WorldWideScience

Sample records for science center university

  1. Jackson State University (JSU)’s Center of Excellence in Science, Technology, Engineering, and Mathematics Education (CESTEME)

    Science.gov (United States)

    2016-01-08

    Actuarial Science Taylor, Triniti Lanier Alcorn State University Animal Science Tchounwou, Hervey Madison Central Jackson State University Computer...for Public Release; Distribution Unlimited Final Report: Jackson State University (JSU)’s Center of Excellence in Science , Technology, Engineering...Final Report: Jackson State University (JSU)’s Center of Excellence in Science , Technology, Engineering, and Mathematics Education (CESTEME) Report

  2. University/Science Center Collaborations (A Science Center Perspective): Developing an Infrastructure of Partnerships with Science Centers to Support the Engagement of Scientists and Engineers in Education and Outreach for Broad Impact

    Science.gov (United States)

    Marshall, Eric

    2009-03-01

    Science centers, professional associations, corporations and university research centers share the same mission of education and outreach, yet come from ``different worlds.'' This gap may be bridged by working together to leverage unique strengths in partnership. Front-end evaluation results for the development of new resources to support these (mostly volunteer-based) partnerships elucidate the factors which lead to a successful relationship. Maintaining a science museum-scientific community partnership requires that all partners devote adequate resources (time, money, etc.). In general, scientists/engineers and science museum professionals often approach relationships with different assumptions and expectations. The culture of science centers is distinctly different from the culture of science. Scientists/engineers prefer to select how they will ultimately share their expertise from an array of choices. Successful partnerships stem from clearly defined roles and responsibilities. Scientists/engineers are somewhat resistant to the idea of traditional, formal training. Instead of developing new expertise, many prefer to offer their existing strengths and expertise. Maintaining a healthy relationship requires the routine recognition of the contributions of scientists/engineers. As professional societies, university research centers and corporations increasingly engage in education and outreach, a need for a supportive infrastructure becomes evident. Work of TryScience.org/VolTS (Volunteers TryScience), the MRS NISE Net (Nanoscale Informal Science Education Network) subcommittee, NRCEN (NSF Research Center Education Network), the IBM On Demand Community, and IEEE Educational Activities exemplify some of the pieces of this evolving infrastructure.

  3. Genetic Science Learning Center

    Science.gov (United States)

    Genetic Science Learning Center Making science and health easy for everyone to understand Home News Our Team What We Do ... Collaboration Conferences Current Projects Publications Contact The Genetic Science Learning Center at The University of Utah is a ...

  4. The Stocker AstroScience Center at Florida International University

    Science.gov (United States)

    Webb, James R.

    2014-01-01

    The new Stocker AstroScience Center located on the MMC campus at Florida International University in Miami Florida represents a unique facility for STEM education that arose from a combination of private, State and university funding. The building, completed in the fall of 2013, contains some unique spaces designed not only to educate, but also to inspire students interested in science and space exploration. The observatory consists of a 4-story building (3 floors) with a 24” ACE automated telescope in an Ash dome, and an observing platform above surrounding buildings. Some of the unique features of the observatory include an entrance/exhibition hall with a 6-ft glass tile floor mural linking the Florida climate to space travel, a state-of-the art telescope control that looks like a starship bridge, and displays such as “Music from the universe”. The observatory will also be the focus of our extensive public outreach program that is entering its 20 year.

  5. Master's Level Graduate Training in Medical Physics at the University of Colorado Health Sciences Center.

    Science.gov (United States)

    Ibbott, Geoffrey S.; Hendee, William R.

    1980-01-01

    Describes the master's degree program in medical physics developed at the University of Colorado Health Sciences Center. Required courses for the program, and requirements for admission are included in the appendices. (HM)

  6. Communicating Ocean Sciences to Informal Audiences (COSIA): Universities, Oceanographic Institutions, Science Centers and Aquariums Working Together to Improve Ocean Education and Public Outreach

    Science.gov (United States)

    Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.; Ingram, L.

    2007-12-01

    Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course from COSEE-California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project has leveraged these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort is one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach and promoting the broader impact of research; and provide diverse role models

  7. A 5-year scientometric analysis of research centers affiliated to Tehran University of Medical Sciences

    Science.gov (United States)

    Yazdani, Kamran; Rahimi-Movaghar, Afarin; Nedjat, Saharnaz; Ghalichi, Leila; Khalili, Malahat

    2015-01-01

    Background: Since Tehran University of Medical Sciences (TUMS) has the oldest and highest number of research centers among all Iranian medical universities, this study was conducted to evaluate scientific output of research centers affiliated to Tehran University of Medical Sciences (TUMS) using scientometric indices and the affecting factors. Moreover, a number of scientometric indicators were introduced. Methods: This cross-sectional study was performed to evaluate a 5-year scientific performance of research centers of TUMS. Data were collected through questionnaires, annual evaluation reports of the Ministry of Health, and also from Scopus database. We used appropriate measures of central tendency and variation for descriptive analyses. Moreover, uni-and multi-variable linear regression were used to evaluate the effect of independent factors on the scientific output of the centers. Results: The medians of the numbers of papers and books during a 5-year period were 150.5 and 2.5 respectively. The median of the "articles per researcher" was 19.1. Based on multiple linear regression, younger age centers (p=0.001), having a separate budget line (p=0.016), and number of research personnel (p<0.001) had a direct significant correlation with the number of articles while real properties had a reverse significant correlation with it (p=0.004). Conclusion: The results can help policy makers and research managers to allocate sufficient resources to improve current situation of the centers. Newly adopted and effective scientometric indices are is suggested to be used to evaluate scientific outputs and functions of these centers. PMID:26157724

  8. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  9. Informing Science (IS and Science and Technology Studies (STS: The University as Decision Center (DC for Teaching Interdisciplinary Research

    Directory of Open Access Journals (Sweden)

    Teresa Castelao-Lawless

    2001-01-01

    Full Text Available Students of history and philosophy of science courses at my University are either naïve robust realists or naïve relativists in relation to science and technology. The first group absorbs from culture stereotypical conceptions, such as the value-free character of the scientific method, that science and technology are impervious to history or ideology, and that science and religion are always at odds. The second believes science and technology were selected arbitrarily by ideologues to have privileged world views of reality to the detriment of other interpretations. These deterministic outlooks must be challenged to make students aware of the social importance of their future roles, be they as scientists and engineers or as science and technology policy decision makers. The University as Decision Center (DC not only reproduces the social by teaching standard solutions to well-defined problems but also provides information regarding conflict resolution and the epistemological, individual, historical, social, and political mechanisms that help create new science and technology. Interdisciplinary research prepares students for roles that require science and technology literacy, but raises methodological issues in the context of the classroom as it increases uncertainty with respect to apparently self-evident beliefs about scientific and technological practices.

  10. Center for Environmental Health Sciences

    Data.gov (United States)

    Federal Laboratory Consortium — The primary research objective of the Center for Environmental Health Sciences (CEHS) at the University of Montana is to advance knowledge of environmental impacts...

  11. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)

  12. The current state of the center for the creation and dissemination of new Japanese nursing science: The 21st century Center of Excellence at Chiba University School of Nursing

    OpenAIRE

    中村 伸枝; 石垣, 和子; 正木, 治恵; 宮崎, 美砂子; 山本, 則子

    2006-01-01

    Aim: The Center of Excellence for the Creation and Dissemination of a New Japanese Nursing Science at Chiba University School of Nursing is now in its third year of operation. This center aims to develop nursing science that is appropriate for Japanese culture and to internationally disseminate the importance of culturally based care. Our project seeks to systematically transform the art of nursing practise into a nursing science. Method: To date, multiple frameworks have been created through...

  13. Assessment of oral health attitudes and behavior among students of Kuwait University Health Sciences Center.

    Science.gov (United States)

    Ali, Dena A

    2016-01-01

    The aims of this study were to assess attitudes and behavior of oral health maintenance among students in four faculties (Medicine, Dentistry, Pharmacy, and Allied Health) and to compare oral health attitudes and behavior of all students at Kuwait University Health Sciences Center (KUHSC) based on their academic level. Students enrolled in the Faculties of Dentistry, Medicine, Pharmacy, and Allied Health at KUHSC were evaluated regarding their oral health attitudes and behavior by an e-mail invitation with a link to the Hiroshima University Dental Behavior Inventory survey that was sent to all 1802 students with Kuwait University Health Sciences Center e-mail addresses. The data were analyzed for frequency distributions, and differences among the groups were assessed using the Mann-Whitney U test, Chi-square test, and Kruskal-Wallis test. P values less than 0.05 were considered to be statistically significant ( P < 0.05). The results of this study indicated that dental students achieved better oral health attitudes and behavior than that of their nondental professional fellow students ( P < 0.05). Students in advanced academic levels and female students demonstrated better oral health attitudes and behavior. Dental students and students who were in advanced levels of their training along with female students demonstrated better oral health practices and perceptions than students in lower academic levels and male students, respectively. Additional studies for investigating the effectiveness and identifying areas requiring modification within the dental curriculum at KUHSC may be warranted.

  14. Interdisciplinary research center devoted to molecular environmental science opens

    Science.gov (United States)

    Vaughan, David J.

    In October, a new research center opened at the University of Manchester in the United Kingdom. The center is the product of over a decade of ground-breaking interdisciplinary research in the Earth and related biological and chemical sciences at the university The center also responds to the British governments policy of investing in research infrastructure at key universities.The Williamson Research Centre, the first of its kind in Britain and among the first worldwide, is devoted to the emerging field of molecular environmental science. This field also aims to bring about a revolution in understanding of our environment. Though it may be a less violent revolution than some, perhaps, its potential is high for developments that could affect us all.

  15. The Experimental Teaching Reform in Biochemistry and Molecular Biology for Undergraduate Students in Peking University Health Science Center

    Science.gov (United States)

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and…

  16. Project of international science-education center and integration problems of nano science education in far eastern region of Asia

    International Nuclear Information System (INIS)

    Plusnin, N I; Lazarev, G I

    2008-01-01

    Some conception of international science-education center on nano science in Vladivostok is presented. The conception is based on internal and external prerequisites. Internal one is high intellectual potential of institutes of Russian Academy of Sciences and universities of Vladivostok and external one is need of countries of Far Eastern region of Asia in high level manpower. The conception takes into account a specific distribution of science and education potential between Russian Academy of Sciences and Russian universities and a specific their dislocation in Vladivostok. First specific dictates some similarity of organization structure and function of international science-education center to typical science-education center in Russia. But as for dislocation of the international science-education center in Vladivostok, it should be near dislocation of institutes of Far Eastern Brunch of Russian Academy of Sciences in Vladivostok, which are dislocated very compactly in suburb zone of Vladivostok

  17. The new library building at the University of Texas Health Science Center at San Antonio.

    Science.gov (United States)

    Kronick, D A; Bowden, V M; Olivier, E R

    1985-04-01

    The new University of Texas Health Science Center at San Antonio Library opened in June 1983, replacing the 1968 library building. Planning a new library building provides an opportunity for the staff to rethink their philosophy of service. Of paramount concern and importance is the need to convey this philosophy to the architects. This paper describes the planning process and the building's external features, interior layouts, and accommodations for technology. Details of the move to the building are considered and various aspects of the building are reviewed.

  18. [Projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo].

    Science.gov (United States)

    Niimi, Shingo; Umezu, Mitsuo; Iseki, Hiroshi; Harada, Hiroshi Kasanuki Noboru; Mitsuishi, Mamoru; Kitamori, Takehiko; Tei, Yuichi; Nakaoka, Ryusuke; Haishima, Yuji

    2014-01-01

    Division of Medical Devices has been conducting the projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo. The TWIns has been studying to aim at establishment of preclinical evaluation methods by "Engineering Based Medicine", and established Regulatory Science Institute for Medical Devices. School of Engineering, The University of Tokyo has been studying to aim at establishment of assessment methodology for innovative minimally invasive therapeutic devices, materials, and nanobio diagnostic devices. This report reviews the exchanges of personnel, the implement systems and the research progress of these projects.

  19. Education in the nuclear sciences in Japanese universities

    International Nuclear Information System (INIS)

    Takashima, Y.

    1993-01-01

    Although there are 430 governmental and private universities in Japan, only a limited number of them have departments associated with nuclear science education. Moreover, mainly because of financial pressures, this association is often limited to government universities. Nuclear engineering departments are incorporated with only seven of larger universities, and there are three institutes with nuclear reactors. In these facilities, education in reactor physics, radiation measurements, electromagnetic and material sciences, are conducted. In terms of radiation safety and radiological health physics, ten radioisotope centers and seven radiochemistry laboratories in universities play an important role. (author) 8 figs.; 5 tabs

  20. University of Maryland component of the Center for Multiscale Plasma Dynamics: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dorland, William [University of Maryland

    2014-11-18

    The Center for Multiscale Plasma Dynamics (CMPD) was a five-year Fusion Science Center. The University of Maryland (UMD) and UCLA were the host universities. This final technical report describes the physics results from the UMD CMPD.

  1. Vanderbilt University Institute of Imaging Science Center for Computational Imaging XNAT: A multimodal data archive and processing environment.

    Science.gov (United States)

    Harrigan, Robert L; Yvernault, Benjamin C; Boyd, Brian D; Damon, Stephen M; Gibney, Kyla David; Conrad, Benjamin N; Phillips, Nicholas S; Rogers, Baxter P; Gao, Yurui; Landman, Bennett A

    2016-01-01

    The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has developed a database built on XNAT housing over a quarter of a million scans. The database provides framework for (1) rapid prototyping, (2) large scale batch processing of images and (3) scalable project management. The system uses the web-based interfaces of XNAT and REDCap to allow for graphical interaction. A python middleware layer, the Distributed Automation for XNAT (DAX) package, distributes computation across the Vanderbilt Advanced Computing Center for Research and Education high performance computing center. All software are made available in open source for use in combining portable batch scripting (PBS) grids and XNAT servers. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Education in the nuclear sciences at Japanese universities

    International Nuclear Information System (INIS)

    Takashima, Y.

    1990-01-01

    Though there are 430 government and private universities in Japan, only a limited number of them have the department associated with nuclear science education. And the education is one-sided to government universities because mainly of financial problem. Nuclear engineering departments are installed at only 7 big universities. In addition, there are 3 institutes associated with a nuclear reactor. In these facilities, education on reactor physics, radiation measurement, electromagnetics and material sciences are conducted. For education on safety handling of radioactive materials, 10 radioisotope centers and 7 radiochemistry laboratories attached to big government universities act an important role. Almost all of the financial support for the above nuclear education come from the Ministry of Education, Science and Culture. However, some other funds are introduced by the private connection of professors

  3. Developing E-science and Research Services and Support at the University of Minnesota Health Sciences Libraries

    Science.gov (United States)

    Johnson, Layne M.; Butler, John T.; Johnston, Lisa R.

    2013-01-01

    This paper describes the development and implementation of e-science and research support services in the Health Sciences Libraries (HSL) within the Academic Health Center (AHC) at the University of Minnesota (UMN). A review of the broader e-science initiatives within the UMN demonstrates the needs and opportunities that the University Libraries face while building knowledge, skills, and capacity to support e-research. These experiences are being used by the University Libraries administration and HSL to apply support for the growing needs of researchers in the health sciences. Several research areas that would benefit from enhanced e-science support are described. Plans to address the growing e-research needs of health sciences researchers are also discussed. PMID:23585706

  4. Developing E-science and Research Services and Support at the University of Minnesota Health Sciences Libraries.

    Science.gov (United States)

    Johnson, Layne M; Butler, John T; Johnston, Lisa R

    2012-01-01

    This paper describes the development and implementation of e-science and research support services in the Health Sciences Libraries (HSL) within the Academic Health Center (AHC) at the University of Minnesota (UMN). A review of the broader e-science initiatives within the UMN demonstrates the needs and opportunities that the University Libraries face while building knowledge, skills, and capacity to support e-research. These experiences are being used by the University Libraries administration and HSL to apply support for the growing needs of researchers in the health sciences. Several research areas that would benefit from enhanced e-science support are described. Plans to address the growing e-research needs of health sciences researchers are also discussed.

  5. The Universe Observation Center: an educational center devoted to Astronomy in Catalonia

    Science.gov (United States)

    Fernández, D.

    The Universe Observation Center (in Catalan language, Centre d'Observació de l'Univers, COU) is located in close proximity to the Montsec Astronomical Observatory (Observatori Astronòmic del Montsec, OAM), in eastern Catalonia (Spain). Both centers comprise the Montsec Astronomical Park (Parc Astronòmic Montsec, PAM), managed by the Consorci del Montsec. Montsec Mountain remains the finest location for astronomical observation in Catalonia, as demonstrated by a site-testing campaign conducted by the Astronomy and Meteorology Department of the University of Barcelona. The COU consists of a Central Building (including a permanent exhibition and three classrooms possessing broadband Internet access), the Telescope Park (two astronomical domes equipped with medium-size telescopes, a coelostat for solar observation, and a portable telescope park), the Eye of Montsec (a digital planetarium and, at the same time, an extremely innovative platform for sky observation) and the Garden of the Universe (a tour of the land surrounding the COU, visiting several areas within it). The COU will offer to the Spanish academic community a host of fascinating and unique activities in the fields of astronomy and geology. The Center is open not only to students (from primary school through university), but also to amateur astronomers, people interested in science and the general public.

  6. The Universe Observing Center a modern center to teach and communicate astronomy

    Science.gov (United States)

    Ribas, Salvador J.

    2011-06-01

    The Universe Observing Center is one of the parts of the Parc Astronòmic Montsec (PAM). PAM is an initiative of the Catalan government, through the Consorci del Montsec (Montsec Consortium), to take advantage of the capabilities and potential of the Montsec region to develop scientific research, training and outreach activities, particularly in the field of Astronomy. The choice of the Montsec mountains to install the PAM was motivated by the magnificent conditions for observing the sky at night; the sky above Montsec is the best (natural sky free of light pollution) in Catalonia for astronomical observations. The PAM has two main parts: the Observatori Astronòmic del Montsec (OAdM) and the Universe Observing Center (COU). The OAdM is a professional observatory with an 80-cm catadioptric telescope (Joan Oró Telescope). This telescope is a robotic telescope that can be controlled from anywhere in the world via the Internet. The COU is a large multipurpose center which is intended to become an educational benchmark for teaching and communicate astronomy and other sciences in Catalonia. The management of the COU has three main goals: 1) Teach primary and secondary school students in our Educational Training Camp. 2) Teach university students housing the practical astronomy lectures of the universities. 3) Communicate astronomy to the general public. The COU comprises special areas for these purposes: the Telescopes Park with more than 20 telescopes, a coelostat for solar observations and two dome containing full-automated telescopes. The most special equipment is ``The Eye of Montsec'', with its 12m dome containing a multimedia digital planetarium and a platform for direct observation of the sky and the environment. During 2009 we expect around 10000 visitors in Montsec area to enjoy science with Montsec dark skies and an special natural environment.

  7. Research on fabrication of aspheres at the Center of Optics Technology (University of Applied Science in Aalen); Techical Digest

    Science.gov (United States)

    Boerret, Rainer; Burger, Jochen; Bich, Andreas; Gall, Christoph; Hellmuth, Thomas

    2005-05-01

    The Center of Optics Technology at the University of Applied Science, founded in 2003, is part of the School of Optics and Mechatronics. It completes the existing optical engineering department with a full optical fabrication and metrology chain and serves in parallel as a technology transfer center, to provide area industries with the most up-to-date technology in optical fabrication and engineering. Two examples of research work will be presented. The first example is the optimizing of the grinding process for high precision aspheres, the other is generating and polishing of a freeform optical element which is used as a phase plate.

  8. Applying accreditation standards in a self-evaluation process: The experience of Educational Development Center of Tehran University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    A Mirzazadeh

    2016-03-01

    Full Text Available Introduction: Educational Development Centers (EDCs, as the coordinator in education development in Medical Sciences universities, in order to improve their quality should evaluate their activities. In spite of remarkable performance of Tehran University of Medical Sciences (TUMS EDC in previous national rankings, but it faces many challenges and problems. This paper provided the process, results and lessons learned from a self-evaluation experience conducted at TUMS EDC based on accreditation standards. Method: The present study is an Institutional self-evaluation study based on the national accreditation standards of EDCs (2012. Data were gathered using an open-ended questionnaire developed on the basis of the SWOT format. A directional content analysis applied to analyze the data. Results: In total, 84 point of strengths, 87 weaknesses, 15 opportunities, 24 threats and also 99 recommendations for quality improvement were reported. The most important strengths of the center were the existence of an established mechanism regarding research process in education and scholarship of education, holding various faculty development courses and training standardized patient. The most important weaknesses were the lack of specified procedures in some areas such as monitoring the planning and reviewing of educational programs in the field of educational programs and evaluation of empowerment courses. Conclusion: The present evaluation results will be useful in directing future policies of TUMS EDC such as revising its strategic planning. We hope that the current experience can be helpful for administrators in EDCs in the Ministry of Health and Medical Education and also other Medical Sciences Universities.

  9. Molecular Science Research Center 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1994-01-01

    The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

  10. Together with Research Centers and Universities

    Directory of Open Access Journals (Sweden)

    Nuno Domingos Garrido

    2016-10-01

    Full Text Available The Journal Motricidade has always been walking in parallel with the scientific communities. We found that the affiliation of most authors has, nearly always, a University (Uni or a Research Center (RC. In fact it is almost impossible to conduct research outside these two universes. In this sense, Uni and RC feed the most, if not all, of scientific journals worldwide. By this I mean that is in the interest of Motricidade to be associated with high-quality RC and Uni equally recognized. With regard to RC, Motricidade will publish this year a supplement of the International Congress of Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD. This RC has conducted research in a variety of areas within the Sport Sciences and Health and always with high recognition and associated publications. It was not by chance that this RC was evaluated with ‘very good’ by the Portuguese Foundation for Science and Technology (FCT panel and has been granted funding. This Congress, which takes place every two years, targets to converge research and high level practices within these three areas: Sports, Health and Human Development. The 2016 CIDESD edition is dedicated to "Exercise and Health, Sports and Human Development" and will be held at the University of Évora, between 11 and 12 November of 2016. The readers can check the program in the following link http://gdoc.uevora.pt/450120 and get more information in the Congress Site available at http://www.cidesd2016.uevora.pt/. With regard to Uni, Motricidade signed a cooperation protocol with the University of Beira Interior (UBI in May of 2016, involving the development and dissemination of scientific knowledge in Sports Sciences, Psychology, Human Development and Health. At the present, UBI hosts more than 6,000 students spread across five faculties - Arts & Letters, Sciences, Health Sciences, Humanities and Social Sciences and Engineering. When looking at the rankings, for instance

  11. Integration of science and education on the example of cooperation of Semipalatinsk State University of Shakarim and National Nuclear Center of the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Syzdykov, E.B.; Gavrilova, N.B.; Asambaev, A.Zh.

    2002-01-01

    In this work the ways of integration of science and education on the example of cooperation of Semipalatinsk State University of Shakarim and National Nuclear Center of the Republic of Kazakhstan are presented. (author)

  12. Comparison of the Performance of Health Volunteers in the Health Centers of Shahid Beheshti University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Ahmad-Reza Farsar

    2015-02-01

    Full Text Available Background and Objective: Health volunteers are the women who do charity work to prevent, protect and promote the health status of the covered neighbors and hereby cooperate with the health centers. The aim of this study was to compare the health volunteer's performance in the covered health centers by Shahid Beheshti University of Medical Sciences.Materials and Methods: This descriptive- analytical study was performed by the participation of 2060 Health volunteers, who were cooperating with 90 covered health centers by Shahid Beheshti University of Medical Sciences. These include Shomal, Shargh, Shemiranat, Pakdasht, Damavand and Firoozkooh. We used census sampling method. Demographic data was gathered through interviews with the health volunteers and their performance evaluated by the supervisor of the volunteers; through the evaluation forms and these data gathered together.Results: The mean (SD of the health volunteers performance was 30.9 (16.4 in all centers. They were 35.1 (22 in Shargh, 34 (14.5 in Shomal, 32 (11.3 in Firoozkooh, 28.3 (14 in Shemiranat, 7.9 (9.2 in Damavand and 23.6 (8.5 in Pakdasht respectively. The mean (SD of the efficacy of health volunteers was 8.6 (9.9 in all centers. They were 11.7 (5.6 in Firoozkooh, 10.7 (15.7 in Shargh, 9.4 (6.8 in Shomal, 7.9 (4.9 in Damavand, 7.9 (6.1 in Shemiranat and 4.6 (4.3 in Pakdasht respectively. Older and married volunteers with more experience performed better. There was no significant relationship between the efficacy of health volunteers with their literacy level, employment status and absorber of them.              Conclusion: The health volunteers of Shomal, Shargh and Firoozkooh had the best performances respectively. The performances of those in Shemiranat, Damavand and Pakdasht were less than the overall health centers’ mean score. The efficacy score of Firoozkooh, Shomal and Shargh health centers were above the overall health centers’ mean score respectively

  13. Tribal engagement strategy of the South Central Climate Science Center, 2014

    Science.gov (United States)

    Andrews, William J.; Taylor, April; Winton, Kimberly T.

    2014-01-01

    The South Central Climate Science Center was established by the U.S. Department of the Interior in 2012 to increase understanding of climate change and coordinate an effective response to climate-change effects on Native American tribes and natural and cultural resources that the Department manages. The eight regional Climate Science Centers of the U.S. Department of the Interior work closely with natural-resource management agencies, university researchers, and others such as tribes and private landowners on climate-change issues. The relatively large number of Native Americans in the south central United States and their special knowledge of changing ecosystems make working with tribes and tribal members on climate-change issues particularly important in this part of the Nation. This circular describes priorities of the South Central Climate Science Center and provides information about resources available from Climate Science Centers and partner agencies regarding climate change. The circular also describes how this Climate Science Center, tribes and tribal members, and others can collaborate to minimize potential harmful effects of climate change on human society and our surrounding ecosystems.

  14. New Center Links Earth, Space, and Information Sciences

    Science.gov (United States)

    Aswathanarayana, U.

    2004-05-01

    Broad-based geoscience instruction melding the Earth, space, and information technology sciences has been identified as an effective way to take advantage of the new jobs created by technological innovations in natural resources management. Based on this paradigm, the University of Hyderabad in India is developing a Centre of Earth and Space Sciences that will be linked to the university's super-computing facility. The proposed center will provide the basic science underpinnings for the Earth, space, and information technology sciences; develop new methodologies for the utilization of natural resources such as water, soils, sediments, minerals, and biota; mitigate the adverse consequences of natural hazards; and design innovative ways of incorporating scientific information into the legislative and administrative processes. For these reasons, the ethos and the innovatively designed management structure of the center would be of particular relevance to the developing countries. India holds 17% of the world's human population, and 30% of its farm animals, but only about 2% of the planet's water resources. Water will hence constitute the core concern of the center, because ecologically sustainable, socially equitable, and economically viable management of water resources of the country holds the key to the quality of life (drinking water, sanitation, and health), food security, and industrial development of the country. The center will be focused on interdisciplinary basic and pure applied research that is relevant to the practical needs of India as a developing country. These include, for example, climate prediction, since India is heavily dependent on the monsoon system, and satellite remote sensing of soil moisture, since agriculture is still a principal source of livelihood in India. The center will perform research and development in areas such as data assimilation and validation, and identification of new sensors to be mounted on the Indian meteorological

  15. The Laboratory for School Science at the University of Oslo

    Science.gov (United States)

    Sjoberg, Svein

    1976-01-01

    Describes the purposes of the Center for Science Education at the University of Oslo as follows: to give help and advice to acting teachers; to make the staff at the university more aware of the needs and problems of the schools. Outlines the activities involved in fulfilling these purposes. (GS)

  16. The InterCon network: a program for education partnerships at the University of Texas-Houston Health Science Center.

    Science.gov (United States)

    Castro, G A; Bouldin, P A; Farver, D W; Maugans, L A; Sanders, L C; Booker, J

    1999-04-01

    The University of Texas-Houston Health Science Center (UT-Houston) has created programs and activities to address the state's pressing needs in minority education. Through InterCon, a network of universities and K-12 schools, UT-Houston works with its partners to identify competitive candidates in the current pool of minority graduates with bachelor's degrees and to help them--along with their non-minority counterparts--progress in their education. Another objective is to expand the pool of minorities underrepresented in medicine who complete high school and go to college. In 1994 UT-Houston and Prairie View A&M University created a collaborative venture to provide new educational opportunities at UT-Houston for Prairie View's predominantly African American students. A three-track summer internship program--a result of that collaboration--has since been expanded to partnerships with other minority and majority universities throughout Texas. In 1998, for example, 108 undergraduate students from these universities (and 40 other universities nationwide) participated in research, professional, and administrative summer internships at UT-Houston. The InterCon network also has partnerships with K-12 schools. UT-Houston works with inner-city, suburban, and rural school districts to develop education models that can be transferred throughout the state. The partnerships deal with helping to teach basic academic skills and computer literacy, improve science-related instruction, meet demands for health promotion materials and information for school-initiated health and wellness programs, and develop distance-learning paradigms. UT-Houston views InterCon as a program helping Texas institutions to engage and adapt to the socioeconomic factors, demographic changes, and technology explosion that currently challenge public education.

  17. Fort Collins Science Center-Fiscal year 2009 science accomplishments

    Science.gov (United States)

    Wilson, Juliette T.

    2010-01-01

    Public land and natural resource managers in the United States are confronted with increasingly complex decisions that have important ramifications for both ecological and human systems. The scientists and technical professionals at the U.S. Geological Survey Fort Collins Science Center?many of whom are at the forefront of their fields?possess a unique blend of ecological, socioeconomic, and technological expertise. Because of this diverse talent, Fort Collins Science Center staff are able to apply a systems approach to investigating complicated ecological problems in a way that helps answer critical management questions. In addition, the Fort Collins Science Center has a long record of working closely with the academic community through cooperative agreements and other collaborations. The Fort Collins Science Center is deeply engaged with other U.S. Geological Survey science centers and partners throughout the Department of the Interior. As a regular practice, we incorporate the expertise of these partners in providing a full complement of ?the right people? to effectively tackle the multifaceted research problems of today's resource-management world. In Fiscal Year 2009, the Fort Collins Science Center's scientific and technical professionals continued research vital to Department of the Interior's science and management needs. Fort Collins Science Center work also supported the science needs of other Federal and State agencies as well as non-government organizations. Specifically, Fort Collins Science Center research and technical assistance focused on client and partner needs and goals in the areas of biological information management and delivery, enterprise information, fisheries and aquatic systems, invasive species, status and trends of biological resources (including human dimensions), terrestrial ecosystems, and wildlife resources. In the process, Fort Collins Science Center science addressed natural-science information needs identified in the U

  18. Better Broader Impacts through National Science Foundation Centers

    Science.gov (United States)

    Campbell, K. M.

    2010-12-01

    National Science Foundation Science and Technology Centers (STCs) play a leading role in developing and evaluating “Better Broader Impacts”; best practices for recruiting a broad spectrum of American students into STEM fields and for educating these future professionals, as well as their families, teachers and the general public. With staff devoted full time to Broader Impacts activities, over the ten year life of a Center, STCs are able to address both a broad range of audiences and a broad range of topics. Along with other NSF funded centers, such as Centers for Ocean Sciences Education Excellence, Engineering Research Centers and Materials Research Science and Engineering Centers, STCs develop both models and materials that individual researchers can adopt, as well as, in some cases, direct opportunities for individual researchers to offer their disciplinary research expertise to existing center Broader Impacts Programs. The National Center for Earth-surface Dynamics is an STC headquartered at the University of Minnesota. NCED’s disciplinary research spans the physical, biological and engineering issues associated with developing an integrative, quantitative and predictive understanding of rivers and river basins. Funded in 2002, we have had the opportunity to partner with individuals and institutions ranging from formal to informal education and from science museums to Tribal and women’s colleges. We have developed simple table top physical models, complete museum exhibitions, 3D paper maps and interactive computer based visualizations, all of which have helped us communicate with this wide variety of learners. Many of these materials themselves or plans to construct them are available online; in many cases they have also been formally evaluated. We have also listened to the formal and informal educators with whom we partner, from whom we have learned a great deal about how to design Broader Impacts activities and programs. Using NCED as a case study

  19. Louisiana State University Health Sciences Center Katrina Inspired Disaster Screenings (KIDS): Psychometric Testing of the National Child Traumatic Stress Network Hurricane Assessment and Referral Tool

    Science.gov (United States)

    Hansel, Tonya Cross; Osofsky, Joy D.; Osofsky, Howard J.

    2015-01-01

    Background: Post disaster psychosocial surveillance procedures are important for guiding effective and efficient recovery. The Louisiana State University Health Sciences Center Katrina Inspired Disaster Screenings (KIDS) is a model designed with the goal of assisting recovering communities in understanding the needs of and targeting services…

  20. U.S. Department of the Interior South Central Climate Science Center strategic science plan, 2013--18

    Science.gov (United States)

    Winton, Kim T.; Dalton, Melinda S.; Shipp, Allison A.

    2013-01-01

    The Department of the Interior (DOI) recognizes and embraces the unprecedented challenges of maintaining our Nation’s rich natural and cultural resources in the 21st century. The magnitude of these challenges demands that the conservation community work together to develop integrated adaptation and mitigation strategies that collectively address the impacts of climate change and other landscape-scale stressors. On September 14, 2009, DOI Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010) entitled, “Addressing the Impacts of Climate Change on America’s Water, Land, and Other Natural and Cultural Resources.” The Order establishes the foundation for two partner-based conservation science entities to address these unprecedented challenges: Climate Science Centers (CSCs and Landscape Conservation Cooperatives (LCCs). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase understanding of climate change and to coordinate an effective response to its impacts on tribes and the land, water, ocean, fish and wildlife, and cultural-heritage resources that DOI manages. Eight CSCs have been established and are managed through the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC); each CSC works in close collaboration with their neighboring CSCs, as well as those across the Nation, to ensure the best and most efficient science is produced. The South Central CSC was established in 2012 through a cooperative agreement with the University of Oklahoma, Texas Tech University, Louisiana State University, the Chickasaw Nation, the Choctaw Nation of Oklahoma, Oklahoma State University, and NOAA’s Geophysical Fluid Dynamics Lab; hereafter termed the ”Consortium” of the South Central CSC. The Consortium has a broad expertise in the physical, biological, natural, and social sciences to address impacts of climate change on land, water, fish and wildlife, ocean, coastal, and

  1. Abstracts of the International Congress of Research Center in Sports Sciences, Health Sciences & Human Development (2016

    Directory of Open Access Journals (Sweden)

    Vitor Reis

    2017-06-01

    Full Text Available The papers published in this book of abstracts / proceedings were submitted to the Scientific Commission of the International Congress of Research Center in Sports Sciences, Health Sciences & Human Development, held on 11 and 12 November 2016, at the University of Évora, Évora, Portugal, under the topic of Exercise and Health, Sports and Human Development. The content of the abstracts is solely and exclusively of its authors responsibility. The editors and the Scientific Committee of the International Congress of Research Center in Sports Sciences, Health Sciences & Human Development do not assume any responsibility for the opinions and statements expressed by the authors. Partial reproduction of the texts and their use without commercial purposes is allowed, provided the source / reference is duly mentioned.

  2. The Emirates Mars Mission Science Data Center

    Science.gov (United States)

    Craft, J.; Al Hammadi, O.; DeWolfe, A. W.; Staley, B.; Schafer, C.; Pankratz, C. K.

    2017-12-01

    The Emirates Mars Mission (EMM), led by the Mohammed Bin Rashid Space Center (MBRSC) in Dubai, United Arab Emirates, is expected to arrive at Mars in January 2021. The EMM Science Data Center (SDC) is to be developed as a joint effort between MBRSC and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The EMM SDC is responsible for the production, management, distribution, and archiving of science data collected from the three instruments on board the Hope spacecraft.With the respective SDC teams on opposite sides of the world evolutionary techniques and cloud-based technologies are being utilized in the development of the EMM SDC. This presentation will provide a top down view of the EMM SDC, summarizing the cloud-based technologies being implemented in the design, as well as the tools, best practices, and lessons learned for software development and management in a geographically distributed team.

  3. A Computer Learning Center for Environmental Sciences

    Science.gov (United States)

    Mustard, John F.

    2000-01-01

    In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.

  4. Lobachevsky Year at Kazan University: Center of Science, Education, Intellectual-Cognitive Tourism "Kazan - GeoNa - 2020+" and "Kazan-Moon-2020+" projects

    Science.gov (United States)

    Gusev, A.; Trudkova, N.

    2017-09-01

    Center "GeoNa" will enable scientists and teachers of the Russian universities to join to advanced achievements of a science, information technologies; to establish scientific communications with foreign colleagues in sphere of the high technology, educational projects and Intellectual-Cognitive Tourism. The Project "Kazan - Moon - 2020+" is directed on the decision of fundamental problems of celestial mechanics, selenodesy and geophysics of the Moon(s) connected to carrying out of complex theoretical researches and computer modelling.

  5. Investigation of science production in Iran’s type I universities of medical sciences, a 6-year assessment

    Directory of Open Access Journals (Sweden)

    M Yadollahi

    2014-07-01

    Full Text Available Introduction: Science production is one of the main dimensions of sustainable development in any country. Thus, universities as the major centers for science production play a key role in development. The present study aimed to assess the trend of science production in Iran’s type I universities of medical sciences from 2007 to 2012. Method: In this study, the universities’ scores of empowering, governance and leadership, science production, student researches, and number of published articles were computed based on the evaluations of universities of medical sciences by the Ministry of Health, Treatment, and Medical Education from 2007 to 2012. Then, the data were analyzed using descriptive statistics and the figures were drawn by Excel software. Results: This study assessed science production in Iran’s type I universities of medical sciences and analyzed each university’s proportion in publication of articles. According to the results, most of the published articles were affiliated to Tehran University of Medical Sciences. However, considering the role of number of faculty members, different results were obtained. With respect to the evaluation raw scores, Isfahan University of Medical Sciences showed a considerable reduction of scores in 2012, while other universities had a constant or ascending trend. Besides, indexed articles followed an ascending trend in all the universities and most of the articles had been published in index 1. Conclusion: Similar to other studies, the findings of this study revealed an increase in science productions in Iran through the recent years. Yet, the highest scores of the studied indexes, except for student researches, were related to Tehran University of Medical Sciences. This great difference between this university and other universities might be due to accumulation of specific potentials and forces in this region. Overall, science productions followed an ascending trend in all type I universities of

  6. Annual report of Tandem Accelerator Center, University of Tsukuba, for fiscal 1976

    International Nuclear Information System (INIS)

    1977-01-01

    A research center of the University of Tsukuba, Tandem Accelerator Center (TAC) has a 12 UD Pelletron tandem accelerator as its principal apparatus; of which acceptance test was finished in July 1976. Activities of the TAC for the period of April 1976 to March 1977 are reported: accelerator and beam transport system, general equipments, equipment development, nuclear physics, chemistry, and biological and medical Science. (Mori, K.)

  7. Informing Science (IS) and Science and Technology Studies (STS): The University as Decision Center (DC) for Teaching Interdisciplinary Research

    OpenAIRE

    Teresa Castelao-Lawless; William F. Lawless

    2001-01-01

    Students of history and philosophy of science courses at my University are either naïve robust realists or naïve relativists in relation to science and technology. The first group absorbs from culture stereotypical conceptions, such as the value-free character of the scientific method, that science and technology are impervious to history or ideology, and that science and religion are always at odds. The second believes science and technology were selected arbitrarily by ideologues to have pr...

  8. An Investigation of Creative Climate of University R&D Centers and Policy Implications for Innovation in China

    DEFF Research Database (Denmark)

    Zhou, Chunfang; Rasmussen, Palle; Chemi, Tatiana

    2017-01-01

    The chapter focuses on the influences of science and technology (S&T) policies on creative climate of university R&D centers in China that provide policy implications for improving roles of university R&D in innovation system. The empirical data came from two questionnaire surveys, one...... is with members from R&D centers, another with leaders of S&T fund management sectors in universities. The results demonstrate both strengths and weaknesses of creative climate of university R&D centers. This leads to implications such as to improve a more comprehensive innovation Measurement system and to build...

  9. Using science centers to expose the general public to the microworld

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, E. [Fermi National Accelerator Lab., Batavia, IL (United States)]|[Science and Technology Interactive Center, Aurora, IL (United States)

    1994-08-01

    Despite the remarkable progress in the past decades in understanding our Universe, we particle physicists have failed to communicate the wonder, excitement, and beauty of these discoveries to the general public. I am sure all agree there is a need, if our support from public funds is to continue at anywhere approximating the present level, for us collectively to educate and inform the general public of what we are doing and why. Informal science education and especially science and technology centers can play an important role in efforts to raise public awareness of particle physics in particular and of basic research in general. Science Centers are a natural avenue for particle physicists to use to communicate with and gain support from the general public.

  10. Using science centers to expose the general public to the microworld

    International Nuclear Information System (INIS)

    Malamud, E.

    1994-08-01

    Despite the remarkable progress in the past decades in understanding our Universe, we particle physicists have failed to communicate the wonder, excitement, and beauty of these discoveries to the general public. I am sure all agree there is a need, if our support from public funds is to continue at anywhere approximating the present level, for us collectively to educate and inform the general public of what we are doing and why. Informal science education and especially science and technology centers can play an important role in efforts to raise public awareness of particle physics in particular and of basic research in general. Science Centers are a natural avenue for particle physicists to use to communicate with and gain support from the general public

  11. Intestinal Parasitological infection of employee in food manufacture anddistribution centers of Ilam University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    R Nasrifar

    2005-10-01

    Full Text Available Backgrand and Aims: Food centers' employee may be carrier of bacteria (eg. Salmonella, E coil,taphylococcus aureus and intestinal parasitical infection. With regard the importance of the roleof manufacturer and distribnter of food materials in enviromental health, the status and assessmentof these infections is necessary.Method:182 employee of food manufacture and distribntion centers' of Ilam University ofMedical Sciences were examined. 3 feaces sample were obtained from each porson in 3 days andby five different laboratory method (i.e. scoth-tape, direct thechuics, Ether formaline, Telmen'Flotation were examined. Date analysis was dane by SPSS Version, and chi square test.Results: 49.2 percent of employee had positive parasitical infection, which 45.1 percent hadprotoza and 9.7 percent had intestinal helminth. The most infections of protoza were due toEntamoeba coli, Endolimax nane, giardia Lamblia, blastocystis hominis, Chilomastix mesniliand Iodamoeba buetschlii. The most infection of intestinal heliminth were Oxyuris VermicularisHymenolepis nana, Ascaris Lumbericoides, Tricocephal, Tricosterongylus.Conclusion: The high occurance of intestinal protoza may be due to Low level of public healthand, not favouring of hygine basis in food manufacture and distribution rlaces.

  12. The Indiana University Center for Healthcare Innovation and Implementation Science: Bridging healthcare research and delivery to build a learning healthcare system.

    Science.gov (United States)

    Azar, Jose; Adams, Nadia; Boustani, Malaz

    2015-01-01

    In the United States, it is estimated that 75,000 deaths every year could be averted if the healthcare system implemented high quality care more effectively and efficiently. Patient harm in the hospital occurs as a consequence of inadequate procedures, medications and other therapies, nosocomial infections, diagnostic evaluations and patient falls. Implementation science, a new emerging field in healthcare, is the development and study of methods and tools aimed at enhancing the implementation of new discoveries and evidence into daily healthcare delivery. The Indiana University Center for Healthcare Innovation and Implementation Science (IU-CHIIS) was launched in September 2013 with the mission to use implementation science and innovation to produce great-quality, patient-centered and cost-efficient healthcare delivery solutions for the United States of America. Within the first 24 months of its initiation, the IU-CHIIS successfully scaled up an evidence-based collaborative care model for people with dementia and/or depression, successfully expanded the Accountable Care Unit model positively impacting the efficiency and quality of care, created the first Certificate in Innovation and Implementation Science in the US and secured funding from National Institutes of Health to investigate innovations in dementia care. This article summarizes the establishment of the IU-CHIIS, its impact and outcomes and the lessons learned during the journey. Copyright © 2015. Published by Elsevier GmbH.

  13. NASA University Research Centers Technical Advances in Aeronautics, Space Sciences and Technology, Earth Systems Sciences, Global Hydrology, and Education. Volumes 2 and 3

    Science.gov (United States)

    Coleman, Tommy L. (Editor); White, Bettie (Editor); Goodman, Steven (Editor); Sakimoto, P. (Editor); Randolph, Lynwood (Editor); Rickman, Doug (Editor)

    1998-01-01

    This volume chronicles the proceedings of the 1998 NASA University Research Centers Technical Conference (URC-TC '98), held on February 22-25, 1998, in Huntsville, Alabama. The University Research Centers (URCS) are multidisciplinary research units established by NASA at 11 Historically Black Colleges or Universities (HBCU's) and 3 Other Minority Universities (OMU's) to conduct research work in areas of interest to NASA. The URC Technical Conferences bring together the faculty members and students from the URC's with representatives from other universities, NASA, and the aerospace industry to discuss recent advances in their fields.

  14. NASA Centers and Universities Collaborate Through Smallsat Technology Partnerships

    Science.gov (United States)

    Cockrell, James

    2018-01-01

    The Small Spacecraft Technology (SST) Program within the NASA Space Technology Mission Directorate is chartered develop and demonstrate the capabilities that enable small spacecraft to achieve science and exploration missions in "unique" and "more affordable" ways. Specifically, the SST program seeks to enable new mission architectures through the use of small spacecraft, to expand the reach of small spacecraft to new destinations, and to make possible the augmentation existing assets and future missions with supporting small spacecraft. The SST program sponsors smallsat technology development partnerships between universities and NASA Centers in order to engage the unique talents and fresh perspectives of the university community and to share NASA experience and expertise in relevant university projects to develop new technologies and capabilities for small spacecraft. These partnerships also engage NASA personnel in the rapid, agile and cost-conscious small spacecraft approaches that have evolved in the university community, as well as increase support to university efforts and foster a new generation of innovators for NASA and the nation.

  15. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT,J.

    2004-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

  16. A Department of Atmospheric and Planetary Sciences at Hampton University

    Science.gov (United States)

    Paterson, W. R.; McCormick, M. P.; Russell, J. M.; Anderson, J.; Kireev, S.; Loughman, R. P.; Smith, W. L.

    2006-12-01

    With this presentation we discuss the status of plans for a Department of Atmospheric and Planetary Sciences at Hampton University. Hampton University is a privately endowed, non-profit, non-sectarian, co-educational, and historically black university with 38 baccalaureate, 14 masters, and 4 doctoral degree programs. The graduate program in physics currently offers advanced degrees with concentration in Atmospheric Science. The 10 students now enrolled benefit substantially from the research experience and infrastructure resident in the university's Center for Atmospheric Sciences (CAS), which is celebrating its tenth anniversary. Promoting a greater diversity of participants in geosciences is an important objective for CAS. To accomplish this, we require reliable pipelines of students into the program. One such pipeline is our undergraduate minor in Space, Earth, and Atmospheric Sciences (SEAS minor). This minor concentraton of study is contributing to awareness of geosciences on the Hampton University campus, and beyond, as our students matriculate and join the workforce, or pursue higher degrees. However, the current graduate program, with its emphasis on physics, is not necessarily optimal for atmospheric scientists, and it limits our ability to recruit students who do not have a physics degree. To increase the base of candidate students, we have proposed creation of a Department of Atmospheric and Planetary Sciences, which could attract students from a broader range of academic disciplines. The revised curriculum would provide for greater concentration in atmospheric and planetary sciences, yet maintain a degree of flexibility to allow for coursework in physics or other areas to meet the needs of individual students. The department would offer the M.S. and Ph.D. degrees, and maintain the SEAS minor. The university's administration and faculty have approved our plan for this new department pending authorization by the university's board of trustees, which will

  17. Research Priority Setting for Social Determinants of Health Research Center of Shahid Beheshti University of Medical Sciences in 2013

    Directory of Open Access Journals (Sweden)

    Mohammad-Reza Sohrabi

    2015-02-01

    Full Text Available Background and objective: It is obvious that, because of the lack of resources, we should devote our limited resources to priorities in order to reach an acceptable level of health. The objective of this study was to research priority setting for Pediatric Surgery Research Center; with the participation of all stakeholders.Material and Methods: This is a Health System Research (HSR project in order to apply governance and leadership issues with the participation of 41 people including faculty members in Pediatric Surgery Research Center, Shahid Beheshti Medical University and the other pediatric specialists and health system stakeholders as well as the people associated with health system inside & outside the university. This was performed in 2010 using the Council on Health Research for Development COHRED( model with little change. Based on the model, at first the stakeholders were identified and the field situation of Pediatric Surgery was analyzed. Then, research areas and titles were specified and research priorities were set out by giving scores according to the criteria.Results: The seven obtained research areas in priority order are included pediatric trauma, pediatric cancers, pediatric urology diseases, undescended testicles in children, developmental genetics & congenital defects, emergency in children and application of laparoscopic surgery in children. Because each of the research areas is composed of multiple subareas, we managed to finally specify 43 research subareas as research priorities. These subareas included epidemiology, risk factors, prevention, screening, diagnosis and treatment. They also included follow-up, complications, knowledge & attitudes of parents, quality of life, economy aspects and data bank for further research.Conclusion: In this project, research priorities were set out for Pediatric Surgery Research Center of Shahid Beheshti University of Medical Sciences, with the participation of all the stakeholders

  18. Jackson State University's Center for Spatial Data Research and Applications: New facilities and new paradigms

    Science.gov (United States)

    Davis, Bruce E.; Elliot, Gregory

    1989-01-01

    Jackson State University recently established the Center for Spatial Data Research and Applications, a Geographical Information System (GIS) and remote sensing laboratory. Taking advantage of new technologies and new directions in the spatial (geographic) sciences, JSU is building a Center of Excellence in Spatial Data Management. New opportunities for research, applications, and employment are emerging. GIS requires fundamental shifts and new demands in traditional computer science and geographic training. The Center is not merely another computer lab but is one setting the pace in a new applied frontier. GIS and its associated technologies are discussed. The Center's facilities are described. An ARC/INFO GIS runs on a Vax mainframe, with numerous workstations. Image processing packages include ELAS, LIPS, VICAR, and ERDAS. A host of hardware and software peripheral are used in support. Numerous projects are underway, such as the construction of a Gulf of Mexico environmental data base, development of AI in image processing, a land use dynamics study of metropolitan Jackson, and others. A new academic interdisciplinary program in Spatial Data Management is under development, combining courses in Geography and Computer Science. The broad range of JSU's GIS and remote sensing activities is addressed. The impacts on changing paradigms in the university and in the professional world conclude the discussion.

  19. Universal centers in the cubic trigonometric Abel equation

    Directory of Open Access Journals (Sweden)

    Jaume Giné

    2014-02-01

    Full Text Available We study the center problem for the trigonometric Abel equation $d \\rho/ d \\theta= a_1 (\\theta \\rho^2 + a_2(\\theta \\rho^3,$ where $a_1(\\theta$ and $a_2(\\theta$ are cubic trigonometric polynomials in $\\theta$. This problem is closely connected with the classical Poincaré center problem for planar polynomial vector fields. A particular class of centers, the so-called universal centers or composition centers, is taken into account. An example of non-universal center and a characterization of all the universal centers for such equation are provided.

  20. COMPUTATIONAL SCIENCE CENTER

    International Nuclear Information System (INIS)

    DAVENPORT, J.

    2006-01-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together

  1. Report on a Boston University Conference December 7-8, 2012 on "How Can the History and Philosophy of Science Contribute to Contemporary US Science Teaching?"

    Science.gov (United States)

    Garik, Peter; Benétreau-Dupin, Yann

    2014-01-01

    This is an editorial report on the outcomes of an international conference sponsored by a grant from the National Science Foundation (NSF) (REESE-1205273) to the School of Education at Boston University and the Center for Philosophy and History of Science at Boston University for a conference titled: "How Can the History and Philosophy of…

  2. A Community-University Exchange Project Modeled after Europe's Science Shops

    Science.gov (United States)

    Tryon, Elizabeth; Ross, J. Ashleigh

    2012-01-01

    This article describes a pilot project of the Morgridge Center for Public Service at the University of Wisconsin-Madison for a new structure for community-based learning and research. It is based on the European-derived science shop model for democratizing campus-community partnerships using shared values of mutual respect and validation of…

  3. Texas A and M University Nuclear Science Center. Twenty-first progress report, January 1-December 31, 1984

    International Nuclear Information System (INIS)

    Krohn, J.; Petesch, J.E.; Rogers, R.D.; Sandel, P.; Stasny, G.S.

    1985-03-01

    The Nuclear Science Center is operated by the Texas Engineering Experiment Station as a service to the Texas A and M University System and the State of Texas. The facility is available to the University, other educational institutions, governmental agencies, and private organizations and individuals. Reactor utilization decreased from 1983 as indicated by a slightly smaller number of samples irradiated and of total irradiations. Core VIII, established in December 1982, was used throughout 1984. Several major facility projects modifications, and improvements were completed during the past year. Experimentally the Beam Port No. 4 reflector and shutter was improved, the pulsing instrumentation is being expanded, and the pneumatic system controller developed for Lab No. 4 is now in use in the Center for Trace Characterization (CTC) and Shell Development labs. Several operational problems occurred in 1984 but did not result in a significant loss of reactor operating time. During this reporting period there were no changes made to the site area; however, there has been made a proposal to extend the runway at nearby Easterwood Airport such tha larger aircraft can be accommodated. This extension should occur in 1985 and should have no affect on the air traffic patterns relative to the NSC. Administratively during 1984 efforts have been made to stabilize the reactor operations staff following the mid year resignations of both a Reactor Supervisor and Manager of Reactor Operations. A long term replacement has been hired to fill the vacated Reactor Supervisor position; however, the manager position has not yet been filled and those duties have been assumed by the Assistant Director

  4. Role of the future creative universities in the triple helix of science and technology corridors

    Directory of Open Access Journals (Sweden)

    Iraj nabipour

    2015-01-01

    Full Text Available The science and technology corridor is a complex cluster containing universities, science parks, research centers, high-tech companies, venture capital, institutional and physical infrastructures, and human capital in a defined geography with its unique management and legal structure in association with the business space and knowledge-based products. In fact, the science and technology corridor reflects the concept of development based on the knowledge region (the especial region for science and technology. The knowledge region is clearly a triple helix phenomenon par excellence: universities, governments and businesses combine their efforts to construct a common advantage which they would not be able to offer on their own. The future creative universities in connection with the knowledge city-regions not only will deal with innovation and entrepreneurial training but also produce a competitive, vibrant environment with high indices for quality of life and full of green technologies. In this article, we will present functional interactions of the creative universities in the triple helix, particularly the missions for the Iranian universities of medical sciences. As a theoretical model, the complex interactions of Bushehr University of Medical Sciences and Health Services with Bushehr Science and Technology Corridor will be discussed.

  5. The First National Student Conference: NASA University Research Centers at Minority Institutions

    Science.gov (United States)

    Daso, Endwell O. (Editor); Mebane, Stacie (Editor)

    1997-01-01

    The conference includes contributions from 13 minority universities with NASA University Research Centers. Topics discussed include: leadership, survival strategies, life support systems, food systems, simulated hypergravity, chromium diffusion doping, radiation effects on dc-dc converters, metal oxide glasses, crystal growth of Bil3, science and communication on wheels, semiconductor thin films, numerical solution of random algebraic equations, fuzzy logic control, spatial resolution of satellite images, programming language development, nitric oxide in the thermosphere and mesosphere, high performance polyimides, crossover control in genetic algorithms, hyperthermal ion scattering, etc.

  6. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to

  7. University of Kentucky Center for Applied Energy Research

    Science.gov (United States)

    University of Kentucky Center for Applied Energy Research Search Help Research Our Expertise University of Kentucky Center for Applied Energy Research | An Equal Opportunity University All Rights Remediation Power Generation CAER TechFacts CAER Factsheets CAER Affiliations Research Contacts Publications

  8. Connecting university science experiences to middle school science teaching

    Science.gov (United States)

    Johnson, Gordon; Laughran, Laura; Tamppari, Ray; Thomas, Perry

    1991-06-01

    Science teachers naturally rely on their university science experiences as a foundation for teaching middle school science. This foundation consists of knowledge far too complex for the middle level students to comprehend. In order for middle school science teachers to utilize their university science training they must search for ways to adapt their college experiences into appropriate middle school learning experience. The criteria set forth above provide broad-based guidelines for translating university science laboratory experiences into middle school activities. These guidelines are used by preservice teachers in our project as they identify, test, and organize a resource file of hands-on inquiry activities for use in their first year classrooms. It is anticipated that this file will provide a basis for future curriculum development as the teacher becomes more comfortable and more experienced in teaching hands-on science. The presentation of these guidelines is not meant to preclude any other criteria or considerations which a teacher or science department deems important. This is merely one example of how teachers may proceed to utilize their advanced science training as a basis for teaching middle school science.

  9. The Physics Learning Center at the University of Wisconsin-Madison

    Science.gov (United States)

    Nossal, S. M.; Watson, L. E.; Hooper, E.; Huesmann, A.; Schenker, B.; Timbie, P.; Rzchowski, M.

    2013-03-01

    The Physics Learning Center at the University of Wisconsin-Madison provides academic support and small-group supplemental instruction to students studying introductory algebra-based and calculus-based physics. These classes are gateway courses for majors in the biological and physical sciences, pre-health fields, engineering, and secondary science education. The Physics Learning Center offers supplemental instruction groups twice weekly where students can discuss concepts and practice with problem-solving techniques. The Center also provides students with access on-line resources that stress conceptual understanding, and to exam review sessions. Participants in our program include returning adults, people from historically underrepresented racial/ethnic groups, students from families in lower-income circumstances, students in the first generation of their family to attend college, transfer students, veterans, and people with disabilities, all of whom might feel isolated in their large introductory course and thus have a more difficult time finding study partners. We also work with students potentially at-risk for having academic difficulty (due to factors academic probation, weak math background, low first exam score, or no high school physics). A second mission of the Physics Learning Center is to provide teacher training and leadership experience for undergraduate Peer Mentor Tutors. These Peer Tutors lead the majority of the weekly group sessions in close supervision by PLC staff members. We will describe our work to support students in the Physics Learning Center, including our teacher-training program for our undergraduate Peer Mentor Tutors

  10. SNU-KAERI Degree and Research Center for Radiation Convergence Sciences

    International Nuclear Information System (INIS)

    Jo, Sungkee; Kim, S. U.; Roh, C. H

    2011-12-01

    In this study, we tried to establish and perform the demonstrative operation of the 'Degree and Research Center for Radiation Convergence Sciences' to raise the Korea's technology competitiveness. As results of this project we got the successful accomplishment as below: 1. Operation of Degree and Research Center for Radiation Convergence Sciences and establishment of expert researcher training system Ο Presentation of an efficient model for expert researcher training program through the operation of university-institute collaboration courses by combining of Graduate course and DRC system. Ο Radiation Convergence Sciences major is scheduled to be established in 2013 at SNU Graduate School of Convergence Science and Technology Ο A big project for research, education, and training of radiation convergence science is under planning 2. Establishment and conduction of joint research by organization of radiation convergence research consortium · Joint research was conducted in close connection with the research projects of researchers participating in this DRC project (44 articles published in journals, 6 patents applied, 88 papers presented in conferences) · The resources of the two organization (SNU and KAERI), such as research infrastructure (hightech equipment and etc), manpower (professor/researcher), and original technology and know how were utilized to conduct the joint research and to establish the collaboration system of the two organizations

  11. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    National Engineering Research Center for Integrated Utilization of Salt Lake Resource, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China; Van 't Hoff Institute for Molecular Sciences & Amsterdam Center for Multiscale Modeling, University of Amsterdam, 1098 XH Amsterdam, ...

  13. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Wender, Steve [Los Alamos National Laboratory

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  14. The effective factors on library anxiety of students in Isfahan University of Medical Sciences and Shiraz University of Medical Sciences.

    Science.gov (United States)

    Ashrafi-Rizi, Hasan; Sajad, Maryam Sadat; Rahmani, Sedigheh; Bahrami, Susan; Papi, Ahmad

    2014-01-01

    The efficient use of libraries can be an important factor in determining the educational quality of Universities. Therefore, investigation and identification of factors affecting library anxiety becomes increasingly necessary. The purpose of this research is to determine the factors effecting library anxiety of students in Isfahan University of Medical Sciences and Shiraz University of Medical Sciences. This was an applied survey research using Bostick's Library Anxiety questionnaire as data gathering tool. The statistical population consisted of all students of Isfahan University of Medical Sciences and Shiraz University of Medical Sciences (15011 students) with the sample size of 375 using stratified random sampling. The validity of data gathering tool was confirmed by experts in the library and information science and its reliability was determined by Cronbach's alpha (r = 0.92). Descriptive statistics (frequency, percentage, mean and standard deviation) and inferential statistics (t-test and ANOVA) were used for data analysis using SPSS 18 software. Findings showed that the mean of library anxiety score was 2.68 and 2.66 for students of Isfahan University of Medical Sciences and Shiraz University of Medical Sciences respectively which is above average (2.5). Furthermore, age and gender had no meaningful effect on the library anxiety of students of Isfahan University of Medical Sciences, but gender had a meaningful effect on library anxiety of students of Shiraz University of Medical Sciences while age had no such effect. The results showed that the mean of factors effecting library anxiety in students of Isfahan University of Medical Sciences and students of Shiraz University of Medical Sciences is higher than average and therefore not satisfactory and only factors relating to feeling comfortable in the library is lower than average and somewhat satisfactory.

  15. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    Science.gov (United States)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  16. Role Strain in University Research Centers

    Science.gov (United States)

    Boardman, Craig; Bozeman, Barry

    2007-01-01

    One way in which university faculty members' professional lives have become more complex with the advent of contemporary university research centers is that many faculty have taken on additional roles. The authors' concern in this article is to determine the extent to which role strain is experienced by university faculty members who are…

  17. Changing Lives: The Baltimore City Community College Life Sciences Partnership with the University of Maryland, Baltimore

    Science.gov (United States)

    Carroll, Vanessa G.; Harris-Bondima, Michelle; Norris, Kathleen Kennedy; Williams, Carolane

    2010-01-01

    Baltimore City Community College (BCCC) leveraged heightened student interest and enrollment in the sciences and allied health with Maryland's world-leading biotechnology industry to build a community college life sciences learning and research center right on the University of Maryland, Baltimore's downtown BioPark campus. The BCCC Life Sciences…

  18. 75 FR 65494 - Award of Three Single-Source Expansion Supplements to The University of Colorado Health Sciences...

    Science.gov (United States)

    2010-10-25

    ... Single-Source Expansion Supplements to The University of Colorado Health Sciences Center in Aurora, CO...), Administration on Developmental Disabilities (ADD) has awarded three single-source expansion supplements for data... people with intellectual and developmental disabilities in all facets of community life. The University...

  19. Energy Frontier Research Center Materials Science of Actinides (A 'Life at the Frontiers of Energy Research' contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    International Nuclear Information System (INIS)

    Burns, Peter

    2011-01-01

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  20. Great Lakes Science Center

    Data.gov (United States)

    Federal Laboratory Consortium — Since 1927, Great Lakes Science Center (GLSC) research has provided critical information for the sound management of Great Lakes fish populations and other important...

  1. The Howard University Program in Atmospheric Sciences: A Program Exemplifying Diversity and Excellence

    Science.gov (United States)

    Morria, V. R.; Demoz, B.; Joseph, E.

    2017-12-01

    The Howard University Graduate Program in Atmospheric Sciences (HUPAS) is the first advanced degree program in the atmospheric sciences instituted at a Historically Black College/University (HBCU) or at a Minority-Serving Institution (MSI). MSI in this context refers to academic institutions whose histories are grounded in serving minority students from their inception, rather than institutions whose student body demographics have evolved along with the "browning of America" and now meet recent Federal criteria for "minority-serving". HUPAS began in 1996 when initiatives within the Howard University Graduate School overlapped with the motivations of investigators within a NASA-funded University research center for starting a sustainable interdisciplinary program. After twenty years, the results have been the production of greater institutional depth and breadth of research in the geosciences and significant production of minority scientists contributing to the atmospheric sciences enterprise in various sectors. This presentation will highlight the development of the Howard University graduate program in atmospheric sciences, its impact on the national statistics for the production of underrepresented minority (URM) advanced degree holders in the atmospheric sciences, and some of the program's contributions to the diversity in geosciences and the National pipeline of talent from underrepresented groups. Over the past decade, Howard University is leading producer of African American and Hispanic female doctorates in atmospheric sciences - producing nearly half of all degree holders in the Nation. Specific examples of successful partnerships between this program and federal funding agencies such as NASA and NOAA which have been critical in the development process will also be highlighted. Finally, some of the student recruitment and retention strategies that have enabled the success of this program and statistics of student graduation will also be shared and

  2. Leon M. Lederman Science Education Center: General Information

    Science.gov (United States)

    . Designed for middle school field trips, the hands-on exhibits at the Lederman Science Center are available Maintainer: ed-webmaster@fnal.gov Lederman Science Education Center Fermilab MS 777 Box 500 Batavia, IL 60510 Programs | Science Adventures | Calendar | Registration | About | Contact | FAQ | Fermilab Friends

  3. An Artist in the University Medical Center. Review.

    Science.gov (United States)

    James, A. Everette, Jr.

    1991-01-01

    Reviews "An Artist in the University Medical Center" (M. Lesser, New Orleans: Tulane University Press, 1989), in which the artist captures the human side of the complex Tulane Medical Center in New Orleans (Louisiana). The interplay of drawings, etchings, watercolors, and prose conveys traditions of nurturing in the hospital. (SLD)

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Tehran University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy and Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of ...

  5. Development of a Free-Electron Laser Center and Research in Medicine, Biology and Materials Science,

    Science.gov (United States)

    1992-05-14

    the reduced electron- larons cause localized distortions in an ionic lattice lattice coupling strength leads to molecule emission, which are... syndrome . Health Science Center at San Antonio and the University Buerger’s disease, palmar hyperhidrosis, frostbite and of Mi.imi School of Medicine, Miami

  6. The relationship between knowledge of ergonomic science and the occupational health among nursing staff affiliated to Golestan University of Medical Sciences

    OpenAIRE

    Juibari, Leila; Sanagu, Akram; Farrokhi, Nafiseh

    2010-01-01

    BACKGROUND: Occupational hazards are much higher for nurses than many other jobs and neglecting this fact may reduce the quality of nursing services. The aim of this study was to investigate the relationship between knowledge of ergonomics and occupational health among the nursing staff affiliated to Golestan University of Medical Sciences. METHODS: It was a cross-sectional analytical study on 423 nursing staff working in various medical centers affiliated to Golestan University of Medical Sc...

  7. National Space Science Data Center Master Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Space Science Data Center serves as the permanent archive for NASA space science mission data. 'Space science' means astronomy and astrophysics, solar...

  8. Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University

    Science.gov (United States)

    Richter, Dale A.; Higdon, N. S.; Ponsardin, Patrick L.; Sanchez, David; Chyba, Thomas H.; Temple, Doyle A.; Gong, Wei; Battle, Russell; Edmondson, Mika; Futrell, Anne; Harper, David; Haughton, Lincoln; Johnson, Demetra; Lewis, Kyle; Payne-Baggott, Renee S.

    2002-01-01

    ITTs Advanced Engineering and Sciences Division and the Hampton University Center for Lidar and Atmospheric Sciences Students (CLASS) team have worked closely to design, fabricate and test an eye-safe, scanning aerosol-lidar system that can be safely deployed and used by students form a variety of disciplines. CLASS is a 5-year undergraduate- research training program funded by NASA to provide hands-on atmospheric-science and lidar-technology education. The system is based on a 1.5 micron, 125 mJ, 20 Hz eye-safe optical parametric oscillator (OPO) and will be used by the HU researchers and students to evaluate the biological impact of aerosols, clouds, and pollution a variety of systems issues. The system design tasks we addressed include the development of software to calculate eye-safety levels and to model lidar performance, implementation of eye-safety features in the lidar transmitter, optimization of the receiver using optical ray tracing software, evaluation of detectors and amplifiers in the near RI, test of OPO and receiver technology, development of hardware and software for laser and scanner control and video display of the scan region.

  9. Issues at a university based FEL center

    International Nuclear Information System (INIS)

    Smith, T.I.; Schwettman, H.A.

    1998-01-01

    The Stanford FEL Center was established in September 1990. In this paper, the FEL itself, the Center infrastructure, the interaction with experimenters and the educational mission are described. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    AGH-University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, Al. Mickiewicza 30, 30-059 Krakow, Poland; The Pennsylvania State University, Department of Physics and Center for 2-Dimensional and Layered Materials, 104 Davey Laboratory, University Park, PA ...

  11. The Dissemination of Science and Science Journalism in Brazilian Universities: Analyzing Strategies that Facilitate Access to Science & Technology

    Directory of Open Access Journals (Sweden)

    Giuliana Batista Rodrigues de Queiroz

    2016-12-01

    Full Text Available This article is a mapping of Brazilian universities that maintain a structured work for Science Journalism and / or the dissemination of science. It analyses the strategies used by the top 50 Brazilian universities for including dissemination of science in their communication activities. In order to do this each institution’s website was examined for the purpose of collecting a large sample size of universities that organize and prioritize the dissemination of science and science journalism, and make their studies and projects available to the public. The dissemination of science is a priority for only 15 universities; ones that have structured science journalism programs. 11 of these universities are among the top 25 in the country which indicates that there is a direct relationship between academic quality and dissemination of science. Thus, this study lends to a deeper understanding of the field of science journalism.

  12. TRANSPORTATION RESEARCH CONTRIBUTIONS TO SOCIETY BY UNIVERSITY TRANSPORTATION CENTERS

    Directory of Open Access Journals (Sweden)

    Robert C. JOHNS

    2003-01-01

    Full Text Available This paper discusses the importance of knowledge in the global economy and reviews the process in which knowledge is applied to develop innovations. It confirms the importance of innovation as a key factor for success in today's competitive environment. The paper discusses the contributions a university can make to the innovation process in the field of transportation, and offers a vision of how a university center can enhance and facilitate these contributions. It then describes the efforts of one center, including three examples of innovations facilitated by the center in traffic detection, regional planning, and pavement management. The paper concludes with suggestions that would strengthen the societal contributions of university transportation centers.

  13. National Center for Mathematics and Science

    Science.gov (United States)

    NCISLA logo National Center for Improving Student Learning and Achievement in Mathematics and Wisconsin-Madison Powerful Practices in Mathematics & Sciences A multimedia product for educators . Scaling Up Innovative Practices in Mathematics and Science (Research Report). Thomas P. Carpenter, Maria

  14. Fort Collins Science Center fiscal year 2010 science accomplishments

    Science.gov (United States)

    Wilson, Juliette T.

    2011-01-01

    The scientists and technical professionals at the U.S. Geological Survey (USGS), Fort Collins Science Center (FORT), apply their diverse ecological, socioeconomic, and technological expertise to investigate complicated ecological problems confronting managers of the Nation's biological resources. FORT works closely with U.S. Department of the Interior (DOI) agency scientists, the academic community, other USGS science centers, and many other partners to provide critical information needed to help answer complex natural-resource management questions. In Fiscal Year 2010 (FY10), FORT's scientific and technical professionals conducted ongoing, expanded, and new research vital to the science needs and management goals of DOI, other Federal and State agencies, and nongovernmental organizations in the areas of aquatic systems and fisheries, climate change, data and information integration and management, invasive species, science support, security and technology, status and trends of biological resources (including the socioeconomic aspects), terrestrial and freshwater ecosystems, and wildlife resources, including threatened and endangered species. This report presents selected FORT science accomplishments for FY10 by the specific USGS mission area or science program with which each task is most closely associated, though there is considerable overlap. The report also includes all FORT publications and other products published in FY10, as well as staff accomplishments, appointments, committee assignments, and invited presentations.

  15. The University of Nebraska at Omaha Center for Space Data Use in Teaching and Learning

    Science.gov (United States)

    Grandgenett, Neal

    2000-01-01

    Within the context of innovative coursework and other educational activities, we are proposing the establishment of a University of Nebraska at Omaha (UNO) Center for the Use of Space Data in Teaching and Learning. This Center will provide an exciting and motivating process for educators at all levels to become involved in professional development and training which engages real life applications of mathematics, science, and technology. The Center will facilitate innovative courses (including online and distance education formats), systematic degree programs, classroom research initiatives, new instructional methods and tools, engaging curriculum materials, and various symposiums. It will involve the active participation of several Departments and Colleges on the UNO campus and be well integrated into the campus environment. It will have a direct impact on pre-service and in-service educators, the K12 (kindergarten through 12th grade) students that they teach, and other college students of various science, mathematics, and technology related disciplines, in which they share coursework. It is our belief that there are many exciting opportunities represented by space data and imagery, as a context for engaging mathematics, science, and technology education. The UNO Center for Space Data Use in Teaching and Learning being proposed in this document will encompass a comprehensive training and dissemination strategy that targets the improvement of K-12 education, through changes in the undergraduate and graduate preparation of teachers in science, mathematics and technology education.

  16. Predictive factors of job satisfaction among nurses in therapeutic-educational centers of Guilan University of Medical Science

    Directory of Open Access Journals (Sweden)

    Nastaran Mirfarhadi

    2014-11-01

    satisfaction in job environment, using a comprehensive program by organization managers and planners seems necessary.* Corresponding Author: Rasht, Guilan University of Medical Sciences, Faculty of Nursing and Midwifery.Email: Saghi_m80@yahoo.com

  17. Visitor empowerment and the authority of science: Exploring institutionalized tensions in a science center

    Science.gov (United States)

    Loomis, Molly

    This research explored the relationships among societal, organizational, and visitor assumptions about learning in a science center. The study combined a sociocultural theory of learning with a constructivist theory of organizations to examine empirical links among the history of the Exploratorium (founded in 1969 and located in San Francisco, California), its organizational practices, and family activity at its exhibits. The study focused on three perspectives on science learning in a science center: (1) the societal perspective, which traced assumptions about science learning to the history of science centers; (2) the organizational perspective, which documented the ways that assumptions about science learning were manifested in historic museum exhibits; and (3) the family perspective, which documented the assumptions about science learning that characterized family activity at historic exhibits. All three perspectives uncovered a tension between the goals of supporting public empowerment on the one hand and preserving scientific authority on the other. Findings revealed this tension to be grounded in the social context of the organization's development, where ideas about promoting democracy and preserving the authority of science intersected. The tension was manifested in museum exhibits, which had as their task addressing the dual purposes of supporting all visitors, while also supporting committed visitors. The tension was also evident in the activity of families, who echoed sentiments about potential for their own empowerment but deferred to scientific authority. The study draws on critiques of a hidden curriculum in schools in order to explore the relationship between empowerment and authority in science centers, specifically as they are conveyed in the explicit and underlying missions of the Exploratorium. Findings suggest the need for science centers to engage in ongoing critical reflection and also lend empirical justification to the need for science

  18. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    International Nuclear Information System (INIS)

    Allen, Todd R.

    2011-01-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center's investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center's research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  19. Center for Rehabilitation Sciences Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Rehabilitation Sciences Research (CRSR) was established as a research organization to promote successful return to duty and community reintegration of...

  20. An Interdisciplinary Program in Materials Science at James Madison University.

    Science.gov (United States)

    Hughes, Chris

    2008-03-01

    Over the past decade a core group of faculty at James Madison University has created an interdisciplinary program in materials science that provides our students with unique courses and research experiences that augment the existing, high-quality majors in physics and astronomy, chemistry and biochemistry, geology and environmental science, mathematics and statistics, and integrated science and technology. The university started this program by creating a Center for Materials Science whose budget is directly allocated by the provost. This source of funds acts as seed money for research, support for students, and a motivating factor for each of the academic units to support the participation of their faculty in the program. Courses were created at the introductory and intermediate level that are cross-listed by the departments to encourage students to enroll in them as electives toward their majors. Furthermore, the students are encouraged to participate in undergraduate research in materials since this is the most fundamental unifying theme across the disciplines. This talk will cover some of the curricular innovations that went into the design of the program to make it successful, examples of faculty and student research and how that feeds back into the classroom, and success stories of the interactions that have developed between departments because of this program. Student outcomes and future plans to improve the program will also be discussed.

  1. University Science and Mathematics Education in Transition

    DEFF Research Database (Denmark)

    Skovsmose, Ole; Valero, Paola; Christensen, Ole Ravn

    configuration poses to scientific knowledge, to universities and especially to education in mathematics and science. Traditionally, educational studies in mathematics and science education have looked at change in education from within the scientific disciplines and in the closed context of the classroom....... Although educational change is ultimately implemented in everyday teaching and learning situations, other parallel dimensions influencing these situations cannot be forgotten. An understanding of the actual potentialities and limitations of educational transformations are highly dependent on the network...... of educational, cultural, administrative and ideological views and practices that permeate and constitute science and mathematics education in universities today. University Science and Mathematics Education in Transition contributes to an understanding of the multiple aspects and dimensions of the transition...

  2. Specialty education in periodontics in Japan and the United States: comparison of programs at Nippon Dental University Hospital and the University of Texas Health Science Center at San Antonio.

    Science.gov (United States)

    Osawa, Ginko; Nakaya, Hiroshi; Mealey, Brian L; Kalkwarf, Kenneth; Cochran, David L

    2014-03-01

    Japan has institutions that train qualified postdoctoral students in the field of periodontics; however, Japan does not have comprehensive advanced periodontal programs and national standards for these specialty programs. To help Japanese programs move toward global standards in this area, this study was designed to describe overall differences in periodontics specialty education in Japan and the United States and to compare periodontics faculty members and residents' characteristics and attitudes in two specific programs, one in each country. Periodontal faculty members and residents at Nippon Dental University (NDU) and the University of Texas Health Science Center at San Antonio (UTHSCSA) Dental School participated in the survey study: four faculty members and nine residents at NDU; seven faculty members and thirteen residents at UTHSCSA. Demographic data were collected as well as respondents' attitudes toward and assessment of their programs. The results showed many differences in curriculum structure and clinical performance. In contrast to the UTHSCSA respondents, for example, the residents and faculty members at NDU reported that they did not have enough subject matter and time to learn clinical science. Although the residents at NDU reported seeing more total patients in one month than those at UTHSCSA, they were taught fewer varieties of periodontal treatments. To provide high-quality and consistent education for periodontal residents, Japan needs to establish a set of standards that will have positive consequences for those in Japan who need periodontal treatment.

  3. The impact of science shops on university research and education

    DEFF Research Database (Denmark)

    Hende, Merete; Jørgensen, Michael Søgaard

    This report discusses the impact from university-based science shops on curricula and research. Experience from science shops show that besides assisting citizen groups, science shops can also contribute to the development of university curricula and research. This impact has been investigated...... through the SCIPAS questionnaire sent out to science shops and through follow-up interviews with employees from nine different university-based science shops and one university researcher. Not all the cases call themselves science shops, but in the report the term 'science shop' will be used most...... way or the other has had impact on university curricula and/or research. The analysis and the case studies have theoretically been based on literature on universities and education and research as institutions and a few articles about the impact of science shops on education and research. The analysis...

  4. University Rankings and Social Science

    Science.gov (United States)

    Marginson, Simon

    2014-01-01

    University rankings widely affect the behaviours of prospective students and their families, university executive leaders, academic faculty, governments and investors in higher education. Yet the social science foundations of global rankings receive little scrutiny. Rankings that simply recycle reputation without any necessary connection to real…

  5. Development of Innovative Radioactive Isotope Production Techniques at the Pennsylvania State University Radiation Science and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Amanda M. [Pennsylvania State Univ., State College, PA (United States). Radiation Science and Engineering Center; Heidrich, Brenden [Pennsylvania State Univ., State College, PA (United States). Radiation Science and Engineering Center; Durrant, Chad [Pennsylvania State Univ., State College, PA (United States). Department of mechanical and Nuclear Engineering Center; Bascom, Andrew [Pennsylvania State Univ., State College, PA (United States). Department of mechanical and Nuclear Engineering Center; Unlu, Kenan [Pennsylvania State Univ., State College, PA (United States). Radiation Science and Engineering Center

    2013-08-15

    The Penn State Breazeale Nuclear Reactor (PSBR) at the Radiation Science and Engineering Center (RSEC) has produced radioisotopes for research and commercial purposes since 1956. With the rebirth of the radiochemistry education and research program at the RSEC, the Center stands poised to produce a variety of radioisotopes for research and industrial work that is in line with the mission of the DOE Office of Science, Office of Nuclear Physics, Isotope Development and Production Research and Application Program. The RSEC received funding from the Office of Science in 2010 to improve production techniques and develop new capabilities. Under this program, we improved our existing techniques to provide four radioisotopes (Mn-56, Br-82, Na-24, and Ar-41) to researchers and industry in a safe and efficient manner. The RSEC is also working to develop new innovative techniques to provide isotopes in short supply to researchers and others in the scientific community, specifically Cu-64 and Cu-67. Improving our existing radioisotopes production techniques and investigating new and innovative methods are two of the main initiatives of the radiochemistry research program at the RSEC.

  6. An ASEAN Ion Beam Analysis Center at Chiang Mai University, Thailand

    International Nuclear Information System (INIS)

    Tippawan, U.; Kamwann, T.; Yu, L.D.; Intarasiri, S.; Puttaraksa, N.; Unai, S.; Thongleurm, C.; Singkarat, S.

    2014-01-01

    To contribute to the development of nuclear science and technology in Thailand, a comprehensive ion beam analysis center unique in the ASEAN region has recently been established at Chiang Mai University, Thailand. The center is equipped with a 1.7-MV Tandetron tandem accelerator with an ion beam analysis beam line. The beam line is currently capable of performing ion beam analysis techniques such as Rutherford Backscattering Spectrometry (RBS), RBS/channeling, Elastic BackScattering (EBS), Particle Induced X-ray Emission (PIXE) and Ionoluminescence (IL) with assistance of commercial and in-house-developed softwares. Micro ion beam for MeV-ion mapping using programmable aperture or capillary focusing techniques is being developed. Ion beam analysis experiments and applications have been vigorously developed, especially for novel materials analysis focused on archeological, gemological and biological materials besides other conventional materials.

  7. The GLAST LAT Instrument Science Operations Center

    International Nuclear Information System (INIS)

    Cameron, Robert A.; SLAC

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in late 2007. Operations support and science data processing for the Large Area Telescope (LAT) instrument on GLAST will be provided by the LAT Instrument Science Operations Center (ISOC) at the Stanford Linear Accelerator Center (SLAC). The ISOC supports GLAST mission operations in conjunction with other GLAST mission ground system elements and supports the research activities of the LAT scientific collaboration. The ISOC will be responsible for monitoring the health and safety of the LAT, preparing command loads for the LAT, maintaining embedded flight software which controls the LAT detector and data acquisition flight hardware, maintaining the operating configuration of the LAT and its calibration, and applying event reconstruction processing to down-linked LAT data to recover information about detected gamma-ray photons. The SLAC computer farm will be used to process LAT event data and generate science products, to be made available to the LAT collaboration through the ISOC and to the broader scientific community through the GLAST Science Support Center at NASA/GSFC. ISOC science operations will optimize the performance of the LAT and oversee automated science processing of LAT data to detect and monitor transient gamma-ray sources

  8. Fiscal 1982 progress report of 'comprehensive research on the management of long-lived radioactive wastes' in the Research Center for Nuclear Science and Technology, University of Tokyo

    International Nuclear Information System (INIS)

    Sekiguchi, Akira; Kosako, Toshiso

    1983-01-01

    In the Research Center for Nuclear Science and Technology, University of Tokyo, the special research project ''Comprehensive Research on the Management of Long-lived Radioactive Wastes'' is carried out in the three-year period from fiscal 1982 to 1984. The works performed in the fiscal year 1982 are described individually, each short description on research purposes and contents, results, future plans, etc. the research works in the three fields of material science, biology and process technology are buffer materials in land disposal, canisters, corrosion of waste-container materials, thermal analysis of high-level wastes, effects of tritium on cells and marine life, biological effect of long-lived nuclides, separation of tritium wastes, actinoids and krypton-iodine, environmental migration of radionuclides, and accident analysis. (Mori, K.)

  9. How Wageningen University and Research Center managed to influence researchers publishing behaviour towards more quality, impact and visibility

    NARCIS (Netherlands)

    Fondermann, Philipp; Togt, van der P.L.

    2016-01-01

    Wageningen University and Research Center (WUR) is one of the most prestigious research institutions in the world in life sciences and improved significantly in several rankings over the last years. One of the `drivers` of this success story is a comprehensive quality management exercise based on

  10. Science Production in Germany, France, Belgium, and Luxembourg: Comparing the Contributions of Research Universities and Institutes to Science, Technology, Engineering, Mathematics, and Health.

    Science.gov (United States)

    Powell, Justin J W; Dusdal, Jennifer

    2017-01-01

    Charting significant growth in science production over the 20th century in four European Union member states, this neo-institutional analysis describes the development and current state of universities and research institutes that bolster Europe's position as a key region in global science. On-going internationalization and Europeanization of higher education and science has been accompanied by increasing competition as well as collaboration. Despite the policy goals to foster innovation and further expand research capacity, in cross-national and historical comparison neither the level of R&D investments nor country size accounts completely for the differential growth of scientific productivity. Based on a comprehensive historical database from 1900 to 2010, this analysis uncovers both stable and dynamic patterns of production and productivity in Germany, France, Belgium, and Luxembourg. Measured in peer-reviewed research articles collected in Thomson Reuters' Science Citation Index Expanded, which includes journals in the fields of Science, Technology, Engineering, Mathematics, and Health, we show the varying contributions of different organizational forms, especially research universities and research institutes. Comparing the institutionalization pathways that created the conditions necessary for continuous and strong growth in scientific productivity in the European center of global science emphasizes that the research university is the key organizational form across countries.

  11. The Stanford University US-Japan Technology Management Center

    National Research Council Canada - National Science Library

    Dasher, Richard

    2002-01-01

    This grant established the U.S.-Japan Technology Management Center, Stanford University School of Engineering, as an ongoing center of excellence for the study of emerging trends and interrelationships between technology...

  12. Scientific production of medical sciences universities in north of iran.

    Science.gov (United States)

    Siamian, Hasan; Firooz, Mousa Yamin; Vahedi, Mohammad; Aligolbandi, Kobra

    2013-01-01

    NONE DECLARED. The study of the scientific evidence citation production by famous databases of the world is one of the important indicators to evaluate and rank the universities. The study at investigating the scientific production of Northern Iran Medical Sciences Universities in Scopus from 2005 through 2010. This survey used scientometrics technique. The samples under studies were the scientific products of four northern Iran Medical universities. Viewpoints quantity of the Scientific Products Mazandaran University of Medical Sciences stands first and of Babol University of Medical Sciences ranks the end, but from the viewpoints of quality of scientific products of considering the H-Index and the number of cited papers the Mazandaran University of Medical Sciences is a head from the other universities under study. From the viewpoints of subject of the papers, the highest scientific products belonged to the faculty of Pharmacy affiliated to Mazandaran University of Medial Sciences, but the three other universities for the genetics and biochemistry. Results showed that the Mazandaran University of Medical Sciences as compared to the other understudies universities ranks higher for the number of articles, cited articles, number of hard work authors and H-Index of Scopus database from 2005 through 2010.

  13. Science, Technology and University in the XIXth Century. The Free-Faculty of Sciences of the University of Salamanca (1875-1902

    Directory of Open Access Journals (Sweden)

    Joaquín PÉREZ MELERO

    2013-11-01

    Full Text Available The Free-Faculty of Sciences of the University of Salamanca was established in 1875 as the only way to continue Science studies in the University. Poorly financed, with little resources and academic acceptance, it survives helped by financial support from the City Hall and the Provincial Deputation, and to the Rector Esperabé5 s will, against the High Education centralization trend which concentres the studies at the Central University of Madrid. That economic and technical poverty provides just only an approach to the physico-chemical sciences in the framework of a provincial University, but helps it to stay alive until its recongnition as «official» faculty in 1902.

  14. The role of informal science centers in science education: attitudes, skills, and self-efficacy

    OpenAIRE

    Sasson, Irit

    2014-01-01

    Informal learning relates to activities that occur outside the school environment. These learning environments, such as visits to science centers provide valuable motivational opportunities for students to learn science. The purpose of this study was to investigate the role of the pre-academic center in science education and particularly to explore its effects on 750 middle-school students' attitudes toward science, their scientific thinking skills and self-efficacy. Pre and post-case based q...

  15. A cross-case analysis of three Native Science Field Centers

    Science.gov (United States)

    Augare, Helen J.; Davíd-Chavez, Dominique M.; Groenke, Frederick I.; Little Plume-Weatherwax, Melissa; Lone Fight, Lisa; Meier, Gene; Quiver-Gaddie, Helene; Returns From Scout, Elvin; Sachatello-Sawyer, Bonnie; St. Pierre, Nate; Valdez, Shelly; Wippert, Rachel

    2017-06-01

    Native Science Field Centers (NSFCs) were created to engage youth and adults in environmental science activities through the integration of traditional Native ways of knowing (understanding about the natural world based on centuries of observation including philosophy, worldview, cosmology, and belief systems of Indigenous peoples), Native languages, and Western science concepts. This paper focuses on the Blackfeet Native Science Field Center, the Lakota Native Science Field Center, and the Wind River Native Science Field Center. One of the long-term, overarching goals of these NSFCs was to stimulate the interest of Native American students in ways that encouraged them to pursue academic and career paths in science, technology, engineering, and mathematics (STEM) fields. A great deal can be learned from the experiences of the NSFCs in terms of effective educational strategies, as well as advantages and challenges in blending Native ways of knowing and Western scientific knowledge in an informal science education setting. Hopa Mountain—a Bozeman, Montana-based nonprofit—partnered with the Blackfeet Community College on the Blackfeet Reservation, Fremont County School District #21 on the Wind River Reservation, and Oglala Lakota College on the Pine Ridge Reservation to cooperatively establish the Native Science Field Centers. This paper presents a profile of each NSFC and highlights their program components and accomplishments.

  16. The transformation of science and mathematics content knowledge into teaching content by university faculty

    Science.gov (United States)

    Flynn, Natalie P.

    This study developed a survey from the existing literature in an attempt to illuminate the processes, tools, insights, and events that allow university science and mathematics content experts (Ph.D.'s) unpack their expertise in order to teach develop and teach undergraduate students. A pilot study was conducted at an urban university in order to refine the survey. The study consisted of 72 science or mathematics Ph.D. faculty members that teach at a research-based urban university. Follow-up interviews were conducted with 21 volunteer faculty to further explore their methods and tools for developing and implementing teaching within their discipline. Statistical analysis of the data revealed: faculty that taught while obtaining their Ph.D. were less confident in their ability to teach successful and faculty that received training in teaching believed that students have difficult to change misconceptions and do not commit enough time to their course. Student centered textbooks ranked the highest among tools used to gain teaching strategies followed by grading of exams and assignments for gaining insights into student knowledge and difficulties. Science and mathematics education literature and university provided education session ranked the lowest in rating scale for providing strategies for teaching. The open-ended survey questions were sub-divided and analyzed by the number of years of experience to identify the development of teaching knowledge over time and revealed that teaching became more interactive, less lecture based, and more engaging. As faculty matured and gained experience they became more aware of student misconceptions and difficulties often changing their teaching to eliminate such issues. As confidence levels increase their teaching included more technology-based tools, became more interactive, incorporated problem based activities, and became more flexible. This change occurred when and if faculty members altered their thinking about their

  17. The Three-Pronged Approach to Community Education: An Ongoing Hydrologic Science Outreach Campaign Directed from a University Research Center

    Science.gov (United States)

    Gallagher, L.; Morse, M.; Maxwell, R. M.

    2017-12-01

    The Integrated GroundWater Modeling Center (IGWMC) at Colorado School of Mines has, over the past three years, developed a community outreach program focusing on hydrologic science education, targeting K-12 teachers and students, and providing experiential learning for undergraduate and graduate students. During this time, the programs led by the IGWMC reached approximately 7500 students, teachers, and community members along the Colorado Front Range. An educational campaign of this magnitude for a small (2 full-time employees, 4 PIs) research center required restructuring and modularizing of the outreach strategy. We refined our approach to include three main "modules" of delivery. First: grassroots education delivery in the form of K-12 classroom visits, science fairs, and teacher workshops. Second: content development in the form of lesson plans for K-12 classrooms and STEM camps, hands-on physical and computer model activities, and long-term citizen science partnerships. Lastly: providing education/outreach experiences for undergraduate and graduate student volunteers, training them via a 3-credit honors course, and instilling the importance of effective science communication skills. Here we present specific case studies and examples of the successes and failures of our three-pronged system, future developments, and suggestions for entities newly embarking on an earth science education outreach campaign.

  18. Research and Development for Underground Science at Black Hills State University

    Science.gov (United States)

    Keeter, Kara

    2010-10-01

    The development of the Deep Underground Science and Engineering Laboratory (DUSEL) in the former Homestake mine in Lead, South Dakota has greatly spurred interest in science research and development along with education and outreach. Early science activities at Black Hills State University associated with the Sanford Underground Laboratory and DUSEL include radon emanation studies of iron oxide sludge and in situ, and radioactive background and magnetic field measurements. Work is also underway for R&D development for depleted argon-based dark matter detectors, neutrinoless double beta decay experiments, and a liquid scintillator immersion tank for whole-body low-background assays. Students from BHSU and across the state of South Dakota have been working alongside scientists on these and other projects. Teachers from high schools throughout South Dakota have also participated in these projects through the newly formed QuarkNet Center at BHSU.

  19. The Sharjah Center for Astronomy and Space Sciences (SCASS 2015): Concept and Resources

    Science.gov (United States)

    Naimiy, Hamid M. K. Al

    2015-08-01

    The Sharjah Center for Astronomy and Space Sciences (SCASS) was launched this year 2015 at the University of Sharjah in the UAE. The center will serve to enrich research in the fields of astronomy and space sciences, promote these fields at all educational levels, and encourage community involvement in these sciences. SCASS consists of:The Planetarium: Contains a semi-circle display screen (18 meters in diameter) installed at an angle of 10° which displays high-definition images using an advanced digital display system consisting of seven (7) high-performance light-display channels. The Planetarium Theatre offers a 200-seat capacity with seats placed at highly calculated angles. The Planetarium also contains an enormous star display (Star Ball - 10 million stars) located in the heart of the celestial dome theatre.The Sharjah Astronomy Observatory: A small optical observatory consisting of a reflector telescope 45 centimeters in diameter to observe the galaxies, stars and planets. Connected to it is a refractor telescope of 20 centimeters in diameter to observe the sun and moon with highly developed astronomical devices, including a digital camera (CCD) and a high-resolution Echelle Spectrograph with auto-giving and remote calibration ports.Astronomy, space and physics educational displays for various age groups include:An advanced space display that allows for viewing the universe during four (4) different time periods as seen by:1) The naked eye; 2) Galileo; 3) Spectrographic technology; and 4) The space technology of today.A space technology display that includes space discoveries since the launching of the first satellite in 1940s until now.The Design Concept for the Center (450,000 sq. meters) was originated by HH Sheikh Sultan bin Mohammed Al Qasimi, Ruler of Sharjah, and depicts the dome as representing the sun in the middle of the center surrounded by planetary bodies in orbit to form the solar system as seen in the sky.

  20. USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education

    Science.gov (United States)

    Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.

    2005-08-01

    A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.

  1. University of Maryland MRSEC - Collaborations

    Science.gov (United States)

    . University of Maryland Materials Research Science and Engineering Center Home About Us Leadership , National Nanotechnology Lab, Neocera, NIST, Rowan University, Rutgers University, Seagate, Tokyo Tech

  2. Semantic Web Data Discovery of Earth Science Data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Science.gov (United States)

    Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William

    2008-01-01

    Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.

  3. Incidence of academic failure and its underlying factors in Lorestan university of medical sciences

    Directory of Open Access Journals (Sweden)

    Farzad Ebrahimzadeh

    2016-02-01

    Full Text Available Background: Academic failure, conceived of as lack of success in one’s education, is of paramount importance for students of medical sciences and it might lead to more acute problems. The present study set out to investigate the prevalence and underlying reasons of academic failure in Lorestan University of medical sciences.  Materials and Methods: In this cohort study, academic records of all students of Lorestan University of Medical Sciences during the academic years of 2006-2011 were collected from education and student affair center and also, demographic and educational records were entered into a checklist. Inappropriate grade point average, being a provisional student, prolonged graduation, expulsion and dropout were taken into account as academic failure. To model the related effective factors, logistic regression was adopted and significance level was set at 0.05. Results: The cumulative incidence of academic failure was about 25.1%. Factors such as department, being self-funded or government-funded student, academic grade students are pursuing, the elapsed time between academic grades, gender and location of residence were related to academic failure (P<0.05. It is worth mentioning that no relationship was observed between the academic failure and being accepted based on quota system. Conclusion: The most important at risk groups were students of department of medicine and health, associate or medical doctoral students, self-funded students, students with a considerable time elapsed between their academic grades, male students and students living in dormitory. It is suggested that these students refer to consulting centers of university or educational supervisors and receive particular attention.

  4. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    Science.gov (United States)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  5. Australian National University Science Extension Day

    Science.gov (United States)

    Fletcher, Sarah

    2016-01-01

    The first Australian National University (ANU) Science Extension Day was held on September 8, 2015. The ANU Science Extension Day is a project that was initiated by Theodore Primary School (ACT) and developed by Theodore Primary, Calwell High School, Science Educators Association of the ACT (SEA*ACT), and the ANU. The project was developed with a…

  6. Biomedical Science Technologists in Lagos Universities: Meeting ...

    African Journals Online (AJOL)

    Biomedical Science Technologists in Lagos Universities: Meeting Modern Standards ... like to see in biomedical science in Nigeria; 5) their knowledge of ten state-of-the-arts ... KEY WORDS: biomedical science, state-of-the-arts, technical staff ...

  7. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  8. Japan Nuclear Reaction Data Center (JCPRG), Faculty of Science, Hokkaido University, Steering Committee progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    The Japan Nuclear Reaction Data Center (JCPRG) was approved as an organisation of Faculty of Science, Hokkaido University and established on April 1, 2007. In addition to nuclear data activities carried out by JCPRG (Japan-Charged Particle Nuclear Reaction Data Group), the centre is concerned with the evaluation of nuclear reaction data in nucleosynthesis in the universe. In order efficiently to compile reaction data obtained by using radioactive ion beam, the centre signed a research contract with RIKEN Nishina Center. We are scanning 16 journals for Japanese charged-particle and photo-nuclear nuclear reaction data compilation. From April 2006 to March 2007, CPND and PhND in 45 references (453 records, 1.83 MB) have been newly compiled for NRDF. Usually new data are released at the JCPRG web site several months prior to EXFOR. Since the 2006 NRDC meeting, we have made 104 new entries and have revised or deleted 142 old entries. Intensive numerical data compilations have been done. These data were shown in tabular form in dissertations which are (partially) published in Journals. About 30 new entries were compiled from these data. We have prepared CINDA batches for CPND published in Japan every half year. Each batch covers 6 issues of each of 4 Japanese journals JPJ, PTP, NST and JNRS. Bibliographies for neutron induced reaction data have been compiled by JAEA Nuclear Data Center as before. A new web-based NRDF search and plot system on MySQL was released in July, 2007. New compilation, which has been finalized for NRDF, but not for EXFOR, can be obtained from this site. DARPE (another NRDF search and plot system written in Perl) is also available at http://www.jcprg.org/darpe/. EXFOR/ENDF (http://www.jcprg.org/exfor/) search and plot system is available. We have also developed following utilities: PENDL (http://www.jcprg.org/endf/) and RENORM (http://www.jcprg.org/renorm). We are developing a new search system of CINDA. This is an extension of EXFOR/ENDF search

  9. Interior's Climate Science Centers: Focus or Fail

    Science.gov (United States)

    Udall, B.

    2012-12-01

    After a whirlwind two years of impressive and critical infrastructure building, the Department of Interior's Climate Science Centers are now in a position to either succeed or fail. The CSCs have a number of difficult structural problems including too many constituencies relative to the available resources, an uneasy relationship among many of the constituencies including the DOI agencies themselves, a need to do science in a new, difficult and non-traditional way, and a short timeframe to produce useful products. The CSCs have built a broad and impressive network of scientists and stakeholders. These entities include science providers of the universities and the USGS, and decision makers from the states, tribes, DOI land managers and other federal agencies and NGOs. Rather than try to support all of these constituencies the CSCs would be better served by refocusing on a core mission of supporting DOI climate related decision making. The CSCs were designed to service the climate science needs of DOI agencies, many of which lost their scientific capabilities in the 1990s due to a well-intentioned but ultimately harmful re-organization at DOI involving the now defunct National Biological Survey. Many of these agencies would like to have their own scientists, have an uneasy relationship with the nominal DOI science provider, the USGS, and don't communicate effectively among themselves. The CSCs must not succumb to pursuing science in either the traditional mode of the USGS or in the traditional mode of the universities, or worse, both of them. These scientific partners will need to be flexible, learn how to collaborate and should expect to see fewer resources. Useful CSC processes and outputs should start with the recommendations of the 2009 NRC Report Informing Decisions in a Changing Climate: (1) begin with users' needs; (2) give priority to process over products; (3) link information producers and users; (4) build connections across disciplines and organizations

  10. Defense, basic, and industrial research at the Los Alamos Neutron Science Center: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Longshore, A.; Salgado, K. [comps.

    1995-10-01

    The Workshop on Defense, Basic, and Industrial Research at the Los Alamos Neutron Science Center gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss the use of neutrons in science-based stockpile stewardship, The workshop began with presentations by government officials, senior representatives from the three weapons laboratories, and scientific opinion leaders. Workshop participants then met in breakout sessions on the following topics: materials science and engineering; polymers, complex fluids, and biomaterials; fundamental neutron physics; applied nuclear physics; condensed matter physics and chemistry; and nuclear weapons research. They concluded that neutrons can play an essential role in science-based stockpile stewardship and that there is overlap and synergy between defense and other uses of neutrons in basic, applied, and industrial research from which defense and civilian research can benefit. This proceedings is a collection of talks and papers from the plenary, technical, and breakout session presentations. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Nurullah Ateş2 Fatma Kiliç Dokan1 Ahmet Ülgen1 Şaban Patat1. Department of Chemistry, Faculty of Science, Erciyes University, 38039 Kayseri, Turkey; Northeastern University Center for Renewable Energy Technology, Department of Chemistry and Chemical Biology, 317 Egan Center, 360 Huntington Avenue, Boston, ...

  12. Thermodynamics: The Unique Universal Science

    Directory of Open Access Journals (Sweden)

    Wassim M. Haddad

    2017-11-01

    Full Text Available Thermodynamics is a physical branch of science that governs the thermal behavior of dynamical systems from those as simple as refrigerators to those as complex as our expanding universe. The laws of thermodynamics involving conservation of energy and nonconservation of entropy are, without a doubt, two of the most useful and general laws in all sciences. The first law of thermodynamics, according to which energy cannot be created or destroyed, merely transformed from one form to another, and the second law of thermodynamics, according to which the usable energy in an adiabatically isolated dynamical system is always diminishing in spite of the fact that energy is conserved, have had an impact far beyond science and engineering. In this paper, we trace the history of thermodynamics from its classical to its postmodern forms, and present a tutorial and didactic exposition of thermodynamics as it pertains to some of the deepest secrets of the universe.

  13. Beyond the center: Sciences in Central and Eastern Europe and their histories. An interview with professor Michael Jordan conducted by Jan Surman

    Directory of Open Access Journals (Sweden)

    Michael Gordin

    2016-11-01

    Full Text Available What is special about sciences in Central and Eastern Europe? What are the obstacles for writing histories of science done beyond metropoles? Is this science different than the science in the centers and what makes it so? How imperial are sciences made by representatives of dominant nations compared to non-dominant nations? These are some of the questions touched upon in the interview with Michael Gordin, a leading historian of science from Princeton University.

  14. Managing a Modern University Research Center.

    Science.gov (United States)

    Veres, John G., III

    1988-01-01

    The university research center of the future will function best to serve the rapidly changing public and private demand for services with a highly trained core staff, adequately funded and equipped, whose morale and quality of work performance is a prime consideration. (MSE)

  15. Partnering with Universities, a NASA Visitor Center, Schools, and the INSPIRE Project to Perform Research and Outreach Activities

    Science.gov (United States)

    Adams, M.; Smith, J. A.; Kloostra, E.; Knupp, K. R.; Taylor, K.; Anderson, S.; Baskauf, C. J.; Buckner, S.; DiMatties, J.; Fry, C. D.; Gaither, B.; Galben, C. W.; Gallagher, D. L.; Heaston, M. P.; Kraft, J.; Meisch, K.; Mills, R.; Nations, C.; Nielson, D.; Oelgoetz, J.; Rawlins, L. P.; Sudbrink, D. L.; Wright, A.

    2017-12-01

    For the August 2017 eclipse, NASA's Marshall Space Flight Center partnered with the U.S. Space and Rocket Center (USSRC), Austin Peay State University (APSU) in Clarksville, Tennessee, the University of Alabama in Huntsville (UAH), the Interactive NASA Space Physics Ionosphere Radio Experiments (INSPIRE) Project, and the local school systems of Montgomery County, Tennessee, and Christian County, Kentucky. Multiple site visits and workshops were carried out during the first eight months of 2017 to prepare local teachers and students for the eclipse. A special curriculum was developed to prepare USSRC Space Camp and INSPIRE students to observe and participate in science measurements during the eclipse. Representatives from Christian County school system and APSU carried out observations for the Citizen Continental-America Telescopic Eclipse (CATE) Experiment in two separate locations. UAH and APSU as part of the Montana State Ballooning Project, launched balloons containing video cameras and other instruments. USSRC Space Camp students and counselors and INSPIRE students conducted science experiments that included the following: atmospheric science investigations of the atmospheric boundary layer, very-low frequency and Ham radio observations to investigate ionospheric responses to the eclipse, animal and insect observations, solar-coronal observations, eclipse shadow bands. We report on the results of all these investigations.

  16. Improving Interaction between NGO's, Science Shops and Universities

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    2005-01-01

    An overview of the results from the INTERACTS research project: Improving Interaction between NGOs, Universities and Science Shops: Experiences and Expectations, running 2002-2004......An overview of the results from the INTERACTS research project: Improving Interaction between NGOs, Universities and Science Shops: Experiences and Expectations, running 2002-2004...

  17. Stranger that fiction parallel universes beguile science

    CERN Document Server

    2007-01-01

    Is the universe -- correction: 'our' universe -- no more than a speck of cosmic dust amid an infinite number of parallel worlds? A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians and cosmologists too.

  18. Stranger than fiction: parallel universes beguile science

    CERN Document Server

    Hautefeuille, Annie

    2007-01-01

    Is the universe-correction: 'our' universe-no more than a speck of cosmic dust amid an infinite number of parallel worlds? A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians and cosmologists too.

  19. National Climate Change and Wildlife Science Center, Version 2.0

    Science.gov (United States)

    O'Malley, R.; Fort, E.; Hartke-O'Berg, N.; Varela-Acevedo, E.; Padgett, Holly A.

    2013-01-01

    The mission of the USGS's National Climate Change and Wildlife Science Center (NCCWSC) is to serve the scientific needs of managers of fish, wildlife, habitats, and ecosystems as they plan for a changing climate. DOI Climate Science Centers (CSCs) are management by NCCWSC and include this mission as a core responsibility, in line with the CSC mission to provide scientific support for climate-adaptation across a full range of natural and cultural resources. NCCWSC is a Science Center application designed in Drupal with the OMEGA theme. As a content management system, Drupal allows the science center to keep their website up-to-date with current publications, news, meetings and projects. OMEGA allows the site to be adaptive at different screen sizes and is developed on the 960 grid.

  20. Plasma Science and Innovation Center at Washington, Wisconsin, and Utah State: Final Scientific Report for the University of Wisconsin-Madison

    Energy Technology Data Exchange (ETDEWEB)

    Sovinec, Carl R. [Univ. of Wisconsin, Madison, WI (United States)

    2016-11-28

    The University of Wisconsin-Madison component of the Plasma Science and Innovation Center (PSI Center) contributed to modeling capabilities and algorithmic efficiency of the Non-Ideal Magnetohydrodynamics with Rotation (NIMROD) Code, which is widely used to model macroscopic dynamics of magnetically confined plasma. It also contributed to the understanding of direct-current (DC) injection of electrical current for initiating and sustaining plasma in three spherical torus experiments: the Helicity Injected Torus-II (HIT-II), the Pegasus Toroidal Experiment, and the National Spherical Torus Experiment (NSTX). The effort was funded through the PSI Center's cooperative agreement with the University of Washington and Utah State University over the period of March 1, 2005 - August 31, 2016. In addition to the computational and physics accomplishments, the Wisconsin effort contributed to the professional education of four graduate students and two postdoctoral research associates. The modeling for HIT-II and Pegasus was directly supported by the cooperative agreement, and contributions to the NSTX modeling were in support of work by Dr. Bickford Hooper, who was funded through a separate grant. Our primary contribution to model development is the implementation of detailed closure relations for collisional plasma. Postdoctoral associate Adam Bayliss implemented the temperature-dependent effects of Braginskii's parallel collisional ion viscosity. As a graduate student, John O'Bryan added runtime options for Braginskii's models and Ji's K2 models of thermal conduction with magnetization effects and thermal equilibration. As a postdoctoral associate, O'Bryan added the magnetization effects for ion viscosity. Another area of model development completed through the PSI-Center is the implementation of Chodura's phenomenological resistivity model. Finally, we investigated and tested linear electron parallel viscosity, leveraged by support from

  1. University of Vermont Center for Biomedical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Dr. Ira [University of Vermont and State Agricultural College

    2013-08-02

    This grant was awarded in support of Phase 2 of the University of Vermont Center for Biomedical Imaging. Phase 2 outlined several specific aims including: The development of expertise in MRI and fMRI imaging and their applications The acquisition of peer reviewed extramural funding in support of the Center The development of a Core Imaging Advisory Board, fee structure and protocol review and approval process.

  2. Strategic plan for science-U.S. Geological Survey, Ohio Water Science Center, 2010-15

    Science.gov (United States)

    ,

    2010-01-01

    This Science Plan identifies specific scientific and technical programmatic issues of current importance to Ohio and the Nation. An examination of those issues yielded a set of five major focus areas with associated science goals and strategies that the Ohio Water Science Center will emphasize in its program during 2010-15. A primary goal of the Science Plan is to establish a relevant multidisciplinary scientific and technical program that generates high-quality products that meet or exceed the expectations of our partners while supporting the goals and initiatives of the U.S. Geological Survey. The Science Plan will be used to set the direction of new and existing programs and will influence future training and hiring decisions by the Ohio Water Science Center.

  3. The impact of science shops on university research and education

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    2000-01-01

    Science shops are mediating agencies at universities that give citizens and citizen groups access to the resources of the university through co-operation with students and researchers. Science shops have three aims: to support citizens and citizen groups in their efforts getting influence...... to the impact of science shops on universities and on society are discussed. A typology for the different types of knowledge requested by citizens and citizen groups through science shops is presented (documentation, knowledge building, development of new perspectives). As important aspects of the potentials......, prerequisites and limits to the impact of science shops are discussed the networking between the science shop and the researchers and teachers and with the citizens and other external actors, and the content and the structure of the curricula at the university....

  4. The TESS Science Processing Operations Center

    Science.gov (United States)

    Jenkins, Jon M.; Twicken, Joseph D.; McCauliff, Sean; Campbell, Jennifer; Sanderfer, Dwight; Lung, David; Mansouri-Samani, Masoud; Girouard, Forrest; Tenenbaum, Peter; Klaus, Todd; hide

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will conduct a search for Earth's closest cousins starting in early 2018 and is expected to discover approximately 1,000 small planets with R(sub p) less than 4 (solar radius) and measure the masses of at least 50 of these small worlds. The Science Processing Operations Center (SPOC) is being developed at NASA Ames Research Center based on the Kepler science pipeline and will generate calibrated pixels and light curves on the NASA Advanced Supercomputing Division's Pleiades supercomputer. The SPOC will also search for periodic transit events and generate validation products for the transit-like features in the light curves. All TESS SPOC data products will be archived to the Mikulski Archive for Space Telescopes (MAST).

  5. Pre-Service Teachers’ Attitudes Toward Teaching Science and Their Science Learning at Indonesia Open University

    Directory of Open Access Journals (Sweden)

    Nadi SUPRAPTO

    2017-10-01

    Full Text Available This study focuses on attitudes toward (teaching science and the learning of science for primary school among pre-service teachers at the Open University of Indonesia. A three-year longitudinal survey was conducted, involving 379 students as pre-service teachers (PSTs from the Open University in Surabaya regional office. Attitudes toward (teaching science’ (ATS instrument was used to portray PSTs’ preparation for becoming primary school teachers. Data analyses were used, including descriptive analysis and confirmatory factor analysis. The model fit of the attitudes toward (teaching science can be described from seven dimensions: self-efficacy for teaching science, the relevance of teaching science, gender-stereotypical beliefs, anxiety in teaching science, the difficulty of teaching science, perceived dependency on contextual factors, and enjoyment in teaching science. The results of the research also described science learning at the Open University of Indonesia looks like. Implications for primary teacher education are discussed.

  6. Science Centers in the Electronic Age: Are We Doomed?

    Science.gov (United States)

    Russell, Robert L., Ed.; West, Robert M., Ed.

    1996-01-01

    This issue is a debate-discussion concerning science centers in the electronic age. The articles are based on presentations made at the Science Center World Congress (1st, Heureka, Finland, June 13-17, 1996). The four articles are: (1) "Lessons from Laboratorio dell'Immaginario Scientifico" (Andrea Bandelli); (2) "The Doom-Shaped Thing in the…

  7. University Rankings and Social Science

    OpenAIRE

    Marginson, S.

    2014-01-01

    University rankings widely affect the behaviours of prospective students and their families, university executive leaders, academic faculty, governments and investors in higher education. Yet the social science foundations of global rankings receive little scrutiny. Rankings that simply recycle reputation without any necessary connection to real outputs are of no common value. It is necessary that rankings be soundly based in scientific terms if a virtuous relationship between performance and...

  8. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-07-01

    challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

  9. Customer-Centered Structuring in University Libraries and Personnel Satisfaction

    Directory of Open Access Journals (Sweden)

    Erol Yılmaz

    2013-11-01

    Full Text Available Total Quality Management (TQM aims at creating a client-centered organizati- on and providing customer satisfaction. This study reviews TQM and its applica- tions in university libraries and examines employees' satisfaction with their work respectively. It was hypothesized that library personnel is not satisfıed because university libraries lack customer-centered (users and personnel structuring. Survey method was used to gather data. The questionnaire was administered to the 66 employees of Hacettepe University (HU libraries. High-level administra- tors of HU libraries were also interviewed. Data w ere analyzed using “t test” and “one-way analysis ofvariance (ANOVA”.

  10. NASA Center for Computational Sciences: History and Resources

    Science.gov (United States)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  11. DOE - BES Nanoscale Science Research Centers (NSRCs)

    Energy Technology Data Exchange (ETDEWEB)

    Beecher, Cathy Jo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a powerpoint shown to guests during tours of Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory. It shows the five DOE-BES nanoscale science research centers (NSRCs), which are located at different national laboratories throughout the country. Then it goes into detail specifically about the Center for Integrated Nanotechnologies at LANL, including statistics on its user community and CINT's New Mexico industrial users.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    , Romania; 'Alexandru Ioan Cuza' University, Research Center on Advanced Materials and Technologies, Sciences Department, 11 Carol I Blvd., 700506 Iasi, Romania; Photonics Laboratory, Angers University, 2, Bd. Lavoisier, 49045 Angers, ...

  13. Making lemonade from lemons: a case study on loss of space at the Dolph Briscoe, Jr. Library, University of Texas Health Science Center at San Antonio.

    Science.gov (United States)

    Tobia, Rajia C; Feldman, Jonquil D

    2010-01-01

    The setting for this case study is the Dolph Briscoe, Jr. Library, University of Texas Health Science Center at San Antonio, a health sciences campus with medical, dental, nursing, health professions, and graduate schools. During 2008-2009, major renovations to the library building were completed including office space for a faculty development department, multipurpose classrooms, a 24/7 study area, study rooms, library staff office space, and an information commons. The impetus for changes to the library building was the decreasing need to house collections in an increasingly electronic environment, the need for office space for other departments, and growth of the student body. About 40% of the library building was remodeled or repurposed, with a loss of approximately 25% of the library's original space. Campus administration proposed changes to the library building, and librarians worked with administration, architects, and construction managers to seek renovation solutions that meshed with the library's educational mission.

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    , Faculty of Science, Babol University of Technology, Babol 47148-71167, Iran; Biofuel & Renewable Energy Research Center, Faculty of Chemical Engineering, Babol University of Technology, Babol 47148-71167, Iran; Faculty of Chemical ...

  15. USGS science in Menlo Park -- a science strategy for the U.S. Geological Survey Menlo Park Science Center, 2005-2015

    Science.gov (United States)

    Brocher, Thomas M.; Carr, Michael D.; Halsing, David L.; John, David A.; Langenheim, V.E.; Mangan, Margaret T.; Marvin-DiPasquale, Mark C.; Takekawa, John Y.; Tiedeman, Claire

    2006-01-01

    In the spring of 2004, the U.S. Geological Survey (USGS) Menlo Park Center Council commissioned an interdisciplinary working group to develop a forward-looking science strategy for the USGS Menlo Park Science Center in California (hereafter also referred to as "the Center"). The Center has been the flagship research center for the USGS in the western United States for more than 50 years, and the Council recognizes that science priorities must be the primary consideration guiding critical decisions made about the future evolution of the Center. In developing this strategy, the working group consulted widely within the USGS and with external clients and collaborators, so that most stakeholders had an opportunity to influence the science goals and operational objectives.The Science Goals are to: Natural Hazards: Conduct natural-hazard research and assessments critical to effective mitigation planning, short-term forecasting, and event response. Ecosystem Change: Develop a predictive understanding of ecosystem change that advances ecosystem restoration and adaptive management. Natural Resources: Advance the understanding of natural resources in a geologic, hydrologic, economic, environmental, and global context. Modeling Earth System Processes: Increase and improve capabilities for quantitative simulation, prediction, and assessment of Earth system processes.The strategy presents seven key Operational Objectives with specific actions to achieve the scientific goals. These Operational Objectives are to:Provide a hub for technology, laboratories, and library services to support science in the Western Region. Increase advanced computing capabilities and promote sharing of these resources. Enhance the intellectual diversity, vibrancy, and capacity of the work force through improved recruitment and retention. Strengthen client and collaborative relationships in the community at an institutional level.Expand monitoring capability by increasing density, sensitivity, and

  16. Joint marketing cites excellence: Fairview-University Medical Center advertises cooperatively with University of Minnesota Physicians.

    Science.gov (United States)

    Botvin, Judith D

    2004-01-01

    Fairview-University Medical Center and University of Minnesota Physicians, both in Minneapolis, are enjoying the benefits of a co-branded advertising campaign. It includes print ads, brochures, and other marketing devices.

  17. The National Space Science and Technology Center's Education and Public Outreach Program

    Science.gov (United States)

    Cox, G. N.; Denson, R. L.

    2004-12-01

    The objective of the National Space Science and Technology Center's (NSSTC) Education and Public Outreach program (EPO) is to support K-20 education by coalescing academic, government, and business constituents awareness, implementing best business/education practices, and providing stewardship over funds and programs that promote a symbiotic relationship among these entities, specifically in the area of K-20 Science, Technology, Engineering, and Mathematics (STEM) education. NSSTC EPO Program's long-term objective is to showcase its effective community-based integrated stakeholder model in support of STEM education and to expand its influence across the Southeast region for scaling ultimately across the United States. The Education and Public Outreach program (EPO) is coordinated by a supporting arm of the NSSTC Administrative Council called the EPO Council (EPOC). The EPOC is funded through federal, state, and private grants, donations, and in-kind contributions. It is comprised of representatives of NSSTC Research Centers, both educators and scientists from the Alabama Space Science and Technology Alliance (SSTA) member institutions, the Alabama Space Grant Consortium and the NASA Marshall Space Flight Center's (MSFC) Education Office. Through its affiliation with MSFC and the SSTA - a consortium of Alabama's research universities that comprise the NSSTC, EPO fosters the education and development of the next generation of Alabama scientists and engineers by coordinating activities at the K-20 level in cooperation with the Alabama Department of Education, the Alabama Commission on Higher Education, and Alabama's businesses and industries. The EPO program's primary objective is to be Alabama's premiere organization in uniting academia, government, and private industry by way of providing its support to the State and Federal Departments of Education involved in systemic STEM education reform, workforce development, and innovative uses of technology. The NSSTC EPO

  18. [Patient-centered care. Improvement of communication between university medical centers and general practitioners for patients in neuro-oncology].

    Science.gov (United States)

    Renovanz, M; Keric, N; Richter, C; Gutenberg, A; Giese, A

    2015-12-01

    Communication between university medical centers and general practitioners (GP) is becoming increasingly more important in supportive patient care. A survey among GPs was performed with the primary objective to assess their opinion on current workflow and communication between GPs and the university medical center. The GPs were asked to score (grades 1-6) their opinion on the current interdisciplinary workflow in the care of patients with brain tumors, thereby rating communication between a university medical center in general and the neuro-oncology outpatient center in particular. Questionnaires were sent to1000 GPs and the response rate was 15 %. The mean scored evaluation of the university medical center in general was 2.62 and of the neuro-oncological outpatient clinic 2.28 (range 1-6). The most often mentioned issues to be improved were easier/early telephone information (44 %) and a constantly available contact person (49 %). Interestingly, > 60 % of the GPs indicated they would support web-based tumor boards for interdisciplinary and palliative neuro-oncological care. As interdisciplinary care for neuro-oncology patients is an essential part of therapy, improvement of communication between GPs and university medical centers is indispensable. Integrating currently available electronic platforms under data protection aspects into neuro-oncological palliative care could be an interesting tool in order to establish healthcare networks and could find acceptance with GPs.

  19. Guidance for Science Data Centers through Understanding Metrics

    Science.gov (United States)

    Moses, J. F.

    2006-12-01

    NASA has built a multi-year set of transaction and user satisfaction information about the evolving, broad collection of earth science products from a diverse set of users of the Earth Observing System Data and Information System (EOSDIS). The transaction and satisfaction trends provide corroborative information to support perception and intuition, and can often be the basis for understanding the results of cross-cutting initiatives and for management decisions about future strategies. The information is available through two fundamental complementary methods, product and user transaction data collected regularly from the major science data centers, and user satisfaction information collected through the American Customer Satisfaction Index survey. The combination provides the fundamental data needed to understand utilization trends in the research community. This paper will update trends based on 2006 metrics from the NASA earth science data centers and results from the 2006 EOSDIS ACSI survey. Principle concepts are explored that lead to sound guidance for data center managers and strategists over the next year.

  20. Ranking Iranian biomedical research centers according to H-variants (G, M, A, R) in Scopus and Web of Science.

    Science.gov (United States)

    Mahmudi, Zoleikha; Tahamtan, Iman; Sedghi, Shahram; Roudbari, Masoud

    2015-01-01

    We conducted a comprehensive bibliometrics analysis to calculate the H, G, M, A and R indicators for all Iranian biomedical research centers (IBRCs) from the output of ISI Web of Science (WoS) and Scopus between 1991 and 2010. We compared the research performance of the research centers according to these indicators. This was a cross-sectional and descriptive-analytical study, conducted on 104 Iranian biomedical research centers between August and September 2011. We collected our data through Scopus and WoS. Pearson correlation coefficient between the scientometrics indicators was calculated using SPSS, version 16. The mean values of all indicators were higher in Scopus than in WoS. Drug Applied Research Center of Tabriz University of Medical Sciences had the highest number of publications in both WoS and Scopus databases. This research center along with Royan Institute received the highest number of citations in both Scopus and WoS, respectively. The highest correlation was seen between G and R (.998) in WoS and between G and R (.990) in Scopus. Furthermore, the highest overlap of the 10 top IBRCs was between G and H in WoS (100%) and between G-R (90%) and H-R (90%) in Scopus. Research centers affiliated to the top ranked Iranian medical universities obtained a better position with respect to the studied scientometrics indicators. All aforementioned indicators are important for ranking bibliometrics studies as they refer to different attributes of scientific output and citation aspects.

  1. The efficacy of student-centered instruction in supporting science learning.

    Science.gov (United States)

    Granger, E M; Bevis, T H; Saka, Y; Southerland, S A; Sampson, V; Tate, R L

    2012-10-05

    Transforming science learning through student-centered instruction that engages students in a variety of scientific practices is central to national science-teaching reform efforts. Our study employed a large-scale, randomized-cluster experimental design to compare the effects of student-centered and teacher-centered approaches on elementary school students' understanding of space-science concepts. Data included measures of student characteristics and learning and teacher characteristics and fidelity to the instructional approach. Results reveal that learning outcomes were higher for students enrolled in classrooms engaging in scientific practices through a student-centered approach; two moderators were identified. A statistical search for potential causal mechanisms for the observed outcomes uncovered two potential mediators: students' understanding of models and evidence and the self-efficacy of teachers.

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    1 V Ferretti2. Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India; Center for Structural Diffractometry and Department of Chemical and Pharmaceutical Sciences, University of ...

  3. Research Priorities in Education from the Viewpoint of Authorities and Experts of Mashhad University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Sara Ghodusi Moghadam

    2015-08-01

    Offering the research in education challenges, besides conducting research topics, is a proposing towards the priorities, if considered to policymakers, reviewers and research projects approvers can be operated as a tool for optimal use of limited financial resources. * Corresponding Author: Neyshabur University of Medical Sciences, Educational Development Center. Email: Sa_ghodousi@yahoo.com

  4. Parallel universes beguile science

    CERN Multimedia

    2007-01-01

    A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians and cosmologists too. We may not be able -- as least not yet -- to prove they exist, many serious scientists say, but there are plenty of reasons to think that parallel dimensions are more than figments of eggheaded imagination.

  5. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 29; Issue 4 ... Plant Biotechnology Research Center, School of Agriculture and Biology, ... D Center, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan University ...

  6. Center for Coastline Security Technology, Year-2

    National Research Council Canada - National Science Library

    Glegg, Stewart; Glenn, William; Furht, Borko; Beaujean, P. P; Frisk, G; Schock, S; VonEllenrieder, K; Ananthakrishnan, P; An, E; Granata, R

    2007-01-01

    ...), the Imaging Technology Center, the Department of Computer Science and Engineering, and the University Consortium for Intermodal Transportation Safety and Security at Florida Atlantic University...

  7. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2017

    Science.gov (United States)

    Varela Minder, Elda

    2018-04-19

    IntroductionThe year 2017 was a year of review and renewal for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). The Southeast, Northwest, Alaska, Southwest, and North Central CSCs’ 5-year summary review reports were released in 2017 and contain the findings of the external review teams led by the Cornell University Human Dimensions Research Unit in conjunction with the American Fisheries Society. The reports for the Pacific Islands, South Central, and Northeast CSCs are planned for release in 2018. The reviews provide an opportunity to evaluate aspects of the cooperative agreement, such as the effectiveness of the CSC in meeting project goals and assessment of the level of scientific contribution and achievement. These reviews serve as a way for the CSCs and NCCWSC to look for ways to recognize and enhance our network’s strengths and identify areas for improvement. The reviews were followed by the CSC recompetition, which led to new hosting agreements at the Northwest, Alaska, and Southeast CSCs. Learn more about the excellent science and activities conducted by the network centers in the 2017 annual report.

  8. The evolving organizational structure of academic health centers: the case of the University of Florida.

    Science.gov (United States)

    Barrett, Douglas J

    2008-09-01

    The organizational structures of academic health centers (AHCs) vary widely, but they all exist along a continuum of integration--that is, the degree to which the academic and clinical missions operate under a single administrative and governance structure. This author provides a brief overview of the topic of AHC integration, including the pros and cons of more integrated or less integrated models. He then traces the evolution of the University of Florida (UF) Health Science Center, which was created in the 1950s as a fully integrated AHC and which now operates under a more distributed management and governance model. Starting as a completely integrated AHC, UF's Health Science Center reached a time of maximal nonintegration (or dys-integration) in the late 1990s and at the beginning of this decade. Circumstances are now pushing the expanding clinical and academic enterprises to be more together as they face the challenges of market competition, federal research budget constraints, and reengineering clinical operations to reduce costs, enhance access, and improve quality and patient safety. Although formal organizational integration may not be possible or appropriate for any number of legal or political reasons, the author suggests that AHCs should strive for "functional integration" to be successful in the current turbulent environment.

  9. Communications among data and science centers

    Science.gov (United States)

    Green, James L.

    1990-01-01

    The ability to electronically access and query the contents of remote computer archives is of singular importance in space and earth sciences; the present evaluation of such on-line information networks' development status foresees swift expansion of their data capabilities and complexity, in view of the volumes of data that will continue to be generated by NASA missions. The U.S.'s National Space Science Data Center (NSSDC) manages NASA's largest science computer network, the Space Physics Analysis Network; a comprehensive account is given of the structure of NSSDC international access through BITNET, and of connections to the NSSDC available in the Americas via the International X.25 network.

  10. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. LIUWEI ZHAO1 2 JIULI YIN2. Social Science Computing Experiment Center, School of Management, Jiangsu University, Zhenjiang, Jiangsu 212 013, China; Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, P R China ...

  11. Establishment of a National Wind Energy Center at University of Houston

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Su Su [Univ. of Houston, TX (United States)

    2016-10-31

    The DOE-supported project objectives are to: establish a national wind energy center (NWEC) at University of Houston and conduct research to address critical science and engineering issues for the development of future large MW-scale wind energy production systems, especially offshore wind turbines. The goals of the project are to: (1) establish a sound scientific/technical knowledge base of solutions to critical science and engineering issues for developing future MW-scale large wind energy production systems, (2) develop a state-of-the-art wind rotor blade research facility at the University of Houston, and (3) through multi-disciplinary research, introducing technology innovations on advanced wind-turbine materials, processing/manufacturing technology, design and simulation, testing and reliability assessment methods related to future wind turbine systems for cost-effective production of offshore wind energy. To achieve the goals of the project, the following technical tasks were planned and executed during the period from April 15, 2010 to October 31, 2014 at the University of Houston: (1) Basic research on large offshore wind turbine systems (2) Applied research on innovative wind turbine rotors for large offshore wind energy systems (3) Integration of offshore wind-turbine design, advanced materials and manufacturing technologies (4) Integrity and reliability of large offshore wind turbine blades and scaled model testing (5) Education and training of graduate and undergraduate students and post- doctoral researchers (6) Development of a national offshore wind turbine blade research facility The research program addresses both basic science and engineering of current and future large wind turbine systems, especially offshore wind turbines, for MW-scale power generation. The results of the research advance current understanding of many important scientific issues and provide technical information for solving future large wind turbines with advanced design

  12. WFIRST: User and mission support at ISOC - IPAC Science Operations Center

    Science.gov (United States)

    Akeson, Rachel; Armus, Lee; Bennett, Lee; Colbert, James; Helou, George; Kirkpatrick, J. Davy; Laine, Seppo; Meshkat, Tiffany; Paladini, Roberta; Ramirez, Solange; Wang, Yun; Xie, Joan; Yan, Lin

    2018-01-01

    The science center for WFIRST is distributed between the Goddard Space Flight Center, the Infrared Processing and Analysis Center (IPAC) and the Space Telescope Science Institute (STScI). The main functions of the IPAC Science Operations Center (ISOC) are:* Conduct the GO, archival and theory proposal submission and evaluation process* Support the coronagraph instrument, including observation planning, calibration and data processing pipeline, generation of data products, and user support* Microlensing survey data processing pipeline, generation of data products, and user support* Community engagement including conferences, workshops and general support of the WFIRST exoplanet communityWe will describe the components planned to support these functions and the community of WFIRST users.

  13. Network Science Center Research Team’s Visit to Kampala, Uganda

    Science.gov (United States)

    2013-04-15

    TERMS Network Analysis, Economic Networks, Entrepreneurial Ecosystems , Economic Development, Data Collection 16. SECURITY CLASSIFICATION OF: 17...the Project Synopsis, Developing Network Models of Entrepreneurial Ecosystems in Developing Economies, on the Network Science Center web site.) A...Thomas visited Kampala, Uganda in support of an ongoing Network Science Center project to develop models of entrepreneurial networks. Our Center has

  14. Earth Science Data and Applications for K-16 Education from the NASA Langley Atmospheric Science Data Center

    Science.gov (United States)

    Phelps, C. S.; Chambers, L. H.; Alston, E. J.; Moore, S. W.; Oots, P. C.

    2005-05-01

    NASA's Science Mission Directorate aims to stimulate public interest in Earth system science and to encourage young scholars to consider careers in science, technology, engineering and mathematics. NASA's Atmospheric Science Data Center (ASDC) at Langley Research Center houses over 700 data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry that are being produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. However, barriers still exist in the use of these actual satellite observations by educators in the classroom to supplement the educational process. Thus, NASA is sponsoring the "Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs" (MY NASA DATA) project to systematically support educational activities by reducing the ASDC data holdings to `microsets' that can be easily accessible and explored by the K-16 educators and students. The microsets are available via Web site (http://mynasadata.larc.nasa.gov) with associated lesson plans, computer tools, data information pages, and a science glossary. A MY NASA DATA Live Access Server (LAS) has been populated with ASDC data such that users can create custom microsets online for desired time series, parameters and geographical regions. The LAS interface is suitable for novice to advanced users, teachers or students. The microsets may be visual representations of data or text output for spreadsheet analysis. Currently, over 148 parameters from the Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR), Surface Radiation Budget (SRB), Tropospheric Ozone Residual (TOR) and the International Satellite Cloud Climatology Project (ISCCP) are available and provide important information on clouds, fluxes and cycles in the Earth system. Additionally, a MY NASA DATA OPeNDAP server has been established to facilitate file transfer of

  15. NASA’s Universe of Learning: Providing a Direct Connection to NASA Science for Learners of all Ages with ViewSpace

    Science.gov (United States)

    Lawton, Brandon L.; Rhue, Timothy; Smith, Denise A.; Squires, Gordon K.; Biferno, Anya A.; Lestition, Kathleen; Cominsky, Lynn R.; Godfrey, John; Lee, Janice C.; Manning, Colleen

    2018-06-01

    NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is the result of a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University, and is one of 27 competitively-selected cooperative agreements within the NASA Science Mission Directorate STEM Activation program. The NASA's Universe of Learning team draws upon cutting-edge science and works closely with Subject Matter Experts (scientists and engineers) from across the NASA Astrophysics Physics of the Cosmos, Cosmic Origins, and Exoplanet Exploration themes. As one example, NASA’s Universe of Learning program is uniquely able to provide informal learning venues with a direct connection to the science of NASA astrophysics via the ViewSpace platform. ViewSpace is a modular multimedia exhibit where people explore the latest discoveries in our quest to understand the universe. Hours of awe-inspiring video content connect users’ lives with an understanding of our planet and the wonders of the universe. This experience is rooted in informal learning, astronomy, and earth science. Scientists and educators are intimately involved in the production of ViewSpace material. ViewSpace engages visitors of varying backgrounds and experience at museums, science centers, planetariums, and libraries across the United States. In addition to creating content, the Universe of Learning team is updating the ViewSpace platform to provide for additional functionality, including the introduction of digital interactives to make ViewSpace a multi-modal learning experience. During this presentation we will share the ViewSpace platform, explain how Subject Matter Experts are critical in creating content for ViewSpace, and how we are addressing audience

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Efficient click reaction towards novel sulfonamide hybrids by molecular hybridization strategy as antiproliferative agents ... New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety ...

  17. Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-08

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, and provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.

  18. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  19. Social Media And Libraries In View Of Sabancı University Information Center

    Directory of Open Access Journals (Sweden)

    Cem Özel

    2018-03-01

    Full Text Available This paper focuses on how a university library / information center should use social media tools. The importance of sharing in social media with users has been expressed in the example of Sabancı University Information Center.

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 119; Issue 5. Controlling dynamics in diatomic systems ... Department of Chemistry, Panjab University, Chandigarh 160 014; Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032 ...

  1. The Department of the Interior Southeast Climate Science Center synthesis report 2011–15—Projects, products, and science priorities

    Science.gov (United States)

    Varela Minder, Elda; Lascurain, Aranzazu R.; McMahon, Gerard

    2016-09-28

    IntroductionIn 2009, the U.S. Department of the Interior (DOI) Secretary Ken Salazar established a network of eight regional Climate Science Centers (CSCs) that, along with the Landscape Conservation Cooperatives (LCCs), would help define and implement the Department's climate adaptation response. The Southeast Climate Science Center (SE CSC) was established at North Carolina State University (NCSU) in Raleigh, North Carolina, in 2010, under a 5-year cooperative agreement with the U.S. Geological Survey (USGS), to identify and address the regional challenges presented by climate change and variability in the Southeastern United States. All eight regional CSC hosts, including NCSU, were selected through a competitive process.Since its opening, the focus of the SE CSC has been on working with partners in the identification and development of research-based information that can assist managers, including cultural and natural resource managers, in adapting to global change processes, such as climate and land use change, that operate at local to global scales and affect resources important to the DOI mission. The SE CSC was organized to accomplish three goals:Provide co-produced, researched based, actionable science that supports transparent global change adaptation decisions.Convene conversations among decision makers, scientists, and managers to identify key ecosystem adaptation decisions driven by climate and land use change, the values and objectives that will be used to make decisions, and the research-based information needed to assess adaptation options.Build the capacity of natural resource professionals, university faculty, and students to understand and frame natural resource adaptation decisions and develop and use research-based information to make adaptation decisions.This report provides an overview of the SE CSC and the projects developed by the SE CSC since its inception. An important goal of this report is to provide a framework for understanding the

  2. Gallaudet University, Laurent Clerc National Deaf Education Center

    Science.gov (United States)

    ... ContinuED. The presenta ... Capitol Hill Day at Gallaudet University February 27, 2018 The Clerc Center will share resources with administrators, teachers, and counselors who visit Gallau ... Contact Us 800 ...

  3. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Dongmei Ren1 Yaming Lu2. School of Mathematics and Statistics, Southwest University, Chongqing 400715, People's Republic of China; Research Center for Basic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China ...

  4. Determination of rate of customer focus in educational programs at Isfahan University of Medical Sciences1 based on students’ viewpoints

    Science.gov (United States)

    Shams, Assadollah; Yarmohammadian, Mohammad Hosein; Abbarik, Hadi Hayati

    2012-01-01

    Background: Today, the challenges of quality improvement and customer focus as well as systems development are important and inevitable matters in higher education institutes. There are some highly competitive challenges among educational institutes, including accountability to social needs, increasing costs of education, diversity in educational methods and centers and their consequent increasing competition, and the need for adaptation of new information and knowledge to focus on students as the main customers. Hence, the purpose of this study was to determine the rate of costumer focus based on Isfahan University of Medical Sciences students’ viewpoints and to suggest solutions to improve this rate. Materials and Methods: This was a cross-sectional study carried out in 2011. The statistical population included all the students of seven faculties of Isfahan University of Medical Sciences. According to statistical formulae, the sample size consisted of 384 subjects. Data collection tools included researcher-made questionnaire whose reliability was found to be 87% by Cronbach's alpha coefficient. Finally, using the SPSS statistical software and statistical methods of independent t-test and one-way analysis of variance (ANOVA), Likert scale based data were analyzed. Results: The mean of overall score for customer focus (student-centered) of Isfahan University of Medical Sciences was 46.54. Finally, there was a relation between the mean of overall score for customer focus and gender, educational levels, and students’ faculties. Researcher suggest more investigation between Medical University and others. Conclusion: It is a difference between medical sciences universities and others regarding the customer focus area, since students’ gender must be considered as an effective factor in giving healthcare services quality. In order to improve the customer focus, it is essential to take facilities, field of study, faculties, and syllabus into consideration. PMID

  5. Determination of rate of customer focus in educational programs at Isfahan University of Medical Sciences(1) based on students' viewpoints.

    Science.gov (United States)

    Shams, Assadollah; Yarmohammadian, Mohammad Hosein; Abbarik, Hadi Hayati

    2012-01-01

    Today, the challenges of quality improvement and customer focus as well as systems development are important and inevitable matters in higher education institutes. There are some highly competitive challenges among educational institutes, including accountability to social needs, increasing costs of education, diversity in educational methods and centers and their consequent increasing competition, and the need for adaptation of new information and knowledge to focus on students as the main customers. Hence, the purpose of this study was to determine the rate of costumer focus based on Isfahan University of Medical Sciences students' viewpoints and to suggest solutions to improve this rate. This was a cross-sectional study carried out in 2011. The statistical population included all the students of seven faculties of Isfahan University of Medical Sciences. According to statistical formulae, the sample size consisted of 384 subjects. Data collection tools included researcher-made questionnaire whose reliability was found to be 87% by Cronbach's alpha coefficient. Finally, using the SPSS statistical software and statistical methods of independent t-test and one-way analysis of variance (ANOVA), Likert scale based data were analyzed. The mean of overall score for customer focus (student-centered) of Isfahan University of Medical Sciences was 46.54. Finally, there was a relation between the mean of overall score for customer focus and gender, educational levels, and students' faculties. Researcher suggest more investigation between Medical University and others. It is a difference between medical sciences universities and others regarding the customer focus area, since students' gender must be considered as an effective factor in giving healthcare services quality. In order to improve the customer focus, it is essential to take facilities, field of study, faculties, and syllabus into consideration.

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Mahatma Gandhi-Doerenkamp Center, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India; Present Address: Post Doctoral Fellow, Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Institut de Ciencia Molecular (ICMol), ...

  7. Report on a Boston University Conference December 7-8, 2012 on How Can the History and Philosophy of Science Contribute to Contemporary US Science Teaching?

    Science.gov (United States)

    Garik, Peter; Benétreau-Dupin, Yann

    2014-09-01

    This is an editorial report on the outcomes of an international conference sponsored by a grant from the National Science Foundation (NSF) (REESE-1205273) to the School of Education at Boston University and the Center for Philosophy and History of Science at Boston University for a conference titled: How Can the History and Philosophy of Science Contribute to Contemporary US Science Teaching? The presentations of the conference speakers and the reports of the working groups are reviewed. Multiple themes emerged for K-16 education from the perspective of the history and philosophy of science. Key ones were that: students need to understand that central to science is argumentation, criticism, and analysis; students should be educated to appreciate science as part of our culture; students should be educated to be science literate; what is meant by the nature of science as discussed in much of the science education literature must be broadened to accommodate a science literacy that includes preparation for socioscientific issues; teaching for science literacy requires the development of new assessment tools; and, it is difficult to change what science teachers do in their classrooms. The principal conclusions drawn by the editors are that: to prepare students to be citizens in a participatory democracy, science education must be embedded in a liberal arts education; science teachers alone cannot be expected to prepare students to be scientifically literate; and, to educate students for scientific literacy will require a new curriculum that is coordinated across the humanities, history/social studies, and science classrooms.

  8. University of Rhode Island Regional Earth Systems Center

    Energy Technology Data Exchange (ETDEWEB)

    Rothstein, Lewis [Univ. of Rhode Island, Kingston, RI (United States); Cornillon, P. [Univ. of Rhode Island, Kingston, RI (United States)

    2017-02-06

    The primary objective of this program was to establish the URI Regional Earth System Center (“Center”) that would enhance overall societal wellbeing (health, financial, environmental) by utilizing the best scientific information and technology to achieve optimal policy decisions with maximum stakeholder commitment for energy development, coastal environmental management, water resources protection and human health protection, while accelerating regional economic growth. The Center was to serve to integrate existing URI institutional strengths in energy, coastal environmental management, water resources, and human wellbeing. This integrated research, educational and public/private sector outreach Center was to focus on local, state and regional resources. The centerpiece activity of the Center was in the development and implementation of integrated assessment models (IAMs) that both ‘downscaled’ global observations and interpolated/extrapolated regional observations for analyzing the complexity of interactions among humans and the natural climate system to further our understanding and, ultimately, to predict the future state of our regional earth system. The Center was to begin by first ‘downscaling’ existing global earth systems management tools for studying the causes of local, state and regional climate change and potential social and environmental consequences, with a focus on the regional resources identified above. The Center would ultimately need to address the full feedbacks inherent in the nonlinear earth systems by quantifying the “upscaled” impacts of those regional changes on the global earth system. Through an interacting suite of computer simulations that are informed by observations from the nation’s evolving climate observatories, the Center activities integrates climate science, technology, economics, and social policy into forecasts that will inform solutions to pressing issues in regional climate change science,

  9. The Cooperation between Savonia University of Applied Sciences and West Anhui University

    OpenAIRE

    Tang, Guangjing; Xie, Jiajuan

    2016-01-01

    The aim of this thesis was to find out how to renew the double degree of Savonia University of Ap-plied Sciences and West Anhui University and listed some advantages and disadvantages of a cooperation project. Also the relevant responsible people were interviewed to get the reasons for the termination of this cooperation. The two universities signed the agreement of university cooperation projects in 2005 and the first group students went to Savonia in 2008. The contents of cooperation were a...

  10. The University of Texas Health Science Center at Houston

    African Journals Online (AJOL)

    Adebimpe Oyeyemi

    elucidates on the scholarship of discovery, the scholarship of application, the scholarship of integration and the scholarship of ... Science and professional education in medicine and health are .... approaches, modification of an existing approach that results in .... Their Teaching to Advance Practice and Improve Students.

  11. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  12. Faculty development to improve teaching at a health sciences center: a needs assessment.

    Science.gov (United States)

    Scarbecz, Mark; Russell, Cynthia K; Shreve, Robert G; Robinson, Melissa M; Scheid, Cheryl R

    2011-02-01

    There has been increasing interest at health science centers in improving the education of health professionals by offering faculty development activities. In 2007-08, as part of an effort to expand education-related faculty development offerings on campus, the University of Tennessee Health Science Center surveyed faculty members in an effort to identify faculty development activities that would be of interest. Factor analysis of survey data indicated that faculty interests in the areas of teaching and learning can be grouped into six dimensions: development of educational goals and objectives, the use of innovative teaching techniques, clinical teaching, improving traditional teaching skills, addressing teaching challenges, and facilitating participation. There were significant differences in the level of interest in education-related faculty development activities by academic rank and by the college of appointment. Full professors expressed somewhat less interest in faculty development activities than faculty members of lower ranks. Faculty members in the Colleges of Medicine and Dentistry expressed somewhat greater interest in faculty development to improve traditional teaching skills. The policy implications of the survey results are discussed, including the need for faculty development activities that target the needs of specific faculty groups.

  13. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-07-01

    . This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and

  14. Impacting university physics students through participation in informal science

    Science.gov (United States)

    Hinko, Kathleen; Finkelstein, Noah D.

    2013-01-01

    Informal education programs organized by university physics departments are a popular means of reaching out to communities and satisfying grant requirements. The outcomes of these programs are often described in terms of broader impacts on the community. Comparatively little attention, however, has been paid to the influence of such programs on those students facilitating the informal science programs. Through Partnerships for Informal Science Education in the Community (PISEC) at the University of Colorado Boulder, undergraduate and graduate physics students coach elementary and middle school children during an inquiry-based science afterschool program. As part of their participation in PISEC, university students complete preparation in pedagogy, communication and diversity, engage with children on a weekly basis and provide regular feedback about the program. We present findings that indicate these experiences improve the ability of university students to communicate in everyday language and positively influence their perspectives on teaching and learning.

  15. Space Sciences Education and Outreach Project of Moscow State University

    Science.gov (United States)

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space

  16. The Centers for Ocean Science Education Excellence (COSEE) initiative

    Science.gov (United States)

    Cook, S.; Rom, E.

    2003-04-01

    Seven regional Centers for Ocean Science Education Excellence have recently been established to promote the integration of ocean science research into high-quality education programs aimed at both formal and informal audiences throughout the United States. The regional Centers include two complementary partnerships in California, a New England regional effort, a Mid-Atlantic partnership, a Southeastern collaborative, a Florida initiative and a central Gulf of Mexico alliance. A Central Coordinating Office in Washington DC will help the group develop into a cohesive and focused national network. Initial funding has been provided by the National Science Foundation with complementary support from the Office of Naval Research and multiple units within the National Oceanographic and Atmospheric Administration (specifically the National Ocean Service, the Office of Ocean Exploration and the National SeaGrant Office). Under an umbrella of common goals and objectives, the first cohort of Centers in the COSEE network is remarkably diverse in terms of geography, organizational structure and programmatic focus. NSF’s presentation will describe these partnerships, the different approaches that are being taken by the individual Centers and the expectations that NSF has for the network as a whole.

  17. Increasing Counseling Center Utilization: Yeshiva University's Experience

    Science.gov (United States)

    Schwartz, Victor; Nissel, Chaim; Eisenberg, Daniel; Kay, Jerald; Brown, Joshua T.

    2012-01-01

    Yeshiva University established a counseling center during the 2004-2005 academic year. As a religiously based institution, the administration recognized that there would likely be significant impediments to utilization of on-campus mental health services as a result of negative attitudes about mental illness and its treatment--stigma. To combat…

  18. A report of the symposium on 'comprehensive research on the management of long-lived radioactive wastes' in the Research Center for Nuclear Science and Technology, University of Tokyo

    International Nuclear Information System (INIS)

    Sekiguchi, Akira; Naito, Keiji; Suzuki, Susumu; Furuya, Hirotaka; Sato, Masatomo.

    1983-01-01

    In the Research Center for Nuclear Science and Technology, University of Tokyo, the special research project ''Comprehensive Research on the Management of Long-lived Radioactive WasΩtes'' is carried out in the three-year period from fiscal 1982 to 1984. In this connection, a symposium has been held on January 25, 1983. Seven lectures given by the respective speakers are summarized individually: (1) the research of transuranic elements in educational institutions, (2) an outline of the actinoid research facilities planned in Tohoku University, (3) the radiation damage and leachability of glass solids, (4) the situation and trend in Japan and abroad of the disposal of long-lived nuclide wastes, (5) practical site tests concerning the geologic-formation disposal of low-level wastes, (6) the trend in the research of geologic formations for the disposal of high-level wastes, (7) the safety in the management of long-lived radioactive wastes. (Mori, K.)

  19. Sandia National Laboratories: Microsystems Science & Technology Center

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  20. National Center for Mathematics and Science - links to related sites

    Science.gov (United States)

    Mathematics and Science (NCISLA) HOME | WHAT WE DO | K-12 EDUCATION RESEARCH | PUBLICATIONS | TEACHER Modeling Middle School Mathematics National Association of Biology Teachers National Association for Mathematics National Science Teachers Assocation Show-Me Center Summit on Science TERC - Weaving Gender Equity

  1. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 31; Issue 2 ... School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200030, ... D Center, Morgan-Tan International Center for Life Sciences, Fudan University, Shanghai ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing 100875, China. Satellite Environment Center, Ministry of Environmental Protection, Beijing 100094, China. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China. Institute of ...

  3. University of Maryland MRSEC - Collaborations: Industrial

    Science.gov (United States)

    nanotechnology that extend across three colleges (Engineering, Physical Sciences, and Life Sciences) and has . University of Maryland Materials Research Science and Engineering Center Home About Us Leadership Engineering, and MRSEC plays an important role in this outreach activity to the regional community. Corporate

  4. Education in Science Centers: Evaluating School Visits to an Astronomical Observatory in Brazil

    Directory of Open Access Journals (Sweden)

    Pedro Donizete Colombo Junior

    2009-03-01

    Full Text Available The present article analyzes the activity “Guided Visit of School Groups” carried out at Astronomical Observatory of the Center for Scientific and Cultural Diffusion (CDCC of University of Sao Paulo (USP with K4 and K5 pupils. The objectives of this research were to identify influences of such activity on learning of astronomical concepts and on pupils’ motivation. The results demonstrate that pupils have difficulties to understand Solar System concepts and the distances involved, on the other hand, the activity motivates the pupils to return with their parents and friends to the Observatory. At last, the success of visits to science centers aiming at the learning of basic concepts and motivation comprises at least three moments: the one that precedes the visit, the visit itself and the return to the classroom.

  5. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 32; Issue 2 ... School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan University, ... of China; Plant Biotechnology Research Center, School of Agriculture and Biology, ...

  6. Approaching gender parity: Women in computer science at Afghanistan's Kabul University

    Science.gov (United States)

    Plane, Jandelyn

    This study explores the representation of women in computer science at the tertiary level through data collected about undergraduate computer science education at Kabul University in Afghanistan. Previous studies have theorized reasons for underrepresentation of women in computer science, and while many of these reasons are indeed present in Afghanistan, they appear to hinder advancement to degree to a lesser extent. Women comprise at least 36% of each graduating class from KU's Computer Science Department; however, in 2007 women were 25% of the university population. In the US, women comprise over 50% of university populations while only graduating on average 25% women in undergraduate computer science programs. Representation of women in computer science in the US is 50% below the university rate, but at KU, it is 50% above the university rate. This mixed methods study of KU was conducted in the following three stages: setting up focus groups with women computer science students, distributing surveys to all students in the CS department, and conducting a series of 22 individual interviews with fourth year CS students. The analysis of the data collected and its comparison to literature on university/department retention in Science, Technology, Engineering and Mathematics gender representation and on women's education in underdeveloped Islamic countries illuminates KU's uncharacteristic representation of women in its Computer Science Department. The retention of women in STEM through the education pipeline has several characteristics in Afghanistan that differ from countries often studied in available literature. Few Afghan students have computers in their home and few have training beyond secretarial applications before considering studying CS at university. University students in Afghanistan are selected based on placement exams and are then assigned to an area of study, and financially supported throughout their academic career, resulting in a low attrition rate

  7. WFIRST: STScI Science Operations Center (SSOC) Activities and Plans

    Science.gov (United States)

    Gilbert, Karoline M.; STScI WFIRST Team

    2018-01-01

    The science operations for the WFIRST Mission will be distributed between Goddard Space Flight Center, the Space Telescope Science Institute (STScI), and the Infrared Processing and Analysis Center (IPAC). The STScI Science Operations Center (SSOC) will schedule and archive all WFIRST observations, will calibrate and produce pipeline-reduced data products for the Wide Field Instrument, and will support the astronomical community in planning WFI observations and analyzing WFI data. During the formulation phase, WFIRST team members at STScI have developed operations concepts for scheduling, data management, and the archive; have performed technical studies investigating the impact of WFIRST design choices on data quality and analysis; and have built simulation tools to aid the community in exploring WFIRST’s capabilities. We will highlight examples of each of these efforts.

  8. A university system's approach to enhancing the educational mission of health science schools and institutions: the University of Texas Academy of Health Science Education

    Directory of Open Access Journals (Sweden)

    L. Maximilian Buja

    2013-03-01

    Full Text Available Background: The academy movement developed in the United States as an important approach to enhance the educational mission and facilitate the recognition and work of educators at medical schools and health science institutions. Objectives: Academies initially formed at individual medical schools. Educators and leaders in The University of Texas System (the UT System, UTS recognized the academy movement as a means both to address special challenges and pursue opportunities for advancing the educational mission of academic health sciences institutions. Methods: The UTS academy process was started by the appointment of a Chancellor's Health Fellow for Education in 2004. Subsequently, the University of Texas Academy of Health Science Education (UTAHSE was formed by bringing together esteemed faculty educators from the six UTS health science institutions. Results: Currently, the UTAHSE has 132 voting members who were selected through a rigorous, system-wide peer review and who represent multiple professional backgrounds and all six campuses. With support from the UTS, the UTAHSE has developed and sustained an annual Innovations in Health Science Education conference, a small grants program and an Innovations in Health Science Education Award, among other UTS health science educational activities. The UTAHSE represents one university system's innovative approach to enhancing its educational mission through multi- and interdisciplinary as well as inter-institutional collaboration. Conclusions: The UTAHSE is presented as a model for the development of other consortia-type academies that could involve several components of a university system or coalitions of several institutions.

  9. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 33; Issue 2 ... R & D Center, Morgan-Tan International Center for Life Sciences, Fudan University, ... School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China ...

  10. Increasing Student Success in Large Survey Science Courses via Supplemental Instruction in Learning Centers

    Science.gov (United States)

    Hooper, Eric Jon; Nossal, S.; Watson, L.; Timbie, P.

    2010-05-01

    Large introductory astronomy and physics survey courses can be very challenging and stressful. The University of Wisconsin-Madison Physics Learning Center (PLC) reaches about 10 percent of the students in four introductory physics courses, algebra and calculus based versions of both classical mechanics and electromagnetism. Participants include those potentially most vulnerable to experiencing isolation and hence to having difficulty finding study partners as well as students struggling with the course. They receive specially written tutorials, conceptual summaries, and practice problems; exam reviews; and most importantly, membership in small groups of 3 - 8 students which meet twice per week in a hybrid of traditional teaching and tutoring. Almost all students who regularly participate in the PLC earn at least a "C,” with many earning higher grades. The PLC works closely with other campus programs which seek to increase the participation and enhance the success of underrepresented minorities, first generation college students, and students from lower-income circumstances; and it is well received by students, departmental faculty, and University administration. The PLC staff includes physics education specialists and research scientists with a passion for education. However, the bulk of the teaching is conducted by undergraduates who are majoring in physics, astronomy, mathematics, engineering, and secondary science teaching (many have multiple majors). The staff train these enthusiastic students, denoted Peer Mentor Tutors (PMTs) in general pedagogy and mentoring strategies, as well as the specifics of teaching the physics covered in the course. The PMTs are among the best undergraduates at the university. While currently there is no UW-Madison learning center for astronomy courses, establishing one is a possible future direction. The introductory astronomy courses cater to non-science majors and consequently are less quantitative. However, the basic structure

  11. Basic and Applied Science Research at the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Lisowski, Paul W.

    2005-01-01

    The Los Alamos Neutron Science Center, or LANSCE, is an accelerator-based national user facility for research in basic and applied science using four experimental areas. LANSCE has two areas that provide neutrons generated by the 800-MeV proton beam striking tungsten target systems. A third area uses the proton beam for radiography. The fourth area uses 100 MeV protons to produce medical radioisotopes. This paper describes the four LANSCE experimental areas, gives nuclear science highlights of the past operating period, and discusses plans for the future

  12. The experimental teaching reform in biochemistry and molecular biology for undergraduate students in Peking University Health Science Center.

    Science.gov (United States)

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and participated in some original research work. There is a critical educational need to prepare these students for the increasing accessibility of research experience. The redesigned experimental curriculum of biochemistry and molecular biology was developed to fulfill such a requirement, which keeps two original biochemistry experiments (Gel filtration and Enzyme kinetics) and adds a new two-experiment component called "Analysis of anti-tumor drug induced apoptosis." The additional component, also known as the "project-oriented experiment" or the "comprehensive experiment," consists of Western blotting and a DNA laddering assay to assess the effects of etoposide (VP16) on the apoptosis signaling pathways. This reformed laboratory teaching system aims to enhance the participating students overall understanding of important biological research techniques and the instrumentation involved, and to foster a better understanding of the research process all within a classroom setting. Student feedback indicated that the updated curriculum helped them improve their operational and self-learning capability, and helped to increase their understanding of theoretical knowledge and actual research processes, which laid the groundwork for their future research work. © 2015 The International Union of Biochemistry and Molecular Biology.

  13. The Role of Informal Science Centers in Science Education: Attitudes, Skills, and Self-efficacy

    Directory of Open Access Journals (Sweden)

    Irit Sasson

    2014-09-01

    Full Text Available Informal learning relates to activities that occur outside the school environment. These learning environments, such as visits to science centers provide valuable motivational opportunities for students to learn science. The purpose of this study was to investigate the role of the pre-academic center in science education and particularly to explore its effects on 750 middle-school students' attitudes toward science, their scientific thinking skills and self-efficacy. Pre and post-case based questionnaires were designed to assess the students’ higher order thinking skills – inquiry, graphing, and argumentation. In addition, a five-point Likert scale questionnaire was used to assess students' attitudes and self-efficacy. The research results indicated a positive effect of the pre-academic science center activities on scientific thinking skills. A significant improvement in the students' inquiry and graphing skills was found, yet non significant differences were found in argumentation skill. The students significantly improved their ability to ask research questions based on reading a scientific text, and to describe and analyze research results that were presented graphically. While no significant differences were found between girls and boys in the pre-questionnaire, in the post-questionnaire the girls' scores in inquiry skill were significantly higher than boys' scores. Increases in students' positive attitudes toward science and self-efficacy were found but the results were not statistically significant. However, the program length was found to be an important variable that affects achievement of educational goals. A three-dimension-based framework is suggested to characterize learning environments: organizational, psychological, and pedagogical.

  14. Education, Outreach, and Diversity Partnerships and Science Education Resources From the Center for Multi-scale Modeling of Atmospheric Processes

    Science.gov (United States)

    Foster, S. Q.; Randall, D.; Denning, S.; Jones, B.; Russell, R.; Gardiner, L.; Hatheway, B.; Johnson, R. M.; Drossman, H.; Pandya, R.; Swartz, D.; Lanting, J.; Pitot, L.

    2007-12-01

    The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. The new National Science Foundation- funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is a major research program addressing this problem over the next five years through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interactions among the many physical and chemical processes that are active in cloud systems. At the end of its first year, CMMAP has established effective partnerships between scientists, students, and teachers to meet its goals to: (1) provide first-rate graduate education in atmospheric science; (2) recruit diverse undergraduates into graduate education and careers in climate science; and (3) develop, evaluate, and disseminate educational resources designed to inform K-12 students, teachers, and the general public about the nature of the climate system, global climate change, and career opportunities in climate science. This presentation will describe the partners, our challenges and successes, and measures of achievement involved in the integrated suite of programs launched in the first year. They include: (1) a new high school Colorado Climate Conference drawing prestigious climate scientists to speak to students, (2) a summer Weather and Climate Workshop at CSU and the National Center for Atmospheric Research introducing K-12 teachers to Earth system science and a rich toolkit of teaching materials, (3) a program from CSU's Little Shop of Physics reaching 50 schools and 20,000 K-12 students through the new "It's Up In the Air" program, (4) expanded content, imagery, and interactives on clouds, weather, climate, and modeling for students, teachers, and the public on The Windows to the Universe web site at University Corporation for Atmospheric Research

  15. 76 FR 37191 - Notice of Competition for University Transportation Centers (UTC) Program Grants

    Science.gov (United States)

    2011-06-24

    ... capability, the use of peer review, and effective partnerships to advance diversity. The Research and... Competition for University Transportation Centers (UTC) Program Grants AGENCY: Research and Innovative... conduct a competition for University Transportation Centers (UTC) Program grants for the purpose of...

  16. Status of the TESS Science Processing Operations Center

    Science.gov (United States)

    Jenkins, Jon M.; Twicken, Joseph D.; Campbell, Jennifer; Tenebaum, Peter; Sanderfer, Dwight; Davies, Misty D.; Smith, Jeffrey C.; Morris, Rob; Mansouri-Samani, Masoud; Girouardi, Forrest; hide

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) science pipeline is being developed by the Science Processing Operations Center (SPOC) at NASA Ames Research Center based on the highly successful Kepler Mission science pipeline. Like the Kepler pipeline, the TESS science pipeline will provide calibrated pixels, simple and systematic error-corrected aperture photometry, and centroid locations for all 200,000+ target stars, observed over the 2-year mission, along with associated uncertainties. The pixel and light curve products are modeled on the Kepler archive products and will be archived to the Mikulski Archive for Space Telescopes (MAST). In addition to the nominal science data, the 30-minute Full Frame Images (FFIs) simultaneously collected by TESS will also be calibrated by the SPOC and archived at MAST. The TESS pipeline will search through all light curves for evidence of transits that occur when a planet crosses the disk of its host star. The Data Validation pipeline will generate a suite of diagnostic metrics for each transit-like signature discovered, and extract planetary parameters by fitting a limb-darkened transit model to each potential planetary signature. The results of the transit search will be modeled on the Kepler transit search products (tabulated numerical results, time series products, and pdf reports) all of which will be archived to MAST.

  17. Assessing the Oldness and Capacity of Radiography and Ultrasound Equipments in Tehran University of Medical Sciences

    International Nuclear Information System (INIS)

    Salamati, Payman; Ghanaati, Hossein; Ghasemzadeh, Shahram; Jalali, Amir Hossein

    2013-01-01

    Maintenance of imaging equipment is a very important part of the management of all medical imaging centers. To assess the oldness and capacity of radiography and ultrasound equipment in Tehran University of Medical Sciences. The study was performed in 16 hospitals, 4 faculties and three healthcare centers of Tehran University of Medical Sciences. We evaluated all the X-ray equipment (including the simple plain and dental, panorex, mammography, fluoroscopy and C-arm X-Ray devices) and also simple and Doppler ultrasound machines in terms of the type and usage of the device, production year, quantity of utilization, location, brand and current condition. Among fixed X-ray systems, 15 were currently in use, two were junk, two were damaged, and one was not utilized. The mean (SD) of the usage of these was 2151 (2230) cliché/month, and the mean (SD) of the oldness was 16.9 (13.6) years. The oldness of radiography equipment in our study was more than 20 years in 16, between 11 and 20 in 46, and less than 10 years in 76 devices. The mean (SD) usage (patients/month) of simple and color Doppler devices were 234.1 (365.2) and 597.5 (505.3), respectively. The oldness of ultrasonography equipment in our study was more than 11 years in 12 and less than 10 years in 55 devices. We found that 22 (15.9%) of the radiography systems and two (3%) of the ultrasonography systems had been used for more than 20 years. Radiology equipment in Tehran University of Medical Sciences have potential capacity, but they need repair, and better maintenance and management and application of standards for the imaging system needs organized supervisory mechanisms

  18. Electronic Commerce Resource Centers. An Industry--University Partnership.

    Science.gov (United States)

    Gulledge, Thomas R.; Sommer, Rainer; Tarimcilar, M. Murat

    1999-01-01

    Electronic Commerce Resource Centers focus on transferring emerging technologies to small businesses through university/industry partnerships. Successful implementation hinges on a strategic operating plan, creation of measurable value for customers, investment in customer-targeted training, and measurement of performance outputs. (SK)

  19. High Performance Computing in Science and Engineering '99 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    2000-01-01

    The book contains reports about the most significant projects from science and engineering of the Federal High Performance Computing Center Stuttgart (HLRS). They were carefully selected in a peer-review process and are showcases of an innovative combination of state-of-the-art modeling, novel algorithms and the use of leading-edge parallel computer technology. The projects of HLRS are using supercomputer systems operated jointly by university and industry and therefore a special emphasis has been put on the industrial relevance of results and methods.

  20. 77 FR 59661 - Notice of Inventory Completion: Stanford University Archaeology Center, Stanford, CA

    Science.gov (United States)

    2012-09-28

    ... Inventory Completion: Stanford University Archaeology Center, Stanford, CA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Stanford University Archaeology Center has completed an inventory of... determined that there is a cultural affiliation between the human remains and a present-day Indian tribe...

  1. 77 FR 59660 - Notice of Inventory Completion: Stanford University Archaeology Center, Stanford, CA

    Science.gov (United States)

    2012-09-28

    ... Inventory Completion: Stanford University Archaeology Center, Stanford, CA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Stanford University Archaeology Center has completed an inventory of... has determined that there is a cultural affiliation between the human remains and present-day Indian...

  2. 77 FR 59968 - Notice of Intent To Repatriate Cultural Items: Stanford University Archaeology Center, Stanford, CA

    Science.gov (United States)

    2012-10-01

    ... Intent To Repatriate Cultural Items: Stanford University Archaeology Center, Stanford, CA AGENCY... the cultural items may contact the Stanford University Archaeology Center. DATES: Representatives of... to repatriate cultural items in the possession of the Stanford University Archaeology Center that...

  3. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education Culture and Research (ACECR), 1936773493 Tehran, Iran; Department of Medical Genetics and Molecular Biology, Iran University of Medical Sciences, 1449614535 Tehran, Iran; Faculty of Medical Sciences, ...

  4. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    R. S. Yang1 J. H. Yang1 2 Y. X. Wang3 J. H. Fan2. Department of Physics and Electronics Science, Hunan University of Arts and Science, Changde 415000, China. Center for Astrophysics, Guangzhou University, Guangzhou 510006, China. College of Science and Trade, Guangzhou University, Guangzhou 511442, China.

  5. Pre-Service Teachers' Attitudes toward Teaching Science and Their Science Learning at Indonesia Open University

    Science.gov (United States)

    Suprapto, Nadi; Mursid, Ali

    2017-01-01

    This study focuses on attitudes toward (teaching) science and the learning of science for primary school among pre-service teachers at the Open University of Indonesia. A three-year longitudinal survey was conducted, involving 379 students as pre-service teachers (PSTs) from the Open University in Surabaya regional office. Attitudes toward…

  6. Center for Molecular Electronics, University of Missouri, St. Louis. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Department of Energy (DOE) proposes to authorize the University of Missouri, St. Louis to proceed with the detailed design and construction of the proposed Center for Molecular Electronics. The proposed Center would consist of laboratories and offices housed in a three-story building on the University campus. The proposed modular laboratories would be adaptable for research activities principally related to physics, chemistry, and electrical engineering. Proposed research would include the development and application of thin-film materials, semi-conductors, electronic sensors and devices, and high-performance polymers. Specific research for the proposed Center has not yet been formulated, therefore, specific procedures for any particular process or study cannot be described at this time. The proposed construction site is an uncontaminated panel of land located on the University campus. This report contains information about the environmental assessment that was performed in accordance with this project.

  7. College and University Counseling Centers: Questions in Search of Answers

    Science.gov (United States)

    Bishop, John B.

    2006-01-01

    College and university counseling centers are being influenced by changing populations of students and the concerns of a variety of constituencies and stakeholders about mental health issues. Although counseling centers can be important institutional resources in matters of recruitment, retention, and risk management, new legal and ethical issues…

  8. National Center for Mathematics and Science - publications

    Science.gov (United States)

    : Designing Statistics Instruction for Middle School Students Summer 2003: Algebraic Skills and Strategies for newsletter cover The National Center for Research in Mathematical Sciences Education (NCRMSE) (1987-1995 -Level Reform Fall 1993: Assessment Models Winter 1994: Reforming Geometry Spring 1994: Statistics and

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In this study we observe wave heights by an array of four wave gauges at the Hiratsuka Tower of (Independent Administrative Institution) National Research Institute for Earth Science and ... Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Aoba, Sendai 980-8578, Japan.

  10. Building blocks of the universe

    International Nuclear Information System (INIS)

    Malamud, E.; O'Connor, C.; Cooper, A.

    1990-01-01

    COSI [Ohio's Center for Science and Industry], a well established science center, and SciTech, an emerging one, have formed a collaboration to develop a group of original interactive exhibits conveying to a wide audience the nature of the most fundamental features of the Universe, as revealed in the fascinating world of nuclear and particle science. These new exhibits will add to, and be supported by, the basic science exhibits which have already attracted large numbers of visitors to both centers. The new project, called Building Blocks of the Universe, aims to foster an appreciation of the way all features of the Universe arise from simple, basic rules and to lead the visitor from the perceived complexities of our surroundings, to the unperceived, but simpler features of the sub-nuclear world. It has already become apparent from individual prototypes that these simple but immensely far-reaching ideas can indeed be conveyed by hands-on exhibits. These exhibits will be linked and enhanced by an effective museum environment, using pictorial diagrams, accurate non-technical text, and artistic displays to create an atmosphere in which visitors can learn about phenomena beyond the range of direct perception. This paper describes the goals, content and organization of the exhibition. The authors also outline their experience with prototype exhibits, and thereby invite additional input into the development process

  11. Zero-Carbon Energy Kyoto 2011 : Special Edition of Jointed Symposium of Kyoto University Global COE “Energy Science in the Age of Global Warming” and Ajou University BK21

    CERN Document Server

    2012-01-01

    The nuclear plant accident at Fukushima in the wake of the Great East Japan Earthquake and tsunami has had a major impact on the energy strategy of Japan and the world. From a global perspective, approach to energy is of greater and greater consequence. The Global Center of Excellence (COE) Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan, with the support of university faculty members, has established an international education and research platform to foster educators, researchers, and policy makers who can develop technologies and propose policies for establishing a CO2 zero-emission society no longer dependent on fossil fuels by the year 2100. Since 2008, a program called “Energy Science in the Age of Global Warming—Toward a CO2 Zero-Emission Energy System” has been in progress at Kyoto University. A third international symposium, titled “Zero-Carbon Energy, Kyoto 2011,” was held jointly with Ajou University, Korea, in August 2011, and this book is a compila...

  12. Increasing Internal Stakeholder Consensus about a University Science Center's Outreach Policies and Procedures

    Science.gov (United States)

    Fisher, Richard D.

    For decades the United States has tried to increase the number of students pursuing science, technology, engineering, and mathematics (STEM) education and careers. Educators and policy makers continue to seek strategies to increase the number of students in the STEM education pipeline. Public institutions of higher education are involved in this effort through education and public outreach (EPO) initiatives. Arizona State University opened its largest research facility, the new Interdisciplinary Science and Technology Building IV (ISTB4) in September, 2012. As the new home of the School of Earth & Space Exploration (SESE), ISTB4 was designed to serve the school's dedication to K-12 education and public outreach. This dissertation presents a menu of ideas for revamping the EPO program for SESE. Utilizing the Delphi method, I was able to clarify which ideas would be most supported, and those that would not, by a variety of important SESE stakeholders. The study revealed that consensus exists in areas related to staffing and expansion of free programming, whereas less consensus exist in the areas of fee-based programs. The following most promising ideas for improving the SESE's EPO effort were identified and will be presented to SESE's incoming director in July, 2013: (a) hire a full-time director, theater manager, and program coordinator; (b) establish a service-learning requirement obligating undergraduate SESE majors to serve as docent support for outreach programs; (c) obligate all EPO operations to advise, assist, and contribute to the development of curricula, activities, and exhibits; (d) perform a market and cost analysis of other informational education venues offering similar programming; (3) establish a schedule of fee-based planetarium and film offerings; and (f) create an ISTB4 centric, fee-based package of programs specifically correlated to K12 education standards that can be delivered as a fieldtrip experience.

  13. Creating and Sustaining University-Community Partnerships in Science Education (Invited)

    Science.gov (United States)

    Finkelstein, N.

    2009-12-01

    Despite years of research and investment, we have yet to see the widespread implementation of a myriad research-proven instructional strategies in STEM education[1]. To address this challenge, we present and analyze one such strategy, a theoretically-grounded model of university-community partnership [2] that engages university students and children in a collective enterprise that has the potential to improve the participation and education of all. We document the impact of this effort on: university participants who learn about education, the community and science; children in the community who learn about science, the nature of science and develop their identities and attitudes towards science; and, shifts in institutional structures which may allow these programs to be part of standard practice. This project is designed to be sustained and scaled, and is analyzed through the application of a new framework [3] which brings together theories of STEM change that come from studies in higher education, faculty development and disciplinary-based education research in STEM. [1] National Research Council. (2003). Improving Undergraduate Instruction in Science, Technology, Engineering, and Mathematics: Report of A Workshop. Washington, D.C.: The National Academies Press. [2] Finkelstein, N. and Mayhew, L. (2008). Acting in Our Own Self-Interest: Blending University and Community. Proceedings of the 2008 Physics Education Research Conf, AIP Press. Melville NY, 1064, 19-22. [3] Henderson, C., Finkelstein, N. & Beach A. (to appear). Beyond Dissemination in College science teaching: An Introduction to Four Core Change Strategies. Accepted May 2009 in Journal of College Science Teaching.

  14. The Department of Food Science at Aarhus University

    DEFF Research Database (Denmark)

    2014-01-01

    The Dept. of Food Science at Aarhus University is all about food and food quality. Everyone has an expertise in food whether they are focused on taste, health-promoting qualities, sustainable food production or developing new food products. At Dept. of Food Science we carry out research on a high...

  15. Ethics Centers' Activities and Role in Promoting Ethics in Universities

    Science.gov (United States)

    Safatly, Lise; Itani, Hiba; El-Hajj, Ali; Salem, Dania

    2017-01-01

    In modern and well-structured universities, ethics centers are playing a key role in hosting, organizing, and managing activities to enrich and guide students' ethical thinking and analysis. This paper presents a comprehensive survey of the goals, activities, and administration of ethics centers, as well as their role in promoting ethical thinking…

  16. Research and teaching nuclear sciences at universities in developing countries

    International Nuclear Information System (INIS)

    1981-11-01

    A formulation is given for a set of ground rules to be applied when introducing or improving nuclear science training at the university level in developing countries. Comments are made on the general requirements needed for the teaching of nuclear science at the university and particular suggestions made for the areas of nuclear physics radiochemistry and radiation chemistry and electronics

  17. NASA's astrophysics archives at the National Space Science Data Center

    Science.gov (United States)

    Vansteenberg, M. E.

    1992-01-01

    NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.

  18. Center for Disaster & Humanitarian Assistance Medicine

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Disaster and Humanitarian Assistance Medicine (CDHAM) was formally established at the Uniformed Services University of the Health Sciences (USUHS) by...

  19. International Experience of the Establishing Technology Transfer Centers at the Universities

    Directory of Open Access Journals (Sweden)

    Lysenko, V.S.

    2015-01-01

    Full Text Available The analysis of the experience of creation and operation of technology transfer centers on the basis of US universities with the aim of using positive methods for the creation of such centers in Ukraine is presented.

  20. The Brazilian Science Data Center (BSDC)

    Science.gov (United States)

    de Almeida, Ulisses Barres; Bodmann, Benno; Giommi, Paolo; Brandt, Carlos H.

    Astrophysics and Space Science are becoming increasingly characterised by what is now known as “big data”, the bottlenecks for progress partly shifting from data acquisition to “data mining”. Truth is that the amount and rate of data accumulation in many fields already surpasses the local capabilities for its processing and exploitation, and the efficient conversion of scientific data into knowledge is everywhere a challenge. The result is that, to a large extent, isolated data archives risk being progressively likened to “data graveyards”, where the information stored is not reused for scientific work. Responsible and efficient use of these large data-sets means democratising access and extracting the most science possible from it, which in turn signifies improving data accessibility and integration. Improving data processing capabilities is another important issue specific to researchers and computer scientists of each field. The project presented here wishes to exploit the enormous potential opened up by information technology at our age to advance a model for a science data center in astronomy which aims to expand data accessibility and integration to the largest possible extent and with the greatest efficiency for scientific and educational use. Greater access to data means more people producing and benefiting from information, whereas larger integration of related data from different origins means a greater research potential and increased scientific impact. The project of the BSDC is preoccupied, primarily, with providing tools and solutions for the Brazilian astronomical community. It nevertheless capitalizes on extensive international experience, and is developed in full cooperation with the ASI Science Data Center (ASDC), from the Italian Space Agency, granting it an essential ingredient of internationalisation. The BSDC is Virtual Observatory-complient and part of the “Open Universe”, a global initiative built under the auspices of the

  1. Memphis State University Center for Nuclear Studies progress report

    International Nuclear Information System (INIS)

    1976-01-01

    This quarterly report outlines the progress made by the Center for Nuclear Studies at Memphis State University in the development of specialized educational programs for the nuclear industry through the month of February, 1976

  2. Plan for radiological security at a university health center

    International Nuclear Information System (INIS)

    Huiaman Mendoza, G.M.; Sanchez Riojas, M.M.; Felix JImenez, D.

    1998-01-01

    This work shows a radiological security plan applied to a Basic Radiological Service at a university health center. Factors taken into account were installation designs, equipment operation parameters, work procedures, image system and responsibilities

  3. Integrating Earth System Science Data Into Tribal College and University Curricula

    Science.gov (United States)

    Tilgner, P. J.; Perkey, D. J.

    2007-12-01

    Universities Space Research Association and Sinte Gleska University (SGU) have teamed with eight Tribal Colleges and Universities (TCUs) to participate in a NASA Earth Science funded project, TRibal Earth Science and Technology Education (TRESTE) project which focuses on TCU faculty teaching undergraduate Earth science courses to non-science and science students, with particular attention to TCU faculty teaching K-12 pre- and in- service teachers. The eight partner TCUs are: Blackfeet Community College (BCC), Browning, MT, Fond du Lac Tribal and Community College, Cloquet, MN, Fort Berthold Community College, New Town, ND, Little Priest Tribal College, Winnebago, NE, Oglala Lakota College, Pine Ridge, SD, Sitting Bull College, Fort Yates, ND, Turtle Mountain Community College, Belcourt, ND, United Tribes Technical College (UTTC), Bismarck, ND. The goal of this 3-year project is to promote the use of NASA Earth science data and products in the classroom thereby enabling faculty to inspire undergraduate students to careers in Earth system science, the physical sciences, and related fields of science and engineering. To accomplish this goal we are targeting three areas: (1) course content - enhance the utilization of Earth system science and physical science concepts, (2) teaching methodology - develop problem-based learning (PBL) methods, and (3) tools and technology - increase the utilization of GIS and remote sensing in the classroom. We also have enlisted ESRI, NativeView and the USGS as collaborators. To date we have held an introductory "needs" workshop at the USGS EROS Data Center and two annual workshops, one at UTTC and the second at BCC. During these annual workshops we have divided our time among the three areas. We have modeled the workshops using the PBL or Case Study approach by starting with a story or current event. Topics for the annual workshops have been Drought and Forest and Grassland Fires. These topics led us into the solar radiation budget

  4. Science Ideals and Science Careers in a University Biology Department

    Science.gov (United States)

    Long, David E.

    2014-01-01

    In an ethnographic study set within a biology department of a public university in the United States, incongruity between the ideals and practice of science education are investigated. Against the background of religious conservative students' complaints about evolution in the curriculum, biology faculty describe their political intents for…

  5. Princeton University Materials Academy for underrepresented students

    Science.gov (United States)

    Steinberg, Daniel; Rodriguez Martinez, Sara; Cody, Linda

    Summer 2016 gave underrepresented high school students from Trenton New Jersey the opportunity to learn materials science, sustainability and the physics and chemistry of energy storage from Princeton University professors. New efforts to place this curriculum online so that teachers across the United States can teach materials science as a tool to teach ``real'' interdisciplinary science and meet the new Next Generation Science Standards (NGSS). The Princeton University Materials Academy (PUMA) is an education outreach program for underrepresented high school students. It is part of the Princeton Center for Complex Materials (PCCM), a National Science Foundation (NSF) funded Materials Research Engineering and Science Center (MRSEC). PUMA has been serving the community of Trenton New Jersey which is only eight miles from the Princeton University campus. We reached over 250 students from 2003-2016 with many students repeating for multiple years. 100% of our PUMA students have graduated high school and 98% have gone on for college. This is compared with overall Trenton district graduation rate of 48% and a free and reduced lunch of 83%. We discuss initiatives to share the curriculum online to enhance the reach of PCCM' PUMA and to help teachers use materials science to meet NGSS and give their students opportunities to learn interdisciplinary science. MRSEC, NSF (DMR-1420541).

  6. Pre-Service Teachers’ Attitudes Toward Teaching Science and Their Science Learning at Indonesia Open University

    OpenAIRE

    Nadi SUPRAPTO; Ali MURSID

    2017-01-01

    This study focuses on attitudes toward (teaching) science and the learning of science for primary school among pre-service teachers at the Open University of Indonesia. A three-year longitudinal survey was conducted, involving 379 students as pre-service teachers (PSTs) from the Open University in Surabaya regional office. Attitudes toward (teaching) science’ (ATS) instrument was used to portray PSTs’ preparation for becoming primary school teachers. Data analyses were used, including descrip...

  7. The Graduate School of Climate Sciences, University of Bern

    Science.gov (United States)

    Martin, L.

    2012-04-01

    The Graduate School of Climate Sciences, University of Bern, offers a specialised M.Sc. and a Ph.D. study programme in climate sciences. The graduate school has a highly interdisciplinary profile involving not only natural sciences, but also humanities/history, economics and law. The ten participating institutes with a total of 45 academics provide expertise in long-term climate variability, climate modelling, climate reconstruction, predictability of the future climate and extreme events, the impact of climate change on ecosystems and climate risks for society and economy. The graduate school is fully compliant with the Bologna Accords and collaborates closely with the sister institution C2SM at ETH Zurich by, e.g., jointly organised lectures. There are currently 23 master and 37 doctoral students in the programme. These originate from the University of Bern (28 %), from other Swiss universities (30 %) and from foreign universities (42 %). Comprehensive information about the Graduate School of Climate Sciences is available at http://www.climatestudies.unibe.ch . The M.Sc. in Climate Sciences programme (120 ECTS credits) is designed to attract students from all disciplines in natural sciences and offers them a tailor-made curriculum to reach their career aspirations. The students make their own course selection according to their profile envisaged (specialised versus broad education) and ideally already guided by a job perspective. Selecting the courses and the topic of the master thesis they specialise in one of five fields: climate and earth system science; atmospheric science; economics; economic, social and environmental history; statistics. Several courses are organised jointly with public authorities and the private industry, e.g. from experts working in the insurance business, in weather forecasting or in environmental pollution control. This provides the students hands-on experience and contacts to future employers. The master thesis (60 ECTS) involves the

  8. Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course

    Science.gov (United States)

    Avard, Margaret

    2009-01-01

    In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…

  9. Robotics as an integration subject in the computer science university studies. The experience of the University of Almeria

    Directory of Open Access Journals (Sweden)

    Manuela Berenguel Soria

    2012-11-01

    Full Text Available This work presents a global view of the role of robotics in computer science studies, mainly in university degrees. The main motivation of the use of robotics in these studies deals with the following issues: robotics permits to put in practice many computer science fundamental topics, it is a multidisciplinary area which allows to complete the basic knowledge of any computer science student, it facilitates the practice and learning of basic competences of any engineer (for instance, teamwork, and there is a wide market looking for people with robotics knowledge. These ideas are discussed from our own experience in the University of Almeria acquired through the studies of Computer Science Technical Engineering, Computer Science Engineering, Computer Science Degree and Computer Science Postgraduate.

  10. Off-center observers versus supernovae in inhomogeneous pressure universes

    OpenAIRE

    Balcerzak, Adam; Dabrowski, Mariusz P.; Denkiewicz, Tomasz

    2013-01-01

    Exact luminosity distance and apparent magnitude formulas are applied to Union2 557 supernovae sample in order to constrain possible position of an observer outside of the center of symmetry in spherically symmetric inhomogeneous pressure Stephani universes which are complementary to inhomogeneous density Lema\\^itre-Tolman-Bondi (LTB) void models. Two specific models are investigated. The first which allows a barotropic equation of state at the center of symmetry with no scale factor function...

  11. Using the Theme of Mass Extinctions to Teach Science to Non-Science Major College and University Students

    Science.gov (United States)

    Boness, D. A.

    2013-12-01

    The general public is heavily exposed to "news" and commentary---and arts and entertainment---that either inadvertently misrepresents science or even acts to undermine it. Climate change denial and evolution denial is well funded and pervasive. Even university-educated people get little exposure to the aims, methods, debates, and results of scientific inquiry because unless they earn degrees in science they typically only take one or two introductory science courses at the university level. This presentation reports the development of a new, non-science major Seattle University course on mass extinctions throughout earth history. Seattle University is an urban, Jesuit Catholic university. The topic of mass extinctions was chosen for several reasons: (1) To expose the students to a part of current science that has rich historical roots yet by necessity uses methods and reasoning from geology, geophysics, oceanography, physics, chemistry, biology, and astronomy. This multidisciplinary course provides some coverage of sciences that the student would not typically ever see beyond secondary school. (2) To enable the students to learn enough to follow some of the recent and current debates within science (e.g., mass extinctions by asteroid impact versus massive volcanism, ocean anoxia, and ocean acidification), with the students reading some of the actual literature, such as articles in Science, Nature, or Nature Geoscience. (3) To emphasize the importance of "deep time" as evolutionary biological processes interact with massive environmental change over time scales from hundreds of millions of years down to the seconds and hours of an asteroid or comet strike. (4) To show the effects of climate change in the past, present, and future, due to both natural and anthropogenic causes. (5) To help the student critically evaluate the extent to which their future involves a human-caused mass extinction.

  12. Teachers' professional development needs and current practices at the Alexander Science Center School

    Science.gov (United States)

    Gargus, Gerald Vincent

    This investigation represents an in-depth understanding of teacher professional development at the Alexander Science Center School, a dependent charter museum school established through a partnership between the California Science Center and Los Angeles Unified School District. Three methods of data collection were used. A survey was distributed and collected from the school's teachers, resulting in a prioritized list of teacher professional development needs, as well as a summary of teachers' opinions about the school's existing professional development program. In addition, six key stakeholders in the school's professional development program were interviewed for the study. Finally, documents related to the school's professional development program were analyzed. Data collected from the interviews and documents were used to develop an understand various components of the Alexander Science Center School's professional development program. Teachers identified seven areas that had a high-priority for future professional development including developing skills far working with below-grade-level students, improving the analytical skills of student in mathematics, working with English Language Learners, improving students' overall reading ability levels, developing teachers' content-area knowledge for science, integrating science across the curriculum, and incorporating hands-on activity-based learning strategies to teach science. Professional development needs identified by Alexander Science Center School teachers were categorized based on their focus on content knowledge, pedagogical content knowledge, or curricular knowledge. Analysis of data collected through interviews and documents revealed that the Alexander Science Center School's professional development program consisted of six venues for providing professional development for teachers including weekly "banked time" sessions taking place within the standard school day, grade-level meetings, teacher support

  13. Fernbank Science Center Forest Teacher's Guide-1967.

    Science.gov (United States)

    Cherry, Jim; And Others

    This guide is designed primarily to familiarize teachers with the types of programs available through the Fernback Science Center. Instructional programs involving the use of the Fernbank Forest are outlined. Programs for secondary students include Plant Taxonomy, Field Ecology, Winter Taxonomy of Plants, and Climax Forest Succession. Elementary…

  14. Classroom Activities: Simple Strategies to Incorporate Student-Centered Activities within Undergraduate Science Lectures

    Science.gov (United States)

    Lom, Barbara

    2012-01-01

    The traditional science lecture, where an instructor delivers a carefully crafted monolog to a large audience of students who passively receive the information, has been a popular mode of instruction for centuries. Recent evidence on the science of teaching and learning indicates that learner-centered, active teaching strategies can be more effective learning tools than traditional lectures. Yet most colleges and universities retain lectures as their central instructional method. This article highlights several simple collaborative teaching techniques that can be readily deployed within traditional lecture frameworks to promote active learning. Specifically, this article briefly introduces the techniques of: reader’s theatre, think-pair-share, roundtable, jigsaw, in-class quizzes, and minute papers. Each technique is broadly applicable well beyond neuroscience courses and easily modifiable to serve an instructor’s specific pedagogical goals. The benefits of each technique are described along with specific examples of how each technique might be deployed within a traditional lecture to create more active learning experiences. PMID:23494568

  15. Classroom Activities: Simple Strategies to Incorporate Student-Centered Activities within Undergraduate Science Lectures.

    Science.gov (United States)

    Lom, Barbara

    2012-01-01

    The traditional science lecture, where an instructor delivers a carefully crafted monolog to a large audience of students who passively receive the information, has been a popular mode of instruction for centuries. Recent evidence on the science of teaching and learning indicates that learner-centered, active teaching strategies can be more effective learning tools than traditional lectures. Yet most colleges and universities retain lectures as their central instructional method. This article highlights several simple collaborative teaching techniques that can be readily deployed within traditional lecture frameworks to promote active learning. Specifically, this article briefly introduces the techniques of: reader's theatre, think-pair-share, roundtable, jigsaw, in-class quizzes, and minute papers. Each technique is broadly applicable well beyond neuroscience courses and easily modifiable to serve an instructor's specific pedagogical goals. The benefits of each technique are described along with specific examples of how each technique might be deployed within a traditional lecture to create more active learning experiences.

  16. Creating university spin-offs: a science-based design perspective

    NARCIS (Netherlands)

    Burg, van J.C.; Romme, A.G.L.; Gilsing, V.A.; Reymen, I.M.M.J.

    2008-01-01

    Academic entrepreneurship by means of university spin-offs commercializes technological breakthroughs, which may otherwise remain unexploited. However, many universities face difficulties in creating spin-offs. This article adopts a science-based design approach to connect scholarly research with

  17. Creating university spin-offs : a science-based design perspective

    NARCIS (Netherlands)

    Burg, van J.C.; Romme, A.G.L.; Gilsing, V.A.; Reymen, I.M.M.J.; Dan Remenyi, xx

    2007-01-01

    Academic entrepreneurship by means of university spin-offs commercializes technological breakthroughs, which may otherwise remain unexploited. However, many universities face difficulties in creating spin-offs. This article adopts a science-based design approach, to connect scholarly research with

  18. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; Osteoporosis Research Center and Department of Biomedical Sciences, Creighton University, Omaha, NE 68131, ...

  19. 77 FR 31329 - Northeast Fisheries Science Center, Woods, Hole, MA; Public Meeting/Workshop

    Science.gov (United States)

    2012-05-25

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Northeast Fisheries Science Center, Woods, Hole, MA; Public Meeting/Workshop AGENCY: National Marine Fisheries Service (NMFS.../workshop. SUMMARY: NOAA's Northeast Fisheries Science Center will sponsor a workshop to address the stock...

  20. Dubna - A University Town Exhibition Science Bringing Nations Together

    CERN Multimedia

    1977-01-01

    On the initiative of the JINR Directorate, which was supported by the Academy of Natural Sciences of Russia, the International University of Nature, Society and Man, was set up in 1991. Then, the JINR University Centre was established, where senior students of the leading Russian Physics institutes finish their education under the supervision of JINR scientists and attend practical studies in the JINR Laboratories. This new JINR development concept envisages a gradual conversion to an international centre which will integrate fundamental science, technological studies and education.

  1. Dubna - A University Town Exhibition Science Bringing Nations Together

    CERN Multimedia

    1999-01-01

    On the initiative of the JINR Directorate, which was supported by the Academy of Natural Sciences of Russia, the International University of Nature, Society and Man, was set up in 1991. Then, the JINR University Centre was established, where senior students of the leading Russian Physics institutes finish their education under the supervision of JINR scientists and attend practical studies in the JINR Laboratories. This new JINR development concept envisages a gradual conversion to an international centre which will integrate fundamental science, technological studies and education.

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 1 ... Centre for Nanotechnology Research, VIT University, Vellore 632 014, India; Department of ... Nissan Technology & Business Center India (P) Ltd., Chennai 603002, India ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    , Burkina Faso, Africa. African Policy Center, United Nations Economic Commission for Africa (UNECA), Addis-Ababa, Ethiopia. Department of Civil Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan, ...

  4. Building capacity in implementation science research training at the University of Nairobi.

    Science.gov (United States)

    Osanjo, George O; Oyugi, Julius O; Kibwage, Isaac O; Mwanda, Walter O; Ngugi, Elizabeth N; Otieno, Fredrick C; Ndege, Wycliffe; Child, Mara; Farquhar, Carey; Penner, Jeremy; Talib, Zohray; Kiarie, James N

    2016-03-08

    Health care systems in sub-Saharan Africa, and globally, grapple with the problem of closing the gap between evidence-based health interventions and actual practice in health service settings. It is essential for health care systems, especially in low-resource settings, to increase capacity to implement evidence-based practices, by training professionals in implementation science. With support from the Medical Education Partnership Initiative, the University of Nairobi has developed a training program to build local capacity for implementation science. This paper describes how the University of Nairobi leveraged resources from the Medical Education Partnership to develop an institutional program that provides training and mentoring in implementation science, builds relationships between researchers and implementers, and identifies local research priorities for implementation science. The curriculum content includes core material in implementation science theory, methods, and experiences. The program adopts a team mentoring and supervision approach, in which fellows are matched with mentors at the University of Nairobi and partnering institutions: University of Washington, Seattle, and University of Maryland, Baltimore. A survey of program participants showed a high degree satisfaction with most aspects of the program, including the content, duration, and attachment sites. A key strength of the fellowship program is the partnership approach, which leverages innovative use of information technology to offer diverse perspectives, and a team model for mentorship and supervision. As health care systems and training institutions seek new approaches to increase capacity in implementation science, the University of Nairobi Implementation Science Fellowship program can be a model for health educators and administrators who wish to develop their program and curricula.

  5. Annual report of the Tandem Accelerator Center, University of Tsukuba

    International Nuclear Information System (INIS)

    1985-01-01

    This annual report covers the work carried out at the Tandem Accelerator Center, University of Tsukuba, during fiscal year 1984. The 12 UD Pelletron tandem accelerator was operated very stably. In addition, the heavy ion post accelerator with interdigital-H structure has worked well, providing additional energy of 2 MeV per charge for heavy ions. The constructions of a new Lamb-shift polarized ion source, a multi-computer control system for the ion sources of the UTTA, an electrostatic inflection system of incident ions for the UTTA, a new beam bunching system, and a new SF 6 gas handling system were under way. The development and performance test of various radiation detector systems were carried out. Two thirds of the research works were performed by using the beam from the Lamb-shift polarized ion source (PIS). A newly constructed fast spin state interchange control system for the PIS made polarization experiment more effective and accurate. The research activities in the fields of nuclear physics, atomic and solid state physics, and biology and medical science are reported. (Kako, I.)

  6. Program Analysis and Design Requirements for tne National Science Center

    Science.gov (United States)

    1991-02-01

    shell of an old exposition building with secondhand furniture to display exhibit items, to the Ontario Science Center, which is a more modem building...Storage Area Pigeonhole storage cabinets for children’s school books , coats, and boots are provided at the Indianapolis Center. The Ontario center...used shopping carts for school groups to store their coats and books . They do not work well according to center staff and are cumbersome and unsightly

  7. Teachers Learning to Teach Science by Doing Science at the University of Arizona

    Science.gov (United States)

    Mangin, K. L.; Thompson, R. M.; Wilch, M.

    2006-12-01

    Many departments across the College of Science at the University of Arizona provide the opportunity for teachers to do original scientific research. These programs either provide skills and curriculum that can be translated into the classroom or include direct participation by K-12 students with their teachers. This paper introduces three of the many unique programs that UA offers for teacher professional development. The College of Science offers a teacher professional development course to accompany a public lecture series that runs each semester on a different topic of current social and scientific interest. During the Spring 2006 semester, the series subject was evolution, with attendance at each lecture running in excess of 600. This fall, the topic is climate change. In addition to attending lectures and participating in group discussions with the speakers, the teachers conduct research into regional climate change using the Western Regional Climate Center's publicly available, web-hosted climate data. The teachers brainstorm about possible influences on the data other than anthropogenic alteration of atmospheric composition, and control for these influences in their experimental design as best they can. Such influences might include urbanization, instrumental change, and natural variability. The College of Science is developing collaborations with community partners, including a local high school science magnet and a high school in the Galapagos Islands. Among several programs created in partnership with Tucson High School, Science and Nature in Tandem for Youth (SANITY) brings science teachers and students to the Southwest Research Station to conduct ecological research of their own design including the investigation of the effects of drought and other physical factors on the biosphere. The Southwest Research Station is located in the Chiricahua Mountains, one of the so-called "sky islands" and a crucial cradle of biodiversity vulnerable to the effects of

  8. The scientific production in health and biological sciences of the top 20 Brazilian universities

    Directory of Open Access Journals (Sweden)

    R. Zorzetto

    2006-12-01

    Full Text Available Brazilian scientific output exhibited a 4-fold increase in the last two decades because of the stability of the investment in research and development activities and of changes in the policies of the main funding agencies. Most of this production is concentrated in public universities and research institutes located in the richest part of the country. Among all areas of knowledge, the most productive are Health and Biological Sciences. During the 1998-2002 period these areas presented heterogeneous growth ranging from 4.5% (Pharmacology to 191% (Psychiatry, with a median growth rate of 47.2%. In order to identify and rank the 20 most prolific institutions in these areas, searches were made in three databases (DataCAPES, ISI and MEDLINE which permitted the identification of 109,507 original articles produced by the 592 Graduate Programs in Health and Biological Sciences offered by 118 public universities and research institutes. The 20 most productive centers, ranked according to the total number of ISI-indexed articles published during the 1998-2003 period, produced 78.7% of the papers in these areas and are strongly concentrated in the Southern part of the country, mainly in São Paulo State.

  9. The Postgraduate Study of Macromolecular Sciences at the University of Zagreb (1971-1980)

    OpenAIRE

    Kunst, B.; Dezelic, D.; Veksli, Z.

    2008-01-01

    The postgraduate study of macromolecular sciences (PSMS) was established at the University of Zagreb in 1971 as a university study in the time of expressed interdisciplinary permeation of natural sciences - physics, chemistry and biology, and application of their achievements in technologicaldisciplines. PSMS was established by a group of prominent university professors from the schools of Science, Chemical Technology, Pharmacy and Medicine, as well as from the Institute of Biology. The study...

  10. University of Washington Center for Child Environmental Health Risks Research

    Data.gov (United States)

    Federal Laboratory Consortium — The theme of the University of Washington based Center for Child Environmental Health Risks Research (CHC) is understanding the biochemical, molecular and exposure...

  11. HEASARC - The High Energy Astrophysics Science Archive Research Center

    Science.gov (United States)

    Smale, Alan P.

    2011-01-01

    The High Energy Astrophysics Science Archive Research Center (HEASARC) is NASA's archive for high-energy astrophysics and cosmic microwave background (CMB) data, supporting the broad science goals of NASA's Physics of the Cosmos theme. It provides vital scientific infrastructure to the community by standardizing science data formats and analysis programs, providing open access to NASA resources, and implementing powerful archive interfaces. Over the next five years the HEASARC will ingest observations from up to 12 operating missions, while serving data from these and over 30 archival missions to the community. The HEASARC archive presently contains over 37 TB of data, and will contain over 60 TB by the end of 2014. The HEASARC continues to secure major cost savings for NASA missions, providing a reusable mission-independent framework for reducing, analyzing, and archiving data. This approach was recognized in the NRC Portals to the Universe report (2007) as one of the HEASARC's great strengths. This poster describes the past and current activities of the HEASARC and our anticipated developments in coming years. These include preparations to support upcoming high energy missions (NuSTAR, Astro-H, GEMS) and ground-based and sub-orbital CMB experiments, as well as continued support of missions currently operating (Chandra, Fermi, RXTE, Suzaku, Swift, XMM-Newton and INTEGRAL). In 2012 the HEASARC (which now includes LAMBDA) will support the final nine-year WMAP data release. The HEASARC is also upgrading its archive querying and retrieval software with the new Xamin system in early release - and building on opportunities afforded by the growth of the Virtual Observatory and recent developments in virtual environments and cloud computing.

  12. Students build glovebox at Space Science Center

    Science.gov (United States)

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  13. The Lederman Science Center: Past, Present, Future

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, Marjorie G.; /Fermilab

    2011-11-01

    For 30 years, Fermilab has offered K-12 education programs, building bridges between the Lab and the community. The Lederman Science Center is our home. We host field trips and tours, visit schools, offer classes and professional development workshops, host special events, support internships and have a strong web presence. We develop programs based on identified needs, offer programs with peer-leaders and improve programs from participant feedback. For some we create interest; for others we build understanding and develop relationships, engaging participants in scientific exploration. We explain how we created the Center, its programs, and what the future holds.

  14. Availability and Overlap of Quality Computer Science Journal Holdings in Selected University Libraries in Malaysia

    OpenAIRE

    Zainab, A.N.; Ng, S.L.

    2003-01-01

    The study reveals the availability status of quality journals in the field of computer science held in the libraries of the University of Malaya, (UM), University of Science Malaysia (USM), University of Technology Malaysia (UTM), National University of Malaysia (UKM) and University Putra Malaysia (UPM). These universities are selected since they offer degree programmes in computer science. The study also investigates the degree of overlaps and unique titles in the five libraries. The Univers...

  15. Think globally, act locally, and collaborate internationally: global health sciences at the University of California, San Francisco.

    Science.gov (United States)

    Macfarlane, Sarah B; Agabian, Nina; Novotny, Thomas E; Rutherford, George W; Stewart, Christopher C; Debas, Haile T

    2008-02-01

    The University of California, San Francisco (UCSF) established Global Health Sciences (GHS) as a campus-wide initiative in 2003. The mission of GHS is to facilitate UCSF's engagement in global health across its four schools by (1) creating a supportive environment that promotes UCSF's leadership role in global health, (2) providing education and training in global health, (3) convening and coordinating global health research activities, (4) establishing global health outreach programs locally in San Francisco and California, (5) partnering with academic centers, especially less-well-resourced institutions in low- and middle-income countries, and (6) developing and collaborating in international initiatives that address neglected global health issues.GHS education programs include a master of science (MS) program expected to start in September 2008, an introduction to global health for UCSF residents, and a year of training at UCSF for MS and PhD students from low- and middle-income countries that is "sandwiched" between years in their own education program and results in a UCSF Sandwich Certificate. GHS's work with partner institutions in California has a preliminary focus on migration and health, and its work with academic centers in low- and middle-income countries focuses primarily on academic partnerships to train human resources for health. Recognizing that the existing academic structure at UCSF may be inadequate to address the complexity of global health threats in the 21st century, GHS is working with the nine other campuses of the University of California to develop a university-wide transdisciplinary initiative in global health.

  16. Science Motivation of University Students: Achievement Goals as a Predictor

    Science.gov (United States)

    Arslan, Serhat; Akcaalan, Mehmet; Yurdakul, Cengiz

    2017-01-01

    The objective of this investigation is to make a study of the relationship between achievement goals and science motivation. Research data were collected from 295 university students. Achievement goals and science motivation scales were utilized as measure tools. The link between achievement goals orientation and science motivation was…

  17. Research Centers & Consortia | College of Engineering & Applied Science

    Science.gov (United States)

    Academics Admission Student Life Research Schools & Colleges Libraries Athletics Centers & ; Applied Science Powerful Ideas. Proven Results. Search for: Go This site All UWM Search Site Menu Skip to content Academics Undergraduate Programs Majors Minors Integrated Bachelor/Master Degree Applied Computing

  18. Life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Day, L. (ed.)

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs. (MHB)

  19. Life sciences

    International Nuclear Information System (INIS)

    Day, L.

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs

  20. University of Maryland MRSEC - Facilities: VTSTM

    Science.gov (United States)

    . University of Maryland Materials Research Science and Engineering Center Home About Us Leadership . Instrument Designation: VTSTM Omicron Nanotechnology UHV-VT-STM Nanonis SPM Controller Key Specifications

  1. Investigating University Students' Preferences to Science Communication Skills: A Case of Prospective Science Teacher in Indonesia

    Science.gov (United States)

    Suprapto, Nadi; Ku, Chih-Hsiung

    2016-01-01

    The purpose of this study was to investigate Indonesian university students' preferences to science communication skills. Data collected from 251 students who were majoring in science education program. The Learning Preferences to Science Communication (LPSC) questionnaire was developed with Indonesian language and validated through an exploratory…

  2. Current status of Hiroshima Synchrotron Radiation Center

    International Nuclear Information System (INIS)

    Taniguchi, Masaki

    2000-01-01

    The Hiroshima Synchrotron Radiation Center is a common facility for both research and education in the field of synchrotron radiation science. The role of the center is to promote original research, training of young scientists, international exchange and cooperative research with neighbouring universities, public organizations and industries. (author)

  3. ATHENA: Remote Sensing Science Center for Cultural Heritage in Cyprus

    Science.gov (United States)

    Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriakos; Cuca, Branka; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2016-04-01

    The Cultural Heritage (CH) sector, especially those of monuments and sites has always been facing a number of challenges from environmental pressure, pollution, human intervention from tourism to destruction by terrorism.Within this context, CH professionals are seeking to improve currently used methodologies, in order to better understand, protect and valorise the common European past and common identity. "ATHENA" H2020-TWINN-2015 project will seek to improve and expand the capabilities of the Cyprus University of Technology, involving professionals dealing with remote sensing technologies for supporting CH sector from the National Research Center of Italy (CNR) and German Aerospace Centre (DLR). The ATHENA centre will be devoted to the development, introduction and systematic use of advanced remote sensing science and technologies in the field of archaeology, built cultural heritage, their multi-temporal analysis and interpretation and the distant monitoring of their natural and anthropogenic environment in the area of Eastern Mediterranean.

  4. Dubna - A University Town Exhibition Science Bringing Nations Together

    CERN Multimedia

    2000-01-01

    1994 marked the opening of the Dubna International University of Nature, Society and Man. It was established on the initiative of the JINR Directorate and supported by the Academy of Natural Sciences of Russia. An integral part of the University is the JINR University Centre which offers educational programmes in high energy physics, nuclear physics, nuclear methods in condensed matter physics, applied physics, and radio-biology.

  5. Russian center of nuclear science and education is the way of nuclear engineering skilled personnel training

    International Nuclear Information System (INIS)

    Murogov, V.M.; Sal'nikov, N.L.

    2006-01-01

    Nuclear power engineering as the key of nuclear technologies is not only the element of the power market but also the basis of the country's social-economic progress. Obninsk as the first science town in Russia is the ideal place for the creation of integrated Science-Research Center of Nuclear Science and Technologies - The Russian Center of Nuclear Science and Education (Center for conservation and development of nuclear knowledge) [ru

  6. The Maryland nuclear science baccalaureate degree program: The university perspective

    International Nuclear Information System (INIS)

    Janke, T.A.

    1989-01-01

    Nuclear utilities' efforts in response to industry-wide pressures to provide operations staff with degree opportunities have encountered formidable barriers. This paper describes, from the university's perspective, the development and operation of the University of Maryland University College (UMUC) special baccalaureate program in nuclear science. This program has successfully overcome these problems to provide degree education on-site, on-line, and on time. Program delivery began in 1984 with one utility and a single site. It is currently delivered at eight sites under contract to six utilities with a total active student count of over 500. The first graduates are expected in 1989. The program is an accredited university program and enjoys licensure approval from the six states within which it operates. In addition to meeting US Nuclear Regulatory Commission proposed guidelines for degreed operators, the program increasingly appears as part of utility management development programs for all plant personnel and a factor in employee retention. The owner utilities, the University of Maryland, and the growing user's group are committed to the academic integrity, technical capability, and responsiveness of the program. The full support of this partnership speaks well for the long-term service of the Bachelor of Science in Nuclear Science program to the nuclear power industry

  7. Center for the Study of Traumatic Stress

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Department of Psychiatry of our federal medical school, the Uniformed Services University of the Health Sciences (USUHS), the Center was established...

  8. GLOBE Observer and the Association of Science & Technology Centers: Leveraging Citizen Science and Partnerships for an International Science Experiment to Build Climate Literacy

    Science.gov (United States)

    Riebeek Kohl, H.; Chambers, L. H.; Murphy, T.

    2016-12-01

    For more that 20 years, the Global Learning and Observations to Benefit the Environment (GLOBE) Program has sought to increase environment literacy in students by involving them in the process of data collection and scientific research. In 2016, the program expanded to accept observations from citizen scientists of all ages through a relatively simple app. Called GLOBE Observer, the new program aims to help participants feel connected to a global community focused on advancing the scientific understanding of Earth system science while building climate literacy among participants and increasing valuable environmental data points to expand both student and scientific research. In October 2016, GLOBE Observer partnered with the Association of Science & Technology Centers (ASTC) in an international science experiment in which museums and patrons around the world collected cloud observations through GLOBE Observer to create a global cloud map in support of NASA satellite science. The experiment was an element of the International Science Center and Science Museum Day, an event planned in partnership with UNESCO and ASTC. Museums and science centers provided the climate context for the observations, while GLOBE Observer offered a uniform experience and a digital platform to build a connected global community. This talk will introduce GLOBE Observer and will present the results of the experiment, including evaluation feedback on gains in climate literacy through the event.

  9. Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle

    Science.gov (United States)

    2015-08-03

    AND SUBTITLE Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle...Center program to be able to expose Science Technology, Engineering and Mathematics (STEM) space-inspired science centers for DC Metro beltway schools

  10. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    Science.gov (United States)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  11. Energy Frontier Research Centers: A View from Senior EFRC Representatives (2011 EFRC Summit, panel session)

    International Nuclear Information System (INIS)

    Drell, Persis; Armstrong, Neal; Carter, Emily; DePaolo, Don; Gunnoe, Brent

    2011-01-01

    A distinguished panel of scientists from the EFRC community provide their perspective on the importance of EFRCs for addressing critical energy needs at the 2011 EFRC Summit. Persis Drell, Director at SLAC, served as moderator. Panel members are Neal Armstrong (Director of the Center for Interface Science: Solar Electric Materials, led by the University of Arizona), Emily Carter (Co-Director of the Combustion EFRC, led by Princeton University. She is also Team Leader of the Heterogeneous Functional Materials Center, led by the University of South Carolina), Don DePaolo (Director of the Center for Nanoscale Control of Geologic CO2, led by LBNL), and Brent Gunnoe (Director of the Center for Catalytic Hydrocarbon Functionalization, led by the University of Virginia). The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate

  12. The relationship between knowledge of ergonomic science and the occupational health among nursing staff affiliated to Golestan University of Medical Sciences

    Science.gov (United States)

    Juibari, Leila; Sanagu, Akram; Farrokhi, Nafiseh

    2010-01-01

    BACKGROUND: Occupational hazards are much higher for nurses than many other jobs and neglecting this fact may reduce the quality of nursing services. The aim of this study was to investigate the relationship between knowledge of ergonomics and occupational health among the nursing staff affiliated to Golestan University of Medical Sciences. METHODS: It was a cross-sectional analytical study on 423 nursing staff working in various medical centers affiliated to Golestan University of Medical Sciences in 2008, selected by quota randomized sampling. Data collection instrument was Ergonomics Questionnaire, which consisted of 72 questions. Cronbach’s alpha for main sections of the questionnaire was 0.8, 0.8 and 0.9. Descriptive and analytical tests were used for data analysis and an alpha error of 5% was considered. RESULTS: Of all the subjects, 36.1% had 5-10 years of work experience, 61.9% had a good knowledge of ergonomic principles, and 83% were exposed to a mild level of occupational hazards. There was no significant relationship between knowledge of ergonomics and occupational health (p = 0.08). The relationships between knowledge of ergonomics and age, gender, marital status, work experience, the type, and the location of service were significant (p ergonomics can provide a healthier work environment for nurses and optimize human resource efficiency. PMID:21589793

  13. Predicting Early Center Care Utilization in a Context of Universal Access

    Science.gov (United States)

    Zachrisson, Henrik Daae; Janson, Harald; Naerde, Ane

    2013-01-01

    This paper reports predictors for center care utilization prior to 18 months of age in Norway, a country with a welfare system providing up to one-year paid parental leave and universal access to subsidized and publicly regulated center care. A community sample of 1103 families was interviewed about demographics, family, and child characteristics…

  14. The National Climate Change and Wildlife Science Center annual report for 2013

    Science.gov (United States)

    Varela-Acevedo, Elda

    2014-01-01

    In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to respond to the demands of natural resource managers for rigorous scientific information and effective tools for assessing and responding to climate change. Located at the USGS National Headquarters in Reston, Va., the NCCWSC has invested more than $93 million (through FY13) in cutting-edge climate change research and, in response to Secretarial Order No. 3289, established and is managing eight regional Department of Interior (DOI) Climate Science Centers (CSCs). In 2013:

  15. University rankings in computer science

    DEFF Research Database (Denmark)

    Ehret, Philip; Zuccala, Alesia Ann; Gipp, Bela

    2017-01-01

    This is a research-in-progress paper concerning two types of institutional rankings, the Leiden and QS World ranking, and their relationship to a list of universities’ ‘geo-based’ impact scores, and Computing Research and Education Conference (CORE) participation scores in the field of computer...... science. A ‘geo-based’ impact measure examines the geographical distribution of incoming citations to a particular university’s journal articles for a specific period of time. It takes into account both the number of citations and the geographical variability in these citations. The CORE participation...... score is calculated on the basis of the number of weighted proceedings papers that a university has contributed to either an A*, A, B, or C conference as ranked by the Computing Research and Education Association of Australasia. In addition to calculating the correlations between the distinct university...

  16. The prevention research centers' managing epilepsy well network.

    Science.gov (United States)

    DiIorio, Colleen K; Bamps, Yvan A; Edwards, Ariele L; Escoffery, Cam; Thompson, Nancy J; Begley, Charles E; Shegog, Ross; Clark, Noreen M; Selwa, Linda; Stoll, Shelley C; Fraser, Robert T; Ciechanowski, Paul; Johnson, Erica K; Kobau, Rosemarie; Price, Patricia H

    2010-11-01

    The Managing Epilepsy Well (MEW) Network was created in 2007 by the Centers for Disease Control and Prevention's (CDC) Prevention Research Centers and Epilepsy Program to promote epilepsy self-management research and to improve the quality of life for people with epilepsy. MEW Network membership comprises four collaborating centers (Emory University, University of Texas Health Science Center at Houston, University of Michigan, and University of Washington), representatives from CDC, affiliate members, and community stakeholders. This article describes the MEW Network's background, mission statement, research agenda, and structure. Exploratory and intervention studies conducted by individual collaborating centers are described, as are Network collaborative projects, including a multisite depression prevention intervention and the development of a standard measure of epilepsy self-management. Communication strategies and examples of research translation programs are discussed. The conclusion outlines the Network's role in the future development and dissemination of evidence-based epilepsy self-management programs. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. KBTAC [Knowledge-Based Technology Application Center] - The EPRI [Electric Power Research Institute]-sponsored knowledge-based technology application center

    International Nuclear Information System (INIS)

    Meyer, W.; Wood, R.M.; Scherer, J.

    1990-01-01

    The Electric Power Research Institute (EPRI) has announced the establishment of the Knowledge-Based Technology Application Center (KBTAC), whose goal is to assist member utilities with expert system technology and applications. The center, established November 7, 1989, is located on the campus of Syracuse University, Syracuse, New York, and will be operated jointly by Kaman Sciences Corporation and the university. The mission of the KBTAC is to assist EPRI member utilities to develop, test, and transfer expert systems into nuclear power plant operations, maintenance, and administration

  18. Developing a Science Cafe Program for Your University Library

    Science.gov (United States)

    Scaramozzino, Jeanine Marie; Trujillo, Catherine

    2010-01-01

    The Science Cafe is a national movement that attempts to foster community dialog and inquiry on scientific topics in informal venues such as coffee houses, bookstores, restaurants and bars. The California Polytechnic State University, San Luis Obispo, Robert E. Kennedy Library staff have taken the Science Cafe model out of bars and cafes and into…

  19. 77 FR 51564 - Notice of Inventory Completion: Herrett Center for Arts and Science, College of Southern Idaho...

    Science.gov (United States)

    2012-08-24

    ... Inventory Completion: Herrett Center for Arts and Science, College of Southern Idaho, Twin Falls, ID AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Herrett Center for Arts and Science, College... associated funerary object may contact the Herrett Center for Arts and Science, College of Southern Idaho...

  20. Early Opportunities Research Partnership Between Howard University, University of Maryland Baltimore County and NASA Goddard for Engaging Underrepresented STEM Students in Earth and Space Sciences

    Science.gov (United States)

    Misra, P.; Venable, D. D.; Hoban, S.; Demoz, B.; Bleacher, L.; Meeson, B. W.; Farrell, W. M.

    2017-12-01

    Howard University, University of Maryland Baltimore County and NASA Goddard Space Flight Center (GSFC) are collaborating to engage underrepresented STEM students and expose them to an early career pathway in NASA-related Earth & Space Science research. The major goal is to instill interest in Earth and Space Science to STEM majors early in their academic careers, so that they become engaged in ongoing NASA-related research, motivated to pursue STEM careers, and perhaps become part of the future NASA workforce. The collaboration builds on a program established by NASA's Dynamic Response of the Environments of Asteroids, the Moon and the moons of Mars (DREAM2) team to engage underrepresented students from Howard in summer internships. Howard leveraged this program to expand via NASA's Minority University Research and Education Project (MUREP) funding. The project pairs Howard students with GSFC mentors and engages them in cutting-edge Earth and Space Science research throughout their undergraduate tenure. The project takes a multi-faceted approach, with each year of the program specifically tailored to each student's strengths and addressing their weaknesses, so that they experience a wide array of enriching research and professional development activities that help them grow both academically and professionally. During the academic year, the students are at Howard taking a full load of courses towards satisfying their degree requirements and engaging in research with their GSFC mentors via regular telecons, e-mail exchanges, video chats & on an average one visit per semester to GSFC for an in-person meeting with their research mentor. The students extend their research with full-time summer internships at GSFC, culminating in a Capstone Project and Senior Thesis. As a result, these Early Opportunities Program students, who have undergone rigorous training in the Earth and Space Sciences, are expected to be well-prepared for graduate school and the NASA workforce.

  1. Learner-centered teaching in the college science classroom: a practical guide for teaching assistants, instructors, and professors

    Science.gov (United States)

    Dominguez, Margaret Z.; Vorndran, Shelby

    2014-09-01

    The Office of Instruction and Assessment at the University of Arizona currently offers a Certificate in College Teaching Program. The objective of this program is to develop the competencies necessary to teach effectively in higher education today, with an emphasis on learner-centered teaching. This type of teaching methodology has repeatedly shown to have superior effects compared to traditional teacher-centered approaches. The success of this approach has been proven in both short term and long term teaching scenarios. Students must actively participate in class, which allows for the development of depth of understanding, acquisition of critical thinking, and problem-solving skills. As optical science graduate students completing the teaching program certificate, we taught a recitation class for OPTI 370: Photonics and Lasers for two consecutive years. The recitation was an optional 1-hour long session to supplement the course lectures. This recitation received positive feedback and learner-centered teaching was shown to be a successful method for engaging students in science, specifically in optical sciences following an inquiry driven format. This paper is intended as a guide for interactive, multifaceted teaching, due to the fact that there are a variety of learning styles found in every classroom. The techniques outlined can be implemented in many formats: a full course, recitation session, office hours and tutoring. This guide is practical and includes only the most effective and efficient strategies learned while also addressing the challenges faced, such as formulating engaging questions, using wait time and encouraging shy students.

  2. Small neutron sources as centers for innovation and science

    International Nuclear Information System (INIS)

    Baxter, D.V.

    2009-01-01

    The education and training of the next generation of scientists who will form the user base for the Spallation Neutron Source (SNS) remains a significant issue for the future success of this national facility. These scientists will be drawn from a wide variety of disciplines (physics, chemistry, biology, and engineering) and therefore the development of an effective interdisciplinary training program represents a significant challenge. In addition, effective test facilities to develop the full potential of pulsed neutron sources for science do not exist. Each of these problems represents a significant hurdle for the future health of neutron science in this country. An essential part of the solution to both problems is to get neutron sources of useful intensities into the hands of researchers and students at universities, where faculty can teach students about neutron production and the utility of neutrons for solving scientific problems. Due to a combination of developments in proton accelerator technology, neutron optics, cold neutron moderators, computer technology, and small-angle neutron scattering (SANS) instrumentation, it is now technically possible and cost effective to construct a pulsed cold neutron source suitable for use in a university setting and devoted to studies of nano structures in the fields of materials science, polymers, microemulsions, and biology. Such a source, based on (p,n) reactions in light nuclei induced by a few MeV pulsed proton beam coupled to a cold neutron moderator, would also be ideal for the study of a number of technical issues which are essential for the development of neutron science such as cold and perhaps ultracold neutron moderators, neutron optical devices, neutron detector technology, and transparent DAQ/user interfaces. At the Indiana University Cyclotron Facility (IUCF) we possess almost all of the required instrumentation and expertise to efficiently launch the first serious attempt to develop an intense pulsed cold

  3. NASA’s Universe of Learning: Engaging Subject Matter Experts to Support Museum Alliance Science Briefings

    Science.gov (United States)

    Marcucci, Emma; Slivinski, Carolyn; Lawton, Brandon L.; Smith, Denise A.; Squires, Gordon K.; Biferno, Anya A.; Lestition, Kathleen; Cominsky, Lynn R.; Lee, Janice C.; Rivera, Thalia; Walker, Allyson; Spisak, Marilyn

    2018-06-01

    NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University and is part of the NASA SMD Science Activation Collective. The NASA’s Universe of Learning projects pull on the expertise of subject matter experts (scientist and engineers) from across the broad range of NASA Astrophysics themes and missions. One such project, which draws strongly on the expertise of the community, is the NASA’s Universe of Learning Science Briefings, which is done in collaboration with the NASA Museum Alliance. This collaboration presents a monthly hour-long discussion on relevant NASA astrophysics topics or events to an audience composed largely of informal educators from informal learning environments. These professional learning opportunities use experts and resources within the astronomical community to support increased interest and engagement of the informal learning community in NASA Astrophysics-related concepts and events. Briefings are designed to create a foundation for this audience using (1) broad science themes, (2) special events, or (3) breaking science news. The NASA’s Universe of Learning team engages subject matter experts to be speakers and present their science at these briefings to provide a direct connection to NASA Astrophysics science and provide the audience an opportunity to interact directly with scientists and engineers involved in NASA missions. To maximize the usefulness of the Museum Alliance Science Briefings, each briefing highlights resources related to the science theme to support informal educators in incorporating science content into their venues and/or interactions with the public. During this

  4. Financing Public Higher Education: The Impact of Responsibility Center Management on a Public Research University

    Science.gov (United States)

    Pappone, David J.

    2016-01-01

    To explore the impacts on public universities of implementing an incentive-based budgeting system, this dissertation focuses on one university's extensive experience with Responsibility Center Management. The financial and non-financial impacts of Responsibility Center Management will be considered by examining the extent to which commonly held…

  5. Behavioural sciences at university of health sciences: the way forward

    International Nuclear Information System (INIS)

    Khan, J.S.; Mukhtar, O.; Tabasum, S.

    2016-01-01

    Background: The association of medical ethics with teaching and training and health profession has been informal, largely dependent on role modelling and the social contract of the physicians with the community that they abide by. This study was conducted to examine the effect, if any, of introducing the subject of Behavioural Sciences on students performance in the clinical years viva voce and patient interactions components of the examinations. Methods: A prospective study on four cohorts of students at UHS from 2007 to 2012 (8,155 candidates). Reliability was calculated through Cronbach Alpha. Linear Regression Analysis was applied to determine the relationship between the scores of Basic Medical Sciences, Behavioural Sciences and Forensic medicine with the viva voce and Structured Stations marks of the Clinical Sciences in OSCE. Gender and demographics analysis was also done. Results: Cronbach Alpha was 0.47, 0.63, 0.67 and 0.53 for the Papers of Behavioural Sciences from 2007 to 2010 respectively. Poor predictive value of Behavioural Sciences for performance in the clinical years viva voce and OSCE was identified. Basic Medical Sciences and Forensic Medicine were statistically significant predictors for the performance of female candidates in all four cohorts of the study (p<0.05). In Central Punjab, Behavioural Sciences statistically significantly predicted for better performance in all four cohorts of the study (p<0.05). Conclusion: It is premature to understand the results of Behavioural Sciences teaching at University of Health Sciences (UHS). We can still safely conclude that it can only have a positive sustained effect on the healthcare delivery systems and patient care in Pakistan if it is integrated within each subject and taught and learned not as a theoretical construct but rather an evaluation of one values within the code of conduct of medical professionalism in the larger context of the societal and cultural norms. (author)

  6. Measuring University Students' Perceived Self-Efficacy in Science Communication in Middle and High Schools

    Science.gov (United States)

    Chi, Shaohui; Liu, Xiufeng; Gardella, Joseph A.

    2016-01-01

    Service learning typically involves university students in teaching and learning activities for middle and high school students, however, measurement of university students' self-efficacy in science communication is still lacking. In this study, an instrument to measure university students' perceived self-efficacy in communicating science to…

  7. The Postgraduate Study of Macromolecular Sciences at the University of Zagreb (1971– 1980)

    OpenAIRE

    Deželić, D.; Kunst, B.; Veksli, Zorica

    2008-01-01

    The postgraduate study of macromolecular sciences (PSMS) was established at the University of Zagreb in 1971 as a university study in the time of expressed interdisciplinary permeation of natural sciences - physics, chemistry and biology, and application of their achievements in technological disciplines. PSMS was established by a group of prominent university professors from the schools of Science, Chemical Technology, Pharmacy and Medicine, as well as from the Institute of Biology. The s...

  8. Bulimia: Issues a University Counseling Center Needs To Address.

    Science.gov (United States)

    Whitner, Phillip A.; Shetterly, Arminta

    The eating disorder known as bulimia is a relatively new and baffling phenomenon. This paper raises questions that college and university counseling center professionals need to address regarding this phenomenon. The first section focuses on defining the term "bulimia" and its evolution. The second section identifies numerous symptoms that need to…

  9. Investigation of Science Faculty with Education Specialties within the Largest University System in the United States

    OpenAIRE

    Bush, Seth D; Pelaez, Nancy; Rudd, James A, II; Stevens, Michael T; Tanner, Kimberly D; Williams, Kathy, PhD

    2011-01-01

    Efforts to improve science education include university science departments hiring Science Faculty with Education Specialties (SFES), scientists who take on specialized roles in science education within their discipline. Although these positions have existed for decades and may be growing more common, few reports have investigated the SFES approach to improving science education. We present comprehensive data on the SFES in the California State University (CSU) system, the largest university ...

  10. Sexual Violence Screening Practices of Student Health Centers Located on Universities in Florida

    Science.gov (United States)

    Halstead, Valerie; Williams, Jessica R.; Gattamorta, Karina; Gonzalez-Guarda, Rosa

    2017-01-01

    Objective: The purpose of this study is to describe current sexual violence screening practices of student health centers located on universities in Florida. Participants: Institutional level data was collected from 33 student health centers from November 2015 through January 2016. The student health centers were located on public or private…

  11. R&D Characteristics and Organizational Structure: Case Studies of University-Industry Research Centers

    Science.gov (United States)

    Hart, Maureen McArthur

    2013-01-01

    Within the past few decades, university-industry research centers have been developed in large numbers and emphasized as a valuable policy tool for innovation. Yet little is known about the heterogeneity of organizational structure within these centers, which has implications regarding policy for and management of these centers. This dissertation…

  12. An Exploration of Hispanic Mothers' Culturally Sustaining Experiences at an Informal Science Center

    Science.gov (United States)

    Weiland, Ingrid

    2015-01-01

    Science education reform focuses on learner-centered instruction within contexts that support learners' sociocultural experiences. The purpose of this study was to explore Hispanic mothers' experiences as accompanying adults at an informal science center within the context of culturally sustaining experiences, which include the fluidity…

  13. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Hules, J. [ed.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  14. Science at the interstices: an evolution in the academy.

    Science.gov (United States)

    Balser, Jeffrey R; Baruchin, Andrea

    2008-09-01

    Biomedical science is at an evolutionary turning point. Many of the rate-limiting steps to realizing the next generation of personalized, highly targeted diagnostics and therapeutics rest at the interstices between biomedical science and the classic, university-based disciplines, such as physics, mathematics, computational science, engineering, social sciences, business, and law. Institutes, centers, or other entities created to foster interdisciplinary science are rapidly forming to tackle these formidable challenges, but they are plagued with substantive barriers, born of traditions, processes, and culture, which impede scientific progress and endanger success. Without a more seamless interdisciplinary framework, academic health centers will struggle to move transformative advances in technology into the foundation of biomedical science, and the equally challenging advancement of models that effectively integrate new molecular diagnostics and therapies into the business and social fabric of our population will be similarly hampered. At the same time, excess attention on rankings tied to competition for National Institutes of Health and other federal funds adversely encourages academic medical centers (AMCs) and universities to hoard, rather than share, resources effectively and efficiently. To fully realize their discovery potential, AMCs must consider a substantive realignment relative to one another, as well as with their associated universities, as the academy looks toward innovative approaches to provide a more supportive foundation for the emergent biomedical research enterprise. The authors discuss potential models that could serve to lower barriers to interdisciplinary science, promoting a new synergy between AMCs and their parent universities.

  15. Narrative as a learning tool in science centers : potentials, possibilities and merits

    NARCIS (Netherlands)

    Murmann, Mai; Avraamidou, Lucy

    2014-01-01

    In this theoretical paper we explore the use of narrative as a learning tool in informal science settings. Specifically, the purpose of this paper is to ex-plore how narrative can be applied to exhibits in the context of science centers to scaffold visitors science learning. In exploring this idea,

  16. Life satisfaction, health, self-evaluation and sexuality in current university students of sport sciences, education and natural sciences

    Directory of Open Access Journals (Sweden)

    Martin Sigmund

    2014-12-01

    Full Text Available Background: Lifestyle and health of an individual are influenced by many factors; a significant factor is life satisfaction. Life satisfaction is understood as a multidimensional construct closely related to the area of personal wellbeing and quality of life. Life satisfaction in university students represents one of the determinants of good health, high motivation for studying, work productivity, satisfactory interpersonal relationships and overall healthy lifestyle. Objective: The main objective of the present study is to identify and compare the level of overall life satisfaction and selected components of health, self-evaluation and sexuality in current university students with respect to their study specialization. Methods: The study included a total of 522 students from Palacký University. These were students from the Faculty of Physical Culture (n = 118, Faculty of Education (n = 218 and Faculty of Science (n = 186. In terms of age, the study focused on young adults aged 19 to 26. To assess the current level of life satisfaction, the research study used a standardized psychodiagnostic tool - Life Satisfaction Questionnaire (LSQ. The used diagnostic methods are fully standardized and contain domestic normative values. Statistical result processing was conducted using the Statistica programme v10.0. Results: The highest level of overall life satisfaction was revealed in university students of sport sciences. In comparison with the students of education and students of natural sciences the difference is significant. Satisfaction with health among the students of sport sciences is significantly higher than in the students of education (p ≤ .001; d = 0.53 and the students of natural sciences (p ≤ .05; d = 0.38. Similar results were found in the area of satisfaction with own person and self-evaluation, where the values of the students of sport sciences were significantly higher compared with the students of education (p

  17. Theoretical Communities of Praxis: The University Writing Center as Cultural Contact Zone

    Science.gov (United States)

    Monty, Randall William

    2013-01-01

    The fundamental purpose of "Theoretical Communities of Praxis: The University Writing Center as Cultural Contact Zone" is to investigate the situatedness of Writing Center Studies, defining it as an autonomous (sub)discipline and interdisciplinary contact zone within the larger discipline of Rhetoric and Composition. In order to meet…

  18. A Wish List for the Advancement of University and College Counseling Centers

    Science.gov (United States)

    Bishop, John B.

    2016-01-01

    University and college counseling centers continue to meet emerging challenges in higher education. This article addresses three issues: the need for a more unified organizational structure to represent the profession, the potential value for counseling centers in seeking accreditation, and the importance of specialized training for those entering…

  19. Knowledge, attitude and practice of students towards blood donation in Arsi university and Adama science and technology university: a comparative cross sectional study.

    Science.gov (United States)

    Gebresilase, Habtom Woldeab; Fite, Robera Olana; Abeya, Sileshi Garoma

    2017-01-01

    Blood can save millions of lives. Even though people do not donate blood regularly, there is a constant effort to balance the supply and demand of blood. The aim of this study was, therefore, to determine the knowledge, attitude and practice of blood donation between university students. The comparative cross sectional study design was used in Adama Science and Technology University and Arsi University from April 11-May 2, 2016.360 students were selected using stratified sampling. Frequencies and proportions were computed. Chi-Square and logistic regressions were carried out and associations were considered significant at p students of Arsi University and Non-Health Science students of Adama Science and Technology University. The gender of the students (AOR = 3.150, 95% CI: 1.313, 7.554) was a significant predictor of the level of knowledge of Health Science students. The ethnicity of students (AOR = 2.085, 95% CI: 1.025, 4.243) was a significant predictor of the level of an attitude of Health Science students and gender of students (AOR = 0.343, 95% CI: 0.151, 0.779) was a significant predictor of the level of an attitude of Health Science students. Concerning Non-Health Science students, religion (AOR = 10.173, 95% CI: 1.191, 86.905) and original residence (AOR = 0.289, 95% CI: 0.094, 0.891) were a significant predictor of the level of knowledge of Non-Health Science students. Gender (AOR = 0.389, 95% CI: 0.152, 0.992) and Year of study (AOR = 0.389(0.164, 0.922) were significant predictor of level of attitude of Non-Health Science students. Year of study (AOR = 5.159, 95% CI: 1.611, 16.525) was a significant predictor of level of practice of Health Science students. Significant knowledge difference and attitude difference were observed between students from Arsi University and Adama Science and Technology University.

  20. Approaching Gender Parity: Women in Computer Science at Afghanistan's Kabul University

    Science.gov (United States)

    Plane, Jandelyn

    2010-01-01

    This study explores the representation of women in computer science at the tertiary level through data collected about undergraduate computer science education at Kabul University in Afghanistan. Previous studies have theorized reasons for underrepresentation of women in computer science, and while many of these reasons are indeed present in…

  1. Liberal Studies in Science--A Successful Experiment

    Science.gov (United States)

    Jevons, F. R.

    1970-01-01

    Describes the job placement success experienced by graduates of the Science Greats Course at the University of Manchester. Discusses the course content which centers on the social relations of science. Since nearly half the course involves science content, the author discusses the science background necessary for enrollees. Presents a personal…

  2. Pattern of Medical Admissions at Enugu State University of Science ...

    African Journals Online (AJOL)

    Technology Teaching Hospital, Parklane, Enugu, 2Department of Community Medicine, University of Nigeria Teaching. Hospital, Ituku/Ozalla ... A review of medical admissions into the Enugu State University of Science and Technology. Teaching .... Cord lesions, rabies, Guilliane Barré syndrome, motor neuron disease and ...

  3. Plasma Science and Innovation Center (PSI-Center) at Washington, Wisconsin, and Utah State, ARRA Supplement

    Energy Technology Data Exchange (ETDEWEB)

    Sovinec, Carl [Univ. of Wisconsin-Madison, Madison, WI (United States)

    2018-03-14

    The objective of the Plasma Science and Innovation Center (PSI-Center) is to develop and deploy computational models that simulate conditions in smaller, concept-exploration plasma experiments. The PSIC group at the University of Wisconsin-Madison, led by Prof. Carl Sovinec, uses and enhances the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, to simulate macroscopic plasma dynamics in a number of magnetic confinement configurations. These numerical simulations provide information on how magnetic fields and plasma flows evolve over all three spatial dimensions, which supplements the limited access of diagnostics in plasma experiments. The information gained from simulation helps explain how plasma evolves. It is also used to engineer more effective plasma confinement systems, reducing the need for building many experiments to cover the physical parameter space. The ultimate benefit is a more cost-effective approach to the development of fusion energy for peaceful power production. The supplemental funds provided by the American Recovery and Reinvestment Act of 2009 were used to purchase computer components that were assembled into a 48-core system with 256 Gb of shared memory. The system was engineered and constructed by the group's system administrator at the time, Anthony Hammond. It was successfully used by then graduate student, Dr. John O'Bryan, for computing magnetic relaxation dynamics that occur during experimental tests of non-inductive startup in the Pegasus Toroidal Experiment (pegasus.ep.wisc.edu). Dr. O'Bryan's simulations provided the first detailed explanation of how the driven helical filament of electrical current evolves into a toroidal tokamak-like plasma configuration.

  4. University Students' Perceptions of Their Science Classrooms

    Science.gov (United States)

    Kaya, Osman Nafiz; Kilic, Ziya; Akdeniz, Ali Riza

    2004-01-01

    The purpose of this study was to investigate the dimensions of the university students' perceptions of their science classes and whether or not the students' perceptions differ significantly as regards to the gender and grade level in six main categories namely; (1) pedagogical strategies, (2) faculty interest in teaching, (3) students interest…

  5. Center of Microbial Oceanography Research and Education (C-MORE) Initiatives Toward Promoting Diversity in the Ocean Sciences

    Science.gov (United States)

    Bruno, B. C.

    2007-05-01

    The ocean sciences suffer from a lack of diversity, particularly among indigenous peoples, despite the fact that indigenous peoples often have deep, cultural knowledge about the marine environment. Nowhere is this inequity more glaring than in Hawaii. Traditional knowledge in marine science enabled Native Hawaiians and Pacific Islanders (NHPI) to become world leaders in transpacific canoe voyaging, aquaculture, and fisheries. Yet today, NHPI are severely underrepresented in the ocean sciences (and in STEM fields in general) at all levels of education and employment. When compared to other ethnic and racial groups in Hawaii, NHPI students as a group have among the poorest educational performance, indicated in part by underrepresentation in college enrolment and pre-college gifted and talented programs, as well as overrepresentation in eligibility for special education and free and reduced lunch programs. The Center of Microbial Oceanography Research and Education (C-MORE), a NSF-funded, multi-institutional Science and Technology Center based at the University of Hawai (UH), is determined to address this inequity. C- MORE is committed to increasing diversity in the ocean sciences, particularly among NHPI, at all levels of education and research. Our approach is to work with existing programs with a track record of increasing diversity among NHPI. We are currently developing culturally relevant materials including educational games for K-12 students, mentorships for high school and community college students, and laboratory and shipboard experiences for teachers and undergraduates in partnership with minority-serving organizations. Some of our main partners are EPSCoR (Experimental Program to Stimulate Competitive Research), Ka `Imi `Ike (an NSF- funded program to recruit and retain NHPI undergraduates in geosciences), Upward Bound (an enrichment program for economically disadvantaged high school students which includes intensive summer courses), the UH Center on

  6. Spatial abilities, Earth science conceptual understanding, and psychological gender of university non-science majors

    Science.gov (United States)

    Black, Alice A. (Jill)

    Research has shown the presence of many Earth science misconceptions and conceptual difficulties that may impede concept understanding, and has also identified a number of categories of spatial ability. Although spatial ability has been linked to high performance in science, some researchers believe it has been overlooked in traditional education. Evidence exists that spatial ability can be improved. This correlational study investigated the relationship among Earth science conceptual understanding, three types of spatial ability, and psychological gender, a self-classification that reflects socially-accepted personality and gender traits. A test of Earth science concept understanding, the Earth Science Concepts (ESC) test, was developed and field tested from 2001 to 2003 in 15 sections of university classes. Criterion validity was .60, significant at the .01 level. Spearman/Brown reliability was .74 and Kuder/Richardson reliability was .63. The Purdue Visualization of Rotations (PVOR) (mental rotation), the Group Embedded Figures Test (GEFT) (spatial perception), the Differential Aptitude Test: Space Relations (DAT) (spatial visualization), and the Bem Inventory (BI) (psychological gender) were administered to 97 non-major university students enrolled in undergraduate science classes. Spearman correlations revealed moderately significant correlations at the .01 level between ESC scores and each of the three spatial ability test scores. Stepwise regression analysis indicated that PVOR scores were the best predictor of ESC scores, and showed that spatial ability scores accounted for 27% of the total variation in ESC scores. Spatial test scores were moderately or weakly correlated with each other. No significant correlations were found among BI scores and other test scores. Scantron difficulty analysis of ESC items produced difficulty ratings ranging from 33.04 to 96.43, indicating the percentage of students who answered incorrectly. Mean score on the ESC was 34

  7. Benefits and challenges of incorporating citizen science into university education.

    Science.gov (United States)

    Mitchell, Nicola; Triska, Maggie; Liberatore, Andrea; Ashcroft, Linden; Weatherill, Richard; Longnecker, Nancy

    2017-01-01

    A common feature of many citizen science projects is the collection of data by unpaid contributors with the expectation that the data will be used in research. Here we report a teaching strategy that combined citizen science with inquiry-based learning to offer first year university students an authentic research experience. A six-year partnership with the Australian phenology citizen science program ClimateWatch has enabled biology students from the University of Western Australia to contribute phenological data on plants and animals, and to conduct the first research on unvalidated species datasets contributed by public and university participants. Students wrote scientific articles on their findings, peer-reviewed each other's work and the best articles were published online in a student journal. Surveys of more than 1500 students showed that their environmental engagement increased significantly after participating in data collection and data analysis. However, only 31% of students agreed with the statement that "data collected by citizen scientists are reliable" at the end of the project, whereas the rate of agreement was initially 79%. This change in perception was likely due to students discovering erroneous records when they mapped data points and analysed submitted photographs. A positive consequence was that students subsequently reported being more careful to avoid errors in their own data collection, and making greater efforts to contribute records that were useful for future scientific research. Evaluation of our project has shown that by embedding a research process within citizen science participation, university students are given cause to improve their contributions to environmental datasets. If true for citizen scientists in general, enabling participants as well as scientists to analyse data could enhance data quality, and so address a key constraint of broad-scale citizen science programs.

  8. Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is the home (archive) of Precipitation, Atmospheric Chemistry and Dynamics, and...

  9. The Kepler Science Operations Center Pipeline Framework Extensions

    Science.gov (United States)

    Klaus, Todd C.; Cote, Miles T.; McCauliff, Sean; Girouard, Forrest R.; Wohler, Bill; Allen, Christopher; Chandrasekaran, Hema; Bryson, Stephen T.; Middour, Christopher; Caldwell, Douglas A.; hide

    2010-01-01

    The Kepler Science Operations Center (SOC) is responsible for several aspects of the Kepler Mission, including managing targets, generating on-board data compression tables, monitoring photometer health and status, processing the science data, and exporting the pipeline products to the mission archive. We describe how the generic pipeline framework software developed for Kepler is extended to achieve these goals, including pipeline configurations for processing science data and other support roles, and custom unit of work generators that control how the Kepler data are partitioned and distributed across the computing cluster. We describe the interface between the Java software that manages the retrieval and storage of the data for a given unit of work and the MATLAB algorithms that process these data. The data for each unit of work are packaged into a single file that contains everything needed by the science algorithms, allowing these files to be used to debug and evolve the algorithms offline.

  10. Rice University: Building an Academic Center for Nonprofit Education

    Science.gov (United States)

    Seaworth, Angela

    2012-01-01

    According to the author, the setting for their nonprofit education center was close to ideal: Support from a dean who cares deeply about nonprofit organizations; encouragement from the university and its renewed focus on reaching beyond its walls on the eve of its centennial; and a generous gift from alumni who have been affiliated with the…

  11. Review of the Lujan neutron scattering center: basic energy sciences prereport February 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

    2009-01-01

    The Lujan Neutron Scattering Center (Lujan Center) at LANSCE is a designated National User Facility for neutron scattering and nuclear physics studies with pulsed beams of moderated neutrons (cold, thermal, and epithermal). As one of five experimental areas at the Los Alamos Neutron Science Center (LANSCE), the Lujan Center hosts engineers, scientists, and students from around the world. The Lujan Center consists of Experimental Room (ER) 1 (ERl) built by the Laboratory in 1977, ER2 built by the Office of Basic Energy Sciences (BES) in 1989, and the Office Building (622) also built by BES in 1989, along with a chem-bio lab, a shop, and other out-buildings. According to a 1996 Memorandum of Agreement (MOA) between the Defense Programs (DP) Office of the National Nuclear Security Agency (NNSA) and the Office of Science (SC, then the Office of Energy Research), the Lujan Center flight paths were transferred from DP to SC, including those in ERI. That MOA was updated in 2001. Under the MOA, NNSA-DP delivers neutron beam to the windows of the target crypt, outside of which BES becomes the 'landlord.' The leveraging nature of the Lujan Center on the LANSCE accelerator is a substantial annual leverage to the $11 M BES operating fund worth approximately $56 M operating cost of the linear accelerator (LINAC)-in beam delivery.

  12. The Center for Aerospace Research: A NASA Center of Excellence at North Carolina Agricultural and Technical State University

    Science.gov (United States)

    Lai, Steven H.-Y.

    1992-01-01

    This report documents the efforts and outcomes of our research and educational programs at NASA-CORE in NCA&TSU. The goal of the center was to establish a quality aerospace research base and to develop an educational program to increase the participation of minority faculty and students in the areas of aerospace engineering. The major accomplishments of this center in the first year are summarized in terms of three different areas, namely, the center's research programs area, the center's educational programs area, and the center's management area. In the center's research programs area, we focus on developing capabilities needed to support the development of the aerospace plane and high speed civil transportation system technologies. In the educational programs area, we developed an aerospace engineering option program ready for university approval.

  13. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Author Affiliations. Yasser B Saddeek1 Moenis A Azooz2 Amr Bakr Saddek3. Faculty of Science, Physics Department, Al-Azhar University, Assiut, Egypt; Glass Research Department, National Research Center, Dokki, Cairo, Egypt; Faculty of Engineering, Civil Engineering Department, Beni-Suef University, Beni-Suef, Egypt ...

  14. Activity report of Computing Research Center

    Energy Technology Data Exchange (ETDEWEB)

    1997-07-01

    On April 1997, National Laboratory for High Energy Physics (KEK), Institute of Nuclear Study, University of Tokyo (INS), and Meson Science Laboratory, Faculty of Science, University of Tokyo began to work newly as High Energy Accelerator Research Organization after reconstructing and converting their systems, under aiming at further development of a wide field of accelerator science using a high energy accelerator. In this Research Organization, Applied Research Laboratory is composed of four Centers to execute assistance of research actions common to one of the Research Organization and their relating research and development (R and D) by integrating the present four centers and their relating sections in Tanashi. What is expected for the assistance of research actions is not only its general assistance but also its preparation and R and D of a system required for promotion and future plan of the research. Computer technology is essential to development of the research and can communize for various researches in the Research Organization. On response to such expectation, new Computing Research Center is required for promoting its duty by coworking and cooperating with every researchers at a range from R and D on data analysis of various experiments to computation physics acting under driving powerful computer capacity such as supercomputer and so forth. Here were described on report of works and present state of Data Processing Center of KEK at the first chapter and of the computer room of INS at the second chapter and on future problems for the Computing Research Center. (G.K.)

  15. Stranger than fiction parallel universes beguile science

    CERN Multimedia

    2007-01-01

    A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians and cosmologists too. We may not be able -- at least not yet -- to prove they exist, many serious scientists say, but there are plenty of reasons to think that parallel dimensions are more than figments of eggheaded imagination.

  16. Science for Alaska: Public Understanding of University Research Priorities

    Science.gov (United States)

    Campbell, D.

    2015-12-01

    Science for Alaska: Public Understanding of Science D. L. Campbell11University of Alaska Fairbanks, USA Around 200 people brave 40-below-zero temperatures to listen to university researchers and scientists give lectures about their work at an event called the Science for Alaska Lecture Series, hosted by the University of Alaska Fairbanks Geophysical Institute. It is held once a week, for six weeks during the coldest part of a Fairbanks, Alaska, winter. The topics range from space physics to remote sensing. The lectures last for 45 minutes with 15 minutes for audience questions and answers. It has been popular for about 20 years and is one of many public outreach efforts of the institute. The scientists are careful in their preparations for presentations and GI's Public Relations staff chooses the speakers based on topic, diversity and public interest. The staff also considers the speaker's ability to speak to a general audience, based on style, clarity and experience. I conducted a qualitative research project to find out about the people who attended the event, why they attend and what they do with the information they hear about. The participants were volunteers who attended the event and either stayed after the lectures for an interview or signed up to be contacted later. I used used an interview technique with open-ended questions, recorded and transcribed the interview. I identified themes in the interviews, using narrative analysis. Preliminary data show that the lecture series is a form of entertainment for people who are highly educated and work in demanding and stressful jobs. They come with family and friends. Sometimes it's a date with a significant other. Others want to expose their children to science. The findings are in keeping with the current literature that suggests that public events meant to increase public understanding of science instead draws like-minded people. The findings are different from Campbell's hypothesis that attendance was based

  17. A phenomenological investigation of science center exhibition developers' expertise development

    Science.gov (United States)

    Young, Denise L.

    The purpose of this study was to examine the exhibition developer role in the context of United States (U.S.) science centers, and more specifically, to investigate the way science center exhibition developers build their professional expertise. This research investigated how successfully practicing exhibition developers described their current practices, how they learned to be exhibition developers, and what factors were the most important to the developers in building their professional expertise. Qualitative data was gathered from 10 currently practicing exhibition developers from three science centers: the Exploratorium, San Francisco, California; the Field Museum, Chicago, Illinois; and the Science Museum of Minnesota, St. Paul, Minnesota. In-depth, semistructured interviews were used to collect the data. The study embraced aspects of the phenomenological tradition and sought to derive a holistic understanding of the position and how expertise was built for it. The data were methodically coded and organized into themes prior to analysis. The data analysis found that the position consisted of numerous and varied activities, but the developers' primary roles were advocating for the visitor, storytelling, and mediating information and ideas. They conducted these activities in the context of a team and relied on an established exhibition planning process to guide their work. Developers described a process of learning exhibition development that was experiential in nature. Learning through daily practice was key, though they also consulted with mentors and relied on visitor studies to gauge the effectiveness of their work. They were adept at integrating prior knowledge gained from many aspects of their lives into their practice. The developers described several internal factors that contributed to their expertise development including the desire to help others, a natural curiosity about the world, a commitment to learning, and the ability to accept critique. They

  18. Educational Status of Dental Basic Science Course and its Correlation with Students' Educational Background in Kermanshah University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Mozafar Khazaei

    2014-04-01

    Full Text Available Introduction: Basic science course plays a pivotal role in the academic achievement of the students. The scientific background and educational performance of the students are also influential in this period. The aim of the present study was to investigate the educational status of dental basic science course in the first three admissions (2009-2011 and its association with students’ educational background in Kermanshah University of Medical Sciences (KUMS. Methods: In this descriptive cross-sectional study, all dental students admitted to school of dentistry in 2009-2011 years were included. The students’ academic background (scores, grade point average, score of comprehensive basic sciences examination (CBSE were recorded. Data were analyzed by SPSS 16 using one-way analysis of variance (ANOVA and independent t-test. Results: Kermanshah dental students admitted to university in 2009-2011 were mostly female (59.2%, belonged to regions 2 and 3 (81.6% of university entrance exam, had sciences diploma (89.8% and their grade point average of diploma was nearly 18. There was a significant difference between the three groups of students admitted to university in Biology, Chemistry, Mathematics, Arabic, English language and Theology lessones of entrane exam (P<0.05. The students’ failure rate was 1.5% in university coureses. They all (100% passed CBSE and were ranked second nationally in the year. There was no significant difference between male and female students in terms of age, diploma grade point average, grade point average of basic sciences and score of CBSE. Conclusion: Basic science courses of dentistry in Kermanshah enjoyed a rather constant status and students had a good academic level in these courses.

  19. Pathways from College to University: A Social Science Example from Ontario

    Science.gov (United States)

    LeSage, Ann; Samis, John; Hinch, Ron; Longo, Fabiola; DiGiuseppe, Maurice; Goodman, William; Percival, Jennifer; De La Rocha, Arlene; Rodrigues, Anna; Raby, Phil; Sanchez, Otto

    2014-01-01

    This study evaluates the impact of a College to University Pathway Program in the Faculty of Social Science and Humanities at The University of Ontario Institute of Technology. The findings support the assertion that Pathway students perform as well as or better than students who enter university directly from secondary school. This finding is…

  20. Plagiarism prevention challenging writing didactics. An account from the writing center at the FHWien, the University of Applied Sciences of the Viennese Economic Chamber

    OpenAIRE

    Fenzl, R; Miglar, K

    2015-01-01

    Plagiarism could be defined as the unlawful use of the intellectual property of others, e.g. when the original source of literature is not correctly cited in a paper. Colleges and universities are obliged to sanction plagiarism. Moreover they have the duty to prevent plagiarism in the first place.The focus of the academic writing center of the FHWien of the Viennese Economic Chamber is to prevent students from the temptations and risks of plagiarism. The center provides assistance for the eff...

  1. Science teacher learning for MBL-supported student-centered science education in the context of secondary education in Tanzania

    NARCIS (Netherlands)

    Voogt, Joke; Tilya, F.; van den Akker, Jan

    2009-01-01

    Science teachers from secondary schools in Tanzania were offered an in-service arrangement to prepare them for the integration of technology in a student-centered approach to science teaching. The in-service arrangement consisted of workshops in which educative curriculum materials were used to

  2. Knowledge services in science and technology - improving the university/research centre - company relationship

    International Nuclear Information System (INIS)

    Magalhaes, Adriana Braz Vendramini Bicca

    2009-01-01

    This research proposes a conceptual model for Knowledge Services Structure applicable to Science and Technology Parks (STP) and targeted to micro, small and medium enterprises, in order to improve the business - university - research centers relationship. The idea emerged from exploratory studies on STP and the observation of a knowledge gap on this subject: academic studies that have proposed support services structures to link companies - university - research centers in STP were not available. The study methodology is composed by: exploratory studies complemented by action research. Five aspects of analysis (knowledge services, business development, ordinary/ S and T infrastructure services, expansion of area, and image / visibility) were chosen; a questionnaire based on the these aspects were elaborated and applied by e-mail (e-survey), using as data-base the IASP associated members for the selection of potential respondents. The questionnaire was answered by STP managers from different countries (Spain, Italy, Portugal, Germany, United Kingdom, China, Brazil, Turkey and Uruguay) and, for a deeper and better answers understanding, presential interviews were conducted in certain European STP. After presentation, analysis and discussion of the results, a conceptual model of knowledge service structure for STP has been made, using as basis the Technology Park of Sao Paulo structure. During the formulation of the conceptual model stage, a brief discussion on the importance of knowing and meet the customer needs meant on the inclusion of a customer-interface in the final model. (author)

  3. “Not Designed for Us”: How Science Museums and Science Centers Socially Exclude Low-Income, Minority Ethnic Groups

    Science.gov (United States)

    Dawson, Emily

    2014-01-01

    This paper explores how people from low-income, minority ethnic groups perceive and experience exclusion from informal science education (ISE) institutions, such as museums and science centers. Drawing on qualitative data from four focus groups, 32 interviews, four accompanied visits to ISE institutions, and field notes, this paper presents an analysis of exclusion from science learning opportunities during visits alongside participants’ attitudes, expectations, and conclusions about participation in ISE. Participants came from four community groups in central London: a Sierra Leonean group (n = 21), a Latin American group (n = 18), a Somali group (n = 6), and an Asian group (n = 13). Using a theoretical framework based on the work of Bourdieu, the analysis suggests ISE practices were grounded in expectations about visitors’ scientific knowledge, language skills, and finances in ways that were problematic for participants and excluded them from science learning opportunities. It is argued that ISE practices reinforced participants preexisting sense that museums and science centers were “not for us.” The paper concludes with a discussion of the findings in relation to previous research on participation in ISE and the potential for developing more inclusive informal science learning opportunities. PMID:25574059

  4. Jesuit universities and science after Society of Jesus restoration (1814-2014

    Directory of Open Access Journals (Sweden)

    Agustín Udías Vallina

    2017-04-01

    Full Text Available After the restoration in 1814, the Jesuits, following an educational tradition present since their inception, established a worldwide network of around 130 universities. Many of these universities have science departments where Jesuits and their lay collaborators carry out important scientific research. A significant number of the universities and some schools set up observatories devoted to astronomy, meteorology, geophysics and seismology, where scientific work flourished, especially between 1824 and 1980. In this way, the Jesuits have constantly been present in different fields of the natural sciences since their foundation. This unusual scientific tradition can be explained by their Ignatian spirituality, which seeks to find God in all things, in the union of work and prayer and their preference for working at the frontiers. This spirituality continues today in the scientific work of Jesuit universities by Jesuits and their lay collaborators.

  5. Molecular Science Research Center, 1991 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1992-03-01

    During 1991, the Molecular Science Research Center (MSRC) experienced solid growth and accomplishment and the Environmental, and Molecular Sciences Laboratory (EMSL) construction project moved forward. We began with strong programs in chemical structure and dynamics and theory, modeling, and simulation, and both these programs continued to thrive. We also made significant advances in the development of programs in materials and interfaces and macromolecular structure and dynamics, largely as a result of the key staff recruited to lead these efforts. If there was one pervasive activity for the past year, however, it was to strengthen the role of the EMSL in the overall environmental restoration and waste management (ER/WM) mission at Hanford. These extended activities involved not only MSRC and EMSL staff but all PNL scientific and technical staff engaged in ER/WM programs.

  6. Financial Resources Allocation of Tabriz University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Esmaeil Afiyan

    2015-08-01

    Full Text Available ​ Background and Objectives : According to complexity of resource allocation, issue about how to allocate health care resources in an accurate and fair manner has become the subject of discussions and decisions of related groups. Therefore, in this research we aim to study the methods of financial resource allocation of Tabriz University of Medical Sciences in order to identify its strengths and weaknesses for its promotion. Material and Methods : This study is a descriptive, qualitative sectional research and all comments have been collected by focus group discussions with experts and managers involved in the allocation of financial resources of Tabriz University of Medical Sciences. All factors affecting the process of allocation have been reviewd carefully. Results : Results suggested that except the health sector, none of the other sectors use the formulated  and scientific methods for allocating financial resources and despite the emphasize in the 4th development plan for operating funding, the final cost of the services, has no role in allocating financial resources. Conclusion : Regarding to judgmental and subjective method of financial resources allocation of Tabriz University of Medical Sciences and lack of documented and formulated methods, there is an essential need for developing an appropriate and formulated model for scientific allocation of financial resources in order to improve the efficiency and fairness of the allocation.

  7. The Postgraduate Study of Macromolecular Sciences at the University of Zagreb (1971-1980

    Directory of Open Access Journals (Sweden)

    Kunst, B.

    2008-07-01

    Full Text Available The postgraduate study of macromolecular sciences (PSMS was established at the University of Zagreb in 1971 as a university study in the time of expressed interdisciplinary permeation of natural sciences - physics, chemistry and biology, and application of their achievements in technologicaldisciplines. PSMS was established by a group of prominent university professors from the schools of Science, Chemical Technology, Pharmacy and Medicine, as well as from the Institute of Biology. The study comprised basic fields of macromolecular sciences: organic chemistry of synthetic macromolecules, physical chemistry of macromolecules, physics of macromolecules, biological macromolecules and polymer engineering with polymer application and processing, and teaching was performed in 29 lecture courses lead by 30 professors with their collaborators. PSMS ceased to exist with the change of legislation in Croatia in 1980, when the attitude prevailed to render back postgraduate studies to the university schools. During 9 years of existence of PSMS the MSci grade was awarded to 37 macromolecular experts. It was assessed that the PSMS some thirty years ago was an important example of modern postgraduate education as compared with the international postgraduate development. In concordance with the recent introduction of similar interdisciplinary studies in macromolecular sciences elsewhere in the world, the establishment of a modern interdisciplinary study in the field would be of importance for further development of these sciences in Croatia.

  8. 76 FR 59388 - Board of Regents of the Uniformed Services University of the Health Sciences

    Science.gov (United States)

    2011-09-26

    ... University of the Health Sciences AGENCY: Department of Defense, Uniformed Services University of the Health... Uniformed Services University of the Health Sciences. DATES: Tuesday, October 25, 2011, from 8:30 a.m. to 11... FURTHER INFORMATION CONTACT: Janet S. Taylor, Designated Federal Officer, 4301 Jones Bridge Road, Bethesda...

  9. The Regional Autopsy Center: The University of Alabama at Birmingham Experience.

    Science.gov (United States)

    Atherton, Daniel Stephen; Reilly, Stephanie

    2017-09-01

    Rates of autopsied deaths have decreased significantly for the last several decades. It may not be practical for some institutions to maintain the facilities and staffing required to perform autopsies. In recent years, the University of Alabama at Birmingham (UAB) has established contracts to perform autopsies for several regional institutions including the Alabama Department of Forensic Sciences (ADFS), the United States Veterans Affairs, the local prison system, local community hospitals, and with families for private autopsy services. Contracts and autopsy data from 2004 to 2015 were obtained and reviewed. Since 2004, the number of UAB hospital autopsies trended slightly downward. On average, UAB hospital cases comprised most yearly cases, and the ADFS was the second largest contributor of cases. Income generated from outside autopsies performed from 2006 to 2015 totaled just more than 2 million dollars, and most of the income was generated from referred ADFS cases. This study provides evidence that a centralized institution (regional autopsy center [RAC]) can provide regional autopsy service in a practical, feasible, and economically viable manner, and a RAC can benefit both the referring institutions as well as the RAC itself.

  10. Current nanoscience and nanoengineering at the Center for ...

    Indian Academy of Sciences (India)

    The Center for Nanoscale Science and Engineering (CeNSE) at the University of ... molecular electronics, nanotube FETs), nanotem-plates for electronics and gas sensors ... This paper provides glimpses of this research and future directions.

  11. [Science and society. Guidelines for the Leopoldina Study Center].

    Science.gov (United States)

    Hacker, Jörg

    2014-01-01

    In order to adequately perform its many diverse tasks as a scholars' society and as the German National Academy of Sciences, the Deutsche Akademie der Naturforscher Leopoldina needs to view itself in a historical context. This can only happen as part of a culture of remembrance which fosters the memory of the Leopoldina's past and subjects this to a critical analysis in the context of the history of science and academies. The newly founded Leopoldina Study Center for the History of Science and Science Academies is to be a forum that pursues established forms of historical research at the Leopoldina, organizes new scientific projects, and presents its findings to the public. The aim is to involve as many Leopoldina members as possible from all of its disciplines, as well as to collaborate with national and international partners.

  12. Norfolk State University Research Experience in Earth System Science

    Science.gov (United States)

    Chaudhury, Raj

    2002-01-01

    The truly interdisciplinary nature of Earth System Science lends itself to the creation of research teams comprised of people with different scientific and technical backgrounds. In the annals of Earth System Science (ESS) education, the lack of an academic major in the discipline might be seen as a barrier to the involvement of undergraduates in the overall ESS-enterprise. This issue is further compounded at minority-serving institutions by the rarity of departments dedicated to Atmospheric Science, Oceanography or even the geosciences. At Norfolk State University, a Historically Black College, a six week, NASA-supported, summer undergraduate research program (REESS - Research Experience in Earth System Science) is creating a model that involves students with majors in diverse scientific disciplines in authentic ESS research coupled with a structured education program. The project is part of a wider effort at the University to enhance undergraduate education by identifying specific areas of student weaknesses regarding the content and process of science. A pre- and post-assessment test, which is focused on some fundamental topics in global climate change, is given to all participants as part of the evaluation of the program. Student attitudes towards the subject and the program's approach are also surveyed at the end of the research experience. In 2002, 11 undergraduates participated in REESS and were educated in the informed use of some of the vast remote sensing resources available through NASA's Earth Science Enterprise (ESE). The program ran from June 3rd through July 12, 2002. This was the final year of the project.

  13. Models of Interinstitutional Partnerships between Research Intensive Universities and Minority Serving Institutions (MSI) across the Clinical Translational Science Award (CTSA) Consortium

    Science.gov (United States)

    Fair, Alecia; Norris, Keith; Verbalis, Joseph G.; Poland, Russell; Bernard, Gordon; Stephens, David S.; Dubinett, Steven M.; Imperato‐McGinley, Julianne; Dottin, Robert P.; Pulley, Jill; West, Andrew; Brown, Arleen; Mellman, Thomas A.

    2013-01-01

    Abstract Health disparities are an immense challenge to American society. Clinical and Translational Science Awards (CTSAs) housed within the National Center for Advancing Translational Science (NCATS) are designed to accelerate the translation of experimental findings into clinically meaningful practices and bring new therapies to the doorsteps of all patients. Research Centers at Minority Institutions (RCMI) program at the National Institute on Minority Health and Health Disparities (NIMHD) are designed to build capacity for biomedical research and training at minority serving institutions. The CTSA created a mechanism fostering formal collaborations between research intensive universities and minority serving institutions (MSI) supported by the RCMI program. These consortium‐level collaborations activate unique translational research approaches to reduce health disparities with credence to each academic institutions history and unique characteristics. Five formal partnerships between research intensive universities and MSI have formed as a result of the CTSA and RCMI programs. These partnerships present a multifocal approach; shifting cultural change and consciousness toward addressing health disparities, and training the next generation of minority scientists. This collaborative model is based on the respective strengths and contributions of the partnering institutions, allowing bidirectional interchange and leveraging NIH and institutional investments providing measurable benchmarks toward the elimination of health disparities. PMID:24119157

  14. National evaluation of policies on individual financial conflicts of interest in Canadian academic health science centers.

    Science.gov (United States)

    Lexchin, Joel; Sekeres, Melanie; Gold, Jennifer; Ferris, Lorraine E; Kalkar, Sunila R; Wu, Wei; Van Laethem, Marleen; Chan, An-Wen; Moher, David; Maskalyk, M James; Taback, Nathan; Rochon, Paula A

    2008-11-01

    Conflicts of interest (COI) in research are an important emerging topic of investigation and are frequently cited as a serious threat to the integrity of human participant research. To study financial conflicts of interest (FCOI) policies for individual investigators working in Canadian academic health centers. Survey instrument containing 61 items related to FCOI. All Canadian academic health science centers (universities with faculties of medicine, faculties of medicine and teaching hospitals) were requested to provide their three primary FCOI policies. Number of all centers and teaching hospitals with policies addressing each of the 61 items related to FCOI. Only one item was addressed by all 74 centers. Thirteen items were present in fewer than 25% of centers. Fewer than one-quarter of hospitals required researchers to disclose FCOI to research participants. The role of research ethics boards (REBs) in hospitals was marginal. Asking centers to identify only three policies may not have inclusively identified all FCOI policies in use. Additionally, policies at other levels might apply. For instance, all institutions receiving federal grant money must comply with the Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans. Canadian centers within the same level (for instance, teaching hospitals) differ significantly in the areas that their policies address and these policies differ widely in their coverage. Presently, no single policy in any Canadian center informs researchers about the broad range of individual FCOI issues. Canadian investigators need to understand the environment surrounding FCOI, be able to access and follow the relevant policies and be confident that they can avoid entering into a FCOI.

  15. Climate Science Program at California State University, Northridge

    Science.gov (United States)

    Steele Cox, H.; Klein, D.; Cadavid, A. C.; Foley, B.

    2012-12-01

    Due to its interdisciplinary nature, climate science poses wide-ranging challenges for science and mathematics students seeking careers in this field. There is a compelling need for universities to provide coherent programs in climate science in order to train future climate scientists. With funding from NASA Innovations in Climate Education (NICE), California State University, Northridge (CSUN), is creating the CSUN Climate Science Program. An interdisciplinary team of faculty members is working in collaboration with UCLA, Santa Monica College and NASA/JPL partners to create a new curriculum in climate science. The resulting sequence of climate science courses, or Pathway for studying the Mathematics of Climate Change (PMCC), is integrated into a Bachelor of Science degree program in the Applied Mathematical Sciences offered by the Mathematics Department at CSUN. The PMCC consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for Ph.D. programs in technical fields relevant to global climate change and related careers. The students who choose to follow this program will be guided to enroll in the following sequence of courses for their 12 units of upper division electives: 1) A newly created course junior level course, Math 396CL, in applied mathematics which will introduce students to applications of vector calculus and differential equations to the study of thermodynamics and atmospheric dynamics. 2) An already existing course, Math 483, with new content on mathematical modeling specialized for this program; 3) An improved version of Phys 595CL on the mathematics and physics of climate change with emphasis on Radiative Transfer; 4) A choice of Geog 407 on Remote Sensing or Geog 416 on Climate Change with updated content to train the students in the analysis of satellite data obtained with the NASA Earth Observing System and instruction in the analysis of data obtained within a Geographical

  16. Status of the TESS Science Processing Operations Center

    Science.gov (United States)

    Jenkins, Jon Michael; Caldwell, Douglas A.; Davies, Misty; Li, Jie; Morris, Robert L.; Rose, Mark; Smith, Jeffrey C.; Tenenbaum, Peter; Ting, Eric; Twicken, Joseph D.; Wohler, Bill

    2018-06-01

    The Transiting Exoplanet Survey Satellite (TESS) was selected by NASA’s Explorer Program to conduct a search for Earth’s closest cousins starting in 2018. TESS will conduct an all-sky transit survey of F, G and K dwarf stars between 4 and 12 magnitudes and M dwarf stars within 200 light years. TESS is expected to discover 1,000 small planets less than twice the size of Earth, and to measure the masses of at least 50 of these small worlds. The TESS science pipeline is being developed by the Science Processing Operations Center (SPOC) at NASA Ames Research Center based on the highly successful Kepler science pipeline. Like the Kepler pipeline, the TESS pipeline provides calibrated pixels, simple and systematic error-corrected aperture photometry, and centroid locations for all 200,000+ target stars observed over the 2-year mission, along with associated uncertainties. The pixel and light curve products are modeled on the Kepler archive products and will be archived to the Mikulski Archive for Space Telescopes (MAST). In addition to the nominal science data, the 30-minute Full Frame Images (FFIs) simultaneously collected by TESS will also be calibrated by the SPOC and archived at MAST. The TESS pipeline searches through all light curves for evidence of transits that occur when a planet crosses the disk of its host star. The Data Validation pipeline generates a suite of diagnostic metrics for each transit-like signature, and then extracts planetary parameters by fitting a limb-darkened transit model to each potential planetary signature. The results of the transit search are modeled on the Kepler transit search products (tabulated numerical results, time series products, and pdf reports) all of which will be archived to MAST. Synthetic sample data products are available at https://archive.stsci.edu/tess/ete-6.html.Funding for the TESS Mission has been provided by the NASA Science Mission Directorate.

  17. University of Maryland MRSEC - Leadership

    Science.gov (United States)

    . University of Maryland Materials Research Science and Engineering Center Home About Us Leadership MRSEC Templates Opportunities Search Home » About Us » Leadership Leadership Reutt-Robey photo Janice from the College of Arts and Humanities at UMD. Historical Leadership Ellen Williams MRSEC Director

  18. A Proposal for Marketing Applied Research in Science and Applied Colleges at the Yemeni Universities and Using it in Community Service and Development

    Directory of Open Access Journals (Sweden)

    Eftehan Abdu Frhan Saif Almikhlafi

    2017-10-01

    Full Text Available This study aimed to propose a set of elements and mechanisms of marketing applied research in the Yemeni universities and ways of using such research to support community development. This can be done by assessing the extent of interest in the marketing of applied research and making use of them to serve and community development in the science and applied colleges at the Yemeni government universities, and determining the main obstacles in this regard from the point of view the study sample. The study sample included (287 individuals selected from teachers and researchers at the science and applied colleges in some Yemeni government universities, and research centers affiliated to them. The researchers adopted the descriptive and analytical approach, and designed a questionnaire to gather primary data from the study sample. The researchers used some appropriate statistical methods to analyze the study data and test hypotheses. The study results showed that g science and applied colleges in the Yemeni universities do not pay enough attention to marketing applied scientific research, and to using such research in community service and development. The participants of the study indicated the presence of many obstacles to marketing of applied scientific research in the Yemeni universities. The results also showed that there were no statistically significant differences in the assessments of the study sample regarding the lack of attention paid by scientific and applied colleges in the Yemeni public universities to marketing of their scientific and applied research due to these variables (type, academic degree, and applied colleges of the study sample individuals. The study concluded by providing a proposal covering some elements and mechanisms to be used for marketing applied researches of the science and applied colleges at the Yemeni Universities and to use them in community service and development. It also provided recommendations regarding the

  19. University of Illinois FRIENDS Children’s Environmental Health Center

    Data.gov (United States)

    Federal Laboratory Consortium — The FRIENDS Children's Environmental Health Center at the University of Illinois, Urbana-Champaign, was established in 2001 to investigate the interactive effects of...

  20. Public Communication of Science and Technology in Museums and Interactive Centers in MedellÍn (Colombia

    Directory of Open Access Journals (Sweden)

    Silvia Inés Jiménez-G.

    2010-01-01

    Full Text Available Following the simple and complex deficit and democratic model approaches, this paper analyses the communication strategies applied in several museums and interactive centers —Parque Explora, Museo Interactivo Empresas Públicas de Medellín, Planetario Jesús Emilio Ramírez and Museo Universitario from the University of Antioquia in the city of Medellín—. We argue that communicating scientific and technological developments at a conjunctural moment —because of the pressure exerted by the demand side to bring knowledge within the reach of the man in the street— involves recognizing science and technology issues should not be conveyed in a language increasingly distanced from layman’s understanding and should allow for citizens’ critical thinking formation face to techno-scientific developments. By analysing the communication approaches mentioned above, we found significant obstacles to be overcome in the communication strategies applied by museum staff in order to come to an understanding of science and technology.

  1. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In this paper, we prove an interesting reciprocity formula for a certain case of a general Dedekind sums using analytic methods and the Fourier expansion of the Bernoulli polynomials. Author Affiliations. Yuan Yi1. Research Center for Basic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of ...

  2. Impact of Informal Science Education on Children's Attitudes About Science

    Science.gov (United States)

    Wulf, Rosemary; Mayhew, Laurel M.; Finkelstein, Noah D.

    2010-10-01

    The JILA Physics Frontier Center Partnerships for Informal Science Education in the Community (PISEC) provides informal afterschool inquiry-based science teaching opportunities for university participants with children typically underrepresented in science. We focus on the potential for this program to help increase children's interest in science, mathematics, and engineering and their understanding of the nature of science by validating the Children's Attitude Survey, which is based on the Colorado Learning Attitudes about Science Survey [1] and designed to measure shifts in children's attitudes about science and the nature of science. We present pre- and post-semester results for several semesters of the PISEC program, and demonstrate that, unlike most introductory physics courses in college, our after-school informal science programs support and promote positive attitudes about science.

  3. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  4. Next generation neutron scattering at Neutron Science Center project in JAERI

    International Nuclear Information System (INIS)

    Yamada, Yasusada; Watanabe, Noboru; Niimura, Nobuo; Morii, Yukio; Katano, Susumu; Aizawa, Kazuya; Suzuki, Jun-ichi; Koizumi, Satoshi; Osakabe, Toyotaka.

    1997-01-01

    Japan Atomic Energy Research Institute (JAERI) has promoted neutron scattering researches by means of research reactors in Tokai Research Establishment, and proposes 'Neutron Science Research Center' to develop the future prospect of the Tokai Research Establishment. The scientific fields which will be expected to progress by the neutron scattering experiments carried out at the proposed facility in the Center are surveyed. (author)

  5. Hands across the divide: Finding spaces for student-centered pedagogy in the undergraduate science classroom

    Science.gov (United States)

    Spier-Dance, Lesley

    This study explored college science students' and instructors' experiences with student-generated and performed analogies. The objectives of the study were to determine whether the use of student-generated analogies could provide students with opportunities to develop robust understanding of difficult science concepts, and to examine students' and instructors' perspectives on the utilization of these analogies. To address my objectives, I carried out a case study at a university-college in British Columbia. I examined the use of analogies in undergraduate biology and chemistry courses. Working with three instructors, I explored the use of student-generated analogies in five courses. I carried out in-depth analyses for one biology case and one chemistry case. Data were collected using semi-structured interviews, classroom observations, researcher journal logs and students' responses to assessment questions. My findings suggest that involvement in the analogy exercise was associated with gains in students' conceptual understanding. Lower-achieving students who participated in the analogy activity exhibited significant gains in understanding of the science concept, but were unable to transfer their knowledge to novel situations. Higher-achieving students who participated in the activity were better able to transfer their knowledge of the analogy-related science topic to novel situations. This research revealed that students exhibited improved understanding when their analogies clearly represented important features of the target science concept. Students actively involved in the analogy activity exhibited gains in conceptual understanding. They perceived that embodied performative aspects of the activity promoted engagement, which motivated their learning. Participation in the analogy activity led to enhanced social interaction and a heightened sense of community within the classroom. The combination of social and performative elements provided motivational learning

  6. Informing climate change adaptation in the Northeast and Midwest United States: The role of Climate Science Centers

    Science.gov (United States)

    Bryan, A. M.; Morelli, T. L.

    2015-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information and tools that managers and other parties interested in land, water, wildlife, and cultural resources can use to anticipate, monitor, and adapt to climate change. The NE CSC partners with other federal agencies, universities, and NGOs to facilitate stakeholder interaction and delivery of scientific products. For example, NE CSC researchers have partnered with the National Park Service to help managers at Acadia National Park adapt their infrastructure, operations, and ecosystems to rising seas and more extreme events. In collaboration with the tribal College of Menominee Nation and Michigan State University, the NE CSC is working with indigenous communities in Michigan and Wisconsin to co-develop knowledge of how to preserve their natural and cultural values in the face of climate change. Recently, in its largest collaborative initiative to date, the NE CSC led a cross-institutional effort to produce a comprehensive synthesis of climate change, its impacts on wildlife and their habitats, and available adaptation strategies across the entire Northeast and Midwest region; the resulting document was used by wildlife managers in 22 states to revise their Wildlife Action Plans (WAPs). Additionally, the NE CSC is working with the Wildlife Conservation Society to help inform moose conservation management. Other research efforts include hydrological modeling to inform culvert sizing under greater rainfall intensity, forest and landscape modeling to inform tree planting that mitigates the spread of invasive species, species and habitat modeling to help identify suitable locations for wildlife refugia. In addition, experimental research is being conducted to improve our understanding of how species such as brook trout are responding to climate change. Interacting with stakeholders during all phases of

  7. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Environmental Science Information Center (ESIC). 950.6 Section 950.6 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE...

  8. Science Center Public Forums: Engaging Lay-Publics in Resilience Deliberations Through Informal Science Education

    Science.gov (United States)

    Sittenfeld, D.; Choi, F.; Farooque, M.; Helmuth, B.

    2017-12-01

    Because climate hazards present a range of potential impacts and considerations for different kinds of stakeholders, community responses to increase resilience are best considered through the inclusion of diverse, informed perspectives. The Science Center Public Forums project has created multifaceted modules to engage diverse publics in substantive deliberations around four hazards: heat waves, drought, extreme precipitation, and sea level rise. Using a suite of background materials including visualization and narrative components, each of these daylong dialogues engage varied groups of lay-participants at eight US science centers in learning about hazard vulnerabilities and tradeoffs of proposed strategies for building resilience. Participants listen to and consider the priorities and perspectives of fellow residents and stakeholders, and work together to formulate detailed resilience plans reflecting both current science and informed public values. Deliverables for the project include visualizations of hazard vulnerabilities and strategies through immersive planetarium graphics and Google Earth, stakeholder perspective narratives, and detailed background materials for each project hazard. This session will: communicate the process for developing the hazard modules with input from subject matter experts, outline the process for iterative revisions based upon findings from formative focus groups, share results generated by participants of the project's first two pilot forums, and describe plans for broader implementation. These activities and outcomes could help to increase the capacity of informal science education institutions as trusted conveners for informed community dialogue by educating residents about vulnerabilities and engaging them in critical thinking about potential policy responses to critical climate hazards while sharing usable public values and priorities with civic planners.

  9. Annual report of Tandem Accelerator Center, University of Tsukuba, for fiscal 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Tandem Accelerator Center (TAC) is a research center of the University of Tsukuba established mainly for interdisciplinary research. Its principal apparatus is a 12 UD Pelletron tandem accelerator of which assembling was completed in fiscal 1975. Activities of the TAC for the period of April 1975 to March 1976 are reported: accelerator and beam transport system, general equipments, equipment development, and heavy-ion reactions. (Mori, K.)

  10. The situation analysis of the international relations management and inter-university collaboration in Tabriz University of Medical Sciences, Iran, during the years 2005-2010

    Directory of Open Access Journals (Sweden)

    Alireza Farajollahi

    2013-08-01

    Full Text Available BACKGROUND: Nowadays, with the development of science and communication, collaboration with other countriesand universities seems inevitable to universities. The aim of this study was to analyze the situation of internationalrelations management and inter-university collaboration (IRM-IUC in Tabriz University of Medical Sciences (TUMS,Iran, during the years 2005-2010. METHODS: In this descriptive study, one checklist was used for analysis of the inter-university collaboration management and another one for the situation analysis of international relations management which included 4 sections itself. There were a total of 56 questions designed and developed through literature review and the expert panel.RESULTS: The results indicated the poor performance of Tabriz University of Medical Sciences in the international relations management and inter-university collaboration fields. Most of the reviewed items had not been adequatelypaid attention to in the management of international relations and only one out of 14 evaluated items was considered inthe field of inter-university collaboration. CONCLUSIONS: In line with the overall globalization process, education and research have also become globalizedprocesses, and as a result, it is necessary for universities to develop effective ties and relationships with otherorganizations. However, Tabriz University of Medical Sciences has not been doing quite optimally in this regard. Thus,it is suggested that, based on the shortcomings pointed out in this study, new appropriate plans and policies be set todevelop fruitful and effective relations and correspondences with other universities and countries.

  11. Narrating Science and Religion. Storytelling Strategies in Journey of the Universe

    Directory of Open Access Journals (Sweden)

    Nancy Menning

    2016-12-01

    Full Text Available While scientific and religious narratives use distinct discourse strategies to reach different audiences, the documentary film Journey of the Universe combines scientific and humanistic perspectives to narrate the origin and evolution of the universe, life on Earth, and human consciousness. This science-based mythic telling of the universe story foregrounds science to enhance the story’s plausibility while using mythic elements to invite an ethical response. We evaluate how this film blends scientific and mythic storytelling strategies to present a plausible story with moral force. Journey of the Universe presents an image of humanity as naturally emerging from an increasingly complex cosmos, capable of profound wonder, and poised to use its intellectual gifts to renew the face of the earth. We argue that narrative strategies aligning scientific content with the viewer’s personal experiences of nature are generally effective, and that the film’s focus on the local and terrestrial, even in the midst of the vastness of the cosmos, supports its ecological message.

  12. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1993-01-01

    The role of an on-site irradiation facility in nuclear science and engineering education is examined. Using the example of a university research reactor, the use of such devices in laboratory instruction, public outreach programs, special instructional programs, research, etc. is discussed. Examples from the Oregon State University curriculum in nuclear chemistry, nuclear engineering and radiation health are given. (author) 1 tab

  13. Annual report of the research results with Rikkyo University's joint-use reactor etc. for fiscal 1974

    International Nuclear Information System (INIS)

    1975-01-01

    The results of research works by universities with Rikkyo University's joint-use reactor and RCNST's (Research Center for Nuclear Science and Technology) instruments for fiscal 1974 are described. Comprising the areas of activation analysis (in such as earth science, biology and environmental science), hot atom chemistry, etc., the results are presented in individual summaries. (Mori, K.)

  14. Proceedings of the meeting and scientific presentations on basic science research and nuclear technology

    International Nuclear Information System (INIS)

    Prayitno; Slamet Santosa; Darsono; Syarip; Agus Taftazani; Samin; Tri Mardji Atmono; Dwi Biyantoro; Herry Poernomo; Prajitno; Tjipto Sujitno; Gede Sutresna W; Djoko Slamet Pujorahardjo; Budi Setiawan; Bambang Siswanto; Endro Kismolo; Jumari

    2016-08-01

    The Proceedings of the Meeting and Scientific Presentations on Basic Science Research and Nuclear Technology by Center for Accelerator Science and Technology in Yogyakarta with the theme of Universities and research and development institutions synergy in the development of basic science and nuclear technology held on Surakarta 9 August 2016. This seminar is an annual routine activities of Center for Accelerator Science and Technology for exchange research result among University and BATAN researcher for using nuclear technology. The proceeding consist of 3 article from keynotes’ speaker and 37 articles from BATAN participant as well as outside which have been indexed separately. (MPN)

  15. Nuclear security education and training at Naif Arab University for Security Sciences

    International Nuclear Information System (INIS)

    Amjad Fataftah

    2009-01-01

    Naif Arab University for Security Sciences (NAUSS) was established in 1978 as an Arab institution specialized in security sciences to fulfill the needs of the Arab law enforcement agencies for an academic institution that promotes research in security sciences, offers graduate education programs and conduct short-term training courses, which should contribute to the prevention and control of crimes in the Arab world. NAUSS and the IAEA organized the first workshop on nuclear security on November, 2006, which aimed to explore and improve the nuclear security culture awareness through the definitions of the nuclear security main pillars, Prevention, Detection and Response. In addition, NAUSS and IAEA organized a very important training course on April, 2008 on combating nuclear terrorism titled P rotection against nuclear terrorism: Protection of radioactive sources . In the past two years, IAEA has put tremendous efforts to develop an education program in nuclear security, which may lead into Master's degree in nuclear security, where NAUSS helped in this project through the participation in the IAEA organized consultancy and technical meetings for the development of this program along with many other academic, security and law enfacement experts and lawyers from many different institution in the world. NAUSS and IAEA drafted a work plan for the next coming two years which should lead into the gradual implementation of these educational programs at NAUSS. NAUSS also continues to participate in several local conferences and symposiums related to the peaceful application of nuclear power in the gulf region, and the need for a human resources development programs to fulfill the scientific and security needs which will arise from building nuclear power plants. NAUSS participated in the International Symposium on the Peaceful Application of Nuclear Technology in the GCC countries, organized by King Abdulaziz University in the city of Jeddah, Saudi Arabia. Also NAUSS

  16. Utilizing Science Outreach to Foster Professional Skills Development in University Students

    Science.gov (United States)

    Eng, Edward; Febria, Catherine

    2011-01-01

    Students seek unique experiences to obtain and enhance professional development skills and to prepare for future careers. Through the Let's Talk Science Partnership Program (LTSPP), a voluntary science outreach program at University of Toronto Scarborough, students are given the opportunity to continually improve on skills which include: the…

  17. NASA Langley Atmospheric Science Data Centers Near Real-Time Data Products

    Science.gov (United States)

    Davenport, T.; Parker, L.; Rinsland, P. L.

    2014-12-01

    Over the past decade the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center has archived and distributed a variety of satellite mission data sets. NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The ASDC has collaborated with Science Teams to accommodate emerging science users in the climate and modeling communities. The ASDC has expanded its original role to support operational usage by related Earth Science satellites, support land and ocean assimilations, support of field campaigns, outreach programs, and application projects for agriculture and energy industries to bridge the gap between Earth science research results and the adoption of data and prediction capabilities for reliable and sustained use in Decision Support Systems (DSS). For example; these products are being used by the community performing data assimilations to regulate aerosol mass in global transport models to improve model response and forecast accuracy, to assess the performance of components of a global coupled atmospheric-ocean climate model, improve atmospheric motion vector (winds) impact on numerical weather prediction models, and to provide internet-based access to parameters specifically tailored to assist in the design of solar and wind powered renewable energy systems. These more focused applications often require Near Real-Time (NRT) products. Generating NRT products pose their own unique set challenges for the ASDC and the Science Teams. Examples of ASDC NRT products and challenges will be discussed.

  18. Benchmarking participation of Canadian university health sciences librarians in systematic reviews.

    Science.gov (United States)

    Murphy, Susan A; Boden, Catherine

    2015-04-01

    This study describes the current state of Canadian university health sciences librarians' knowledge about, training needs for, and barriers to participating in systematic reviews (SRs). A convenience sample of Canadian librarians was surveyed. Over half of the librarians who had participated in SRs acknowledged participating in a traditional librarian role (e.g., search strategy developer); less than half indicated participating in any one nontraditional librarian role (e.g., data extractor). Lack of time and insufficient training were the most frequently reported barriers to participating in SRs. The findings provide a benchmark for tracking changes in Canadian university health sciences librarians' participation in SRs.

  19. Authority in an Agency-Centered, Inquiry-Based University Calculus Classroom

    Science.gov (United States)

    Gerson, Hope; Bateman, Elizabeth

    2010-01-01

    Authority roles among teachers and students have traditionally been hierarchal and centered with the expertise and power of the teacher limiting opportunities for students to act with autonomy to build and justify mathematics. In this paper we discuss authority roles for teachers and students that have been realized in an inquiry-based university,…

  20. University Counseling Center Use of Prolonged Exposure Therapy: In-Clinic Treatment for Students with PTSD

    Science.gov (United States)

    Bonar, Ted C.

    2015-01-01

    Students utilize university counseling center services to address distress related to post-traumatic stress disorder (PTSD). Since counseling centers services such as group work or general psychotherapy may not address specific PTSD-symptom reduction, centers often give community referrals in such cases. Evidence-based therapies (EBTs), including…

  1. Gifted and Talented Students' Views about Biology Activities in a Science and Art Center

    Science.gov (United States)

    Özarslan, Murat; Çetin, Gülcan

    2018-01-01

    The aim of the study was to determine gifted and talented students' views about biology activities in a science and art center. The study was conducted with 26 gifted and talented students who studied at a science and art center in southwestern Turkey. Students studied animal and plant genus and species in biology activities. Data were collected…

  2. Energy Science and Technology Software Center

    Energy Technology Data Exchange (ETDEWEB)

    Kidd, E.M.

    1995-03-01

    The Energy Science and Technology Software Center (ESTSC), is the U.S. Department of Energy`s (DOE) centralized software management facility. It is operated under contract for the DOE Office of Scientific and Technical Information (OSTI) and is located in Oak Ridge, Tennessee. The ESTSC is authorized by DOE and the U.S. Nuclear Regulatory Commission (NRC) to license and distribute DOE-and NRC-sponsored software developed by national laboratories and other facilities and by contractors of DOE and NRC. ESTSC also has selected software from the Nuclear Energy Agency (NEA) of the Organisation for Economic Cooperation and Development (OECD) through a software exchange agreement that DOE has with the agency.

  3. Discover Science Initiative, outreach and professional development at the University of California, Irvine

    Science.gov (United States)

    Pestana, Jill; Earthman, James

    Discover Science Initiative (DSI) is an unprecedented success in the Southern Californian community by reaching out to over 5,000 participants through eight hands-on workshops on topics from fungi to the physics of light, and two large events in the past year. The DSI vision is to provide an avenue for University of California, Irvine (UCI) students and faculty from all departments to engage with the local community through workshops and presentations on interdisciplinary, state-of-the-art STEM research unique to UCI. DSI provides professional development opportunities for diverse students at UCI, while providing outreach at one of the most popular educational centers in Southern California, the Discovery Cube, which hosts over 400,000 guests each year. In DSI, students engage in peer-to-peer mentoring with guidance from the UCI School of Education in designing workshops, leading meetings, and managing teams. Also, students practice science communication, coached by certified communications trainers. Students involved in DSI learn important skills to complement their academic degrees, and stay motivated to pursue their career goals. Support for DSI is from Diverse Educational and Doctoral Experience (DECADE) at UCI.

  4. Life Science Start-up Activities at the Universities of Applied Sciences (UAS).

    Science.gov (United States)

    Huber, Gerda

    2014-12-01

    The universities of applied sciences (UAS) provide several values for the society and economy of a country. Besides education of high level professionals, transfer of knowledge from research to applications in industry or as new start-up companies is an important task. This is done in different ways in the various disciplines. In Life Sciences, a key industry branch in Switzerland, innovation is a competitive success factor and research findings from UAS/Life Sciences contribute to the valorization of new technologies to products, services and to business performance. In order to foster awareness for the innovation need of industry, UAS install processes and support for transfer of research and technology results to marketable applications. Furthermore they may facilitate contacts of researchers and students with entrepreneurs in order to animate start-up founding as a true alternative to being employed. Access to coaching and entrepreneurial training completes the essential basis.

  5. Strategic Curricular Decisions in Butler University's Actuarial Science Major

    Science.gov (United States)

    Wilson, Christopher James

    2014-01-01

    We describe specific curricular decisions employed at Butler University that have resulted in student achievement in the actuarial science major. The paper includes a discussion of how these decisions might be applied in the context of a new actuarial program.

  6. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Vinod Shanker Dubey1 Ritu Bhalla2 Rajesh Luthra3. Neurobiotechnology Center, The Ohio State University, Columbus, Ohio 43210, USA; Plant Microbes Interaction Lab, Department of Biological Sciences, National University of Singapore, Singapore 117604; CSIR Complex, Dr K S Krishnan Marg, Pusa ...

  7. Photometric Analysis in the Kepler Science Operations Center Pipeline

    Science.gov (United States)

    Twicken, Joseph D.; Clarke, Bruce D.; Bryson, Stephen T.; Tenenbaum, Peter; Wu, Hayley; Jenkins, Jon M.; Girouard, Forrest; Klaus, Todd C.

    2010-01-01

    We describe the Photometric Analysis (PA) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this module are to compute the photometric flux and photocenters (centroids) for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) stellar targets from the calibrated pixels in their respective apertures. We discuss the science algorithms for long and short cadence PA: cosmic ray cleaning; background estimation and removal; aperture photometry; and flux-weighted centroiding. We discuss the end-to-end propagation of uncertainties for the science algorithms. Finally, we present examples of photometric apertures, raw flux light curves, and centroid time series from Kepler flight data. PA light curves, centroid time series, and barycentric timestamp corrections are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy.

  8. Western Mineral and Environmental Resources Science Center--providing comprehensive earth science for complex societal issues

    Science.gov (United States)

    Frank, David G.; Wallace, Alan R.; Schneider, Jill L.

    2010-01-01

    Minerals in the environment and products manufactured from mineral materials are all around us and we use and come into contact with them every day. They impact our way of life and the health of all that lives. Minerals are critical to the Nation's economy and knowing where future mineral resources will come from is important for sustaining the Nation's economy and national security. The U.S. Geological Survey (USGS) Mineral Resources Program (MRP) provides scientific information for objective resource assessments and unbiased research results on mineral resource potential, production and consumption statistics, as well as environmental consequences of mining. The MRP conducts this research to provide information needed for land planners and decisionmakers about where mineral commodities are known and suspected in the earth's crust and about the environmental consequences of extracting those commodities. As part of the MRP scientists of the Western Mineral and Environmental Resources Science Center (WMERSC or 'Center' herein) coordinate the development of national, geologic, geochemical, geophysical, and mineral-resource databases and the migration of existing databases to standard models and formats that are available to both internal and external users. The unique expertise developed by Center scientists over many decades in response to mineral-resource-related issues is now in great demand to support applications such as public health research and remediation of environmental hazards that result from mining and mining-related activities. Western Mineral and Environmental Resources Science Center Results of WMERSC research provide timely and unbiased analyses of minerals and inorganic materials to (1) improve stewardship of public lands and resources; (2) support national and international economic and security policies; (3) sustain prosperity and improve our quality of life; and (4) protect and improve public health, safety, and environmental quality. The MRP

  9. ESSEA as an Enhancement to K-12 Earth Systems Science Efforts at San José State University

    Science.gov (United States)

    Messina, P.; Metzger, E. P.; Sedlock, R. L.

    2002-12-01

    San José State University's Geology Department has implemented and maintained a two-fold approach to teacher education efforts. Both pre-service and in-service populations have been participants in a wide variety of content-area enrichment, training, and professional development endeavors. Spearheading these initiatives is the Bay Area Earth Science Institute (BAESI); organized in 1990, this program has served more than 1,000 teachers in weekend- and summer-workshops, and field trips. It sustains a network of Bay Area teachers via its Website (http://www.baesi.org), newsletter, and allows teachers to borrow classroom-pertinent materials through the Earth Science Resource Center. The Department has developed a course offering in Earth Systems Science (Geology 103), which targets pre-service teachers within SJSU's multiple-subject credential program. The curriculum satisfies California subject matter competency requirements in the geosciences, and infuses pedagogy into the syllabus. Course activities are intended for pre-service and in-service teachers' adaptation in their own classrooms. The course has been enhanced by two SJSU-NASA collaborations (Project ALERT and the Sun-Earth Connection Education Forum), which have facilitated incorporation of NASA data, imagery, and curricular materials. SJSU's M.A. in Natural Science, a combined effort of the Departments of Geology, Biology, and Program in Science Education, is designed to meet the multi-disciplinary needs of single-subject credential science teachers by providing a flexible, individually-tailored curriculum that combines science course work with a science education project. Several BAESI teachers have extended their Earth science knowledge and teaching skills through such projects as field guides to local sites of geological interest; lab-based modules for teaching about earthquakes, rocks and minerals, water quality, and weather; and interactive online materials for students and teachers of science. In

  10. Challenges for Data Archival Centers in Evolving Environmental Sciences

    Science.gov (United States)

    Wei, Y.; Cook, R. B.; Gu, L.; Santhana Vannan, S. K.; Beaty, T.

    2015-12-01

    Environmental science has entered into a big data era as enormous data about the Earth environment are continuously collected through field and airborne missions, remote sensing observations, model simulations, sensor networks, etc. An open-access and open-management data infrastructure for data-intensive science is a major grand challenge in global environmental research (BERAC, 2010). Such an infrastructure, as exemplified in EOSDIS, GEOSS, and NSF EarthCube, will provide a complete lifecycle of environmental data and ensures that data will smoothly flow among different phases of collection, preservation, integration, and analysis. Data archival centers, as the data integration units closest to data providers, serve as the source power to compile and integrate heterogeneous environmental data into this global infrastructure. This presentation discusses the interoperability challenges and practices of geosciences from the aspect of data archival centers, based on the operational experiences of the NASA-sponsored Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) and related environmental data management activities. Specifically, we will discuss the challenges to 1) encourage and help scientists to more actively share data with the broader scientific community, so that valuable environmental data, especially those dark data collected by individual scientists in small independent projects, can be shared and integrated into the infrastructure to tackle big science questions; 2) curate heterogeneous multi-disciplinary data, focusing on the key aspects of identification, format, metadata, data quality, and semantics to make them ready to be plugged into a global data infrastructure. We will highlight data curation practices at the ORNL DAAC for global campaigns such as BOREAS, LBA, SAFARI 2000; and 3) enhance the capabilities to more effectively and efficiently expose and deliver "big" environmental data to broad range of users and systems

  11. 78 FR 50108 - Notice of Intent To Repatriate Cultural Item: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2013-08-16

    ....R50000] Notice of Intent To Repatriate Cultural Item: Rochester Museum & Science Center, Rochester, NY AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Rochester Museum & Science Center... that the cultural item listed in this notice meets the definition of a sacred object and an object of...

  12. 75 FR 57967 - Science Advisory Board to the National Center for Toxicological Research Notice of Meeting

    Science.gov (United States)

    2010-09-23

    ...] Science Advisory Board to the National Center for Toxicological Research Notice of Meeting AGENCY: Food... closed to the public. Name of Committee: Science Advisory Board (SAB) to the National Center for Toxicological Research (NCTR). General Function of the Committee: To provide advice and recommendations to the...

  13. 77 FR 57569 - Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting

    Science.gov (United States)

    2012-09-18

    ...] Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting AGENCY: Food... closed to the public. Name of Committee: Science Advisory Board (SAB) to the National Center for Toxicological Research (NCTR). General Function of the Committee: To provide advice and recommendations to the...

  14. Space science public outreach at Louisiana State University

    Science.gov (United States)

    Guzik, T.; Babin, E.; Cooney, W.; Giammanco, J.; Hartman, D.; McNeil, R.; Slovak, M.; Stacy, J.

    Over the last seven years the Astronomy / Astrophysics group in the Department of Physics and Astronomy of Louisiana State University has developed an exten- sive Space Science education and public outreach program. This program includes the local park district (the Recreation and Park Commission for the Parish of East Baton Rouge, BREC), the local amateur astronomer group (the Baton Rouge As- tronomical Society, BRAS), the Louisiana Arts and Science Museum (LASM), and Southern University (SU, part of the largest HBCU system in the nation). Our effort has directly led to the development of the Highland Road Park Observatory (HRPO, http://www.bro.lsu.edu/hrpo) that supports student astronomy training at LSU and SU, amateur observations and a public program for adults and children, establishment of a series of teacher professional development workshops in astronomy and physics, and the "Robots for Internet Experiences (ROBIE)" project (http://www.bro.lsu.edu/) where we have several instruments (e.g. HAM radio, radio telescope, optical tele- scopes) that can be controlled over the internet by students and teachers in the class- room along with associated lessons developed by a teacher group. In addition, this year the LASM, will be opening a new planetarium / space theater in downtown Baton Rouge, Louisiana. We are currently working to bring live views of the heavens from the HRPO telescope to audiences attending planetarium shows and will be working closely with planetarium staff to develop shows that highlight LSU astronomy / space science research. During the presentation we will provide some details about our in- dividual projects, the overall structure of our program, establishing community links and some of the lessons we learned along the way. Finally, we would like to acknowl- edge NASA, Louisiana State University, the Louisiana Systemic Initiatives Program and the Louisiana Technology Innovation Fund for their support.

  15. University Students' Opinions Concerning Science-Technology-Society Issues

    Science.gov (United States)

    Dolu, Gamze

    2016-01-01

    Determining what students think about science, technology, and society (STS) is of great importance. This also provides the basis for scientific literacy. As such, this study was conducted with a total of 102 senior students attending a university located in western Turkey. This study utilized the survey model as a research model and the…

  16. Actuarial Science at One Four-Year Comprehensive University

    Science.gov (United States)

    Charlwood, Kevin E.

    2014-01-01

    Building an Actuarial Science program designated as advanced requires dedicated faculty, support from the administration, and a core group of strong students. Washburn University may serve as a model for those wishing to start or enhance such a program at their institution. We face three main ongoing challenges: first, the hiring and retention of…

  17. Suborbital Science Program: Dryden Flight Research Center

    Science.gov (United States)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  18. Qualities of effective secondary science teachers: Perspectives of university biology students

    Science.gov (United States)

    McCall, Madelon J.

    This research was an attempt to hear the student voice concerning secondary science teacher effectiveness and to share that voice with those who impact the educational process. It was a snapshot of university freshmen biology students' opinions of the qualities of effective secondary science teachers based on their high school science experiences. The purpose of this study was to compile a list of effective secondary science teacher qualities as determined through a purposeful sampling of university second semester biology students and determine the role of the secondary science teacher in promoting interest and achievement in science, as well as the teacher's influence on a students' choice of a science career. The research was a mixed methods design using both quantitative and qualitative data obtained through the use of a 24 question electronic survey. There were 125 participants who provided information concerning their high school science teachers. Respondents provided information concerning the qualities of effective secondary science teachers and influences on the students' present career choice. The quantitative data was used to construct a hierarchy of qualities of effective secondary science teachers, divided into personal, professional, and classroom management qualities. The qualitative data was used to examine individual student responses to questions concerning secondary science teacher effectiveness and student career choice. The results of the research indicated that students highly value teachers who are both passionate about the subject taught and passionate about their students. High school science students prefer teachers who teach science in a way that is both interesting and relevant to the student. It was determined that the greatest influence on a secondary student's career choice came from family members and not from teachers. The secondary teacher's role was to recognize the student's interest in the career and provide encouragement

  19. Using the SOLO Taxonomy to Analyze Competence Progression of University Science Curricula

    Science.gov (United States)

    Brabrand, Claus; Dahl, Bettina

    2009-01-01

    During 2007 all Danish university curricula were reformulated to explicitly state course objectives due to the adoption of a new Danish national grading scale which stipulated that grades were to be given based on how well students meet explicit course objectives. The Faculties of Science at University of Aarhus and University of Southern Denmark…

  20. 2004 research briefs :Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  1. Collections management plan for the U.S. Geological Survey Woods Hole Coastal and Marine Science Center Data Library

    Science.gov (United States)

    List, Kelleen M.; Buczkowski, Brian J.; McCarthy, Linda P.; Orton, Alice M.

    2015-08-17

    The U.S. Geological Survey Woods Hole Coastal and Marine Science Center has created a Data Library to organize, preserve, and make available the field, laboratory, and modeling data collected and processed by Woods Hole Coastal and Marine Science Center staff. This Data Library supports current research efforts by providing unique, historic datasets with accompanying metadata. The Woods Hole Coastal and Marine Science Center’s Data Library has custody of historic data and records that are still useful for research, and assists with preservation and distribution of marine science records and data in the course of scientific investigation and experimentation by researchers and staff at the science center.

  2. Social Science at the Center for Adaptive Optics: Synergistic Systems of Program Evaluation, Applied Research, Educational Assessment, and Pedagogy

    Science.gov (United States)

    Goza, B. K.; Hunter, L.; Shaw, J. M.; Metevier, A. J.; Raschke, L.; Espinoza, E.; Geaney, E. R.; Reyes, G.; Rothman, D. L.

    2010-12-01

    This paper describes the interaction of four elements of social science as they have evolved in concert with the Center for Adaptive Optics Professional Development Program (CfAO PDP). We hope these examples persuade early-career scientists and engineers to include social science activities as they develop grant proposals and carry out their research. To frame our discussion we use a metaphor from astronomy. At the University of California Santa Cruz (UCSC), the CfAO PDP and the Educational Partnership Center (EPC) are two young stars in the process of forming a solar system. Together, they are surrounded by a disk of gas and dust made up of program evaluation, applied research, educational assessment, and pedagogy. An idea from the 2001 PDP intensive workshops program evaluation developed into the Assessing Scientific Inquiry and Leadership Skills (AScILS) applied research project. In iterative cycles, AScILS researchers participated in subsequent PDP intensive workshops, teaching social science while piloting AScILS measurement strategies. Subsequent "orbits" of the PDP program evaluation gathered ideas from the applied research and pedagogy. The denser regions of this disk of social science are in the process of forming new protoplanets as tools for research and teaching are developed. These tools include problem-solving exercises or simulations of adaptive optics explanations and scientific reasoning; rubrics to evaluate the scientific reasoning simulation responses, knowledge regarding inclusive science education, and student explanations of science/engineering inquiry investigations; and a scientific reasoning curriculum. Another applied research project is forming with the design of a study regarding how to assess engineering explanations. To illustrate the mutual shaping of the cross-disciplinary, intergenerational group of educational researchers and their projects, the paper ends with a description of the professional trajectories of some of the

  3. Renata Adler Memorial Research Center for Child Welfare and Protection, Tel-Aviv University

    Science.gov (United States)

    Ronen, Tammie

    2011-01-01

    The Renata Adler Memorial Research Center for Child Welfare and Protection operates within the Bob Shapell School of Social Work at Tel-Aviv University in Israel. The main aims of this research center are to facilitate study and knowledge about the welfare of children experiencing abuse or neglect or children at risk and to link such knowledge to…

  4. Teaching Citizenship in Science Classes at the University of Arizona

    Science.gov (United States)

    Thompson, R. M.; Mangin, K.

    2008-12-01

    credits while teaching young people about marine science and conservation. Classes of elementary and middle school students attend a class field trip to a UA teaching laboratory where they explore a variety of hands-on marine biology centers. Undergraduates facilitate the learning centers and develop new centers for future years of the program. In addition, undergraduates in Marine Discovery do a marine ecology field project during a field trip to the Gulf of California, and present their results as a research poster to their peers. The course is entirely project- based, and helps students to develop informal as well as formal science communication skills. Many outreach programs suffer from loss of funding and lack of sustainability. Marine Discovery's popularity with both UA undergraduates and K-12 teachers has helped sustain it into its sixteenth year.

  5. College and University Earth System Science Education for the 21st Century (ESSE 21)

    Science.gov (United States)

    Johnson, D. R.; Ruzek, M.; Schweizer, D.

    2002-12-01

    The NASA/USRA Cooperative University-based Program in Earth System Science Education (ESSE), initiated over a decade ago through NASA support, has led in the creation of a nationwide collaborative effort to bring Earth system science into the undergraduate classroom. Forty-five ESSE institutions now offer over 120 Earth system courses each year, reaching thousands of students annually with interdisciplinary content. Through the course offerings by faculty from different disciplines and the organizational infrastructure of colleges and universities emphasizing cross disciplinary curricula, programs, degrees and departments, the ESSE Program has led in systemic change in the offering of a holistic view of Earth system science in the classroom. Building on this successful experience and collaborative infrastructure within and among colleges, universities and NASA partners, an expanded program called ESSE 21 is being supported by NASA to extend the legacy established during the last decade. Through its expanded focus including partnerships with under represented colleges and universities, the Program seeks to further develop broadly based educational resources, including shared courses, electronic learning materials and degree programs that will extend Earth system science concepts in both undergraduate and graduate classrooms and laboratories. These resources emphasizing fundamentals of Earth system science advance the nation's broader agenda for improving science, technology, engineering and mathematics competency. Overall the thrust within the classrooms of colleges and universities is critical to extending and solidifying courses of study in Earth system and global change science. ESSE 21 solicits proposals from undergraduate institutions to create or adopt undergraduate and graduate level Earth system science content in courses, curricula and degree programs. The goal for all is to effect systemic change through developing Earth system science learning materials

  6. Determinants of Political Science Faculty Salaries at the University of California

    Science.gov (United States)

    Grofman, Bernard

    2009-01-01

    Combining salary data for permanent non-emeritus faculty at seven departments of political science within the University of California system with lifetime citation counts and other individual-level data from the Masuoka, Grofman, and Feld (2007a) study of faculty at Ph.D.-granting political science departments in the United States, I analyze…

  7. The Preparation of Master's-Level Professional Counselors for Positions in College and University Counseling Centers

    Science.gov (United States)

    Shaw, Brian M.; Remley, Theodore P., Jr.; Ward, Christine

    2014-01-01

    This study investigated college and university counseling center directors' perceptions of the adequacy of the preparation of master's-level counselors for work in college and university counseling centers. Results indicated that counselors were rated on average as prepared; however, many directors had concerns about counselors'…

  8. Science Hall of Atomic Energy in Research Reactor Institute, Kyoto University

    International Nuclear Information System (INIS)

    Hayashi, Takeo

    1979-01-01

    The Science Hall of Atomic Energy was built as a subsidiary facility of the Research Reactor Institute, Kyoto University. The purpose of this facility is to accept outside demands concerning the application of the research reactor. The building is a two story building, and has the floor area of 901.47 m 2 . There are an exhibition room, a library, and a big lecture room. In the exhibition room, models of the Kyoto University Research Reactor and the Kyoto University Critical Assembly are placed. Various pictures concerning the application of the reactor are on the wall. In the library, people from outside of the Institute can use various books on science. Books for boys and girls are also stocked and used for public use. At the lecture room, various kinds of meeting can be held. (Kato, T.)

  9. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Center for Astrophysics, Guangzhou University, Guangzhou 510006, China. Department of Physics, School for Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China. Astronomy Science and Technology Research Laboratory of Department of Education of Guangdong Province, Guangzhou ...

  10. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Sarbashis Das1 Ragothaman M Yennamalli1 Anchal Vishnoi1 Parul Gupta1 Alok Bhattacharya1 2. Center for Computational Biology and Bioinformatics, School of Information Technology, Jawaharlal Nehru University, New Delhi 110 067, India; School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, ...

  11. Scientific and Ethical Reflections on Academic Corruption in Universities: On the Science Research Evaluation System in China's Universities

    Science.gov (United States)

    Xiaochun, Wu; Dan, Jia

    2007-01-01

    A study of the science research activities in China's institutions of higher learning in recent years indicates that there is a major connection between the current instances of corruption in scientific research at colleges and universities and the evaluations system for scientific research implemented at many of the colleges and universities.…

  12. NASA Langley Research Center outreach in astronautical education

    Science.gov (United States)

    Duberg, J. E.

    1976-01-01

    The Langley Research Center has traditionally maintained an active relationship with the academic community, especially at the graduate level, to promote the Center's research program and to make graduate education available to its staff. Two new institutes at the Center - the Joint Institute for Acoustics and Flight Sciences, and the Institute for Computer Applications - are discussed. Both provide for research activity at the Center by university faculties. The American Society of Engineering Education Summer Faculty Fellowship Program and the NASA-NRC Postdoctoral Resident Research Associateship Program are also discussed.

  13. Benchmarking participation of Canadian university health sciences librarians in systematic reviews

    Science.gov (United States)

    Murphy, Susan A.; Boden, Catherine

    2015-01-01

    This study describes the current state of Canadian university health sciences librarians' knowledge about, training needs for, and barriers to participating in systematic reviews (SRs). A convenience sample of Canadian librarians was surveyed. Over half of the librarians who had participated in SRs acknowledged participating in a traditional librarian role (e.g., search strategy developer); less than half indicated participating in any one nontraditional librarian role (e.g., data extractor). Lack of time and insufficient training were the most frequently reported barriers to participating in SRs. The findings provide a benchmark for tracking changes in Canadian university health sciences librarians' participation in SRs. PMID:25918485

  14. Year 3 LUNAR Annual Report to the NASA Lunar Science Institute

    OpenAIRE

    Burns, Jack; Lazio, Joseph

    2012-01-01

    The Lunar University Network for Astrophysics Research (LUNAR) is a team of researchers and students at leading universities, NASA centers, and federal research laboratories undertaking investigations aimed at using the Moon as a platform for space science. LUNAR research includes Lunar Interior Physics & Gravitation using Lunar Laser Ranging (LLR), Low Frequency Cosmology and Astrophysics (LFCA), Planetary Science and the Lunar Ionosphere, Radio Heliophysics, and Exploration Science. The LUN...

  15. The Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Lisowski, Paul W.; Schoenberg, Kurt F.

    2006-01-01

    The Los Alamos Neutron Science Center, or LANSCE, uses the first truly high-current medium-energy proton linear accelerator, which operated originally at a beam power of 1 MW for medium-energy nuclear physics. Today LANSCE continues operation as one of the most versatile accelerator-based user facilities in the world. During eight months of annual operation, scientists from around the world work at LANSCE to execute an extraordinarily broad program of defense and civilian research. Several areas operate simultaneously. The Lujan Neutron Scattering Center (Lujan Center) is a moderated spallation source (meV to keV), the Weapons Neutron Research Facility (WNR) is a bare spallation neutron source (keV to 800 MeV), and a new ultra-cold neutron source will be operational in 2005. These sources give LANSCE the ability to produce and use neutrons with energies that range over 14 orders of magnitude. LANSCE also supplies beam to WNR and two other areas for applications requiring protons. In a proton radiography (pRad) area, a sequence of narrow proton pulses is transmitted through shocked materials and imaged to study dynamic properties. In 2005, LANSCE began operating a facility that uses 100-MeV protons to produce medical radioisotopes. To sustain a vigorous program beyond this decade, LANSCE has embarked on a project to refurbish key elements of the facility and to plan capabilities beyond those that presently exist

  16. The Value of Metrics for Science Data Center Management

    Science.gov (United States)

    Moses, J.; Behnke, J.; Watts, T. H.; Lu, Y.

    2005-12-01

    The Earth Observing System Data and Information System (EOSDIS) has been collecting and analyzing records of science data archive, processing and product distribution for more than 10 years. The types of information collected and the analysis performed has matured and progressed to become an integral and necessary part of the system management and planning functions. Science data center managers are realizing the importance that metrics can play in influencing and validating their business model. New efforts focus on better understanding of users and their methods. Examples include tracking user web site interactions and conducting user surveys such as the government authorized American Customer Satisfaction Index survey. This paper discusses the metrics methodology, processes and applications that are growing in EOSDIS, the driving requirements and compelling events, and the future envisioned for metrics as an integral part of earth science data systems.

  17. Journalism as a Profession: Perceptions of Students of Journalism and Students of Communication Science at the University of Zagreb

    Directory of Open Access Journals (Sweden)

    Ines Jokoš

    2012-06-01

    Full Text Available This paper examines what journalism students at the Faculty of Political Science and communication science students at the Center for Croatian Studies at the University of Zagreb expect and suppose of their future profession. The aim of the research is to determine whether there are differences in the perception of journalism with respect to participants’ level and type of study. Almost all journalism and communication science students in this study believe that journalists should be educated, trained and qualified to work in journalism. Most of the research respondents believe that the Croatian journalist should be a critic of irregularities and that she should be the source that provides information to the citizens about their rights. They also believe that today’s typical Croatian journalist is prone to manipulation, tendentious writing, and tends to emphasize bad news and sensationalism. Guidelines for future research and recommendations for solving theses problems are also offered.

  18. The MMS Science Data Center: Operations, Capabilities, and Resource.

    Science.gov (United States)

    Larsen, K. W.; Pankratz, C. K.; Giles, B. L.; Kokkonen, K.; Putnam, B.; Schafer, C.; Baker, D. N.

    2015-12-01

    The Magnetospheric MultiScale (MMS) constellation of satellites completed their six month commissioning period in August, 2015 and began science operations. Science operations for the Solving Magnetospheric Acceleration, Reconnection, and Turbulence (SMART) instrument package occur at the Laboratory for Atmospheric and Space Physics (LASP). The Science Data Center (SDC) at LASP is responsible for the data production, management, distribution, and archiving of the data received. The mission will collect several gigabytes per day of particles and field data. Management of these data requires effective selection, transmission, analysis, and storage of data in the ground segment of the mission, including efficient distribution paths to enable the science community to answer the key questions regarding magnetic reconnection. Due to the constraints on download volume, this includes the Scientist-in-the-Loop program that identifies high-value science data needed to answer the outstanding questions of magnetic reconnection. Of particular interest to the community is the tools and associated website we have developed to provide convenient access to the data, first by the mission science team and, beginning March 1, 2016, by the entire community. This presentation will demonstrate the data and tools available to the community via the SDC and discuss the technologies we chose and lessons learned.

  19. Re-visioning Curriculum and Pedagogy in a University Science and ...

    African Journals Online (AJOL)

    Re-visioning Curriculum and Pedagogy in a University Science and Technology Education Setting: Case Studies Interrogating Socio-Scientific Issues. Overson Shumba, George Kasali, Yaki Namiluko, Beauty Choobe, Gezile Mbewe, Moola Mutondo, Kenneth Maseka ...

  20. The National Space Science Data Center guide to international rocket data

    Science.gov (United States)

    Dubach, L. L.

    1972-01-01

    Background information is given which briefly describes the mission of the National Space Science Data Center (NSSDC), including its functions and systems, along with its policies and purposes for collecting rocket data. The operation of a machine-sensible rocket information system, which allows the Data Center to have convenient access to information and data concerning all rocket flights carrying scientific experiments, is also described. The central feature of this system, an index of rocket flights maintained on magnetic tape, is described. Standard outputs for NSSDC and for the World Data Center A (WDC-A) for Rockets and Satellites are described.

  1. Basic and Applied Research at the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Lisowski, P.W.

    2003-01-01

    The Los Alamos Neutron Science Center, or LANSCE, is an accelerator-based national user facility for research in basic and applied science. At present LANSCE has two experimental areas primarily using neutrons generated by 800-MeV protons striking tungsten target systems. A third area uses the proton beam for radiography. This paper describes the three LANSCE experimental areas, gives highlights of the past operating period, and discusses plans for the future

  2. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    International Nuclear Information System (INIS)

    Schoenberg, Kurt F.

    2010-01-01

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  3. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, Kurt F [Los Alamos National Laboratory

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  4. AMS data production facilities at science operations center at CERN

    Science.gov (United States)

    Choutko, V.; Egorov, A.; Eline, A.; Shan, B.

    2017-10-01

    The Alpha Magnetic Spectrometer (AMS) is a high energy physics experiment on the board of the International Space Station (ISS). This paper presents the hardware and software facilities of Science Operation Center (SOC) at CERN. Data Production is built around production server - a scalable distributed service which links together a set of different programming modules for science data transformation and reconstruction. The server has the capacity to manage 1000 paralleled job producers, i.e. up to 32K logical processors. Monitoring and management tool with Production GUI is also described.

  5. Life Sciences at the Cyclotron Center of the Slovak Republic

    International Nuclear Information System (INIS)

    Podhorsky, D.; Kovac, P.; Macasek, F.

    2004-01-01

    In this presentation the history and present status of the Cyclotron Center of the Slovak (CC SR) are presented. A state run scientific center and production facility ensuring: - the basic and applied research in nuclear physics, chemistry, biology and medicine; - production of radionuclides and radiopharmaceuticals; - and applications of heavy ions and electron accelerator technologies in medicine and material science. Current financial status of the CC SR is following: Deblocation of the Russian; Federation debt to the Slovak Republic (94 %); State budget of the Slovak Republic (3 %); IAEA (3 %)

  6. A Place of Her Own: The Case for University-Based Centers for Women Entrepreneurs

    Science.gov (United States)

    Riebe, Mary

    2012-01-01

    The author describes the benefits of university-based women entrepreneur centers as an educational and outreach strategy and argues for their establishment and support by universities interested in educating women entrepreneurs and advancing women-owned businesses. Based on extensive research on women business owners and firsthand experience with…

  7. Goddard Earth Science Data and Information Center (GES DISC)

    Science.gov (United States)

    Kempler, Steve

    2016-01-01

    The GES DIS is one of 12 NASA Earth science data centers. The GES DISC vision is to enable researchers and educators maximize knowledge of the Earth by engaging in understanding their goals, and by leading the advancement of remote sensing information services in response to satisfying their goals. This presentation will describe the GES DISC approach, successes, challenges, and best practices.

  8. Life science-based neuroscience education at large Western Public Universities.

    Science.gov (United States)

    Coskun, Volkan; Carpenter, Ellen M

    2016-12-01

    The last 40 years have seen a remarkable increase in the teaching of neuroscience at the undergraduate level. From its origins as a component of anatomy or physiology departments to its current status as an independent interdisciplinary field, neuroscience has become the chosen field of study for many undergraduate students, particularly for those interested in medical school or graduate school in neuroscience or related fields. We examined how life science-based neuroscience education is offered at large public universities in the Western United States. By examining publicly available materials posted online, we found that neuroscience education may be offered as an independent program, or as a component of biological or physiological sciences at many institutions. Neuroscience programs offer a course of study involving a core series of courses and a collection of topical electives. Many programs provide the opportunity for independent research, or for laboratory-based training in neuroscience. Features of neuroscience programs at Western universities closely matched those seen at the top 25 public universities, as identified by U.S. News & World Report. While neuroscience programs were identified in many Western states, there were several states in which public universities appeared not to provide opportunities to major in neuroscience. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Gerald L. Epstein, PhD: director, center for science, technology, and security policy, American Association for the Advancement of Science (AAAS). Interview by Madeline Drexler.

    Science.gov (United States)

    Epstein, Gerald L

    2009-12-01

    Over his entire career, Gerald Epstein has toiled at the nexus of science, technology, and security. From 2003 to 2009, he was Senior Fellow for Science and Security at the Center for Strategic and International Studies Homeland Security Program, where he worked on reducing biological weapons threats, improving national preparedness, and easing potential tensions between the scientific research and national security communities. Epstein came to CSIS from the Institute for Defense Analyses. From 1996 to 2001, he served in the White House Office of Science and Technology Policy. And from 1983 to 1989, and again from 1991 until its demise in 1995, Epstein worked at the Congressional Office of Technology Assessment, where he directed a study on the proliferation of weapons of mass destruction, alongside research on other global security topics. A recognized expert in biological risk reduction, Epstein was actually trained as a physicist, having received SB degrees in physics and electrical engineering from MIT, and a PhD in physics from the University of California at Berkeley. How, then, did he come to study the evolving threat from bioterrorism? "What compelled me about bioterrorism was that it was a stellar example of a topic that would lead to a train wreck between the scientific community and the security community unless they figured out how to work together," he said. "The distance between a laboratory and a very large consequence event is a lot shorter in biology than in any other field. I got into bioterrorism to help make sure that the security community doesn't get so scared of the science that it shuts it down, and that the science community isn't so oblivious of security concerns that it pays no attention to them." Epstein spoke on November 6, 2009, with contributing writer Madeline Drexler, author of Emerging Epidemics: The Menace of New Infections (Penguin, 2009), an updated version of an earlier volume. Drexler holds a visiting appointment at the

  10. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Amitabha Nandi1 Ram Ramaswamy1 2. School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India; Center for Computational Biology and Bioinformatics, School of Information Technology, Jawaharlal Nehru University, New Delhi 110 067, India ...

  11. Center for Center for Technology for Advanced Scientific Component Software (TASCS)

    Energy Technology Data Exchange (ETDEWEB)

    Kostadin, Damevski [Virginia State Univ., Petersburg, VA (United States)

    2015-01-25

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  12. Investigation of science faculty with education specialties within the largest university system in the United States.

    Science.gov (United States)

    Bush, Seth D; Pelaez, Nancy J; Rudd, James A; Stevens, Michael T; Tanner, Kimberly D; Williams, Kathy S

    2011-01-01

    Efforts to improve science education include university science departments hiring Science Faculty with Education Specialties (SFES), scientists who take on specialized roles in science education within their discipline. Although these positions have existed for decades and may be growing more common, few reports have investigated the SFES approach to improving science education. We present comprehensive data on the SFES in the California State University (CSU) system, the largest university system in the United States. We found that CSU SFES were engaged in three key arenas including K-12 science education, undergraduate science education, and discipline-based science education research. As such, CSU SFES appeared to be well-positioned to have an impact on science education from within science departments. However, there appeared to be a lack of clarity and agreement about the purpose of these SFES positions. In addition, formal training in science education among CSU SFES was limited. Although over 75% of CSU SFES were fulfilled by their teaching, scholarship, and service, our results revealed that almost 40% of CSU SFES were seriously considering leaving their positions. Our data suggest that science departments would likely benefit from explicit discussions about the role of SFES and strategies for supporting their professional activities.

  13. Present status and future plans of the National Atomic Research Center of Malaysia

    International Nuclear Information System (INIS)

    Rashid, N.K.

    1980-01-01

    The Malaysian Atomic Research Center (PUSPATI) was established in 1972 and operates under the Ministry of Science, Technology and the Environment. It is the first research center of this kind in Malaysia. Some of the objectives of this center are: operation and maintenance of the research reactor; research and development in reactor science and technology; production of short-lived radioisotopes for use in medicine, agriculture and industry; coordination of the utilization of the reactor and its experimental facilities among the various research institutes and universities; training in nuclear radiation field; personnel monitoring and environmental surveillance

  14. Attitudes and beliefs of university science professors toward the discipline of education

    Science.gov (United States)

    Fogelberg, Katherine

    Because professional development (PD) is about persuasion and influence, it makes sense to use an influence framework when trying to determine the reasons current university-level PD has been fairly ineffective in changing teacher practice to date. This research used the theory of reasoned action (TRA) to determine if university natural science professors' attitudes and beliefs toward the discipline of education (DE), a construct not recognized in the current literature, were positive or negative. The study also looked to discover some of the major influences on the participants' attitudes and beliefs toward DE. A method bricolage was used to analyze data from 10 participants in two separate phases in an attempt to establish a replicable Discourse Analysis methodology for analyzing attitudes and beliefs, and to investigate the major influences on the formation of these attitudes and beliefs. The findings indicate that in general the participants' had positive beliefs in and about DE with negative attitudes toward DE and that the majority of the participants' views of teaching were formed by a number of significant influences. However, the participants' attitudes and beliefs toward DE are complicated by several issues, the most prominent being that this cohort's ideas about DE are based upon their PD experiences, which were generally delivered by centers for teaching excellence (CTEs) or equivalent entities. This research needs to be extended to determine the generalizability of these findings, as well as to provide evidence-based research to support the re-thinking of how PD is delivered at the university level.

  15. The Wetland and Aquatic Research Center strategic science plan

    Science.gov (United States)

    ,

    2017-02-02

    IntroductionThe U.S. Geological Survey (USGS) Wetland and Aquatic Research Center (WARC) has two primary locations (Gainesville, Florida, and Lafayette, Louisiana) and field stations throughout the southeastern United States and Caribbean. WARC’s roots are in U.S. Fish and Wildlife Service (USFWS) and National Park Service research units that were brought into the USGS as the Biological Research Division in 1996. Founded in 2015, WARC was created from the merger of two long-standing USGS biology science Centers—the Southeast Ecological Science Center and the National Wetlands Research Center—to bring together expertise in biology, ecology, landscape science, geospatial applications, and decision support in order to address issues nationally and internationally. WARC scientists apply their expertise to a variety of wetland and aquatic research and monitoring issues that require coordinated, integrated efforts to better understand natural environments. By increasing basic understanding of the biology of important species and broader ecological and physiological processes, this research provides information to policymakers and aids managers in their stewardship of natural resources and in regulatory functions.This strategic science plan (SSP) was developed to guide WARC research during the next 5–10 years in support of Department of the Interior (DOI) partnering bureaus such as the USFWS, the National Park Service, and the Bureau of Ocean Energy Management, as well as other Federal, State, and local natural resource management agencies. The SSP demonstrates the alignment of the WARC goals with the USGS mission areas, associated programs, and other DOI initiatives. The SSP is necessary for workforce planning and, as such, will be used as a guide for future needs for personnel. The SSP also will be instrumental in developing internal funding priorities and in promoting WARC’s capabilities to both external cooperators and other groups within the USGS.

  16. Effective Pedagogical Strategies for Millennial University Students in Communication Sciences and Disorders

    Science.gov (United States)

    Roseberry-McKibbin, Celeste; Pieretti, Robert; Haberstock, Keith; Estrada, Jovany

    2016-01-01

    University instructors nationwide have been recognizing the increased importance of updating classroom teaching strategies to accommodate the needs of the millennial student generation. This article shares results of surveys of 323 university students in communication sciences and disorders and what they view as effective pedagogical strategies…

  17. Partnership Opportunities In Earth System Science Education Between Historically Black and Historically White Universities: Elizabeth City State University and the University of New Hampshire

    Science.gov (United States)

    Williams, J. E.; Hayden, L. B.; Wake, C. P.; Varner, R. K.; Graham, K.; Rock, B. N.; Hale, S.; Hurtt, G. C.; Porter, W.; Blackmon, R.; Bryce, J. G.; Branch, B. D.; Johnson, J. E.

    2009-12-01

    Federal efforts to promote the participation of underrepresented students in the science, technology, engineering and mathematics disciplines (STEM) in higher education have been in effect over several decades. The Science and Engineering Equal Opportunities Act of 1980 aimed to create equal opportunity in the STEM disciplines by promoting and broadening the participation of underrepresented talent in science and engineering. Since that time, federal agencies such as the National Science Foundation, NOAA and NASA, scientific organizations such as the American Geophysical Union, and other organizations such as the Educational Testing Service have created programs, diversity plans and cutting edge reports designed to further explicate the need to broaden the participation of underrepresented student talent in these disciplines. Despite increases in the degrees awarded to underrepresented students in the STEM disciplines, enhancing diversity in these disciplines continues to remain a significant challenge. This paper describes a strategic approach to this challenge via the development of a collaborative partnership model between two universities: the historically black Elizabeth City State University (ESCU) and the historically white University of New Hampshire (UNH). The alliance, built on a mutually-agreed upon set of partnership principles, strives to enhance opportunities for underrepresented students to pursue careers in STEM disciplines, specifically those in Earth system science and remote sensing. In examining the partnership, six promising practices that help advance its success come to the forefront. These practices include institutional commitment and faculty engagement, mutual respect and shared time commitment, identifying engaged leadership, engaging critical change agents, initiating difficult dialogues, and preparing for growth and evolution. Outcomes of the partnership to date include the successful submission and funding of four collaborative

  18. History of the Fort Collins Science Center, U.S. Geological Survey

    Science.gov (United States)

    O'Shea, Thomas J. (compiler)

    2006-01-01

    The U.S. Geological Survey’s Fort Collins Science Center ("the Center") has been a nucleus of research, technology development, and associated scientific activities within the Department of the Interior for more than 30 years. The Center’s historical activities are deeply rooted in federal biological resources research and its supporting disciplines, particularly as they relate to the needs of the U.S. Department of the Interior and its resource management agencies. The organizational framework and activities of the Center have changed and adapted over the years in response to shifts in the scientific issues and challenges facing the U.S. Department of the Interior and with the development of new strategies to meet these challenges. Thus, the history of the Center has been dynamic.

  19. Mississippi State University Sustainable Energy Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Steele, W. Glenn [Mississippi State Univ., Mississippi State, MS (United States)

    2014-09-26

    The Sustainable Energy Research Center (SERC) project at Mississippi State University included all phases of biofuel production from feedstock development, to conversion to liquid transportation fuels, to engine testing of the fuels. The feedstocks work focused on non-food based crops and yielded an increased understanding of many significant Southeastern feedstocks. an emphasis was placed on energy grasses that could supplement the primary feedstock, wood. Two energy grasses, giant miscanthus and switchgrass, were developed that had increased yields per acre. Each of these grasses was patented and licensed to companies for commercialization. The fuels work focused on three different technologies that each led to a gasoline, diesel, or jet fuel product. The three technologies were microbial oil, pyrolysis oil, and syngas-to liquid-hydrocarbons

  20. Center of Excellence in Space Data and Information Sciences

    Science.gov (United States)

    Yesha, Yelena

    1999-01-01

    This report summarizes the range of computer science-related activities undertaken by CESDIS for NASA in the twelve months from July 1, 1998 through June 30, 1999. These activities address issues related to accessing, processing, and analyzing data from space observing systems through collaborative efforts with university, industry, and NASA space and Earth scientists. The sections of this report which follow, detail the activities undertaken by the members of each of the CESDIS branches. This includes contributions from university faculty members and graduate students as well as CESDIS employees. Phone numbers and e-mail addresses appear in Appendix F (CESDIS Personnel and Associates) to facilitate interactions and new collaborations.

  1. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning 530004, China. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China. Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese ...

  2. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  3. Perspectives of cooperation of the L.N. Gumilev Eurasian State University and Institute of Nuclear Physics of the National Nuclear Center of the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Zholdasbekov, M.Zh.; Donbaev, K.M.; Kadyrzhanov, K.K.

    2001-01-01

    It is noted, that one of a modern tendency in development both science and education in CIS and Kazakhstan is its step-by-step integration. For purpose of further development of scientific trends in physics field the agreement on cooperative activity between the L.N. Gumilev Eurasian State University and Institute of Nuclear Physics of the National Nuclear Center of the Republic of Kazakhstan was concluded (2000, November 18). The principle aim of the cooperative activity of the sides is conducting of fundamental and applied studies on solid state physics, nuclear physics, radioecological problems of the Astana town and development of science-intensive technologies. For realization of this task the Astana Filial of Institute of Nuclear Physics is established at the University. In particularly, on the ground of this cooperation the implementation of Inter-disciplinary Research Complex with heavy ion accelerator was initiated. Such accelerator could be used for the scientific researches, training of students and postgraduates, and different technological purposes

  4. Model of Activities of the Resource Training Center of the Russian State Social University in Terms of Professional Orientation and Employment of Persons with Disabilities

    Directory of Open Access Journals (Sweden)

    Bikbulatova A.A.,

    2017-08-01

    Full Text Available The paper focuses on the importance of professional and vocational guidance for persons with disabilities. It describes the main approaches to providing such type of guidance to the disabled students and reveals the technologies of motivating people with disabilities to seek education and to make informed choices of profession. The research was aimed at developing the model of career guidance offered at resource and training centers established by the Ministry of Education and Science of the Russian Federation on the basis higher educational institutions. The paper presents the developed model of professional and vocational guidance for persons with disabilities and explains the algorithm of its implementation in the resource and training centers. Also, the paper gives recommendations on how to change the technology of communication between universities, regional job centers and offices of medical and social assessment.

  5. 77 FR 24227 - Proposal Review Panel for Social and Economic Sciences; Notice of Meeting

    Science.gov (United States)

    2012-04-23

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Social and Economic Sciences; Notice of... Engineering Center (NSEC) at Arizona State University by the Division Social and Economic Sciences ( 10748... Kronz, Program Director; Science, Technology and Society Program; Division of Social and Economic...

  6. Facility Design Program Requirements for National Science Center

    Science.gov (United States)

    1991-09-01

    a turn of the century structure and secondhand furniture to display exhibit items, to the Ontario Science Center in Canada which is a 10-year-old...mothers should be considered. 1.3 Visitors Coat Storage Areas 550 sq ft Pigeon hole or other storage cabinets for children’s school books , coats, and...1.4.4 Work Area (200 sq ft) 1.4.5 Office for Assistant Museum Shop Manager (75 sq ft) Function: Area for sale of books , posters, cards, slides, games

  7. The mobilize center: an NIH big data to knowledge center to advance human movement research and improve mobility.

    Science.gov (United States)

    Ku, Joy P; Hicks, Jennifer L; Hastie, Trevor; Leskovec, Jure; Ré, Christopher; Delp, Scott L

    2015-11-01

    Regular physical activity helps prevent heart disease, stroke, diabetes, and other chronic diseases, yet a broad range of conditions impair mobility at great personal and societal cost. Vast amounts of data characterizing human movement are available from research labs, clinics, and millions of smartphones and wearable sensors, but integration and analysis of this large quantity of mobility data are extremely challenging. The authors have established the Mobilize Center (http://mobilize.stanford.edu) to harness these data to improve human mobility and help lay the foundation for using data science methods in biomedicine. The Center is organized around 4 data science research cores: biomechanical modeling, statistical learning, behavioral and social modeling, and integrative modeling. Important biomedical applications, such as osteoarthritis and weight management, will focus the development of new data science methods. By developing these new approaches, sharing data and validated software tools, and training thousands of researchers, the Mobilize Center will transform human movement research. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  8. A Survey of Cultural Infrastructure and Performance in Medical Sciences Universities of Iran

    Directory of Open Access Journals (Sweden)

    Mahmood Feizi

    2015-08-01

    Full Text Available ​Background and objectives: Recently, the role of universities in developing and education of culture is considered increasingly but Iranian universities have great distance in achieving the desired objectives in this context. So, this study aimed to survey the cultural infrastructure and performance in medical sciences universities of Iran. Material and Methods: This is a cross-sectional study that was done using researcher-made checklist which its face and content validity were approved by the cultural experts' opinion via statistical indicators. The study was conducted in census method by responses of 25 managers of cultural affairs in medical sciences universities of Iran. The obtained data were analyzed descriptively and results were reported as frequency (percentages for qualitative and mean (standard deviation for quantitative variable. Results: The study results were presented in four areas: “the general status of universities in cultural affairs”, “cultural facilities of the universities”, “the activity of cultural organizations and publications in universities” and “performance of cultural deputies”. The results showed that although there are considerable strengths, the significant weaknesses are evident in all areas. The results of the present study were focused solely on the quantity of functions, and quality evaluation of each activity requires special attention and further investigations and interventions. Conclusion: Researchers hope that the authorities and planners use the results of this study and similar studies especially in quality of cultural practices of universities and move towards improving the status of culture in medical sciences universities in developing Iranian-Islamic culture.

  9. Lifestyle of health sciences students at Majmaah University, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Fahad Alfhaid

    2017-02-01

    Full Text Available Background We all want to live a long, happy and healthy life with an abundance of energy and vitality to perform well both mentally and physically. A healthy lifestyle is a valuable resource for reducing the incidence and impact of health problems, enabling you better to cope with life stressors, as well as improving your quality of life. Aims The study was aimed to assess the lifestyle (eating habits and physical activity of health sciences students studying at Majmaah University. Methods This cross-sectional institutional based study was conducted from 25th November 2014-3rd May 2015. A total of 450 students (370 males and 80 females aged between 18–28 years were randomly chosen. Self-reported questionnaire was used for data collection from the College of Medicine, College of Applied Medical Sciences and College of Dentistry. Results Majority of the students, 62.4 per cent, were physically inactive. Students from the College of Medicine, 40.4 per cent, were the most physically active. The most common reason that restrained the students from being active was time limitation. In addition to that, many of the participants, 29.6 per cent, have never had breakfast at home. Also, most of the participants, 42.7 per cent, were not satisfied with their eating habits. Almost one quarter of students were consuming soft drinks more than four times a day. Conclusion There is a high prevalence of sedentary lifestyle, physical inactivity and unhealthy dietary habits among health sciences students studying at Majmaah University. There is an urgent need for arranging health education programs for promoting healthy and active living among health sciences students of Majmaah University in Saudi Arabia.

  10. UC Merced Center for Computational Biology Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, Michael; Watanabe, Masakatsu

    2010-11-30

    Final report for the UC Merced Center for Computational Biology. The Center for Computational Biology (CCB) was established to support multidisciplinary scientific research and academic programs in computational biology at the new University of California campus in Merced. In 2003, the growing gap between biology research and education was documented in a report from the National Academy of Sciences, Bio2010 Transforming Undergraduate Education for Future Research Biologists. We believed that a new type of biological sciences undergraduate and graduate programs that emphasized biological concepts and considered biology as an information science would have a dramatic impact in enabling the transformation of biology. UC Merced as newest UC campus and the first new U.S. research university of the 21st century was ideally suited to adopt an alternate strategy - to create a new Biological Sciences majors and graduate group that incorporated the strong computational and mathematical vision articulated in the Bio2010 report. CCB aimed to leverage this strong commitment at UC Merced to develop a new educational program based on the principle of biology as a quantitative, model-driven science. Also we expected that the center would be enable the dissemination of computational biology course materials to other university and feeder institutions, and foster research projects that exemplify a mathematical and computations-based approach to the life sciences. As this report describes, the CCB has been successful in achieving these goals, and multidisciplinary computational biology is now an integral part of UC Merced undergraduate, graduate and research programs in the life sciences. The CCB began in fall 2004 with the aid of an award from U.S. Department of Energy (DOE), under its Genomes to Life program of support for the development of research and educational infrastructure in the modern biological sciences. This report to DOE describes the research and academic programs

  11. Operational status and future plans for the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Jones, Kevin W.; Schoenberg, Kurt F.

    2008-01-01

    The Los Alamos Neutron Science Center (LANSCE) continues to be a signature experimental science facility at Los Alamos National Laboratory (LANL). The 800 MeV linear proton accelerator provides multiplexed beams to five unique target stations to produce medical radioisotopes, ultra-cold neutrons, thermal and high energy neutrons for material and nuclear science, and to conduct proton radiography of dynamic events. Recent operating experience will be reviewed and the role of an enhanced LANSCE facility in LANL's new signature facility initiative, Matter and Radiation in Extremes (MaRIE) will be discussed.

  12. 78 FR 25469 - Notice of Inventory Completion: University of South Alabama Center for Archaeological Studies...

    Science.gov (United States)

    2013-05-01

    ... completion of an inventory of human remains and associated funerary objects under the control of the....R50000] Notice of Inventory Completion: University of South Alabama Center for Archaeological Studies... Alabama Center for Archaeological Studies has completed an inventory of human remains and associated...

  13. Tree species composition within Kano State University of science ...

    African Journals Online (AJOL)

    The study accessed the tree species composition within the Kano State University of Science and Technology Wudil, Kano State, Nigeria with the view of providing information that will help in the management and conservation of tree species within the campus. The study area was stratified into four (4) sections from which ...

  14. A summary of waste disposal operator and office abolition of the Radioisotope Center in the University of Tokyo

    International Nuclear Information System (INIS)

    Higaki, Shogo; Kosaka, Naoki; Nogawa, Norio

    2014-01-01

    Radioisotope center in the University of Tokyo had approval of waste disposal operator only in the universities of Japan since 1983. However, the radioisotope center abolished the waste disposal office in December 2013. In this paper, we summarize the history of the waste disposal operator in the radioisotope center, and report the procedure of office abolition under the Japanese law and regulations concerning prevention from radiation hazards due to radio-isotopes, etc. revised after April 2012. (author)

  15. Integrating Student-Centered Learning in Finance Courses: The Case of a Malaysian Research University

    Science.gov (United States)

    Janor, Hawati; Rahim, Ruzita Abdul; Rahman, Aisyah Abdul; Auzairy, Noor Azryani; Hashim, Noor Azuan; Yusof, Muhamad Zain

    2013-01-01

    The student-centered learning (SCL) approach is an approach to education that focuses on learners and their needs, rather than relying upon the input of the teacher's. The present paper examines how the SCL approach is integrated as a learner-centered paradigm into finance courses offered at a business school in a research university in Malaysia.…

  16. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Zaidi Mohammed, K.

    2006-01-01

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  17. A solar station in Ica - Mutsumi Ishitsuka: a research center to improve education at the university and schools

    Science.gov (United States)

    Terrazas-Ramos, Raúl

    2012-07-01

    The San Luis Gonzaga National University of Ica has built a solar station, in collaboration with the Geophysical Institute of Peru, the National Astronomical Observatory of Japan and the Hida Observatory. The Solar Station has the following equipment: a digital Spectrograph Solar Refractor Telescope Takahashi 15 cm aperture, 60 cm reflector telescope aperture, a magnetometer-MAGDAS/CPNM and a Burst Monitor Telescope Solar-FMT (Project CHAIN). These teams support the development of astronomical science and Ica in Peru, likewise contributing to science worldwide. The development of basic science will be guaranteed when university students, professors and researchers work together. The Solar Station will be useful for studying the different levels of university education and also for the general public. The Solar Station will be a good way to spread science in the region through public disclosure.

  18. Investigating the Usage Pattern of Tabriz University of Medical Sciences Users of E-journals during 2010-2012 based on Counter Reporting

    Directory of Open Access Journals (Sweden)

    Sara Jalalzaeh

    2015-08-01

    Full Text Available Background and objectives: The increase in the use of electronic resources in academic and scientific research centers and rising cost of preparing and getting access to these resources is the main reason for the importance of evaluating the amount of use from electronic resources considering appropriate use of funds in this paper. In this study, full-text usage of e-journals of five publishers (Elsevier, John Wiley, Oxford, Emrald and ProQuest was investigated in Tabriz University of Medical Sciences from 2010 to 2012. Material and Methods: This is a descriptive-survey research. The required data were acquired from publishers by Counter Reporting. Then, the data were analyzed and tables and diagrams were drawn by Excel software. Results: According to the research findings, among five studied publishers, Elsevier journals had the highest number of downloading full-text articles. After Elsevier, Wiley, Oxford Journals, ProQuest and Emerald were in next ranks respectively. Conclusion: Tabriz University of Medical Sciences has a good manner in meeting the users’ information needs by appropriate policy-making and specifying efficient fund in selecting available journals by Elsevier. Also, there could be a direct relationship between Tabriz University of Medical Sciences’ users’ level of familiarity and Elsevier journals. ​

  19. Tutorial: Magnetic resonance with nitrogen-vacancy centers in diamond—microwave engineering, materials science, and magnetometry

    Science.gov (United States)

    Abe, Eisuke; Sasaki, Kento

    2018-04-01

    This tutorial article provides a concise and pedagogical overview on negatively charged nitrogen-vacancy (NV) centers in diamond. The research on the NV centers has attracted enormous attention for its application to quantum sensing, encompassing the areas of not only physics and applied physics but also chemistry, biology, and life sciences. Nonetheless, its key technical aspects can be understood from the viewpoint of magnetic resonance. We focus on three facets of this ever-expanding research field, to which our viewpoint is especially relevant: microwave engineering, materials science, and magnetometry. In explaining these aspects, we provide a technical basis and up-to-date technologies for research on the NV centers.

  20. Extension through Partnerships: Research and Education Center Teams with County Extension to Deliver Programs

    Science.gov (United States)

    Mullahey, J. Jeffrey

    2011-01-01

    Budget reductions have severely affected resources available to deliver agriculture and natural resource Extension programs in Florida. University of Florida/Institute of Food and Agricultural Sciences delivers Extension programming through a unique partnership between research and education centers and county Extension. Science-based information…

  1. Establishing Network Interaction between Resource Training Centers for People with Disabilities and Partner Universities

    Directory of Open Access Journals (Sweden)

    Panyukova S.V.,

    2018-05-01

    Full Text Available The paper focuses on the problem of accessibility and quality of higher education for students with disabilities. We describe our experience in organising network interaction between the MSUPE Resource and Training Center for Disabled People established in 2016-2017 and partner universities in ‘fixed territories’. The need for cooperation and network interaction arises from the high demand for the cooperation of efforts of leading experts, researchers, methodologists and instructors necessary for improving the quality and accessibility of higher education for persons with disabilities. The Resource and Training Center offers counseling for the partner universities, arranges advanced training for those responsible for teaching of the disabled, and offers specialized equipment for temporary use. In this article, we emphasize the importance of organizing network interactions with universities and social partners in order to ensure accessibility of higher education for students with disabilities.

  2. Unique life sciences research facilities at NASA Ames Research Center

    Science.gov (United States)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  3. Climate change science education across schools, campuses, and centers: strategies and successes

    Science.gov (United States)

    Merrill, J.; Harcourt, P.; Rogers, M.; Buttram, J.; Petrone, C.; Veron, D. E.; Sezen-Barrie, A.; Stylinski, C.; Ozbay, G.

    2016-02-01

    With established partnerships in higher education, K-12, and informal science education communities across Delaware and Maryland, the NSF-funded MADE CLEAR project (Maryland Delaware Climate Change Education, Assessment, and Research) has instituted a suite of professional development strategies to bring climate change science into science education methods courses, K-12 classrooms, university lecture halls, and public park facilities. MADE CLEAR partners have provided consistent climate literacy topics (mechanisms, human contributions, local and global impacts, mitigation and adaptation) while meeting the unique needs of each professional community. In-person topical lectures, hands-on work with classroom materials, seed funding for development of new education kits, and on-line live and recorded sessions are some of the tools employed by the team to meet those needs and build enduring capacity for climate change science education. The scope of expertise of the MADE CLEAR team, with climate scientists, educators, learning scientists, and managers has provided not only PD tailored for each education audience, but has also created, fostered, and strengthened relationships across those audiences for long-term sustainability of the newly-built capacity. Specific examples include new climate change programs planned for implementation across Delaware State Parks that will be consistent with middle school curriculum; integration of climate change topics into science methods classes for pre-service teachers at four universities; and active K-12 and informal science education teams working to cooperatively develop lessons that apply informal science education techniques and formal education pedagogy. Evaluations by participants highlight the utility of personal connections, access to experts, mentoring and models for developing implementation plans.

  4. Introduction of a Science Policy Course at the University of Oklahoma

    Science.gov (United States)

    Mishra, S.; Parsons, D.

    2012-12-01

    In modern society, science and policy are two processes that have a symbiotic relationship to each other; wherein policy dictates the direction of science while science shapes the future of policy. Although the policy side is often ignored in scientific environments, the rate of scientific advancement is heavily influenced by policy. Science policy is very different from the conduct of science itself and future scientists need to be aware of the issues and factors that dictate the present and future direction of science. Based on the intricate relationship between science and policy, it is essential to introduce an overview of the policy process to future scientists and decision makers. In the context of climate change, policy implications are extensive and critical owing to their large socio-economic impacts. Hence, knowledge of the policy process is even more relevant to earth scientists. In this regard, the proposal to start an introductory course in science policy is currently being discussed in the department of Meteorology at the University of Oklahoma. If such a course is approved, an interactive graduate level class will be introduced for students pursuing a career in science. Such a course will be cross- disciplinary and will be offered to a wide audience across the university. Since the American Meteorological Society's (AMS) Summer Policy Colloquium has been a very successful program in educating scientists about the policy process, a format similar to the colloquium may be adopted. The primary topics will include the understanding of policy fundamentals, effective communication, ethics and integrity in the conduct of scientific research, executive leadership in science and the responsibilities of a scientific leader, impact of science on globalization and international diplomacy, etc. The AMS policy program office will be consulted to help design the course curriculum. An overview of the steps involved in introducing the class will be presented at the

  5. Psychometric Properties of Interpersonal Communication skills Questionnaire (ISAQ from the Viewpoint of Students at Tabriz University and Tabriz University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Firoz Mahmoodi

    2017-06-01

    Full Text Available Background and Objective: One of the skills needed for social life is interpersonal communication skills. Assessing the Interpersonal communication skills due to the growth and development of social networks is very important. This study aimed to validate the Fetro's (2000 interpersonal communication skills questionnaire among students of Tabriz University and Tabriz University of Medical Sciences. Materials and Methods: In this descriptivestudy, 750 students of Tabriz University and Tabriz University of Medical Sciences were selected by simple random sampling. Data collected by Fetro (2000 interpersonal communication skills questionnaire. This questionnaire has 65 items with five degrees based on Likert scale. Data were analyzed using Exploratory Factor Analysis through SPSS 23. Results: In total 750 Students filled questionnaires. 423 from University of Tabriz and 327 from of Tabriz University of Medical Sciences. Based on the results of exploratory factor analysis on original 65 items, 6 factors extracted and 54 items remained. Based on original questionnaire factors and literature extracted factors were labeled. So 45.26% of total variance were explained by these six factors (empathy and intimacy, communication skills, ability to maintain communication, assertiveness, listening and conflict resolution skills. Conclusion: According to the result of factor analysis, new validated questionnaire has less items and more components than the original questionnaire. So it is a suitable instrument for measuring interpersonal communication skills by researchers.

  6. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. KUNWAR ADITYA1. General Motors-Automotive Center of Excellence (GM-ACE), Faculty of Engineering and Applied Science, Department of Electrical, Computer and Software Engineering, University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada ...

  7. The Law School as a Base for Interdisciplinary Studies in a University

    Science.gov (United States)

    Willrich, Mason

    1974-01-01

    Discusses the objectives of the Center for the Study of Science, Technology and Public Policy at the School of Law of the University of Virginia, summarizes the center's activities, and draws conclusions concerning the future role of a problem-oriented, interdisciplinary study in legal education. (Author/PG)

  8. The Center for Frontiers of Subsurface Energy Security (A 'Life at the Frontiers of Energy Research' contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    International Nuclear Information System (INIS)

    Pope, Gary A.

    2011-01-01

    'The Center for Frontiers of Subsurface Energy Security (CFSES)' was submitted to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CFSES is directed by Gary A. Pope at the University of Texas at Austin and partners with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  9. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Lihua Jiang1 Aiyi Zhu1 Jianse Zhang1 Changwen Wu1. National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China ...

  10. A Curriculum Framework for Geographical Information Science (GISc) Training at South African Universities

    Science.gov (United States)

    du Plessis, H.; van Niekerk, A.

    2012-01-01

    Geographical information science (GISc) is one of the fastest growing industries worldwide. Being a relatively new discipline, universities often provide training as part of geography, surveying, town planning, environmental and computer science programmes. This complicates professional accreditation assessments as the content, outcomes, extent…

  11. Needs assessment of science teachers in secondary schools in Kumasi, Ghana: A basis for in-service education training programs at the Science Resource Centers

    Science.gov (United States)

    Gyamfi, Alexander

    The purpose of this study was twofold. First, it identified the priority needs common to all science teachers in secondary schools in Kumasi, Ghana. Second, it investigated the relationship existing between the identified priority needs and the teacher demographic variables (type of school, teacher qualification, teaching experience, subject discipline, and sex of teacher) to be used as a basis for implementing in-service education training programs at the Science Resource Centers in Kumasi Ghana. An adapted version of the Moore Assessment Profile (MAP) survey instrument and a set of open-ended questions were used to collect data from the science teachers. The researcher handed out one hundred and fifty questionnaire packets, and all one hundred and fifty (100%) were collected within a period of six weeks. The data were analyzed using descriptive statistics, content analysis, and inferential statistics. The descriptive statistics reported the frequency of responses, and it was used to calculate the Need Index (N) of the identified needs of teachers. Sixteen top-priority needs were identified, and the needs were arranged in a hierarchical order according to the magnitude of the Need Index (0.000 ≤ N ≤ 1.000). Content analysis was used to analyze the responses to the open-ended questions. One-way analysis of variance (ANOVA) was used to test the null hypotheses of the study on each of the sixteen identified top-priority needs and the teacher demographic variables. The findings of this study were as follows: (1) The science teachers identified needs related to "more effective use of instructional materials" as a crucial area for in-service training. (2) Host and Satellite schools exhibited significant difference on procuring supplementary science books for students. Subject discipline of teachers exhibited significant differences on utilizing the library and its facilities by students, obtaining information on where to get help on effective science teaching

  12. Iowa Water Center | Iowa Water Center

    Science.gov (United States)

    Home Iowa State University Extension Iowa Water Center Submitted by mollyd on April 24, 2012 - 09 :42 Advancing the state of water knowledge and management The Iowa Water Center is a part of a nationwide network of university-based water centers created to encourage interdisciplinary water research

  13. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... India; Division of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan; Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-11, Japan; Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Robert-Mayer-Str. 10, 60325 Frankfurt ...

  14. Energy Efficient Industrialized Housing Research Program, Center for Housing Innovation, University of Oregon and the Florida Solar Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.Z.

    1990-01-01

    This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. The current research program, under the guidance of a steering committee composed of industry and government representatives, focuses on three interdependent concerns -- (1) energy, (2) industrial process, and (3) housing design. Building homes in a factory offers the opportunity to increase energy efficiency through the use of new materials and processes, and to increase the value of these homes by improving the quality of their construction. Housing design strives to ensure that these technically advanced homes are marketable and will meet the needs of the people who will live in them.

  15. Iowa State University's undergraduate minor, online graduate certificate and resource center in NDE

    Science.gov (United States)

    Bowler, Nicola; Larson, Brian F.; Gray, Joseph N.

    2014-02-01

    Nondestructive evaluation is a `niche' subject that is not yet offered as an undergraduate or graduate major in the United States. The undergraduate minor in NDE offered within the College of Engineering at Iowa State University (ISU) provides a unique opportunity for undergraduate aspiring engineers to obtain a qualification in the multi-disciplinary subject of NDE. The minor requires 16 credits of course work within which a core course and laboratory in NDE are compulsory. The industrial sponsors of Iowa State's Center for Nondestructive Evaluation, and others, strongly support the NDE minor and actively recruit students from this pool. Since 2007 the program has graduated 10 students per year and enrollment is rising. In 2011, ISU's College of Engineering established an online graduate certificate in NDE, accessible not only to campus-based students but also to practicing engineers via the web. The certificate teaches the fundamentals of three major NDE techniques; eddy-current, ultrasonic and X-ray methods. This paper describes the structure of these programs and plans for development of an online, coursework-only, Master of Engineering in NDE and thesis-based Master of Science degrees in NDE.

  16. Developments in undergraduate wood science education at Stellenbosch University, South Africa

    OpenAIRE

    Rypstra,Tim

    2011-01-01

    In South Africa, Stellenbosch University (SU) is the designated provider of Bachelor, Master and Doctorate level qualifications in Forestry and Wood Products Science. SU provides educational programs to both mechanical (sawmilling, preservation, composite products, furniture, etc.) and the chemical (pulp & paper) processing sectors. To ensure academic quality, SU regularly has her academic programs assessed externally. In 2000, several changes to the then existing 4 year B.Sc. Wood Scienc...

  17. NASA University Research Centers Technical Advances in Education, Aeronautics, Space, Autonomy, Earth and Environment

    Science.gov (United States)

    Jamshidi, M. (Editor); Lumia, R. (Editor); Tunstel, E., Jr. (Editor); White, B. (Editor); Malone, J. (Editor); Sakimoto, P. (Editor)

    1997-01-01

    This first volume of the Autonomous Control Engineering (ACE) Center Press Series on NASA University Research Center's (URC's) Advanced Technologies on Space Exploration and National Service constitute a report on the research papers and presentations delivered by NASA Installations and industry and Report of the NASA's fourteen URC's held at the First National Conference in Albuquerque, New Mexico from February 16-19, 1997.

  18. Computer-science guest-lecture series at Langston University sponsored by the U.S. Geological Survey; abstracts, 1992-93

    Science.gov (United States)

    Steele, K. S.

    1994-01-01

    Langston University, a Historically Black University located at Langston, Oklahoma, has a computing and information science program within the Langston University Division of Business. Since 1984, Langston University has participated in the Historically Black College and University program of the U.S. Department of Interior, which provided education, training, and funding through a combined earth-science and computer-technology cooperative program with the U.S. Geological Survey (USGS). USGS personnel have presented guest lectures at Langston University since 1984. Students have been enthusiastic about the lectures, and as a result of this program, 13 Langston University students have been hired by the USGS on a part-time basis while they continued their education at the University. The USGS expanded the offering of guest lectures in 1992 by increasing the number of visits to Langston University, and by inviting participation of speakers from throughout the country. The objectives of the guest-lecture series are to assist Langston University in offering state-of-the-art education in the computer sciences, to provide students with an opportunity to learn from and interact with skilled computer-science professionals, and to develop a pool of potential future employees for part-time and full-time employment. This report includes abstracts for guest-lecture presentations during 1992-93 school year.

  19. Cross-cultural comparisons of university students' science learning self-efficacy: structural relationships among factors within science learning self-efficacy

    Science.gov (United States)

    Wang, Ya-Ling; Liang, Jyh-Chong; Tsai, Chin-Chung

    2018-04-01

    Science learning self-efficacy could be regarded as a multi-factor belief which comprises different aspects such as cognitive skills, practical work, and everyday application. However, few studies have investigated the relationships among these factors that compose science learning self-efficacy. Also, culture may play an important role in explaining the relationships among these factors. Accordingly, this study aimed to investigate cultural differences in science learning self-efficacy and examine the relationships within factors constituting science learning self-efficacy by adopting a survey instrument for administration to students in the U.S. and Taiwan. A total of 218 university students (62.40% females) were surveyed in the U.S.A, and 224 university students (49.10% females) in Taiwan were also invited to take part in the study. The results of the structural equation modelling revealed cultural differences in the relationships among the factors of science learning self-efficacy. It was found that U.S. students' confidence in their ability to employ higher-order cognitive skills tended to promote their confidence in their ability to accomplish practical work, strengthening their academic self-efficacy. However, the aforementioned mediation was not found for the Taiwanese participants.

  20. Development of an Actuarial Science Program at Salisbury University

    Science.gov (United States)

    Wainwright, Barbara A.

    2014-01-01

    This paper focuses on the development of an actuarial science track for the mathematics major at Salisbury University (SU). A timeline from the initial investigation into such a program through the proposal and approval processes is shared for those who might be interested in developing a new actuarial program. It is wise to start small and take…

  1. Swiss Life Sciences - a science communication project for both schools and the wider public led by the foundation Science et Cité.

    Science.gov (United States)

    Röthlisberger, Michael

    2012-01-01

    The foundation Science et Cité was founded 1998 with the aim to inform the wider Swiss public about current scientific topics and to generate a dialogue between science and society. Initiated as an independent foundation by the former State Secretary for Science and Research, Dr. Charles Kleiber, Science et Cité is now attached to the Swiss Academies of Arts and Sciences as a competence center for dialogue with the public. Due to its branches in all language regions of the country, the foundation is ideally suited to initiate and implement communication projects on a nationwide scale. These projects are subdivided into three categories: i) science communication for children/adolescents, ii) establishing a dialogue between science and the wider public, and iii) conducting the role of a national center of competence and networking in science communication. Swiss Life Sciences is a project that fits into all of these categories: a year-round program for schools is complemented with an annual event for the wider public. With the involvement of most of the major Swiss universities, the Swiss National Science Foundation, the foundation Gen Suisse and many other partners, Swiss Life Sciences also sets an example of national networking within the science communication community.

  2. Scientific Grid activities and PKI deployment in the Cybermedia Center, Osaka University.

    Science.gov (United States)

    Akiyama, Toyokazu; Teranishi, Yuuichi; Nozaki, Kazunori; Kato, Seiichi; Shimojo, Shinji; Peltier, Steven T; Lin, Abel; Molina, Tomas; Yang, George; Lee, David; Ellisman, Mark; Naito, Sei; Koike, Atsushi; Matsumoto, Shuichi; Yoshida, Kiyokazu; Mori, Hirotaro

    2005-10-01

    The Cybermedia Center (CMC), Osaka University, is a research institution that offers knowledge and technology resources obtained from advanced researches in the areas of large-scale computation, information and communication, multimedia content and education. Currently, CMC is involved in Japanese national Grid projects such as JGN II (Japan Gigabit Network), NAREGI and BioGrid. Not limited to Japan, CMC also actively takes part in international activities such as PRAGMA. In these projects and international collaborations, CMC has developed a Grid system that allows scientists to perform their analysis by remote-controlling the world's largest ultra-high voltage electron microscope located in Osaka University. In another undertaking, CMC has assumed a leadership role in BioGrid by sharing its experiences and knowledge on the system development for the area of biology. In this paper, we will give an overview of the BioGrid project and introduce the progress of the Telescience unit, which collaborates with the Telescience Project led by the National Center for Microscopy and Imaging Research (NCMIR). Furthermore, CMC collaborates with seven Computing Centers in Japan, NAREGI and National Institute of Informatics to deploy PKI base authentication infrastructure. The current status of this project and future collaboration with Grid Projects will be delineated in this paper.

  3. The Howard University Program in Atmospheric Sciences (HUPAS): A Program Exemplifying Diversity and Opportunity

    Science.gov (United States)

    Morris, Vernon R.; Joseph, Everette; Smith, Sonya; Yu, Tsann-wang

    2012-01-01

    This paper discusses experiences and lessons learned from developing an interdisciplinary graduate program (IDP) during the last 10 y: The Howard University Graduate Program in Atmospheric Sciences (HUPAS). HUPAS is the first advanced degree program in the atmospheric sciences, or related fields such as meteorology and earth system sciences,…

  4. Designing a system of mentorship in Shiraz University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    MITRA AMINI

    2017-04-01

    Full Text Available As you know, one of the new programs of the medical universities is to familiarize the students to the medical atmosphere with the help of compassionate and experienced university professors. The program is planned and implemented under the title of mentorship, in which an experienced instructor takes the responsibility of orientation, guidance and problem solving of a number of students. The students at the time of admission face some problems, usually due to the young age, unfamiliarity with the university context, the amount of the texts, etc.; therefore, they feel somehow defenseless in this atmosphere. In this program, which was longitudinal and often causes a long-term and friendly relationship between the professor and students during the education years, these problems of students discuss with teachers (Mentor and in this interact somewhat elevated. To do the appropriate implementation of this concept in the university, the university was required to be familiar with the concept of mentorship at the first step (1. So, the Education Development Center of Shiraz University of Medical Sciences (EDC has implemented this issue in a series of educational fellowship workshops for the professors of postgraduate levels. In teaching this concept, the Jowhari model (Joseph Luft and Harry Ingham famous model (2 has attracted the attention of authorities and professors of this period. In educating the concept of mentoring, the development of selfgeneralization window of the professors was considered. Because this section covers the ability of communication and flexibility in the leadership of the individuals, development of the window (area decreases the incidence of conflicts and misunderstandings and struggles between individuals in this regard. To develop this area, there was an attempt in this period that the professors get familiar with the two methods of self-openness and feedback. This educational program was a pilot which was implemented in

  5. Relationship Between Cybernetics Management and Organizational Trust Among Librarians of Mazandaran University of Medical Sciences.

    Science.gov (United States)

    Ghiasi, Mitra; Shahrabi, Afsaneh; Siamian, Hasan

    2017-12-01

    Organization must keep current skills, abilities, and in the current field of competition, and move one step ahead of other competitors; for this purpose, must be a high degree of trust inside the organization. Cybernetic management is a new approach in management of organizations that its main task according to internal issues. This study aimed to investigate the relationship between cybernetics management and organizational trust among librarians of Mazandaran University of Medical Sciences. This is applied and analytical survey. which its population included all librarians of Mazandaran University of Medical Sciences, amounting to 42 people which were selected by census and participated in this research. There has no relationship between components of Cybernetics management (participative decision making, commitment, pay equity, Correct flow of information, develop a sense of ownership, online education) with organizational trust amongst librarians of Mazandaran University of Medical Sciences. And there has a significant relationship between flat Structure of cybernetics management and organizational trust. For data analysis was used Kolmogorov-Smirnov test and linear regression. There is no significant relationship between Cybernetic management and organizational trust amongst librarians of Mazandaran University of Medical Sciences.

  6. Toward inclusive science education: University scientists' views of students,instructional practices, and the nature of science

    Science.gov (United States)

    Bianchini, Julie A.; Whitney, David J.; Breton, Therese D.; Hilton-Brown, Bryan A.

    2002-01-01

    This study examined the perceptions and self-reported practices of 18 scientists participating in a yearlong seminar series designed to explore issues of gender and ethnicity in science. Scientists and seminar were part of the Promoting Women and Scientific Literacy project, a curriculum transformation and professional development initiative undertaken by science, science education, and women's studies faculty at their university. Researchers treated participating scientists as critical friends able to bring clarity to and raise questions about conceptions of inclusion in science education. Through questionnaires and semistructured interviews, we explored their (a) rationales for differential student success in undergraduate science education; (b) self-reports of ways they structure, teach, and assess courses to promote inclusion; and (c) views of androcentric and ethnocentric bias in science. Statistical analysis of questionnaires yielded few differences in scientists' views and reported practices by sex or across time. Qualitative analysis of interviews offered insight into how scientists can help address the problem of women and ethnic minorities in science education; constraints encountered in attempts to implement pedagogical and curricular innovations; and areas of consensus and debate across scientists and science studies scholars' descriptions of science. From our findings, we provided recommendations for other professional developers working with scientists to promote excellence and equity in undergraduate science education.

  7. The effect of playing a science center-based mobile game: Affective outcomes and gender differences

    Science.gov (United States)

    Atwood-Blaine, Dana

    Situated in a hands-on science center, The Great STEM Caper was a collaborative mobile game built on the ARIS platform that was designed to engage 5th-9th grade players in NGSS science and engineering practices while they interacted with various exhibits. Same gender partners sharing one iPad would search for QR codes placed at specific exhibits; scanning a code within the game would launch a challenge for that exhibit. The primary hypothesis was that in- game victories would be equivalent to "mastery experiences" as described by Bandura (1997) and would result in increased science self-efficacy. Gender differences in gameplay behaviors and perceptions were also studied. The study included two groups, one that played the game during their visit and one that explored the science center in the traditional way. The Motivation to Learn Science Questionnaire was administered to participants in both groups both before and after their visit to the science center. Participants wore head-mounted GoPro cameras to record their interactions within the physical and social environment. No differences in affective outcomes were found between the game and comparison groups or between boys and girls in the game group. The MLSQ was unable to measure any significant change in science self-efficacy, interest and enjoyment of science, or overall motivation to learn science in either group. However, girls outperformed boys on every measure of game achievement. Lazzaro's (2004) four types of fun were found to be a good fit for describing the gender differences in game perceptions and behaviors. Girls tended to enjoy hard fun and collaborative people fun while boys enjoyed easy fun and competitive people fun. While boys associated game achievement with enjoyment and victory, girls perceived their game achievement as difficult, rather than enjoyable or victorious.

  8. Perception of academic stress among Health Science Preparatory Program students in two Saudi universities.

    Science.gov (United States)

    Alsulami, Saleh; Al Omar, Zaid; Binnwejim, Mohammed S; Alhamdan, Fahad; Aldrees, Amr; Al-Bawardi, Abdulkarim; Alsohim, Meshary; Alhabeeb, Mohammed

    2018-01-01

    The Health Science Preparatory Program (HSPP) is a special program that aims to enhance the educational preparedness of students for participation in a health sciences career. Students spend their first university year in a combined extensive teaching program before they can be assigned to a particular health science specialty. It is thought that students enrolled in a highly competitive environment such as HSPP with a long list of potential stressors, including developmental, academic overload, language barriers and competition, are more disposed to stress and stress-related complications. This study aims to measure the level of academic stress and to determine its risk factors in students enrolled in HSPP-adapted local universities in Saudi Arabia. The study was conducted at two Saudi universities, King Saud University (KSU) and Imam Mohammad ibn Saud Islamic University (IMSU) with competition-based and non-competition-based HSPP learning models, respectively. Both universities adopt the HSPP system. The scale for assessing academic stress (SAAS) was used to assess students' perceived stress. A total of 290 students successfully completed the questionnaire (N=290), with a mean age of 18.66 years. Mean SAAS scores for KSU and IMSU students were 8.37 (SD = 4.641) and 7.97 (SD = 5.104), P =0.480, respectively. Only "satisfaction" and "associated social and health problems" have shown statistically significant correlation with university ( P =0.000 and P =0.049, respectively). This study has found mean SAAS score for two local universities with competition-based versus non-competition-based HSPP learning models. Academic stress correlation with age, gender and universities was discussed, and valuable future work guidance was recommended.

  9. Bioethics of Universal Knowledge: How Space Science is Transforming Global Culture

    Science.gov (United States)

    Perkins, Kala

    A new universal culture is championing the human race; never before has immersion in the cosmological environment been so clearly presented nor invited as revolutionary a sense of participatory identity to the human race. We are delving into the awareness of a complex relatedness with the expanse of spatial architectures and life that astrophysics and cosmology are revealing. History is marked by waves of interest and inquiry into the possibilities of the existence of other worlds. Since the Renaissance, building of telescopes has been pursued in their quest; now Kepler and other space missions are leading us into direct apprehension of these worlds, scattered across the cosmological landscape. This affords a unique repertoire of dimensionalities in which to re-construe our global cultural evolution and identity. Spatial education, with related social science and humanities, are facilitating the actualization of a universal culture, redefining the collective global heritage, with infinity as our home. The potential significance of space sciences to the human cognitive environment is yet to be fully ascertained. We now understand that the entire history of the universe informs each and every particle and spin of the fabric of existence. The implications of this knowledge have the power to facilitate our overcoming many social diseases such as racism, nationalism and the ideological delusions that tolerate such activities as warfare. Space sciences may help to purge the human cognitive atmosphere of those ills and ignorance that sap global resources, challenging global sustainability, from the economic to the psychosocial. Were the full implications of our united origins and destiny as a cosmic organism to be applied to how we live as a species on the Earth, there would be adequate funds for all manner of science and education such as to transform the global human and ecological landscape in ways as yet only dreamt or fictionalized. The bioethics of universal

  10. Epidemiology of hemoglobinopathies and thalassemias in individuals referred to the haematology research centre, Shiraz University of Medical Sciences, Shiraz, Iran from 2006 to 2011.

    Science.gov (United States)

    Haghpanah, Sezaneh; Ramzi, Mani; Zakerinia, Maryam; Nourani Khojasteh, Habib; Haghshenas, Mansour; Rezaei, Narges; Moayed, Vida; Rezaei, Alireza; Karimi, Mehran

    2014-01-01

    Hemoglobinopathies and thalassemias are the most frequent genetic hereditary disorders with an increasing global health burden, especially in low- and middle-income countries. We aimed to determine the epidemiologic pattern of hemoglobinopathies and thalassemias in individuals referred to the Haematology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran, which is the most important referral center in Southern Iran during 2006 to 2011. The most frequent abnormality was β-thalassemia (β-thal) minor (24.0%), followed by α-thalassemia (α-thal) trait (10.0%), hemoglobin (Hb) S trait (4.0%) and Hb D-Punjab trait (4.0%). Because this center is a referral center, we detected a higher prevalence compared to the normal population; however, these data could help policymakers and health service providers to better programming for prevention of births affected with Hb disorders.

  11. A research plan based on high intensity proton accelerator Neutron Science Research Center

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1997-01-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  12. A research plan based on high intensity proton accelerator Neutron Science Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  13. Bringing You the Moon: Lunar Education Efforts of the Center for Lunar Science and Education

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.; Halligan, E.; LaConte, K.

    2012-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute. In addition to research and exploration activities, the CLSE team is deeply invested in education and public outreach. Overarching goals of CLSE education are to strengthen the future science workforce, attract and retain students in STEM disciplines, and develop advocates for lunar exploration. The team's efforts have resulted in a variety of programs and products, including the creation of a variety of Lunar Traveling Exhibits and the High School Lunar Research Project, featured at http://www.lpi.usra.edu/nlsi/education/.

  14. Science leadership for tomorrow: The role of schools of public affairs and universities in meeting needs of public science agencies

    Science.gov (United States)

    Rosenthal, A. H.; Wilcox, R. F.; Marini, F.; Reeves, H. C.

    1973-01-01

    Recommendations and requirements for the preparation of personnel with some scientific or technological background to enter fields of public policy and administration are reported. University efforts to provide science administration graduate programs are outlined and increased cooperation between government and university resources is outlined.

  15. Multi-University Southeast INIE Consortium

    International Nuclear Information System (INIS)

    Hawari, Ayman; Hertel, Nolan; Al-Sheikhly, Mohamed; Miller, Laurence; Bayoumi, Abdel-Moeze; Haghighat, Ali; Lewis, Kenneth

    2010-01-01

    The Multi-University Southeast INIE Consortium (MUSIC) was established in response to the US Department of Energy's (DOE) Innovations in Nuclear Infrastructure and Education (INIE) program. MUSIC was established as a consortium composed of academic members and national laboratory partners. The members of MUSIC are the nuclear engineering programs and research reactors of Georgia Institute of Technology (GIT), North Carolina State University (NCSU), University of Maryland (UMD), University of South Carolina (USC), and University of Tennessee (UTK). The University of Florida (UF), and South Carolina State University (SCSU) were added to the MUSIC membership in the second year. In addition, to ensure proper coordination between the academic community and the nation's premier research and development centers in the fields of nuclear science and engineering, MUSIC created strategic partnerships with Oak Ridge National Laboratory (ORNL) including the Spallation Neutron Source (SNS) project and the Joint Institute for Neutron Scattering (JINS), and the National Institute of Standards and Technology (NIST). A partnership was also created with the Armed Forces Radiobiology Research Institute (AFRRI) with the aim of utilizing their reactor in research if funding becomes available. Consequently, there are three university research reactors (URRs) within MUSIC, which are located at NCSU (1-MW PULSTAR), UMD (0.25-MW TRIGA) and UF (0.10-MW Argonaut), and the AFRRI reactor (1-MW TRIGA MARK F). The overall objectives of MUSIC are: (a) Demonstrate that University Research Reactors (URR) can be used as modern and innovative instruments of research in the basic and applied sciences, which include applications in fundamental physics, materials science and engineering, nondestructive examination, elemental analysis, and contributions to research in the health and medical sciences, (b) Establish a strong technical collaboration between the nuclear engineering faculty and the MUSIC URRs

  16. Developing institutional collaboration between Wageningen university and the Chinese academy of agricultural sciences

    NARCIS (Netherlands)

    Bonnema, A.B.; Lin, Z.; Qu, L.; Jacobsen, E.

    2006-01-01

    Scientific co-operation between the Chinese Academy of Agricultural Sciences (CAAS) and Wageningen University (WU) has been underway since 1990, especially in the field of plant sciences. In 2001, CAAS and WU initiated a formal joint PhD training programme to further structure their co-operation.

  17. Science, Art and Sports School at Sinop Children’s University: Its Effects on Children’s Perceptions

    OpenAIRE

    Eş, Hüseyin; Öztürk Geren, Nurhan; Bozkurt Altan, Esra

    2015-01-01

    The purpose of the present study is to evaluate the children’s perceptions about the Entertaining Science, Art and Sports School at Sinop Children’s University, which is a project including various science, art and sports activities carried out at Children’s University of Sinop University.  All the processes of the study from data collection to data analysis were conducted through qualitative research paradigm. The data of the study were collected by means of poster and interview techniques. ...

  18. Evidence-Informed Leadership in the Japanese Context: Middle Managers at a University Self-Access Center

    Science.gov (United States)

    Adamson, John; Brown, Howard

    2012-01-01

    This study reports on the steering of a self-access learning center in a Japanese university by its "middle management" committee over the first years of its operation. Middle management practice was informed by an ethnographic archive of various facets of center use, particularly concerning language policy and curriculum integration, issues about…

  19. Organizational intelligence and agility in Shiraz University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Hamid Taboli

    2017-07-01

    Full Text Available Introduction: Organizational Intelligence is a combination of all skills that organizations need and use; it enables us to make organizational decisions. Organizational Intelligence can increase the effectiveness of the existing informational structures in achieving organizational goals and result in organizational agility. The aim of this study was to investigate the relationship between Organizational Intelligence and organizational agility in Shiraz University of Medical Sciences. Method: This is an applied study in terms of purpose and descriptive in terms of method. The study population consisted of 1200 employees working in Shiraz University of Medical Sciences. The subjects were selected via convenience sampling. Based on Cochran formula, a sample size of 296 was determined with a confidence level of 95%. The measurement tools included the 36-item Organizational Intelligence questionnaire developed by Albrecht (2003 and a researcher-developed organizational agility questionnaire with 30 items. Expert opinion was used to determine the validity of the questionnaires and reliability was confirmed using Cronbach’s alpha coefficient via SPSS, version 19. Results: Tenure employees had the highest frequency among the participants (50%. In terms of education, employees with a bachelor’s degree were the most frequent (58%. Values obtained for all variables showed a significant positive relationship between Organizational Intelligence and Agility. Conclusion: It is recommended that the university officials take measures to include Organizational Intelligence courses in in-service training programs to promote the agility of the university, and improve the service provision process and speed.

  20. New curriculum at Nuclear Science Department, National University of Malaysia

    International Nuclear Information System (INIS)

    Shahidan bin Radiman; Ismail bin Bahari

    1995-01-01

    A new undergraduate curriculum at the Department of Nuclear Science, Universiti Kebangsaan Malaysia is discussed. It includes the rational and objective of the new curriculum, course content and expectations due to a rapidly changing job market. The major change was a move to implement only on one Nuclear Science module rather than the present three modules of Radiobiology, Radiochemistry and Nuclear Physics. This will optimise not only laboratory use of facilities but also effectiveness of co-supervision. Other related aspects like industrial training and research exposures for the undergraduates are also discussed