WorldWideScience

Sample records for science center spallation

  1. The Los Alamos Neutron Science Center Spallation Neutron Sources

    International Nuclear Information System (INIS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-01-01

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  2. The Los Alamos Neutron Science Center Spallation Neutron Sources

    Science.gov (United States)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  3. New science at the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Finney, J L [University Coll., London (United Kingdom). Dept. of Physics and Astronomy

    1996-05-01

    The European Spallation Source is a trans-European project aimed at the ultimate construction of a next-generation pulsed spallation neutron source that will deliver 30 times the beam power of ISIS. The reference design for the proposed source has been set, and work is in progress to develop an updated scientific case for the construction of the source early in the next century. Together with improvements in instrumentation, effective flux gains of over two orders of magnitude are likely in some areas, opening up major new opportunities for the exploitation of neutron studies in fundamental, strategic, and applied science. (author)

  4. Spallation Neutron Sources For Science And Technology

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2011-01-01

    Spallation Neutron Facilities Increasing interest has been noticed in spallation neutron sources (SNS) during the past 20 years. The system includes high current proton accelerator in the GeV region and spallation heavy metal target in the Hg-Bi region. Among high flux currently operating SNSs are: ISIS in UK (1985), SINQ in Switzerland (1996), JSNS in Japan (2008), and SNS in USA (2010). Under construction is the European spallation source (ESS) in Sweden (to be operational in 2020). The intense neutron beams provided by SNSs have the advantage of being of non-reactor origin, are of continuous (SINQ) or pulsed nature. Combined with state-of-the-art neutron instrumentation, they have a diverse potential for both scientific research and diverse applications. Why Neutrons? Neutrons have wavelengths comparable to interatomic spacings (1-5 A) Neutrons have energies comparable to structural and magnetic excitations (1-100 meV) Neutrons are deeply penetrating (bulk samples can be studied) Neutrons are scattered with a strength that varies from element to element (and isotope to isotope) Neutrons have a magnetic moment (study of magnetic materials) Neutrons interact only weakly with matter (theory is easy) Neutron scattering is therefore an ideal probe of magnetic and atomic structures and excitations Neutron Producing Reactions Several nuclear reactions are capable of producing neutrons. However the use of protons minimises the energetic cost of the neutrons produced solid state physics and astrophysics Inelastic neutron scattering

  5. Technology and science at a high-power spallation source: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    These proceedings cover many aspects of the usefulness of spallation neutrons. Nine different areas are considered: surfaces and interfaces, engineering, materials science, polymers and complex fluids, chemistry, structural biology, nuclear engineering and radiation effects, condensed matter physics and fundamental physics.

  6. Technology and science at a high-power spallation source: Proceedings

    International Nuclear Information System (INIS)

    1994-01-01

    These proceedings cover many aspects of the usefulness of spallation neutrons. Nine different areas are considered: surfaces and interfaces, engineering, materials science, polymers and complex fluids, chemistry, structural biology, nuclear engineering and radiation effects, condensed matter physics and fundamental physics

  7. Genetic Science Learning Center

    Science.gov (United States)

    Genetic Science Learning Center Making science and health easy for everyone to understand Home News Our Team What We Do ... Collaboration Conferences Current Projects Publications Contact The Genetic Science Learning Center at The University of Utah is a ...

  8. Materials for spallation neutron sources

    International Nuclear Information System (INIS)

    Sommer, W.F.; Daemen, L.L.

    1996-03-01

    The Workshop on Materials for Spallation Neutron Sources at the Los Alamos Neutron Science Center, February 6 to 10, 1995, gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss areas in which work is needed, successful designs and use of materials, and opportunities for further studies. During the first day of the workshop, speakers presented overviews of current spallation neutron sources. During the next 3 days, seven panels allowed speakers to present information on a variety of topics ranging from experimental and theoretical considerations on radiation damage to materials safety issues. An attempt was made to identify specific problems that require attention within the context of spallation neutron sources. This proceedings is a collection of summaries from the overview sessions and the panel presentations

  9. Great Lakes Science Center

    Data.gov (United States)

    Federal Laboratory Consortium — Since 1927, Great Lakes Science Center (GLSC) research has provided critical information for the sound management of Great Lakes fish populations and other important...

  10. The Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Lisowski, Paul W.; Schoenberg, Kurt F.

    2006-01-01

    The Los Alamos Neutron Science Center, or LANSCE, uses the first truly high-current medium-energy proton linear accelerator, which operated originally at a beam power of 1 MW for medium-energy nuclear physics. Today LANSCE continues operation as one of the most versatile accelerator-based user facilities in the world. During eight months of annual operation, scientists from around the world work at LANSCE to execute an extraordinarily broad program of defense and civilian research. Several areas operate simultaneously. The Lujan Neutron Scattering Center (Lujan Center) is a moderated spallation source (meV to keV), the Weapons Neutron Research Facility (WNR) is a bare spallation neutron source (keV to 800 MeV), and a new ultra-cold neutron source will be operational in 2005. These sources give LANSCE the ability to produce and use neutrons with energies that range over 14 orders of magnitude. LANSCE also supplies beam to WNR and two other areas for applications requiring protons. In a proton radiography (pRad) area, a sequence of narrow proton pulses is transmitted through shocked materials and imaged to study dynamic properties. In 2005, LANSCE began operating a facility that uses 100-MeV protons to produce medical radioisotopes. To sustain a vigorous program beyond this decade, LANSCE has embarked on a project to refurbish key elements of the facility and to plan capabilities beyond those that presently exist

  11. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT,J.

    2004-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

  12. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  13. The Neutron Science TeraGrid Gateway, a TeraGrid Science Gateway to Support the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Cobb, John W.; Geist, Al; Kohl, James Arthur; Miller, Stephen D; Peterson, Peter F.; Pike, Gregory; Reuter, Michael A; Swain, William; Vazhkudai, Sudharshan S.; Vijayakumar, Nithya N.

    2006-01-01

    The National Science Foundation's (NSF's) Extensible Terascale Facility (ETF), or TeraGrid (1) is entering its operational phase. An ETF science gateway effort is the Neutron Science TeraGrid Gateway (NSTG.) The Oak Ridge National Laboratory (ORNL) resource provider effort (ORNL-RP) during construction and now in operations is bridging a large scale experimental community and the TeraGrid as a large-scale national cyberinfrastructure. Of particular emphasis is collaboration with the Spallation Neutron Source (SNS) at ORNL. The U.S. Department of Energy's (DOE's) SNS (2) at ORNL will be commissioned in spring of 2006 as the world's brightest source of neutrons. Neutron science users can run experiments, generate datasets, perform data reduction, analysis, visualize results; collaborate with remotes users; and archive long term data in repositories with curation services. The ORNL-RP and the SNS data analysis group have spent 18 months developing and exploring user requirements, including the creation of prototypical services such as facility portal, data, and application execution services. We describe results from these efforts and discuss implications for science gateway creation. Finally, we show incorporation into implementation planning for the NSTG and SNS architectures. The plan is for a primarily portal-based user interaction supported by a service oriented architecture for functional implementation

  14. Spallation-based science and technology and associated nuclear data requirements

    International Nuclear Information System (INIS)

    Bowman, C.D.; Lisowski, P.W.; Arthur, E.D.

    1990-01-01

    Rapid advances in accelerator technology in recent years promise average proton beam currents as high as 250 mA with energies greater than one GeV. Such an accelerator could produce very high intensities of neutrons and other nuclear particles thus opening up new areas of science and technology. An example is the efficient burning of transuranic and fission product waste. With such a spallation-burner it appears that high-level waste might be converted to low-level waste on a time scale comparable to the human lifespan at a reasonable additional cost for electric power generation. The emphasis of this paper is on the design of a high power proton target for neutron production, on the nuclear data needed to operate this target safely and effectively, and on data requirements for transmutation. It is suggested that a pilot facility consisting of a 1.6 GeV accelerator and target operating at 25 ma is the next major step in developing this technology. Bursts of protons near the terawatt level might also be generated using such an accelerator with a proton accumulator ring. Research prospects based on such proton bursts are briefly described. The status of established nuclear data needs and of accelerator-based sources for nuclear data measurements is reviewed. 6 refs., 8 figs., 2 tabs

  15. Spallation-based science and technology and associated nuclear data requirements

    International Nuclear Information System (INIS)

    Bowman, C.D.; Lisowski, P.W.; Arthur, E.D.

    1990-01-01

    Rapid advances in accelerator technology in recent years promise average proton beam currents as high as 250 mA with energies greater than one GeV. Such an accelerator could produce very high intensities of neutrons and other nuclear particles thus opening up new areas of science and technology. An example is the efficient burning of transuranic and fission product waste. With such a spallation-burner it appears that high-level waste might be converted to low-level waste on a time scale comparable to the human lifespan at a reasonable additional cost for electric power generation. The emphasis of this paper is on the design of a high power proton target for neutron production, on the nuclear data needed to operate this target safely and effectively, and on data requirements for transmutation. It is suggested that a pilot facility consisting of a 1.6 GeV accelerator and target operating at 25 ma is the next major step in developing this technology. Bursts of protons near the terawatt level might also be generated using such an accelerator with a proton accumulator ring. Research prospects based on such proton bursts are briefly described. The status of established nuclear data needs and of accelerator-based sources for nuclear data measurements is reviewed. (author)

  16. COMPUTATIONAL SCIENCE CENTER

    International Nuclear Information System (INIS)

    DAVENPORT, J.

    2006-01-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together

  17. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to

  18. Center for Rehabilitation Sciences Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Rehabilitation Sciences Research (CRSR) was established as a research organization to promote successful return to duty and community reintegration of...

  19. Center for Environmental Health Sciences

    Data.gov (United States)

    Federal Laboratory Consortium — The primary research objective of the Center for Environmental Health Sciences (CEHS) at the University of Montana is to advance knowledge of environmental impacts...

  20. A proposal for a long-pulse spallation source at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pynn, R.; Weinacht, D.

    1995-01-01

    Los Alamos National Laboratory is proposing a new spallation neutron source that will provide the US with an internationally competitive facility for neutron science and technology that can be built in approximately three years for less than $100 million. The establishment of a 1-MW, long-pulse spallation source (LPSS) at the Los Alamos Neutron Science Center (LANSCE) will meet many of the present needs of scientists in the neutron scattering community and provide a significant boost to neutron research in the US. The new facility will support the development of a future, more intense spallation neutron source, that is planned by DOE's Office of Energy Research. Together with the existing short pulse spallation source (SPSS) at the Manual Lujan, Jr. Neutron Scattering Center (MLNSC) at Los Alamos, the new LPSS will provide US scientists with a complementary pair of high-performance neutron sources to rival the world's leading facilities in Europe

  1. A proposal for a long-pulse spallation source at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pynn, R.; Weinacht, D.

    1995-01-01

    Los Alamos National Laboratory is proposing a new spallation neutron source that will provide the U.S. with an internationally competitive facility for neutron science and technology that can be built in approximately three years for less than $100 million. The establishment of a 1-MW long-pulse spallation source (LPSS) at the Los Alamos Neutron Science Center (LANSCE) will meet many of the present needs of scientists in the neutron scattering community and provide a significant boost to neutron research in the U.S. The new facility will support the development of a future, more intense spallation neutron source, that is planned by DOE's Office of Energy Research. Together with the existing short pulse spallation source (SPSS) at the Manual Lujan, Jr. Neutron Scattering Center (MLNSC) at Los Alamos, the new LPSS will provide U.S. scientists with a complementary pair of high-performance neutron sources to rival the world's leading facilities in Europe. (author) 1 ref

  2. Pulsed spallation Neutron Sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1994-01-01

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology

  3. Pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1996-01-01

    This paper reviews the early history of pulsed spallation neutron source development ar Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provide a few examples of applications in fundamental condensed matter physics, materials science and technology

  4. Spallation reactions; Reactions de spallation

    Energy Technology Data Exchange (ETDEWEB)

    Cugon, J.

    1996-12-31

    Spallation reactions dominate the interactions of hadrons with nuclei in the GeV range (from {approx} 0.1 to {approx} 10 GeV). They correspond to a sometimes important ejection of light particles leaving most of the time a residue of mass commensurate with the target mass. The main features of the experimental data are briefly reviewed. The most successful theoretical model, namely the intranuclear cascade + evaporation model, is presented. Its physical content, results and possible improvements are critically discussed. Alternative approaches are shortly reviewed. (author). 84 refs.

  5. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  6. Scheduling at the Los Alamos Neutron Science Center (LANSCE)

    International Nuclear Information System (INIS)

    Gallegos, F.R.

    1999-01-01

    The centerpieces of the Los Alamos Neutron Science Center (LANSCE) are a half-mile long 800-MeV proton linear accelerator and proton storage ring. The accelerator, storage ring, and target stations provide the protons and spallation neutrons that are used in the numerous basic research and applications experimental programs supported by the US Department of Energy. Experimental users, facility maintenance personnel, and operations personnel must work together to achieve the most program benefit within defined budget and resource constraints. In order to satisfy the experimental users programs, operations must provide reliable and high quality beam delivery. Effective and efficient scheduling is a critical component to achieve this goal. This paper will detail how operations scheduling is presently executed at the LANSCE accelerator facility

  7. Introduction to spallation physics and spallation-target design

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; Pitcher, E.J.; Daemen, L.L. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    When coupled with the spallation process in appropriate target materials, high-power accelerators can be used to produce large numbers of neutrons, thus providing an alternate method to the use of nuclear reactors for this purpose. Spallation offers exciting new possibilities for generating intense neutron fluxes for a variety of applications, including: (a) spallation-neutron sources for materials science research; (b) accelerator-based production of tritium; (c) accelerator-based transmutation of waste; (d) accelerator-based destruction of plutonium; and (e) radioisotope production for medical and energy applications. Target design plays a key role in these applications, with neutron production/leakage being strongly dependent on the incident particle type and energy, and target material and geometry.

  8. Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-08

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, and provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.

  9. Spallation source neutron target systems

    International Nuclear Information System (INIS)

    Russell, G.; Brown, R.; Collier, M.; Donahue, J.

    1996-01-01

    This is the final report for a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project sought to design a next-generation spallation source neutron target system for the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE) at Los Alamos. It has been recognized for some time that new advanced neutron sources are needed in the US if the country is to maintain a competitive position in several important scientific and technological areas. A recent DOE panel concluded that the proposed Advanced Neutron Source (a nuclear reactor at Oak Ridge National Laboratory) and a high-power pulsed spallation source are both needed in the near future. One of the most technically challenging designs for a spallation source is the target station itself and, more specifically, the target-moderator-reflector arrangement. Los Alamos has demonstrated capabilities in designing, building, and operating high-power spallation-neutron-source target stations. Most of the new design ideas proposed worldwide for target system design for the next generation pulsed spallation source have either been conceived and implemented at LANSCE or proposed by LANSCE target system designers. These concepts include split targets, flux-trap moderators, back scattering and composite moderators, and composite reflectors

  10. The spallation neutron source: New opportunities

    Indian Academy of Sciences (India)

    The spallation neutron source (SNS) facility became operational in the spring of ... the opportunity to develop science and instrumentation programs which take ... in telecommunications, manufacturing, transportation, information technology, ...

  11. National Space Science Data Center Master Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Space Science Data Center serves as the permanent archive for NASA space science mission data. 'Space science' means astronomy and astrophysics, solar...

  12. National Center for Mathematics and Science

    Science.gov (United States)

    NCISLA logo National Center for Improving Student Learning and Achievement in Mathematics and Wisconsin-Madison Powerful Practices in Mathematics & Sciences A multimedia product for educators . Scaling Up Innovative Practices in Mathematics and Science (Research Report). Thomas P. Carpenter, Maria

  13. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  14. A research plan based on high intensity proton accelerator Neutron Science Research Center

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1997-01-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  15. A research plan based on high intensity proton accelerator Neutron Science Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  16. Spallation neutron sources

    International Nuclear Information System (INIS)

    Fraser, J.S.; Bartholomew, G.A.

    1983-01-01

    The principles and theory of spallation neutron sources are outlined and a comparison is given with other types of neutron source. A summary of the available accelerator types for spallation neutron sources and their advantages and disadvantages is presented. Suitable target materials are discussed for specific applications, and typical target assemblies shown. (U.K.)

  17. Los Alamos pulsed spallation neutron source target systems - present and future

    International Nuclear Information System (INIS)

    Russell, G.J.; Daemen, L.L.; Pitcher, E.J.; Brun, T.O.; Hjelm, R.P. Jr.

    1993-01-01

    For the past 16 yr, spallation target-system designers have devoted much time and effort to the design and optimization of pulsed spallation neutron sources. Many concepts have been proposed, but, in practice, only one has been implemented horizontal beam insertion with moderators in wing geometry i.e., until we introduced the innovative split-target/flux-trap-moderator design with a composite reflector shield at the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE). The LANSCE target system design is now considered a classic by spallation target system designers worldwide. LANSCE, a state-of-the-art pulsed spallation neutron source for materials science and nuclear physics research, uses 800-MeV protons from the Clinton P. Anderson Meson Physics Facility. These protons are fed into the proton storage ring to be compressed to 250-ns pulses before being delivered to LANSCE at 20 Hz. LANSCE produces the highest peak neutron flux of any pulsed spallation neutron source in the world

  18. A proposal for a long-pulse spallation source at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R; Weinacht, D [Los Alamos National Lab., NM (United States)

    1995-11-01

    Los Alamos National Laboratory is proposing a new spallation neutron source that will provide the U.S. with an internationally competitive facility for neutron science and technology that can be built in approximately three years for less than $100 million. The establishment of a 1-MW long-pulse spallation source (LPSS) at the Los Alamos Neutron Science Center (LANSCE) will meet many of the present needs of scientists in the neutron scattering community and provide a significant boost to neutron research in the U.S. The new facility will support the development of a future, more intense spallation neutron source, that is planned by DOE`s Office of Energy Research. Together with the existing short pulse spallation source (SPSS) at the Manual Lujan, Jr. Neutron Scattering Center (MLNSC) at Los Alamos, the new LPSS will provide U.S. scientists with a complementary pair of high-performance neutron sources to rival the world`s leading facilities in Europe. (author) 1 ref.

  19. Spallator - accelerator breeder

    International Nuclear Information System (INIS)

    Steinberg, M.

    1985-01-01

    The concept involves the use of spallation neutrons produced by interaction of a high energy proton (1 to 2 GeV) from a linear accelerator (LINAC) with a heavy metal target (uranium). The principal spallator concept is based on generating fissile fuel for use in LWR nuclear power plants. The spallator functions in conjunction with a reprocessing plant to regenerate and produce the Pu-239 or U-233 for fabrication into fresh LWR reactor fuel elements. Advances in proton accelerator technology has provided a solid base for predicting performance and optimizing the design of a reliable, continuous wave, high-current LINAC required by a fissile fuel production machine

  20. Rationale for a spallation neutron source target system test facility at the 1-MW Long-Pulse Spallation Source

    International Nuclear Information System (INIS)

    Sommer, W.F.

    1995-12-01

    The conceptual design study for a 1-MW Long-Pulse Spallation Source at the Los Alamos Neutron Science Center has shown the feasibility of including a spallation neutron test facility at a relatively low cost. This document presents a rationale for developing such a test bed. Currently, neutron scattering facilities operate at a maximum power of 0.2 MW. Proposed new designs call for power levels as high as 10 MW, and future transmutation activities may require as much as 200 MW. A test bed will allow assessment of target neutronics; thermal hydraulics; remote handling; mechanical structure; corrosion in aqueous, non-aqueous, liquid metal, and molten salt systems; thermal shock on systems and system components; and materials for target systems. Reliable data in these areas are crucial to the safe and reliable operation of new high-power facilities. These tests will provide data useful not only to spallation neutron sources proposed or under development, but also to other projects in accelerator-driven transmutation technologies such as the production of tritium

  1. Sandia National Laboratories: Microsystems Science & Technology Center

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  2. Spallation: understanding for predicting !?

    International Nuclear Information System (INIS)

    David, J.-C.

    2012-01-01

    This HDR report summarizes about ten years spent around spallation reaction modelling. Spallation reactions are defined as interaction of a light particle, say a nucleon, and a nucleus at an incident energy from 100 MeV up to 2-3 GeV. These reactions are divided in two steps. A first and fast phase, direct reactions also called intranuclear cascade, following by a slower phase, deexcitation of the remnant nucleus. Using the combination of INCL4, the intranuclear cascade model developed by the group, and the deexcitation code Abla from GSI, as a connecting thread, the multi-faceted spallation is presented. Chapter one deals with physics and codes, then different types of benchmarks are addressed, followed by several domains where spallation modelling plays a role, and finally, taking advantage of what has been said previously and of what can be read in the literature, new developments are suggested. (author) [fr

  3. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  4. Fort Collins Science Center-Fiscal year 2009 science accomplishments

    Science.gov (United States)

    Wilson, Juliette T.

    2010-01-01

    Public land and natural resource managers in the United States are confronted with increasingly complex decisions that have important ramifications for both ecological and human systems. The scientists and technical professionals at the U.S. Geological Survey Fort Collins Science Center?many of whom are at the forefront of their fields?possess a unique blend of ecological, socioeconomic, and technological expertise. Because of this diverse talent, Fort Collins Science Center staff are able to apply a systems approach to investigating complicated ecological problems in a way that helps answer critical management questions. In addition, the Fort Collins Science Center has a long record of working closely with the academic community through cooperative agreements and other collaborations. The Fort Collins Science Center is deeply engaged with other U.S. Geological Survey science centers and partners throughout the Department of the Interior. As a regular practice, we incorporate the expertise of these partners in providing a full complement of ?the right people? to effectively tackle the multifaceted research problems of today's resource-management world. In Fiscal Year 2009, the Fort Collins Science Center's scientific and technical professionals continued research vital to Department of the Interior's science and management needs. Fort Collins Science Center work also supported the science needs of other Federal and State agencies as well as non-government organizations. Specifically, Fort Collins Science Center research and technical assistance focused on client and partner needs and goals in the areas of biological information management and delivery, enterprise information, fisheries and aquatic systems, invasive species, status and trends of biological resources (including human dimensions), terrestrial ecosystems, and wildlife resources. In the process, Fort Collins Science Center science addressed natural-science information needs identified in the U

  5. DOE - BES Nanoscale Science Research Centers (NSRCs)

    Energy Technology Data Exchange (ETDEWEB)

    Beecher, Cathy Jo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a powerpoint shown to guests during tours of Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory. It shows the five DOE-BES nanoscale science research centers (NSRCs), which are located at different national laboratories throughout the country. Then it goes into detail specifically about the Center for Integrated Nanotechnologies at LANL, including statistics on its user community and CINT's New Mexico industrial users.

  6. Invited talks (Abstracts only) The spallation neutron source: New ...

    Indian Academy of Sciences (India)

    The spallation neutron source (SNS) facility became operational in the spring of 2006, and is ... torate at ORNL providing the opportunity to develop science and instrumentation pro- ... tion, information technology, biotechnology, and health.

  7. Molecular Science Research Center 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1994-01-01

    The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

  8. The GLAST LAT Instrument Science Operations Center

    International Nuclear Information System (INIS)

    Cameron, Robert A.; SLAC

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in late 2007. Operations support and science data processing for the Large Area Telescope (LAT) instrument on GLAST will be provided by the LAT Instrument Science Operations Center (ISOC) at the Stanford Linear Accelerator Center (SLAC). The ISOC supports GLAST mission operations in conjunction with other GLAST mission ground system elements and supports the research activities of the LAT scientific collaboration. The ISOC will be responsible for monitoring the health and safety of the LAT, preparing command loads for the LAT, maintaining embedded flight software which controls the LAT detector and data acquisition flight hardware, maintaining the operating configuration of the LAT and its calibration, and applying event reconstruction processing to down-linked LAT data to recover information about detected gamma-ray photons. The SLAC computer farm will be used to process LAT event data and generate science products, to be made available to the LAT collaboration through the ISOC and to the broader scientific community through the GLAST Science Support Center at NASA/GSFC. ISOC science operations will optimize the performance of the LAT and oversee automated science processing of LAT data to detect and monitor transient gamma-ray sources

  9. Communications among data and science centers

    Science.gov (United States)

    Green, James L.

    1990-01-01

    The ability to electronically access and query the contents of remote computer archives is of singular importance in space and earth sciences; the present evaluation of such on-line information networks' development status foresees swift expansion of their data capabilities and complexity, in view of the volumes of data that will continue to be generated by NASA missions. The U.S.'s National Space Science Data Center (NSSDC) manages NASA's largest science computer network, the Space Physics Analysis Network; a comprehensive account is given of the structure of NSSDC international access through BITNET, and of connections to the NSSDC available in the Americas via the International X.25 network.

  10. National Center for Mathematics and Science - publications

    Science.gov (United States)

    : Designing Statistics Instruction for Middle School Students Summer 2003: Algebraic Skills and Strategies for newsletter cover The National Center for Research in Mathematical Sciences Education (NCRMSE) (1987-1995 -Level Reform Fall 1993: Assessment Models Winter 1994: Reforming Geometry Spring 1994: Statistics and

  11. Fernbank Science Center Forest Teacher's Guide-1967.

    Science.gov (United States)

    Cherry, Jim; And Others

    This guide is designed primarily to familiarize teachers with the types of programs available through the Fernback Science Center. Instructional programs involving the use of the Fernbank Forest are outlined. Programs for secondary students include Plant Taxonomy, Field Ecology, Winter Taxonomy of Plants, and Climax Forest Succession. Elementary…

  12. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Wender, Steve [Los Alamos National Laboratory

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  13. Students build glovebox at Space Science Center

    Science.gov (United States)

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  14. The Lederman Science Center: Past, Present, Future

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, Marjorie G.; /Fermilab

    2011-11-01

    For 30 years, Fermilab has offered K-12 education programs, building bridges between the Lab and the community. The Lederman Science Center is our home. We host field trips and tours, visit schools, offer classes and professional development workshops, host special events, support internships and have a strong web presence. We develop programs based on identified needs, offer programs with peer-leaders and improve programs from participant feedback. For some we create interest; for others we build understanding and develop relationships, engaging participants in scientific exploration. We explain how we created the Center, its programs, and what the future holds.

  15. The TESS Science Processing Operations Center

    Science.gov (United States)

    Jenkins, Jon M.; Twicken, Joseph D.; McCauliff, Sean; Campbell, Jennifer; Sanderfer, Dwight; Lung, David; Mansouri-Samani, Masoud; Girouard, Forrest; Tenenbaum, Peter; Klaus, Todd; hide

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will conduct a search for Earth's closest cousins starting in early 2018 and is expected to discover approximately 1,000 small planets with R(sub p) less than 4 (solar radius) and measure the masses of at least 50 of these small worlds. The Science Processing Operations Center (SPOC) is being developed at NASA Ames Research Center based on the Kepler science pipeline and will generate calibrated pixels and light curves on the NASA Advanced Supercomputing Division's Pleiades supercomputer. The SPOC will also search for periodic transit events and generate validation products for the transit-like features in the light curves. All TESS SPOC data products will be archived to the Mikulski Archive for Space Telescopes (MAST).

  16. The Emirates Mars Mission Science Data Center

    Science.gov (United States)

    Craft, J.; Al Hammadi, O.; DeWolfe, A. W.; Staley, B.; Schafer, C.; Pankratz, C. K.

    2017-12-01

    The Emirates Mars Mission (EMM), led by the Mohammed Bin Rashid Space Center (MBRSC) in Dubai, United Arab Emirates, is expected to arrive at Mars in January 2021. The EMM Science Data Center (SDC) is to be developed as a joint effort between MBRSC and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The EMM SDC is responsible for the production, management, distribution, and archiving of science data collected from the three instruments on board the Hope spacecraft.With the respective SDC teams on opposite sides of the world evolutionary techniques and cloud-based technologies are being utilized in the development of the EMM SDC. This presentation will provide a top down view of the EMM SDC, summarizing the cloud-based technologies being implemented in the design, as well as the tools, best practices, and lessons learned for software development and management in a geographically distributed team.

  17. Fort Collins Science Center fiscal year 2010 science accomplishments

    Science.gov (United States)

    Wilson, Juliette T.

    2011-01-01

    The scientists and technical professionals at the U.S. Geological Survey (USGS), Fort Collins Science Center (FORT), apply their diverse ecological, socioeconomic, and technological expertise to investigate complicated ecological problems confronting managers of the Nation's biological resources. FORT works closely with U.S. Department of the Interior (DOI) agency scientists, the academic community, other USGS science centers, and many other partners to provide critical information needed to help answer complex natural-resource management questions. In Fiscal Year 2010 (FY10), FORT's scientific and technical professionals conducted ongoing, expanded, and new research vital to the science needs and management goals of DOI, other Federal and State agencies, and nongovernmental organizations in the areas of aquatic systems and fisheries, climate change, data and information integration and management, invasive species, science support, security and technology, status and trends of biological resources (including the socioeconomic aspects), terrestrial and freshwater ecosystems, and wildlife resources, including threatened and endangered species. This report presents selected FORT science accomplishments for FY10 by the specific USGS mission area or science program with which each task is most closely associated, though there is considerable overlap. The report also includes all FORT publications and other products published in FY10, as well as staff accomplishments, appointments, committee assignments, and invited presentations.

  18. Spallation reactions: calculations

    International Nuclear Information System (INIS)

    Bertini, H.W.

    1975-01-01

    Current methods for calculating spallation reactions over various energy ranges are described and evaluated. Recent semiempirical fits to existing data will probably yield the most accurate predictions for these reactions in general. However, if the products in question have binding energies appreciably different from their isotropic neighbors and if the cross section is approximately 30 mb or larger, then the intranuclear-cascade-evaporation approach is probably better suited. (6 tables, 12 figures, 34 references) (U.S.)

  19. Suborbital Science Program: Dryden Flight Research Center

    Science.gov (United States)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  20. Molecular Science Research Center, 1991 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1992-03-01

    During 1991, the Molecular Science Research Center (MSRC) experienced solid growth and accomplishment and the Environmental, and Molecular Sciences Laboratory (EMSL) construction project moved forward. We began with strong programs in chemical structure and dynamics and theory, modeling, and simulation, and both these programs continued to thrive. We also made significant advances in the development of programs in materials and interfaces and macromolecular structure and dynamics, largely as a result of the key staff recruited to lead these efforts. If there was one pervasive activity for the past year, however, it was to strengthen the role of the EMSL in the overall environmental restoration and waste management (ER/WM) mission at Hanford. These extended activities involved not only MSRC and EMSL staff but all PNL scientific and technical staff engaged in ER/WM programs.

  1. A Computer Learning Center for Environmental Sciences

    Science.gov (United States)

    Mustard, John F.

    2000-01-01

    In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.

  2. The Brazilian Science Data Center (BSDC)

    Science.gov (United States)

    de Almeida, Ulisses Barres; Bodmann, Benno; Giommi, Paolo; Brandt, Carlos H.

    Astrophysics and Space Science are becoming increasingly characterised by what is now known as “big data”, the bottlenecks for progress partly shifting from data acquisition to “data mining”. Truth is that the amount and rate of data accumulation in many fields already surpasses the local capabilities for its processing and exploitation, and the efficient conversion of scientific data into knowledge is everywhere a challenge. The result is that, to a large extent, isolated data archives risk being progressively likened to “data graveyards”, where the information stored is not reused for scientific work. Responsible and efficient use of these large data-sets means democratising access and extracting the most science possible from it, which in turn signifies improving data accessibility and integration. Improving data processing capabilities is another important issue specific to researchers and computer scientists of each field. The project presented here wishes to exploit the enormous potential opened up by information technology at our age to advance a model for a science data center in astronomy which aims to expand data accessibility and integration to the largest possible extent and with the greatest efficiency for scientific and educational use. Greater access to data means more people producing and benefiting from information, whereas larger integration of related data from different origins means a greater research potential and increased scientific impact. The project of the BSDC is preoccupied, primarily, with providing tools and solutions for the Brazilian astronomical community. It nevertheless capitalizes on extensive international experience, and is developed in full cooperation with the ASI Science Data Center (ASDC), from the Italian Space Agency, granting it an essential ingredient of internationalisation. The BSDC is Virtual Observatory-complient and part of the “Open Universe”, a global initiative built under the auspices of the

  3. Outline of spallation neutron source engineering

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Noboru [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2001-01-01

    Slow neutrons such as cold and thermal neutrons are unique probes which can determine structures and dynamics of condensed matter in atomic scale. The neutron scattering technique is indispensable not only for basic sciences such as condensed matter research and life science, but also for basic industrial technology in 21 century. It is believed that to survive in the science-technology competition in 21 century would be almost impossible without neutron scattering. However, the intensity of neutrons presently available is much lower than synchrotron radiation sources, etc. Thus, R and D of intense neutron sources become most important. The High-Intensity Proton Accelerator Project is now being promoted jointly by Japan Atomic Energy Research Institute and High Energy Accelerator Research Organization, but there has so far been no good text which covers all the aspects of pulsed spallation neutron sources. The present review was prepare aiming at giving a better understanding on pulsed spallation neutron sources not only to neutron source researchers but also more widely to neutron scattering researchers and accelerator scientists in this field. The contents involve, starting from what is neutron scattering and what neutrons are necessary for neutron scattering, what is the spallation reaction, how to produce neutrons required for neutron scattering more efficiently, target-moderator-reflector neutronics and its engineering, shielding, target station, material issues, etc. The author have engaged in R and D of pulsed apallation neutron sources and neutron scattering research using them over 30 years. The present review is prepared based on the author's experiences with useful information obtained through ICANS collaboration and recent data from the JSNS (Japanese Spallation Neutron Source) design team. (author)

  4. Spallation neutrons pulsed sources

    International Nuclear Information System (INIS)

    Carpenter, J.

    1996-01-01

    This article describes the range of scientific applications which can use these pulsed neutrons sources: Studies on super fluids, measures to verify the crawling model for the polymers diffusion; these sources are also useful to study the neutron disintegration, the ultra cold neutrons. In certain applications which were not accessible by neutrons diffusion, for example, radiations damages, radionuclides production and activation analysis, the spallation sources find their use and their improvement will bring new possibilities. Among others contributions, one must notice the place at disposal of pulsed muons sources and neutrinos sources. (N.C.). 3 figs

  5. Spallation studies at Saturne

    Energy Technology Data Exchange (ETDEWEB)

    Frehaut, J. [Centre d`Etudes de Bruyeres-le-Chatel (France)

    1995-10-01

    SATURNE is a synchrotron accelerator which can deliver particles of momentum P and charge Z up to P/Z = 4 GeV/c. Monokinetic neutron beams of momentum up to 2 GeV/c can be produced. The spallation studies deal with measurements of: (i) differential neutron production cross sections from thin targets, (ii) neutron multiplicity distribution for proton and {sup 3}He induced reactions, and (iii) nuclide production in thin target. Measurements on thick or composite targets are under consideration.

  6. Fort Collins Science Center Ecosystem Dynamics Branch

    Science.gov (United States)

    Wilson, Jim; Melcher, C.; Bowen, Z.

    2009-01-01

    Complex natural resource issues require understanding a web of interactions among ecosystem components that are (1) interdisciplinary, encompassing physical, chemical, and biological processes; (2) spatially complex, involving movements of animals, water, and airborne materials across a range of landscapes and jurisdictions; and (3) temporally complex, occurring over days, weeks, or years, sometimes involving response lags to alteration or exhibiting large natural variation. Scientists in the Ecosystem Dynamics Branch of the U.S. Geological Survey, Fort Collins Science Center, investigate a diversity of these complex natural resource questions at the landscape and systems levels. This Fact Sheet describes the work of the Ecosystems Dynamics Branch, which is focused on energy and land use, climate change and long-term integrated assessments, herbivore-ecosystem interactions, fire and post-fire restoration, and environmental flows and river restoration.

  7. Energy Science and Technology Software Center

    Energy Technology Data Exchange (ETDEWEB)

    Kidd, E.M.

    1995-03-01

    The Energy Science and Technology Software Center (ESTSC), is the U.S. Department of Energy`s (DOE) centralized software management facility. It is operated under contract for the DOE Office of Scientific and Technical Information (OSTI) and is located in Oak Ridge, Tennessee. The ESTSC is authorized by DOE and the U.S. Nuclear Regulatory Commission (NRC) to license and distribute DOE-and NRC-sponsored software developed by national laboratories and other facilities and by contractors of DOE and NRC. ESTSC also has selected software from the Nuclear Energy Agency (NEA) of the Organisation for Economic Cooperation and Development (OECD) through a software exchange agreement that DOE has with the agency.

  8. AGILE Data Center and AGILE science highlights

    International Nuclear Information System (INIS)

    Pittori, C.

    2013-01-01

    AGILE is a scientific mission of the Italian Space Agency (ASI) with INFN, INAF e CIFS participation, devoted to gamma-ray astrophysics. The satellite is in orbit since April 23rd, 2007. Gamma-ray astrophysics above 100 MeV is an exciting field of astronomical sciences that has received a strong impulse in recent years. Despite the small size and budget, AGILE produced several important scientific results, among which the unexpected discovery of strong and rapid gamma-ray flares from the Crab Nebula. This discovery won to the AGILE PI and the AGILE Team the prestigious Bruno Rossi Prize for 2012, an international recognition in the field of high energy astrophysics. We present here the AGILE data center main activities, and we give an overview of the AGILE scientific highlights after 5 years of operations

  9. Leon M. Lederman Science Education Center: General Information

    Science.gov (United States)

    . Designed for middle school field trips, the hands-on exhibits at the Lederman Science Center are available Maintainer: ed-webmaster@fnal.gov Lederman Science Education Center Fermilab MS 777 Box 500 Batavia, IL 60510 Programs | Science Adventures | Calendar | Registration | About | Contact | FAQ | Fermilab Friends

  10. Research activities on structure materials of spallation neutron source at SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S.; Dai, Y. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    With the growing interests on powerful spallation neutron sources, especially with liquid metal targets, and accelerator driven energy systems, spallation materials science and technology have been received wide attention. At SINQ, material research activities are focused on: a) liquid metal corrosion; b) radiation damage; and c) interaction of corrosion and radiation damage. (author) 1 fig., refs.

  11. Shielding concerns at a spallation source

    International Nuclear Information System (INIS)

    Russell, G.J.; Robinson, H.; Legate, G.L.; Woods, R.

    1989-01-01

    Neutrons produced by 800-MeV proton reactions at the Los Alamos Neutron Scattering Center spallation neutron source cause a variety of challenging shielding problems. We identify several characteristics distinctly different from reactor shielding and compute the dose attenuation through an infinite slab/shield composed of iron (100 cm) and borated polyethylene (15 cm). Our calculations show that (for an incident spallation spectrum characteristic of neutrons leaking from a tungsten target at 90/degree/) the dose through the shield is a complex mixture of neutrons and gamma rays. High-energy (> 20 MeV) neutron production from the target is ≅5% of the total, yet causes ≅68% of the dose at the shield surface. Primary low-energy (< 20 MeV) neutrons from the target contribute negligibly (≅0.5%) to the dose at the shield surface yet cause gamma rays, which contribute ≅31% to the total dose at the shield surface. Low-energy neutrons from spallation reactions behave similarly to neutrons with a fission spectrum distribution. 6 refs., 8 figs., 1 tab

  12. Interior's Climate Science Centers: Focus or Fail

    Science.gov (United States)

    Udall, B.

    2012-12-01

    After a whirlwind two years of impressive and critical infrastructure building, the Department of Interior's Climate Science Centers are now in a position to either succeed or fail. The CSCs have a number of difficult structural problems including too many constituencies relative to the available resources, an uneasy relationship among many of the constituencies including the DOI agencies themselves, a need to do science in a new, difficult and non-traditional way, and a short timeframe to produce useful products. The CSCs have built a broad and impressive network of scientists and stakeholders. These entities include science providers of the universities and the USGS, and decision makers from the states, tribes, DOI land managers and other federal agencies and NGOs. Rather than try to support all of these constituencies the CSCs would be better served by refocusing on a core mission of supporting DOI climate related decision making. The CSCs were designed to service the climate science needs of DOI agencies, many of which lost their scientific capabilities in the 1990s due to a well-intentioned but ultimately harmful re-organization at DOI involving the now defunct National Biological Survey. Many of these agencies would like to have their own scientists, have an uneasy relationship with the nominal DOI science provider, the USGS, and don't communicate effectively among themselves. The CSCs must not succumb to pursuing science in either the traditional mode of the USGS or in the traditional mode of the universities, or worse, both of them. These scientific partners will need to be flexible, learn how to collaborate and should expect to see fewer resources. Useful CSC processes and outputs should start with the recommendations of the 2009 NRC Report Informing Decisions in a Changing Climate: (1) begin with users' needs; (2) give priority to process over products; (3) link information producers and users; (4) build connections across disciplines and organizations

  13. LOS ALAMOS NEUTRON SCIENCE CENTER CONTRIBUTIONS TO THE DEVELOPMENT OF FUTURE POWER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    GAVRON, VICTOR I. [Los Alamos National Laboratory; HILL, TONY S. [Los Alamos National Laboratory; PITCHER, ERIC J. [Los Alamos National Laboratory; TOVESSON, FREDERIK K. [Los Alamos National Laboratory

    2007-01-09

    The Los Alamos Neutron Science Center (LANSCE) is a large spallation neutron complex centered around an 800 MeV high-currently proton accelerator. Existing facilities include a highly-moderated neutron facility (Lujan Center) where neutrons between thermal and keV energies are produced, and the Weapons Neutron Research Center (WNR), where a bare spallation target produces neutrons between 0.1 and several hundred MeV.The LANSCE facility offers a unique capability to provide high precision nuclear data over a large energy region, including that for fast reactor systems. In an ongoing experimental program the fission and capture cross sections are being measured for a number of minor actinides relevant for Generation-IV reactors and transmutation technology. Fission experiments makes use of both the highly moderated spallation neutron spectrum at the Lujan Center, and the unmoderated high energy spectrum at WNR. By combininb measurements at these two facilities the differential fission cross section is measured relative to the {sup 235}U(n,f) standard from subthermal energies up to about 200 MeV. An elaborate data acquisition system is designed to deal with all the different types of background present when spanning 10 energy decades. The first isotope to be measured was {sup 237}Np, and the results were used to improve the current ENDF/B-VII evaluation. Partial results have also been obtained for {sup 240}Pu and {sup 242}Pu, and the final results are expected shortly. Capture cross sections are measured at LANSCE using the Detector for Advanced Neutron Capture Experiments (DANCE). This unique instrument is highly efficient in detecting radiative capture events, and can thus handle radioactive samples of half-lives as low as 100 years. A number of capture cross sections important to fast reaction applications have been measured with DANCE. The first measurement was on {sup 237}Np(n,{gamma}), and the results have been submitted for publication. Other capture

  14. NASA Center for Computational Sciences: History and Resources

    Science.gov (United States)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  15. National Center for Advancing Translational Sciences

    Science.gov (United States)

    ... Models Core Technologies Clinical Innovation Clinical and Translational Science Awards Program Rare Diseases Clinical Research Network Patient ... to our monthly e-newsletter. About Translation Translational Science Spectrum Explore the full spectrum of translational science, ...

  16. Kepler Science Operations Center Pipeline Framework

    Science.gov (United States)

    Klaus, Todd C.; McCauliff, Sean; Cote, Miles T.; Girouard, Forrest R.; Wohler, Bill; Allen, Christopher; Middour, Christopher; Caldwell, Douglas A.; Jenkins, Jon M.

    2010-01-01

    The Kepler mission is designed to continuously monitor up to 170,000 stars at a 30 minute cadence for 3.5 years searching for Earth-size planets. The data are processed at the Science Operations Center (SOC) at NASA Ames Research Center. Because of the large volume of data and the memory and CPU-intensive nature of the analysis, significant computing hardware is required. We have developed generic pipeline framework software that is used to distribute and synchronize the processing across a cluster of CPUs and to manage the resulting products. The framework is written in Java and is therefore platform-independent, and scales from a single, standalone workstation (for development and research on small data sets) to a full cluster of homogeneous or heterogeneous hardware with minimal configuration changes. A plug-in architecture provides customized control of the unit of work without the need to modify the framework itself. Distributed transaction services provide for atomic storage of pipeline products for a unit of work across a relational database and the custom Kepler DB. Generic parameter management and data accountability services are provided to record the parameter values, software versions, and other meta-data used for each pipeline execution. A graphical console allows for the configuration, execution, and monitoring of pipelines. An alert and metrics subsystem is used to monitor the health and performance of the pipeline. The framework was developed for the Kepler project based on Kepler requirements, but the framework itself is generic and could be used for a variety of applications where these features are needed.

  17. Science Centers in the Electronic Age: Are We Doomed?

    Science.gov (United States)

    Russell, Robert L., Ed.; West, Robert M., Ed.

    1996-01-01

    This issue is a debate-discussion concerning science centers in the electronic age. The articles are based on presentations made at the Science Center World Congress (1st, Heureka, Finland, June 13-17, 1996). The four articles are: (1) "Lessons from Laboratorio dell'Immaginario Scientifico" (Andrea Bandelli); (2) "The Doom-Shaped Thing in the…

  18. Detection of supernova neutrinos at spallation neutron sources

    Science.gov (United States)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2016-07-01

    After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)

  19. National Center for Mathematics and Science - links to related sites

    Science.gov (United States)

    Mathematics and Science (NCISLA) HOME | WHAT WE DO | K-12 EDUCATION RESEARCH | PUBLICATIONS | TEACHER Modeling Middle School Mathematics National Association of Biology Teachers National Association for Mathematics National Science Teachers Assocation Show-Me Center Summit on Science TERC - Weaving Gender Equity

  20. Program Analysis and Design Requirements for tne National Science Center

    Science.gov (United States)

    1991-02-01

    shell of an old exposition building with secondhand furniture to display exhibit items, to the Ontario Science Center, which is a more modem building...Storage Area Pigeonhole storage cabinets for children’s school books , coats, and boots are provided at the Indianapolis Center. The Ontario center...used shopping carts for school groups to store their coats and books . They do not work well according to center staff and are cumbersome and unsightly

  1. Photonuclear spallation reactions in Cu

    International Nuclear Information System (INIS)

    Shibata, S.; Imamura, M.; Miyachi, T.

    1986-06-01

    Formation yields of 24 radioactive nuclides by the interaction of bremsstrahlung in the maximum end-point energies of 100 MeV - 1 GeV with Cu have been measured by direct γ-ray counting of irradiated targets. The yields in the mass range of 42 to 60 except for 60 Cu were analysed by non-linear least-squares fit to construct the mass yield and charge dispersion curves in spallation reactions. From the parameter values obtained, the energy dependence of the slope of the mass yield curve and the relationship between target N/Z and the most probable product N/Z were investigated in comparison with the results of proton, α and heavy ion-induced spallations of Cu. The characteristics of photon-induced spallations are discussed. (author)

  2. How do science centers perceive their role in science teaching?

    DEFF Research Database (Denmark)

    Nielsen, Jan Alexis; Stougaard, Birgitte; Andersen, Beth Wehner

    This poster presents the data of a survey of 11 science centres in the Region of Southern Denmark. The survey is the initial step in a project which aims, on the one hand, to identify the factors which conditions successful learning outcomes of visits to science centres, and, on the other hand...... and teachers. In the present survey we have approached the topic from the perspective of science centres. Needless to say, the science centres’ own perception of their role in science teaching plays a vital role with respect to the successfulness of such visits. The data of our survey suggest that, also from......, to apply this identification so as to guide the interaction of science teachers and science centres. Recent literature on this topic (Rennie et. al. 2003; Falk & Dierking 2000) suggest that stable learning outcomes of such visits require that such visits are (1) prepared in the sense that the teacher has...

  3. LANSCE: Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Kippen, Karen Elizabeth

    2017-01-01

    The principle goals of this project is to increase flux and improve resolution for neutron energies above 1 keV for nuclear physics experiments; and preserve current strong performance at thermal energies for material science.

  4. LANSCE: Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-02

    The principle goals of this project is to increase flux and improve resolution for neutron energies above 1 keV for nuclear physics experiments; and preserve current strong performance at thermal energies for material science.

  5. Spallation-mechanism and characteristics

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.; Wojciechowski, A.

    1996-01-01

    Mechanism of spallation is revealed experimentally. Spallation is a complicated nuclear reaction initiated by fast hadron in which three stages may be distinguished: a) the first stage in which the target nucleus is locally damaged, it lasts ∼10 -24 +10 -22 s; b) the slow stage which lasts ∼10 -22 +10 -17 s after the collision started, the damaged and excited nucleus uses to emit the black track leaving particles; c) the final stage in which residual target nucleus uses to split into two or more fragments. Quantitative characteristics of each of the stages are presented. 35 refs

  6. Fort Collins Science Center: Ecosystem Dynamics

    Science.gov (United States)

    Bowen, Zack

    2004-01-01

    Many challenging natural resource management issues require consideration of a web of interactions among ecosystem components. The spatial and temporal complexity of these ecosystem problems demands an interdisciplinary approach integrating biotic and abiotic processes. The goals of the Ecosystem Dynamics Branch are to provide sound science to aid federal resource managers and use long-term, place-focused research and monitoring on federal lands to advance ecosystem science.

  7. Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is the home (archive) of Precipitation, Atmospheric Chemistry and Dynamics, and...

  8. The role of informal science centers in science education: attitudes, skills, and self-efficacy

    OpenAIRE

    Sasson, Irit

    2014-01-01

    Informal learning relates to activities that occur outside the school environment. These learning environments, such as visits to science centers provide valuable motivational opportunities for students to learn science. The purpose of this study was to investigate the role of the pre-academic center in science education and particularly to explore its effects on 750 middle-school students' attitudes toward science, their scientific thinking skills and self-efficacy. Pre and post-case based q...

  9. EURAC: A liquid target neutron spallation

    Energy Technology Data Exchange (ETDEWEB)

    Perlado, J.M.; Minguez, E.; Sanz, J. [Universidad Politecnica de Madrid (Spain)] [and others

    1995-10-01

    Euratom/JRC Ispra led some years ago the design of an accelerator based neutron spallation source EURAC, with special emphasis as a fusion material testing device. DENIM was involved in the development of the last version of this source. EURAC proposes to use a beam of 600 MeV or 1.5 GeV protons, produced by an effective and low cost ring cyclotron with a current of 6 mA impinging in a liquid lead, or lead-bismuth, target. It will use an advanced cyclotron technology which can be implemented in the next future, in the line of the actual technology of the upgraded SIN-type cyclotron. The adjacent rows to the target correspond to the lead, or Li{sub 17}Pb{sub 83}, cooled channels where the samples will be located. The available volumes there were shown enough for material testing purposes. Here, proposal of using those experimental areas to introduce small masses of radioactive wastes for testing of transmutation in spallation source is made. In addition, extrapolation of present conceptual design to make available larger volumes under flexible conditions seems to be possible. Neutrons leaking from the test zone drive a subcritical booster (<10 MW) which could provide a thermal neutron flux trap with a liquid hydrogen moderator in the center.

  10. Stanford MFEL and Near Infrared Science Center

    Science.gov (United States)

    2011-01-28

    are incorporated into glass catadioptric lenses that are mounted and sealed at each end of the stainless steel microscope. In addition to the self...highly effective in preventing biofilm formation , as well as in killing biofilms that are already present. b) Peer-Reviewed publications (in reversed...Multiphoton Microscopy in the Biomedical Sciences VII, SPIE, vol. 6442 (2007). 3. On Image formation in Near-field Infrared Microscopy, D. M

  11. Small neutron sources as centers for innovation and science

    International Nuclear Information System (INIS)

    Baxter, D.V.

    2009-01-01

    The education and training of the next generation of scientists who will form the user base for the Spallation Neutron Source (SNS) remains a significant issue for the future success of this national facility. These scientists will be drawn from a wide variety of disciplines (physics, chemistry, biology, and engineering) and therefore the development of an effective interdisciplinary training program represents a significant challenge. In addition, effective test facilities to develop the full potential of pulsed neutron sources for science do not exist. Each of these problems represents a significant hurdle for the future health of neutron science in this country. An essential part of the solution to both problems is to get neutron sources of useful intensities into the hands of researchers and students at universities, where faculty can teach students about neutron production and the utility of neutrons for solving scientific problems. Due to a combination of developments in proton accelerator technology, neutron optics, cold neutron moderators, computer technology, and small-angle neutron scattering (SANS) instrumentation, it is now technically possible and cost effective to construct a pulsed cold neutron source suitable for use in a university setting and devoted to studies of nano structures in the fields of materials science, polymers, microemulsions, and biology. Such a source, based on (p,n) reactions in light nuclei induced by a few MeV pulsed proton beam coupled to a cold neutron moderator, would also be ideal for the study of a number of technical issues which are essential for the development of neutron science such as cold and perhaps ultracold neutron moderators, neutron optical devices, neutron detector technology, and transparent DAQ/user interfaces. At the Indiana University Cyclotron Facility (IUCF) we possess almost all of the required instrumentation and expertise to efficiently launch the first serious attempt to develop an intense pulsed cold

  12. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  13. Spallation reactions - physics and applications

    International Nuclear Information System (INIS)

    Kelic, A.; Ricciardi, M.; Schmidt, K-H.

    2009-01-01

    Spallation reactions have become an ideal tool for studying the equation of state and thermal instabilities of nuclear matter. In astrophysics, the interactions of cosmic rays with the interstellar medium have to be understood in detail for deducing their original composition and their production mechanisms. Renewed interest in spallation reactions with protons around 1 GeV came up recently with the developments of spallation neutron sources. The project of an accelerator-driven system (ADS) as a technological solution for incinerating the radioactive waste even intensified the efforts for better understanding the physics involved in the spallation process. Experiments on spallation reactions were performed for determining the production cross sections and properties of particles, fragments and heavy residues. Traditional experiments on heavy residues, performed in direct kinematics, were limited to the direct observation of long-lived radioactive nuclides and did not provide detailed information on the kinematics of the reaction. Therefore, an innovative experimental method has been developed, based on inverse kinematics, which allowed to identify all reaction residues in-flight, using the high resolution magnetic spectrometer FRS of GSL Darmstadt. It also gives direct access to the reaction kinematics. An experimental campaign has been carried out in a Europe-wide collaboration, investigating the spallation of several nuclei ranging from 56 Fe to 238 U Complementary experiments were performed with a full-acceptance detection system, yielding total fission cross sections. Recently, another detection system using the large acceptance ALADIN dipole and the LAND neutron detector was introduced to measure light particles in coincidence with the heavy residues. Another intense activity was dedicated to developing codes, which cover nuclear reactions occurring in an ADS. The first phase of the reaction is successfully described by a sequence of quasi-free nucleon

  14. Modern Data Center Services Supporting Science

    Science.gov (United States)

    Varner, J. D.; Cartwright, J.; McLean, S. J.; Boucher, J.; Neufeld, D.; LaRocque, J.; Fischman, D.; McQuinn, E.; Fugett, C.

    2011-12-01

    The National Oceanic and Atmospheric Administration's National Geophysical Data Center (NGDC) World Data Center for Geophysics and Marine Geology provides scientific stewardship, products and services for geophysical data, including bathymetry, gravity, magnetics, seismic reflection, data derived from sediment and rock samples, as well as historical natural hazards data (tsunamis, earthquakes, and volcanoes). Although NGDC has long made many of its datasets available through map and other web services, it has now developed a second generation of services to improve the discovery and access to data. These new services use off-the-shelf commercial and open source software, and take advantage of modern JavaScript and web application frameworks. Services are accessible using both RESTful and SOAP queries as well as Open Geospatial Consortium (OGC) standard protocols such as WMS, WFS, WCS, and KML. These new map services (implemented using ESRI ArcGIS Server) are finer-grained than their predecessors, feature improved cartography, and offer dramatic speed improvements through the use of map caches. Using standards-based interfaces allows customers to incorporate the services without having to coordinate with the provider. Providing fine-grained services increases flexibility for customers building custom applications. The Integrated Ocean and Coastal Mapping program and Coastal and Marine Spatial Planning program are two examples of national initiatives that require common data inventories from multiple sources and benefit from these modern data services. NGDC is also consuming its own services, providing a set of new browser-based mapping applications which allow the user to quickly visualize and search for data. One example is a new interactive mapping application to search and display information about historical natural hazards. NGDC continues to increase the amount of its data holdings that are accessible and is augmenting the capabilities with modern web

  15. Molecular Science Research Center annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1991-01-01

    The Chemical Structure and Dynamics group is studying chemical kinetics and reactions dynamics of terrestrial and atmospheric processes as well as the chemistry of complex waste forms and waste storage media. Staff are using new laser systems and surface-mapping techniques in combination with molecular clusters that mimic adsorbate/surface interactions. The Macromolecular Structure and Dynamics group is determining biomolecular structure/function relationships for processes the control the biological transformation of contaminants and the health effects of toxic substances. The Materials and Interfaces program is generating information needed to design and synthesize advanced materials for the analysis and separation of mixed chemical waste, the long-term storage of concentrated hazardous materials, and the development of chemical sensors for environmental monitoring of various organic and inorganic species. The Theory, Modeling, and Simulation group is developing detailed molecular-level descriptions of the chemical, physical, and biological processes in natural and contaminated systems. Researchers are using the full spectrum of computational techniques. The Computer and Information Sciences group is developing new approaches to handle vast amounts of data and to perform calculations for complex natural systems. The EMSL will contain a high-performance computing facility, ancillary computing laboratories, and high-speed data acquisition systems for all major research instruments.

  16. Spallation neutron source moderator design

    International Nuclear Information System (INIS)

    Charlton, L.A.; Barnes, J.M.; Gabriel, T.A.; Johnson, J.O.

    1998-01-01

    This paper describes various aspects of the spallation neutron source (SNS) moderator design. Included are the effects of varying the moderator location, interaction effects between moderators, and the impact on neutron output when various reflector materials are used. Also included is a study of the neutron output from composite moderators, where it is found that a combination of liquid H 2 O and liquid H 2 can produce a spectrum very similar to liquid methane (L-CH 4 ). (orig.)

  17. A sistematical study of spallation reaction

    International Nuclear Information System (INIS)

    Foshina, M.

    1982-01-01

    A four-parameter semi-empirical formulae is proposed to calculate photo-spallation cross sections. This formulae is deduced starting from a nuclear model considered as a particle mixture without differences among them and the spallation phenomenous is considered as sucessive nucleon emission ruled by determined probability law. The formulae parameters are obtained from photo-spallation yields experimentally determined and available in literature. A variation study of the values of different parameters with the mass number of the 'seed' nucleus and incident energy is made. A parallel study for the spallation reactions induced by protons of a sampling of 720 data is also presented. (L.C.) [pt

  18. Goddard Earth Science Data and Information Center (GES DISC)

    Science.gov (United States)

    Kempler, Steve

    2016-01-01

    The GES DIS is one of 12 NASA Earth science data centers. The GES DISC vision is to enable researchers and educators maximize knowledge of the Earth by engaging in understanding their goals, and by leading the advancement of remote sensing information services in response to satisfying their goals. This presentation will describe the GES DISC approach, successes, challenges, and best practices.

  19. Research Centers & Consortia | College of Engineering & Applied Science

    Science.gov (United States)

    Academics Admission Student Life Research Schools & Colleges Libraries Athletics Centers & ; Applied Science Powerful Ideas. Proven Results. Search for: Go This site All UWM Search Site Menu Skip to content Academics Undergraduate Programs Majors Minors Integrated Bachelor/Master Degree Applied Computing

  20. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Environmental Science Information Center (ESIC). 950.6 Section 950.6 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE...

  1. Visitor empowerment and the authority of science: Exploring institutionalized tensions in a science center

    Science.gov (United States)

    Loomis, Molly

    This research explored the relationships among societal, organizational, and visitor assumptions about learning in a science center. The study combined a sociocultural theory of learning with a constructivist theory of organizations to examine empirical links among the history of the Exploratorium (founded in 1969 and located in San Francisco, California), its organizational practices, and family activity at its exhibits. The study focused on three perspectives on science learning in a science center: (1) the societal perspective, which traced assumptions about science learning to the history of science centers; (2) the organizational perspective, which documented the ways that assumptions about science learning were manifested in historic museum exhibits; and (3) the family perspective, which documented the assumptions about science learning that characterized family activity at historic exhibits. All three perspectives uncovered a tension between the goals of supporting public empowerment on the one hand and preserving scientific authority on the other. Findings revealed this tension to be grounded in the social context of the organization's development, where ideas about promoting democracy and preserving the authority of science intersected. The tension was manifested in museum exhibits, which had as their task addressing the dual purposes of supporting all visitors, while also supporting committed visitors. The tension was also evident in the activity of families, who echoed sentiments about potential for their own empowerment but deferred to scientific authority. The study draws on critiques of a hidden curriculum in schools in order to explore the relationship between empowerment and authority in science centers, specifically as they are conveyed in the explicit and underlying missions of the Exploratorium. Findings suggest the need for science centers to engage in ongoing critical reflection and also lend empirical justification to the need for science

  2. Device for Writing the Time Tail from Spallation Neutron Pulses

    International Nuclear Information System (INIS)

    Langan, P.; Schoenborn, Benno P.; Daemen, L.L.

    2001-01-01

    Recent work at Los Alamos Neutron Science Center (LANSCE), has shown that there are large gains in neutron beam intensity to be made by using coupled moderators at spallation neutron sources. Most of these gains result from broadening the pulse-width in time. However the accompanying longer exponential tail at large emission times can be a problem in that it introduces relatively large beam-related backgrounds at high resolutions. We have designed a device that can reshape the moderated neutron beam by cutting the time-tail so that a sharp time resolution can be re-established without a significant loss in intensity. In this work the basic principles behind the tail-cutter and some initial results of Monte Carlo simulations are described. Unwanted neutrons in the long time-tail are diffracted out of the transmitted neutron beam by a nested stack of aperiodic multi-layers, rocking at the same frequency as the source. Nested aperiodic multi-layers have recently been used at X-ray sources and as band-pass filters in quasi-Laue neutron experiments at reactor neutron sources. Optical devices that rock in synchronization with a pulsed neutron beam are relatively new but are already under construction at LANSCE. The tail-cutter described here is a novel concept that uses existing multi-layer technology in a new way for spallation neutrons. Coupled moderators in combination with beam shaping devices offer the means of increasing flux whilst maintaining a sharp time distribution. A prototype device is being constructed for the protein crystallography station at LANSCE. The protein crystallography station incorporates a water moderator that has been judiciously coupled in order to increase the flux over neutron energies that are important to structural biology (3-80meV). This development in moderator design is particularly important because protein crystallography is flux limited and because conventional ambient water and cold hydrogen moderators do not provide relatively

  3. Interdisciplinary research center devoted to molecular environmental science opens

    Science.gov (United States)

    Vaughan, David J.

    In October, a new research center opened at the University of Manchester in the United Kingdom. The center is the product of over a decade of ground-breaking interdisciplinary research in the Earth and related biological and chemical sciences at the university The center also responds to the British governments policy of investing in research infrastructure at key universities.The Williamson Research Centre, the first of its kind in Britain and among the first worldwide, is devoted to the emerging field of molecular environmental science. This field also aims to bring about a revolution in understanding of our environment. Though it may be a less violent revolution than some, perhaps, its potential is high for developments that could affect us all.

  4. Better Broader Impacts through National Science Foundation Centers

    Science.gov (United States)

    Campbell, K. M.

    2010-12-01

    National Science Foundation Science and Technology Centers (STCs) play a leading role in developing and evaluating “Better Broader Impacts”; best practices for recruiting a broad spectrum of American students into STEM fields and for educating these future professionals, as well as their families, teachers and the general public. With staff devoted full time to Broader Impacts activities, over the ten year life of a Center, STCs are able to address both a broad range of audiences and a broad range of topics. Along with other NSF funded centers, such as Centers for Ocean Sciences Education Excellence, Engineering Research Centers and Materials Research Science and Engineering Centers, STCs develop both models and materials that individual researchers can adopt, as well as, in some cases, direct opportunities for individual researchers to offer their disciplinary research expertise to existing center Broader Impacts Programs. The National Center for Earth-surface Dynamics is an STC headquartered at the University of Minnesota. NCED’s disciplinary research spans the physical, biological and engineering issues associated with developing an integrative, quantitative and predictive understanding of rivers and river basins. Funded in 2002, we have had the opportunity to partner with individuals and institutions ranging from formal to informal education and from science museums to Tribal and women’s colleges. We have developed simple table top physical models, complete museum exhibitions, 3D paper maps and interactive computer based visualizations, all of which have helped us communicate with this wide variety of learners. Many of these materials themselves or plans to construct them are available online; in many cases they have also been formally evaluated. We have also listened to the formal and informal educators with whom we partner, from whom we have learned a great deal about how to design Broader Impacts activities and programs. Using NCED as a case study

  5. Spallation reactions studied with 4-detector arrays

    Indian Academy of Sciences (India)

    Recently there has been a renewed interest in the study of spallation reactions in basic nuclear physics as well as in potential applications. Spallation reactions induced by light projectiles (protons, antiprotons, pions, etc.) in the GeV range allow the formation of hot nuclei which do not suffer the collective excitations ...

  6. AGS Spallation Target Experiment (ASTE) Collaboration

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1999-01-01

    An experiment on mercury spallation target with high energy proton beam, called as the AGS Spallation Target Experiment (ASTE) Collaboration, has been performed at Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL) in USA, in cooperation among the laboratories in Japan, Europe and USA. The experimental setup, scope and preliminary results are presented in the paper. (author)

  7. Strategic plan for science-U.S. Geological Survey, Ohio Water Science Center, 2010-15

    Science.gov (United States)

    ,

    2010-01-01

    This Science Plan identifies specific scientific and technical programmatic issues of current importance to Ohio and the Nation. An examination of those issues yielded a set of five major focus areas with associated science goals and strategies that the Ohio Water Science Center will emphasize in its program during 2010-15. A primary goal of the Science Plan is to establish a relevant multidisciplinary scientific and technical program that generates high-quality products that meet or exceed the expectations of our partners while supporting the goals and initiatives of the U.S. Geological Survey. The Science Plan will be used to set the direction of new and existing programs and will influence future training and hiring decisions by the Ohio Water Science Center.

  8. The Kepler Science Operations Center Pipeline Framework Extensions

    Science.gov (United States)

    Klaus, Todd C.; Cote, Miles T.; McCauliff, Sean; Girouard, Forrest R.; Wohler, Bill; Allen, Christopher; Chandrasekaran, Hema; Bryson, Stephen T.; Middour, Christopher; Caldwell, Douglas A.; hide

    2010-01-01

    The Kepler Science Operations Center (SOC) is responsible for several aspects of the Kepler Mission, including managing targets, generating on-board data compression tables, monitoring photometer health and status, processing the science data, and exporting the pipeline products to the mission archive. We describe how the generic pipeline framework software developed for Kepler is extended to achieve these goals, including pipeline configurations for processing science data and other support roles, and custom unit of work generators that control how the Kepler data are partitioned and distributed across the computing cluster. We describe the interface between the Java software that manages the retrieval and storage of the data for a given unit of work and the MATLAB algorithms that process these data. The data for each unit of work are packaged into a single file that contains everything needed by the science algorithms, allowing these files to be used to debug and evolve the algorithms offline.

  9. Photometric Analysis in the Kepler Science Operations Center Pipeline

    Science.gov (United States)

    Twicken, Joseph D.; Clarke, Bruce D.; Bryson, Stephen T.; Tenenbaum, Peter; Wu, Hayley; Jenkins, Jon M.; Girouard, Forrest; Klaus, Todd C.

    2010-01-01

    We describe the Photometric Analysis (PA) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this module are to compute the photometric flux and photocenters (centroids) for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) stellar targets from the calibrated pixels in their respective apertures. We discuss the science algorithms for long and short cadence PA: cosmic ray cleaning; background estimation and removal; aperture photometry; and flux-weighted centroiding. We discuss the end-to-end propagation of uncertainties for the science algorithms. Finally, we present examples of photometric apertures, raw flux light curves, and centroid time series from Kepler flight data. PA light curves, centroid time series, and barycentric timestamp corrections are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy.

  10. [Science and society. Guidelines for the Leopoldina Study Center].

    Science.gov (United States)

    Hacker, Jörg

    2014-01-01

    In order to adequately perform its many diverse tasks as a scholars' society and as the German National Academy of Sciences, the Deutsche Akademie der Naturforscher Leopoldina needs to view itself in a historical context. This can only happen as part of a culture of remembrance which fosters the memory of the Leopoldina's past and subjects this to a critical analysis in the context of the history of science and academies. The newly founded Leopoldina Study Center for the History of Science and Science Academies is to be a forum that pursues established forms of historical research at the Leopoldina, organizes new scientific projects, and presents its findings to the public. The aim is to involve as many Leopoldina members as possible from all of its disciplines, as well as to collaborate with national and international partners.

  11. The Centers for Ocean Science Education Excellence (COSEE) initiative

    Science.gov (United States)

    Cook, S.; Rom, E.

    2003-04-01

    Seven regional Centers for Ocean Science Education Excellence have recently been established to promote the integration of ocean science research into high-quality education programs aimed at both formal and informal audiences throughout the United States. The regional Centers include two complementary partnerships in California, a New England regional effort, a Mid-Atlantic partnership, a Southeastern collaborative, a Florida initiative and a central Gulf of Mexico alliance. A Central Coordinating Office in Washington DC will help the group develop into a cohesive and focused national network. Initial funding has been provided by the National Science Foundation with complementary support from the Office of Naval Research and multiple units within the National Oceanographic and Atmospheric Administration (specifically the National Ocean Service, the Office of Ocean Exploration and the National SeaGrant Office). Under an umbrella of common goals and objectives, the first cohort of Centers in the COSEE network is remarkably diverse in terms of geography, organizational structure and programmatic focus. NSF’s presentation will describe these partnerships, the different approaches that are being taken by the individual Centers and the expectations that NSF has for the network as a whole.

  12. Spallator: a new option for nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.; Grand, P.; Takahashi, H.; Powell, J.R.; Kouts, H.J.

    1983-06-01

    The principles of the spallator reactor are reviewed. Advances in linear accelerator technology allow the design and construction of high current (hundreds of mA) continuous wave high energy (thousands of MeV) proton machines in the near term. Spallation neutronic calculations building on existing experimental results, indicate substantial neutron yields on uranium targets. Spallator target assembly designs based on water cooled reactor technology indicate operable efficient systems. Fuel cycles are presented which supply fissile material to thermal power reactors and reduce fission product waste. Preliminary comparative analysis indicates an economically competitive system in which a single purpose self-sufficient spallator supplies fuel to a number of LWRs. The spallator assures a long-term LWR power reactor economy. International interest in advancing the technology is indicated.

  13. Spallator: a new option for nuclear power

    International Nuclear Information System (INIS)

    Steinberg, M.; Grand, P.; Takahashi, H.; Powell, J.R.; Kouts, H.J.

    1983-06-01

    The principles of the spallator reactor are reviewed. Advances in linear accelerator technology allow the design and construction of high current (hundreds of mA) continuous wave high energy (thousands of MeV) proton machines in the near term. Spallation neutronic calculations building on existing experimental results, indicate substantial neutron yields on uranium targets. Spallator target assembly designs based on water cooled reactor technology indicate operable efficient systems. Fuel cycles are presented which supply fissile material to thermal power reactors and reduce fission product waste. Preliminary comparative analysis indicates an economically competitive system in which a single purpose self-sufficient spallator supplies fuel to a number of LWRs. The spallator assures a long-term LWR power reactor economy. International interest in advancing the technology is indicated

  14. New Center Links Earth, Space, and Information Sciences

    Science.gov (United States)

    Aswathanarayana, U.

    2004-05-01

    Broad-based geoscience instruction melding the Earth, space, and information technology sciences has been identified as an effective way to take advantage of the new jobs created by technological innovations in natural resources management. Based on this paradigm, the University of Hyderabad in India is developing a Centre of Earth and Space Sciences that will be linked to the university's super-computing facility. The proposed center will provide the basic science underpinnings for the Earth, space, and information technology sciences; develop new methodologies for the utilization of natural resources such as water, soils, sediments, minerals, and biota; mitigate the adverse consequences of natural hazards; and design innovative ways of incorporating scientific information into the legislative and administrative processes. For these reasons, the ethos and the innovatively designed management structure of the center would be of particular relevance to the developing countries. India holds 17% of the world's human population, and 30% of its farm animals, but only about 2% of the planet's water resources. Water will hence constitute the core concern of the center, because ecologically sustainable, socially equitable, and economically viable management of water resources of the country holds the key to the quality of life (drinking water, sanitation, and health), food security, and industrial development of the country. The center will be focused on interdisciplinary basic and pure applied research that is relevant to the practical needs of India as a developing country. These include, for example, climate prediction, since India is heavily dependent on the monsoon system, and satellite remote sensing of soil moisture, since agriculture is still a principal source of livelihood in India. The center will perform research and development in areas such as data assimilation and validation, and identification of new sensors to be mounted on the Indian meteorological

  15. NASA's astrophysics archives at the National Space Science Data Center

    Science.gov (United States)

    Vansteenberg, M. E.

    1992-01-01

    NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.

  16. Status of the TESS Science Processing Operations Center

    Science.gov (United States)

    Jenkins, Jon M.; Twicken, Joseph D.; Campbell, Jennifer; Tenebaum, Peter; Sanderfer, Dwight; Davies, Misty D.; Smith, Jeffrey C.; Morris, Rob; Mansouri-Samani, Masoud; Girouardi, Forrest; hide

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) science pipeline is being developed by the Science Processing Operations Center (SPOC) at NASA Ames Research Center based on the highly successful Kepler Mission science pipeline. Like the Kepler pipeline, the TESS science pipeline will provide calibrated pixels, simple and systematic error-corrected aperture photometry, and centroid locations for all 200,000+ target stars, observed over the 2-year mission, along with associated uncertainties. The pixel and light curve products are modeled on the Kepler archive products and will be archived to the Mikulski Archive for Space Telescopes (MAST). In addition to the nominal science data, the 30-minute Full Frame Images (FFIs) simultaneously collected by TESS will also be calibrated by the SPOC and archived at MAST. The TESS pipeline will search through all light curves for evidence of transits that occur when a planet crosses the disk of its host star. The Data Validation pipeline will generate a suite of diagnostic metrics for each transit-like signature discovered, and extract planetary parameters by fitting a limb-darkened transit model to each potential planetary signature. The results of the transit search will be modeled on the Kepler transit search products (tabulated numerical results, time series products, and pdf reports) all of which will be archived to MAST.

  17. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    International Nuclear Information System (INIS)

    Allen, Todd R.

    2011-01-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center's investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center's research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  18. AMS data production facilities at science operations center at CERN

    Science.gov (United States)

    Choutko, V.; Egorov, A.; Eline, A.; Shan, B.

    2017-10-01

    The Alpha Magnetic Spectrometer (AMS) is a high energy physics experiment on the board of the International Space Station (ISS). This paper presents the hardware and software facilities of Science Operation Center (SOC) at CERN. Data Production is built around production server - a scalable distributed service which links together a set of different programming modules for science data transformation and reconstruction. The server has the capacity to manage 1000 paralleled job producers, i.e. up to 32K logical processors. Monitoring and management tool with Production GUI is also described.

  19. Life Sciences at the Cyclotron Center of the Slovak Republic

    International Nuclear Information System (INIS)

    Podhorsky, D.; Kovac, P.; Macasek, F.

    2004-01-01

    In this presentation the history and present status of the Cyclotron Center of the Slovak (CC SR) are presented. A state run scientific center and production facility ensuring: - the basic and applied research in nuclear physics, chemistry, biology and medicine; - production of radionuclides and radiopharmaceuticals; - and applications of heavy ions and electron accelerator technologies in medicine and material science. Current financial status of the CC SR is following: Deblocation of the Russian; Federation debt to the Slovak Republic (94 %); State budget of the Slovak Republic (3 %); IAEA (3 %)

  20. Network Science Center Research Teams Visit to Addis Ababa, Ethiopia

    Science.gov (United States)

    2012-08-01

    Network Science Center, West Point www.netscience.usma.edu 845.938.0804 Corporation as a gift from the Government of China, and consists of a 2,500...first glimpse into what became a common thread throughout the trip: the presence of a gap between microfinance and large corporate investments in the...cutting out other middlemen and increasing their own profits. Some even sell directly to major coffee names (such as Starbucks ). In our discussion it

  1. Guidance for Science Data Centers through Understanding Metrics

    Science.gov (United States)

    Moses, J. F.

    2006-12-01

    NASA has built a multi-year set of transaction and user satisfaction information about the evolving, broad collection of earth science products from a diverse set of users of the Earth Observing System Data and Information System (EOSDIS). The transaction and satisfaction trends provide corroborative information to support perception and intuition, and can often be the basis for understanding the results of cross-cutting initiatives and for management decisions about future strategies. The information is available through two fundamental complementary methods, product and user transaction data collected regularly from the major science data centers, and user satisfaction information collected through the American Customer Satisfaction Index survey. The combination provides the fundamental data needed to understand utilization trends in the research community. This paper will update trends based on 2006 metrics from the NASA earth science data centers and results from the 2006 EOSDIS ACSI survey. Principle concepts are explored that lead to sound guidance for data center managers and strategists over the next year.

  2. The MMS Science Data Center: Operations, Capabilities, and Resource.

    Science.gov (United States)

    Larsen, K. W.; Pankratz, C. K.; Giles, B. L.; Kokkonen, K.; Putnam, B.; Schafer, C.; Baker, D. N.

    2015-12-01

    The Magnetospheric MultiScale (MMS) constellation of satellites completed their six month commissioning period in August, 2015 and began science operations. Science operations for the Solving Magnetospheric Acceleration, Reconnection, and Turbulence (SMART) instrument package occur at the Laboratory for Atmospheric and Space Physics (LASP). The Science Data Center (SDC) at LASP is responsible for the data production, management, distribution, and archiving of the data received. The mission will collect several gigabytes per day of particles and field data. Management of these data requires effective selection, transmission, analysis, and storage of data in the ground segment of the mission, including efficient distribution paths to enable the science community to answer the key questions regarding magnetic reconnection. Due to the constraints on download volume, this includes the Scientist-in-the-Loop program that identifies high-value science data needed to answer the outstanding questions of magnetic reconnection. Of particular interest to the community is the tools and associated website we have developed to provide convenient access to the data, first by the mission science team and, beginning March 1, 2016, by the entire community. This presentation will demonstrate the data and tools available to the community via the SDC and discuss the technologies we chose and lessons learned.

  3. The Value of Metrics for Science Data Center Management

    Science.gov (United States)

    Moses, J.; Behnke, J.; Watts, T. H.; Lu, Y.

    2005-12-01

    The Earth Observing System Data and Information System (EOSDIS) has been collecting and analyzing records of science data archive, processing and product distribution for more than 10 years. The types of information collected and the analysis performed has matured and progressed to become an integral and necessary part of the system management and planning functions. Science data center managers are realizing the importance that metrics can play in influencing and validating their business model. New efforts focus on better understanding of users and their methods. Examples include tracking user web site interactions and conducting user surveys such as the government authorized American Customer Satisfaction Index survey. This paper discusses the metrics methodology, processes and applications that are growing in EOSDIS, the driving requirements and compelling events, and the future envisioned for metrics as an integral part of earth science data systems.

  4. Materials performance experience at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, W.F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    There is a growing, but not yet substantial, data base for materials performance at spallation neutron sources. Specially designed experiments using medium energy protons (650 MeV) have been conducted at the Proton Irradiation Experiment (PIREX) facility at the Swiss Nuclear Institute accelerator (SIN). Specially designed experiments using 760-800 MeV copper target have been completed at the Los Alamos Spallation Radiation Effects Facility (LASREF) at Los Alamos Meson Physics Facility (LAMPF). An extensive material testing program was initiated at LASREF in support of the German spallation neutron source (SNQ) project, before it terminated in 1985.

  5. Technical design report of spallation neutron source facility in J-PARC

    International Nuclear Information System (INIS)

    Sakamoto, Shinichi

    2012-02-01

    One of the experimental facilities in Japan Proton Accelerator Research Complex (J-PARC) is the Materials and Life Science Experimental Facility (MLF), where high-intensity neutron beams are used as powerful probes for basic research on materials and life science, as well as research and development in industrial engineering. Neutrons are generated with nuclear spallation reaction by bombarding a mercury target with high-intensity proton beams. The neutrons are slowed down with supercritical hydrogen moderators and then extracted as beams to each experimental apparatus. The principal design of the spallation neutron source is compiled in this comprehensive report. (author)

  6. Abstracts of the International Congress of Research Center in Sports Sciences, Health Sciences & Human Development (2016

    Directory of Open Access Journals (Sweden)

    Vitor Reis

    2017-06-01

    Full Text Available The papers published in this book of abstracts / proceedings were submitted to the Scientific Commission of the International Congress of Research Center in Sports Sciences, Health Sciences & Human Development, held on 11 and 12 November 2016, at the University of Évora, Évora, Portugal, under the topic of Exercise and Health, Sports and Human Development. The content of the abstracts is solely and exclusively of its authors responsibility. The editors and the Scientific Committee of the International Congress of Research Center in Sports Sciences, Health Sciences & Human Development do not assume any responsibility for the opinions and statements expressed by the authors. Partial reproduction of the texts and their use without commercial purposes is allowed, provided the source / reference is duly mentioned.

  7. Status of the TESS Science Processing Operations Center

    Science.gov (United States)

    Jenkins, Jon Michael; Caldwell, Douglas A.; Davies, Misty; Li, Jie; Morris, Robert L.; Rose, Mark; Smith, Jeffrey C.; Tenenbaum, Peter; Ting, Eric; Twicken, Joseph D.; Wohler, Bill

    2018-06-01

    The Transiting Exoplanet Survey Satellite (TESS) was selected by NASA’s Explorer Program to conduct a search for Earth’s closest cousins starting in 2018. TESS will conduct an all-sky transit survey of F, G and K dwarf stars between 4 and 12 magnitudes and M dwarf stars within 200 light years. TESS is expected to discover 1,000 small planets less than twice the size of Earth, and to measure the masses of at least 50 of these small worlds. The TESS science pipeline is being developed by the Science Processing Operations Center (SPOC) at NASA Ames Research Center based on the highly successful Kepler science pipeline. Like the Kepler pipeline, the TESS pipeline provides calibrated pixels, simple and systematic error-corrected aperture photometry, and centroid locations for all 200,000+ target stars observed over the 2-year mission, along with associated uncertainties. The pixel and light curve products are modeled on the Kepler archive products and will be archived to the Mikulski Archive for Space Telescopes (MAST). In addition to the nominal science data, the 30-minute Full Frame Images (FFIs) simultaneously collected by TESS will also be calibrated by the SPOC and archived at MAST. The TESS pipeline searches through all light curves for evidence of transits that occur when a planet crosses the disk of its host star. The Data Validation pipeline generates a suite of diagnostic metrics for each transit-like signature, and then extracts planetary parameters by fitting a limb-darkened transit model to each potential planetary signature. The results of the transit search are modeled on the Kepler transit search products (tabulated numerical results, time series products, and pdf reports) all of which will be archived to MAST. Synthetic sample data products are available at https://archive.stsci.edu/tess/ete-6.html.Funding for the TESS Mission has been provided by the NASA Science Mission Directorate.

  8. A phenomenological investigation of science center exhibition developers' expertise development

    Science.gov (United States)

    Young, Denise L.

    The purpose of this study was to examine the exhibition developer role in the context of United States (U.S.) science centers, and more specifically, to investigate the way science center exhibition developers build their professional expertise. This research investigated how successfully practicing exhibition developers described their current practices, how they learned to be exhibition developers, and what factors were the most important to the developers in building their professional expertise. Qualitative data was gathered from 10 currently practicing exhibition developers from three science centers: the Exploratorium, San Francisco, California; the Field Museum, Chicago, Illinois; and the Science Museum of Minnesota, St. Paul, Minnesota. In-depth, semistructured interviews were used to collect the data. The study embraced aspects of the phenomenological tradition and sought to derive a holistic understanding of the position and how expertise was built for it. The data were methodically coded and organized into themes prior to analysis. The data analysis found that the position consisted of numerous and varied activities, but the developers' primary roles were advocating for the visitor, storytelling, and mediating information and ideas. They conducted these activities in the context of a team and relied on an established exhibition planning process to guide their work. Developers described a process of learning exhibition development that was experiential in nature. Learning through daily practice was key, though they also consulted with mentors and relied on visitor studies to gauge the effectiveness of their work. They were adept at integrating prior knowledge gained from many aspects of their lives into their practice. The developers described several internal factors that contributed to their expertise development including the desire to help others, a natural curiosity about the world, a commitment to learning, and the ability to accept critique. They

  9. Unique life sciences research facilities at NASA Ames Research Center

    Science.gov (United States)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  10. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  11. THE SPALLATION NEUTRON SOURCE PROJECT - PHYSICAL CHALLENGES.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.

    2002-06-03

    The Spallation Neutron Source (SNS) is designed to reach an average proton beam power of 1.4 MW for pulsed neutron production. This paper summarizes design aspects and physical challenges to the project.

  12. Basic and Applied Science Research at the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Lisowski, Paul W.

    2005-01-01

    The Los Alamos Neutron Science Center, or LANSCE, is an accelerator-based national user facility for research in basic and applied science using four experimental areas. LANSCE has two areas that provide neutrons generated by the 800-MeV proton beam striking tungsten target systems. A third area uses the proton beam for radiography. The fourth area uses 100 MeV protons to produce medical radioisotopes. This paper describes the four LANSCE experimental areas, gives nuclear science highlights of the past operating period, and discusses plans for the future

  13. Targets for neutron beam spallation sources

    International Nuclear Information System (INIS)

    Bauer, G.S.

    1980-01-01

    The meeting on Targets for Neutron Beam Spallation Sources held at the Institut fuer Festkoerperforschung at KFA Juelich on June 11 and 12, 1979 was planned as an informal get-together for scientists involved in the planning, design and future use of spallation neutron sources in Europe. These proceedings contain the papers contributed to this meeting. For further information see hints under relevant topics. (orig./FKS)

  14. Electrical Engineering in Los Alamos Neutron Science Center Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Michael James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-30

    The field of electrical engineering plays a significant role in particle accelerator design and operations. Los Alamos National Laboratories LANSCE facility utilizes the electrical energy concepts of power distribution, plasma generation, radio frequency energy, electrostatic acceleration, signals and diagnostics. The culmination of these fields produces a machine of incredible potential with uses such as isotope production, neutron spallation, neutron imaging and particle analysis. The key isotope produced in LANSCE isotope production facility is Strontium-82 which is utilized for medical uses such as cancer treatment and positron emission tomography also known as PET scans. Neutron spallation is one of the very few methods used to produce neutrons for scientific research the other methods are natural decay of transuranic elements from nuclear reactors. Accelerator produce neutrons by accelerating charged particles into neutron dense elements such as tungsten imparting a neutral particle with kinetic energy, this has the benefit of producing a large number of neutrons as well as minimizing the waste generated. Utilizing the accelerator scientist can gain an understanding of how various particles behave and interact with matter to better understand the natural laws of physics and the universe around us.

  15. Challenges for Data Archival Centers in Evolving Environmental Sciences

    Science.gov (United States)

    Wei, Y.; Cook, R. B.; Gu, L.; Santhana Vannan, S. K.; Beaty, T.

    2015-12-01

    Environmental science has entered into a big data era as enormous data about the Earth environment are continuously collected through field and airborne missions, remote sensing observations, model simulations, sensor networks, etc. An open-access and open-management data infrastructure for data-intensive science is a major grand challenge in global environmental research (BERAC, 2010). Such an infrastructure, as exemplified in EOSDIS, GEOSS, and NSF EarthCube, will provide a complete lifecycle of environmental data and ensures that data will smoothly flow among different phases of collection, preservation, integration, and analysis. Data archival centers, as the data integration units closest to data providers, serve as the source power to compile and integrate heterogeneous environmental data into this global infrastructure. This presentation discusses the interoperability challenges and practices of geosciences from the aspect of data archival centers, based on the operational experiences of the NASA-sponsored Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) and related environmental data management activities. Specifically, we will discuss the challenges to 1) encourage and help scientists to more actively share data with the broader scientific community, so that valuable environmental data, especially those dark data collected by individual scientists in small independent projects, can be shared and integrated into the infrastructure to tackle big science questions; 2) curate heterogeneous multi-disciplinary data, focusing on the key aspects of identification, format, metadata, data quality, and semantics to make them ready to be plugged into a global data infrastructure. We will highlight data curation practices at the ORNL DAAC for global campaigns such as BOREAS, LBA, SAFARI 2000; and 3) enhance the capabilities to more effectively and efficiently expose and deliver "big" environmental data to broad range of users and systems

  16. 2004 research briefs :Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  17. Life Sciences Division and Center for Human Genome Studies 1994

    Energy Technology Data Exchange (ETDEWEB)

    Cram, L.S.; Stafford, C. [comp.

    1995-09-01

    This report summarizes the research and development activities of the Los Alamos National Laboratory`s Life Sciences Division and the biological aspects of the Center for Human Genome Studies for the calendar year 1994. The technical portion of the report is divided into two parts, (1) selected research highlights and (2) research projects and accomplishments. The research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail so that the informed reader will be able to assess the scope and significance of each project. Summaries useful to the casual reader desiring general information have been prepared by the group leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  18. Synchrotron based spallation neutron source concepts

    International Nuclear Information System (INIS)

    Cho, Y.

    1998-01-01

    During the past 20 years, rapid-cycling synchrotrons (RCS) have been used very productively to generate short-pulse thermal neutron beams for neutron scattering research by materials science communities in Japan (KENS), the UK (ISIS) and the US (IPNS). The most powerful source in existence, ISIS in the UK, delivers a 160-kW proton beam to a neutron-generating target. Several recently proposed facilities require proton beams in the MW range to produce intense short-pulse neutron beams. In some proposals, a linear accelerator provides the beam power and an accumulator ring compresses the pulse length to the required ∼ 1 micros. In others, RCS technology provides the bulk of the beam power and compresses the pulse length. Some synchrotron-based proposals achieve the desired beam power by combining two or more synchrotrons of the same energy, and others propose a combination of lower and higher energy synchrotrons. This paper presents the rationale for using RCS technology, and a discussion of the advantages and disadvantages of synchrotron-based spallation sources

  19. Operational status of the Los Alamos neutron science center (LANSCE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin W [Los Alamos National Laboratory; Erickson, John L [Los Alamos National Laboratory; Schoenberg, Kurt F [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources; the thermal and cold source for the Manuel Lujan Jr. Neutron Scattering Center, the Weapons Neutron Research (WNR) high-energy neutron source, and a pulsed Ultra-Cold Neutron Source. These three sources are the foundation of strong and productive multi-disciplinary research programs that serve a diverse and robust user community. The facility also provides multiplexed beams for the production of medical radioisotopes and proton radiography of dynamic events. The recent operating history of these sources will be reviewed and plans for performance improvement will be discussed, together with the underlying drivers for the proposed LANSCE Refurbishment project. The details of this latter project are presented in a separate contribution.

  20. Facility Design Program Requirements for National Science Center

    Science.gov (United States)

    1991-09-01

    a turn of the century structure and secondhand furniture to display exhibit items, to the Ontario Science Center in Canada which is a 10-year-old...mothers should be considered. 1.3 Visitors Coat Storage Areas 550 sq ft Pigeon hole or other storage cabinets for children’s school books , coats, and...1.4.4 Work Area (200 sq ft) 1.4.5 Office for Assistant Museum Shop Manager (75 sq ft) Function: Area for sale of books , posters, cards, slides, games

  1. IAEA and International Science and Technology Center sign cooperative agreement

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The IAEA and the International Science and Technology Center (ISTC) today signed an agreement that calls for an increase in cooperation between the two organizations. The memorandum of understanding seeks to amplify their collaboration in the research and development of applications and technology that could contribute to the IAEA's activities in the fields of verification and nuclear security, including training and capacity building. IAEA Safeguards Director of Technical Support Nikolay Khlebnikov and ISTC Executive Director Adriaan van der Meer signed the Agreement at IAEA headquarters in Vienna on 22 October 2008. (IAEA)

  2. The Wetland and Aquatic Research Center strategic science plan

    Science.gov (United States)

    ,

    2017-02-02

    IntroductionThe U.S. Geological Survey (USGS) Wetland and Aquatic Research Center (WARC) has two primary locations (Gainesville, Florida, and Lafayette, Louisiana) and field stations throughout the southeastern United States and Caribbean. WARC’s roots are in U.S. Fish and Wildlife Service (USFWS) and National Park Service research units that were brought into the USGS as the Biological Research Division in 1996. Founded in 2015, WARC was created from the merger of two long-standing USGS biology science Centers—the Southeast Ecological Science Center and the National Wetlands Research Center—to bring together expertise in biology, ecology, landscape science, geospatial applications, and decision support in order to address issues nationally and internationally. WARC scientists apply their expertise to a variety of wetland and aquatic research and monitoring issues that require coordinated, integrated efforts to better understand natural environments. By increasing basic understanding of the biology of important species and broader ecological and physiological processes, this research provides information to policymakers and aids managers in their stewardship of natural resources and in regulatory functions.This strategic science plan (SSP) was developed to guide WARC research during the next 5–10 years in support of Department of the Interior (DOI) partnering bureaus such as the USFWS, the National Park Service, and the Bureau of Ocean Energy Management, as well as other Federal, State, and local natural resource management agencies. The SSP demonstrates the alignment of the WARC goals with the USGS mission areas, associated programs, and other DOI initiatives. The SSP is necessary for workforce planning and, as such, will be used as a guide for future needs for personnel. The SSP also will be instrumental in developing internal funding priorities and in promoting WARC’s capabilities to both external cooperators and other groups within the USGS.

  3. Physics and technology of spallation neutron sources

    International Nuclear Information System (INIS)

    Bauer, G.S.

    1998-08-01

    Next to fission and fusion, spallation is an efficient process for releasing neutrons from nuclei. Unlike the other two reactions, it is an endothermal process and can, therefore, not be used per se in energy generation. In order to sustain a spallation reaction, an energetic beam of particles, most commonly protons, must be supplied onto a heavy target. Spallation can, however, play an important role as a source of neutrons whose flux can be easily controlled via the driving beam. Up to a few GeV of energy, the neutron production is roughly proportional to the beam power. Although sophisticated Monte Carlo codes exist to compute all aspects of a spallation facility, many features can be understood on the basis of simple physics arguments. Technically a spallation facility is very demanding, not only because a reliable and economic accelerator of high power is needed to drive the reaction, but also, and in particular, because high levels of radiation and heat are generated in the target which are difficult to cope with. Radiation effects in a spallation environment are different from those commonly encountered in a reactor and are probably even more temperature dependent than the latter because of the high gas production rate. A commonly favored solution is the use of molten heavy metal targets. While radiation damage is not a problem in this case, except for the container, a number of other issues are discussed. (author)

  4. Project of international science-education center and integration problems of nano science education in far eastern region of Asia

    International Nuclear Information System (INIS)

    Plusnin, N I; Lazarev, G I

    2008-01-01

    Some conception of international science-education center on nano science in Vladivostok is presented. The conception is based on internal and external prerequisites. Internal one is high intellectual potential of institutes of Russian Academy of Sciences and universities of Vladivostok and external one is need of countries of Far Eastern region of Asia in high level manpower. The conception takes into account a specific distribution of science and education potential between Russian Academy of Sciences and Russian universities and a specific their dislocation in Vladivostok. First specific dictates some similarity of organization structure and function of international science-education center to typical science-education center in Russia. But as for dislocation of the international science-education center in Vladivostok, it should be near dislocation of institutes of Far Eastern Brunch of Russian Academy of Sciences in Vladivostok, which are dislocated very compactly in suburb zone of Vladivostok

  5. Spallation symbiont and thorium breeding

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1991-01-01

    The medium term world energy and environment countermeasures for 2020-2070 are not yet clearly established. The forecast of energy situation hereafter, its problems and the measures for solution are considered. World trend is removing borders, and the north-south problems are increasing the importance. The rational and clear idea with the support of concrete technology is required. The demand of energy will increase enormously at the annual rate of 2.3%. The world energy situation was forecast considering the increase of population, and it will be 115 TW at the end of the next century. The present status, problems and the countermeasures in nuclear fission energy technology are explained. The countermeasures should be based on three principles, namely Th-U-233 cycle, the utilization of molten fluoride fuel medium and the separation of molten salt breeders and molten salt reactors. Accelerator molten salt breeders, small molten salt reactors, the nuclear fuel cycle and the annihilation process for radioactive wastes are reported. The perspective that the nuclear energy system, in which the reactor safety, the measures to wastes and others are improved by the spallation-fission symbiont using thorium molten salt as the working medium, can be constructed is shown. (K.I.)

  6. Target for a spallation source

    International Nuclear Information System (INIS)

    Fassbender, J.; Meister, G.

    1983-01-01

    This invention concerns a liquid metal target for a spallation source. It is composed of a flow channel in which liquid metal flows at a sufficiently high rate. The flow channel has an aperture to let in the proton beam; it is shaped in a way as to generate by appropriately diverting the liquid flow inertial forces which are designed so that they avoid liquid metal penetrating through the aperture. This is achieved by the fact that the combined effect of inertial forces and gravitational forces causes near the aperture the formation of a liquid surface of the channel sides that is more or less parallel to the channel side having the aperture. According to the invention this effect can be obtained by using a bent channel piece with the aperture placed in the side pointing towards the centre of curvature or by constricting the flow of liquid before it gets to the aperture and subsequent expansion behind it. A combination of the two methods is possible according to the invention. (orig./PW)

  7. Target for a spallation source

    International Nuclear Information System (INIS)

    Fassbender, J.; Meister, G.

    1981-01-01

    This invention concerns a liquid metal target for a spallation source. It is composed of a flow channel in which liquid metal flows at a sufficiently high rate. The flow channel has an aperture to let in the proton beam; it is shaped in a way as to generate by appropriately diverting the liquid flow inertial forces which are designed so that they avoid liquid metal penetrating through the aperture. This is achieved by the fact that the combined effect of inertial forces and gravitational forces causes near the aperture the formation of a liquid surface of the channel sides that is more or less parallel the channel side having the aperture. According to the invention this effect can be obtained by using a bent channel piece with the aperture placed in the side pointing towards the centre of curvature or by constricting the flow of liquid before it gets to the aperture and subsequent expansion behind it. A combination of the two methods is possible according to the invention. (orig.) [de

  8. Synchrotron-driven spallation sources

    CERN Document Server

    Bryant, P J

    1996-01-01

    The use of synchrotrons for pulsed neutron spallation sources is an example of scientific and technological spin-off from the accelerator development for particle physics. Accelerator-driven sources provide an alternative to the continuous-flux, nuclear reactors that currently furnish the majority of neutrons for research and development. Although the present demand for neutrons can be adequately met by the existing reactors, this situation is unlikely to continue due to the increasing severity of safety regulations and the declared policies of many countries to close down their reactors within the next decade or so. Since the demand for neutrons as a research tool is, in any case,expected to grow, there has been a corresponding interest in sources that are synchrotron-driven or linac-driven with a pulse compression ring and currently several design studies are being made. These accelerator-driven sources also have the advantage of a time structure with a high peak neutron flux. The basic requirement is for a...

  9. Russian center of nuclear science and education is the way of nuclear engineering skilled personnel training

    International Nuclear Information System (INIS)

    Murogov, V.M.; Sal'nikov, N.L.

    2006-01-01

    Nuclear power engineering as the key of nuclear technologies is not only the element of the power market but also the basis of the country's social-economic progress. Obninsk as the first science town in Russia is the ideal place for the creation of integrated Science-Research Center of Nuclear Science and Technologies - The Russian Center of Nuclear Science and Education (Center for conservation and development of nuclear knowledge) [ru

  10. The Role of Informal Science Centers in Science Education: Attitudes, Skills, and Self-efficacy

    Directory of Open Access Journals (Sweden)

    Irit Sasson

    2014-09-01

    Full Text Available Informal learning relates to activities that occur outside the school environment. These learning environments, such as visits to science centers provide valuable motivational opportunities for students to learn science. The purpose of this study was to investigate the role of the pre-academic center in science education and particularly to explore its effects on 750 middle-school students' attitudes toward science, their scientific thinking skills and self-efficacy. Pre and post-case based questionnaires were designed to assess the students’ higher order thinking skills – inquiry, graphing, and argumentation. In addition, a five-point Likert scale questionnaire was used to assess students' attitudes and self-efficacy. The research results indicated a positive effect of the pre-academic science center activities on scientific thinking skills. A significant improvement in the students' inquiry and graphing skills was found, yet non significant differences were found in argumentation skill. The students significantly improved their ability to ask research questions based on reading a scientific text, and to describe and analyze research results that were presented graphically. While no significant differences were found between girls and boys in the pre-questionnaire, in the post-questionnaire the girls' scores in inquiry skill were significantly higher than boys' scores. Increases in students' positive attitudes toward science and self-efficacy were found but the results were not statistically significant. However, the program length was found to be an important variable that affects achievement of educational goals. A three-dimension-based framework is suggested to characterize learning environments: organizational, psychological, and pedagogical.

  11. Design and implementation of low-Q diffractometers at spallation sources

    International Nuclear Information System (INIS)

    Seeger, P.A.; Hjelm, R.P.

    1993-01-01

    Low-Q diffractometers at spallation sources that use time of flight methods have been successfully implemented at several facilities, including the Los Alamos Neutron Scattering Center. The proposal to build new, more powerful, advanced spallation sources using advanced moderator concepts will provide luminosity greater than 20 times the brightest spallation source available today. These developments provide opportunity and challenge to expand the capabilities of present instruments with new designs. The authors review the use of time of flight for low-Q measurements and introduce new designs to extend the capabilities of present-day instruments. They introduce Monte Carlo methods to optimize design and simulate the performance of these instruments. The expected performance of the new instruments are compared to present day pulsed source- and reactor-based small-angle neutron scattering instruments. They review some of the new developments that will be needed to use the power of brighter sources effectively

  12. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  13. ATHENA: Remote Sensing Science Center for Cultural Heritage in Cyprus

    Science.gov (United States)

    Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriakos; Cuca, Branka; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2016-04-01

    The Cultural Heritage (CH) sector, especially those of monuments and sites has always been facing a number of challenges from environmental pressure, pollution, human intervention from tourism to destruction by terrorism.Within this context, CH professionals are seeking to improve currently used methodologies, in order to better understand, protect and valorise the common European past and common identity. "ATHENA" H2020-TWINN-2015 project will seek to improve and expand the capabilities of the Cyprus University of Technology, involving professionals dealing with remote sensing technologies for supporting CH sector from the National Research Center of Italy (CNR) and German Aerospace Centre (DLR). The ATHENA centre will be devoted to the development, introduction and systematic use of advanced remote sensing science and technologies in the field of archaeology, built cultural heritage, their multi-temporal analysis and interpretation and the distant monitoring of their natural and anthropogenic environment in the area of Eastern Mediterranean.

  14. New evaporator station for the center for accelerator target science

    Science.gov (United States)

    Greene, John P.; Labib, Mina

    2018-05-01

    As part of an equipment grant provided by DOE-NP for the Center for Accelerator Target Science (CATS) initiative, the procurement of a new, electron beam, high-vacuum deposition system was identified as a priority to insure reliable and continued availability of high-purity targets. The apparatus is designed to contain TWO electron beam guns; a standard 4-pocket 270° geometry source as well as an electron bombardment source. The acquisition of this new system allows for the replacement of TWO outdated and aging vacuum evaporators. Also included is an additional thermal boat source, enhancing our capability within this deposition unit. Recommended specifications for this system included an automated, high-vacuum pumping station, a deposition chamber with a rotating and heated substrate holder for uniform coating capabilities and incorporating computer-controlled state-of-the-art thin film technologies. Design specifications, enhanced capabilities and the necessary mechanical modifications for our target work are discussed.

  15. Health science center faculty attitudes towards interprofessional education and teamwork.

    Science.gov (United States)

    Gary, Jodie C; Gosselin, Kevin; Bentley, Regina

    2018-03-01

    The attitudes of faculty towards interprofessional education (IPE) and teamwork impact the education of health professions education (HPE) students. This paper reports on a study evaluating attitudes from health professions educators towards IPE and teamwork at one academic health science center (HSC) where modest IPE initiatives have commenced. Drawing from the results of a previous investigation, this study was conducted to examine current attitudes of the faculty responsible for the training of future healthcare professionals. Survey data were collected to evaluate attitudes from HSC faculty, dentistry, nursing, medicine, pharmacy and public health. In general, positive HSC faculty attitudes towards interprofessional learning, education, and teamwork were significantly predicted by those affiliated with the component of nursing. Faculty development aimed at changing attitudes and increasing understanding of IPE and teamwork are critical. Results of this study serve as an underpinning to leverage strengths and evaluate weakness in initiating IPE.

  16. Students-exhibits interaction at a science center

    Science.gov (United States)

    Botelho, Agostinho; Morais, Ana M.

    2006-12-01

    In this study we investigate students' learning during their interaction with two exhibits at a science center. Specifically, we analyze both students' procedures when interacting with exhibits and their understanding of the scientific concepts presented therein. Bernstein's theory of pedagogic discourse (1990, 2000) provided the sociological foundation to assess the exhibit-student interaction and allowed analysis of the influence of the characteristics of students, exhibits, and interactions on students' learning. Eight students (ages 12ndash;13 years of age) with distinct sociological characteristics participated in the study. Several findings emerged from the results. First, the characteristics of the students, exhibits, and interactions appeared to influence student learning. Second, to most students, what they did interactively (procedures) seems not to have had any direct consequence on what they learned (concept understanding). Third, the data analysis suggest an important role for designers and teachers in overcoming the limitations of exhibit-student interaction.

  17. University/Science Center Collaborations (A Science Center Perspective): Developing an Infrastructure of Partnerships with Science Centers to Support the Engagement of Scientists and Engineers in Education and Outreach for Broad Impact

    Science.gov (United States)

    Marshall, Eric

    2009-03-01

    Science centers, professional associations, corporations and university research centers share the same mission of education and outreach, yet come from ``different worlds.'' This gap may be bridged by working together to leverage unique strengths in partnership. Front-end evaluation results for the development of new resources to support these (mostly volunteer-based) partnerships elucidate the factors which lead to a successful relationship. Maintaining a science museum-scientific community partnership requires that all partners devote adequate resources (time, money, etc.). In general, scientists/engineers and science museum professionals often approach relationships with different assumptions and expectations. The culture of science centers is distinctly different from the culture of science. Scientists/engineers prefer to select how they will ultimately share their expertise from an array of choices. Successful partnerships stem from clearly defined roles and responsibilities. Scientists/engineers are somewhat resistant to the idea of traditional, formal training. Instead of developing new expertise, many prefer to offer their existing strengths and expertise. Maintaining a healthy relationship requires the routine recognition of the contributions of scientists/engineers. As professional societies, university research centers and corporations increasingly engage in education and outreach, a need for a supportive infrastructure becomes evident. Work of TryScience.org/VolTS (Volunteers TryScience), the MRS NISE Net (Nanoscale Informal Science Education Network) subcommittee, NRCEN (NSF Research Center Education Network), the IBM On Demand Community, and IEEE Educational Activities exemplify some of the pieces of this evolving infrastructure.

  18. Mobile Gaming and Student Interactions in a Science Center: The Future of Gaming in Science Education

    Science.gov (United States)

    Atwood-Blaine, Dana; Huffman, Douglas

    2017-01-01

    This article explores the impact of an augmented reality iPad-based mobile game, called The Great STEM Caper, on students' interaction at a science center. An open-source, location-based game platform called ARIS (i.e. Augmented Reality and Interactive Storytelling) was used to create an iPad-based mobile game. The game used QR scan codes and a…

  19. Network Science Center Research Team’s Visit to Kampala, Uganda

    Science.gov (United States)

    2013-04-15

    TERMS Network Analysis, Economic Networks, Entrepreneurial Ecosystems , Economic Development, Data Collection 16. SECURITY CLASSIFICATION OF: 17...the Project Synopsis, Developing Network Models of Entrepreneurial Ecosystems in Developing Economies, on the Network Science Center web site.) A...Thomas visited Kampala, Uganda in support of an ongoing Network Science Center project to develop models of entrepreneurial networks. Our Center has

  20. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Katsuhiko; Maekawa, Fujio; Takada, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated. (author)

  1. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    CERN Document Server

    Yoshida, K; Takada, H

    2003-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated.

  2. Area health education centers and health science library services.

    Science.gov (United States)

    West, R T; Howard, F H

    1977-07-01

    A study to determine the impact that the Area Health Education Center type of programs may have on health science libraries was conducted by the Extramural Programs, National Library of Medicine, in conjunction with a contract awarded by the Bureau of Health Manpower, Health Resources Administration, to develop an inventory of the AHEC type of projects in the United States. Specific study tasks included a review of these programs as they relate to library and information activities, on-site surveys on the programs to define their needs for library services and information, and a categorization of library activities. A major finding was that health science libraries and information services are generally not included in AHEC program planning and development, although information and information exchange is a fundamental part of the AHEC type of programs. This study suggests that library inadequacies are basically the result of this planning failure and of a lack of financial resources; however, many other factors may be contributory. The design and value of library activities for these programs needs explication.

  3. The Stocker AstroScience Center at Florida International University

    Science.gov (United States)

    Webb, James R.

    2014-01-01

    The new Stocker AstroScience Center located on the MMC campus at Florida International University in Miami Florida represents a unique facility for STEM education that arose from a combination of private, State and university funding. The building, completed in the fall of 2013, contains some unique spaces designed not only to educate, but also to inspire students interested in science and space exploration. The observatory consists of a 4-story building (3 floors) with a 24” ACE automated telescope in an Ash dome, and an observing platform above surrounding buildings. Some of the unique features of the observatory include an entrance/exhibition hall with a 6-ft glass tile floor mural linking the Florida climate to space travel, a state-of-the art telescope control that looks like a starship bridge, and displays such as “Music from the universe”. The observatory will also be the focus of our extensive public outreach program that is entering its 20 year.

  4. HEASARC - The High Energy Astrophysics Science Archive Research Center

    Science.gov (United States)

    Smale, Alan P.

    2011-01-01

    The High Energy Astrophysics Science Archive Research Center (HEASARC) is NASA's archive for high-energy astrophysics and cosmic microwave background (CMB) data, supporting the broad science goals of NASA's Physics of the Cosmos theme. It provides vital scientific infrastructure to the community by standardizing science data formats and analysis programs, providing open access to NASA resources, and implementing powerful archive interfaces. Over the next five years the HEASARC will ingest observations from up to 12 operating missions, while serving data from these and over 30 archival missions to the community. The HEASARC archive presently contains over 37 TB of data, and will contain over 60 TB by the end of 2014. The HEASARC continues to secure major cost savings for NASA missions, providing a reusable mission-independent framework for reducing, analyzing, and archiving data. This approach was recognized in the NRC Portals to the Universe report (2007) as one of the HEASARC's great strengths. This poster describes the past and current activities of the HEASARC and our anticipated developments in coming years. These include preparations to support upcoming high energy missions (NuSTAR, Astro-H, GEMS) and ground-based and sub-orbital CMB experiments, as well as continued support of missions currently operating (Chandra, Fermi, RXTE, Suzaku, Swift, XMM-Newton and INTEGRAL). In 2012 the HEASARC (which now includes LAMBDA) will support the final nine-year WMAP data release. The HEASARC is also upgrading its archive querying and retrieval software with the new Xamin system in early release - and building on opportunities afforded by the growth of the Virtual Observatory and recent developments in virtual environments and cloud computing.

  5. Science Outreach at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Lebo, George

    2002-07-01

    At the end of World War II Duane Deming, an internationally known economist enunciated what later came to be called "Total Quality Management" (TQM). The basic thrust of this economic theory called for companies and governments to identify their customers and to do whatever was necessary to meet their demands and to keep them satisfied. It also called for companies to compete internally. That is, they were to build products that competed with their own so that they were always improving. Unfortunately most U.S. corporations failed to heed this advice. Consequently, the Japanese who actively sought Deming's advice and instituted it in their corporate planning, built an economy that outstripped that of the U.S. for the next three to four decades. Only after U.S. corporations reorganized and fashioned joint ventures which incorporated the tenets of TQM with their Japanese competitors did they start to catch up. Other institutions such as the U.S. government and its agencies and schools face the same problem. While the power of the U.S. government is in no danger of being usurped, its agencies and schools face real problems which can be traced back to not heeding Deming's advice. For example, the public schools are facing real pressure from private schools and home school families because they are not meeting the needs of the general public, Likewise, NASA and other government agencies find themselves shortchanged in funding because they have failed to convince the general public that their missions are important. In an attempt to convince the general public that its science mission is both interesting and important, in 1998 the Science Directorate at NASA's Marshall Space Flight Center (MSFC) instituted a new outreach effort using the interact to reach the general public as well as the students. They have called it 'Science@NASA'.

  6. Neutron PSDs for the next generation of spallation neutron sources

    CERN Document Server

    Eijk, C W

    2002-01-01

    A review of R and D for neutron PSDs to be used at anticipated new spallation neutron sources: the Time-of-Flight system facility, European Spallation Source, Spallation Neutron Source and Neutron Arena, is presented. The gas-filled detectors, scintillation detectors and hybrid systems are emphasized.

  7. Tool for the study of matter - the spallation neutron source. Werkzeug zur Erforschung der Materie - die Spallations-Neutronenquelle

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    It deals with the optimal use of a whole series of matter penetrating radiation types at the construction of a spallation neutron source which the Kernforschungsanlage Juelich will realize in agreement with its associated. This new big science device for the fundamental research in the Federal Republic of Germany shall as the most modern and intense source of neutrons, protons, pions, muons, and neutrinos permits to proceed in the fields of solid state physics, chemistry, molecular biology, intermediate-energy nuclear physics, radiochemistry and radiopharmacology, medicine, and materials science to virgin territory and to provide top research. All interested German groups of researchers and also scientists of foreign countries shall be able to work with this directive big science device.

  8. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  9. Status of teaching elementary science for English learners in science, mathematics and technology centered magnet schools

    Science.gov (United States)

    Han, Alyson Kim

    According to the California Commission on Teacher Credentialing (2001), one in three students speaks a language other than English. Additionally, the Commission stated that a student is considered to be an English learner if the second language acquisition is English. In California more than 1.4 million English learners enter school speaking a variety of languages, and this number continues to rise. There is an imminent need to promote instructional strategies that support this group of diverse learners. Although this was not a California study, the results derived from the nationwide participants' responses provided a congruent assessment of the basic need to provide effective science teaching strategies to all English learners. The purpose of this study was to examine the status of elementary science teaching practices used with English learners in kindergarten through fifth grade in public mathematics, science, and technology-centered elementary magnet schools throughout the country. This descriptive research was designed to provide current information and to identify trends in the areas of curriculum and instruction for English learners in science themed magnet schools. This report described the status of elementary (grades K-5) school science instruction for English learners based on the responses of 116 elementary school teachers: 59 grade K-2, and 57 grade 3-5 teachers. Current research-based approaches support incorporating self-directed learning strategy, expository teaching strategy, active listening strategies, questioning strategies, wait time strategy, small group strategy, peer tutoring strategy, large group learning strategy, demonstrations strategy, formal debates strategy, review sessions strategy, mediated conversation strategy, cooperative learning strategy, and theme-based instruction into the curriculum to assist English learners in science education. Science Technology Society (STS) strategy, problem-based learning strategy, discovery learning

  10. National Center for Mathematics and Science - teacher resources

    Science.gov (United States)

    Mathematics and Science (NCISLA) HOME | PROGRAM OVERVIEW | RESEARCH AND PROFESSIONAL DEVELOPMENT support and improve student understanding of mathematics and science. The instructional resources listed Resources (CD)Powerful Practices in Mathematics and Science A multimedia product for educators, professional

  11. Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course

    Science.gov (United States)

    Avard, Margaret

    2009-01-01

    In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…

  12. The Spallation Neutron Source RF Reference System

    CERN Document Server

    Piller, Maurice; Crofford, Mark; Doolittle, Lawrence; Ma, Hengjie

    2005-01-01

    The Spallation Neutron Source (SNS) RF Reference System includes the master oscillator (MO), local oscillator(LO) distribution, and Reference RF distribution systems. Coherent low noise Reference RF signals provide the ability to control the phase relationships between the fields in the front-end and linear accelerator (linac) RF cavity structures. The SNS RF Reference System requirements, implementation details, and performance are discussed.

  13. SUPERCONDUCTING LINAC FOR THE SPALLATION NEUTRON SOURCE

    International Nuclear Information System (INIS)

    STOVALL, J.; NATH, S.

    2000-01-01

    The Spallation Neutron Source (SNS) linac is comprised of both normal and superconducting rf (SRF) accelerating structures. The SRF linac accelerates the beam from 186 to 1250 MeV through 117 elliptical, multi-cell niobium cavities. This paper describes the SRF linac architecture, physics design considerations, cavity commissioning, and the expected beam dynamics performance

  14. Neutron Production by Muon Spallation I: Theory

    International Nuclear Information System (INIS)

    Luu, T; Hagmann, C

    2006-01-01

    We describe the physics and codes developed in the Muon Physics Package. This package is a self-contained Fortran90 module that is intended to be used with the Monte Carlo package MCNPX. We calculate simulated energy spectra, multiplicities, and angular distributions of direct neutrons and pions from muon spallation

  15. Radiation effects concerns at a spallation source

    International Nuclear Information System (INIS)

    Sommer, W.F.

    1990-01-01

    Materials used at spallation neutron sources are exposed to energetic particle and photon radiation. Mechanical and physical properties of these materials are altered; radiation damage on the atomic scale leads to radiation effects on the macroscopic scale. Most notable among mechanical-property radiation effects in metals and metal alloys are changes in tensile strength and ductility, changes in rupture strength, dimensional stability and volumetric swelling, and dimensional changes due to stress-induced creep. Physical properties such as electrical resistivity also are altered. The fission-reactor community has accumulated a good deal of data on material radiation effects. However, when the incident particle energy exceeds 50 MeV or so, a new form of radiation damage ensues; spallation reactions lead to more energetic atom recoils and the subsequent temporal and spatial distribution of point defects is much different from that due to a fission-reactor environment. In addition, spallation reactions cause atomic transmutations with these new atoms representing an impurity in the metal. The higher-energy case is of interest at spallation sources; limited detailed data exist for material performance in this environment. 35 refs., 13 figs., 1 tab

  16. Linac design for the European spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Klein, H. [Universitaet Postfach, Frankfurt am Main (Germany)

    1995-10-01

    A study group has started to develop a conceptual design for a European Spallation Source (ESS). This pulsed 5 MW source presently consists of a 1.334 GeV linac and two compressor rings. In the following mainly the high intensity linac part will be discussed, which has some features of interest for accelerators for transmutation of radioactive waste too.

  17. Person-centered pain management - science and art.

    Science.gov (United States)

    Braš, Marijana; Đorđević, Veljko; Janjanin, Mladen

    2013-06-01

    We are witnessing an unprecedented development of the medical science, which promises to revolutionize health care and improve patients' health outcomes. However, the core of the medical profession has always been and will be the relationship between the doctor and the patient, and communication is the most widely used clinical skill in medical practice. When we talk about different forms of communication in medicine, we must never forget the importance of communication through art. Although one of the simplest, art is the most effective way to approach the patient and produce the effect that no other means of communication can achieve. Person-centered pain management takes into account psychological, physical, social, and spiritual aspects of health and disease. Art should be used as a therapeutic technique for people who suffer from pain, as well as a means of raising public awareness of this problem. Art can also be one of the best forms of educating medical professionals and others involved in treatment and decision-making on pain.

  18. Design of the MYRRHA Spallation Target Assembly

    International Nuclear Information System (INIS)

    Keijers, S.; Fernandez, R.; Stankovskiy, A.; Kennedy, G.; Van Tichelen, K.

    2015-01-01

    MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) is a multi-purpose research facility currently being developed at SCK.CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level. As a flexible irradiation facility, the MYRRHA research reactor will be able to work in both critical and subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material research for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by Lead Bismuth Eutectic (LBE) and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. This paper describes the evolution of the MYRRHA spallation target design. In the early phase of the MYRRHA project (XT-ADS), the target design was based on a dedicated spallation loop inside the primary reactor vessel. Within the core, the 3 central fuel assembly positions were occupied by the spallation target, which enabled a windowless design created by a free surface of LBE facing the proton beam. The windowless option was preferred because of high heat loads in combination with severe irradiation damage in the target region would result in unacceptably short lifetimes of a target window. The LBE in the loop served as spallation target and as target coolant, but was separated from the LBE cooling the reactor core. The loop was equipped with its own pump, heat exchanger and conditioning system. The change from cyclotron to linear accelerator allowed the increase in proton energy from 350 MeV to 600 MeV. This modification led to an important reduction of the specific heat load at the target level and an improvement of the neutronic performance. In addition to

  19. Delayed neutrons in liquid metal spallation targets

    International Nuclear Information System (INIS)

    Ridikas, D.; Bokov, P.; David, J.C.; Dore, D.; Giacri, M.L.; Van Lauwe, A.; Plukiene, R.; Plukis, A.; Ignatiev, S.; Pankratov, D.

    2003-01-01

    The next generation spallation neutron sources, neutrino factories or RIB production facilities currently being designed and constructed around the world will increase the average proton beam power on target by a few orders of magnitude. Increased proton beam power results in target thermal hydraulic issues leading to new target designs, very often based on flowing liquid metal targets such as Hg, Pb, Pb-Bi. Radioactive nuclides produced in liquid metal targets are transported into hot cells, past electronics, into pumps with radiation sensitive components, etc. Besides the considerable amount of photon activity in the irradiated liquid metal, a significant amount of the delayed neutron precursor activity can be accumulated in the target fluid. The transit time from the front of a liquid metal target into areas, where delayed neutrons may be important, can be as short as a few seconds, well within one half-life of many delayed neutron precursors. Therefore, it is necessary to evaluate the total neutron flux (including delayed neutrons) as a function of time and determine if delayed neutrons contribute significantly to the dose rate. In this study the multi-particle transport code MCNPX combined with the material evolution program CINDER'90 will be used to evaluate the delayed neutron flux and spectra. The following scientific issues will be addressed in this paper: - Modeling of a typical geometry of the liquid metal spallation target; - Predictions of the prompt neutron fluxes, fission fragment and spallation product distributions; - Comparison of the above parameters with existing experimental data; - Time-dependent calculations of delayed neutron precursors; - Neutron flux estimates due to the prompt and delayed neutron emission; - Proposal of an experimental program to measure delayed neutron spectra from high energy spallation-fission reactions. The results of this study should be directly applicable in the design study of the European MegaPie (1 MW

  20. Semantic Data Access Services at NASA's Atmospheric Science Data Center

    Science.gov (United States)

    Huffer, E.; Hertz, J.; Kusterer, J.

    2012-12-01

    The corpus of Earth Science data products at the Atmospheric Science Data Center at NASA's Langley Research Center comprises a widely heterogeneous set of products, even among those whose subject matter is very similar. Two distinct data products may both contain data on the same parameter, for instance, solar irradiance; but the instruments used, and the circumstances under which the data were collected and processed, may differ significantly. Understanding the differences is critical to using the data effectively. Data distribution services must be able to provide prospective users with enough information to allow them to meaningfully compare and evaluate the data products offered. Semantic technologies - ontologies, triple stores, reasoners, linked data - offer functionality for addressing this issue. Ontologies can provide robust, high-fidelity domain models that serve as common schema for discovering, evaluating, comparing and integrating data from disparate products. Reasoning engines and triple stores can leverage ontologies to support intelligent search applications that allow users to discover, query, retrieve, and easily reformat data from a broad spectrum of sources. We argue that because of the extremely complex nature of scientific data, data distribution systems should wholeheartedly embrace semantic technologies in order to make their data accessible to a broad array of prospective end users, and to ensure that the data they provide will be clearly understood and used appropriately by consumers. Toward this end, we propose a distribution system in which formal ontological models that accurately and comprehensively represent the ASDC's data domain, and fully leverage the expressivity and inferential capabilities of first order logic, are used to generate graph-based representations of the relevant relationships among data sets, observational systems, metadata files, and geospatial, temporal and scientific parameters to help prospective data consumers

  1. Science Center Public Forums: Engaging Lay-Publics in Resilience Deliberations Through Informal Science Education

    Science.gov (United States)

    Sittenfeld, D.; Choi, F.; Farooque, M.; Helmuth, B.

    2017-12-01

    Because climate hazards present a range of potential impacts and considerations for different kinds of stakeholders, community responses to increase resilience are best considered through the inclusion of diverse, informed perspectives. The Science Center Public Forums project has created multifaceted modules to engage diverse publics in substantive deliberations around four hazards: heat waves, drought, extreme precipitation, and sea level rise. Using a suite of background materials including visualization and narrative components, each of these daylong dialogues engage varied groups of lay-participants at eight US science centers in learning about hazard vulnerabilities and tradeoffs of proposed strategies for building resilience. Participants listen to and consider the priorities and perspectives of fellow residents and stakeholders, and work together to formulate detailed resilience plans reflecting both current science and informed public values. Deliverables for the project include visualizations of hazard vulnerabilities and strategies through immersive planetarium graphics and Google Earth, stakeholder perspective narratives, and detailed background materials for each project hazard. This session will: communicate the process for developing the hazard modules with input from subject matter experts, outline the process for iterative revisions based upon findings from formative focus groups, share results generated by participants of the project's first two pilot forums, and describe plans for broader implementation. These activities and outcomes could help to increase the capacity of informal science education institutions as trusted conveners for informed community dialogue by educating residents about vulnerabilities and engaging them in critical thinking about potential policy responses to critical climate hazards while sharing usable public values and priorities with civic planners.

  2. Plasma Science and Innovation Center (PSI-Center) at Washington, Wisconsin, and Utah State, ARRA Supplement

    Energy Technology Data Exchange (ETDEWEB)

    Sovinec, Carl [Univ. of Wisconsin-Madison, Madison, WI (United States)

    2018-03-14

    The objective of the Plasma Science and Innovation Center (PSI-Center) is to develop and deploy computational models that simulate conditions in smaller, concept-exploration plasma experiments. The PSIC group at the University of Wisconsin-Madison, led by Prof. Carl Sovinec, uses and enhances the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, to simulate macroscopic plasma dynamics in a number of magnetic confinement configurations. These numerical simulations provide information on how magnetic fields and plasma flows evolve over all three spatial dimensions, which supplements the limited access of diagnostics in plasma experiments. The information gained from simulation helps explain how plasma evolves. It is also used to engineer more effective plasma confinement systems, reducing the need for building many experiments to cover the physical parameter space. The ultimate benefit is a more cost-effective approach to the development of fusion energy for peaceful power production. The supplemental funds provided by the American Recovery and Reinvestment Act of 2009 were used to purchase computer components that were assembled into a 48-core system with 256 Gb of shared memory. The system was engineered and constructed by the group's system administrator at the time, Anthony Hammond. It was successfully used by then graduate student, Dr. John O'Bryan, for computing magnetic relaxation dynamics that occur during experimental tests of non-inductive startup in the Pegasus Toroidal Experiment (pegasus.ep.wisc.edu). Dr. O'Bryan's simulations provided the first detailed explanation of how the driven helical filament of electrical current evolves into a toroidal tokamak-like plasma configuration.

  3. Gifted and Talented Students' Views about Biology Activities in a Science and Art Center

    Science.gov (United States)

    Özarslan, Murat; Çetin, Gülcan

    2018-01-01

    The aim of the study was to determine gifted and talented students' views about biology activities in a science and art center. The study was conducted with 26 gifted and talented students who studied at a science and art center in southwestern Turkey. Students studied animal and plant genus and species in biology activities. Data were collected…

  4. 78 FR 50108 - Notice of Intent To Repatriate Cultural Item: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2013-08-16

    ....R50000] Notice of Intent To Repatriate Cultural Item: Rochester Museum & Science Center, Rochester, NY AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Rochester Museum & Science Center... that the cultural item listed in this notice meets the definition of a sacred object and an object of...

  5. An Exploration of Hispanic Mothers' Culturally Sustaining Experiences at an Informal Science Center

    Science.gov (United States)

    Weiland, Ingrid

    2015-01-01

    Science education reform focuses on learner-centered instruction within contexts that support learners' sociocultural experiences. The purpose of this study was to explore Hispanic mothers' experiences as accompanying adults at an informal science center within the context of culturally sustaining experiences, which include the fluidity…

  6. 75 FR 57967 - Science Advisory Board to the National Center for Toxicological Research Notice of Meeting

    Science.gov (United States)

    2010-09-23

    ...] Science Advisory Board to the National Center for Toxicological Research Notice of Meeting AGENCY: Food... closed to the public. Name of Committee: Science Advisory Board (SAB) to the National Center for Toxicological Research (NCTR). General Function of the Committee: To provide advice and recommendations to the...

  7. 77 FR 57569 - Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting

    Science.gov (United States)

    2012-09-18

    ...] Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting AGENCY: Food... closed to the public. Name of Committee: Science Advisory Board (SAB) to the National Center for Toxicological Research (NCTR). General Function of the Committee: To provide advice and recommendations to the...

  8. 77 FR 31329 - Northeast Fisheries Science Center, Woods, Hole, MA; Public Meeting/Workshop

    Science.gov (United States)

    2012-05-25

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Northeast Fisheries Science Center, Woods, Hole, MA; Public Meeting/Workshop AGENCY: National Marine Fisheries Service (NMFS.../workshop. SUMMARY: NOAA's Northeast Fisheries Science Center will sponsor a workshop to address the stock...

  9. Argonne Chemical Sciences & Engineering - Center for Electrical Energy

    Science.gov (United States)

    Laboratory Chemical Sciences & Engineering DOE Logo CSE Home About CSE Research Facilities People Publications Awards News & Highlights Events Search Argonne ... Search Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Conversion Electrochemical

  10. National Center for Mathematics and Science - who we are

    Science.gov (United States)

    Massachusetts-Dartmouth Expertise Areas Classroom discourse Sociocultural theory in mathematics teacher education The learnability of new ideas, such as complexity, chaos and nonlinear systems Center Research students' mathematical understanding Program evaluation Curriculum theory and reform Center Research

  11. Lujan at Los Alamos Neutron Science Center (LANSCE)

    Data.gov (United States)

    Federal Laboratory Consortium — The Lujan Neutron Scattering Center (Lujan Center) at Los Alamos National Laboratory is an intense pulsed neutrons source operating at a power level of 80 -100 kW....

  12. Grid Integration Science, NREL Power Systems Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-25

    This report highlights journal articles published in 2016 by researchers in the Power Systems Engineering Center. NREL's Power Systems Engineering Center published 47 journal and magazine articles in the past year, highlighting recent research in grid modernization.

  13. WFIRST: User and mission support at ISOC - IPAC Science Operations Center

    Science.gov (United States)

    Akeson, Rachel; Armus, Lee; Bennett, Lee; Colbert, James; Helou, George; Kirkpatrick, J. Davy; Laine, Seppo; Meshkat, Tiffany; Paladini, Roberta; Ramirez, Solange; Wang, Yun; Xie, Joan; Yan, Lin

    2018-01-01

    The science center for WFIRST is distributed between the Goddard Space Flight Center, the Infrared Processing and Analysis Center (IPAC) and the Space Telescope Science Institute (STScI). The main functions of the IPAC Science Operations Center (ISOC) are:* Conduct the GO, archival and theory proposal submission and evaluation process* Support the coronagraph instrument, including observation planning, calibration and data processing pipeline, generation of data products, and user support* Microlensing survey data processing pipeline, generation of data products, and user support* Community engagement including conferences, workshops and general support of the WFIRST exoplanet communityWe will describe the components planned to support these functions and the community of WFIRST users.

  14. Narrative as a learning tool in science centers : potentials, possibilities and merits

    NARCIS (Netherlands)

    Murmann, Mai; Avraamidou, Lucy

    2014-01-01

    In this theoretical paper we explore the use of narrative as a learning tool in informal science settings. Specifically, the purpose of this paper is to ex-plore how narrative can be applied to exhibits in the context of science centers to scaffold visitors science learning. In exploring this idea,

  15. A linac for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1998-01-01

    The Spallation Neutron Source Project (SNS), to be constructed at Oak Ridge National Laboratory, accelerates H - ions to an energy of 1.0 GeV with an average current of 1-mA for injection into an accumulator ring that produces the short intense burst of protons needed for the spallation-neutron source. The linac will be the most intense source of H - ions and as such requires advanced design techniques to meet project technical goals. In particular, low beam loss is stressed for the chopped beam placing strong requirements on the beam dynamics and linac construction. Additionally, the linac is to be upgraded to the 2- and 4-MW beam-power levels with no increase in duty factor. The author gives an overview of the linac design parameters and design choices made

  16. Neutron moderators for the European Spallation Source

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Zanini, L.; Batkov, K.

    The design of the neutron moderators for the European Spallation Source, intended to be installed at the start of operations of the facility in 2019 has now been finalized and the moderators are being fabricated. Among the driving principles in the design have been flexibility for instruments...... to have access to cold and thermal neutrons with highest possible source brightness. Different design and configuration options were evaluated. The final configuration accepted for construction foresees two moderators with identical para-hydrogen (so-called "butterfly") shape, but different heights......, placed above and below the spallation target. Both moderators are able to serve the full 2 x 120° beam extraction sectors of instrument suite. The top, 3-cm tall moderator, has both high thermal and high cold brightness, more than by a factor of 2.5 compared to the previous design of the Technical Design...

  17. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  18. Spallation RI beam facility and heavy element nuclear chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nagame, Yuichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    An outline of the spallation RI (Radioactive Ion) beam facility is presented. Neutron-rich nuclides are produced in the reaction of high intensity (10-1000 {mu}A) protons with energy of 1.5 GeV and an uranium carbide target. Produced nuclides are ionized in an isotope separator on-line (ISOL) and accelerated by the JAERI tandem and the booster linac. Current progress and a future project on the development of the RI beam facility are given. Studies of transactinide elements, including the synthesis of superheavy elements, nuclear structure far from stability, and RI-probed material science are planned with RI beams. An outlook of the transactinide nuclear chemistry studies using neutron-rich RI beams is described. (author)

  19. Thermal shock analysis of liquid-mercury spallation target

    CERN Document Server

    Ishikura, S; Futakawa, M; Hino, R; Date, H

    2002-01-01

    The developments of the neutron scattering facilities are carried out under the high-intensity proton accelerator project promoted by JAERI and KEK. To estimate the structural integrity of the heavy liquid-metal (Hg) target used as a spallation neutron source in a MW-class neutron scattering facility, dynamic stress behavior due to the incident of a 1 MW-pulsed proton beam was analyzed by using FEM code. Two-type target containers with semi-cylindrical type and flat-plate type window were used as models for analyses. As a result, it is confirmed that the stress (pressure wave) generated by dynamic thermal shock becomes the largest at the center of window, and the flat-plate type window is more advantageous from the structural viewpoint than the semi-cylindrical type window. It has been understood that the stress generated in the window by the pressure wave can be treated as the secondary stress. (author)

  20. Science teacher learning for MBL-supported student-centered science education in the context of secondary education in Tanzania

    NARCIS (Netherlands)

    Voogt, Joke; Tilya, F.; van den Akker, Jan

    2009-01-01

    Science teachers from secondary schools in Tanzania were offered an in-service arrangement to prepare them for the integration of technology in a student-centered approach to science teaching. The in-service arrangement consisted of workshops in which educative curriculum materials were used to

  1. New neutron physics using spallation sources

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1988-01-01

    The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. The energy range of neutron research which is being explored with these sources extends from thermal energies to almost 800 MeV. The emphasis here is on prospective experiments below 100 keV neutron energy using the intense neutron bursts produced by the Proton Storage Ring (PSR) at Los Alamos. 30 refs., 10 figs

  2. Decommissioning Plan for European Spallation Source

    Directory of Open Access Journals (Sweden)

    Ene Daniela

    2017-01-01

    Full Text Available This paper is a survey of the European Spallation Source initial decommissioning plan developed in compliance with Swedish Regulatory Authority requirements. The report outlines the decommissioning strategy selected and the baseline plan for decommissioning. Types and quantities of radioactive waste estimated to be generated at the final shut-down of the facility are further provided. The paper ends up with the analysis of the key elements of the decommissioning plan and the recommendations to the ESS management team..

  3. Neutronics of pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, poisoning, etc are discussed, aiming at a high performance pulsed spallation source

  4. Structural materials for fusion and spallation sources

    International Nuclear Information System (INIS)

    Cottrell, G.A.; Baker, L.J.

    2003-01-01

    Experimental investigation of neutron-induced irradiation damage in structural materials is fundamental to the development of magnetic confinement fusion. Proposals for the testing of candidate materials are described, indicating that a period of at least 10 years will elapse before a suitable high neutron fluence fusion test facility becomes available. In this circumstance, the possibility that neutron spallation sources could be exploited to shorten the time-scale of fusion materials development is attractive. Although fusion displacement and transmutation reaction rates can be replicated in spallation sources, there are significant differences arising from the harder neutron spectra and the presence of energetic protons. These differences, including higher energy PKA, electron heating effects, transmutation rates and pulsing are described and their consequences discussed, together with the concomitant development of theoretical models, needed to understand the effects. It is concluded that spallation source experiments could make a significant contribution to the database required for the validation of theoretical models, and hence reduce the time scale of fusion materials development

  5. Linac-driven spallation-neutron source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1995-01-01

    Strong interest has arisen in accelerator-driven spallation-neutron sources that surpass existing facilities (such as ISIS at Rutherford or LANSCE at Los Alamos) by more than an order of magnitude in beam power delivered to the spallation target. The approach chosen by Los Alamos (as well as the European Spallation Source) provides the full beam energy by acceleration in a linac as opposed to primary acceleration in a synchrotron or other circular device. Two modes of neutron production are visualized for the source. A short-pulse mode produces 1 MW of beam power (at 60 pps) in pulses, of length less than 1 ms, by compression of the linac macropulse through multi-turn injection in an accumulator ring. A long-pulse mode produces a similar beam power with 1-ms-long pulses directly applied to a target. This latter mode rivals the performance of existing reactor facilities to very low neutron energies. Combination with the short-pulse mode addresses virtually all applications

  6. 2. International workshop on spallation materials technology

    International Nuclear Information System (INIS)

    Carsughi, F.; Mansur, L.K.; Sommer, W.F.; Ullmaier, H.

    1997-11-01

    This document contains 25 papers consisting an abstract prepared by the authors, followed by copies of the presentation viewgraphs used by speakers. The topics were: Target options for SINQ; Overview of the NSNS target system; ISIS target and moderator materials; Trispal project; JHF N-ARENA; Design, load conditions and manufacturing aspect of the ESS MERCURY TARGET unit; Radiation damage simulatiion to measure recoil spectra distribution; Radiation damage calculation to spallation neutron source materials; Hadron-induced neutron production in Pb and U targets from 1-5 GeV; Proton beam effects on W rods, surface cooled by water; Corrosion and fatigue behavior of metals and alloys in high radiation fields; compability of materials with mercury for NSNS target system; Research activities at PSI on structural materials for spallation neutron source; The accelerator production of tritium materials reserach program and Los Alamos National Laboratory; Experimental program on irradiation effects in structural materials of the Trispal project; First pulsed power materials test at Livermore; Plan of thermal shock fracture test at JAERI; Is there a hydrogen problem in target materials in high-power spatllation source?; Materials consideration for the NSNS target; Materials durability issures in spallation neutron source applications; Post-irradiation investigations at the FZJ; Microstructure and hardening of steels containing high helium concentrations; Tensile properties and microstructure of the F82H ferritic-martensitic steel after irradiation in the PIREX facility

  7. Collaboration and Team Science Field Guide - Center for Research Strategy

    Science.gov (United States)

    Collaboration and Team Science: A Field Guide provides insight into the practices of conducting collaborative work. Since its 2010 publication, the authors have worked and learned from teams and organizations all over the world. Learn from these experiences in the second edition of the Team Science Field Guide.

  8. Science and Math in the Library Media Center Using GLOBE.

    Science.gov (United States)

    Aquino, Teresa L.; Levine, Elissa R.

    2003-01-01

    Describes the Global Learning and Observations to Benefit the Environment (GLOBE) program which helps school library media specialists and science and math teachers bring earth science, math, information literacy, information technology, and student inquiry into the classroom. Discusses use of the Internet to create a global network to study the…

  9. A cross-case analysis of three Native Science Field Centers

    Science.gov (United States)

    Augare, Helen J.; Davíd-Chavez, Dominique M.; Groenke, Frederick I.; Little Plume-Weatherwax, Melissa; Lone Fight, Lisa; Meier, Gene; Quiver-Gaddie, Helene; Returns From Scout, Elvin; Sachatello-Sawyer, Bonnie; St. Pierre, Nate; Valdez, Shelly; Wippert, Rachel

    2017-06-01

    Native Science Field Centers (NSFCs) were created to engage youth and adults in environmental science activities through the integration of traditional Native ways of knowing (understanding about the natural world based on centuries of observation including philosophy, worldview, cosmology, and belief systems of Indigenous peoples), Native languages, and Western science concepts. This paper focuses on the Blackfeet Native Science Field Center, the Lakota Native Science Field Center, and the Wind River Native Science Field Center. One of the long-term, overarching goals of these NSFCs was to stimulate the interest of Native American students in ways that encouraged them to pursue academic and career paths in science, technology, engineering, and mathematics (STEM) fields. A great deal can be learned from the experiences of the NSFCs in terms of effective educational strategies, as well as advantages and challenges in blending Native ways of knowing and Western scientific knowledge in an informal science education setting. Hopa Mountain—a Bozeman, Montana-based nonprofit—partnered with the Blackfeet Community College on the Blackfeet Reservation, Fremont County School District #21 on the Wind River Reservation, and Oglala Lakota College on the Pine Ridge Reservation to cooperatively establish the Native Science Field Centers. This paper presents a profile of each NSFC and highlights their program components and accomplishments.

  10. Difficulties of Turkish Science Gifted Teachers: Institutions of Science and Art Centers.

    Directory of Open Access Journals (Sweden)

    Mehmet Küçük

    2005-05-01

    Full Text Available The purpose of this study is to determine the fundamental problems of science gifted teachers (SG/Ts who teach Turkish gifted children (G/C and compare it with the international milieu. Turkish G/C are taught in different educational contexts named “Science and Art Centers” (SACs in which better opportunities are presented for them. In this project, field observations were done at three of the SACs in Turkey - in Bayburt, Sinop, and Trabzon - and, semi-structured interviews were conducted with each of ten SG/Ts who work in these centers by one of the researchers. Data analysis showed that SG/Ts do not perceive their duties holistically and feel they need help with measurement and assessment techniques, modern learning theories, planning and implementation of a research project, questioning techniques and using laboratory-based methods for G/C. Moving from the research data, it is suggested that in service education courses, which include the above issues, should be organized for the SG/Ts and they should be encouraged to use an action research approach in teaching G/C in SACs.

  11. Western Mineral and Environmental Resources Science Center--providing comprehensive earth science for complex societal issues

    Science.gov (United States)

    Frank, David G.; Wallace, Alan R.; Schneider, Jill L.

    2010-01-01

    Minerals in the environment and products manufactured from mineral materials are all around us and we use and come into contact with them every day. They impact our way of life and the health of all that lives. Minerals are critical to the Nation's economy and knowing where future mineral resources will come from is important for sustaining the Nation's economy and national security. The U.S. Geological Survey (USGS) Mineral Resources Program (MRP) provides scientific information for objective resource assessments and unbiased research results on mineral resource potential, production and consumption statistics, as well as environmental consequences of mining. The MRP conducts this research to provide information needed for land planners and decisionmakers about where mineral commodities are known and suspected in the earth's crust and about the environmental consequences of extracting those commodities. As part of the MRP scientists of the Western Mineral and Environmental Resources Science Center (WMERSC or 'Center' herein) coordinate the development of national, geologic, geochemical, geophysical, and mineral-resource databases and the migration of existing databases to standard models and formats that are available to both internal and external users. The unique expertise developed by Center scientists over many decades in response to mineral-resource-related issues is now in great demand to support applications such as public health research and remediation of environmental hazards that result from mining and mining-related activities. Western Mineral and Environmental Resources Science Center Results of WMERSC research provide timely and unbiased analyses of minerals and inorganic materials to (1) improve stewardship of public lands and resources; (2) support national and international economic and security policies; (3) sustain prosperity and improve our quality of life; and (4) protect and improve public health, safety, and environmental quality. The MRP

  12. NASA Johnson Space Center Life Sciences Data System

    Science.gov (United States)

    Rahman, Hasan; Cardenas, Jeffery

    1994-01-01

    The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.

  13. Preconceptual design of a Long-Pulse Spallation Source (LPSS) at the LANSCE Facility: Target system, facility, and material handling considerations

    International Nuclear Information System (INIS)

    Sommer, W.F.

    1995-12-01

    This report provides a summary of a preconceptual design study for the proposed Long-Pulse Spallation. Source (LPSS) at the Los Alamos Neutron Science Center (LANSCE). The LPSS will use a 0.8-MW proton beam to produce neutrons from a tungsten target. This study focuses on the design of the target station and changes to the existing building that would be made to accommodate the LPSS. The LPSS will provide fifteen flight paths to neutron scattering instruments. In addition, options for generating ultracold neutrons, pions, and muons will be available. Flight-energy, forward-scattered neutrons on the downstream side of the target will also be available for autoradiography studies. A Target Test Bed (TTB) is also proposed for full-beam tests of component materials and advanced spallation neutron sources. The design allows for separation of the experiment hall from the beam line, target, and flight paths. The target and moderator systems and the systems/components to be tested in the TTB will be emplaced and removed separately by remotely operated, shielded equipment. Irradiated materials will be transported to a hot cell adjacent to the target chamber for testing by remotely operated instruments. These tests will provide information about how materials properties are affected by proton and neutron beams

  14. A comparison between short pulse spallation source and long pulse spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, Kazuya; Watanabe, Noboru; Suzuki, Jun-ichi; Niimura, Nobuo; Morii, Yukio; Katano, Susumu; Osakabe, Toyotaka; Teshigawara, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Mezei, F.

    1997-11-01

    The performance for a 5 MW short pulse spallation source (SPSS) and a 4.5 MW long pulse spallation source (LPSS) in a JAERI program which is based on the availability of a 1.5 GeV superconducting linac with a 30 mA peak current for both proton and H{sup -} beams is discussed. We have examined the superiority of SPSS to LPSS. While a LPSS facility is a second option, we propose an SPSS facility as a first option. (author)

  15. A comparison between short pulse spallation source and long pulse spallation source

    International Nuclear Information System (INIS)

    Aizawa, Kazuya; Watanabe, Noboru; Suzuki, Jun-ichi; Niimura, Nobuo; Morii, Yukio; Katano, Susumu; Osakabe, Toyotaka; Teshigawara, Makoto; Mezei, F.

    1997-01-01

    The performance for a 5 MW short pulse spallation source (SPSS) and a 4.5 MW long pulse spallation source (LPSS) in a JAERI program which is based on the availability of a 1.5 GeV superconducting linac with a 30 mA peak current for both proton and H - beams is discussed. We have examined the superiority of SPSS to LPSS. While a LPSS facility is a second option, we propose an SPSS facility as a first option. (author)

  16. 77 FR 19699 - Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2012-04-02

    ... Indian tribe, has determined that the cultural items meet the definition of both sacred objects and... Rochester Museum & Science Center that meet the definition of both sacred objects and [[Page 19700

  17. Master's Level Graduate Training in Medical Physics at the University of Colorado Health Sciences Center.

    Science.gov (United States)

    Ibbott, Geoffrey S.; Hendee, William R.

    1980-01-01

    Describes the master's degree program in medical physics developed at the University of Colorado Health Sciences Center. Required courses for the program, and requirements for admission are included in the appendices. (HM)

  18. About Region 3's Laboratory and Field Services at EPA's Environmental Science Center

    Science.gov (United States)

    Mission & contact information for EPA Region 3's Laboratory and Field Services located at EPA's Environmental Science Center: the Office of Analytical Services and Quality Assurance & Field Inspection Program

  19. Spent fuel storage facility at science and technical center 'Sosny': Experience of ten years activity

    International Nuclear Information System (INIS)

    Chigrinov, S.; Goulo, V.; Lunev, A.; Belousov, N.; Salnikov, L.; Boiko, L.

    2000-01-01

    Spent fuel storage of the Academic Science and Technical Center in Minsk is in operation already more then 10 years. In the paper aspects of its design, operation practice, problems and decisions for future are discussed. (author)

  20. National Climate Change and Wildlife Science Center, Version 2.0

    Science.gov (United States)

    O'Malley, R.; Fort, E.; Hartke-O'Berg, N.; Varela-Acevedo, E.; Padgett, Holly A.

    2013-01-01

    The mission of the USGS's National Climate Change and Wildlife Science Center (NCCWSC) is to serve the scientific needs of managers of fish, wildlife, habitats, and ecosystems as they plan for a changing climate. DOI Climate Science Centers (CSCs) are management by NCCWSC and include this mission as a core responsibility, in line with the CSC mission to provide scientific support for climate-adaptation across a full range of natural and cultural resources. NCCWSC is a Science Center application designed in Drupal with the OMEGA theme. As a content management system, Drupal allows the science center to keep their website up-to-date with current publications, news, meetings and projects. OMEGA allows the site to be adaptive at different screen sizes and is developed on the 960 grid.

  1. 77 FR 51564 - Notice of Inventory Completion: Herrett Center for Arts and Science, College of Southern Idaho...

    Science.gov (United States)

    2012-08-24

    ... Inventory Completion: Herrett Center for Arts and Science, College of Southern Idaho, Twin Falls, ID AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Herrett Center for Arts and Science, College... associated funerary object may contact the Herrett Center for Arts and Science, College of Southern Idaho...

  2. Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle

    Science.gov (United States)

    2015-08-03

    AND SUBTITLE Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle...Center program to be able to expose Science Technology, Engineering and Mathematics (STEM) space-inspired science centers for DC Metro beltway schools

  3. Energy Frontier Research Center Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd Allen

    2014-04-01

    Scientific Successes • The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative, experimental-based anharmonic smoothing technique has enabled quantitative benchmarking of ab initio PDOS simulations. • Direct comparison between anharmonicity-smoothed ab initio PDOS simulations for UO2 and experimental measurements has demonstrated the need for improved understanding of UO2 at the level of phonon dispersion, and, further, that advanced lattice dynamics simulations including finite temperatures approaches will be required for handling this strongly correlated nuclear fuel. • PDOS measurements performed on polycrystalline samples have identified the phonon branches and energy ranges most highly impacted by fission-product and hyper-stoichiometry lattice defects in UO2. These measurements have revealed the broad-spectrum impact of oxygen hyper-stoichiometry on thermal transport. The reduction in thermal conductivity caused by hyper-stoichiometry is many times stronger than that caused by substitutional fission-product impurities. • Laser-based thermo-reflectance measurements on UO2 samples irradiated with light (i.e. He) ions to introduce point defects have been coupled with MD simulations and lattice parameter measurements to determine the role of uranium and oxygen point defects in reducing thermal conductivity. • A rigorous perturbation theory treatment of phonon lifetimes in UO2 based on a 3D discretization of the Brillouin zone coupled with experimentally measured phonon dispersion has been implemented that produces improved predictions of the temperature dependent thermal conductivity. • Atom probe investigations of the influence of grain boundary structure on the segregation behavior of Kr in UO2 have shown that smaller amounts of Kr are present at low angle grain boundaries than at large angle grain

  4. Jackson State University (JSU)’s Center of Excellence in Science, Technology, Engineering, and Mathematics Education (CESTEME)

    Science.gov (United States)

    2016-01-08

    Actuarial Science Taylor, Triniti Lanier Alcorn State University Animal Science Tchounwou, Hervey Madison Central Jackson State University Computer...for Public Release; Distribution Unlimited Final Report: Jackson State University (JSU)’s Center of Excellence in Science , Technology, Engineering...Final Report: Jackson State University (JSU)’s Center of Excellence in Science , Technology, Engineering, and Mathematics Education (CESTEME) Report

  5. The University of Texas Health Science Center at Houston

    African Journals Online (AJOL)

    Adebimpe Oyeyemi

    elucidates on the scholarship of discovery, the scholarship of application, the scholarship of integration and the scholarship of ... Science and professional education in medicine and health are .... approaches, modification of an existing approach that results in .... Their Teaching to Advance Practice and Improve Students.

  6. National Space Science Data Center and World Data Center A for Rockets and Satellites - Ionospheric data holdings and services

    Science.gov (United States)

    Bilitza, D.; King, J. H.

    1988-01-01

    The activities and services of the National Space Science data Center (NSSDC) and the World Data Center A for Rockets and Satellites (WDC-A-R and S) are described with special emphasis on ionospheric physics. The present catalog/archive system is explained and future developments are indicated. In addition to the basic data acquisition, archiving, and dissemination functions, ongoing activities include the Central Online Data Directory (CODD), the Coordinated Data Analysis Workshopps (CDAW), the Space Physics Analysis Network (SPAN), advanced data management systems (CD/DIS, NCDS, PLDS), and publication of the NSSDC News, the SPACEWARN Bulletin, and several NSSD reports.

  7. 75 FR 36666 - Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2010-06-28

    ... and 1941, the Works Progress Administration/Indian Arts Project paid members of the Tonawanda Seneca..., director, Rochester Museum of Arts & Science (now Rochester Museum & Science Center), with the intent of... medicine faces were also created under the auspices of the Works Progress Administration/Indian Arts...

  8. 75 FR 23801 - Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2010-05-04

    ... Museum & Science Center, Rochester, NY, that meet the definitions of ``sacred objects'' and ``objects of... center of the Seneca religious fire. This was agreed upon by representatives from the Seneca Nation of.... Tonawanda Seneca Nation traditional religious leaders have identified these medicine faces as being needed...

  9. Next generation neutron scattering at Neutron Science Center project in JAERI

    International Nuclear Information System (INIS)

    Yamada, Yasusada; Watanabe, Noboru; Niimura, Nobuo; Morii, Yukio; Katano, Susumu; Aizawa, Kazuya; Suzuki, Jun-ichi; Koizumi, Satoshi; Osakabe, Toyotaka.

    1997-01-01

    Japan Atomic Energy Research Institute (JAERI) has promoted neutron scattering researches by means of research reactors in Tokai Research Establishment, and proposes 'Neutron Science Research Center' to develop the future prospect of the Tokai Research Establishment. The scientific fields which will be expected to progress by the neutron scattering experiments carried out at the proposed facility in the Center are surveyed. (author)

  10. Qualification tests of materials for spallation neutron sources

    International Nuclear Information System (INIS)

    Sommer, W.F.; Maloy, S.; Wechsler, M.S.

    1997-01-01

    Several laboratories will take part in an extensive materials qualification program that includes irradiation in the proton beam and neutron field available at the Los Alamos Spallation Radiation Damage Facility (LASREF). A number of candidate materials will be exposed to prototypic spallation producing particle radiation. Studies of corrosion-related phenomena and the mitigation of these effects will also be accomplished

  11. Multi-criteria comparative evaluation of spallation reaction models

    Science.gov (United States)

    Andrianov, Andrey; Andrianova, Olga; Konobeev, Alexandr; Korovin, Yury; Kuptsov, Ilya

    2017-09-01

    This paper presents an approach to a comparative evaluation of the predictive ability of spallation reaction models based on widely used, well-proven multiple-criteria decision analysis methods (MAVT/MAUT, AHP, TOPSIS, PROMETHEE) and the results of such a comparison for 17 spallation reaction models in the presence of the interaction of high-energy protons with natPb.

  12. Spallation neutron production on thick target at saturne

    International Nuclear Information System (INIS)

    David, J.C.; David, J.C.; Varignon, C.; Borne, F.; Boudard, A.; Brochard, F.; Crespin, S.; Duchazeaubeneix, J.C.; Durand, D.; Durand, J.M.; Frehaut, J.; Hannappe, F.; Lebrun, C.; Lecolley, J.F.; Ledoux, X.; Lefebvres, F.; Legrain, R.; Leray, S.; Louvel, M.; Martinez, E.; Menard, S.; Milleret, G.; Patin, Y.; Petitbon, E.; Plouin, F.; Schapira, J.P.; Stugge, L.; Terrien, Y.; Thun, J.; Volant, C.; Whittal, D.M.

    2003-01-01

    In view of the new spallation neutron source projects, we discuss the characteristics of the neutron spectra on thick targets measured at SATURNE. Some comparisons to spallation models, and especially INCL4/ABLA implemented in the LAHET code, are done. (orig.)

  13. Fundamental physics possibilities at the European Spallation Source

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Soldner, Torsten

    2016-01-01

    The construction of the European Spallation Source ESS is ongoing in Lund, Sweden. This new high power spallation source with its long-pulse structure opens up new possibilities for fundamental physics experiments. This paper focusses on two proposals for fundamental physics at the ESS: The ANNI...

  14. Experimental studies of spallation on thin target

    International Nuclear Information System (INIS)

    Borne, F.; Crespin, S.; Drake, D.; Frehaut, J.; Ledoux, X.; Lochard, J.P.; Martinez, E.; Patin, Y.; Petibon, E.; Pras, Ph.; Boudard, A.; Legrain, R.; Leray, S.; Terrien, Y.; Bouyer, P.; Brochard, F.; Duchazeaubeneix, J.C.; Durand, J.M.; Meigo, S.I.; Milleret, G.; Thun, J.; Whittal, D.M.; Wlazlo, W.; Lebrun, C.; Lecolley, J.F.; Lecolley, F.R.; Lefebvres, F.; Louvel, M.; Varignon, C.; Menard, S.; Stugge, L.; Hanappe, F.

    2000-01-01

    Angular distribution of spallation neutrons induced by protons (0.8, 1.2 and 1.6 GeV) and deuterons (0.8 and 1.6 GeV beams on various thin targets have been measured at SATURNE (CEA Saclay/France) with two complementary experimental techniques: the time-of-flight measurement with tagged incident protons for low energy neutrons (2-400 MeV) and the use of a hydrogen converter associated are analysed, interpreted and finally compared with theoretical previsions of simulation codes using the TIERCE system including the intranuclear cascade codes of BERTINI and CUGNON. (authors)

  15. Status of Cea spallation modules for ads

    International Nuclear Information System (INIS)

    Enderle, R.; Poitevin, Y.; Deffain, J.P.; Bergeron, J.

    2001-01-01

    In the framework of CEA studies on ADS dedicated to waste transmutation, a liquid metal reference concept and an alternative solid target have been evaluated to produce neutrons inside the spallation module. This work examines the design (neutronic, thermohydraulic and mechanical aspects) and the performances of both options. It is shown that a liquid Pb-Bi target offers more possibilities regarding to high protons current densities (possible industrial extrapolation) but that a solid target made with tungsten particles offers also interesting ability to create a neutrons flux appropriated (strong spectrum and flat axial distribution) to an sub-critical core dedicated to incineration. (author)

  16. Spallation neutron spectra measured at Saturne

    International Nuclear Information System (INIS)

    Boyard, J.L.; Bouyer, P.; Brochard, F.; Duchazeaubeneix, J.C.; Durand, J.M.; Leray, S.; Milleret, G.; Plouin, F.; Uematsu, M.; Whittal, D.M.; Martinez, E.; Beau, M.; Boue, F.; Crespin, S.; Drake, D.; Frehaut, J.; Lochard, J.P.; Patin, Y.; Petibon, E.; Legrain, R.; Terrien, Y.

    1995-01-01

    Good knowledge of spallation reactions is necessary to design accelerator-based transmutation systems. An extensive program has begun at Saturne to measure energy and angular distributions of neutrons produced by incident protons or deuterons of up to 2 GeV on several thin targets. Our measurements will extend the available data to higher energies than the present limit of 800 MeV enabling improvements to the codes which are sometimes in poor agreement with the data. (Authors). 7 refs., 7 figs

  17. Thermal features of spallation window targets

    International Nuclear Information System (INIS)

    Martinez-Val, J. M.; Sordo, F.; Leon, P. T.

    2007-01-01

    Subcritical nuclear reactors have been proposed for a number of applications, from energy production to fertile-to-fissile conversion, and to transmutation of long-lived radio nuclei into stable or much shorter-lived nuclei. The main advantage of subcritical reactors is their large reactivity margin for not to attain prompt-supercritical power surges. On the contrary, subcritical reactors present some economic drawbacks and technical complexities that deserve suitable attention in the Research and Development phase. Namely, they need a very intense neutron source in order to keep the neutron flux and the reactor power at the required level. The most intense neutron source seems to be based on the proton-induced (or deuteron-induced) spallation reaction in heavy nuclei targets, which present very demanding thermal features that must be properly limited. Those limits pose upper bounds to the neutron yield of the target. In turn, the limits depend on the features of the impinging particle beam and the material composition and geometry of the target. Although the potential design window for spallation targets is rather wide, the analysis presented in this paper identifies specific topics that must properly be covered in the detailed project of a spallation source, in order to avoid unacceptable temperatures and mechanical stresses in the most critical parts of the source. In this paper, some calculations are reported on solid targets (water cooled or helium cooled) and molten metals targets. It is seen that thermal-hydraulic and mechanical calculations of spallation targets are fundamental elements in the coherent design of this type of very intense neutron sources. This coherence implies the need of a suitable trade-off among the relevant beam parameters (proton energy, total intensity and cross-section shape) and the features of the target (structural materials, coolant characteristics and target geometry). The goal of maximizing the neutron yield has to be checked

  18. Spallation Neutron Source Second Target Station Integrated Systems Update

    Energy Technology Data Exchange (ETDEWEB)

    Ankner, John Francis [ORNL; An, Ke [ORNL; Blokland, Willem [ORNL; Charlton, Timothy R. [ORNL; Coates, Leighton [ORNL; Dayton, Michael J. [ORNL; Dean, Robert A. [ORNL; Dominguez-Ontiveros, Elvis E. [ORNL; Ehlers, Georg [ORNL; Gallmeier, Franz X. [ORNL; Graves, Van B. [ORNL; Heller, William T. [ORNL; Holmes, Jeffrey A. [ORNL; Huq, Ashfia [ORNL; Lumsden, Mark D. [ORNL; McHargue, William M. [ORNL; McManamy, Thomas J. [ORNL; Plum, Michael A. [ORNL; Rajic, Slobodan [ORNL; Remec, Igor [ORNL; Robertson, Lee [ORNL; Sala, Gabriele [ORNL; Stoica, Alexandru Dan [ORNL; Trotter, Steven M. [ORNL; Winn, Barry L. [ORNL; Abudureyimu, Reheman [ORNL; Rennich, Mark J. [ORNL; Herwig, Kenneth W. [ORNL

    2017-04-01

    The Spallation Neutron Source (SNS) was designed from the beginning to accommodate both an accelerator upgrade to increase the proton power and a second target station (STS). Four workshops were organized in 2013 and 2014 to identify key science areas and challenges where neutrons will play a vital role [1-4]. Participants concluded that the addition of STS to the existing ORNL neutron sources was needed to complement the strengths of High Flux Isotope Reactor (HFIR) and the SNS first target station (FTS). To address the capability gaps identified in the workshops, a study was undertaken to identify instrument concepts that could provide the required new science capabilities. The study outlined 22 instrument concepts and presented an initial science case for STS [5]. These instrument concepts formed the basis of a planning suite of instruments whose requirements determined an initial site layout and moderator selection. An STS Technical Design Report (TDR) documented the STS concept based on those choices [6]. Since issue of the TDR, the STS concept has significantly matured as described in this document.

  19. Challenges and design solutions of the liquid hydrogen circuit at the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Gallimore, S.; Nilsson, P.; Sabbagh, P.; Takibayev, A.; Weisend II, J. G. [European Spallation Source ESS AB, SE-22100 Lund (Sweden); Beßler, Y. [Forschungzentrum Jülich, Jülich (Germany); Klaus, M. [Technische Universität Dresden, Dresden (Germany)

    2014-01-29

    The European Spallation Source (ESS), Lund, Sweden will be a 5MW long-pulse neutron spallation research facility and will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. Neutrons are produced by accelerating a high-energy proton beam into a rotating helium-cooled tungsten target. These neutrons pass through moderators to reduce their energy to an appropriate range (< 5 meV for cold neutrons); two of which will use liquid hydrogen at 17 K as the moderating and cooling medium. There are several technical challenges to overcome in the design of a robust system that will operate under such conditions, not least the 20 kW of deposited heat. These challenges and the associated design solutions will be detailed in this paper.

  20. Results from the IAEA benchmark of spallation models

    International Nuclear Information System (INIS)

    Leray, S.; David, J.C.; Khandaker, M.; Mank, G.; Mengoni, A.; Otsuka, N.; Filges, D.; Gallmeier, F.; Konobeyev, A.; Michel, R.

    2011-01-01

    Spallation reactions play an important role in a wide domain of applications. In the simulation codes used in this field, the nuclear interaction cross-sections and characteristics are computed by spallation models. The International Atomic Energy Agency (IAEA) has recently organised a benchmark of the spallation models used or that could be used in the future into high-energy transport codes. The objectives were, first, to assess the prediction capabilities of the different spallation models for the different mass and energy regions and the different exit channels and, second, to understand the reason for the success or deficiency of the models. Results of the benchmark concerning both the analysis of the prediction capabilities of the models and the first conclusions on the physics of spallation models are presented. (authors)

  1. Crowd-Sourced Radio Science at Marshall Space Flight Center

    Science.gov (United States)

    Fry, C. D.; McTernan, J. K.; Suggs, R. M.; Rawlins, L.; Krause, L. H.; Gallagher, D. L.; Adams, M. L.

    2018-01-01

    August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged citizen scientists and students in an investigation of the effects of an eclipse on the mid-latitude ionosphere. Activities included fieldwork and station-based data collection of HF Amateur Radio frequency bands and VLF radio waves before, during, and after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse.

  2. PROCEEDINGS ON SYNCHROTRON RADIATION: China Spallation Neutron Source - an overview of application prospects

    Science.gov (United States)

    Wei, Jie; Fu, Shi-Nian; Tang, Jing-Yu; Tao, Ju-Zhou; Wang, Ding-Sheng; Wang, Fang-Wei; Wang, Sheng

    2009-11-01

    The China Spallation Neutron Source (CSNS) is an accelerator-based multidisciplinary user facility to be constructed in Dongguan, Guangdong, China. The CSNS complex consists of an H- linear accelerator, a rapid cycling synchrotron accelerating the beam to 1.6 GeV, a solid-tungsten target station, and instruments for spallation neutron applications. The facility operates at 25 Hz repetition rate with an initial design beam power of 120 kW and is upgradeable to 500 kW. Construction of the CSNS project will lay the foundation of a leading national research center based on advanced proton-accelerator technology, pulsed neutron-scattering technology, and related programs including muon, fast neutron, and proton applications as well as medical therapy and accelerator-driven subcritical reactor (ADS) applications to serve China's strategic needs in scientific research and technological innovation for the next 30 plus years.

  3. A Center for Excellence in Mathematical Sciences Final Progress Report

    Science.gov (United States)

    1997-02-18

    concentration are a Groebner Basis Project and a Symbolic Methods in AI and Computer Science project, with simultaneous development of other needed areas. The... Groebner construction algorithm. Develop an algebraic theory of piece wise polynomial approximation based on the Bezier- Bernstein algebra. Address...questions surrounding polytopes, splines, and complexity of Groebner basis computations. In topology determine the homotopy type of subdivision lattice of a

  4. The National Climate Change and Wildlife Science Center annual report for 2013

    Science.gov (United States)

    Varela-Acevedo, Elda

    2014-01-01

    In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to respond to the demands of natural resource managers for rigorous scientific information and effective tools for assessing and responding to climate change. Located at the USGS National Headquarters in Reston, Va., the NCCWSC has invested more than $93 million (through FY13) in cutting-edge climate change research and, in response to Secretarial Order No. 3289, established and is managing eight regional Department of Interior (DOI) Climate Science Centers (CSCs). In 2013:

  5. The efficacy of student-centered instruction in supporting science learning.

    Science.gov (United States)

    Granger, E M; Bevis, T H; Saka, Y; Southerland, S A; Sampson, V; Tate, R L

    2012-10-05

    Transforming science learning through student-centered instruction that engages students in a variety of scientific practices is central to national science-teaching reform efforts. Our study employed a large-scale, randomized-cluster experimental design to compare the effects of student-centered and teacher-centered approaches on elementary school students' understanding of space-science concepts. Data included measures of student characteristics and learning and teacher characteristics and fidelity to the instructional approach. Results reveal that learning outcomes were higher for students enrolled in classrooms engaging in scientific practices through a student-centered approach; two moderators were identified. A statistical search for potential causal mechanisms for the observed outcomes uncovered two potential mediators: students' understanding of models and evidence and the self-efficacy of teachers.

  6. The US spallation neutron source (SNS) project

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1999-01-01

    The SNS is a 1 MW pulsed spallation neutron source that will be sited at Oak Ridge. It will consist of a high-current, normal-conducting linac accelerating an H - beam to 1 GeV, an accumulator ring which compresses each 1 ms linac pulse into a 600 ns bunch which is then extracted in a single turn onto a liquid mercury target. Neutron pulses emerge at a 60 Hz rate from the two ambient, and two cryogenic moderators. Eighteen beam ports surrounding the target station are available for neutron-scattering instrumentation. Funds for ten instruments are included in the construction project; these instruments will provide basic measurement capability for the many and varied research activities at the SNS facility. The new spallation source is being built by a consortium of laboratories; the partners are LBNL, LANL, BNL, ANL and ORNL. The breadth and depth of experience and resources brought by such a wide-spread team offers very significant advantages. Construction will start in October of 1998, operation will begin in October, 2005. (J.P.N.)

  7. Center of Excellence in Space Data and Information Sciences

    Science.gov (United States)

    Yesha, Yelena

    1999-01-01

    This report summarizes the range of computer science-related activities undertaken by CESDIS for NASA in the twelve months from July 1, 1998 through June 30, 1999. These activities address issues related to accessing, processing, and analyzing data from space observing systems through collaborative efforts with university, industry, and NASA space and Earth scientists. The sections of this report which follow, detail the activities undertaken by the members of each of the CESDIS branches. This includes contributions from university faculty members and graduate students as well as CESDIS employees. Phone numbers and e-mail addresses appear in Appendix F (CESDIS Personnel and Associates) to facilitate interactions and new collaborations.

  8. Spallation sources in support of technology

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R [Los Alamos National Lab., NM (United States)

    1996-05-01

    In this contribution I summarize a number of recent experiments at the Los Alamos Neutron Science Center (LANSCE) that have contributed to strategic and applied research. A number of new tools have been developed to address these problems, including software that allows materials texture to be obtained during Rietveld refinement, Bragg-edge diffraction, resonant-neutron and proton radiography. These tools have the potential to impact basic as well as applied research. It is clear that a new, more powerful neutron source such as the planned Japanese Hadron Project will be able to use these and other techniques to contribute in a direct way to important industrial technologies. (author)

  9. Neutron Tomography at the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Myers, William Riley

    2017-01-01

    Neutron imaging is an incredibly powerful tool for non-destructive sample characterization and materials science. Neutron tomography is one technique that results in a three-dimensional model of the sample, representing the interaction of the neutrons with the sample. This relies both on reliable data acquisition and on image processing after acquisition. Over the course of the project, the focus has changed from the former to the latter, culminating in a large-scale reconstruction of a meter-long fossilized skull. The full reconstruction is not yet complete, though tools have been developed to improve the speed and accuracy of the reconstruction. This project helps to improve the capabilities of LANSCE and LANL with regards to imaging large or unwieldy objects.

  10. Neutron Tomography at the Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Myers, William Riley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-07

    Neutron imaging is an incredibly powerful tool for non-destructive sample characterization and materials science. Neutron tomography is one technique that results in a three-dimensional model of the sample, representing the interaction of the neutrons with the sample. This relies both on reliable data acquisition and on image processing after acquisition. Over the course of the project, the focus has changed from the former to the latter, culminating in a large-scale reconstruction of a meter-long fossilized skull. The full reconstruction is not yet complete, though tools have been developed to improve the speed and accuracy of the reconstruction. This project helps to improve the capabilities of LANSCE and LANL with regards to imaging large or unwieldy objects.

  11. Tribal engagement strategy of the South Central Climate Science Center, 2014

    Science.gov (United States)

    Andrews, William J.; Taylor, April; Winton, Kimberly T.

    2014-01-01

    The South Central Climate Science Center was established by the U.S. Department of the Interior in 2012 to increase understanding of climate change and coordinate an effective response to climate-change effects on Native American tribes and natural and cultural resources that the Department manages. The eight regional Climate Science Centers of the U.S. Department of the Interior work closely with natural-resource management agencies, university researchers, and others such as tribes and private landowners on climate-change issues. The relatively large number of Native Americans in the south central United States and their special knowledge of changing ecosystems make working with tribes and tribal members on climate-change issues particularly important in this part of the Nation. This circular describes priorities of the South Central Climate Science Center and provides information about resources available from Climate Science Centers and partner agencies regarding climate change. The circular also describes how this Climate Science Center, tribes and tribal members, and others can collaborate to minimize potential harmful effects of climate change on human society and our surrounding ecosystems.

  12. USGS science in Menlo Park -- a science strategy for the U.S. Geological Survey Menlo Park Science Center, 2005-2015

    Science.gov (United States)

    Brocher, Thomas M.; Carr, Michael D.; Halsing, David L.; John, David A.; Langenheim, V.E.; Mangan, Margaret T.; Marvin-DiPasquale, Mark C.; Takekawa, John Y.; Tiedeman, Claire

    2006-01-01

    In the spring of 2004, the U.S. Geological Survey (USGS) Menlo Park Center Council commissioned an interdisciplinary working group to develop a forward-looking science strategy for the USGS Menlo Park Science Center in California (hereafter also referred to as "the Center"). The Center has been the flagship research center for the USGS in the western United States for more than 50 years, and the Council recognizes that science priorities must be the primary consideration guiding critical decisions made about the future evolution of the Center. In developing this strategy, the working group consulted widely within the USGS and with external clients and collaborators, so that most stakeholders had an opportunity to influence the science goals and operational objectives.The Science Goals are to: Natural Hazards: Conduct natural-hazard research and assessments critical to effective mitigation planning, short-term forecasting, and event response. Ecosystem Change: Develop a predictive understanding of ecosystem change that advances ecosystem restoration and adaptive management. Natural Resources: Advance the understanding of natural resources in a geologic, hydrologic, economic, environmental, and global context. Modeling Earth System Processes: Increase and improve capabilities for quantitative simulation, prediction, and assessment of Earth system processes.The strategy presents seven key Operational Objectives with specific actions to achieve the scientific goals. These Operational Objectives are to:Provide a hub for technology, laboratories, and library services to support science in the Western Region. Increase advanced computing capabilities and promote sharing of these resources. Enhance the intellectual diversity, vibrancy, and capacity of the work force through improved recruitment and retention. Strengthen client and collaborative relationships in the community at an institutional level.Expand monitoring capability by increasing density, sensitivity, and

  13. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Hules, J. [ed.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  14. “Not Designed for Us”: How Science Museums and Science Centers Socially Exclude Low-Income, Minority Ethnic Groups

    Science.gov (United States)

    Dawson, Emily

    2014-01-01

    This paper explores how people from low-income, minority ethnic groups perceive and experience exclusion from informal science education (ISE) institutions, such as museums and science centers. Drawing on qualitative data from four focus groups, 32 interviews, four accompanied visits to ISE institutions, and field notes, this paper presents an analysis of exclusion from science learning opportunities during visits alongside participants’ attitudes, expectations, and conclusions about participation in ISE. Participants came from four community groups in central London: a Sierra Leonean group (n = 21), a Latin American group (n = 18), a Somali group (n = 6), and an Asian group (n = 13). Using a theoretical framework based on the work of Bourdieu, the analysis suggests ISE practices were grounded in expectations about visitors’ scientific knowledge, language skills, and finances in ways that were problematic for participants and excluded them from science learning opportunities. It is argued that ISE practices reinforced participants preexisting sense that museums and science centers were “not for us.” The paper concludes with a discussion of the findings in relation to previous research on participation in ISE and the potential for developing more inclusive informal science learning opportunities. PMID:25574059

  15. Estimation of thermochemical behavior of spallation products in mercury target

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kaoru; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Aso, Tomokazu; Teshigawara, Makoto; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    In order to examine the radiation safety of a spallation mercury target system, especially source term evaluation, it is necessary to clarify the chemical forms of spallation products generated by spallation reaction with proton beam. As for the chemical forms of spallation products in mercury that involves large amounts of spallation products, these forms were estimated by using the binary phase diagrams and the thermochemical equilibrium calculation based on the amounts of spallation product. Calculation results showed that the mercury would dissolve Al, As, B, Be, Bi, C, Co, Cr, Fe, Ga, Ge, Ir, Mo, Nb, Os, Re, Ru, Sb, Si, Ta, Tc, V and W in the element state, and Ag, Au, Ba, Br, Ca, Cd, Ce, Cl, Cs, Cu, Dy, Er, Eu, F, Gd, Hf, Ho, I, In, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, O, Pb, Pd, Pr, Pt, Rb, Rh, S, Sc, Se, Sm, Sn, Sr, Tb, Te, Ti, Tl, Tm, Y, Yb, Zn and Zr in the form of inorganic mercury compounds. As for As, Be, Co, Cr, Fe, Ge, Ir, Mo, Nb, Os, Pt, Re, Ru, Se, Ta, V, W and Zr, precipitation could be occurred when increasing the amounts of spallation products with operation time of the spallation target system. On the other hand, beryllium-7 (Be-7), which is produced by spallation reaction of oxygen in the cooling water of a safety hull, becomes the main factor of the external exposure to maintain the cooling loop. Based on the thermochemical equilibrium calculation to Be-H{sub 2}O binary system, the chemical forms of Be in the cooling water were estimated. Then the Be could exist in the form of cations such as BeOH{sup +}, BeO{sup +} and Be{sup 2+} under the condition of less than 10{sup -8} of the Be mole fraction in the cooling water. (author)

  16. Estimation of thermochemical behavior of spallation products in mercury target

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Aso, Tomokazu; Teshigawara, Makoto; Hino, Ryutaro

    2002-02-01

    In order to examine the radiation safety of a spallation mercury target system, especially source term evaluation, it is necessary to clarify the chemical forms of spallation products generated by spallation reaction with proton beam. As for the chemical forms of spallation products in mercury that involves large amounts of spallation products, these forms were estimated by using the binary phase diagrams and the thermochemical equilibrium calculation based on the amounts of spallation product. Calculation results showed that the mercury would dissolve Al, As, B, Be, Bi, C, Co, Cr, Fe, Ga, Ge, Ir, Mo, Nb, Os, Re, Ru, Sb, Si, Ta, Tc, V and W in the element state, and Ag, Au, Ba, Br, Ca, Cd, Ce, Cl, Cs, Cu, Dy, Er, Eu, F, Gd, Hf, Ho, I, In, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, O, Pb, Pd, Pr, Pt, Rb, Rh, S, Sc, Se, Sm, Sn, Sr, Tb, Te, Ti, Tl, Tm, Y, Yb, Zn and Zr in the form of inorganic mercury compounds. As for As, Be, Co, Cr, Fe, Ge, Ir, Mo, Nb, Os, Pt, Re, Ru, Se, Ta, V, W and Zr, precipitation could be occurred when increasing the amounts of spallation products with operation time of the spallation target system. On the other hand, beryllium-7 (Be-7), which is produced by spallation reaction of oxygen in the cooling water of a safety hull, becomes the main factor of the external exposure to maintain the cooling loop. Based on the thermochemical equilibrium calculation to Be-H 2 O binary system, the chemical forms of Be in the cooling water were estimated. Then the Be could exist in the form of cations such as BeOH + , BeO + and Be 2+ under the condition of less than 10 -8 of the Be mole fraction in the cooling water. (author)

  17. Review of the Lujan neutron scattering center: basic energy sciences prereport February 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

    2009-01-01

    The Lujan Neutron Scattering Center (Lujan Center) at LANSCE is a designated National User Facility for neutron scattering and nuclear physics studies with pulsed beams of moderated neutrons (cold, thermal, and epithermal). As one of five experimental areas at the Los Alamos Neutron Science Center (LANSCE), the Lujan Center hosts engineers, scientists, and students from around the world. The Lujan Center consists of Experimental Room (ER) 1 (ERl) built by the Laboratory in 1977, ER2 built by the Office of Basic Energy Sciences (BES) in 1989, and the Office Building (622) also built by BES in 1989, along with a chem-bio lab, a shop, and other out-buildings. According to a 1996 Memorandum of Agreement (MOA) between the Defense Programs (DP) Office of the National Nuclear Security Agency (NNSA) and the Office of Science (SC, then the Office of Energy Research), the Lujan Center flight paths were transferred from DP to SC, including those in ERI. That MOA was updated in 2001. Under the MOA, NNSA-DP delivers neutron beam to the windows of the target crypt, outside of which BES becomes the 'landlord.' The leveraging nature of the Lujan Center on the LANSCE accelerator is a substantial annual leverage to the $11 M BES operating fund worth approximately $56 M operating cost of the linear accelerator (LINAC)-in beam delivery.

  18. Development of a nuclear spallation simulation code and calculations of primary spallation products

    International Nuclear Information System (INIS)

    Nishida, Takahiko; Nakahara, Yasuaki; Tsutsui, Tsuneo

    1986-08-01

    In order to make evaluations of computational models for the nuclear spallation reaction from a nuclear physics point of view, a simulation code NUCLEUS has been developed by modifying and combining the Monte Carlo codes NMTC/JAERI and NMTA/JAERI for calculating only the nuclear spallation reaction (intranuclear cascade + evaporation and/or fast fission) between a nucleus and a projectile without taking into consideration of internuclear transport. New several plotting routines have been provided for the rapid process of much more event data, obtained by using the ARGUS plotting system. The results obtained by our code can be directly compared with the experimental results using by thin foil experiments in which internuclear multiple collisions have little effects, and will serve to upgrade the calculational methods and the values of nuclear parameters currently used in the calculations. Some discussions are done about the preliminary computational results obtained by using NUCLEUS. The mass distribution and charge dispersion of reaction products are examined in some detail for the nuclear spallation reaction between incident protons and target nuclei, such as U, Pb and Ag, in the energy range from 0.5 GeV to 3.0 GeV. These results show that the distribution of reaction products ceases to change its form as the proton energy increases over about 2 GeV. The same tendency is seen in the energy dependence of the number of primary particles emitted from a nucleus. After spallation reactions, a variety of nuclei, especially many neutron deficient nuclides with nuclear charges nearly equal to ones of a target nucleus, are produced. Due to their short lifetime most of them will change to stable nuclides in due time. Finally, some important issues are discussed to improve the present simulation method. (author)

  19. Teachers' professional development needs and current practices at the Alexander Science Center School

    Science.gov (United States)

    Gargus, Gerald Vincent

    This investigation represents an in-depth understanding of teacher professional development at the Alexander Science Center School, a dependent charter museum school established through a partnership between the California Science Center and Los Angeles Unified School District. Three methods of data collection were used. A survey was distributed and collected from the school's teachers, resulting in a prioritized list of teacher professional development needs, as well as a summary of teachers' opinions about the school's existing professional development program. In addition, six key stakeholders in the school's professional development program were interviewed for the study. Finally, documents related to the school's professional development program were analyzed. Data collected from the interviews and documents were used to develop an understand various components of the Alexander Science Center School's professional development program. Teachers identified seven areas that had a high-priority for future professional development including developing skills far working with below-grade-level students, improving the analytical skills of student in mathematics, working with English Language Learners, improving students' overall reading ability levels, developing teachers' content-area knowledge for science, integrating science across the curriculum, and incorporating hands-on activity-based learning strategies to teach science. Professional development needs identified by Alexander Science Center School teachers were categorized based on their focus on content knowledge, pedagogical content knowledge, or curricular knowledge. Analysis of data collected through interviews and documents revealed that the Alexander Science Center School's professional development program consisted of six venues for providing professional development for teachers including weekly "banked time" sessions taking place within the standard school day, grade-level meetings, teacher support

  20. Informing Science (IS and Science and Technology Studies (STS: The University as Decision Center (DC for Teaching Interdisciplinary Research

    Directory of Open Access Journals (Sweden)

    Teresa Castelao-Lawless

    2001-01-01

    Full Text Available Students of history and philosophy of science courses at my University are either naïve robust realists or naïve relativists in relation to science and technology. The first group absorbs from culture stereotypical conceptions, such as the value-free character of the scientific method, that science and technology are impervious to history or ideology, and that science and religion are always at odds. The second believes science and technology were selected arbitrarily by ideologues to have privileged world views of reality to the detriment of other interpretations. These deterministic outlooks must be challenged to make students aware of the social importance of their future roles, be they as scientists and engineers or as science and technology policy decision makers. The University as Decision Center (DC not only reproduces the social by teaching standard solutions to well-defined problems but also provides information regarding conflict resolution and the epistemological, individual, historical, social, and political mechanisms that help create new science and technology. Interdisciplinary research prepares students for roles that require science and technology literacy, but raises methodological issues in the context of the classroom as it increases uncertainty with respect to apparently self-evident beliefs about scientific and technological practices.

  1. Preliminary radiation transport analysis for the proposed National Spallation Neutron Source (NSNS)

    International Nuclear Information System (INIS)

    Johnson, J.O.; Lillie, R.A.

    1997-01-01

    The use of neutrons in science and industry has increased continuously during the past 50 years with applications now widely used in physics, chemistry, biology, engineering, and medicine. Within this history, the relative merits of using pulsed accelerator spallation sources versus reactors for neutron sources as the preferred option for the future. To address this future need, the Department of Energy (DOE) has initiated a pre-conceptual design study for the National Spallation Neutron Source (NSNS) and given preliminary approval for the proposed facility to be built at Oak Ridge National Laboratory (ORNL). The DOE directive is to design and build a short pulse spallation source in the 1 MS power range with sufficient design flexibility that it can be upgraded and operated at a significantly higher power at a later stage. The pre-conceptualized design of the NSNS initially consists of an accelerator system capable of delivering a 1 to 2 GeV proton beam with 1 MW of beam power in an approximate 0.5 microsecond pulse at a 60 Hz frequency onto a single target station. The NSNS will be upgraded in stages to a 5 MW facility with two target stations (a high power station operating at 60 Hz and a low power station operating at 10 Hz). Each target station will contain four moderators (combinations of cryogenic and ambient temperature) and 18 beam liens for a total of 36 experiment stations. This paper summarizes the radiation transport analysis strategies for the proposed NSNS facility

  2. Spallation impact analysis of plutonium storage container at K-Area

    International Nuclear Information System (INIS)

    Gong, C.

    2000-01-01

    A 100-pound concrete block falls 55-foot from ceiling spallation upon the top of the 9975 shipping package. This finite element analysis aims to evaluate the dynamic impact from the spallation upon the packaging. The geometric configuration of the packaging is meticulously modeled in detail. However, the drum is eliminated and the fiberboard with radius greater than 5.6 inches is conservatively omitted. The primary containment vessel and 3013 container were not included to simplify the model. The concrete block is modeled as a rigid body. The material properties are conservatively selected. The final results indicate that the secondary containment vessel is intact during this spallation impact. Consequently the primary containment vessel and 3013 container would not experience damage and containment is maintained. The secondary containment vessel protects the primary containment vessel from the dynamic impact. The top fiberboard is compressed from 3.5 inches to 0.875 inches will eventually recover to 1.8 inches according to tests performed at Savannah River Technology Center (SRTC)

  3. WFIRST: STScI Science Operations Center (SSOC) Activities and Plans

    Science.gov (United States)

    Gilbert, Karoline M.; STScI WFIRST Team

    2018-01-01

    The science operations for the WFIRST Mission will be distributed between Goddard Space Flight Center, the Space Telescope Science Institute (STScI), and the Infrared Processing and Analysis Center (IPAC). The STScI Science Operations Center (SSOC) will schedule and archive all WFIRST observations, will calibrate and produce pipeline-reduced data products for the Wide Field Instrument, and will support the astronomical community in planning WFI observations and analyzing WFI data. During the formulation phase, WFIRST team members at STScI have developed operations concepts for scheduling, data management, and the archive; have performed technical studies investigating the impact of WFIRST design choices on data quality and analysis; and have built simulation tools to aid the community in exploring WFIRST’s capabilities. We will highlight examples of each of these efforts.

  4. Mass formula dependence of calculated spallation reaction product distributions

    International Nuclear Information System (INIS)

    Nishida, Takahiko; Nakahara, Yasuaki

    1990-01-01

    A new version of the spallation reaction simulation code NUCLEUS was developed by incorporating Uno and Yamada's mass formula. This version was used to calculate the distribution of products from the spallation of uranium nuclei by high-energy protons. The dependence of the distributions on the mass formula was examined by comparing the results with those from the original version, which is based on Cameron's mass formula and the mass table compiled by Wapstra et al. As regards the fission component of spallation products, the new version reproduces the reaction product data obtained from thin foil experiments much better, especially on the neutron excess side. (orig.) [de

  5. Construction and operation of the Spallation Neutron Source: Draft environmental impact statement. Volume 1

    International Nuclear Information System (INIS)

    1998-12-01

    DOE proposes to construct and operate a state-of-the-art, short-pulsed spallation neutron source comprised of an ion source, a linear accelerator, a proton accumulator ring, and an experiment building containing a liquid mercury target and a suite of neutron scattering instrumentation. The proposed Spallation Neutron Source would be designed to operate at a proton beam power of 1 megawatt. The design would accommodate future upgrades to a peak operating power of 4 megawatts. These upgrades may include construction of a second proton accumulation ring and a second target. The US needs a high-flux, short-pulsed neutron source to provide the scientific and industrial research communities with a much more intense source of pulsed neutrons for neutron scattering research than is currently available, and to assure the availability of a state-of-the-art facility in the decades ahead. This next-generation neutron source would create new scientific and engineering opportunities. In addition, it would help replace the neutron science capacity that will be lost by the eventual shutdown of existing sources as they reach the end of their useful operating lives in the first half of the next century. This document analyzes the potential environmental impacts from the proposed action and the alternatives. The analysis assumes a facility operating at a power of 1 MW and 4 MW over the life of the facility. The two primary alternatives analyzed in this EIS are: the proposed action (to proceed with building the Spallation Neutron Source) and the No-Action Alternative. The No-Action Alternative describes the expected condition of the environment if no action were taken. Four siting alternatives for the Spallation Neutron Source are evaluated: Oak Ridge National Laboratory, Oak Ridge, TN, (preferred alternative); Argonne National Laboratory, Argonne, IL (US); Brookhaven National Laboratory, Upton, NY; and Los Alamos National Laboratory, Los Alamos, NM

  6. Semantic Web Data Discovery of Earth Science Data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Science.gov (United States)

    Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William

    2008-01-01

    Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.

  7. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, D.M.; Boring, A.M. [comps.

    1991-10-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  8. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    International Nuclear Information System (INIS)

    Parkin, D.M.; Boring, A.M.

    1991-01-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory's defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location

  9. Measurements of neutron spallation cross section. 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Imamura, M.; Nakao, N.; Shibata, S.; Uwamino, Y.; Nakanishi, N.; Tanaka, Su.

    1997-03-01

    Neutron spallation cross section of {sup 59}Co(n,xn){sup 60-x}Co, {sup nat}Cu(n,sp){sup 56}Mn, {sup nat}Cu(n,sp){sup 58}Co, {sup nat}Cu(n,xn){sup 60}Cu, {sup nat}Cu(n,xn){sup 61}Cu and {sup nat}Cu(n,sp){sup 65}Ni was measured in the quasi-monoenergetic p-Li neutron fields in the energy range above 40 MeV which have been established at three AVF cyclotron facilities of (1) INS of Univ. of Tokyo, (2) TIARA of JAERI and (3) RIKEN. Our experimental data were compared with the ENDF/B-VI high energy file data by Fukahori and the calculated cross section data by Odano. (author)

  10. CFD analysis of the HYPER spallation target

    International Nuclear Information System (INIS)

    Cho, Chungho; Tak, Nam-il; Choi, Jae-Hyuk; Lee, Yong-Bum

    2008-01-01

    KAERI (Korea Atomic Energy Research Institute) is developing an accelerator driven system (ADS) named HYPER (HYbrid Power Extraction Reactor) for a transmutation of long-lived nuclear wastes. One of the challenging tasks for the HYPER system is to design a large spallation target with a beam power of 15-25 MW. The paper focuses on a thermal-hydraulic analysis of the active part of the HYPER target. Computational fluid dynamics (CFD) analysis was performed by using a commercial code CFX 5.7.1. Several advanced turbulence models with different grid structures were applied. The CFX results reveal a significant impact of the turbulence model on the window temperature. Particularly, the k-ε model predicts the lowest window temperature among the five investigated turbulence models

  11. Spallation neutron source target station issues

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A.

    1996-01-01

    In many areas of physics, materials and nuclear engineering, it is extremely valuable to have a very intense source of neutrons so that the structure and function of materials can be studied. One facility proposed for this purpose is the National Spallation Neutron Source (NSNS). This facility will consist of two parts: (1) a high-energy (∼1 GeV) and high powered (∼ 1 MW) proton accelerator, and (2) a target station which converts the protons to low-energy (≤ 2 eV) neutrons and delivers them to the neutron scattering instruments. This paper deals with the second part, i.e., the design and development of the NSNS target station and the scientifically challenging issues. Many scientific and technical disciplines are required to produce a successful target station. These include engineering, remote handling, neutronics, materials, thermal hydraulics, and instrumentation. Some of these areas will be discussed

  12. BNL feasibility studies of spallation neutron sources

    International Nuclear Information System (INIS)

    Lee, Y.Y.; Ruggiero, A.G.; Van Steenbergen, A.; Weng, W.T.

    1995-01-01

    This paper is the summary of conceptual design studies of a 5 MW Pulsed Spallation Neutron Source (PSNS) conducted by an interdepartmental study group at Brookhaven National Laboratory. The study was made of two periods. First, a scenario based on the use of a 600 MeV Linac followed by two fast-cycling 3.6 GeV Synchrotrons was investigated. Then, in a subsequent period, the attention of the study was directed toward an Accumulator scenario with two options: (1) a 1.25 GeV normal conducting Linac followed by two Accumulator Rings, and (2) a 2.4 GeV superconducting Linac followed by a single Accumulator Ring. The study did not make any reference to a specific site

  13. Radiochemical aspects of liquid mercury spallation targets

    CERN Document Server

    Neuhausen, Joerg; Eichler, Bernd; Eller, Martin; Horn, Susanne; Schumann, Dorothea; Stora, Thierry

    2012-01-01

    Liquid metal spallation targets using mercury as target material are used in state-of-the-art high power pulsed neutron sources that have been constructed in the USA and Japan within the last decade. Similar target concepts were also proposed for next generation ISOL, beta-beam and neutrino facilities. A large amount of radioactivity will be induced in the liquid metal during operation caused by the interaction of the target material with the intense proton beam. This radioactivity - carried by a wide range of radioisotopes of all the elements of the periodic table from hydrogen up to thallium - must be considered for the assessment of safe operation and maintenance procedures as well as for a final disposal of the used target material and components. This report presents an overview on chemical investigations performed in our laboratory that deal with the behavior of radionuclides in proton irradiated mercury samples. The solubility of elements in mercury was calculated using thermodynamical data obtained by...

  14. Strain rate effects for spallation of concrete

    Science.gov (United States)

    Häussler-Combe, Ulrich; Panteki, Evmorfia; Kühn, Tino

    2015-09-01

    Appropriate triaxial constitutive laws are the key for a realistic simulation of high speed dynamics of concrete. The strain rate effect is still an open issue within this context. In particular the question whether it is a material property - which can be covered by rate dependent stress strain relations - or mainly an effect of inertia is still under discussion. Experimental and theoretical investigations of spallation of concrete specimen in a Hopkinson Bar setup may bring some evidence into this question. For this purpose the paper describes the VERD model, a newly developed constitutive law for concrete based on a damage approach with included strain rate effects [1]. In contrast to other approaches the dynamic strength increase is not directly coupled to strain rate values but related to physical mechanisms like the retarded movement of water in capillary systems and delayed microcracking. The constitutive law is fully triaxial and implemented into explicit finite element codes for the investigation of a wide range of concrete structures exposed to impact and explosions. The current setup models spallation experiments with concrete specimen [2]. The results of such experiments are mainly related to the dynamic tensile strength and the crack energy of concrete which may be derived from, e.g., the velocity of spalled concrete fragments. The experimental results are compared to the VERD model and two further constitutive laws implemented in LS-Dyna. The results indicate that both viscosity and retarded damage are required for a realistic description of the material behaviour of concrete exposed to high strain effects [3].

  15. Strain rate effects for spallation of concrete

    Directory of Open Access Journals (Sweden)

    Häussler-Combe Ulrich

    2015-01-01

    Full Text Available Appropriate triaxial constitutive laws are the key for a realistic simulation of high speed dynamics of concrete. The strain rate effect is still an open issue within this context. In particular the question whether it is a material property – which can be covered by rate dependent stress strain relations – or mainly an effect of inertia is still under discussion. Experimental and theoretical investigations of spallation of concrete specimen in a Hopkinson Bar setup may bring some evidence into this question. For this purpose the paper describes the VERD model, a newly developed constitutive law for concrete based on a damage approach with included strain rate effects [1]. In contrast to other approaches the dynamic strength increase is not directly coupled to strain rate values but related to physical mechanisms like the retarded movement of water in capillary systems and delayed microcracking. The constitutive law is fully triaxial and implemented into explicit finite element codes for the investigation of a wide range of concrete structures exposed to impact and explosions. The current setup models spallation experiments with concrete specimen [2]. The results of such experiments are mainly related to the dynamic tensile strength and the crack energy of concrete which may be derived from, e.g., the velocity of spalled concrete fragments. The experimental results are compared to the VERD model and two further constitutive laws implemented in LS-Dyna. The results indicate that both viscosity and retarded damage are required for a realistic description of the material behaviour of concrete exposed to high strain effects [3].

  16. GLOBE Observer and the Association of Science & Technology Centers: Leveraging Citizen Science and Partnerships for an International Science Experiment to Build Climate Literacy

    Science.gov (United States)

    Riebeek Kohl, H.; Chambers, L. H.; Murphy, T.

    2016-12-01

    For more that 20 years, the Global Learning and Observations to Benefit the Environment (GLOBE) Program has sought to increase environment literacy in students by involving them in the process of data collection and scientific research. In 2016, the program expanded to accept observations from citizen scientists of all ages through a relatively simple app. Called GLOBE Observer, the new program aims to help participants feel connected to a global community focused on advancing the scientific understanding of Earth system science while building climate literacy among participants and increasing valuable environmental data points to expand both student and scientific research. In October 2016, GLOBE Observer partnered with the Association of Science & Technology Centers (ASTC) in an international science experiment in which museums and patrons around the world collected cloud observations through GLOBE Observer to create a global cloud map in support of NASA satellite science. The experiment was an element of the International Science Center and Science Museum Day, an event planned in partnership with UNESCO and ASTC. Museums and science centers provided the climate context for the observations, while GLOBE Observer offered a uniform experience and a digital platform to build a connected global community. This talk will introduce GLOBE Observer and will present the results of the experiment, including evaluation feedback on gains in climate literacy through the event.

  17. Basic and Applied Research at the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Lisowski, P.W.

    2003-01-01

    The Los Alamos Neutron Science Center, or LANSCE, is an accelerator-based national user facility for research in basic and applied science. At present LANSCE has two experimental areas primarily using neutrons generated by 800-MeV protons striking tungsten target systems. A third area uses the proton beam for radiography. This paper describes the three LANSCE experimental areas, gives highlights of the past operating period, and discusses plans for the future

  18. Radiation physics of high power spallation targets. State of the art simulation methods and experiments, the 'European Spallation Source' (ESS)

    International Nuclear Information System (INIS)

    Filges, D.; Cloth, P.; Neef, R.D.; Schaal, H.

    1998-01-01

    Particle transport and nuclear interactions of planned high power spallation targets with GeV proton beams can be simulated using widely developed Monte Carlo transport methods. This includes available high energy radiation transport codes and systems for low energy, earlier developed for reactor physics and fusion technology. Monte Carlo simulation codes and applied methods are discussed. The capabilities of the world-wide existing state-of-the-art computer code systems are demonstrated. Results of computational studies for the 'European Spallation Source' (ESS) mercury high power target station are given. The needs for spallation related data and planned experiments are shown. (author)

  19. The effect of playing a science center-based mobile game: Affective outcomes and gender differences

    Science.gov (United States)

    Atwood-Blaine, Dana

    Situated in a hands-on science center, The Great STEM Caper was a collaborative mobile game built on the ARIS platform that was designed to engage 5th-9th grade players in NGSS science and engineering practices while they interacted with various exhibits. Same gender partners sharing one iPad would search for QR codes placed at specific exhibits; scanning a code within the game would launch a challenge for that exhibit. The primary hypothesis was that in- game victories would be equivalent to "mastery experiences" as described by Bandura (1997) and would result in increased science self-efficacy. Gender differences in gameplay behaviors and perceptions were also studied. The study included two groups, one that played the game during their visit and one that explored the science center in the traditional way. The Motivation to Learn Science Questionnaire was administered to participants in both groups both before and after their visit to the science center. Participants wore head-mounted GoPro cameras to record their interactions within the physical and social environment. No differences in affective outcomes were found between the game and comparison groups or between boys and girls in the game group. The MLSQ was unable to measure any significant change in science self-efficacy, interest and enjoyment of science, or overall motivation to learn science in either group. However, girls outperformed boys on every measure of game achievement. Lazzaro's (2004) four types of fun were found to be a good fit for describing the gender differences in game perceptions and behaviors. Girls tended to enjoy hard fun and collaborative people fun while boys enjoyed easy fun and competitive people fun. While boys associated game achievement with enjoyment and victory, girls perceived their game achievement as difficult, rather than enjoyable or victorious.

  20. Deep spallation of medium mass isotopes by protons

    International Nuclear Information System (INIS)

    Kolsky, K.L.; Karol, P.J.

    1993-01-01

    Spallation systematics have been extended into the deep spallation mass region. Production cross sections of scandium radioisotopes from 0.8 GeV protons on 89 Y, 92,96,100 Mo, and 130 Te targets were measured and the cross sections were used to generate isobaric yield curves at A p =47. In the latter target, this corresponds to a mass loss of >80 nucleons. At ∼10 MeV/nucleon and for products outside the multifragmentation region, this is an extreme manifestation of the spallation process. The results prove to fit smooth extrapolations from trends developed in earlier work on less deep spallation. The influence of target composition is still evident even from 130 Te, in contrast to expectations, based on evaporation considerations, that this so-called memory effect would wash out

  1. Proceedings of the international workshop on spallation materials technology

    International Nuclear Information System (INIS)

    Mansur, L.K.; Ullmaier, H.

    1996-01-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility

  2. Proceedings of the international workshop on spallation materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, L.K.; Ullmaier, H. [comps.

    1996-10-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

  3. Quantum molecular dynamics approach to estimate spallation yield ...

    Indian Academy of Sciences (India)

    Consequently, the need for reliable data to design and construct spallation neutron sources has prompted ... A major disadvantage of the QMD code .... have estimated the average neutron multiplicities per primary reaction and kinetic energy.

  4. Pima Community College Planning Grant for Autonomous Intelligent Network of Systems (AINS) Science, Mathematics and Engineering Education Center

    National Research Council Canada - National Science Library

    2006-01-01

    .... The Center was to be funded by the Department of Defense, Office of Naval Research (ONR). The TDRI AINS Center's objectives were to advance ONR's technologies and to improve exposure and participation in science, math, and engineering (SME...

  5. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    Science.gov (United States)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  6. Operational status and future plans for the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Jones, Kevin W.; Schoenberg, Kurt F.

    2008-01-01

    The Los Alamos Neutron Science Center (LANSCE) continues to be a signature experimental science facility at Los Alamos National Laboratory (LANL). The 800 MeV linear proton accelerator provides multiplexed beams to five unique target stations to produce medical radioisotopes, ultra-cold neutrons, thermal and high energy neutrons for material and nuclear science, and to conduct proton radiography of dynamic events. Recent operating experience will be reviewed and the role of an enhanced LANSCE facility in LANL's new signature facility initiative, Matter and Radiation in Extremes (MaRIE) will be discussed.

  7. The National Space Science Data Center guide to international rocket data

    Science.gov (United States)

    Dubach, L. L.

    1972-01-01

    Background information is given which briefly describes the mission of the National Space Science Data Center (NSSDC), including its functions and systems, along with its policies and purposes for collecting rocket data. The operation of a machine-sensible rocket information system, which allows the Data Center to have convenient access to information and data concerning all rocket flights carrying scientific experiments, is also described. The central feature of this system, an index of rocket flights maintained on magnetic tape, is described. Standard outputs for NSSDC and for the World Data Center A (WDC-A) for Rockets and Satellites are described.

  8. NASA Langley Atmospheric Science Data Centers Near Real-Time Data Products

    Science.gov (United States)

    Davenport, T.; Parker, L.; Rinsland, P. L.

    2014-12-01

    Over the past decade the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center has archived and distributed a variety of satellite mission data sets. NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The ASDC has collaborated with Science Teams to accommodate emerging science users in the climate and modeling communities. The ASDC has expanded its original role to support operational usage by related Earth Science satellites, support land and ocean assimilations, support of field campaigns, outreach programs, and application projects for agriculture and energy industries to bridge the gap between Earth science research results and the adoption of data and prediction capabilities for reliable and sustained use in Decision Support Systems (DSS). For example; these products are being used by the community performing data assimilations to regulate aerosol mass in global transport models to improve model response and forecast accuracy, to assess the performance of components of a global coupled atmospheric-ocean climate model, improve atmospheric motion vector (winds) impact on numerical weather prediction models, and to provide internet-based access to parameters specifically tailored to assist in the design of solar and wind powered renewable energy systems. These more focused applications often require Near Real-Time (NRT) products. Generating NRT products pose their own unique set challenges for the ASDC and the Science Teams. Examples of ASDC NRT products and challenges will be discussed.

  9. Some results of applied spallation physics research at Los Alamos

    International Nuclear Information System (INIS)

    Russell, G.J.; Gilmore, J.S.

    1983-01-01

    At the Los Alamos National Laboratory, we have an active effort in the general area of Applied Spallation Physics Research. The main emphasis of this activity has been on obtaining basic data relevant to spallation neutron source development, accelerator breeder technology, and validation of computer codes used in these applications. We present here an overview of our research effort and show some measured and calculated results of differential and clean integral experiments

  10. On spallation and fragmentation of heavy ions at intermediate energies

    International Nuclear Information System (INIS)

    Musulmanbekov, G.; Al-Haidary, A.

    2002-01-01

    A new code for simulation of spallation and (multi)fragmentation of nuclei in proton and nucleus induced collisions at intermediate and high energies is developed. The code is a combination of modified intranuclear cascade model with traditional fission - evaporation part and multifragmentation part based on lattice representation of nuclear structure and percolation approach. The production of s-wave resonances and formation time concept included into standard intranuclear cascade code provides correct calculation of excitation energy of residues. This modified cascade code served as a bridge between low and high energy model descriptions of nucleus-nucleus collisions. A good agreement with experiments has been obtained for multiparticle production at intermediate and relatively high energies. Nuclear structure of colliding nuclei is represented as face centered cubic lattice. This representation, being isomorphic to the shell model of nuclear structure, allows to apply percolation approach for nuclear fragmentation. The offered percolation model includes both site and bond percolation. Broken sites represent holes left by nucleons knocked out at cascade state. Therefore, in the first cascade stage mutual rescattering of the colliding nuclei results in knocking some nucleons out of them. After this fast stage paltrily destruct and excited residues remain. On the second stage residual nuclei either evaporate nucleons and light nuclei up to alpha-particles or fragment into pieces with intermediate masses. The choice depends on residue's destruction degree. At low excitation energy and small destruction of the residue the evaporation and fission mechanisms are preferable. The more excitation energy and destruction the more probability of (multi)fragmentation process. Moreover, the more destruction degree of the residual the more the site percolation probability. It is concluded, that at low and intermediate excitation energies the fragmentation of nuclei is slow

  11. Cold moderators at pulsed spallation sources: A personal view

    International Nuclear Information System (INIS)

    Pynn, R.

    1991-01-01

    When Maier-Leibnitz built the ILL, he came first to the US and to Canada where there were several prominent neutron scattering centers. He asked what instruments he should build. The reply was unanimous: 'First you build some three-axis machines to form the base program and then you see what else you can thin of.' Maier-Leibnitz's reply was equally characteristic: 'Thank you very much hor-ellipsis there will be no three-axis spectrometers at my institute.' He wasn't quite right - there was one at the beginning. But the point is that, instead of following conventional wisdom, Maier-Leibnitz hired a bunch of young scientists who didn't know as much about neutron scattering as their colleagues on the American continent and who therefore did not know what was 'impossible.' So, they built the impossible - a cold source integrated into the reactor, several hundred meters of guides, a 40-meter SANS machine, a back-scattering spectrometer, a hedgehog - the whole works. And they changed the face of neutron scattering forever. The author is going to adopt the same philosophy - because he knows very little about cold moderators at spallation sources, he doesn't know what is possible or what is stupid. So he is going to make some outrageous comments to stimulate Peter Egelstaff's discussion session. He makes these remarks, not as Director of LANSCE, but as a research scientist looking well beyond his ares of expertise

  12. Collections management plan for the U.S. Geological Survey Woods Hole Coastal and Marine Science Center Data Library

    Science.gov (United States)

    List, Kelleen M.; Buczkowski, Brian J.; McCarthy, Linda P.; Orton, Alice M.

    2015-08-17

    The U.S. Geological Survey Woods Hole Coastal and Marine Science Center has created a Data Library to organize, preserve, and make available the field, laboratory, and modeling data collected and processed by Woods Hole Coastal and Marine Science Center staff. This Data Library supports current research efforts by providing unique, historic datasets with accompanying metadata. The Woods Hole Coastal and Marine Science Center’s Data Library has custody of historic data and records that are still useful for research, and assists with preservation and distribution of marine science records and data in the course of scientific investigation and experimentation by researchers and staff at the science center.

  13. Centro Regional de Ciencias Nucleares (a Brazilian regional center for nuclear sciences) - activities report - 1999

    International Nuclear Information System (INIS)

    1999-12-01

    The annual activities report of 1999 of nuclear sciences regional center - Brazilian organization - introduces the next main topics: institutional relations; sectorial actions - logistic support and training, laboratory of radiation protection and dosimetry, laboratory of metrology, laboratory of chemical characterization; technical and scientific events; and financial resources and perspectives for 2000

  14. 75 FR 25290 - Notice of Intent To Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2010-05-07

    ... Museum & Science Center, Rochester, NY, that meet the definitions of ``sacred objects'' and ``objects of.... Tonawanda Seneca Nation traditional religious leaders have identified these medicine faces as being needed...-Haudenosaunee consultants, the museum has determined that the medicine faces are both sacred objects and objects...

  15. 75 FR 25289 - Notice of Intent To Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2010-05-07

    ... Museum & Science Center, Rochester, NY, that meet the definitions of ``sacred object'' and object of...- 9). They are of Onondaga origin and were made circa 1970. Onondaga Nation traditional religious... that these medicine faces are culturally affiliated with the Onondaga Nation, and are both sacred...

  16. 77 FR 19698 - Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2012-04-02

    ... Indian tribe, has determined that the cultural items meet the definition of both sacred objects and... Rochester Museum & Science Center that meet the definition of both sacred objects and objects of cultural.... Traditional religious leaders of the Seneca Nation of New York have identified these medicine faces as being...

  17. Patterns in Parent-Child Conversations about Animals at a Marine Science Center

    Science.gov (United States)

    Rigney, Jennifer C.; Callanan, Maureen A.

    2011-01-01

    Parent-child conversations are a potential source of children's developing understanding of the biological domain. We investigated patterns in parent-child conversations that may inform children about biological domain boundaries. At a marine science center exhibit, we compared parent-child talk about typical sea animals with faces (fish) with…

  18. 78 FR 50102 - Notice of Inventory Completion: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2013-08-16

    .... 3003, of the completion of an inventory of associated funerary objects under the control of the....R50000] Notice of Inventory Completion: Rochester Museum & Science Center, Rochester, NY AGENCY: National... inventory of associated funerary objects, in consultation with the appropriate Indian tribes or Native...

  19. Development of a Free-Electron Laser Center and Research in Medicine, Biology and Materials Science,

    Science.gov (United States)

    1992-05-14

    the reduced electron- larons cause localized distortions in an ionic lattice lattice coupling strength leads to molecule emission, which are... syndrome . Health Science Center at San Antonio and the University Buerger’s disease, palmar hyperhidrosis, frostbite and of Mi.imi School of Medicine, Miami

  20. Teachers' Attitude towards Implementation of Learner-Centered Methodology in Science Education in Kenya

    Science.gov (United States)

    Ndirangu, Caroline

    2017-01-01

    This study aims to evaluate teachers' attitude towards implementation of learner-centered methodology in science education in Kenya. The study used a survey design methodology, adopting the purposive, stratified random and simple random sampling procedures and hypothesised that there was no significant relationship between the head teachers'…

  1. 78 FR 28601 - National Center for Advancing Translational Sciences; Request for Comment on Proposed Methods for...

    Science.gov (United States)

    2013-05-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Center for... resources that leverage basic research in support of translational science; and by developing partnerships...-newsletter, distribution of emails to NCATS stakeholder listservs, and announcements on NCATS Facebook page...

  2. Using science centers to expose the general public to the microworld

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, E. [Fermi National Accelerator Lab., Batavia, IL (United States)]|[Science and Technology Interactive Center, Aurora, IL (United States)

    1994-08-01

    Despite the remarkable progress in the past decades in understanding our Universe, we particle physicists have failed to communicate the wonder, excitement, and beauty of these discoveries to the general public. I am sure all agree there is a need, if our support from public funds is to continue at anywhere approximating the present level, for us collectively to educate and inform the general public of what we are doing and why. Informal science education and especially science and technology centers can play an important role in efforts to raise public awareness of particle physics in particular and of basic research in general. Science Centers are a natural avenue for particle physicists to use to communicate with and gain support from the general public.

  3. Bringing You the Moon: Lunar Education Efforts of the Center for Lunar Science and Education

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.; Halligan, E.; LaConte, K.

    2012-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute. In addition to research and exploration activities, the CLSE team is deeply invested in education and public outreach. Overarching goals of CLSE education are to strengthen the future science workforce, attract and retain students in STEM disciplines, and develop advocates for lunar exploration. The team's efforts have resulted in a variety of programs and products, including the creation of a variety of Lunar Traveling Exhibits and the High School Lunar Research Project, featured at http://www.lpi.usra.edu/nlsi/education/.

  4. Using science centers to expose the general public to the microworld

    International Nuclear Information System (INIS)

    Malamud, E.

    1994-08-01

    Despite the remarkable progress in the past decades in understanding our Universe, we particle physicists have failed to communicate the wonder, excitement, and beauty of these discoveries to the general public. I am sure all agree there is a need, if our support from public funds is to continue at anywhere approximating the present level, for us collectively to educate and inform the general public of what we are doing and why. Informal science education and especially science and technology centers can play an important role in efforts to raise public awareness of particle physics in particular and of basic research in general. Science Centers are a natural avenue for particle physicists to use to communicate with and gain support from the general public

  5. Analysis and simulation of a small-angle neutron scattering instrument on a 1 MW long pulse spallation source

    International Nuclear Information System (INIS)

    Olah, G.A.; Hjelm, R.P.; Lujan, M. Jr.

    1996-01-01

    We studied the design and performance of a small-angle neutron scattering (SANS) instrument for a proposed 1 MW, 60 Hz long pulsed spallation source at the Los Alamos Neutron Science Center (LANSCE). An analysis of the effects of source characteristics and chopper performance combined with instrument simulations using the LANSCE Monte Carlo instrument simulations package shows that the T 0 chopper should be no more than 5 m from the source with the frame overlap and frame definition choppers at 5.6 and greater than 7 m, respectively. The study showed that an optimal pulse structure has an exponential decaying tail with τ ∼ 750 μs. The Monte Carlo simulations were used to optimize the LPSS SANS, showing that an optimal length is 18 m. The simulations show that an instrument with variable length is best to match the needs of a given measurement. The performance of the optimized LPSS instrument was found to be comparable with present world standard instruments

  6. Experimental studies of spallation on thin target; Etudes experimentales de la spallation en cible mince

    Energy Technology Data Exchange (ETDEWEB)

    Borne, F.; Crespin, S.; Drake, D.; Frehaut, J.; Ledoux, X.; Lochard, J.P.; Martinez, E.; Patin, Y.; Petibon, E.; Pras, Ph. [CEA/DAM-Ile de France, Dept. de Physique Theorique et Appliquee, DPTA, 91 - Bruyeres-Le-Chatel (France); Boudard, A.; Legrain, R.; Leray, S.; Terrien, Y. [CEA/Saclay, Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee, DAPNIA, 91 - Gif-sur-Yvette (France); Bouyer, P.; Brochard, F.; Duchazeaubeneix, J.C.; Durand, J.M.; Meigo, S.I.; Milleret, G.; Thun, J.; Whittal, D.M.; Wlazlo, W. [Laboratoire National Saturne - Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Lebrun, C.; Lecolley, J.F.; Lecolley, F.R.; Lefebvres, F.; Louvel, M.; Varignon, C. [Caen Univ., Lab. de Physique Corpusculaire, 14 (France); Menard, S. [Institut de Physique Nucleaire, IN2P3/CNRS, 91 - Orsay (France); Stugge, L. [Institut de Recherches Subatomiques, IReS, 67 - Strasbourg (France); Hanappe, F. [IIM, Bruxelles (Belgium)

    2000-07-01

    Angular distribution of spallation neutrons induced by protons (0.8, 1.2 and 1.6 GeV) and deuterons (0.8 and 1.6 GeV) beams on various thin targets have been measured at SATURNE (CEA Saclay/France) with two complementary experimental techniques: the time-of-flight measurement with tagged incident protons for low energy neutrons (2-400 MeV) and the use of a hydrogen converter associated are analysed, interpreted and finally compared with theoretical previsions of simulation codes using the TIERCE system including the intranuclear cascade codes of BERTINI and CUGNON. (authors)

  7. History of the Fort Collins Science Center, U.S. Geological Survey

    Science.gov (United States)

    O'Shea, Thomas J. (compiler)

    2006-01-01

    The U.S. Geological Survey’s Fort Collins Science Center ("the Center") has been a nucleus of research, technology development, and associated scientific activities within the Department of the Interior for more than 30 years. The Center’s historical activities are deeply rooted in federal biological resources research and its supporting disciplines, particularly as they relate to the needs of the U.S. Department of the Interior and its resource management agencies. The organizational framework and activities of the Center have changed and adapted over the years in response to shifts in the scientific issues and challenges facing the U.S. Department of the Interior and with the development of new strategies to meet these challenges. Thus, the history of the Center has been dynamic.

  8. Spallation nucleosynthesis by accelerated charged-particles

    International Nuclear Information System (INIS)

    Goriely, S.

    2008-01-01

    Recent observations have suggested the presence of radioactive elements, such as Pm and 84≤Z≤99 elements) at the surface of the magnetic star HD101065, also known as Przybylski's star. This star is know to be a chemically peculiar star and its anomalous 38 30 heavy elements can be achieved. In this nucleosynthesis process, the secondary-neutron captures play a crucial role. The most attractive feature of the spallation process is the systematic production of Pm and Tc and the possible synthesis of actinides and sub-actinides.Based on such a parametric model, it is also shown that intense fluences of accelerated charged-particles interacting with surrounding material can efficiently produce elements heavier than iron. Different regimes are investigated and shown to be at the origin of p- and s-nuclei in the case of high-fluence low-flux events and r-nuclei for high-fluence high-flux irradiations. The possible existence of such irradiation events need to be confirmed by hydrodynamics simulations, but most of all by spectroscopic observations through the detection of short-lived radio-elements

  9. The Spallation Neutron Source accelerator system design

    Science.gov (United States)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  10. The European Spallation Source (ESS) project

    International Nuclear Information System (INIS)

    Clausen, K.N.

    2001-01-01

    The European Spallation Source (ESS) is a proposal for a next generation neutron source in Europe. The first phase of the project - establishing the scientific case and the technical feasibility - is now followed by an intensive period of R and D activities. Three target station options: l) a 5 MW 50 Hz short pulse station, 2) a 1 MW 10 Hz short pulse station and 3) a 4 to 5 MW 16 2/3 Hz 2.5 ms long pulse station, and the use of novel advanced cold moderators will be studied. A superconducting option for the accelerator will be investigated in a Europe-wide feasibility study for a multipurpose facility (CONCERT) with potential applications in areas such as neutron scattering, high power irradiation, R and D on transmutation and radioactive beams. It will explore possible synergies of such a facility compared with a standalone solution for the ESS. The milestones for the next three years are: June 2001 - Decision on neutron parameters and target station options, June 2002 - Conclusion of the Concert multipurpose accelerator study and June 2003 - Proposal ready for submission to funding agencies. The facility could be ready for operation around 2010. (author)

  11. 34 CFR 645.13 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What additional services do Upward Bound Math and... Program? § 645.13 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive instruction...

  12. Development of nuclear design criteria for neutron spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Sordo, F.; Abanades, A. [E.T.S. Industriales, Madrid Polytechnic University, UPM, J.Gutierrez Abascal, 2 -28006 Madrid (Spain)

    2008-07-01

    Spallation neutron sources allow obtaining high neutronic flux for many scientific and industrial applications. In recent years, several proposals have been made about its use, notably the European Spallation Source (ESS), the Japanese Spallation Source (JSNS) and the projects of Accelerator-Driven Subcritical reactors (ADS), particularly in the framework of EURATOM programs. Given their interest, it seems necessary to establish adequate design basis for guiding the engineering analysis and construction projects of this kind of installations. In this sense, all works done so far seek to obtain particular solutions to a particular design, but there has not been any general development to set up an engineering methodology in this field. In the integral design of a spallation source, all relevant physical processes that may influence its behaviour must be taken into account. Neutronic aspects (emitted neutrons and their spectrum, generation performance..), thermomechanical (energy deposition, cooling conditions, stress distribution..), radiological (spallation waste activity, activation reactions and residual heat) and material properties alteration due to irradiation (atomic displacements and gas generation) must all be considered. After analysing in a systematic manner the different options available in scientific literature, the main objective of this thesis was established as making a significant contribution to determine the limiting factors of the main aspects of spallation sources, its application range and the criteria for choosing optimal materials. To achieve this goal, a series of general simulations have been completed, covering all the relevant physical processes in the neutronic and thermal-mechanical field. Finally, the obtained criteria have been applied to the particular case of the design of the spallation source of subcritical reactors PDX-ADS and XT-ADS. These two designs, developed under the European R and D Framework Program, represent nowadays

  13. Development of nuclear design criteria for neutron spallation sources

    International Nuclear Information System (INIS)

    Sordo, F.; Abanades, A.

    2008-01-01

    Spallation neutron sources allow obtaining high neutronic flux for many scientific and industrial applications. In recent years, several proposals have been made about its use, notably the European Spallation Source (ESS), the Japanese Spallation Source (JSNS) and the projects of Accelerator-Driven Subcritical reactors (ADS), particularly in the framework of EURATOM programs. Given their interest, it seems necessary to establish adequate design basis for guiding the engineering analysis and construction projects of this kind of installations. In this sense, all works done so far seek to obtain particular solutions to a particular design, but there has not been any general development to set up an engineering methodology in this field. In the integral design of a spallation source, all relevant physical processes that may influence its behaviour must be taken into account. Neutronic aspects (emitted neutrons and their spectrum, generation performance..), thermomechanical (energy deposition, cooling conditions, stress distribution..), radiological (spallation waste activity, activation reactions and residual heat) and material properties alteration due to irradiation (atomic displacements and gas generation) must all be considered. After analysing in a systematic manner the different options available in scientific literature, the main objective of this thesis was established as making a significant contribution to determine the limiting factors of the main aspects of spallation sources, its application range and the criteria for choosing optimal materials. To achieve this goal, a series of general simulations have been completed, covering all the relevant physical processes in the neutronic and thermal-mechanical field. Finally, the obtained criteria have been applied to the particular case of the design of the spallation source of subcritical reactors PDX-ADS and XT-ADS. These two designs, developed under the European R and D Framework Program, represent nowadays

  14. Earth Science Data and Applications for K-16 Education from the NASA Langley Atmospheric Science Data Center

    Science.gov (United States)

    Phelps, C. S.; Chambers, L. H.; Alston, E. J.; Moore, S. W.; Oots, P. C.

    2005-05-01

    NASA's Science Mission Directorate aims to stimulate public interest in Earth system science and to encourage young scholars to consider careers in science, technology, engineering and mathematics. NASA's Atmospheric Science Data Center (ASDC) at Langley Research Center houses over 700 data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry that are being produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. However, barriers still exist in the use of these actual satellite observations by educators in the classroom to supplement the educational process. Thus, NASA is sponsoring the "Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs" (MY NASA DATA) project to systematically support educational activities by reducing the ASDC data holdings to `microsets' that can be easily accessible and explored by the K-16 educators and students. The microsets are available via Web site (http://mynasadata.larc.nasa.gov) with associated lesson plans, computer tools, data information pages, and a science glossary. A MY NASA DATA Live Access Server (LAS) has been populated with ASDC data such that users can create custom microsets online for desired time series, parameters and geographical regions. The LAS interface is suitable for novice to advanced users, teachers or students. The microsets may be visual representations of data or text output for spreadsheet analysis. Currently, over 148 parameters from the Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR), Surface Radiation Budget (SRB), Tropospheric Ozone Residual (TOR) and the International Satellite Cloud Climatology Project (ISCCP) are available and provide important information on clouds, fluxes and cycles in the Earth system. Additionally, a MY NASA DATA OPeNDAP server has been established to facilitate file transfer of

  15. SNU-KAERI Degree and Research Center for Radiation Convergence Sciences

    International Nuclear Information System (INIS)

    Jo, Sungkee; Kim, S. U.; Roh, C. H

    2011-12-01

    In this study, we tried to establish and perform the demonstrative operation of the 'Degree and Research Center for Radiation Convergence Sciences' to raise the Korea's technology competitiveness. As results of this project we got the successful accomplishment as below: 1. Operation of Degree and Research Center for Radiation Convergence Sciences and establishment of expert researcher training system Ο Presentation of an efficient model for expert researcher training program through the operation of university-institute collaboration courses by combining of Graduate course and DRC system. Ο Radiation Convergence Sciences major is scheduled to be established in 2013 at SNU Graduate School of Convergence Science and Technology Ο A big project for research, education, and training of radiation convergence science is under planning 2. Establishment and conduction of joint research by organization of radiation convergence research consortium · Joint research was conducted in close connection with the research projects of researchers participating in this DRC project (44 articles published in journals, 6 patents applied, 88 papers presented in conferences) · The resources of the two organization (SNU and KAERI), such as research infrastructure (hightech equipment and etc), manpower (professor/researcher), and original technology and know how were utilized to conduct the joint research and to establish the collaboration system of the two organizations

  16. U.S. Department of the Interior South Central Climate Science Center strategic science plan, 2013--18

    Science.gov (United States)

    Winton, Kim T.; Dalton, Melinda S.; Shipp, Allison A.

    2013-01-01

    The Department of the Interior (DOI) recognizes and embraces the unprecedented challenges of maintaining our Nation’s rich natural and cultural resources in the 21st century. The magnitude of these challenges demands that the conservation community work together to develop integrated adaptation and mitigation strategies that collectively address the impacts of climate change and other landscape-scale stressors. On September 14, 2009, DOI Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010) entitled, “Addressing the Impacts of Climate Change on America’s Water, Land, and Other Natural and Cultural Resources.” The Order establishes the foundation for two partner-based conservation science entities to address these unprecedented challenges: Climate Science Centers (CSCs and Landscape Conservation Cooperatives (LCCs). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase understanding of climate change and to coordinate an effective response to its impacts on tribes and the land, water, ocean, fish and wildlife, and cultural-heritage resources that DOI manages. Eight CSCs have been established and are managed through the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC); each CSC works in close collaboration with their neighboring CSCs, as well as those across the Nation, to ensure the best and most efficient science is produced. The South Central CSC was established in 2012 through a cooperative agreement with the University of Oklahoma, Texas Tech University, Louisiana State University, the Chickasaw Nation, the Choctaw Nation of Oklahoma, Oklahoma State University, and NOAA’s Geophysical Fluid Dynamics Lab; hereafter termed the ”Consortium” of the South Central CSC. The Consortium has a broad expertise in the physical, biological, natural, and social sciences to address impacts of climate change on land, water, fish and wildlife, ocean, coastal, and

  17. A 5-year scientometric analysis of research centers affiliated to Tehran University of Medical Sciences

    Science.gov (United States)

    Yazdani, Kamran; Rahimi-Movaghar, Afarin; Nedjat, Saharnaz; Ghalichi, Leila; Khalili, Malahat

    2015-01-01

    Background: Since Tehran University of Medical Sciences (TUMS) has the oldest and highest number of research centers among all Iranian medical universities, this study was conducted to evaluate scientific output of research centers affiliated to Tehran University of Medical Sciences (TUMS) using scientometric indices and the affecting factors. Moreover, a number of scientometric indicators were introduced. Methods: This cross-sectional study was performed to evaluate a 5-year scientific performance of research centers of TUMS. Data were collected through questionnaires, annual evaluation reports of the Ministry of Health, and also from Scopus database. We used appropriate measures of central tendency and variation for descriptive analyses. Moreover, uni-and multi-variable linear regression were used to evaluate the effect of independent factors on the scientific output of the centers. Results: The medians of the numbers of papers and books during a 5-year period were 150.5 and 2.5 respectively. The median of the "articles per researcher" was 19.1. Based on multiple linear regression, younger age centers (p=0.001), having a separate budget line (p=0.016), and number of research personnel (p<0.001) had a direct significant correlation with the number of articles while real properties had a reverse significant correlation with it (p=0.004). Conclusion: The results can help policy makers and research managers to allocate sufficient resources to improve current situation of the centers. Newly adopted and effective scientometric indices are is suggested to be used to evaluate scientific outputs and functions of these centers. PMID:26157724

  18. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    Science.gov (United States)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  19. Mapping Climate Science Information Needs and Networks in the Northwest, USA through Evaluating the Northwest Climate Science Center Climate Science Digest

    Science.gov (United States)

    Gergel, D. R.; Watts, L. H.; Salathe, E. P.; Mankowski, J. D.

    2017-12-01

    Climate science, already a highly interdisciplinary field, is rapidly evolving, and natural resource managers are increasingly involved in policymaking and adaptation decisions to address climate change that need to be informed by state-of-the-art climate science. Consequently, there is a strong demand for unique organizations that engender collaboration and cooperation between government, non-profit, academic and for-profit sectors that are addressing issues relating to natural resources management and climate adaptation and resilience. These organizations are often referred to as boundary organizations. The Northwest Climate Science Center (NW CSC) and the North Pacific Landscape Conservation Cooperative (NP LCC) are two such boundary organizations operating in different contexts. Together, the NW CSC and the NP LCC fulfill the need for sites of co-production between researchers and managers working on climate-related issues, and a key component of this work is a monthly climate science newsletter that includes recent climate science journal articles, reports, and climate-related events. Our study evaluates the effectiveness of the climate science digest (CSD) through a three-pronged approach: a) in-depth interviews with natural resource managers who use the CSD, b) poll questions distributed to CSD subscribers, and c) quantitative analysis of CSD effectiveness using analytics from MailChimp distribution. We aim to a) map the reach of the CSD across the Northwest and at a national level; b) understand the efficacy of the CSD at communicating climate science to diverse audiences; c) evaluate the usefulness of CSD content for diverse constituencies of subscribers; d) glean transferrable knowledge for future evaluations of boundary management tools; and e) establish a protocol for designing climate science newsletters for other agencies disseminating climate science information. We will present results from all three steps of our evaluation process and describe

  20. U.S. Geological Survey Virginia and West Virginia Water Science Center

    Science.gov (United States)

    Jastram, John D.

    2017-08-22

    The U.S. Geological Survey (USGS) serves the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. In support of this mission, the USGS Virginia and West Virginia Water Science Center works in cooperation with many entities to provide reliable, impartial scientific information to resource managers, planners, and the public.

  1. Network Science Center Research Team’s Visit to Addis Ababa, Ethiopia

    Science.gov (United States)

    2012-08-01

    by China State Construction Engineering 3 | P a g e Network Science Center, West Point www.netscience.usma.edu 845.938.0804 Corporation as a...between microfinance and large corporate investments in the business market. The creative environment in Ethiopia is energetic, with a large population...coffee names (such as Starbucks ). In our discussion it seemed that TechnoServe emphasized the business aspect of their organization model over

  2. Quality-assurance plan for groundwater activities, U.S. Geological Survey, Washington Water Science Center

    Science.gov (United States)

    Kozar, Mark D.; Kahle, Sue C.

    2013-01-01

    This report documents the standard procedures, policies, and field methods used by the U.S. Geological Survey’s (USGS) Washington Water Science Center staff for activities related to the collection, processing, analysis, storage, and publication of groundwater data. This groundwater quality-assurance plan changes through time to accommodate new methods and requirements developed by the Washington Water Science Center and the USGS Office of Groundwater. The plan is based largely on requirements and guidelines provided by the USGS Office of Groundwater, or the USGS Water Mission Area. Regular updates to this plan represent an integral part of the quality-assurance process. Because numerous policy memoranda have been issued by the Office of Groundwater since the previous groundwater quality assurance plan was written, this report is a substantial revision of the previous report, supplants it, and contains significant additional policies not covered in the previous report. This updated plan includes information related to the organization and responsibilities of USGS Washington Water Science Center staff, training, safety, project proposal development, project review procedures, data collection activities, data processing activities, report review procedures, and archiving of field data and interpretative information pertaining to groundwater flow models, borehole aquifer tests, and aquifer tests. Important updates from the previous groundwater quality assurance plan include: (1) procedures for documenting and archiving of groundwater flow models; (2) revisions to procedures and policies for the creation of sites in the Groundwater Site Inventory database; (3) adoption of new water-level forms to be used within the USGS Washington Water Science Center; (4) procedures for future creation of borehole geophysics, surface geophysics, and aquifer-test archives; and (5) use of the USGS Multi Optional Network Key Entry System software for entry of routine water-level data

  3. Moderator materials for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Charlton, L.A.

    1999-01-01

    The Spallation Neutron Source (SNS) is a neutron source providing intense neutron fluxes that will be used for performing a large variety of neutron scattering experiments. SNS is to be completed and start operation in 2005. Protons will be accelerated to 1 GeV, stored in an accumulator ring, and then injected into a neutron-producing target. After leaving the target (Hg in the ca/se of SNS), the neutrons are prepared for experiments by first using a moderator to impose energy and width requirements on the neutron pulse. One of the most important ingredients is the moderator material. Four materials that are commonly used and that were considered for use in SNS are liquid hydrogen (L-H 2 ), liquid water (L-H 2 O), liquid methane (L-CH 4 ), and solid methane (S-CH 4 ). The spectra (neutron current versus neutron energy) for these four materials are shown. As may be seen, at low neutron energies ( 4 , which produces up to four times as many neutrons in this energy range as L-H 2 . The problem with the material is the internal storage of energy that can be spontaneously and explosively released. At energies of just above 10 MeV, the most effective moderator material is L-CH 4 . Polymerization problems, however, preclude its use at high powers (again such as in SNS), where the buildup of undesirable materials becomes prohibitive. This is, however, an important energy range for neutron experiments. Preliminary consideration is being given to a composite moderator that contains two adjacent sections, one of L-H 2 and one of L-H 2 O, which produces a spectrum that is very similar to L-CH 4

  4. The Process of Science Communications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning- based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium. At NASA/Marshall Space Flight Center, we have developed and implemented an integrated science communications process, providing an institutional capability to help scientist accurately convey the content and meaning of new scientific knowledge to a wide variety of audiences, adding intrinsic value to the research itself through communication, while still maintaining the integrity of the peer-review process. The process utilizes initial communication through the world-wide web at the site http://science.nasa.gov to strategically leverage other communications vehicles and to reach a wide-variety of audiences. Here we present and discuss the basic design of the science communications process, now in

  5. Using and Distributing Spaceflight Data: The Johnson Space Center Life Sciences Data Archive

    Science.gov (United States)

    Cardenas, J. A.; Buckey, J. C.; Turner, J. N.; White, T. S.; Havelka,J. A.

    1995-01-01

    Life sciences data collected before, during and after spaceflight are valuable and often irreplaceable. The Johnson Space Center Life is hard to find, and much of the data (e.g. Sciences Data Archive has been designed to provide researchers, engineers, managers and educators interactive access to information about and data from human spaceflight experiments. The archive system consists of a Data Acquisition System, Database Management System, CD-ROM Mastering System and Catalog Information System (CIS). The catalog information system is the heart of the archive. The CIS provides detailed experiment descriptions (both written and as QuickTime movies), hardware descriptions, hardware images, documents, and data. An initial evaluation of the archive at a scientific meeting showed that 88% of those who evaluated the catalog want to use the system when completed. The majority of the evaluators found the archive flexible, satisfying and easy to use. We conclude that the data archive effectively provides key life sciences data to interested users.

  6. Perspectives on learning through research on critical issues-based science center exhibitions

    Science.gov (United States)

    Pedretti, Erminia G.

    2004-07-01

    Recently, science centers have created issues-based exhibitions as a way of communicating socioscientific subject matter to the public. Research in the last decade has investigated how critical issues-based installations promote more robust views of science, while creating effective learning environments for teaching and learning about science. The focus of this paper is to explore research conducted over a 10-year period that informs our understanding of the nature of learning through these experiences. Two specific exhibitions - Mine Games and A Question of Truth - provide the context for discussing this research. Findings suggest that critical issues-based installations challenge visitors in different ways - intellectually and emotionally. They provide experiences beyond usual phenomenon-based exhibitions and carry the potential to enhance learning by personalizing subject matter, evoking emotion, stimulating dialogue and debate, and promoting reflexivity. Critical issues-based exhibitions serve as excellent environments in which to explore the nature of learning in these nonschool settings.

  7. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, Kurt F [Los Alamos National Laboratory

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  8. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    International Nuclear Information System (INIS)

    Schoenberg, Kurt F.

    2010-01-01

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  9. National Science Resources Center Project to Improve Science Teaching in Elementary Schools. Appendix C. Elementary Science Information Database

    Science.gov (United States)

    1988-12-01

    individual particles. They mix the powders with water and perform tests with heat, iodine, and vinegar in order to gain additional information about the...illusions ; light ; fermentation ; chromatography ; moon ; astronomy AN SCIENCE - A PROCESS APPROACH, PART G focuses on experimentation, incorporating all...skills ; flowers plants astronomy ; animals ; sensory perception ; vision ; optical illusions ; eyes ; density ; viscosity ; fermentation ; moon

  10. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  11. On the role of secondary pions in spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Mancusi, Davide [Paris-Saclay Univ., Gif-sur-Yvette (France). Den-Service d' Etude des Reacteurs et de Mathematiques Appliquees (SERMA); Lo Meo, Sergio [ENEA, Research Centre ' ' Ezio Clementel' ' , Bologna (Italy); INFN, Bologna (Italy); Colonna, Nicola [INFN, Bari (Italy); Boudard, Alain; David, Jean-Christophe; Leray, Sylvie [Paris-Saclay Univ., Gif-sur-Yvette (France). IRFU, CEA; Cortes-Giraldo, Miguel Antonio; Lerendegui-Marco, Jorge [Sevilla Univ. (Spain). Facultad de Fisica; Cugnon, Joseph [Liege Univ. (Belgium). AGO Dept.; Massimi, Cristian [INFN, Bologna (Italy); Bologna Univ. (Italy). Physics and Astronomy Dept.; Vlachoudis, Vasilis [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2017-05-15

    We use particle-transport simulations to show that secondary pions play a crucial role for the development of the hadronic cascade and therefore for the production of neutrons and photons from thick spallation targets. In particular, for the nTOF lead spallation target, irradiated with 20 GeV/c protons, neutral pions are involved in the production of ∝ 90% of the high-energy photons; charged pions participate in ∝ 40% of the integral neutron yield. Nevertheless, photon and neutron yields are shown to be relatively insensitive to large changes of the average pion multiplicity in the individual spallation reactions. We characterize this robustness as a peculiar property of hadronic cascades in thick targets. (orig.)

  12. Systematics of spallation yields with a four-parameter formula

    International Nuclear Information System (INIS)

    Foshina, M.; Martins, J.B.; Tavares, O.A.P.; Di Napoli, V.

    1982-01-01

    A semi-empirical four-parameter formula is proposed in order to systematize intermediate- and high-energy proton-induced spallation yields of target nuclei covering the 50-100 mass number interval. The measured yields are reproduced by the formula with a degree of accuracy which is comparable with or better than those obtained in previous proton-spallation systematics. The formula predicts reliable values for the most probable mass number of isotopic distributions. For a number of irradiation conditions which may be encountered in practical and physical applications, estimates of proton spallation yields can be obtained by the proposed four-parameter formula with no need of high-speed machines. (M.A.F.) [pt

  13. Characterization of the radiation background at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    DiJulio, Douglas D.; Cherkashyna, Nataliia; Scherzinger, Julius; Khaplanov, Anton; Pfeiffer, Dorothea; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Kanaki, Kalliopi; Kirstein, Oliver; Hall-Wilton, Richard J.; Bentley, Phillip M.; Ehlers, Georg; Gallmeier, Franz X.; Hornbach, Donald E.; Iverson, Erik B.; Newby, Robert J.

    2016-01-01

    We present a survey of the radiation background at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, TN, USA during routine daily operation. A broad range of detectors was used to characterize primarily the neutron and photon fields throughout the facility. These include a WENDI-2 extended range dosimeter, a thermoscientific NRD, an Arktis 4 He detector, and a standard NaI photon detector. The information gathered from the detectors was used to map out the neutron dose rates throughout the facility and also the neutron dose rate and flux profiles of several different beamlines. The survey provides detailed information useful for developing future shielding concepts at spallation neutron sources, such as the European Spallation Source (ESS), currently under construction in Lund, Sweden. (paper)

  14. On the role of secondary pions in spallation targets

    CERN Document Server

    Mancusi, Davide; Colonna, Nicola; Boudard, Alain; Cortés-Giraldo, Miguel Antonio; Cugnon, Joseph; David, Jean-Christophe; Leray, Sylvie; Lerendegui-Marco, Jorge; Massimi, Cristian; Vlachoudis, Vasilis

    2017-01-01

    We use particle-transport simulations to show that secondary pions play a crucial role for the development of the hadronic cascade and therefore for the production of neutrons and photons from thick spallation targets. In particular, for the n_TOF lead spallation target, irradiated with 20-GeV/c protons, neutral pions are involved in the production of ~90% of the high-energy photons; charged pions participate in ~40% of the integral neutron yield. Nevertheless, photon and neutron yields are shown to be relatively insensitive to large changes of the average pion multiplicity in the individual spallation reactions. We characterize this robustness as a peculiar property of hadronic cascades in thick targets.

  15. Future prospects of imaging at spallation neutron sources

    International Nuclear Information System (INIS)

    Strobl, M.

    2009-01-01

    The advent of state-of-the-art spallation neutron sources is a major step forward in efficient neutron production for most neutron scattering techniques. Although they provide lower time-averaged neutron flux than high flux reactor sources, advantage for different instrumental techniques can be derived from the pulsed time structure of the available flux, which can be translated into energy, respectively, wavelength resolution. Conventional neutron imaging on the other hand relies on an intense continuous beam flux and hence falls short in profiting from the new development. Nevertheless, some recently developed novel imaging techniques require and some can benefit from energy resolution. The impact of the emerging spallation sources on different imaging techniques has been investigated, ways to benefit will be identified (where possible) and prospects of future imaging instruments and possible options and layouts at a spallation neutron source will be discussed and outlined.

  16. Neutron scattering instrumentation for biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  17. National evaluation of policies on individual financial conflicts of interest in Canadian academic health science centers.

    Science.gov (United States)

    Lexchin, Joel; Sekeres, Melanie; Gold, Jennifer; Ferris, Lorraine E; Kalkar, Sunila R; Wu, Wei; Van Laethem, Marleen; Chan, An-Wen; Moher, David; Maskalyk, M James; Taback, Nathan; Rochon, Paula A

    2008-11-01

    Conflicts of interest (COI) in research are an important emerging topic of investigation and are frequently cited as a serious threat to the integrity of human participant research. To study financial conflicts of interest (FCOI) policies for individual investigators working in Canadian academic health centers. Survey instrument containing 61 items related to FCOI. All Canadian academic health science centers (universities with faculties of medicine, faculties of medicine and teaching hospitals) were requested to provide their three primary FCOI policies. Number of all centers and teaching hospitals with policies addressing each of the 61 items related to FCOI. Only one item was addressed by all 74 centers. Thirteen items were present in fewer than 25% of centers. Fewer than one-quarter of hospitals required researchers to disclose FCOI to research participants. The role of research ethics boards (REBs) in hospitals was marginal. Asking centers to identify only three policies may not have inclusively identified all FCOI policies in use. Additionally, policies at other levels might apply. For instance, all institutions receiving federal grant money must comply with the Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans. Canadian centers within the same level (for instance, teaching hospitals) differ significantly in the areas that their policies address and these policies differ widely in their coverage. Presently, no single policy in any Canadian center informs researchers about the broad range of individual FCOI issues. Canadian investigators need to understand the environment surrounding FCOI, be able to access and follow the relevant policies and be confident that they can avoid entering into a FCOI.

  18. Neutron scattering instruments for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Crawford, R.K.; Fornek, T.; Herwig, K.W.

    1998-01-01

    The Spallation Neutron Source (SNS) is a 1 MW pulsed spallation source for neutron scattering planned for construction at Oak Ridge National Laboratory. This facility is being designed as a 5-laboratory collaboration project. This paper addresses the proposed facility layout, the process for selection and construction of neutron scattering instruments at the SNS, the initial planning done on the basis of a reference set of ten instruments, and the plans for research and development (R and D) to support construction of the first ten instruments and to establish the infrastructure to support later development and construction of additional instruments

  19. Proceedings of the workshop on neutron instrumentation for a long-pulse spallation source

    International Nuclear Information System (INIS)

    Alonso, J.; Schroeder, L.; Pynn, R.

    1995-01-01

    This workshop was carried out under the auspices of the Lawrence Berkeley National Laboratory Pulsed Spallation Source activity and its Pulsed Spallation Source Committee (PSSC). One of our activities has been the sponsorship of workshops related to neutron production by pulsed sources. At the Crystal City PSSC meeting a decision was made to hold a workshop on the instrumentation opportunities at a long-pulse spallation source (LPSS). The enclosed material represents the results of deliberations of the three working groups into which the participants were divided, covering elastic scattering, inelastic scattering and fundamental physics, as well as contributions from individual participants. We hope that the material in this report will be useful to the neutron scattering community as it develops a road-map for future neutron sources. The workshop was held at LBNL in mid-April with about sixty very dedicated participants from the US and abroad. This report presents the charge for the workshop: Based on the bench mark source parameters provided by Gary Russell, determine how a suite of spectrometers in each of the three working group's area of expertise would perform at an LPSS and compare this performance with that of similar spectrometers at a continuous source or a short-pulse source. Identify and discuss modifications to these spectrometers that would enhance their performance at an LPSS. Identify any uncertainties in the analysis of spectrometer performance that require further research. Describe what R ampersand D is needed to resolve these issues. Discuss how the performance of instruments would be affected by changes in source parameters such as repetition rate, proton pulse length, and the characteristic time of pulse tails. Identify beneficial changes that could become goals for target/moderator designers. Identify novel methods that might be applied at an LPSS. Selected papers are indexed separately for inclusion in the Energy Science and Technology

  20. The Sharjah Center for Astronomy and Space Sciences (SCASS 2015): Concept and Resources

    Science.gov (United States)

    Naimiy, Hamid M. K. Al

    2015-08-01

    The Sharjah Center for Astronomy and Space Sciences (SCASS) was launched this year 2015 at the University of Sharjah in the UAE. The center will serve to enrich research in the fields of astronomy and space sciences, promote these fields at all educational levels, and encourage community involvement in these sciences. SCASS consists of:The Planetarium: Contains a semi-circle display screen (18 meters in diameter) installed at an angle of 10° which displays high-definition images using an advanced digital display system consisting of seven (7) high-performance light-display channels. The Planetarium Theatre offers a 200-seat capacity with seats placed at highly calculated angles. The Planetarium also contains an enormous star display (Star Ball - 10 million stars) located in the heart of the celestial dome theatre.The Sharjah Astronomy Observatory: A small optical observatory consisting of a reflector telescope 45 centimeters in diameter to observe the galaxies, stars and planets. Connected to it is a refractor telescope of 20 centimeters in diameter to observe the sun and moon with highly developed astronomical devices, including a digital camera (CCD) and a high-resolution Echelle Spectrograph with auto-giving and remote calibration ports.Astronomy, space and physics educational displays for various age groups include:An advanced space display that allows for viewing the universe during four (4) different time periods as seen by:1) The naked eye; 2) Galileo; 3) Spectrographic technology; and 4) The space technology of today.A space technology display that includes space discoveries since the launching of the first satellite in 1940s until now.The Design Concept for the Center (450,000 sq. meters) was originated by HH Sheikh Sultan bin Mohammed Al Qasimi, Ruler of Sharjah, and depicts the dome as representing the sun in the middle of the center surrounded by planetary bodies in orbit to form the solar system as seen in the sky.

  1. Defense, basic, and industrial research at the Los Alamos Neutron Science Center: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Longshore, A.; Salgado, K. [comps.

    1995-10-01

    The Workshop on Defense, Basic, and Industrial Research at the Los Alamos Neutron Science Center gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss the use of neutrons in science-based stockpile stewardship, The workshop began with presentations by government officials, senior representatives from the three weapons laboratories, and scientific opinion leaders. Workshop participants then met in breakout sessions on the following topics: materials science and engineering; polymers, complex fluids, and biomaterials; fundamental neutron physics; applied nuclear physics; condensed matter physics and chemistry; and nuclear weapons research. They concluded that neutrons can play an essential role in science-based stockpile stewardship and that there is overlap and synergy between defense and other uses of neutrons in basic, applied, and industrial research from which defense and civilian research can benefit. This proceedings is a collection of talks and papers from the plenary, technical, and breakout session presentations. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  2. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    Science.gov (United States)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  3. National Science Resources Center Project for Improving Science Teaching in Elementary Schools. Appendix A. School Systems With Exemplary Elementary Science Programs. Appendix B. Elementary Science Network

    Science.gov (United States)

    1988-12-01

    Glass, Lawrence, Deer Park High School Glass, Millard, K-12 Science Supervisor Bloomfield Municipal School District Glassman, Neil, Gleason, Steve...Superientendent Vaughn Municipal Schools Knop, Ronald N., Teacher Grissom Junior High School Knox, Amie, Director of Master Teacher Program W. Wilson...Science Supervisor Pequannock Township Public Schools Mercado , Roberto, Science Coordinator Colegio Radians, Inc. Merchant, Edwin, K-12 Science

  4. Mercury erosion experiments for spallation target system

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Kaminaga, Masanori; Haga, Katsuhiro; Hino, Ryutaro

    2003-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a plan to construct the spallation neutron source at the Tokai Research Establishment, JAERI, under the High-Intensity Proton Accelerator Project (J-PARC). A mercury circulation system has been designed so as to supply mercury to the target stably under the rated flow rate of 41 m 3 /hr. Then, it was necessary to confirm a mercury pump performance from the viewpoint of making the mercury circulation system feasible, and more, to investigate erosion rate under the mercury flow as well as an amount of mercury remained on the surface after drain from the viewpoints of mechanical strength relating to the lifetime and remote handling of mercury components. The mercury pump performance was tested under the mercury flow conditions by using an experimental gear pump, which had almost the same structure as a practical mercury pump to be expected in the mercury circulation system, and the erosion rates in a mercury pipeline as well as the amount of mercury remained on the surface were also investigated. The discharged flow rates of the experimental gear pump increased linearly with the rotation speed, so that the gear pump would work as the flow meter. Erosion rates obtained under the mercury velocity less than 1.6 m/s was found to be so small that decrease of pipeline wall thickness would be 390 μm after 30-year operation under the rated mercury velocity of 0.7 m/s. For the amount of remaining mercury on the pipeline, remaining rates of weight and volume were estimated at 50.7 g/m 2 and 3.74 Hg-cm 3 /m 2 , respectively. Applying these remaining rates of weight and volume to the mercury target, the remaining mercury was estimated at about 106.5 g and 7.9 cm 3 . Radioactivity of this remaining mercury volume was found to be three-order lower than that of the target casing. (author)

  5. On-going research projects at Ankara Nuclear Research Center in Agriculture and Animal Science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  6. Archival policies and collections database for the Woods Hole Science Center's marine sediment samples

    Science.gov (United States)

    Buczkowski, Brian J.; Kelsey, Sarah A.

    2007-01-01

    The Woods Hole Science Center of the U.S. Geological Survey (USGS) has been an active member of the Woods Hole research community, Woods Hole, Massachusetts, for over 40 years. In that time there have been many projects that involved the collection of sediment samples conducted by USGS scientists and technicians for the research and study of seabed environments and processes. These samples were collected at sea or near shore and then brought back to the Woods Hole Science Center (WHSC) for analysis. While at the center, samples are stored in ambient temperature, refrigerated and freezing conditions ranging from +2º Celsius to -18º Celsius, depending on the best mode of preparation for the study being conducted or the duration of storage planned for the samples. Recently, storage methods and available storage space have become a major concern at the WHSC. The core and sediment archive program described herein has been initiated to set standards for the management, methods, and duration of sample storage. A need has arisen to maintain organizational consistency and define storage protocol. This handbook serves as a reference and guide to all parties interested in using and accessing the WHSC's sample archive and also defines all the steps necessary to construct and maintain an organized collection of geological samples. It answers many questions as to the way in which the archive functions.

  7. On-going research projects at Ankara Nuclear research center in agriculture and animal science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text:The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  8. Energy Frontier Research Centers: Science for Our Nation's Energy Future, September 2016

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-09-01

    As world demand for energy rapidly expands, transforming the way energy is collected, stored, and used has become a defining challenge of the 21st century. At its heart, this challenge is a scientific one, inspiring the U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) to establish the Energy Frontier Research Center (EFRC) program in 2009. The EFRCs represent a unique approach, bringing together creative, multidisciplinary scientific teams to perform energy-relevant basic research with a complexity beyond the scope of single-investigator projects. These centers take full advantage of powerful new tools for characterizing, understanding, modeling, and manipulating matter from atomic to macroscopic length scales. They also train the next-generation scientific workforce by attracting talented students and postdoctoral researchers interested in energy science. The EFRCs have collectively demonstrated the potential to substantially advance the scientific understanding underpinning transformational energy technologies. Both a BES Committee of Visitors and a Secretary of Energy Advisory Board Task Force have found the EFRC program to be highly successful in meeting its goals. The scientific output from the EFRCs is impressive, and many centers have reported that their results are already impacting both technology research and industry. This report on the EFRC program includes selected highlights from the initial 46 EFRCs and the current 36 EFRCs.

  9. Lunar and Meteorite Sample Education Disk Program — Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, J.; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-03-01

    NASA’s Lunar and Meteorite Sample Education Disk Program has Lucite disks containing Apollo lunar samples and meteorite samples that are available for trained educators to borrow for use in classrooms, museums, science center, and libraries.

  10. Neutron beam-line shield design for the protein crystallography instrument at the Lujan Center

    International Nuclear Information System (INIS)

    Russell, G.J.; Pitcher, E.J.; Muhrer, G.; Ferguson, P.D.

    2001-01-01

    We have developed a very useful methodology for calculating absolute total (neutron plus gamma-ray) dose equivalent rates for use in the design of neutron beam line shields at a spallation neutron source. We have applied this technique to the design of beam line shields for several new materials science instruments being built at the Manuel Lujan Jr. Neutron Scattering Center. These instruments have a variety of collimation systems and different beam line shielding issues. We show here some specific beam line shield designs for the Protein Crystallography Instrument. (author)

  11. Radiation effects in structural materials of spallation targets

    Science.gov (United States)

    Jung, P.

    2002-02-01

    Effects of radiation damage by protons and neutrons in structural materials of spallation neutron sources are reviewed. Effects of atomic displacements, defect mobility and transmutation products, especially hydrogen and helium, on physical and mechanical properties are discussed. The most promising candidate materials (austenitic stainless steels, ferritic/martensitic steels and refractory alloys) are compared, and needed investigations are identified.

  12. MEGAPIE-TEST: A European Project on Spallation Target Testing

    International Nuclear Information System (INIS)

    Knebel, Joachim U.; Klein, Jean-Christophe; Gorse, Dominique; Agostini, Pietro; Groeschel, Friedrich; Kupschus, Peter; Kirchner, Thomas; Vogt, Jean-Bernard

    2002-01-01

    Within the Euratom 5. Framework Programme (5FP) the European Commission is funding the MEGAPIE-TEST Project (Megawatt Pilot Experiment - Testing) over a period of three years, starting in September 2001. The project is combining the efforts of 8 main associations. MEGAPIE is a liquid metal spallation target of 1 MW of beam power. The main results of the MEGAPIE-TEST project will be: Development and comprehensive testing of a liquid metal spallation target both under beam-off and beam-on conditions, and the set up of a handbook on the design of a neutron spallation source in general. The operation of MEGAPIE within the accelerator complex SINQ at Paul Scherrer Institute (PSI), Switzerland, is envisaged in 2004. MEGAPIE is a first decisive step to realize a liquid metal spallation target in Europe. This report is giving an overview of the MEGAPIE-TEST Project, the overall work plan, and preliminary results from the design support and validation, which form an important basis for the project. (authors)

  13. Analytic model of heat deposition in spallation neutron target

    International Nuclear Information System (INIS)

    Findlay, D.J.S.

    2015-01-01

    A simple analytic model for estimating deposition of heat in a spallation neutron target is presented—a model that can readily be realised in an unambitious spreadsheet. The model is based on simple representations of the principal underlying physical processes, and is intended largely as a ‘sanity check’ on results from Monte Carlo codes such as FLUKA or MCNPX.

  14. Analytic model of heat deposition in spallation neutron target

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, D.J.S.

    2015-12-11

    A simple analytic model for estimating deposition of heat in a spallation neutron target is presented—a model that can readily be realised in an unambitious spreadsheet. The model is based on simple representations of the principal underlying physical processes, and is intended largely as a ‘sanity check’ on results from Monte Carlo codes such as FLUKA or MCNPX.

  15. Towards the construction of the European spallation source–The ...

    Indian Academy of Sciences (India)

    The possible realization of the European spallation source has been a long and winding story. However, thanks to the conjunction of a number of events it now looks highly probable that in 2008 there will indeed be a decision on the site and on a funding partnership of European countries who will together build and ...

  16. Value-added Data Services at the Goddard Earth Sciences Data and Information Services Center

    Science.gov (United States)

    Leptoukh, G. G.; Alcott, G. T.; Kempler, S. J.; Lynnes, C. S.; Vollmer, B. E.

    2004-05-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in addition to serving the Earth Science community as one of the major Distributed Active Archive Centers (DAACs), provides much more than just data. Among the value-added services available to general users are subsetting data spatially and/or by parameter, online analysis (to avoid downloading unnecessary all the data), and assistance in obtaining data from other centers. Services available to data producers and high-volume users include consulting on building new products with standard formats and metadata and construction of data management systems. A particularly useful service is data processing at the DISC (i.e., close to the input data) with the users' algorithms. This can take a number of different forms: as a configuration-managed algorithm within the main processing stream; as a stand-alone program next to the on-line data storage; as build-it-yourself code within the Near-Archive Data Mining (NADM) system; or as an on-the-fly analysis with simple algorithms embedded into the web-based tools. Partnerships between the GES DISC and scientists, both producers and users, allow the scientists concentrate on science, while the GES DISC handles the of data management, e.g., formats, integration and data processing. The existing data management infrastructure at the GES DISC supports a wide spectrum of options: from simple data support to sophisticated on-line analysis tools, producing economies of scale and rapid time-to-deploy. At the same time, such partnerships allow the GES DISC to serve the user community more efficiently and to better prioritize on-line holdings. Several examples of successful partnerships are described in the presentation.

  17. An Analysis of Cloud Computing with Amazon Web Services for the Atmospheric Science Data Center

    Science.gov (United States)

    Gleason, J. L.; Little, M. M.

    2013-12-01

    NASA science and engineering efforts rely heavily on compute and data handling systems. The nature of NASA science data is such that it is not restricted to NASA users, instead it is widely shared across a globally distributed user community including scientists, educators, policy decision makers, and the public. Therefore NASA science computing is a candidate use case for cloud computing where compute resources are outsourced to an external vendor. Amazon Web Services (AWS) is a commercial cloud computing service developed to use excess computing capacity at Amazon, and potentially provides an alternative to costly and potentially underutilized dedicated acquisitions whenever NASA scientists or engineers require additional data processing. AWS desires to provide a simplified avenue for NASA scientists and researchers to share large, complex data sets with external partners and the public. AWS has been extensively used by JPL for a wide range of computing needs and was previously tested on a NASA Agency basis during the Nebula testing program. Its ability to support the Langley Science Directorate needs to be evaluated by integrating it with real world operational needs across NASA and the associated maturity that would come with that. The strengths and weaknesses of this architecture and its ability to support general science and engineering applications has been demonstrated during the previous testing. The Langley Office of the Chief Information Officer in partnership with the Atmospheric Sciences Data Center (ASDC) has established a pilot business interface to utilize AWS cloud computing resources on a organization and project level pay per use model. This poster discusses an effort to evaluate the feasibility of the pilot business interface from a project level perspective by specifically using a processing scenario involving the Clouds and Earth's Radiant Energy System (CERES) project.

  18. Classroom Activities: Simple Strategies to Incorporate Student-Centered Activities within Undergraduate Science Lectures.

    Science.gov (United States)

    Lom, Barbara

    2012-01-01

    The traditional science lecture, where an instructor delivers a carefully crafted monolog to a large audience of students who passively receive the information, has been a popular mode of instruction for centuries. Recent evidence on the science of teaching and learning indicates that learner-centered, active teaching strategies can be more effective learning tools than traditional lectures. Yet most colleges and universities retain lectures as their central instructional method. This article highlights several simple collaborative teaching techniques that can be readily deployed within traditional lecture frameworks to promote active learning. Specifically, this article briefly introduces the techniques of: reader's theatre, think-pair-share, roundtable, jigsaw, in-class quizzes, and minute papers. Each technique is broadly applicable well beyond neuroscience courses and easily modifiable to serve an instructor's specific pedagogical goals. The benefits of each technique are described along with specific examples of how each technique might be deployed within a traditional lecture to create more active learning experiences.

  19. High Performance Computing in Science and Engineering '15 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2015. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  20. High Performance Computing in Science and Engineering '17 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael; HLRS 2017

    2018-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  1. Education in Science Centers: Evaluating School Visits to an Astronomical Observatory in Brazil

    Directory of Open Access Journals (Sweden)

    Pedro Donizete Colombo Junior

    2009-03-01

    Full Text Available The present article analyzes the activity “Guided Visit of School Groups” carried out at Astronomical Observatory of the Center for Scientific and Cultural Diffusion (CDCC of University of Sao Paulo (USP with K4 and K5 pupils. The objectives of this research were to identify influences of such activity on learning of astronomical concepts and on pupils’ motivation. The results demonstrate that pupils have difficulties to understand Solar System concepts and the distances involved, on the other hand, the activity motivates the pupils to return with their parents and friends to the Observatory. At last, the success of visits to science centers aiming at the learning of basic concepts and motivation comprises at least three moments: the one that precedes the visit, the visit itself and the return to the classroom.

  2. The International Science and Technology Center (ISTC) and ISTC projects related to nuclear safety. Information review

    International Nuclear Information System (INIS)

    Tocheny, Lev V.

    2003-01-01

    The ISTC is an intergovernmental organization created ten years ago by Russia, USA, EU and Japan in Moscow. The Center supports numerous science and technology projects in different areas, from biotechnologies and environmental problems to all aspects of nuclear studies, including those focused on the development of effective innovative concepts and technologies in the nuclear field, in general, and for improvement of nuclear safety, in particular. The presentation addresses some technical results of the ISTC projects as well as methods and approaches employed by the ISTC to foster close international collaboration and manage projects towards fruitful results. (author)

  3. High Performance Computing in Science and Engineering '99 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    2000-01-01

    The book contains reports about the most significant projects from science and engineering of the Federal High Performance Computing Center Stuttgart (HLRS). They were carefully selected in a peer-review process and are showcases of an innovative combination of state-of-the-art modeling, novel algorithms and the use of leading-edge parallel computer technology. The projects of HLRS are using supercomputer systems operated jointly by university and industry and therefore a special emphasis has been put on the industrial relevance of results and methods.

  4. High Performance Computing in Science and Engineering '98 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    1999-01-01

    The book contains reports about the most significant projects from science and industry that are using the supercomputers of the Federal High Performance Computing Center Stuttgart (HLRS). These projects are from different scientific disciplines, with a focus on engineering, physics and chemistry. They were carefully selected in a peer-review process and are showcases for an innovative combination of state-of-the-art physical modeling, novel algorithms and the use of leading-edge parallel computer technology. As HLRS is in close cooperation with industrial companies, special emphasis has been put on the industrial relevance of results and methods.

  5. The new library building at the University of Texas Health Science Center at San Antonio.

    Science.gov (United States)

    Kronick, D A; Bowden, V M; Olivier, E R

    1985-04-01

    The new University of Texas Health Science Center at San Antonio Library opened in June 1983, replacing the 1968 library building. Planning a new library building provides an opportunity for the staff to rethink their philosophy of service. Of paramount concern and importance is the need to convey this philosophy to the architects. This paper describes the planning process and the building's external features, interior layouts, and accommodations for technology. Details of the move to the building are considered and various aspects of the building are reviewed.

  6. Institutional overviews. Overview of the JAEA and the Nuclear Nonproliferation Science and Technology Center

    International Nuclear Information System (INIS)

    Senzaki, Masao

    2006-01-01

    The Nuclear Nonproliferation Science and Technology Center (NPSTC) was formed within the new Japan Atomic Energy Agency (JAEA) to carry out safeguards and material control duties for the JAEA. Development of technologies and procedures for safeguards is an important duty. In addition, the new NPSTC will assume a 'think tank' role in support of the nonproliferation regime, help train nonproliferation experts, and cooperate with academic, government and non-governmental organizations on nonproliferation issues. This report briefly summarizes the formation of the JAEA and describes the duties and structure of the NPSTC in detail. (author)

  7. Building partnerships to produce actionable science to support climate-informed management decisions: North Central Climate Science Center example

    Science.gov (United States)

    Lackett, J.; Ojima, D. S.; McNeeley, S.

    2017-12-01

    As climate change impacts become more apparent in our environment, action is needed to enhance the social-ecological system resilience. Incorporating principles which lead to actionable research and project co-development, when appropriate, will facilitate building linkages between the research and the natural resource management communities. In order to develop strategies to manage for climatic and ecosystem changes, collaborative actions are needed between researchers and resource managers to apply appropriate knowledge of the ecosystem and management environments to enable feasible solutions and management actions to respond to climate change. Our team has been involved in developing and establishing a research and engagement center, the North Central Climate Science Center (NC CSC), for the US Department of Interior, to support the development and translation of pertinent climate science information to natural resource managers in the north central portion of the United States. The NC CSC has implemented a platform to support the Resource for Vulnerability Assessment, Adaptation, and Mitigation Projects (ReVAMP) with research, engagement, and training activities to support resource managers and researchers. These activities are aimed at the co-production of appropriate response strategies to climate change in the region, in particular to drought-related responses. Through this platform we, with other partners in the region, including the Department of Interior and the Department of Agriculture, are bringing various training tools, climate information, and management planning tools to resource managers. The implementation of ReVAMP has led to development of planning efforts which include a more explicit representation of climate change as a driver of drought events in our region. Scenario planning provides a process which integrates management goals with possible outcomes derived from observations and simulations of ecological impacts of climate change. Co

  8. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries

    Science.gov (United States)

    Allen, J. S.

    2009-12-01

    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and

  9. The current status and possible future of the Los Alamos spallation radiation effects facility

    Energy Technology Data Exchange (ETDEWEB)

    Borden, M.J.; Sommer, W.F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The Los Alamos Spallation Radiation Effects Facility (LASREF) has been configured for both proton and spallation neutron irradiations since 1985. The facility makes use of the Los Alamos Meson Physics Facility 1 mA 800 MeV proton beam. Environment controlled proton and neutron irradiations have been demonstrated over the past nine years. The current copper beam stop configuration produces a maximum measured neutron flux of 4.6 x 10{sup 17} m{sup {minus}2}s{sup {minus}1} for energies greater than 1 KeV. The maximum proton flux at the center of Gaussian shaped beam is 1.2 x 10{sup 14} protons cm{sup {minus}2}s{sup {minus}1} with beam spot diameter of 3.5 cm at 2{sigma}. Previously published work has shown that the neutron flux can be increased by a factor of ten by changing the beam stop to tungsten and decreasing the diameter. Expertise exists at Los Alamos to further optimize this design to tailor neutron production and spectrum. Consideration and preliminary planning has also been done for increasing the LAMPF proton current from 1 mA to a few mA with a possible maximum of 10 mA. An upgrade of this type would produce current densities comparable to those proposed for the Accelerator-Driven Transmutation Technologies (ADTT) programs.

  10. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O' Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  11. Investigation of GeV proton-induced spallation reactions

    International Nuclear Information System (INIS)

    Hilscher, D.; Herbach, C.-M.; Jahnke, U.

    2003-01-01

    A reliable and precise modeling of GeV proton-induced spallation reactions is indispensable for the design of the spallation module and the target station of future accelerator driven hybrid reactors (ADS) or spallation neutron sources (ESS), in particular, to provide precise predictions for the neutron production, the radiation damage of materials (window), and the production of radioactivity ( 3 H, 7 Be etc.) in the target medium. Detailed experimental nuclear data are needed for sensitive validations and improvements of the models, whose predictive power is strongly dependent on the correct physical description of the three main stages of a spallation reaction: (i) the Intra-Nuclear-Cascade (INC) with the fast heating of the target nucleus, (ii) the de-excitation due to pre-equilibrium emission including the possibility of multi-fragmentation, and (iii) the statistical decay of thermally excited nuclei by evaporation of light particles and fission in the case of heavy nuclei. Key experimental data for this endeavour are absolute production cross sections and energy spectra for neutrons and light charged-particles (LCPs), emission of composite particles prior and post to the attainment of an equilibrated system, distribution of excitation energies deposited in the nuclei after the INC, and fission probabilities. The correlations of these quantities are particularly important to detect and identify possible deficiencies of the theoretical modeling of the various stages of a spallation reaction. Systematic measurements of such data are furthermore needed over large ranges of target nuclei and incident proton energies. Such data has been measured with the NESSI detector. An overview of new and previous results will be given. (authors)

  12. CFD studies on thermal hydraulics of spallation targets

    International Nuclear Information System (INIS)

    Tak, N.I.; Batta, A.; Cheng, X.

    2005-01-01

    Full text of publication follows: Due to the fast advances in computer hardware as well as software in recent years, more and more interests have been aroused to use computational fluid dynamics (CFD) technology in nuclear engineering and designs. During recent many years, Forschungszentrum Karlsruhe (FZK) has been actively involved in the thermal hydraulic analysis and design of spallation targets. To understand the thermal hydraulic behaviors of spallation targets very detailed simulations are necessary because of their complex geometries, complicated boundary conditions such as spallation heat distributions, and very strict design limits. A CFD simulation is believed to be the best for this purpose even though the validation of CFD codes are not perfectly completed yet in specific topics like liquid metal heat transfer. The research activities on three spallation targets (i.e., MEGAPIE, TRADE, and XADS targets) are currently very active in Europe in order to consolidate the European ADS road-map. In the thermal hydraulics point of view, two kinds of the research activities, i.e., (1) numerical design and (2) experimental work, are required to achieve the objectives of these targets. It should be noted that CFD studies play important role on both kinds of two activities. A preliminary design of a target can be achieved by sophisticated CFD analysis and pre-and-post analyses of an experimental work using a CFD code help the design of the test section of the experiment as well as the analysis of the experimental results. The present paper gives an overview about the recent CFD studies relating to thermal hydraulics of the spallation targets recently involved in FZK. It covers numerical design studies as well as CFD studies to support experimental works. The CFX code has been adopted for the studies. Main recent results for the selected examples performed by FZK are presented and discussed with their specific lessons learned. (authors)

  13. The RADEX facility as a tool for studies of radiation damage under proton and spallation neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Koptelov, E.A.; Lebedev, S.G.; Matveev, V.A.; Sobolevsky, N.M. [Institute for Nuclear Research of Russian Academy of Sciences, Moscow (Russian Federation); Strebkov, Yu.S.; Subbotin, A.V. [Research and Development Institute of Power Engineering, Moscow (Russian Federation)

    2001-03-01

    We present results of numerical modeling for processes of primary protons and spallation neutrons interactions with structural materials at the RADiation EXperiment facility of the Neutron Complex. The installation has a vertical irradiation channel inside the beam stop for horizontally incident protons with energies up to 600 MeV of the Moscow Meson Factory of the INR (Institute for Nuclear Research) RAS (Russian Academy of Science). The calculations are based on a set of computer codes SHIELD and RADDAM, which were developed in the INR RAS and give data on point defect generation by irradiation, rate of accumulation of H and He atoms produced in nuclear reactions, energetic spectra of primary knocked-off atoms in collision displacements, temperature of samples under irradiation. Different positions of the channel, which are available by rotation of a target relatively the vertical axis for angles 0, 60, 120 and 180 degrees to the proton beam direction, are considered. Changes of irradiation damage parameters due to various inputs of primary protons and spallation neutrons at different target orientations are demonstrated. It is shown also that the spallation neutron facility RADEX may provide with perspective experimental possibilities for modeling of irradiation conditions for fusion reactors ITER and DEMO. (author)

  14. Comprehensive report of aeropropulsion, space propulsion, space power, and space science applications of the Lewis Research Center

    Science.gov (United States)

    1988-01-01

    The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.

  15. Hands across the divide: Finding spaces for student-centered pedagogy in the undergraduate science classroom

    Science.gov (United States)

    Spier-Dance, Lesley

    experiences valued by students and instructors. Instructors also valued the activity because of insights into students' understanding that were revealed. This research provides an example of how a student-centered, embodied learning approach can be brought into the undergraduate science classroom. This is valuable because, if instructors are to change from a transmission mode of instruction to more student-centered approaches, they must re-examine and re-construct their practices. An important step in this process is provision of evidence that change is warranted and fruitful.

  16. USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education

    Science.gov (United States)

    Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.

    2005-08-01

    A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.

  17. Assessment of oral health attitudes and behavior among students of Kuwait University Health Sciences Center.

    Science.gov (United States)

    Ali, Dena A

    2016-01-01

    The aims of this study were to assess attitudes and behavior of oral health maintenance among students in four faculties (Medicine, Dentistry, Pharmacy, and Allied Health) and to compare oral health attitudes and behavior of all students at Kuwait University Health Sciences Center (KUHSC) based on their academic level. Students enrolled in the Faculties of Dentistry, Medicine, Pharmacy, and Allied Health at KUHSC were evaluated regarding their oral health attitudes and behavior by an e-mail invitation with a link to the Hiroshima University Dental Behavior Inventory survey that was sent to all 1802 students with Kuwait University Health Sciences Center e-mail addresses. The data were analyzed for frequency distributions, and differences among the groups were assessed using the Mann-Whitney U test, Chi-square test, and Kruskal-Wallis test. P values less than 0.05 were considered to be statistically significant ( P < 0.05). The results of this study indicated that dental students achieved better oral health attitudes and behavior than that of their nondental professional fellow students ( P < 0.05). Students in advanced academic levels and female students demonstrated better oral health attitudes and behavior. Dental students and students who were in advanced levels of their training along with female students demonstrated better oral health practices and perceptions than students in lower academic levels and male students, respectively. Additional studies for investigating the effectiveness and identifying areas requiring modification within the dental curriculum at KUHSC may be warranted.

  18. Faculty development to improve teaching at a health sciences center: a needs assessment.

    Science.gov (United States)

    Scarbecz, Mark; Russell, Cynthia K; Shreve, Robert G; Robinson, Melissa M; Scheid, Cheryl R

    2011-02-01

    There has been increasing interest at health science centers in improving the education of health professionals by offering faculty development activities. In 2007-08, as part of an effort to expand education-related faculty development offerings on campus, the University of Tennessee Health Science Center surveyed faculty members in an effort to identify faculty development activities that would be of interest. Factor analysis of survey data indicated that faculty interests in the areas of teaching and learning can be grouped into six dimensions: development of educational goals and objectives, the use of innovative teaching techniques, clinical teaching, improving traditional teaching skills, addressing teaching challenges, and facilitating participation. There were significant differences in the level of interest in education-related faculty development activities by academic rank and by the college of appointment. Full professors expressed somewhat less interest in faculty development activities than faculty members of lower ranks. Faculty members in the Colleges of Medicine and Dentistry expressed somewhat greater interest in faculty development to improve traditional teaching skills. The policy implications of the survey results are discussed, including the need for faculty development activities that target the needs of specific faculty groups.

  19. Needs assessment of science teachers in secondary schools in Kumasi, Ghana: A basis for in-service education training programs at the Science Resource Centers

    Science.gov (United States)

    Gyamfi, Alexander

    The purpose of this study was twofold. First, it identified the priority needs common to all science teachers in secondary schools in Kumasi, Ghana. Second, it investigated the relationship existing between the identified priority needs and the teacher demographic variables (type of school, teacher qualification, teaching experience, subject discipline, and sex of teacher) to be used as a basis for implementing in-service education training programs at the Science Resource Centers in Kumasi Ghana. An adapted version of the Moore Assessment Profile (MAP) survey instrument and a set of open-ended questions were used to collect data from the science teachers. The researcher handed out one hundred and fifty questionnaire packets, and all one hundred and fifty (100%) were collected within a period of six weeks. The data were analyzed using descriptive statistics, content analysis, and inferential statistics. The descriptive statistics reported the frequency of responses, and it was used to calculate the Need Index (N) of the identified needs of teachers. Sixteen top-priority needs were identified, and the needs were arranged in a hierarchical order according to the magnitude of the Need Index (0.000 ≤ N ≤ 1.000). Content analysis was used to analyze the responses to the open-ended questions. One-way analysis of variance (ANOVA) was used to test the null hypotheses of the study on each of the sixteen identified top-priority needs and the teacher demographic variables. The findings of this study were as follows: (1) The science teachers identified needs related to "more effective use of instructional materials" as a crucial area for in-service training. (2) Host and Satellite schools exhibited significant difference on procuring supplementary science books for students. Subject discipline of teachers exhibited significant differences on utilizing the library and its facilities by students, obtaining information on where to get help on effective science teaching

  20. The National Space Science and Technology Center's Education and Public Outreach Program

    Science.gov (United States)

    Cox, G. N.; Denson, R. L.

    2004-12-01

    The objective of the National Space Science and Technology Center's (NSSTC) Education and Public Outreach program (EPO) is to support K-20 education by coalescing academic, government, and business constituents awareness, implementing best business/education practices, and providing stewardship over funds and programs that promote a symbiotic relationship among these entities, specifically in the area of K-20 Science, Technology, Engineering, and Mathematics (STEM) education. NSSTC EPO Program's long-term objective is to showcase its effective community-based integrated stakeholder model in support of STEM education and to expand its influence across the Southeast region for scaling ultimately across the United States. The Education and Public Outreach program (EPO) is coordinated by a supporting arm of the NSSTC Administrative Council called the EPO Council (EPOC). The EPOC is funded through federal, state, and private grants, donations, and in-kind contributions. It is comprised of representatives of NSSTC Research Centers, both educators and scientists from the Alabama Space Science and Technology Alliance (SSTA) member institutions, the Alabama Space Grant Consortium and the NASA Marshall Space Flight Center's (MSFC) Education Office. Through its affiliation with MSFC and the SSTA - a consortium of Alabama's research universities that comprise the NSSTC, EPO fosters the education and development of the next generation of Alabama scientists and engineers by coordinating activities at the K-20 level in cooperation with the Alabama Department of Education, the Alabama Commission on Higher Education, and Alabama's businesses and industries. The EPO program's primary objective is to be Alabama's premiere organization in uniting academia, government, and private industry by way of providing its support to the State and Federal Departments of Education involved in systemic STEM education reform, workforce development, and innovative uses of technology. The NSSTC EPO

  1. Tutorial: Magnetic resonance with nitrogen-vacancy centers in diamond—microwave engineering, materials science, and magnetometry

    Science.gov (United States)

    Abe, Eisuke; Sasaki, Kento

    2018-04-01

    This tutorial article provides a concise and pedagogical overview on negatively charged nitrogen-vacancy (NV) centers in diamond. The research on the NV centers has attracted enormous attention for its application to quantum sensing, encompassing the areas of not only physics and applied physics but also chemistry, biology, and life sciences. Nonetheless, its key technical aspects can be understood from the viewpoint of magnetic resonance. We focus on three facets of this ever-expanding research field, to which our viewpoint is especially relevant: microwave engineering, materials science, and magnetometry. In explaining these aspects, we provide a technical basis and up-to-date technologies for research on the NV centers.

  2. A long-wavelength target station for the spallation neutron source

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Mason, T.E.

    2005-01-01

    The Spallation Neutron Source (SNS), a major new user facility for studies of the structure and dynamics of materials, funded by the US Department of Energy (DOE), is under construction at Oak Ridge National Laboratory (ORNL). Details about the project are available in a recent paper and on the SNS Web site [MRS Bull. 28 (12) (2003) 923]. A Long-Wavelength Target Station (LWTS) [Technical Concepts for a Long-Wavelength Target Station for the Spallation Neutron Source, Argonne National Laboratory Report ANL-02/16, Oak Ridge National Laboratory Report ORNL/SNS-TM-2001/163, November 2002. See also www.pns.anl.gov/related/] will complement the High-Power Target Station (HPTS) facility of the SNS and will build upon the significant investment in the remainder of the installation by providing important new scientific opportunities. For areas of science using the optimized long-wavelength beam lines, the LWTS will at least double the overall scientific capability of the SNS and provide for up to an order of magnitude performance gain over the initial HPTS. The fully equipped SNS has the prospect to offer capabilities for neutron-scattering studies of the structure and dynamics of materials with sensitivity, resolution, dynamic range, and speed that are unparalleled in the world. Preliminary assessments of the performance of the several instruments treated in detail in the body of the paper bear out this expectation. The LWTS concept has been developed in close consultation with the scientific community through a series of workshops and conferences jointly sponsored by DOE's Office of Basic Energy Science and the National Science Foundation. We describe the principal features of the LWTS concept, and provide a preliminary summary of some neutron scattering instruments suited to exploit the unique features of the LWTS. It remains to develop concepts and designs for a full suite of instruments that exploit the capabilities of LWTS, a process that has begun in collaboration

  3. Training for life science experiments in space at the NASA Ames Research Center

    Science.gov (United States)

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  4. Generalized bibliographic format as used by the Ecological Sciences Information Center

    International Nuclear Information System (INIS)

    Allison, L.J.; Pfuderer, H.A.; Collier, B.N.

    1979-03-01

    The purpose of this document is to provide guidance for the preparation of computer input for the information programs being developed by the Ecological Sciences Information Center (ESIC)/Information Center Complex (ICC) of the Oak Ridge National Laboratory (ORNL). Through the use of a generalized system, the data of all the centers of ICC are compatible. Literature included in an information data base has a number of identifying characteristics. Each of these characteristics or data fields can be recognized and searched by the computer. The information for each field must have an alphanumeric label or field descriptor. All of the labels presently used are sets of upper-case letters approximating the name of the field they represent. Presently, there are 69 identified fields; additional fields may be included in the future. The format defined here is designed to facilitate the input of information to the ADSEP program. This program processes data for the ORNL on-line (ORLOOK) search system and is a special case of the ADSEP text input option

  5. Generalized bibliographic format as used by the Ecological Sciences Information Center

    Energy Technology Data Exchange (ETDEWEB)

    Allison, L.J.; Pfuderer, H.A.; Collier, B.N.

    1979-03-01

    The purpose of this document is to provide guidance for the preparation of computer input for the information programs being developed by the Ecological Sciences Information Center (ESIC)/Information Center Complex (ICC) of the Oak Ridge National Laboratory (ORNL). Through the use of a generalized system, the data of all the centers of ICC are compatible. Literature included in an information data base has a number of identifying characteristics. Each of these characteristics or data fields can be recognized and searched by the computer. The information for each field must have an alphanumeric label or field descriptor. All of the labels presently used are sets of upper-case letters approximating the name of the field they represent. Presently, there are 69 identified fields; additional fields may be included in the future. The format defined here is designed to facilitate the input of information to the ADSEP program. This program processes data for the ORNL on-line (ORLOOK) search system and is a special case of the ADSEP text input option.

  6. Preparation and Testing of Corrosion and Spallation-Resistant Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, John

    2015-11-01

    This Energy & Environmental Research Center (EERC) project is designed to determine if plating APMT®, a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially improving the lifetimes and maximum use temperatures of the parts. The method for joining the APMT plate to the superalloys is called evaporative metal bonding and involves placing a thin foil of zinc between the plate and the superalloy, clamping them together, and heating in an atmosphere-controlled furnace. Upon heating, the zinc melts and dissolves the oxide skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The zinc then diffuses through the alloys and evaporates from their surfaces. During this annual reporting period, the finite element model was completed and used to design clamping jigs to hold the APMT plate to the larger blocks of superalloys during the bonding process. The clamping system was machined from titanium–zirconium–molybdenum and used to bond the APMT plate to the superalloy blocks. The bond between the APMT plate was weak for one of each of the superalloy blocks. We believe that this occurred because enough oxidation had occurred on the surface of the parts as a result of a 1-month time period between sandblasting to prepare the parts and the actual bonding process. The other blocks were, therefore, bonded within 1 day of preparing the parts for bonding, and their joints appear strong. Scanning electron microscopy analyses of representative joints showed that no zinc remained in the alloys after bonding. Also, phases rich in hafnium and tantalum had precipitated near the bond line in the APMT. Iron from the APMT had diffused into the superalloys during bonding, more extensively in the CM247LC than in the Rene 80. Nickel from the superalloys had diffused into the APMT, again more extensively in the joint with the CM247LC than

  7. European Neutrons form Parasitic Research to Global Strategy: Realizing Plans for a Transnational European Spallation Source in the Wake of the Cold War

    Science.gov (United States)

    Kaiserfeld, Thomas

    2016-03-01

    Studies of Big Science have early on focused on instrumentation and scientific co-operation in large organizations, later on to take into account symbolic values and specific research styles while more recently also involving the relevance of commercial interests and economic development as well as the assimilation of research traditions. In accordance with these transformed practices, this presentation will analyze how an organization with the purpose of realizing a Big-Science facility, The European Spallation Source, has successfully managed to present the project as relevant to different national and international policy-makers, to the community of European neutron researchers as well as to different industrial interests. All this has been achieved in a research-policy environment, which has been the subject to drastic transformations, from calls to engage researchers from the former eastern bloc in the early 1990s via competition with American and Asian researchers at the turn of the century 2000 to intensified demands on business applications. During this process, there has also been fierce competition between different potential sites in the U.K., Germany, Spain, Hungary and Sweden, not once, but twice. The project has in addition been plagued by withdrawals of key actors as well as challenging problems in the field of spallation-source construction. Nevertheless, the European Spallation Source has survived from the early 1990s until today, now initiating the construction process at Lund in southern Sweden. In this presentation, the different measures taken and arguments raised by the European Spallation Source project in order to realize the facility will be analysed. Especially the different designs of the European Spallation Source will be analysed as responses to external demands and threats.

  8. Web Services Implementations at Land Process and Goddard Earth Sciences Distributed Active Archive Centers

    Science.gov (United States)

    Cole, M.; Bambacus, M.; Lynnes, C.; Sauer, B.; Falke, S.; Yang, W.

    2007-12-01

    NASA's vast array of scientific data within its Distributed Active Archive Centers (DAACs) is especially valuable to both traditional research scientists as well as the emerging market of Earth Science Information Partners. For example, the air quality science and management communities are increasingly using satellite derived observations in their analyses and decision making. The Air Quality Cluster in the Federation of Earth Science Information Partners (ESIP) uses web infrastructures of interoperability, or Service Oriented Architecture (SOA), to extend data exploration, use, and analysis and provides a user environment for DAAC products. In an effort to continually offer these NASA data to the broadest research community audience, and reusing emerging technologies, both NASA's Goddard Earth Science (GES) and Land Process (LP) DAACs have engaged in a web services pilot project. Through these projects both GES and LP have exposed data through the Open Geospatial Consortiums (OGC) Web Services standards. Reusing several different existing applications and implementation techniques, GES and LP successfully exposed a variety data, through distributed systems to be ingested into multiple end-user systems. The results of this project will enable researchers world wide to access some of NASA's GES & LP DAAC data through OGC protocols. This functionality encourages inter-disciplinary research while increasing data use through advanced technologies. This paper will concentrate on the implementation and use of OGC Web Services, specifically Web Map and Web Coverage Services (WMS, WCS) at GES and LP DAACs, and the value of these services within scientific applications, including integration with the DataFed air quality web infrastructure and in the development of data analysis web applications.

  9. The P50 Research Center in Perioperative Sciences: How the investment by the National Institute of General Medical Sciences in team science has reduced postburn mortality.

    Science.gov (United States)

    Finnerty, Celeste C; Capek, Karel D; Voigt, Charles; Hundeshagen, Gabriel; Cambiaso-Daniel, Janos; Porter, Craig; Sousse, Linda E; El Ayadi, Amina; Zapata-Sirvent, Ramon; Guillory, Ashley N; Suman, Oscar E; Herndon, David N

    2017-09-01

    Since the inception of the P50 Research Center in Injury and Peri-operative Sciences (RCIPS) funding mechanism, the National Institute of General Medical Sciences has supported a team approach to science. Many advances in critical care, particularly burns, have been driven by RCIPS teams. In fact, burns that were fatal in the early 1970s, prior to the inception of the P50 RCIPS program, are now routinely survived as a result of the P50-funded research. The advances in clinical care that led to the reduction in postburn death were made by optimizing resuscitation, incorporating early excision and grafting, bolstering acute care including support for inhalation injury, modulating the hypermetabolic response, augmenting the immune response, incorporating aerobic exercise, and developing antiscarring strategies. The work of the Burn RCIPS programs advanced our understanding of the pathophysiologic response to burn injury. As a result, the effects of a large burn on all organ systems have been studied, leading to the discovery of persistent dysfunction, elucidation of the underlying molecular mechanisms, and identification of potential therapeutic targets. Survival and subsequent patient satisfaction with quality of life have increased. In this review article, we describe the contributions of the Galveston P50 RCIPS that have changed postburn care and have considerably reduced postburn mortality.

  10. The effect of student-centered and teacher-centered instruction with and without conceptual advocacy on biology students' misconceptions, achievement, attitudes toward science, and cognitive retention

    Science.gov (United States)

    Gallop, Roger Graham

    The purpose of this study was to investigate the effect of student-centered and teacher-centered instructional strategies with and without conceptual advocacy (CA) on ninth-grade biology students' misconceptions (MIS), biology achievement (ACH), attitudes toward science (ATT), and cognitive retention of scientific method and measurement, spontaneous generation, and characteristics of living things. Students were purposively selected using intact classes and assigned to one of four treatment groups (i.e., student-centered instruction without CA, student-centered instruction with CA, teacher-centered instruction with CA, and teacher-centered instruction without CA). A modified quasi-experimental design was used in which students were not matched in the conventional sense but instead, groups were shown to be equivalent on the dependent measure via a pretest. A 5-day treatment implementation period addressed science conceptions under investigation. The treatment period was based on the number of class periods teachers at the target school actually spend teaching the biological concepts under investigation using traditional instruction. At the end of the treatment period, students were posttested using the Concepts in Biology instrument and Science Questionnaire. Eight weeks after the posttest, these instruments were administered again as a delayed posttest to determine cognitive retention of the correct biological conceptions and attitudes toward science. MANCOVA and follow-up univariate ANCOVA results indicated that student-centered instruction without CA (i.e., Group 1) did not have a significant effect on students' MIS, ACH, and ATT (F = .029, p = .8658; F = .002, p =.9688, F = .292, p = .5897, respectively). On the other hand, student-centered instruction with CA (i.e., Group 2) had a significant effect on students' MIS and ACH (F =10.33, p = .0016 and F = 10.17, p = .0017, respectively), but did not on ATT (F = .433, p = .5117). Teacher-centered instruction with

  11. In pursuit of a promise perspectives on the political process to establish the European Spallation Source (ESS) in Lund, Sweden

    CERN Document Server

    2012-01-01

    On 28 May 2009, at a closed meeting in Brussels, ministers and state secretaries of education and science from several EU countries decided to build the European Spallation Source (ESS) in Lund, Sweden. Or did they? It is common for big European science projects to be surrounded by secrecy and political deceit, but the ESS is extraordinary in its elusiveness. There is a remarkable lack of concrete economic, political, technical and scientific underpinnings to the project - but a boasting certainty in the promises of future paybacks. The ESS is an accelerator-based neutron spallation facility that will cost billions of Euros to build and run. It is expected to bring new knowledge in several fields including materials science, energy research, and the life sciences. But its financing is not yet certain, and future returns hard to predict. How then could the decision to build ESS occur? Why was there so little organized resistance? This book places the ESS project in its political and scientific context. It link...

  12. High intensity proton accelerator and its application (Proton Engineering Center)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, Spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  13. Neutrino physics at the spallation neutron source. Pt. 2

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Lillie, R.A.; Bishop, B.L.; Wilczynski, J.; Zeitnitz, B.

    1981-06-01

    The shielding and detector analysis associated with a contemplated low energy (approx. equal to10 to 50 MeV) neutrino experiment at a spallation neutron source are presented and discussed. This analysis includes neutrino production and interaction rates, time dependence of the neutrino pulse, shielding considerations for neutrons coming directly from the spallation source and those which are scattered from other experimental areas, shielding considerations for galactic sources especially muons and finally detector responses to neutrino and background radiations. In general for a 1 mA (200 ns/pulse, 100 Hz), 1.1 GeV proton beam incident on a lead target surrounded by a moderator system, approximately 8 m of iron are required to reduce the background so that the event rate in the detector systems is approx. [de

  14. Measured radionuclide production from copper, gold and lead spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Parish, T.A.; Belian, A.P. [Texas A & M Univ., College Station, TX (United States)

    1995-10-01

    Spallation target materials are chosen so as to produce large numbers of neutrons while at the same time avoiding the creation of long-lived radioactive wastes. While there has been considerable research to determine the number of neutrons produced per incident particle for various target materials, there has been less effort to precisely quantify the types and amounts of radionuclides produced. Accurate knowledge of the radioactive species produced by spallation reactions is important for specifying waste disposal criteria for targets. In order to verify the production rates calculated by LAHET, a study has been conducted using the Texas A&M University (TAMU) Cyclotron to measure radionuclide yields from copper, gold, and lead targets.

  15. Overcoming High Energy Backgrounds at Pulsed Spallation Sources

    CERN Document Server

    Cherkashyna, Nataliia; DiJulio, Douglas D.; Khaplanov, Anton; Pfeiffer, Dorothea; Scherzinger, Julius; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Ansell, Stuart; Iverson, Erik B.; Ehlers, Georg; Gallmeier, Franz X.; Panzner, Tobias; Rantsiou, Emmanouela; Kanaki, Kalliopi; Filges, Uwe; Kittelmann, Thomas; Extegarai, Maddi; Santoro, Valentina; Kirstein, Oliver; Bentley, Phillip M.

    2015-01-01

    Instrument backgrounds at neutron scattering facilities directly affect the quality and the efficiency of the scientific measurements that users perform. Part of the background at pulsed spallation neutron sources is caused by, and time-correlated with, the emission of high energy particles when the proton beam strikes the spallation target. This prompt pulse ultimately produces a signal, which can be highly problematic for a subset of instruments and measurements due to the time-correlated properties, and different to that from reactor sources. Measurements of this background have been made at both SNS (ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The background levels were generally found to be low compared to natural background. However, very low intensities of high-energy particles have been found to be detrimental to instrument performance in some conditions. Given that instrument performance is typically characterised by S/N, improvements in backgrounds can both improve instrument pe...

  16. The spallation in reverse kinematics: what for a coincidence measurement?

    International Nuclear Information System (INIS)

    Ducret, J.E.

    2006-07-01

    The Spaladin installation has been designed to study spallation reactions in reverse kinematics. Furthermore, the heavy and light fragments are detected by coincidence which allows us to get an instantaneous picture of the reaction at a level of accuracy better than that obtained through inclusive measurement. The first part is dedicated to the theoretical description of the different mechanisms involved in the spallation reactions. In the second part we describe the Spaladin installation and report some results on the reaction: Fe 56 + p at an energy of 1 GeV/nucleon. In the third part we expose the performance of the installation through its simulation with the Geant-IV model. We present a study about the sensitivity of the Spaladin installation to theoretical predictions. The fourth part is dedicated to the future experiments that will be performed with the Spaladin installation. (A.C.)

  17. Accumulator ring lattice for the national spallation neutron source

    International Nuclear Information System (INIS)

    Gardner, C.J.; Lee, Y.Y.; Luccio, A.U.

    1997-01-01

    The Accumulator Ring for the proposed National Spallation Neutron Source (NSNS) is to accept a 1.03 millisecond beam pulse from a 1 GeV Proton Linac at a repetition rate of 60 Hz. For each beam pulse, 10 14 protons are to be accumulated via charge-exchange injection. A 295 nanosecond gap in the beam, maintained by an rf system, will allow for extraction to an external target for the production of neutrons by spallation. This paper describes the four-fold symmetric lattice that has been chosen for the ring. The lattice contains four long dispersion-free straight sections to accomodate injection, extraction, rf cavities, and beam scraping respectively. The four-fold symmetry allows for easy adjustment of the tunes and flexibility in the placement of correction elements, and ensures that potentially dangerous betatron structure resonances are avoided

  18. Dynamically Polarized Sample for Neutron Scattering At the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Pierce, Josh; Zhao, J. K.; Crabb, Don

    2009-01-01

    The recently constructed Spallation Neutron Source at the Oak Ridge National Laboratory is quickly becoming the world's leader in neutron scattering sciences. In addition to the world's most intense pulsed neutron source, we are continuously constructing state of the art neutron scattering instruments as well as sample environments to address today and tomorrow's challenges in materials research. The Dynamically Polarized Sample project at the SNS is aimed at taking maximum advantage of polarized neutron scattering from polarized samples, especially biological samples that are abundant in hydrogen. Polarized neutron scattering will allow us drastically increase the signal to noise ratio in experiments such as neutron protein crystallography. The DPS project is near completion and all key components have been tested. Here we report the current status of the project.

  19. Advanced spallation neutron sources for condensed matter research

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Stirling, G.C.

    1984-03-01

    Advanced spallation neutron sources afford significant advantages over existing high flux reactors. The effective flux is much greater than that currently available with reactor sources. A ten-fold increase in neutron flux will be a major benefit to a wide range of condensed matter studies, and it will realise important experiments that are marginal at reactor sources. Moreover, the high intensity of epithermal neutrons open new vistas in studies of electronic states and molecular vibrations. (author)

  20. Irradiation facilities at the spallation neutron source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.; Ledermann, J.; Aebersold, H.; Kuehne, G.; Kohlik, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Four independent experiments for sample irradiation are under construction and in preparation for operational tests at the spallation source SINQ. Three of them are located inside a thermal beam port with end positions inside or near the moderator tank. The other experiment will be established at the end position of a super mirror lined neutron guide for applications with cold neutrons. (author) 3 figs., 1 tab., 6 refs.

  1. New scientific horizons with pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carlile, C.J.; Finney, J.L.

    1991-01-01

    Pulsed spallation sources are not just another way of producing neutrons: the time structure of the neutron pulse has consequences which allow new scientific areas to be investigated and traditional areas to be explored afresh. In addition to the high epithermal neutron component traditionally associated with pulsed sources the recent development of cold neutron techniques at ISIS illustrates that very high energy and momentum resolutions can be achieved on pulsed sources over a surprisingly wide range. (orig.)

  2. Neutronic moderator design for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Charlton, L.A.; Barnes, J.M.; Johnson, J.O.; Gabriel, T.A.

    1998-01-01

    Neutronics analyses are now in progress to support the initial selection of moderator design parameters for the Spallation Neutron Source (SNS). The results of the initial optimization studies involving moderator poison plate location, moderator position, and premoderator performance for the target system are presented in this paper. Also presented is an initial study of the use of a composite moderator to produce a liquid methane like spectrum

  3. Integral measurements of neutron production in spallation targets

    International Nuclear Information System (INIS)

    Frehaut, J.; Deneuville, D.; Ledoux, X.; Lochard, J.P.; Longuet, J.L.; Petibon, E.; Alrick, K.; Bownan, D.; Cverna, F.; King, N.S.P.; Morgan, G.L.; Greene, G.; Hanson, A.; Snead, L.; Thompson, R.; Ward, T.

    1998-01-01

    Measurements of neutron production for thick iron, tungsten and lead targets of different diameter prototypic for spallation systems have been made at SATURNE in an incident proton energy range from 400 MeV to 2 GeV. TIERCE code system calculations are in good agreement with experiment for iron and large diameter tungsten and lead targets. They overestimate the measured neutron production for tungsten and lead targets for diameter ≤20 cm. (author)

  4. The BLAIRR Irradiation Facility Hybrid Spallation Target Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Simos N.; Hanson A.; Brown, D.; Elbakhshawn, M.

    2016-04-11

    BLAIRR STUDY STATUS OVERVIEW Beamline Complex Evaluation/Assessment and Adaptation to the Goals Facility Radiological Constraints ? Large scale analyses of conventional facility and integrated shield (concrete, soil)Target Optimization and Design: Beam-target interaction optimization Hadronic interaction and energy deposition limitations Single phase and Hybrid target concepts Irradiation Damage Thermo-mechanical considerations Spallation neutron fluence optimization for (a) fast neutron irradiation damage (b) moderator/reflector studies, (c) NTOF potential and optimization (d) mono-energetic neutron beam

  5. Energy dependence of isotopic spectra from spallation residues

    International Nuclear Information System (INIS)

    Audouin, L.

    2003-09-01

    Spallation reactions are collisions between heavy nuclei and light particle with an energy of a few hundreds MeV. The y are considered as a suitable way to create high- flux neutrons sources, which may used for example for the transmutation of nuclear wastes (hybrid reactors). The study of the residues from such reactions is both a way to understand the physics of the spallation and to provide information required for the design of industrial targets. The residues from the spallation of lead by proton at 500 MeV have been measured using the inverse kinematics technique in the FRS (fragments recoil separator). spectrometer from GSI (Barmstadt). This low energy required the use of new technique, for the experimental setup as well as during the analysis. The fragments were identified in-flight, prior to β decay. Complete isotopic distributions are obtained with an accuracy ranging between 10 and 30%. Detailed information on the reaction kinematics are also obtained. Data are in excellent agreement with radio-chemical measurements, and bring new insights about the spallation process. The comparison with data measured on the same system with an incident energy of 1 GeV allows to discuss the influence of the projectile energy on the residues formation. It is concluded that the independence of the shape of the isobaric production cross sections regarding mass and energy of the projectile is preserved at low incident energies. The behaviour of Monte-Carlo codes is discussed with respect to those sets of data. The calculations show an improving agreement with decreasing energy, indicating that high-energy phenomena, for which some common assumptions become questionable, are the main reason for the observed discrepancies. (author)

  6. A preliminary exploration of Advanced Molecular Bio-Sciences Research Center

    International Nuclear Information System (INIS)

    Yamada, Yutaka; Yanai, Takanori; Onodera, Jun'ichi; Yamagami, Mutsumi; Sakata, Hiroshi; Sota, Masahiro; Takemura, Tatsuo; Koyama, Kenji; Sato, Fumiaki

    2000-01-01

    Low-dose and low-dose-rate radiation effects on life-span, pathological changes, hemopoiesis and cytokine production in experimental animals have been investigated in our laboratory. In the intermediate period of the investigation, an expert committee on radiation biology, which was composed of two task groups, was organized. The purposes of the committee were to assess of previous studies and plan future research for Advanced Molecular Bio-Sciences Research Center (AMBIC). In its report, the committee emphasized the necessity of molecular research in radiation biology and ecology, and proposed six subjects for the research: 1) Molecular carcinogenesis of low-dose radiation; 2) Radiation effects on the immune system and hemopoietic system; 3) Molecular mechanisms of hereditary effect; 4) Non cancer effect of low-dose radiation; 5) Gene targeting for ion transport system in plants; 6) Bioremediation with transgenic plant and bacteria. Exploration of the AMBIC project will continue under the committee's direction. (author)

  7. A preliminary exploration of the advanced molecular bio-sciences research center

    International Nuclear Information System (INIS)

    Yanai, Takanori; Yamada, Yutaka; Tanaka, Kimio; Yamagami, Mutsumi; Sota, Masahiro; Takemura, Tatsuo; Koyama, Kenji; Sato, Fumiaki

    2001-01-01

    Low dose and low dose rate radiation effects on lifespan, pathological changes, hemopoiesis and cytokine production in mice have been investigated in our laboratory. In the intermediate period of the investigation, an expert committee on radiation biology was organized. The purposes of the committee were to assess previous studies and advise on a future research plan for the Advanced Molecular Bio-Sciences Research Center (AMBIC). The committee emphasized the necessity of molecular research in radiation biology, and proposed the following five subjects: 1) molecular carcinogenesis by low dose radiation; 2) radiation effects on the immune and hemopoietic systems; 3) molecular mechanisms of hereditary effect; 4) noncancer diseases of low dose radiation, and 5) cellular mechanisms by low dose radiation. (author)

  8. 76 FR 63615 - Environmental Science Center Microbiology Laboratory; Notice of Public Meeting

    Science.gov (United States)

    2011-10-13

    ...The U.S. EPA invites interested stakeholders to participate in a laboratory-based technical workshop that will focus on the conduct of the Association of Official Analytical Chemists (AOAC) Use-dilution method (UDM) and the status and implementation of a new test method, the Organization for Economic Cooperation and Development (OECD) Quantitative Method for Evaluating Bactericidal Activity of Microbicides Used on Hard, Non-Porous Surfaces. The workshop is being held to discuss current and proposed revisions mainly associated with the Staphyloccocus aureus and Pseudomonas aeruginosa methodologies. The goals of the workshop are to provide a comprehensive review and discussion period on the status of the UDM and OEDC methods integrated with hands-on laboratory demonstrations. An overview of various data sets and collaborative studies will be used to supplement the discussions which will be held at the EPA Environmental Science Center Microbiology Laboratory.

  9. High Performance Computing in Science and Engineering '02 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    2003-01-01

    This book presents the state-of-the-art in modeling and simulation on supercomputers. Leading German research groups present their results achieved on high-end systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2002. Reports cover all fields of supercomputing simulation ranging from computational fluid dynamics to computer science. Special emphasis is given to industrially relevant applications. Moreover, by presenting results for both vector sytems and micro-processor based systems the book allows to compare performance levels and usability of a variety of supercomputer architectures. It therefore becomes an indispensable guidebook to assess the impact of the Japanese Earth Simulator project on supercomputing in the years to come.

  10. Informing Science (IS) and Science and Technology Studies (STS): The University as Decision Center (DC) for Teaching Interdisciplinary Research

    OpenAIRE

    Teresa Castelao-Lawless; William F. Lawless

    2001-01-01

    Students of history and philosophy of science courses at my University are either naïve robust realists or naïve relativists in relation to science and technology. The first group absorbs from culture stereotypical conceptions, such as the value-free character of the scientific method, that science and technology are impervious to history or ideology, and that science and religion are always at odds. The second believes science and technology were selected arbitrarily by ideologues to have pr...

  11. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-01-01

    NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the

  12. Astrophysical Li-7 as a product of big bang nucleosynthesis and galactic cosmic-ray spallation

    Science.gov (United States)

    Olive, Keith A.; Schramm, David N.

    1992-01-01

    The astrophysical Li-7 abundance is considered to be largely primordial, while the Be and B abundances are thought to be due to galactic cosmic ray (GCR) spallation reactions on top of a much smaller big bang component. But GCR spallation should also produce Li-7. As a consistency check on the combination of big bang nucleosynthesis and GCR spallation, the Be and B data from a sample of hot population II stars is used to subtract from the measured Li-7 abundance an estimate of the amount generated by GCR spallation for each star in the sample, and then to add to this baseline an estimate of the metallicity-dependent augmentation of Li-7 due to spallation. The singly reduced primordial Li-7 abundance is still consistent with big bang nucleosynthesis, and a single GCR spallation model can fit the Be, B, and corrected Li-7 abundances for all the stars in the sample.

  13. Increasing Student Success in Large Survey Science Courses via Supplemental Instruction in Learning Centers

    Science.gov (United States)

    Hooper, Eric Jon; Nossal, S.; Watson, L.; Timbie, P.

    2010-05-01

    Large introductory astronomy and physics survey courses can be very challenging and stressful. The University of Wisconsin-Madison Physics Learning Center (PLC) reaches about 10 percent of the students in four introductory physics courses, algebra and calculus based versions of both classical mechanics and electromagnetism. Participants include those potentially most vulnerable to experiencing isolation and hence to having difficulty finding study partners as well as students struggling with the course. They receive specially written tutorials, conceptual summaries, and practice problems; exam reviews; and most importantly, membership in small groups of 3 - 8 students which meet twice per week in a hybrid of traditional teaching and tutoring. Almost all students who regularly participate in the PLC earn at least a "C,” with many earning higher grades. The PLC works closely with other campus programs which seek to increase the participation and enhance the success of underrepresented minorities, first generation college students, and students from lower-income circumstances; and it is well received by students, departmental faculty, and University administration. The PLC staff includes physics education specialists and research scientists with a passion for education. However, the bulk of the teaching is conducted by undergraduates who are majoring in physics, astronomy, mathematics, engineering, and secondary science teaching (many have multiple majors). The staff train these enthusiastic students, denoted Peer Mentor Tutors (PMTs) in general pedagogy and mentoring strategies, as well as the specifics of teaching the physics covered in the course. The PMTs are among the best undergraduates at the university. While currently there is no UW-Madison learning center for astronomy courses, establishing one is a possible future direction. The introductory astronomy courses cater to non-science majors and consequently are less quantitative. However, the basic structure

  14. Calculation of the spallation product distribution in the evaporation process

    International Nuclear Information System (INIS)

    Nishida, T.; Kanno, I.; Nakahara, Y.; Takada, H.

    1989-01-01

    Some investigations are performed for the calculational model of nuclear spallation reaction in the evaporation process. A new version of a spallation reaction simulation code NUCLEUS has been developed by incorporating the newly revised Uno ampersand Yamada's mass formula and extending the counting region of produced nuclei. The differences between the new and original mass formulas are shown in the comparisons of mass excess values. The distributions of spallation products of a uranium target nucleus bombarded by energy (0.38 - 2.9 GeV) protons have been calculated with the new and original versions of NUCLEUS. In the fission component Uno ampersand Yamada's mass formula reproduces the measured data obtained from thin foil experiments significantly better, especially in the neutron excess side, than the combination of the Cameron's mass formula and the mass table compiled by Wapstra, et al., in the original version of NUCLEUS. Discussions are also made on how the mass-yield distribution of products varies dependent on the level density parameter a characterizing the particle evaporation. 16 refs., 7 figs., 1 tab

  15. Calculation of the spallation product distribution in the evaporation process

    International Nuclear Information System (INIS)

    Nishida, T.; Kanno, I.; Nakahara, Y.; Takada, H.

    1989-01-01

    Some investigations are performed for the calculational model of nuclear spallation reaction in the evaporation process. A new version of a spallation reaction simulation code NUCLEUS has been developed by incorporating the newly revised Uno and Yamada's mass formula and extending the counting region of produced nuclei. The differences between the new and original mass formulas are shown in the comparisons of mass excess values. The distributions of spallation products of a uranium target nucleus bombarded by energy (0.38 - 2.9 GeV) protons have been calculated with the new and original versions of NUCLEUS. In the fission component Uno and Yamada's mass formula reproduces the measured data obtained from thin foil experiments significantly better, especially in the neutron excess side, than the combination of the Cameron's mass formula and the mass table compiled by Wapstra, et al., in the original version of NUCLEUS. Discussions are also made on how the mass-yield distribution of products varies dependent on the level density parameter α characterizing the particle evaporation. (author)

  16. GEM-based thermal neutron beam monitors for spallation sources

    International Nuclear Information System (INIS)

    Croci, G.; Claps, G.; Caniello, R.; Cazzaniga, C.; Grosso, G.; Murtas, F.; Tardocchi, M.; Vassallo, E.; Gorini, G.; Horstmann, C.; Kampmann, R.; Nowak, G.; Stoermer, M.

    2013-01-01

    The development of new large area and high flux thermal neutron detectors for future neutron spallation sources, like the European Spallation Source (ESS) is motivated by the problem of 3 He shortage. In the framework of the development of ESS, GEM (Gas Electron Multiplier) is one of the detector technologies that are being explored as thermal neutron sensors. A first prototype of GEM-based thermal neutron beam monitor (bGEM) has been built during 2012. The bGEM is a triple GEM gaseous detector equipped with an aluminum cathode coated by 1μm thick B 4 C layer used to convert thermal neutrons to charged particles through the 10 B(n, 7 Li)α nuclear reaction. This paper describes the results obtained by testing a bGEM detector at the ISIS spallation source on the VESUVIO beamline. Beam profiles (FWHM x =31 mm and FWHM y =36 mm), bGEM thermal neutron counting efficiency (≈1%), detector stability (3.45%) and the time-of-flight spectrum of the beam were successfully measured. This prototype represents the first step towards the development of thermal neutrons detectors with efficiency larger than 50% as alternatives to 3 He-based gaseous detectors

  17. A feasibility study for a one-megawatt pulsed spallation source at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pynn, R.

    1994-01-01

    Over the past two decades, high-intensity proton accelerators have been designed and developed to support nuclear physics research and defense applications. This technology has now matured to the point where it can support simultaneous and cost-effective exploitation of a number of important areas of both basic and applied science. Examples include neutron scattering, the production of radioisotopes, tests of technologies to transmute nuclear waste, radiation damage studies, nuclear physics, and muon spin research. As part of a larger program involving these and other areas, a team at Los Alamos National Laboratory has undertaken a feasibility study for a 1-MW pulsed spallation neutron source (PSS) based on the use of an 800-MeV proton linac and an accumulator ring. In January 1994, the feasibility study was reviewed by a large, international group of experts in the design of accelerators and neutron spallation targets. This group confirmed the viability of the proposed neutron source. In this paper, I describe the approach Los Alamos has taken to the feasibility study, which has involved a synergistic application of the Laboratory's expertise in nuclear science and technology, computation, and particle-beam technologies. Several examples of problems resolved by the study are described, including chopping of low-energy proton beam, interactions between H - particles and the stripper foil used to produce protons for injection into an accumulator ring, and the inclusion of engineering realities into the design of a neutron production target. These examples are chosen to illustrate the breadth of the expertise that has been brought to bear on the feasibility study and to demonstrate that there are real R ampersand D issues that need to be resolved before a next-generation spoliation source can be built

  18. Classroom Activities: Simple Strategies to Incorporate Student-Centered Activities within Undergraduate Science Lectures

    Science.gov (United States)

    Lom, Barbara

    2012-01-01

    The traditional science lecture, where an instructor delivers a carefully crafted monolog to a large audience of students who passively receive the information, has been a popular mode of instruction for centuries. Recent evidence on the science of teaching and learning indicates that learner-centered, active teaching strategies can be more effective learning tools than traditional lectures. Yet most colleges and universities retain lectures as their central instructional method. This article highlights several simple collaborative teaching techniques that can be readily deployed within traditional lecture frameworks to promote active learning. Specifically, this article briefly introduces the techniques of: reader’s theatre, think-pair-share, roundtable, jigsaw, in-class quizzes, and minute papers. Each technique is broadly applicable well beyond neuroscience courses and easily modifiable to serve an instructor’s specific pedagogical goals. The benefits of each technique are described along with specific examples of how each technique might be deployed within a traditional lecture to create more active learning experiences. PMID:23494568

  19. Intestinal Parasitological infection of employee in food manufacture anddistribution centers of Ilam University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    R Nasrifar

    2005-10-01

    Full Text Available Backgrand and Aims: Food centers' employee may be carrier of bacteria (eg. Salmonella, E coil,taphylococcus aureus and intestinal parasitical infection. With regard the importance of the roleof manufacturer and distribnter of food materials in enviromental health, the status and assessmentof these infections is necessary.Method:182 employee of food manufacture and distribntion centers' of Ilam University ofMedical Sciences were examined. 3 feaces sample were obtained from each porson in 3 days andby five different laboratory method (i.e. scoth-tape, direct thechuics, Ether formaline, Telmen'Flotation were examined. Date analysis was dane by SPSS Version, and chi square test.Results: 49.2 percent of employee had positive parasitical infection, which 45.1 percent hadprotoza and 9.7 percent had intestinal helminth. The most infections of protoza were due toEntamoeba coli, Endolimax nane, giardia Lamblia, blastocystis hominis, Chilomastix mesniliand Iodamoeba buetschlii. The most infection of intestinal heliminth were Oxyuris VermicularisHymenolepis nana, Ascaris Lumbericoides, Tricocephal, Tricosterongylus.Conclusion: The high occurance of intestinal protoza may be due to Low level of public healthand, not favouring of hygine basis in food manufacture and distribution rlaces.

  20. Center of Excellence for Geospatial Information Science research plan 2013-18

    Science.gov (United States)

    Usery, E. Lynn

    2013-01-01

    The U.S. Geological Survey Center of Excellence for Geospatial Information Science (CEGIS) was created in 2006 and since that time has provided research primarily in support of The National Map. The presentations and publications of the CEGIS researchers document the research accomplishments that include advances in electronic topographic map design, generalization, data integration, map projections, sea level rise modeling, geospatial semantics, ontology, user-centered design, volunteer geographic information, and parallel and grid computing for geospatial data from The National Map. A research plan spanning 2013–18 has been developed extending the accomplishments of the CEGIS researchers and documenting new research areas that are anticipated to support The National Map of the future. In addition to extending the 2006–12 research areas, the CEGIS research plan for 2013–18 includes new research areas in data models, geospatial semantics, high-performance computing, volunteered geographic information, crowdsourcing, social media, data integration, and multiscale representations to support the Three-Dimensional Elevation Program (3DEP) and The National Map of the future of the U.S. Geological Survey.

  1. Status of spallation neutron source program in High Intensity Proton Accelerator Project

    International Nuclear Information System (INIS)

    Oyama, Yukio

    2001-01-01

    Japan Atomic Energy Research Institute and High Energy Accelerator Organization are jointly designing a 1 MW spallation neutron source as one of the research facilities planned in the High Intensity Proton Accelerator Project. The spallation neutron source is driven by 3 GeV proton beam with a mercury target and liquid hydrogen moderators. The present status of design for these spallation source and relevant facility is overviewed. (author)

  2. Energy dependence of isotopic spectra from spallation residues; Dependance en energie des spectres isotopiques de residus de spallation

    Energy Technology Data Exchange (ETDEWEB)

    Audouin, L

    2003-09-01

    Spallation reactions are collisions between heavy nuclei and light particle with an energy of a few hundreds MeV. The y are considered as a suitable way to create high- flux neutrons sources, which may used for example for the transmutation of nuclear wastes (hybrid reactors). The study of the residues from such reactions is both a way to understand the physics of the spallation and to provide information required for the design of industrial targets. The residues from the spallation of lead by proton at 500 MeV have been measured using the inverse kinematics technique in the FRS (fragments recoil separator). spectrometer from GSI (Barmstadt). This low energy required the use of new technique, for the experimental setup as well as during the analysis. The fragments were identified in-flight, prior to {beta} decay. Complete isotopic distributions are obtained with an accuracy ranging between 10 and 30%. Detailed information on the reaction kinematics are also obtained. Data are in excellent agreement with radio-chemical measurements, and bring new insights about the spallation process. The comparison with data measured on the same system with an incident energy of 1 GeV allows to discuss the influence of the projectile energy on the residues formation. It is concluded that the independence of the shape of the isobaric production cross sections regarding mass and energy of the projectile is preserved at low incident energies. The behaviour of Monte-Carlo codes is discussed with respect to those sets of data. The calculations show an improving agreement with decreasing energy, indicating that high-energy phenomena, for which some common assumptions become questionable, are the main reason for the observed discrepancies. (author)

  3. Introducing a Web API for Dataset Submission into a NASA Earth Science Data Center

    Science.gov (United States)

    Moroni, D. F.; Quach, N.; Francis-Curley, W.

    2016-12-01

    As the landscape of data becomes increasingly more diverse in the domain of Earth Science, the challenges of managing and preserving data become more onerous and complex, particularly for data centers on fixed budgets and limited staff. Many solutions already exist to ease the cost burden for the downstream component of the data lifecycle, yet most archive centers are still racing to keep up with the influx of new data that still needs to find a quasi-permanent resting place. For instance, having well-defined metadata that is consistent across the entire data landscape provides for well-managed and preserved datasets throughout the latter end of the data lifecycle. Translators between different metadata dialects are already in operational use, and facilitate keeping older datasets relevant in today's world of rapidly evolving metadata standards. However, very little is done to address the first phase of the lifecycle, which deals with the entry of both data and the corresponding metadata into a system that is traditionally opaque and closed off to external data producers, thus resulting in a significant bottleneck to the dataset submission process. The ATRAC system was the NOAA NCEI's answer to this previously obfuscated barrier to scientists wishing to find a home for their climate data records, providing a web-based entry point to submit timely and accurate metadata and information about a very specific dataset. A couple of NASA's Distributed Active Archive Centers (DAACs) have implemented their own versions of a web-based dataset and metadata submission form including the ASDC and the ORNL DAAC. The Physical Oceanography DAAC is the most recent in the list of NASA-operated DAACs who have begun to offer their own web-based dataset and metadata submission services to data producers. What makes the PO.DAAC dataset and metadata submission service stand out from these pre-existing services is the option of utilizing both a web browser GUI and a RESTful API to

  4. Communicating Ocean Sciences to Informal Audiences (COSIA): Universities, Oceanographic Institutions, Science Centers and Aquariums Working Together to Improve Ocean Education and Public Outreach

    Science.gov (United States)

    Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.; Ingram, L.

    2007-12-01

    Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course from COSEE-California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project has leveraged these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort is one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach and promoting the broader impact of research; and provide diverse role models

  5. The International Science and Technology Center: Scope of activities and scientific projects in the field of nuclear data

    International Nuclear Information System (INIS)

    Klepatsky, Alexander B.

    2002-01-01

    The review of the ISTC (The International Science and Technology Center) Programs and activities including Science Project Program, Partner Program, Seminar Program and others is presented. Project funding by technology area, by funding Parties, by CIS (Commonwealth of Independent States) States etc. is demonstrated with emphasis on projects in the field of nuclear data. The ISTC opportunities for international cooperation in the fields of nuclear data measurements, calculation, evaluation and dissemination are discussed. (author)

  6. Beyond the center: Sciences in Central and Eastern Europe and their histories. An interview with professor Michael Jordan conducted by Jan Surman

    Directory of Open Access Journals (Sweden)

    Michael Gordin

    2016-11-01

    Full Text Available What is special about sciences in Central and Eastern Europe? What are the obstacles for writing histories of science done beyond metropoles? Is this science different than the science in the centers and what makes it so? How imperial are sciences made by representatives of dominant nations compared to non-dominant nations? These are some of the questions touched upon in the interview with Michael Gordin, a leading historian of science from Princeton University.

  7. Science center capabilities to monitor and investigate Michigan’s water resources, 2016

    Science.gov (United States)

    Giesen, Julia A.; Givens, Carrie E.

    2016-09-06

    information regarding projects by the Michigan Water Science Center (MI WSC) is available at http://mi.water.usgs.gov/.

  8. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    Science.gov (United States)

    Molthan, Andrew L.; Limaye, Ashutosh S.; Srikishen, Jayanthi

    2011-01-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula s "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA s National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA s SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT s experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by

  9. Annual report of R and D activities in Center for Promotion of Computational Science and Engineering and Center for Computational Science and e-Systems from April 1, 2005 to March 31, 2006

    International Nuclear Information System (INIS)

    2007-03-01

    This report provides an overview of research and development activities in Center for Computational Science and Engineering (CCSE), JAERI in the former half of the fiscal year 2005 (April 1, 2005 - Sep. 30, 2006) and those in Center for Computational Science and e-Systems (CCSE), JAEA, in the latter half of the fiscal year 2005(Oct 1, 2005 - March 31, 2006). In the former half term, the activities have been performed by 5 research groups, Research Group for Computational Science in Atomic Energy, Research Group for Computational Material Science in Atomic Energy, R and D Group for Computer Science, R and D Group for Numerical Experiments, and Quantum Bioinformatics Group in CCSE. At the beginning of the latter half term, these 5 groups were integrated into two offices, Simulation Technology Research and Development Office and Computer Science Research and Development Office at the moment of the unification of JNC (Japan Nuclear Cycle Development Institute) and JAERI (Japan Atomic Energy Research Institute), and the latter-half term activities were operated by the two offices. A big project, ITBL (Information Technology Based Laboratory) project and fundamental computational research for atomic energy plant were performed mainly by two groups, the R and D Group for Computer Science and the Research Group for Computational Science in Atomic Energy in the former half term and their integrated office, Computer Science Research and Development Office in the latter half one, respectively. The main result was verification by using structure analysis for real plant executable on the Grid environment, and received Honorable Mentions of Analytic Challenge in the conference 'Supercomputing (SC05)'. The materials science and bioinformatics in atomic energy research field were carried out by three groups, Research Group for Computational Material Science in Atomic Energy, R and D Group for Computer Science, R and D Group for Numerical Experiments, and Quantum Bioinformatics

  10. 75 FR 23800 - Notice of Intent to Repatriate a Cultural Item: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2010-05-04

    ... Museum & Science Center, Rochester, NY, that meets the definitions of ``sacred object'' and object of... responsibility within the Haudenosaunee Confederacy to bring back national cultural patrimony and sacred objects... not have the authority to do so. Furthermore, Onondaga Nation traditional religious leaders have...

  11. 75 FR 23799 - Notice of Intent to Repatriate a Cultural Item: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2010-05-04

    ... Museum & Science Center, Rochester, NY, that meets the definitions of ``sacred object'' and object of... responsibility within the Haudenosaunee Confederacy to bring back national cultural patrimony and sacred objects... not have the authority to do so. Furthermore, Onondaga Nation traditional religious leaders have...

  12. The Student Actions Coding Sheet (SACS): An Instrument for Illuminating the Shifts toward Student-Centered Science Classrooms

    Science.gov (United States)

    Erdogan, Ibrahim; Campbell, Todd; Abd-Hamid, Nor Hashidah

    2011-01-01

    This study describes the development of an instrument to investigate the extent to which student-centered actions are occurring in science classrooms. The instrument was developed through the following five stages: (1) student action identification, (2) use of both national and international content experts to establish content validity, (3)…

  13. The Experimental Teaching Reform in Biochemistry and Molecular Biology for Undergraduate Students in Peking University Health Science Center

    Science.gov (United States)

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and…

  14. Who Is Watching and Who Is Playing: Parental Engagement with Children at a Hands-On Science Center

    Science.gov (United States)

    Nadelson, Louis S.

    2013-01-01

    Family interactions are common phenomenon at visits to science centers and natural history museums. Through interactions the family can support each other as the members individually and collectively learn from their visits. Interaction is particularly important between child(ren) and parent, which may be facilitated by media provided to parents.…

  15. Science, humanism, judgement, ethics: person-centered medicine as an emergent model of modern clinical practice.

    Science.gov (United States)

    Miles, Andrew

    2013-01-01

    The Medical University of Plovdiv (MUP) has as its motto 'Committed to humanity". But what does humanity in modern medicine mean? Is it possible to practise a form of medicine that is without humanity? In the current article, it is argued that modern medicine is increasingly being practised in a de-personalised fashion, where the patient is understood not as a unique human individual, a person, but rather as a subject or an object and more in the manner of a complex biological machine. Medicine has, it is contended, become distracted from its duty to care, comfort and console as well as to ameliorate, attenuate and cure and that the rapid development of medicine's scientific knowledge is, paradoxically, principally causative. Signal occurrences in the 'patient as a person' movement are reviewed, together with the emergence of the evidence-based medicine (EBM) and patient-centered care (PCC) movements. The characteristics of a model of medicine evolving in response to medicine's current deficiencies--person-centered healthcare (PCH)--are noted and described. In seeking to apply science with humanism, via clinical judgement, within an ethical framework, it is contended that PCH will prove to be far more responsive to the needs of the individual patient and his/her personal circumstances than current models of practice, so that neither a reductive anatomico-pathological, disease-centric model of illness (EBM), nor an aggressive patient-directed, consumerist form of care (PCC) is allowed continued dominance within modern healthcare systems. In conclusion, it is argued that PCH will enable affordable advances in biomedicine and technology to be delivered to patients within a humanistic framework of clinical practice that recognises the patient as a person and which takes full account of his/her stories, values, preferences, goals, aspirations, fears, worries, hopes, cultural context and which responds to his/her psychological, emotional, spiritual and social necessities

  16. Increasing Access to Atmospheric Science Research at NASA Langley Research Center

    Science.gov (United States)

    Chambers, L. H.; Bethea, K. L.; LaPan, J. C.

    2013-12-01

    The Science Directorate (SD) at NASA's Langley Research Center conducts cutting edge research in fundamental atmospheric science topics including radiation and climate, air quality, active remote sensing, and upper atmospheric composition. These topics matter to the public, as they improve our understanding of our home planet. Thus, we have had ongoing efforts to improve public access to the results of our research. These efforts have accelerated with the release of the February OSTP memo. Our efforts can be grouped in two main categories: 1. Visual presentation techniques to improve science understanding: For fundamental concepts such as the Earth's energy budget, we have worked to display information in a more "digestible" way for lay audiences with more pictures and fewer words. These audiences are iPad-lovers and TV-watchers with shorter attention spans than audiences of the past. They are also educators and students who need a basic understanding of a concept delivered briefly to fit into busy classroom schedules. We seek to reach them with a quick, visual message packed with important information. This presentation will share several examples of visual techniques, such as infographics (e.g., a history of lidar at Langley and a timeline of atmospheric research, ozone garden diagrams (http://science-edu.larc.nasa.gov/ozonegarden/ozone-cycle.php); history of lidar at LaRC; DISCOVER-AQ maps. It will also share examples of animations and interactive graphics (DISCOVER-AQ); and customized presentations (e.g., to explain the energy budget or to give a general overview of research). One of the challenges we face is a required culture shift between the way scientists traditionally share knowledge with each other and the way these public audiences ingest knowledge. A cross-disciplinary communications team in SD is crucial to bridge that gap. 2. Lay research summaries to make research more accessible: Peer-reviewed publications are a primary product of the SD, with more

  17. Intermediate Photovoltaic System Application Experiment. Oklahoma Center for Science and Arts. Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This report presents the key results of the Phase II efforts for the Intermediate PV System Applications Experiment at the Oklahoma Center for Science and Arts (OCSA). This phase of the project involved fabrication, installation and integration of a nominal 140 kW flat panel PV system made up of large, square polycrystalline-silicon solar cell modules, each nominally 61 cm x 122 cm in size. The output of the PV modules, supplied by Solarex Corporation, was augmented, 1.35 to 1 at peak, by a row of glass reflectors, appropriately tilted northward. The PV system interfaces with the Oklahoma Gas and Electric Utility at the OCSA main switchgear. Any excess power generated by the system is fed into the utility under a one to one buyback arrangement. Except for a shortfall in the system output, presently suspected to be due to the poor performance of the modules, no serious problems were encountered. Certain value engineering changes implemented during construction and early operational failure events associated with the power conditioning system are also described. The system is currently undergoing extended testing and evaluation.

  18. The GOLD Science Data Center - Algorithm Heritage, Data Product Descriptions and User Services

    Science.gov (United States)

    Lumpe, J. D.; Foroosh, H.; Eastes, R.; Krywonos, A.; Evans, J. S.; Burns, A. G.; Strickland, D. J.; Daniell, R. E.; England, S.; Solomon, S. C.; McClintock, W. E.; Anderson, D. N.

    2013-12-01

    The Global-scale Observations of the Limb and Disk (GOLD) instrument is an imaging spectrograph to be launched onboard a commercial communications satellite in 2017. From its vantage point in geosynchronous orbit GOLD will image the Earth in the far-ultraviolet from 132 to 162 nm. The instrument consists of two independent optical channels, allowing for simultaneous implementation of multiple measurement sequences with different temporal sampling and spectral resolution. In addition to continuously scanning the disk of the Earth, GOLD will also perform routine limb scan and stellar occultation measurements. These measurements will be used to retrieve a variety of data products characterizing the temperature and composition of the thermosphere-ionosphere, and their response to geomagnetic storms and solar forcing. Primary data products include: daytime neutral temperatures near 160 km altitude; daytime O/N2 column density ratios; nighttime peak electron density; thermospheric O2 density profiles (day and night); daytime exospheric neutral temperature on the limb; atmospheric tides from temperature perturbations; and the location and evolution of ionospheric bubbles. GOLD data will be processed at the Science Data Center (SDC) located at the University of Central Florida. The SDC will also serve as the primary gateway for distribution of GOLD data products to end-users. In this talk we summarize the heritage and theoretical basis of the GOLD retrieval algorithms and describe the full range of GOLD data products that will be available at the SDC, including estimates of data latency and quality.

  19. The nature of excellent clinicians at an academic health science center: a qualitative study.

    Science.gov (United States)

    Mahant, Sanjay; Jovcevska, Vesna; Wadhwa, Anupma

    2012-12-01

    To understand the nature of excellent clinicians at an academic health science center by exploring how and why excellent clinicians achieve high performance. From 2008 to 2010, the authors conducted a qualitative study using a grounded theory approach. Members of the Clinical Advisory Committee in the Department of Pediatrics at the University of Toronto nominated peers whom they saw as excellent clinicians. The authors then conducted in-depth interviews with the most frequently nominated clinicians. They audio-recorded and transcribed the interviews and coded the transcripts to identify emergent themes. From interviews with 13 peer-nominated, excellent clinicians, a model emerged. Dominant themes fell into three categories: (1) core philosophy, (2) deliberate activities, and (3) everyday practice. Excellent clinicians are driven by a core philosophy defined by high intrinsic motivation and passion for patient care and humility. They refine their clinical skills through two deliberate activities-reflective clinical practice and scholarship. Their high performance in everyday practice is characterized by clinical skills and cognitive ability, people skills, engagement, and adaptability. A rich theory emerged explaining how excellent clinicians, driven by a core philosophy and engaged in deliberate activities, achieve high performance in everyday practice. This theory of the nature of excellent clinicians provides a holistic perspective of individual performance, informs medical education, supports faculty career development, and promotes clinical excellence in the culture of academic medicine.

  20. Power reactor services provided by the Penn State Radiation Science and Engineering Center

    International Nuclear Information System (INIS)

    Voth, M.H.; Jester, W.A.

    1993-01-01

    The power reactor industry emerged from extensive research and development performed at nonpower reactors (NPRs). As the industry matures, NPRs continue to support and enhance power reactor technology. With the closure of many government and private industry NPRS, there is an increasing call for the 33 universities with operating research reactors to provide the needed services. The Penn State Radiation Science and Engineering Center (RSEC) includes a 1-MW pool-type pulsing TRIGA reactor, a neutron beam laboratory with real-time neutron radiography equipment, hot cells with master-slave manipulators for remote handling of radioactive materials, a gamma-ray irradiation pool, a low-level radiation monitoring laboratory, and extensive equipment for radiation monitoring, dosimetry, and material properties determination. While equipment is heavily utilized in the instructional and academic research programs, significant time remains available for service work. Cost recovery for service work generates income for personnel, equipment maintenance, and facility improvements. With decreasing federal and state funding for educational programs, it is increasingly important that facilities be fully utilized to generate supplementary revenue. The following are examples of such work performed at the RSEC

  1. Activities of JAEA in the International Science and Technology Center (ISTC)

    International Nuclear Information System (INIS)

    Hamada, Shozo

    2013-05-01

    Since the Headquarter of the International Science and Technology Center (ISTC) was established in Moscow, Russian Federation in 1994, Japan Atomic Energy Agency (JAEA), which includes both Japan Atomic Energy Research Institute and Japan has been made various, considerable contributions as well as participation in partner projects in ISTC activities. By the way, the Russian Federation Party, which is a Government Board Member of ISTC, made the statement that the Russian Federation would withdraw from ISTC until the end of 2015 in the 52th Government Board in held Moscow, 9 December 2010. This is based on the possible consequences of the Executive Order of the President of the Russian Federation dated 11 August 2010 with respect to the withdraw of the Russian Federation from ISTC. So that the Government Board has been discussing about the continuation and/or the establishment of a new organization for ISTC. In any case, the Headquarter of ISTC could stay at Moscow until the end of 2015 at latest. This time is considered as a transition period of ISTC and it is summarized that the collaborations, contributions of JAEA and outcomes from them for ISTC activities in this report. (author)

  2. Decision support system development at the Upper Midwest Environmental Sciences Center

    Science.gov (United States)

    Fox, Timothy J.; Nelson, J. C.; Rohweder, Jason J.

    2014-01-01

    A Decision Support System (DSS) can be defined in many ways. The working definition used by the U.S. Geological Survey Upper Midwest Environmental Sciences Center (UMESC) is, “A spatially based computer application or data that assists a researcher or manager in making decisions.” This is quite a broad definition—and it needs to be, because the possibilities for types of DSSs are limited only by the user group and the developer’s imagination. There is no one DSS; the types of DSSs are as diverse as the problems they help solve. This diversity requires that DSSs be built in a variety of ways, using the most appropriate methods and tools for the individual application. The skills of potential DSS users vary widely as well, further necessitating multiple approaches to DSS development. Some small, highly trained user groups may want a powerful modeling tool with extensive functionality at the expense of ease of use. Other user groups less familiar with geographic information system (GIS) and spatial data may want an easy-to-use application for a nontechnical audience. UMESC has been developing DSSs for almost 20 years. Our DSS developers offer our partners a wide variety of technical skills and development options, ranging from the most simple Web page or small application to complex modeling application development.

  3. How to Lead the Way Through Complexity, Constraint, and Uncertainty in Academic Health Science Centers.

    Science.gov (United States)

    Lieff, Susan J; Yammarino, Francis J

    2017-05-01

    Academic medicine is in an era of unprecedented and constant change due to fluctuating economies, globalization, emerging technologies, research, and professional and educational mandates. Consequently, academic health science centers (AHSCs) are facing new levels of complexity, constraint, and uncertainty. Currently, AHSC leaders work with competing academic and health service demands and are required to work with and are accountable to a diversity of stakeholders. Given the new challenges and emerging needs, the authors believe the leadership methods and approaches AHSCs have used in the past that led to successes will be insufficient. In this Article, the authors propose that AHSCs will require a unique combination of old and new leadership approaches specifically oriented to the unique complexity of the AHSC context. They initially describe the designer (or hierarchical) and heroic (military and transformational) approaches to leadership and how they have been applied in AHSCs. While these well-researched and traditional approaches have their strengths in certain contexts, the leadership field has recognized that they can also limit leaders' abilities to enable their organizations to be engaged, adaptable, and responsive. Consequently, some new approaches have emerged that are taking hold in academic work and professional practice. The authors highlight and explore some of these new approaches-the authentic, self, shared, and network approaches to leadership-with attention to their application in and utility for the AHSC context.

  4. Moisture-Induced TBC Spallation on Turbine Blade Samples

    Science.gov (United States)

    Smialek, James

    2011-01-01

    Delayed failure of TBCs is a widely observed laboratory phenomenon, although many of the early observations went unreported. The weekend effect or DeskTop Spallation (DTS) is characterized by initial survival of a TBC after accelerated laboratory thermal cycling, then failure by exposure to ambient humidity or water. Once initiated, failure can occur quite dramatically in less than a second. To this end, the water drop test and digital video recordings have become useful techniques in studies at NASA (Smialek, Zhu, Cuy), DECHMA (Rudolphi, Renusch, Schuetze), and CNRS Toulouse/SNECMA (Deneux, Cadoret, Hervier, Monceau). In the present study the results for a commercial turbine blade, with a standard EB-PVD 7YSZ TBC top coat and Pt-aluminide diffusion bond coat are reported. Cut sections were intermittently oxidized at 1100, 1150, and 1200 C and monitored by weight change and visual appearance. Failures were distributed widely over a 5-100 hr time range, depending on temperature. At some opportune times, failure was captured by video recording, documenting the appearance and speed of the moisture-induced spallation process. Failure interfaces exhibited alumina scale grains, decorated with Ta-rich oxide particles, and alumina inclusions as islands and streamers. The phenomenon is thus rooted in moisture-induced delayed spallation (MIDS) of the alumina scale formed on the bond coat. In that regard, many studies show the susceptibility of alumina scales to moisture, as long as high strain energy and a partially exposed interface exist. The latter conditions result from severe cyclic oxidation conditions, which produce a highly stressed and partially damaged scale. In one model, it has been proposed that moisture reacts with aluminum in the bond coat to release hydrogen atoms that embrittle the interface. A negative synergistic effect with interfacial sulfur is also invoked.

  5. New spallation neutron sources, their performance and applications

    International Nuclear Information System (INIS)

    1985-01-01

    Pulsed spallation sources now operating in the world are at the KEK Laboratory in Japan (the KENS source), at Los Alamos National Laboratory (WNR) and at Argonne National Laboratory (IPNS), both the latter being in the US. The Intense Pulsed Neutron Source (IPNS) is currently the world's most intense source with a peak neutron flux of 4 x 10 14 n cm -2 s -1 at a repetition rate of 30 Hz, and globally producing approx. 1.5 x 10 15 n/sec. Present pulsed sources are still relatively weak compared to their potential. In 1985 the Rutherford Spallation Neutron Source will come on line, and eventually be approx. 30 more intense than the present IPNS. Later, in 1986 the WNR/PSR option at Los Alamos will make that facility of comparable intensity, while a subcritical fission booster at IPNS will keep IPNS competitive. These new sources will expand the applications of pulsed neutrons but are still based on accelerators built for other scientific purposes, usually nuclear or high-energy physics. Accelerator physicists are now designing machines expressly for spallation neutron research, and the proton currents attainable appear in the milliamps. (IPNS now runs at 0.5 GeV and 14 μA). Such design teams are at the KFA Laboratory Julich, Argonne National Laboratory and KEK. Characteristics, particularly the different time structure of the pulses, of these new sources will be discussed. Such machines will be expensive and require national, if not international, collaboration across a wide spectrum of scientific disciplines. The new opportunities for neutron research will, of course, be dramatic with these new sources

  6. U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center-fiscal year 2010 annual report

    Science.gov (United States)

    Nelson, Janice S.

    2011-01-01

    The Earth Resources Observation and Science (EROS) Center is a U.S. Geological Survey (USGS) facility focused on providing science and imagery to better understand our Earth. The work of the Center is shaped by the earth sciences, the missions of our stakeholders, and implemented through strong program and project management, and application of state-of-the-art information technologies. Fundamentally, EROS contributes to the understanding of a changing Earth through 'research to operations' activities that include developing, implementing, and operating remote-sensing-based terrestrial monitoring capabilities needed to address interdisciplinary science and applications objectives at all levels-both nationally and internationally. The Center's programs and projects continually strive to meet, and where possible exceed, the changing needs of the USGS, the Department of the Interior, our Nation, and international constituents. The Center's multidisciplinary staff uses their unique expertise in remote sensing science and technologies to conduct basic and applied research, data acquisition, systems engineering, information access and management, and archive preservation to address the Nation's most critical needs. Of particular note is the role of EROS as the primary provider of Landsat data, the longest comprehensive global land Earth observation record ever collected. This report is intended to provide an overview of the scientific and engineering achievements and illustrate the range and scope of the activities and accomplishments at EROS throughout fiscal year (FY) 2010. Additional information concerning the scientific, engineering, and operational achievements can be obtained from the scientific papers and other documents published by EROS staff or by visiting our web site at http://eros.usgs.gov. We welcome comments and follow-up questions on any aspect of this Annual Report and invite any of our customers or partners to contact us at their convenience. To

  7. Overview of the national spallation neutron source with emphasis on the target station

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A.

    1997-01-01

    The technologies that are being utilized to design and build a state-of-the-art neutron spallation source, the National Spallation Neutron Source (NSNS), are discussed. Emphasis is given to the technology issues that present the greatest scientific challenges. The present facility configuration, ongoing analysis and the planned hardware research and development program are also described

  8. Workshop: Research and development plans for high power spallation neutron testing at BNL

    International Nuclear Information System (INIS)

    1996-01-01

    This report consists of vugraphs from presentations at the meeting. The papers covered the following topics: (1) APS as a proton source; (2) target status for NSNS (National Spallation Neutron Source); (3) spallation neutron source in Japan; (4) liquid LiBi flow loop; and (5) research and development plans for high power tests at the AGS

  9. The current state of the center for the creation and dissemination of new Japanese nursing science: The 21st century Center of Excellence at Chiba University School of Nursing

    OpenAIRE

    中村 伸枝; 石垣, 和子; 正木, 治恵; 宮崎, 美砂子; 山本, 則子

    2006-01-01

    Aim: The Center of Excellence for the Creation and Dissemination of a New Japanese Nursing Science at Chiba University School of Nursing is now in its third year of operation. This center aims to develop nursing science that is appropriate for Japanese culture and to internationally disseminate the importance of culturally based care. Our project seeks to systematically transform the art of nursing practise into a nursing science. Method: To date, multiple frameworks have been created through...

  10. VESPA: The vibrational spectrometer for the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Fedrigo, Anna, E-mail: anna.fedrigo@nbi.ku.dk [Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen Ø (Denmark); Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, 50019 Sesto Fiorentino (Italy); European Spallation Source ESS AB, SE-221 00 Lund (Sweden); Colognesi, Daniele; Grazzi, Francesco; Zoppi, Marco [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, 50019 Sesto Fiorentino (Italy); Bertelsen, Mads; Strobl, Markus [Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen Ø (Denmark); European Spallation Source ESS AB, SE-221 00 Lund (Sweden); Hartl, Monika; Deen, Pascale P. [European Spallation Source ESS AB, SE-221 00 Lund (Sweden); Lefmann, Kim [Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen Ø (Denmark)

    2016-06-15

    VESPA, Vibrational Excitation Spectrometer with Pyrolytic-graphite Analysers, aims to probe molecular excitations via inelastic neutron scattering. It is a thermal high resolution inverted geometry time-of-flight instrument designed to maximise the use of the long pulse of the European Spallation Source. The wavelength frame multiplication technique was applied to provide simultaneously a broad dynamic range (about 0-500 meV) while a system of optical blind choppers allows to trade flux for energy resolution. Thanks to its high flux, VESPA will allow the investigation of dynamical and in situ experiments in physical chemistry. Here we describe the design parameters and the corresponding McStas simulations.

  11. Nuclear spallation of cosmic ray nuclei in the interstellar medium

    International Nuclear Information System (INIS)

    Raisbeck, G.

    1974-01-01

    Nuclear spallation of cosmic rays during propagation is qualitatively reviewed. After the problem is defined, a discussion is presented of the relevant information obtainable from studying nuclear reactions, specifically, quantity and distribution of traversed matter, time and place of propagation, and source composition. Comments are offered on the cross sections and nuclear reactions that are critical for a complete understanding in this area. This is followed by a brief look at the present status of research and possibilities for further work using the Bevalac. (U.S.)

  12. Beginnings of remote handling at the RAL Spallation Neutron Source

    International Nuclear Information System (INIS)

    Liska, D.J.; Hirst, J.

    1985-01-01

    Expenditure of funds and resources for remote maintenance systems traditionally are delayed until late in an accelerator's development. However, simple remote-surveillance equipment can be included early in facility planning to set the stage for future remote-handling needs and to identify appropriate personnel. Some basic equipment developed in the UK at the Spallation Neutron Source (SNS) that serves this function and that has been used to monitor beam loss during commissioning is described. A photograph of this equipment, positioned over the extractor septum magnet, is shown. This method can serve as a pattern approach to the problem of initiating remote-handling activities in other facilities

  13. Spallation neutron source target station design, development, and commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.R., E-mail: hainesjr@ornl.gov; McManamy, T.J.; Gabriel, T.A.; Battle, R.E.; Chipley, K.K.; Crabtree, J.A.; Jacobs, L.L.; Lousteau, D.C.; Rennich, M.J.; Riemer, B.W.

    2014-11-11

    The spallation neutron source target station is designed to safely, reliably, and efficiently convert a 1 GeV beam of protons to a high flux of about 1 meV neutrons that are available at 24 neutron scattering instrument beam lines. Research and development findings, design requirements, design description, initial checkout testing, and results from early operation with beam are discussed for each of the primary target subsystems, including the mercury target, neutron moderators and reflector, surrounding vessels and shielding, utilities, remote handling equipment, and instrumentation and controls. Future plans for the mercury target development program are also briefly discussed.

  14. Nondiffractive applications of neutrons at the spallation source SINQ

    International Nuclear Information System (INIS)

    Lehmann, E.

    1996-01-01

    The paper delivers an overview about experiments with neutrons from the spallation source SINQ which are not especially devoted to neutron scattering. A total of six experimental facilities are under construction using thermal as well as cold neutrons. Starting with some general considerations about the interaction of neutrons with matter, the principles, boundary conditions and the experimental set up of these experiments are described briefly. Some more details are given for the neutron radiography facility NEUTRA as the author's special interest and research field. (author) 7 figs., 2 tabs., 9 refs

  15. Radiation damage for the spallation target of ADS

    International Nuclear Information System (INIS)

    Fan Sheng; Ye Yanlin; Xu Chuncheng; Chen Tao; Sobolevsky, N.M.

    2000-01-01

    By using SHIELD codes system, the authors investigate the radiation damage, such as radiation damage cross section, displacement atom cross section and the rate of displacement atom, gas production cross section, the rate of gas production and the ratio, R, of the helium and displacement production rates in target, container window and spallation neutron source materials as W and Pb induced from intermediate energy proton and neutron incident. And the study of radiation damage in the thick Pb target with long 60 cm, radius 20 cm is presented

  16. Nondiffractive applications of neutrons at the spallation source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    The paper delivers an overview about experiments with neutrons from the spallation source SINQ which are not especially devoted to neutron scattering. A total of six experimental facilities are under construction using thermal as well as cold neutrons. Starting with some general considerations about the interaction of neutrons with matter, the principles, boundary conditions and the experimental set up of these experiments are described briefly. Some more details are given for the neutron radiography facility NEUTRA as the author`s special interest and research field. (author) 7 figs., 2 tabs., 9 refs.

  17. Plans for a new pulsed spallation source at Los Alamos

    International Nuclear Information System (INIS)

    Pynn, R.

    1993-01-01

    Los Alamos National Laboratory has proposed to change the emphasis of research at its Meson Physics Facility (LAWF) by buabg a new pulsed spallation source for neutron scattering research. The new source would have a beam power of about one megawatt shared between two neutron production targets, one operating at 20 Hz and the other at 40 Hz. It would make use of much of the existing proton linac and would be designed to accommodate a later upgrade to a beam power of 5 MW or so. A study of technical feasibility is underway and will be published later this year

  18. Ranking Iranian biomedical research centers according to H-variants (G, M, A, R) in Scopus and Web of Science.

    Science.gov (United States)

    Mahmudi, Zoleikha; Tahamtan, Iman; Sedghi, Shahram; Roudbari, Masoud

    2015-01-01

    We conducted a comprehensive bibliometrics analysis to calculate the H, G, M, A and R indicators for all Iranian biomedical research centers (IBRCs) from the output of ISI Web of Science (WoS) and Scopus between 1991 and 2010. We compared the research performance of the research centers according to these indicators. This was a cross-sectional and descriptive-analytical study, conducted on 104 Iranian biomedical research centers between August and September 2011. We collected our data through Scopus and WoS. Pearson correlation coefficient between the scientometrics indicators was calculated using SPSS, version 16. The mean values of all indicators were higher in Scopus than in WoS. Drug Applied Research Center of Tabriz University of Medical Sciences had the highest number of publications in both WoS and Scopus databases. This research center along with Royan Institute received the highest number of citations in both Scopus and WoS, respectively. The highest correlation was seen between G and R (.998) in WoS and between G and R (.990) in Scopus. Furthermore, the highest overlap of the 10 top IBRCs was between G and H in WoS (100%) and between G-R (90%) and H-R (90%) in Scopus. Research centers affiliated to the top ranked Iranian medical universities obtained a better position with respect to the studied scientometrics indicators. All aforementioned indicators are important for ranking bibliometrics studies as they refer to different attributes of scientific output and citation aspects.

  19. Report on the Global Data Assembly Center (GDAC) to the 12th GHRSST Science Team Meeting

    Science.gov (United States)

    Armstrong, Edward M.; Bingham, Andrew; Vazquez, Jorge; Thompson, Charles; Huang, Thomas; Finch, Chris

    2011-01-01

    In 2010/2011 the Global Data Assembly Center (GDAC) at NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC) continued its role as the primary clearinghouse and access node for operational Group for High Resolution Sea Surface Temperature (GHRSST) datastreams, as well as its collaborative role with the NOAA Long Term Stewardship and Reanalysis Facility (LTSRF) for archiving. Here we report on our data management activities and infrastructure improvements since the last science team meeting in June 2010.These include the implementation of all GHRSST datastreams in the new PO.DAAC Data Management and Archive System (DMAS) for more reliable and timely data access. GHRSST dataset metadata are now stored in a new database that has made the maintenance and quality improvement of metadata fields more straightforward. A content management system for a revised suite of PO.DAAC web pages allows dynamic access to a subset of these metadata fields for enhanced dataset description as well as discovery through a faceted search mechanism from the perspective of the user. From the discovery and metadata standpoint the GDAC has also implemented the NASA version of the OpenSearch protocol for searching for GHRSST granules and developed a web service to generate ISO 19115-2 compliant metadata records. Furthermore, the GDAC has continued to implement a new suite of tools and services for GHRSST datastreams including a Level 2 subsetter known as Dataminer, a revised POET Level 3/4 subsetter and visualization tool, a Google Earth interface to selected daily global Level 2 and Level 4 data, and experimented with a THREDDS catalog of GHRSST data collections. Finally we will summarize the expanding user and data statistics, and other metrics that we have collected over the last year demonstrating the broad user community and applications that the GHRSST project continues to serve via the GDAC distribution mechanisms. This report also serves by extension to summarize the

  20. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    Science.gov (United States)

    Molthan, A.; Limaye, A. S.

    2011-12-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula's "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA's National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA's SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT's experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by

  1. Spallation production of neutron deficient radioisotopes in North America

    International Nuclear Information System (INIS)

    Jamriska, D.J.; Peterson, E.J.; Carty, J.

    1997-01-01

    The United States Department of Energy produces a number of neutron deficient radioisotopes by high energy proton induced spallation reactions in accelerators at Los Alamos National Laboratory in New Mexico and Brookhaven National Laboratory in New York. Research isotopes are also recovered from targets irradiated at TRIUMF in British Columbia, Canada. The radioisotopes recovered are distributed for use in nuclear medicine, environmental research, physics research, and industry worldwide. In addition to the main product line of Sr-82 from either Mo or Rb targets, Cu-67 from ZnO targets, and Ge-68 from RbBr targets, these irradiation facilities also produce some unique isotopes in quantities not available from any other source such as Be-10, Al-26, Mg-28, Si-32, El-44, Fe-52, Gd-248, and Hg-194. We will describe the accelerator irradiation facilities at the Los Alamos and Brookhaven National Laboratories. The high level radiochemical processing facilities at Los Alamos and brief chemical processes from Los Alamos and Brookhaven will be described. Chemical separation techniques have been developed to recover the radioisotopes of interest in both high radiochemical purity and yield and at the same time trying to reduce or eliminate the generation of mixed waste. nearly 75 neutron deficient radioisotopes produced in spallation targets have been produced and distributed to researchers around the world since the inception of the program in 1974

  2. Radiation problems expected for the German spallation neutron source

    International Nuclear Information System (INIS)

    Goebel, K.

    1981-01-01

    The German project for the construction of a Spallation Neutron Source with high proton beam power (5.5 MW) will have to cope with a number of radiation problems. The present report describes these problems and proposes solutions for keeping exposures for the staff and release of activity and radiation into the environment as low as reasonably achievable. It is shown that the strict requirements of the German radiation protection regulations can be met. The main problem will be the exposure of maintenance personnel to remanent gamma radiation, as is the case at existing proton accelerators. Closed ventilation and cooling systems will reduce the release of (mainly short-lived) activity to acceptable levels. Shielding requirements for different sections are discussed, and it is demonstrated by calculations and extrapolations from experiments that fence-post doses well below 150 mrem/y can be obtained at distances of the order of 100 metres from the principal source points. The radiation protection system proposed for the Spallation Neutron Source is discussed, in particular the needs for monitor systems and a central radiation protection data base and alarm system. (orig.)

  3. Materials considerations for the National Spallation Neutron Source target

    International Nuclear Information System (INIS)

    Mansur, L.K.; DiStefano, J.R.; Farrell, K.; Lee, E.H.; Pawel, S.J.; Wechsler, M.S.

    1997-08-01

    The National Spallation Neutron Source (NSNS), in which neutrons are generated by bombarding a liquid mercury target with 1 GeV protons, will place extraordinary demands on materials performance. The target structural material will operate in an aggressive environment, subject to intense fluxes of high energy protons, neutrons, and other particles, while exposed to liquid mercury and to water. Components that require special consideration include the Hg liquid target container and protective shroud, beam windows, support structures, moderator containers, and beam tubes. In response to these demands a materials R and D program has been developed for the NSNS that includes: selection of materials; calculations of radiation damage; irradiations, post irradiation testing, and characterization; compatibility testing and characterization; design and implementation of a plan for monitoring of materials performance in service; and materials engineering and technical support to the project. Irradiations are being carried out in actual and simulated spallation environments. Compatibility experiments in Hg are underway to ascertain whether the phenomena of liquid metal embrittlement and temperature gradient mass transfer will be significant. Results available to date are assessed in terms of the design and operational performance of the facility

  4. Complementarity of long pulse and short pulse spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Mezei, F [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1995-11-01

    The complementarity of short pulse spallation sources (SPSS) and steady state (CW) reactors is a widely accepted concept. SPSS and long pulse spallation sources (LPSS) are complementary in two ways: (a) in their performance in neutron scattering experiments LPSS closely emulate CW reactors. In this respect two facets of the time-of-flight (TOF) monochromator method adequate for LPSS will be discussed: the superiority of the TOF approach to the crystal monochromator method in high resolution powder diffraction, and the novel technique of repetition rate multiplication in TOF spectroscopy, (b) LPSS combined with adequate chopper systems can also emulate SPSS in a number of applications. It will be shown that the LPSS method of producing short neutron pulses is more efficient for cold and thermal neutrons (below an energy of about 100 MeV), while SPSS is the more favourable approach for hot, epithermal neutrons, i.e. in the slowing down regime in contrast to the moderated regime. These two aspects of complementarity of LPSS and SPSS lead to the conclusions that for about 75% of the spectrum of neutron scattering experiments as known of today the LPSS approach is the most advantageous one with a feasible neutron intensity exceeding that available at ILL by a factor of about 30, while for the remaining 25% of applications the SPSS technique is superior with a well-known potential of a similar gain over present day performances. (author) 7 figs., 6 refs.

  5. Complementarity of long pulse and short pulse spallation sources

    International Nuclear Information System (INIS)

    Mezei, F.

    1995-01-01

    The complementarity of short pulse spallation sources (SPSS) and steady state (CW) reactors is a widely accepted concept. SPSS and long pulse spallation sources (LPSS) are complementary in two ways: a) in their performance in neutron scattering experiments LPSS closely emulate CW reactors. In this respect two facets of the time-of-flight (TOF) monochromator method adequate for LPSS will be discussed: the superiority of the TOF approach to the crystal monochromator method in high resolution powder diffraction, and the novel technique of repetition rate multiplication in TOF spectroscopy, b) LPSS combined with adequate chopper systems can also emulate SPSS in a number of applications. It will be shown that the LPSS method of producing short neutron pulses is more efficient for cold and thermal neutrons (below an energy of about 100 MeV), while SPSS is the more favourable approach for hot, epithermal neutrons, i.e. in the slowing down regime in contrast to the moderated regime. These two aspects of complementarity of LPSS and SPSS lead to the conclusions that for about 75% of the spectrum of neutron scattering experiments as known of today the LPSS approach is the most advantageous one with a feasible neutron intensity exceeding that available at ILL by a factor of about 30, while for the remaining 25% of applications the SPSS technique is superior with a well-known potential of a similar gain over present day performances. (author) 7 figs., 6 refs

  6. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2016

    Science.gov (United States)

    Weiskopf, Sarah R.; Varela Minder, Elda; Padgett, Holly A.

    2017-05-19

    Introduction2016 was an exciting year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). In recognition of our ongoing efforts to raise awareness and provide the scientific data and tools needed to address the impacts of climate change on fish, wildlife, ecosystems, and people, NCCWSC and the CSCs received an honorable mention in the first ever Climate Adaptation Leadership Award for Natural Resources sponsored by the National Fish, Wildlife, and Plant Climate Adaptation Strategy’s Joint Implementation Working Group. The recognition is a reflection of our contribution to numerous scientific workshops and publications, provision of training for students and early career professionals, and work with Tribes and indigenous communities to improve climate change resilience across the Nation. In this report, we highlight some of the activities that took place throughout the NCCWSC and CSC network in 2016.

  7. 76 FR 64355 - Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting

    Science.gov (United States)

    2011-10-18

    ... Microbiology and the Division of Personalized Nutrition and Medicine will update the SAB on the major research... of the findings on the public health. The Center representatives from the Center for Veterinary...

  8. Energy Frontier Research Center Materials Science of Actinides (A 'Life at the Frontiers of Energy Research' contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    International Nuclear Information System (INIS)

    Burns, Peter

    2011-01-01

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  9. Compton suppression system at Penn State Radiation Science and Engineering Center

    International Nuclear Information System (INIS)

    Cetiner, N.Oe.; Uenlue, K.; Brenizer, J.S.

    2008-01-01

    A Compton suppression system is used to reduce the contribution of scattered gamma-rays that originate within the HPGe detector to the gamma ray spectrum. The HPGe detector is surrounded by an assembly of guard detectors, usually NaI(Tl). The HPGe and NaI(Tl) detectors are operated in anti-coincidence mode. The NaI(Tl) guard detector detects the photons that Compton scatter within, and subsequently escape from the HPGe detector. Since these photons are correlated with the partial energy deposition within the detector, much of the resulting Compton continuum can be subtracted from the spectrum reducing the unwanted background in gamma-ray spectra. A commercially available Compton suppression spectrometer (CSS) was purchased from Canberra Industries and tested at the Radiation Science and Engineering Center at Penn State University. The PSU-CSS includes a reverse bias HPGe detector, four annulus NaI(Tl) detectors, a NaI(Tl) plug detector, detector shields, data acquisition electronics, and a data processing computer. The HPGe detector is n-type with 54% relative efficiency. The guard detectors form an annulus with 9-inch diameter and 9-inch height, and have a plug detector that goes into/out of the annulus with the help of a special lift apparatus to raise/lower. The detector assembly is placed in a shielding cave. State-of-the-art electronics and software are used. The system was tested using standard sources, neutron activated NIST SRM sample and Dendrochronologically Dated Tree Ring samples. The PSU-CSS dramatically improved the peak-to-Compton ratio, up to 1000 : 1 for the 137 Cs source. (author)

  10. Patterns of biomedical science production in a sub-Saharan research center

    Directory of Open Access Journals (Sweden)

    Agnandji Selidji T

    2012-03-01

    Full Text Available Abstract Background Research activities in sub-Saharan Africa may be limited to delegated tasks due to the strong control from Western collaborators, which could lead to scientific production of little value in terms of its impact on social and economic innovation in less developed areas. However, the current contexts of international biomedical research including the development of public-private partnerships and research institutions in Africa suggest that scientific activities are growing in sub-Saharan Africa. This study aims to describe the patterns of clinical research activities at a sub-Saharan biomedical research center. Methods In-depth interviews were conducted with a core group of researchers at the Medical Research Unit of the Albert Schweitzer Hospital from June 2009 to February 2010 in Lambaréné, Gabon. Scientific activities running at the MRU as well as the implementation of ethical and regulatory standards were covered by the interview sessions. Results The framework of clinical research includes transnational studies and research initiated locally. In transnational collaborations, a sub-Saharan research institution may be limited to producing confirmatory and late-stage data with little impact on economic and social innovation. However, ethical and regulatory guidelines are being implemented taking into consideration the local contexts. Similarly, the scientific content of studies designed by researchers at the MRU, if local needs are taken into account, may potentially contribute to a scientific production with long-term value on social and economic innovation in sub-Saharan Africa. Conclusion Further research questions and methods in social sciences should comprehensively address the construction of scientific content with the social, economic and cultural contexts surrounding research activities.

  11. Solid State Power Amplifier for 805 MegaHertz at the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Davis, J.L.; Lyles, J.T.M.

    1998-01-01

    Particle accelerators for protons, electrons, and other ion species often use high-power vacuum tubes for RF amplification, due to the high RF power requirements to accelerate these particles with high beam currents. The final power amplifier stages driving large accelerators are unable to be converted to solid-state devices with the present technology. In some instances, radiation levels preclude the use of transistors near beamlines. Work is being done worldwide to replace the RF power stages under about ten kilowatts CW with transistor amplifiers, due to the lower maintenance costs and obsolescence of power tubes in these ranges. This is especially practical where the stages drive fifty Ohm impedance and are not located in high radiation zones. The authors are doing this at the Los Alamos Neutron Science Center (LANSCE) proton linear accelerator (linac) in New Mexico. They replaced a physically-large air-cooled UHF power amplifier using a tetrode electron tube with a compact water-cooled unit based on modular amplifier pallets developed at LANSCE. Each module uses eight push-pull bipolar power transistor pairs operated in class AB. Four pallets can easily provide up to 2,800 watts of continuous RF at 805 MHz. A radial splitter and combiner parallels the modules. This amplifier has proven to be completely reliable after over 10,000 hours of operation without failure. A second unit was constructed and installed for redundancy, and the old tetrode system was removed in 1998. The compact packaging for cooling, DC power, impedance matching, RF interconnection, and power combining met the electrical and mechanical requirements. CRT display of individual collector currents and RF levels is made possible with built-in samplers and a VXI data acquisition unit

  12. Integrating research, clinical care, and education in academic health science centers.

    Science.gov (United States)

    King, Gillian; Thomson, Nicole; Rothstein, Mitchell; Kingsnorth, Shauna; Parker, Kathryn

    2016-10-10

    Purpose One of the major issues faced by academic health science centers (AHSCs) is the need for mechanisms to foster the integration of research, clinical, and educational activities to achieve the vision of evidence-informed decision making (EIDM) and optimal client care. The paper aims to discuss this issue. Design/methodology/approach This paper synthesizes literature on organizational learning and collaboration, evidence-informed organizational decision making, and learning-based organizations to derive insights concerning the nature of effective workplace learning in AHSCs. Findings An evidence-informed model of collaborative workplace learning is proposed to aid the alignment of research, clinical, and educational functions in AHSCs. The model articulates relationships among AHSC academic functions and sub-functions, cross-functional activities, and collaborative learning processes, emphasizing the importance of cross-functional activities in enhancing collaborative learning processes and optimizing EIDM and client care. Cross-functional activities involving clinicians, researchers, and educators are hypothesized to be a primary vehicle for integration, supported by a learning-oriented workplace culture. These activities are distinct from interprofessional teams, which are clinical in nature. Four collaborative learning processes are specified that are enhanced in cross-functional activities or teamwork: co-constructing meaning, co-learning, co-producing knowledge, and co-using knowledge. Practical implications The model provides an aspirational vision and insight into the importance of cross-functional activities in enhancing workplace learning. The paper discusses the conceptual and empirical basis to the model, its contributions and limitations, and implications for AHSCs. Originality/value The model's potential utility for health care is discussed, with implications for organizational culture and the promotion of cross-functional activities.

  13. Workshop of Advanced Science Research Center, JAERI. Nuclear physics and nuclear chemistry of superheavy elements

    International Nuclear Information System (INIS)

    Nishio, Katsuhisa; Nishinaka, Ichiro; Ikezoe, Hiroshi; Nagame, Yuichiro

    2004-03-01

    A liquid drop model predicts that the fission barrier of a nucleus whose atomic number (Z) is larger than 106 disappears, so that such heavier nuclei as Z > 106 cannot exist. The shell effect, however, drastically changes structure of the fission barrier and stabilizes nucleus against fission, predicting the presence of super heavy element (SHE, Z=114-126) with measurable half-life. In the SHE region, a wave function of outermost electron of an atom, which controls chemical properties of an elements, is disturbed or changed by relativistic effects compared to the one from the non-relativistic model. This suggests that the SHEs have different chemical properties from those of lighter elements belonging to the same family. The chemistry of SHEs requires event by event analysis to reveal their chemical properties, thus is called 'atom-at-a-time chemistry'. Japan Atomic Energy Research Institute (JAERI) has been investigating fusion mechanism between heavy nuclei to find out favorable reactions to produce SHE by using JAERI-tandem and booster accelerator. In the JAERI-tandem facility, isotopes of Rf and Db are produced by using actinide targets such as 248 Cm in order to investigate their chemical properties. The present workshop was held in Advanced Science Research Center of JAERI at February 27-28 (2003) in order to discuss current status and future plans for the heavy element research. The workshop also included topics of the radioactive nuclear beam project forwarded by the JAERI-KEK cooperation and the nuclear transmutation facility of J-PARC. Also included is the nuclear fission process as a decay characteristic of heavy elements. There were sixty participants in the workshop including graduate and undergraduate eleven students. We had guests from Germany and Hungary. Through the workshop, we had a common knowledge that researches on SHE in Japan should fill an important role in the world. (author)

  14. Physics Myth Busting: A Lab-Centered Course for Non-Science Students

    Science.gov (United States)

    Madsen, Martin John

    2011-01-01

    There is ongoing interest in how and what we teach in physics courses for non-science students, so-called "physics for poets" courses. Art Hobson has effectively argued that teaching science literacy should be a key ingredient in these courses. Hobson uses Jon Millers definition of science literacy, which has two components: first, "a basic…

  15. The Three-Pronged Approach to Community Education: An Ongoing Hydrologic Science Outreach Campaign Directed from a University Research Center

    Science.gov (United States)

    Gallagher, L.; Morse, M.; Maxwell, R. M.

    2017-12-01

    The Integrated GroundWater Modeling Center (IGWMC) at Colorado School of Mines has, over the past three years, developed a community outreach program focusing on hydrologic science education, targeting K-12 teachers and students, and providing experiential learning for undergraduate and graduate students. During this time, the programs led by the IGWMC reached approximately 7500 students, teachers, and community members along the Colorado Front Range. An educational campaign of this magnitude for a small (2 full-time employees, 4 PIs) research center required restructuring and modularizing of the outreach strategy. We refined our approach to include three main "modules" of delivery. First: grassroots education delivery in the form of K-12 classroom visits, science fairs, and teacher workshops. Second: content development in the form of lesson plans for K-12 classrooms and STEM camps, hands-on physical and computer model activities, and long-term citizen science partnerships. Lastly: providing education/outreach experiences for undergraduate and graduate student volunteers, training them via a 3-credit honors course, and instilling the importance of effective science communication skills. Here we present specific case studies and examples of the successes and failures of our three-pronged system, future developments, and suggestions for entities newly embarking on an earth science education outreach campaign.

  16. Japan Nuclear Reaction Data Center (JCPRG), Faculty of Science, Hokkaido University, Steering Committee progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    The Japan Nuclear Reaction Data Center (JCPRG) was approved as an organisation of Faculty of Science, Hokkaido University and established on April 1, 2007. In addition to nuclear data activities carried out by JCPRG (Japan-Charged Particle Nuclear Reaction Data Group), the centre is concerned with the evaluation of nuclear reaction data in nucleosynthesis in the universe. In order efficiently to compile reaction data obtained by using radioactive ion beam, the centre signed a research contract with RIKEN Nishina Center. We are scanning 16 journals for Japanese charged-particle and photo-nuclear nuclear reaction data compilation. From April 2006 to March 2007, CPND and PhND in 45 references (453 records, 1.83 MB) have been newly compiled for NRDF. Usually new data are released at the JCPRG web site several months prior to EXFOR. Since the 2006 NRDC meeting, we have made 104 new entries and have revised or deleted 142 old entries. Intensive numerical data compilations have been done. These data were shown in tabular form in dissertations which are (partially) published in Journals. About 30 new entries were compiled from these data. We have prepared CINDA batches for CPND published in Japan every half year. Each batch covers 6 issues of each of 4 Japanese journals JPJ, PTP, NST and JNRS. Bibliographies for neutron induced reaction data have been compiled by JAEA Nuclear Data Center as before. A new web-based NRDF search and plot system on MySQL was released in July, 2007. New compilation, which has been finalized for NRDF, but not for EXFOR, can be obtained from this site. DARPE (another NRDF search and plot system written in Perl) is also available at http://www.jcprg.org/darpe/. EXFOR/ENDF (http://www.jcprg.org/exfor/) search and plot system is available. We have also developed following utilities: PENDL (http://www.jcprg.org/endf/) and RENORM (http://www.jcprg.org/renorm). We are developing a new search system of CINDA. This is an extension of EXFOR/ENDF search

  17. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2017

    Science.gov (United States)

    Varela Minder, Elda

    2018-04-19

    IntroductionThe year 2017 was a year of review and renewal for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). The Southeast, Northwest, Alaska, Southwest, and North Central CSCs’ 5-year summary review reports were released in 2017 and contain the findings of the external review teams led by the Cornell University Human Dimensions Research Unit in conjunction with the American Fisheries Society. The reports for the Pacific Islands, South Central, and Northeast CSCs are planned for release in 2018. The reviews provide an opportunity to evaluate aspects of the cooperative agreement, such as the effectiveness of the CSC in meeting project goals and assessment of the level of scientific contribution and achievement. These reviews serve as a way for the CSCs and NCCWSC to look for ways to recognize and enhance our network’s strengths and identify areas for improvement. The reviews were followed by the CSC recompetition, which led to new hosting agreements at the Northwest, Alaska, and Southeast CSCs. Learn more about the excellent science and activities conducted by the network centers in the 2017 annual report.

  18. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    Science.gov (United States)

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  19. Research on fabrication of aspheres at the Center of Optics Technology (University of Applied Science in Aalen); Techical Digest

    Science.gov (United States)

    Boerret, Rainer; Burger, Jochen; Bich, Andreas; Gall, Christoph; Hellmuth, Thomas

    2005-05-01

    The Center of Optics Technology at the University of Applied Science, founded in 2003, is part of the School of Optics and Mechatronics. It completes the existing optical engineering department with a full optical fabrication and metrology chain and serves in parallel as a technology transfer center, to provide area industries with the most up-to-date technology in optical fabrication and engineering. Two examples of research work will be presented. The first example is the optimizing of the grinding process for high precision aspheres, the other is generating and polishing of a freeform optical element which is used as a phase plate.

  20. Fundamental neutron physics at a 1 MW long pulse spallation neutron source

    International Nuclear Information System (INIS)

    Greene, G.L.

    1995-01-01

    Modern neutron sources and modern neutron science share a common origin in mid twentieth century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for the study of condensed matter with modern neutron sources being primarily used (and primarily justified) as tools for condensed matter research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities carried out at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high flux neutron facilities. Future sources, particularly high power spallation sources, offer exciting possibilities for the continuation of this program of research

  1. EXPERIMENTAL ANALYSES OF SPALLATION NEUTRONS GENERATED BY 100 MEV PROTONS AT THE KYOTO UNIVERSITY CRITICAL ASSEMBLY

    Directory of Open Access Journals (Sweden)

    CHEOL HO PYEON

    2013-02-01

    Full Text Available Neutron spectrum analyses of spallation neutrons are conducted in the accelerator-driven system (ADS facility at the Kyoto University Critical Assembly (KUCA. High-energy protons (100 MeV obtained from the fixed field alternating gradient accelerator are injected onto a tungsten target, whereby the spallation neutrons are generated. For neutronic characteristics of spallation neutrons, the reaction rates and the continuous energy distribution of spallation neutrons are measured by the foil activation method and by an organic liquid scintillator, respectively. Numerical calculations are executed by MCNPX with JENDL/HE-2007 and ENDF/B-VI libraries to evaluate the reaction rates of activation foils (bismuth and indium set at the target and the continuous energy distribution of spallation neutrons set in front of the target. For the reaction rates by the foil activation method, the C/E values between the experiments and the calculations are found around a relative difference of 10%, except for some reactions. For continuous energy distribution by the organic liquid scintillator, the spallation neutrons are observed up to 45 MeV. From these results, the neutron spectrum information on the spallation neutrons generated at the target are attained successfully in injecting 100 MeV protons onto the tungsten target.

  2. A critical review of the life sciences project management at Ames Research Center for the Spacelab Mission development test 3

    Science.gov (United States)

    Helmreich, R. L.; Wilhelm, J. M.; Tanner, T. A.; Sieber, J. E.; Burgenbauch, S. F.

    1979-01-01

    A management study was initiated by ARC (Ames Research Center) to specify Spacelab Mission Development Test 3 activities and problems. This report documents the problems encountered and provides conclusions and recommendations to project management for current and future ARC life sciences projects. An executive summary of the conclusions and recommendations is provided. The report also addresses broader issues relevant to the conduct of future scientific missions under the constraints imposed by the space environment.

  3. Study on bulk shielding for a spallation neutron source facility in the high-intensity proton accelerator project

    CERN Document Server

    Maekawa, F; Takada, H; Teshigawara, M; Watanabe, N

    2002-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project, a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed in a main part of the Materials and Life Science Facility. This report describes results of a study on bulk shielding performance of a biological shield for the spallation neutron source by means of a Monte Carlo calculation method, that is important in terms of radiation safety and cost reduction. A shielding configuration was determined as a reference case by considering preliminary studies and interaction with other components, then shielding thickness that was required to achieve a target dose rate of 1 mu Sv/h was derived. Effects of calculation conditions such as shielding materials and dimensions on the shielding performance was investigated by changing those parameters. By taking all the results and design margins into account, a shielding configuration that was identified as the most appropriate was finally determined as follows. An iron shield regi...

  4. Learner-centered teaching in the college science classroom: a practical guide for teaching assistants, instructors, and professors

    Science.gov (United States)

    Dominguez, Margaret Z.; Vorndran, Shelby

    2014-09-01

    The Office of Instruction and Assessment at the University of Arizona currently offers a Certificate in College Teaching Program. The objective of this program is to develop the competencies necessary to teach effectively in higher education today, with an emphasis on learner-centered teaching. This type of teaching methodology has repeatedly shown to have superior effects compared to traditional teacher-centered approaches. The success of this approach has been proven in both short term and long term teaching scenarios. Students must actively participate in class, which allows for the development of depth of understanding, acquisition of critical thinking, and problem-solving skills. As optical science graduate students completing the teaching program certificate, we taught a recitation class for OPTI 370: Photonics and Lasers for two consecutive years. The recitation was an optional 1-hour long session to supplement the course lectures. This recitation received positive feedback and learner-centered teaching was shown to be a successful method for engaging students in science, specifically in optical sciences following an inquiry driven format. This paper is intended as a guide for interactive, multifaceted teaching, due to the fact that there are a variety of learning styles found in every classroom. The techniques outlined can be implemented in many formats: a full course, recitation session, office hours and tutoring. This guide is practical and includes only the most effective and efficient strategies learned while also addressing the challenges faced, such as formulating engaging questions, using wait time and encouraging shy students.

  5. Neutronic performance issues for the Spallation Neutron Source moderators

    International Nuclear Information System (INIS)

    Iverson, E.B.; Murphy, B.D.

    2001-01-01

    We continue to develop the neutronic models of the Spallation Neutron Source target station and moderators in order to better predict the neutronic performance of the system as a whole and in order to better optimize that performance. While we are not able to say that every model change leads to more intense neutron beams being predicted, we do feel that such changes are advantageous in either performance or in the accuracy of the prediction of performance. We have computationally and experimentally studied the neutronics of hydrogen-water composite moderators such as are proposed for the SNS Project. In performing these studies, we find that the composite moderator, at least in the configuration we have examined, does not provide performance characteristics desirable for the instruments proposed and being designed for this neutron scattering facility. The pulse width as a function of energy is significantly broader than for other moderators, limiting attainable resolution-bandwidth combinations. Furthermore, there is reason to expect that higher-energy (0.1-1 eV) applications will be significantly impacted by bimodal pulse shapes requiring enormous effort to parameterize. As a result of these studies, we have changed the SNS design, and will not use a composite moderator at this time. We have analyzed the depletion of a gadolinium poison plate in a hydrogen moderator at the Spallation Neutron Source, and found that conventional poison thicknesses will be completely unable to last the desired component lifetime of three operational years. A poison plate 300-600 μm thick will survive for the required length of time, but will somewhat degrade the intensity (by as much as 15% depending on neutron energy) and the consistency of the neutron source performance. Our results should scale fairly easily to other moderators on this or any other spallation source. While depletion will be important for all highly-absorbing materials in high-flux regions, we feel it likely that

  6. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    Science.gov (United States)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  7. Report on enhancing young scholars in science and technology the Center for Excellence in Education

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-30

    The present stock and flow of highly talented young persons engaged in the global discovery and application of science and technology are critical to the future pace of innovation. Historically, the world`s largest reservoirs of scientists and engineers have been in the Western economies. Overtime, however, Asia has begun to build equivalent pools of scientists and engineers among their university graduates. According to 1993 data from the National Science Foundation and the UNESCO World Science Report, Germany leads all economies with a 67% ratio of science and engineering degrees to total first university degrees compared to the United States with a distant fifth place at 32% behind Italy, Mexico and Poland. If the nation is to keep its scientific and technological prowess, it must capture its very best talent in the science and technology fields. The question is then raised as to the source within the United States of the science and technology talent pool. While between 1978 and 1991 there was an overall decline in male participation in undergraduate (-9%) and graduate degrees (-12%), the number of women receiving undergraduate (+8%) and graduate degrees (+34%) rose dramatically. These numbers are encouraging for women`s participation overall, however, women earn only a small percentage of physical science and engineering degrees. Why are there so few women in mathematics, engineering, and the physical sciences? The answers are complex and begin early in a woman`s exposure to science and mathematics. This report presents results on a study of careers of alumni from the Research Science Institute. Investigations were concerned with the timing of decision processes concerned with the sciences and math and factors that influenced people to turn away from or proceed with careers in science and math.

  8. Evolution of Information Management at the GSFC Earth Sciences (GES) Data and Information Services Center (DISC): 2006-2007

    Science.gov (United States)

    Kempler, Steven; Lynnes, Christopher; Vollmer, Bruce; Alcott, Gary; Berrick, Stephen

    2009-01-01

    Increasingly sophisticated National Aeronautics and Space Administration (NASA) Earth science missions have driven their associated data and data management systems from providing simple point-to-point archiving and retrieval to performing user-responsive distributed multisensor information extraction. To fully maximize the use of remote-sensor-generated Earth science data, NASA recognized the need for data systems that provide data access and manipulation capabilities responsive to research brought forth by advancing scientific analysis and the need to maximize the use and usability of the data. The decision by NASA to purposely evolve the Earth Observing System Data and Information System (EOSDIS) at the Goddard Space Flight Center (GSFC) Earth Sciences (GES) Data and Information Services Center (DISC) and other information management facilities was timely and appropriate. The GES DISC evolution was focused on replacing the EOSDIS Core System (ECS) by reusing the In-house developed disk-based Simple, Scalable, Script-based Science Product Archive (S4PA) data management system and migrating data to the disk archives. Transition was completed in December 2007

  9. Cosmic ray-induced spallation recoil tracks in meteoritic phosphates: simulation at the CERN synchrocyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Perron, C [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Inst. d` Astrophysique; [Museum National d` Histoire Naturelle, 75 - Paris (France)

    1994-12-31

    Annealed meteoritic phosphate crystals have been irradiated by 600 MeV protons to simulate cosmic ray irradiation in space. Spallation recoil tracks were then revealed, which mimic fission tracks, specially when observed in the SEM. A production yield of 9.3 {+-} 2.2 x 10{sup 8} spallation track per proton has been obtained for merrillite, and a substantially lower value (2.5 per proton) for apatite. A nominal production yield in space of 6 tracks per year has been derived, which may be used for a rough estimate of spallation track densities in chondritic merrillite. (Author).

  10. The effect of annealing and desulfurization on oxide spallation of turbine airfoil material

    International Nuclear Information System (INIS)

    Briant, C.L.; Murphy, W.H.; Schaeffer, J.C.

    1995-01-01

    In this paper the authors report a study that addresses the sulfur-induced spallation theory. Previous work has shown that a high temperature anneal in hydrogen desulfurizes nickel-base alloys and greatly improves their resistance to oxide spallation. The authors will show that such an anneal can be applied successfully to a Ni-base airfoil material. Both Auger segregation experiments and chemical analyses show that this anneal desulfurizes the material, at least in the absence of yttrium. However, the results suggest that factors other than desulfurization may be contributing to the improvement in spallation resistance produced by the anneal

  11. Vanderbilt University Institute of Imaging Science Center for Computational Imaging XNAT: A multimodal data archive and processing environment.

    Science.gov (United States)

    Harrigan, Robert L; Yvernault, Benjamin C; Boyd, Brian D; Damon, Stephen M; Gibney, Kyla David; Conrad, Benjamin N; Phillips, Nicholas S; Rogers, Baxter P; Gao, Yurui; Landman, Bennett A

    2016-01-01

    The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has developed a database built on XNAT housing over a quarter of a million scans. The database provides framework for (1) rapid prototyping, (2) large scale batch processing of images and (3) scalable project management. The system uses the web-based interfaces of XNAT and REDCap to allow for graphical interaction. A python middleware layer, the Distributed Automation for XNAT (DAX) package, distributes computation across the Vanderbilt Advanced Computing Center for Research and Education high performance computing center. All software are made available in open source for use in combining portable batch scripting (PBS) grids and XNAT servers. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Social Science at the Center for Adaptive Optics: Synergistic Systems of Program Evaluation, Applied Research, Educational Assessment, and Pedagogy

    Science.gov (United States)

    Goza, B. K.; Hunter, L.; Shaw, J. M.; Metevier, A. J.; Raschke, L.; Espinoza, E.; Geaney, E. R.; Reyes, G.; Rothman, D. L.

    2010-12-01

    This paper describes the interaction of four elements of social science as they have evolved in concert with the Center for Adaptive Optics Professional Development Program (CfAO PDP). We hope these examples persuade early-career scientists and engineers to include social science activities as they develop grant proposals and carry out their research. To frame our discussion we use a metaphor from astronomy. At the University of California Santa Cruz (UCSC), the CfAO PDP and the Educational Partnership Center (EPC) are two young stars in the process of forming a solar system. Together, they are surrounded by a disk of gas and dust made up of program evaluation, applied research, educational assessment, and pedagogy. An idea from the 2001 PDP intensive workshops program evaluation developed into the Assessing Scientific Inquiry and Leadership Skills (AScILS) applied research project. In iterative cycles, AScILS researchers participated in subsequent PDP intensive workshops, teaching social science while piloting AScILS measurement strategies. Subsequent "orbits" of the PDP program evaluation gathered ideas from the applied research and pedagogy. The denser regions of this disk of social science are in the process of forming new protoplanets as tools for research and teaching are developed. These tools include problem-solving exercises or simulations of adaptive optics explanations and scientific reasoning; rubrics to evaluate the scientific reasoning simulation responses, knowledge regarding inclusive science education, and student explanations of science/engineering inquiry investigations; and a scientific reasoning curriculum. Another applied research project is forming with the design of a study regarding how to assess engineering explanations. To illustrate the mutual shaping of the cross-disciplinary, intergenerational group of educational researchers and their projects, the paper ends with a description of the professional trajectories of some of the

  13. The concept of a European spallation neutron source (ESS)

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-11-01

    The next generation neutron source in Europe, which was studied by a collaboration between twelve laboratories, has been conceived as a 5 MW short pulse spallation source because of the superior overall scientific potential attributed to such a facility relative to all other options considered. While the accelerator side can use essentially established technology with some extensions in performance, a novel target concept based on the use of Mercury as a flowing liquid metal target was developed, which is not only expected to lead the way further into the future, but which was also found to give the best neutronic performance of all known choices. Close permanent interaction with a large user community yielded important input for the concept in general and for the upcoming R and D and design phases in particular. (author)

  14. Spallation production of neutron deficient radioisotopes in North America

    International Nuclear Information System (INIS)

    Jamriska, D.J.; Peterson, E.J.; Carty, J.

    1997-01-01

    The US Department of Energy produces a number of neutron deficient radioisotopes by high energy proton induced spallation reactions in accelerators at Los Alamos National Laboratory in New Mexico and Brookhaven National Laboratory in New York. Research isotopes are also recovered from targets irradiated at TRIUMF in British Columbia, Canada. The radioisotopes recovered are distributed for use in nuclear medicine, environmental research, physics research, and industry worldwide. In addition to the main product line of Sr-82 from either Mo or Rb targets, Cu-67 from ZnO targets, and Ge-68 and RbBr targets, these irradiation facilities also produce some unique isotopes in quantities not available from any other source such as Al-26, Mg-28, Si-32, Ti-44, Fe-52, Gd-148, and Hg-194. The authors will describe the accelerator irradiation facilities at the Los Alamos and Brookhaven National Laboratories. The high level radiochemical processing facilities at Los Alamos and brief chemical processes will be described

  15. Radiological Hazard of Spallation Products in Accelerator-Driven System

    International Nuclear Information System (INIS)

    Saito, M.; Stankovskii, A.; Artisyuk, V.; Korovin, Yu.; Shmelev, A.; Titarenko, Yu.

    2002-01-01

    The central issue underlying this paper is related to elucidating the hazard of radioactive spallation products that might be an important factor affecting the design option of accelerator-driven systems (ADSs). Hazard analysis based on the concept of Annual Limit on Intake identifies alpha-emitting isotopes of rare earths (REs) (dysprosium, gadolinium, and samarium) as the dominant contributors to the overall toxicity of traditional (W, Pb, Pb-Bi) targets. The matter is addressed from several points of view: code validation to simulate their yields, choice of material for the neutron producing targets, and challenging the beam type. The paper quantitatively determines the domain in which the toxicity of REs exceeds that of polonium activation products broadly discussed now in connection with advertising lead-bismuth technology for the needs of ADSs

  16. The Spallation Neutron Source (SNS) conceptual design shielding analysis

    International Nuclear Information System (INIS)

    Johnson, J.O.; Odano, N.; Lillie, R.A.

    1998-03-01

    The shielding design is important for the construction of an intense high-energy accelerator facility like the proposed Spallation Neutron Source (SNS) due to its impact on conventional facility design, maintenance operations, and since the cost for the radiation shielding shares a considerable part of the total facility costs. A calculational strategy utilizing coupled high energy Monte Carlo calculations and multi-dimensional discrete ordinates calculations, along with semi-empirical calculations, was implemented to perform the conceptual design shielding assessment of the proposed SNS. Biological shields have been designed and assessed for the proton beam transport system and associated beam dumps, the target station, and the target service cell and general remote maintenance cell. Shielding requirements have been assessed with respect to weight, space, and dose-rate constraints for operating, shutdown, and accident conditions. A discussion of the proposed facility design, conceptual design shielding requirements calculational strategy, source terms, preliminary results and conclusions, and recommendations for additional analyses are presented

  17. Sulfur and Moisture Effects on Alumina Scale and TBC Spallation

    Science.gov (United States)

    Smialek, James L.

    2007-01-01

    It has been well established that a few ppmw sulfur impurity may segregate to the interface of thermally grown alumina scales and the underlying substrate, resulting in bond degradation and premature spallation. This has been shown for NiAl and NiCrAl-based alloys, bare single crystal superalloys, or coated superalloys. The role of reactive elements (especially Y) has been to getter the sulfur in the bulk and preclude interfacial segregation. Pt additions are also very beneficial, however a similar thermodynamic explanation does not apply. The purpose of the present discussion is to highlight some observations of these effects on Rene'142, Rene'N5, PWA1480, and PWA1484. For PWA1480, we have mapped cyclic oxidation and spallation in terms of potential sulfur interfacial layers and found that a cumulative amount of about one monolayer is sufficient to degrade long term adhesion. Depending on substrate thickness, optimum performance occurs if sulfur is reduced below about 0.2-0.5 ppmw. This is accomplished in the laboratory by hydrogen annealing or commercially by melt-fluxing. Excellent 1150 C cyclic oxidation is thus demonstrated for desulfurized Rene'142, Rene'N5, and PWA1484. Alternatively, a series of N5 alloys provided by GE-AE have shown that as little as 15 ppmw of Y dopant was effective in providing remarkable scale adhesion. In support of a Y-S gettering mechanism, hydrogen annealing was unable to desulfurize these alloys from their initial level of 5 ppmw S. This impurity and critical doping level corresponds closely to YS or Y2S3 stoichiometry. In many cases, Y-doped alloys or alloys with marginal sulfur levels exhibit an oxidative sensitivity to the ambient humidity called Moisture-Induced Delayed Spallation (MIDS). After substantial scale growth, coupled with damage from repeated cycling, cold samples may spall after a period of time, breathing on them, or immersing them in water. While stress corrosion arguments may apply, we propose that the underlying

  18. Study on induced radioactivity of China Spallation Neutron Source

    International Nuclear Information System (INIS)

    Wu Qingbiao; Wang Qingbin; Wu Jingmin; Ma Zhongjian

    2011-01-01

    China Spallation Neutron Source (CSNS) is the first High Energy Intense Proton Accelerator planned to be constructed in China during the State Eleventh Five-Year Plan period, whose induced radioactivity is very important for occupational disease hazard assessment and environmental impact assessment. Adopting the FLUKA code, the authors have constructed a cylinder-tunnel geometric model and a line-source sampling physical model, deduced proper formulas to calculate air activation, and analyzed various issues with regard to the activation of different tunnel parts. The results show that the environmental impact resulting from induced activation is negligible, whereas the residual radiation in the tunnels has a great influence on maintenance personnel, so strict measures should be adopted.(authors)

  19. Electron Cloud Mitigation in the Spallation Neutron Source Ring

    International Nuclear Information System (INIS)

    Wei, J.; Blaskiewicz, Michael; Brodowski, J.; Cameron, P.; Davino, Daniele; Fedotov, A.; He, P.; Hseuh, H.; Lee, Y.Y.; Ludewig, H.; Meng, W.; Raparia, D.; Tuozzolo, J.; Zhang, S.Y.; Catalan-Lasheras, N.; Macek, R.J.; Furman, Miguel A.; Aleksandrov, A.; Cousineau, S.; Danilov, V.; Henderson, S.

    2008-01-01

    The Spallation Neutron Source (SNS) accumulator ring is designed to accumulate, via H - injection, protons of 2 MW beam power at 1 GeV kinetic energy at a repetition rate of 60 Hz [1]. At such beam intensity, electron-cloud is expected to be one of the intensity-limiting mechanisms that complicate ring operations. This paper summarizes mitigation strategy adopted in the design, both in suppressing electron-cloud formation and in enhancing Landau damping, including tapered magnetic field and monitoring system for the collection of stripped electrons at injection, TiN coated beam chamber for suppression of the secondary yield, clearing electrodes dedicated for the injection region and parasitic on BPMs around the ring, solenoid windings in the collimation region, and planning of vacuum systems for beam scrubbing upon operation

  20. Characteristics of the WNR: a pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Russell, G.J.; Lisowski, P.W.; Howe, S.D.; King, N.S.P.; Meier, M.M.

    1982-01-01

    The Weapons Neutron Research facility (WNR) is a pulsed spallation neutron source in operation at the Los Alamos National Laboratory. The WNR uses part of the 800-MeV proton beam from the Clinton P. Anderson Meson Physics Facility accelerator. By choosing different target and moderator configurations and varying the proton pulse structure, the WNR can provide a white neutron source spanning the energy range from a few MeV to 800 MeV. The neutron spectrum from a bare target has been measured and is compared with predictions using an Intranuclear Cascade model coupled to a Monte Carlo transport code. Calculations and measurements of the neutronics of WNR target-moderator assemblies are presented