other topics, which are often in conflict with students' religious views. In order to cope with this dynamic and thought-provoking environment, science initial teacher education (SITE)—especially those catering large urban centres—must evolve to equip science teachers with a meaningful understanding of how to handle a superdiverse science classroom, taking the discourse of inclusion beyond its formal boundaries. Thus, this original position paper addresses how the role of SITE may be re-conceptualised and re-framed in light of the immense challenges of superdiversity as well as how science teachers, as enactors of the science curriculum, must adapt to cater to these changes. This is also the first in a series of papers emerging from an empirical research project trying to capture science teacher educators' own views on religio-scientific issues and their positions on the place of these issues within science teacher education and the science classroom.

  11. Question Asking in the Science Classroom: Teacher Attitudes and Practices

    Science.gov (United States)

    Eshach, Haim; Dor-Ziderman, Yair; Yefroimsky, Yana

    2014-01-01

    Despite the wide agreement among educators that classroom learning and teaching processes can gain much from student and teacher questions, their potential is not fully utilized. Adopting the view that reporting both teachers' (of varying age groups) views and actual classroom practices is necessary for obtaining a more complete view of the…

  12. Instructional Partners, Principals, Teachers, and Instructional Assistants.

    Science.gov (United States)

    Indiana State Dept. of Public Instruction, Indianapolis.

    This handbook examines various topics of interest and concern to teachers as they work with instructional assistants forming a classroom instructional partnership and functioning as a team. These topics include: (1) instructional assistant qualifications; (2) duties--instructional, classroom clerical, auxillary; (3) factors to be considered when…

  13. Improving Geoscience Students' Spatial Thinking Skills: Applying Cognitive Science Research in the Classroom

    Science.gov (United States)

    Ormand, C. J.; Shipley, T. F.; Manduca, C. A.; Tikoff, B.

    2011-12-01

    Spatial thinking skills are critical to success in many subdisciplines of the geosciences (and beyond). There are many components of spatial thinking, such as mental rotation, penetrative visualization, disembedding, perspective taking, and navigation. Undergraduate students in introductory and upper-level geoscience courses bring a wide variety of spatial skill levels to the classroom, as measured by psychometric tests of many of these components of spatial thinking. Furthermore, it is not unusual for individual students to excel in some of these areas while struggling in others. Although pre- and post-test comparisons show that student skill levels typically improve over the course of an academic term, average gains are quite modest. This suggests that it may be valuable to develop interventions to help undergraduate students develop a range of spatial skills that can be used to solve geoscience problems. Cognitive science research suggests a number of strong strategies for building students' spatial skills. Practice is essential, and time on task is correlated to improvement. Progressive alignment may be used to scaffold students' successes on simpler problems, allowing them to see how more complex problems are related to those they can solve. Gesturing has proven effective in moving younger students from incorrect problem-solving strategies to correct strategies in other disciplines. These principles can be used to design instructional materials to improve undergraduate geoscience students' spatial skills; we will present some examples of such materials.

  14. A case study on the formation and sharing process of science classroom norms

    Science.gov (United States)

    Chang, Jina; Song, Jinwoong

    2016-03-01

    The teaching and learning of science in school are influenced by various factors, including both individual factors, such as member beliefs, and social factors, such as the power structure of the class. To understand this complex context affected by various factors in schools, we investigated the formation and sharing process of science classroom norms in connection with these factors. By examining the developmental process of science classroom norms, we identified how the norms were realized, shared, and internalized among the members. We collected data through classroom observations and interviews focusing on two elementary science classrooms in Korea. From these data, factors influencing norm formation were extracted and developed as stories about norm establishment. The results indicate that every science classroom norm was established, shared, and internalized differently according to the values ingrained in the norms, the agent of norm formation, and the members' understanding about the norm itself. The desirable norms originating from values in science education, such as having an inquiring mind, were not established spontaneously by students, but were instead established through well-organized norm networks to encourage concrete practice. Educational implications were discussed in terms of the practice of school science inquiry, cultural studies, and value-oriented education.

  15. Implementing Technology for Science Classrooms in Sao Tome and Principe

    Science.gov (United States)

    Jardim, Maria Dolores Rodrigues

    This qualitative bounded case study was designed to understand how technology integration in schools could be addressed in a first-wave country. The integration of educational technology in Sao Tome and Principe (STP), a first-wave agricultural civilization, can narrow the divide between STP and third-wave information age societies. The conceptual framework was based on theories of change, learning, and context. Toffler's wave theory described how societies changed while Fullan's change theory examined how the people might change. Roger's diffusion of innovations addressed how processes change. Bandura, Vygotsky, and Siemen provided the framework for the learning within the model of change. Finally, the context theories of Tessmer and Richey's instructional design, Lave and Wenger's situated learning, and Sticht's functional context theory were applied. Twenty five individuals from 5 schools, including teachers, school directors, key educational stakeholders, and the minister of education were involved in a pilot project to integrate technology into the science curriculum. The data were collected via interviews, reflective summaries, and confidential narratives. The resulting data were analyzed to find emerging patterns. The results of this analysis showed that a first-wave civilization can adopt a third-wave civilization's features in terms of technology integration, when there is the support of opinion leaders and most of the necessary contextual requirements are in place. The study contributes to social change by providing access to knowledge through technology integration, which empowers both teachers and students.

  16. Characterization of mathematics instructional practises for prospective elementary teachers with varying levels of self-efficacy in classroom management and mathematics teaching

    Science.gov (United States)

    Lee, Carrie W.; Walkowiak, Temple A.; Nietfeld, John L.

    2017-03-01

    The purpose of this study was to investigate the relationship between prospective teachers' (PTs) instructional practises and their efficacy beliefs in classroom management and mathematics teaching. A sequential, explanatory mixed-methods design was employed. Results from efficacy surveys, implemented with 54 PTs were linked to a sample of teachers' instructional practises during the qualitative phase. In this phase, video-recorded lessons were analysed based on tasks, representations, discourse, and classroom management. Findings indicate that PTs with higher levels of mathematics teaching efficacy taught lessons characterised by tasks of higher cognitive demand, extended student explanations, student-to-student discourse, and explicit connections between representations. Classroom management efficacy seems to bear influence on the utilised grouping structures. These findings support explicit attention to PTs' mathematics teaching and classroom management efficacy throughout teacher preparation and a need for formative feedback to inform development of beliefs about teaching practises.

  17. Making sense of shared sense-making in an inquiry-based science classroom: Toward a sociocultural theory of mind

    Science.gov (United States)

    Ladewski, Barbara G.

    Despite considerable exploration of inquiry and reflection in the literatures of science education and teacher education/teacher professional development over the past century, few theoretical or analytical tools exist to characterize these processes within a naturalistic classroom context. In addition, little is known regarding possible developmental trajectories for inquiry or reflection---for teachers or students---as these processes develop within a classroom context over time. In the dissertation, I use a sociocultural lens to explore these issues with an eye to the ways in which teachers and students develop shared sense-making, rather than from the more traditional perspective of individual teacher activity or student learning. The study includes both theoretical and empirical components. Theoretically, I explore the elaborations of sociocultural theory needed to characterize teacher-student shared sense-making as it develops within a classroom context, and, in particular, the role of inquiry and reflection in that sense-making. I develop a sociocultural model of shared sense-making that attempts to represent the dialectic between the individual and the social, through an elaboration of existing sociocultural and psychological constructs, including Vygotsky's zone of proximal development and theory of mind. Using this model as an interpretive framework, I develop a case study that explores teacher-student shared sense-making within a middle-school science classroom across a year of scaffolded introduction to inquiry-based science instruction. The empirical study serves not only as a test case for the theoretical model, but also informs our understanding regarding possible developmental trajectories and important mechanisms supporting and constraining shared sense-making within inquiry-based science classrooms. Theoretical and empirical findings provide support for the idea that perspectival shifts---that is, shifts of point-of-view that alter relationships

  18. Signs of Taste for Science: A Methodology for Studying the Constitution of Interest in the Science Classroom

    Science.gov (United States)

    Anderhag, P.; Wickman, P.-O.; Hamza, K. M.

    2015-01-01

    In this paper we present a methodological approach for analyzing the transformation of interest in science through classroom talk and action. To this end, we use the construct of "taste for science" as a social and communicative operationalization, or proxy, to the more psychologically oriented construct of interest. To gain a taste for…

  19. Relationship among science teacher personality characteristics and degree of teacher classroom implementation after in-service workshop

    Science.gov (United States)

    Sechler, Phares Lochiel Coleman

    State departments of public instruction require that teachers periodically update their licenses throughout their teaching careers. Various professional development events such as in-service workshops, university offerings, and special innovative programs provide opportunities for novice and experienced teachers to grow professionally. The "Team Science" workshop was designed from models supported by research that described guidelines for successful workshop strategies. In evaluating the workshop, the question was asked "Why did not all teachers implement the ideas from the workshop in their science classrooms?" This study investigates the possible relationship between teacher personality characteristics and implementation of technology innovations. Team Science was an extensive workshop program planned to develop science teachers' expertise in using computer and video technology to teach in physical science, chemistry, and physics classrooms in rural school in North Carolina. Upon evaluating the four-year effort, it was found that the 23 participants implemented the technological strategies at various levels. At the higher end of the range of technology use, some teachers exhibited complete integration of the computers and interfacing devices into both the laboratory work and the classroom inquiry. At the lower end of the range, some teachers used the technology very little. The resulting question emerged from the data collected: Do specific teacher personality characteristics (independent variables) correlate with the degree of implementation (dependent variable) of the innovative ideas and tools used in the teacher's science classroom after the in-service workshop? To determine if there were any significant personality traits, each teacher was given five personality tests. The tests were Hunt's Conceptual Development Test, the Paragraph Completion Test; James Rest's Defining Issues Test; Simmons Personal Survey, an emotional tendency test; the Myers-Briggs Type

  20. Promoting Prospective Elementary Teachers' Learning to Use Formative Assessment for Life Science Instruction

    Science.gov (United States)

    Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura

    2015-06-01

    To support elementary students' learning of core, standards-based life science concepts highlighted in the Next Generation Science Standards, prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning environments grounded in students' thinking. To do so, teachers must learn to use high-leverage instructional practices, such as formative assessment, to engage students in scientific practices and connect instruction to students' ideas. However, teachers may not understand formative assessment or possess sufficient science content knowledge to effectively engage in related instructional practices. To address these needs, we developed and conducted research within an innovative course for preservice elementary teachers built upon two pillars—life science concepts and formative assessment. An embedded mixed methods study was used to evaluate the effect of the intervention on preservice teachers' (n = 49) content knowledge and ability to engage in formative assessment practices for science. Findings showed that increased life content knowledge over the semester helped preservice teachers engage more productively in anticipating and evaluating students' ideas, but not in identifying effective instructional strategies to respond to those ideas.